
US 20060048011A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0048011 A1
(19) United States

Dieffenderfer et al. (43) Pub. Date: Mar. 2, 2006

(54) PERFORMANCE PROFILING OF Publication Classi?cation
MICROPROCESSOR SYSTEMS USING
DEBUG HARDWARE AND PERFORMANCE (51) Int. Cl.
MONITOR G06F 11/00 (2006.01)

(52) U.S. Cl. 714/38

(75) Inventors: James N. Die?'enderfer, Apex, NC
(US); Sanjay B. Patel, Cary, NC (US);
Brian M. Stempel, Raleigh, NC (US) (57) ABSTRACT

Correspondence Address: _ _ _

IBM CORPORATION A method and system for monitoring the real-time of soft
PO BOX 12195 Ware running on a microprocessor system. Debug hardware
DEPT YXS A BLDG 002 is used to select a range of instructions or events to be
RESEARCH ’TRIANGLE PARK, NC 27709 monitored by a performance monitor interval With the
(Us) microprocessor system. Acomparison is made betWeen each

event and start and stop events are identi?ed in the debug
(73) Assignee; International Business Machines Cor. hardWare. The performance monitor is enabled by the debug

poration, Armonk, NY hardWare, When events occur Within the range de?ned by the
debug hardWare. Use of the debug hardWare for enabling

21 A 1, No,: 10/926 566 per ormance monitoring avo1 s any over ea associate () pp , f ' ' ‘d h d ' d
With generating interrupts, or additional code in the appli

(22) Filed: Aug. 26, 2004 cation program.

GPR FPR SPR
11 12 13

START

PERFORMANCE Debug
‘AR FETCH DISPATCH MOMTOR 'NTEggAcE — HARDWARE

UNIT UNIT 32 STOP 34 14
15 16

FP UNIT
24

BRANCH INTEGER INTEGER Ld/STR'
UNIT UNIT UNIT UNIT
17 1s 1s COMPLEX 22

UNIT
20

COMEI'ilErTION CACHE
25 21

IABR
COMPARE

26

Patent Application Publication Mar. 2, 2006 Sheet 1 0f 4 US 2006/0048011 A1

mm EEES $5

a kw“: H GE

W66 20528 a 55

mm 2 2 2

E: 5:28 =2: :2: =2: .52: $82 $82 672%

a _

:2: &

2 2 z

a a ham mm :23 55 5:
E2212 “2&5; 5:22‘ I855 55

958 mozszmommwm E5

2 2 : Em El Em

Patent Application Publication Mar. 2, 2006 Sheet 2 0f 4 US 2006/0048011 A1

QUE

10.5

wm momQsE
5 R mm 2

Patent Application Publication Mar. 2, 2006 Sheet 3 0f 4 US 2006/0048011 A1

QUE NM mOtzOE m0z<_>_m_O“Em_n_ Q Q m m m 5538 N 55:00 _ 5.2300 c 55:00

in | 50

9 || “65 mwxm._n=._.|5s_ II .E?w

50 $622 10mm KEEP; N196 S 29555;

US 2006/0048011 A1

PERFORMANCE PROFILING OF
MICROPROCESSOR SYSTEMS USING DEBUG
HARDWARE AND PERFORMANCE MONITOR

BACKGROUND OF THE INVENTION

[0001] The present invention relates to systems for diag
nosing problems in microprocessor computing systems.
Speci?cally, a system Which provides performance pro?ling
through the cooperation of debug hardWare and a perfor
mance monitor of a microprocessor system is disclosed.

[0002] Microprocessor systems are used in applications
Where speci?c softWare modules are executed having real
time performance constraints that are timing critical. For
example, in a cellular telephone application that has voice
recognition capabilities, the audio must be saved and pro
cessed in suf?cient time to keep up With human speech
patterns. In applications such as a hard disk controller, the
magnetic head must be tracked reliably in real-time to
prevent damage to the disk being Written With data. Appli
cation softWare Which is subject to these real-time system
constraints can be veri?ed in either a simulation or emula
tion of the application softWare. This requires a time con
suming and costly approach to recreate a model of the
system, including all real World variables that may be
encountered When the application is executed. Further,
because of the cost constraints, the model may have limited
throughput lessening the value of this approach to validating
the system against real-time constraints.

