

Introduction of Fortran-90 for Numerical Programming

 A Brief Introduction to

Fortran-90
for Numerical Programming

by

Pedro B. Perez

North Carolina State University

June 1999

Introduction of Fortran-90 for Numerical Programming

Abstract

This brief review of the Fortran 90 language is intended to introduce some of the
Fortran-90 features to programmers familiar with other scientific languages. This
work is by no means a complete introduction to the Fortran 90 language and will
focus only features pertinent to numerical programming. Examples and references
are provided for the reader to commence a self paced training journey. This work
is based on lecture notes from CSC112 and CSC302 at NCSU and references to
exercises are provided.

Introduction of Fortran-90 for Numerical Programming

Table of Contents

1.0 Introduction . 1
2.0 Source Code Form . 1
3.0 Data Types . 4
4.0 Code Structure. 5
5.0 Mathc Operations. 7
6.0 List Directed Input and Output. 8
7.0 Intrinsic Functions. 12
8.0 Structured Programming. 14
9.0 Function Sub-Program Unit. 22
10.0 Subroutine Sub-Program Unit. 28
11.0 Formatted Input and Output. 32
12.0 Structured Data Types - Arrays. 35

Appendices

A Fortran 90 Compiler at NCSU
B Fortran 90 Derived Data Type
C Fortran 90 Pause Routine

Introduction of Fortran-90 for Numerical Programming

 Page 1

1.0 Introduction

Fortran 90 is a standardized programming language which includes the entire Fortran 77 dialect.
The Fortran-90 highlights which are included in this monogram will be presented in the order
the author believes will impact the beginning Fortran programmer. The following topics are in
included:

� Source code form and Character set
� Code structure
� Input/Output
� Data types
� Program Controls
� Relational Operators
� Arrays
� Intrinsic Functions
� Sub-Programs and modules

No attempt is made to be inclusive of all the Fortran-90 features under the above headings. Only
an introductory level explanation with an example are provide. The reader is encouraged to read
the reference literature for a complete explanation.

The Fortran 90 compiler used at NCSU as of the date of this document is the Numerical
Algorithm Group Fortran 90 compiler. One simply enters at eos prompt “add nagf90" and then
invoke the compiler by entering at the eos prompt “f90 myprogram.f90".

2.0 Source Code Form

Free-form Source Code

Source code lines in free-form may now be 132 characters in length. A programmer may use
any column in the Fortran record for coding. The reserved column 7 through 72 for Fortran
statement is lifted as is the column 6 reservation for continuation characters.

Most Fortran-90 compilers identify the source code form from the extension of the file name.
Typically a " f 90 " extension will always be for a free-form source code. File extensions such

as " for " or " f " are likely reserved for fixed-form source code. Programmers are always
encouraged to check with the Compiler User Manual for the proper extension. However, the
following extensions are recommended since the author have used them successfully.

Introduction of Fortran-90 for Numerical Programming

 Page 2

 * . f90 Free-form Fortran-90 Source Code

 * . for Fixed-form Source Code

File Extension Naming Convention

Comments

Comments may appear anywhere after an exclamation point (!) in free-form source codes. The
exclamation point terminates a Fortran record and the compiler will proceed to the next line.

 a = pi * r**2 ! Calculate the area of a circle

Variable and Program Unit Names

Fortran-90 allows a variable or program unit name length to be up to 31 characters in length and
recognizes the underscore (_) in symbolic names.

area_of_a_circle = pi * circle_radius**2

Multiple Statements on a Line

Fortran-90 allows for multiple statements to appear on the same Fortran line. A semicolon (;)
separates these statements. This feature should be used with care since it may lead to unreadable
coding.

a = 0.0 ; b = 3.5 ; n = 4 ! Initialize three variables

Fortran-90 Character Set

Fortran-90 adds eight new characters to the Fortran 77 standard character set. These are listed
in Table I.

Introduction of Fortran-90 for Numerical Programming

 Page 3

Table I
New Characters in Fortran-90

Symbol Name Function

! Exclamation Point Precedes a comment

" Double quotation Delimits a character constant

% Percent Separates derived type components

& Ampersand Designates a continuation line

; Semicolon Separates statements on a line

< Less than Symbolic relational operator for .LT.

> Greater than Symbolic relational operator for .GT.

:: Double colon
Allows all attributes of a variable to be
declared on a statement

_ Underscore Used for symbolic names

The Fortran language is not case sensitive. It is recommended to use small caps for source code
and comments.

Fortran Line Continuation

Fortran-90 limits the number of continuation lines to 39. However, compiler options may extend
this limit. An ampersand (&) is used at the end of initial line to indicate the following line is

a continuation.

Example:

The following complete statement:

If (exam_grade > 90. .and. lab_grade > 90.) grade = "A"

may be written on two lines of source code with a continuation:

Introduction of Fortran-90 for Numerical Programming

 Page 4

if (exam_grade > 90. .and. &
 lab_grade > 90.) grade = "A"

Character strings which must be continued on the next line require two "&". One at the end of
the first line and the other at the start of the continuation line:

Example:

write(*,*)" CSC-302-051 Introduction to Numerical Methods "

write(*,*)" CSC-302-051 Introduction to &
& Numerical Methods "

3.0 Data Types

FORTRAN-77 included five intrinsic data types. Fortran-90 supports these five and allows the
programmer to derive a new data type from these intrinsic types:

Fortran-90
Data Types

Intrinsic Derived

 � User Specified

Numeric Non-numeric

 � Integer � Boolean

 � Real � Character

 � Complex

Introduction of Fortran-90 for Numerical Programming

 Page 5

Intrinsic Data Type

Fortran requires identifiers to be declared a type. This is performed in the declaration part of the
program with type declarations REAL, INTEGER, COMPLEX, CHARACTER, and LOGICAL
followed by the list of identifiers:

REAL :: AREA, PI, DIAMETER
INTEGER :: NUMBER_OF_STUDENTS
CHARACTER(LEN=24) :: STUDENT_NAME

The "LEN=" attribute to the type CHARACTER specifies the character string length. The double
colon (::) is a Fortran 90 feature which allows for declaring multiple attributes
to identifiers. The attributes are on the left of the double colon (::) and the identifiers are on the
right.

It is imperative to declare all variables and avoid default type (implicit) declarations. Use
IMPLICIT NONE in the declaration part of the program to enforce type declaration.

4.0 Code Structure

A Fortran code consists of program units of which one and only is called the PROGRAM unit.
Modular components include the Program, Subroutines, Functions, and Modules. Program units
may consist of data and algorithms. Each program unit is structured as follows:

HEADING

� Program unit name

SPECIFICATION

� Variable Declarations

EXECUTION

� Algorithm

END

� End Statement

Introduction of Fortran-90 for Numerical Programming

 Page 6

Executable statements are placed in the Execution Part of the program following the
declaration part.

Program Unit Composition

Program Heading

� The FORTRAN program heading has the form

PROGRAM name

name is a legal FORTRAN identifier

This is the first statement in a Fortran program.

Specification

The specification part of the program must appear next.

• REAL, INTEGER, CHARACTER, COMPLEX, etc type declarations statements

Execution Statements

Statements in FORTRAN are classified as executable or non-executable

Non-executable Statements provide information to be used during compilation of the program.
These do not cause any specific action to be performed during program execution.

REAL, TYPE, PROGRAM, etc.

Executable Statements specify actions to be taken during program execution

Introduction of Fortran-90 for Numerical Programming

 Page 7

END and STOP Statements

� END Statement

The END statement is the last statement in every FORTRAN program.

The END statement terminates execution and is an executable statement. Only one END
statement per program unit is allowed.

Syntax: END or END program_unit name

where program_unit is the Fortran program or subprogram and name is the name of
the program unit:

end program example

� STOP Statement

Allows for the program execution to stop prior to terminating execution with the END
statement.

Syntax: STOP

PAUSE Routine

Allows for program execution to be interrupted and re-started by referencing a routine
supplied by the programmer.

Syntax: CALL PAUSE

This routine must be a user provided. See the appendices.

Example

A simple program in Fortran 90 and C/C++ follows:

Introduction of Fortran-90 for Numerical Programming

 Page 8

Fortran 90

program hello_world
implicit none
write(*,*) “ Hello World of Mine “
end program hello_world

C++

#include <stdio.h>
#include <iostream.h>
main ()
{
cout << "Hello World of Mine" << endl ;
}

5.0 Math Operations

FORTRAN arithmetic operators are given by + - * / **

C/C++ programmers should note that Fortran supports exponentiation (**).

Assignment Operator

The assignment statement (=) is used to assign values to variables:

variable = expression

The expression may be a constant, variable, or formula. For example,

PI = 3.1416

CAREA = PI * R**2

The assignment associates a memory location with the variable. The assignment statement first
evaluates the expression (right-hand side) and then associates results with the variable.