[0003] Many microprocessing systems include perfor
mance monitors Which can measure events identi?ed

through starting and end points of code being executed
under test. This requires that the application source code be
invasively modi?ed to include the starting and end points for
the monitor to begin and end analysis of code being
executed. Further, it is generally difficult to ?lter perfor
mance monitor data unless the region Within Which the
events are counted is precisely de?ned.

[0004] As an additional technique for verifying perfor
mance against real-time constraints, a trace port may be
added to the microprocessor system Which provides a
method to analyZe softWare execution through an external
logic analyZer or other digital tool. The additional equipment
and softWare necessary to post process any data recovered
through the trace port provides an additional cost Which is
objectionable.

[0005] US. Pat. No. 5,774,724 describes a type of system
Which is used to monitor the performance of a computing
system With improved granularity. The earlier patent
describes the use of a single break point register Where both
a start and stop break point instruction address are inserted
to de?ne a useful address range for monitoring softWare
execution. The system break point register includes a start
break point, and When an interrupt occurs When the start
address has been detected in the instruction address register,
the interrupt handler reprograms the break point register
With a stop address. The interrupt occurs during execution of
the code being counted by the performance monitor hard
Ware thereby polluting the performance results of the
executed code. Acode module may also have multiple entry
points that a single start break point register cannot detect,
and events may not be counted since the code region being
monitored may not have entered at the start address. Further,

Mar. 2, 2006

the code module may have multiple exit points that a single
stop point register cannot detect. This Would result in an over
counting of events since the counting continues until the
module is re-entered and exits through the identi?ed stop
break point address. The use of interrupts also reduces
computational bandWidth for the application and is other
Wise invasive. Additionally, the system must alter the source
code of the application Which is then recompiled into the
code image.

[0006] Because of these and other disadvantages, the
present invention has been provided Which makes use of the
existing debug hardWare and performance monitor, and
Which does not require the use of interrupts and the interrupt
handler.

BRIEF SUMMARY OF THE INVENTION

[0007] A method and apparatus are disclosed Which pro
vides for performance monitoring during execution of a
microprocessor program. An interface is provided betWeen
on board debug hardWare and an on board performance
monitor for selecting events Which occur during execution
of the program de?ning a beginning and end to a monitoring
interval. The processor on board performance monitor is
enabled and disabled by an enable and disable signal pro
duced at the beginning and end of the monitoring interval.

[0008] In accordance With a preferred embodiment of the
invention, the interface includes a programmable perfor
mance monitor debug register Which identi?es a plurality of
events Which occur during program execution. Each of the
debug hardWare detected events is supplied to ?rst and
second multiplexers. When these events occur, a ?rst and
second multiplexer are enabled by the performance monitor
debug register to generate the enable and disable signal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a block diagram of a microprocessor
system Which incorporates a preferred embodiment of the
invention;
[0010] FIG. 2 illustrates the performance monitoring
debug control register and interface betWeen the debug
hardWare and the performance monitor.

[0011] FIG. 3 is a block diagram shoWing the perfor
mance monitor for monitoring events being executed in a
microprocessor system;

[0012] FIG. 4 illustrates the organiZation of the debug
control register for selecting events for monitoring;

DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0013] Referring noW to FIG. 1, the microprocessor sys
tem of FIG. 1 includes various registers such as a general
purpose register 11, ?oating point registers 12, and special
purpose registers 13. The microprocessor also includes
numerous processor units performing their oWn conven
tional tasks such as fetch unit 15, dispatch unit 16, branch
unit 17, integer unit 18, integer unit 19, complex unit 20,
cache 21, a load cache/store unit 22, a ?oating point unit 24,
completion unit 25 and the JABR compare unit 26.

[0014] The microprocessor system of FIG. 1 includes a
performance monitor 32 as Well as debug hardWare 34. The

US 2006/0048011 A1

performance monitor allows the execution of a program by
the microprocessor system to be monitored. The debug
hardWare performs the various debug operation encountered
during hardWare and softWare development. The debug
operations and debug events are selected by programmable
registers in the debug hardWare. One example of the debug
hardWare is described more completely in the user’s manual
for the PoWerPC PPC403 GB embedded controller Which is
published by the International Business Machines Corpora
tion.

[0015] The function of the performance monitor is to
monitor and count pre-selected events such as processor
clocks, cache misses, instructions dispatched to a particular
execution unit, instruction per cycle time of execution, etc.
The performance monitor permits a real-time evaluation of
softWare code during execution and facilitates increased
system performance by enabling the design of more ef?cient
processors and softWare. The typical performance monitor
32 includes counter registers Which can be used to time
events or count events produced during program execution.

[0016] In accordance With a preferred embodiment of the
invention, an interface 33 is provided betWeen the debug
hardWare 34 and performance monitor 32 as shoWn more
particularly in FIG. 2. Referring noW to FIG. 2, a perfor
mance monitor debug control register (PMDBCR) selects
start and stop events de?ning an interval of a program being
executed to be monitored. The contents of the register
PMDBCR are shoWn more particularly TABLE 1.

TABLE 1

0 :18 Reserved

19:23 STRT [0:4] Start Debug Event
00000-IAC1
00001-IAC2
00010-IAC3
00011-IAC4
00100-DAC1R
00101-DAC1W
10001-Trap
10010-Intrpt
10011-BT
10100-11111 Reserved

24:26 Reserved

27:31 STOP [0:4] Stop/Pause Debug Event
00001 00000-IAC1

00001-IAC2
00010-IAC3
00011-IAC4
00100-DAC1R
00101-DAC1W
10001-Trap
10010-Intrpt
10011-BT
10100-11111 Reserved

[0017] As shoWn in TABLE 1, the start addresses 19:23
can hold up-to ?ve bits Which can identify a debug event
Which marks the beginning of a performance monitoring
interval of a program being executed by the microprocessor
system. The performance monitor is enabled by a start signal
When one of the events de?ned in locations 19:23 is detected
by the debug hardWare. These events may include execution
of a particular instruction address IACI, IAC2, IAC3 or
IAC4. A similar register, the Debug Control HardWare

Mar. 2, 2006

Register DCHR, in the debug hardWare is programmed to
control a comparison operation betWeen the instruction
address register for the instruction to be executed and a
selected instruction address. As Will be evident from the
description of the debug hardWare, the selected instruction
address can be programmed in the debug hardWare for each
of IACI, IAC2, IAC3 or IAC4 Which identi?es the selected
instruction address to the debug hardWare.

[0018] Other events identi?ed in Table 1 Which may
initiate monitoring include data being read or being Written
(DAC1R, DAC1W, etc.), the execution of a trap instruction
(Trap), an interrupt (Intrp) and a branch taken (BT). The
selected address for de?ning the debug event is programmed
in a data register of the debug hardWare by the user.

[0019] The PMDBCR register further includes a stop
event identi?ed in addresses 27:31 marking the end of the
monitored portion of the program execution Which generates
a stop signal for the performance monitor. These also
include up-to four instruction addresses (IAC1-IAC4), data
addresses (DAC1-DAC2, both Written and read), Trap,
interrupt (Intrp) and a branch taken The contents of the
performance monitor debug control register of Table 1 are
exemplary only. Other events identifying the execution
sequence to be monitored may be identi?ed in the PMDBCR
register as a start event, and a stop event.

[0020] FIG. 2 shoWs hoW the PMDBCR register pro
grammed in accordance With Table 1 controls tWo multi
plexers 36 and 37. The start and stop events are de?ned in
the PMDCR register at bit locations 19-32 and 27-31 as
shoWn in Table 1. Each of the multiplexers 36, 37 receives
the debug event de?ned by the debug hardWare Which either
begin or end a performance monitor measuring interval. As
shoWn in Table 1, selection of a start event is made by
storing the appropriate code in locations 19-23. Similarly,
the stop event is identi?ed in the PMDCR register locations
27-31 representing the event of interest.

[0021] An enable and disable signal is provided by each of
multiplexers 36 and 37 When the de?ned start and stop event
is encountered by the debug hardWare to provide start/stop
signals for the performance monitor.

[0022] FIG. 3 shoWs a block diagram of a performance
monitor 32. Performance monitor 32 counts processing
events such as interrupts, L2 cache misses, load/store events,
clock pulses, to name just a feW. A multiplexer 43 is
programmable so that any one of counters 44-47 may be
programmed to count any selected event. Start and stop
pulses are received by the performance monitor from the
interface of FIG. 2, Which result in an enable and disable
(e/d) of a counter Which is counting events on the input (c)
of a selected counter.

[0023] The conventional on board debug hardWare is
illustrated in schematic form in FIG. 4. Referring noW to
FIG. 4, a debug hardWare control register (DHCR) 51 is
shoWn programmed to identify debug events occurring
during execution of the microprocessor computer program.
A single bit in the respective position of the DHCR 51
identi?es a selected debug event. For instance, bit number 5
is shoWn as a position reserved for monitoring a BRANCH
TAKEN debug event. In the event that a program under
execution branches, in accordance With the branching
instruction, this debug event Will be generated by hardWare

US 2006/0048011 A1

64 Which detects the branch taken event. A TRAP DEBUG
event may be set in the DHCR 51 by setting a bit in the
position number 7. In this condition, the execution of a trap
instruction identi?ed in register 65 is detected by compare
logic associated With register 44, and results in a debug
event N.

[0024] The selection of some debug events, such as an
instruction Which is being executed IAC1, and IAC2, or data
being read or Written to, DAC1, DAC2, require the selected
data or address to be programmed in the debug hardWare. If
the IAC1 bit in location 14 is set, an instruction address is
programmed into register 55. The system program counter
PC is monitored, and When the selected instruction is
executed, compare logic 56 associated With register 55
issues debug event 1. When the bit in location 15 of DHCR
51 is set to 1, a second selected instruction IAC2, Whose
address is programmed into register 57, is monitored. When
the compare logic 58 associated With register 57 indicates
that the system PC has produced the selected instruction
address, debug event 2 is generated.

[0025] Each of these tWo debug events require the pro
grammer to enter an address of the particular instruction
IAC1 and IAC2 to be monitored into registers 55, 57. When
the processor executes the identi?ed instruction, debug
event 1 or debug event 2 is produced from compare logic 56
and 58 associated With each of the registers 55 and 57.

[0026] FIG. 4 illustrates the provision of a data address
compare feature, Where the debug event is de?ned as the
execution of an instruction that accesses a data address
DAC. The data addresses such as DAC1 and DAC2 are
programmed by the debug softWare in registers 60, and 62.
When one of the data addresses is accessed by the processor
While executing a program, the compare logic 61 and 63
associated With registers 60 and 62 generates a debug event
3 or 4.

[0027] The debug hardWare control register (DHBCR) 51
and programming of the debug hardWare is described more
particularly in Chapter 8 of the “PoWerPC PPC403 GB
Embedded Controller User’s Manual,” Which is published
by the International Business Machines Corporation. As set
forth in the foregoing user’s manual, still other events may
be de?ned by the debug control register 51 for monitoring
events Which occur during execution of a program by the
microprocessor system.

[0028] Table 2 is an example of hoW the debug hardWare
is programmed to monitor a common subroutine instruction
sequence. The debug event for starting monitoring is a
beginning IAC1 address of 1020, and an ending IAC2
address 1221. Aprogramming step for setting the contents of
the PMDCR is shoWn so that the appropriate data is entered
in locations 19-23 and 27-31 to identify a beginning instruc
tion address and an ending instruction address. Similarly, the
debug DHCR register 41 and the respective IAC1, IAC 2
registers 55 and 57 are programmed With the instructions
MTSPR

TABLE 2

MTSPR IAC1, 1020
MTSPR IAC2, 1221
PMDCR; 0000[19,23] 00001 [27,31]

Select Debug Event 1
Select Debug Event 2
Set PMDCR

Mar. 2, 2006

WHERE:

[0029] 1020 is the ?rst instruction of the subroutine; and

[0030] 1221 is the last instruction of the subroutine.

[0031] In this scenario, the debug hardWare Will provide
an output from the compare logic 56 and 58 When the
appropriate instruction has been fetched for execution by the
program being monitored.

[0032] It should be noted that if execution of a program
leaves the subroutine, the interval continues until execution
returns and the IAC2 instruction is executed.

[0033] The preferred embodiment of the invention permits
the debug hardWare to interface With the performance moni
tor using the existing debug hardWare as Well as the exiting
performance monitor. The foregoing is non-invasive, in that
no extra instructions needs to be placed in the application
source code, nor does any interrupt handling become nec
essary to begin monitoring any particular range of events.

[0034] The foregoing description of the invention illus
trates and describes the present invention. Additionally, the
disclosure shoWs and describes only the preferred embodi
ments of the invention in the context of a performance
pro?ling of microprocessor systems using debug hardWare
and performance monitor, but, as mentioned above, it is to
be understood that the invention is capable of use in various
other combinations, modi?cations, and environments and is
capable of changes or modi?cations Within the scope of the
inventive concept as expressed herein, commensurate With
the above teachings and/or the skill or knoWledge of the
relevant art. The embodiments described hereinabove are
further intended to explain best modes knoWn of practicing
the invention and to enable others skilled in the art to utiliZe
the invention in such, or other, embodiments and With the
various modi?cations required by the particular applications
or uses of the invention. Accordingly, the description is not
intended to limit the invention to the form or application
disclosed herein. Also, it is intended that the appended
claims be construed to include alternative embodiments.

1. A method for monitoring the real time performance of
softWare running on a microprocessor comprising:

using debug hardWare to select a range of instructions
being executed on said microprocessor;

comparing each instruction With said range of instructions
to determine When instructions Within said range are
being executed; and

monitoring execution of softWare running on said micro
processor When instructions Within said range are being
executed.

2. The method according to claim 1 Wherein said step of
selecting said range of instructions comprises:

selecting a ?rst instruction Which identi?es the beginning
of said range;

storing said ?rst instruction in a ?rst register of said debug
hardWare;

selecting a second instruction Which identi?es the end of
said range; and

storing said second instruction in a second register of said
debug hardWare.

US 2006/0048011 A1

3. The method according to claim 2 further comprising:

comparing in said debug hardware logic said ?rst and
second instructions With the contents of the instruction
register of said microprocessor;

enabling a trace monitor to monitor events produced
during execution of said softWare When said instruction
register produces an instruction Within a range de?ned
by said ?rst and second instruction; and

disabling said trace monitor When said instruction register
produces an instruction outside of said range

4. The method according to claim 1 Wherein said monitor
counts cache misses Which occur during execution of
instructions Within said range.

5. A system for monitoring the real-time performance of
microprocessor program execution comprising:

debug hardWare having a register for receiving ?rst and
second addresses de?ning the beginning and end of a
instruction sequence; and

a monitor connected to said debug hardWare and to said
microprocessor, said monitor being enabled by said
debug hardWare to count events produced When said
debug hardWare detects addresses Within said sequence
is being executed.

6. The system for monitoring the performance of a
microprocessor program execution according to claim 5
Wherein said debug hardWare includes a compare circuit for
comparing the contents of said ?rst and second registers
With addresses produced by said microprocessor during
program execution, and logic circuitry for enabling and
disabling said monitor When said addresses are produced by
said microprocessor.

7. The system for monitoring the performance of micro
processor program execution according to claim 5 Wherein
said monitor counts cache misses Which occur during execu
tion of said program

8. The system for monitoring the performance of micro
processor program execution according to claim 6 Wherein
said performance monitor is enabled to monitor events When
said program instructions executes instructions out side of
said range and

returns to execute instructions Within said range.

Mar. 2, 2006

9. A system for monitoring the real time performance of
a microprocessor program execution comprising:

a performance monitor debug control register Which
includes ?rst and second address portions for storing
the identity of an event Which is identi?es a beginning
and end of a performance monitoring interval;

a ?rst and second multiplexer Which are enabled by said
register to generate an enable and disable signal When
an event corresponding to said identi?ed events occurs;

debug hardWare Which is programmable to produce a
plurality of signals corresponding to events Which
occur during execution of said microprocessor pro
gram, said signals being connected to said multiplex
ers; and

a performance monitor connected to count events Which

occur during execution of said microprocessor pro
gram, said performance monitor being enabled by ?rst
and second signals produced by said multiplexers.

10. The system according to claim 9 Wherein one of said
events identi?ed by said control register is an instruction
address in said microprocessor program.

11. The system according to claim 9 Wherein one of said
events is an address of data Which is accessed during
execution of said microprocessor program.

12. The system according to claim 9 Wherein one of said
events is an execution of a trap instruction.

13. The system according to claim 9 Wherein one of said
events is execution of a branch instruction by said micro
processor program.

14. The system according to claim 10 Wherein said debug
hardWare includes a programmable address register Which
identi?es the instruction address of a program being
executed by said processor Which generates an event When
it is executed.