Introduction of Fortran-90 for Numerical Programming

 Page 9

An integer quantity combined with a real quantity causes the integer to be
converted to real and the result will be real

Mixed-mode Assignments

A reminder that when variables of the same type are arithmetically combined, the result preserves
the type:

9.0 / 4.0 = 2.25 (Real) 1.0 / 2.0 = 0.50 (Real)
9 / 4 = 2 (Integer) 1/ 2 = 0 (Integer)

Example of Exponent Trouble

Avoid raising a base to a floating point value unless that is exactly what is needed and the base
will always be greater than 0.

2.0 ** 3 = 2.0 * 2.0 * 2.0 = 8.0

2.0 ** 3.0 = e = 8.0 3.0 ln (2.0)

(-4.0) ** 2 = (-4.0) * (-4.0) = 16.0

(-4.0) ** 2.0 = e = UNDEFINED 2.0 ln (-4.0)

Priority Rules

Expressions containing the arithmetic operations (+ - / * and **) are evaluated following the
FORTRAN priority rules which are identical to c++ with the addition of exponentiation:

Introduction of Fortran-90 for Numerical Programming

 Page 10

1. All exponentiations are done first; consecutive exponentiations are
performed from right to left.

2. All multiplications and divisions are performed next in the order in which
they appear left to right.

3. Addition and subtraction are performed last in the order in which they

Examples:
2 * 3 * * 2 = 2 * * 9 = 1 8

2 + 4 * *2 / 2 = 2 + 16 / 2 = 2 + 8 = 1 0

The standard order of evaluation can be overridden using parentheses. Nested parentheses are
evaluated from the inner-most set. Parentheses must balance; that is, they must occur in pairs.

Accumulating and Counting

The assignment statement may be very useful in accumulating results (summation and product)
or counting. For example,

pseudocode Fortran-90 C++

sum = 0.0 sum = 0.0 ;
for i = m to n do do i = m,n for(int i=m; i<=n; i++)
 sum ← sum + x sum = sum + x(i) sum + = x[i] ;i

end do end do

Introduction of Fortran-90 for Numerical Programming

 Page 11

Product

pseudocode Fortran-90 C++

prod = 1.0 prod = 1.0 ;
for k = m to n do do k = m,n for(int i=m; i<n; I++)
prod ← prod * x prod = prod * x(k) sum + = x[i] ;k

end do end do

for n < m then product = 1.0

Nested Polynomial Multiplication

� Example

Introduction of Fortran-90 for Numerical Programming

 Page 12

pseudocode Fortran-90 C++

p ← a p = a(n) p = a(n) :n

for i = n-1 to 0 step -1 do do i = n-1,0,-1 for (int = n-1; i>0; i--)
p ← a + xp p = a(i) + x * p p = a[i]+x*p ;i

end do end do

6.0 List Directed Input and Output

A program's ability to communicate with a user is critical. Fortran supports I/O functions in two
forms: formatted and unformatted. The simplest to use is unformatted I/O and is called list
directed.

• Input FORTRAN source code allows for input data to be received interactively or by an
input file. Simplest for is the list directed output (no format):

READ*, list or READ(*,*) list

READ*, RADIUS or READ(*,*) RADIUS

• Output FORTRAN source code allows for output data to be transmitted interactively or
by an input file. Simplest for is the list directed output (no format)

PRINT*, list or WRITE(*,*) list

PRINT*, ' AREA OF A CIRCLE IS ', CAREA

WRITE(*,*) ' AREA OF A CIRCLE IS ', CAREA

� READ(* , *) and WRITE(* , *) Statements

• (* , *)

First * is the unit number and the second * is the format specifier or label number
for the format specification

Introduction of Fortran-90 for Numerical Programming

 Page 13

7.0 Intrinsic Functions

Intrinsic functions are available to a program by referencing the function's name. The function
returns its results for the given argument and this result may be assigned to a variable:

Some Fortran 90 Intrinsic Functions

Function Description Argument Value

ABS(x) Absolute value of x Integer or Real Same as argument

SIGN(x,y) |x |times sign of y x and y of same kind Same as x

COS(x) Cosine of x in rads Real Real

EXP(x) Exponential function Real Real

INT(x) Integer part of x Real Integer

LOG (x) Natural log of x Real Real

LOG10(x) Common log of x Real Real

MAX(x ,..,x) Maximum of x ,..,x Integer or Real Same as argument1 n 1 n

MIN(x ,..,x) Minimum of x ,..,x Integer or Real Same as argument1 n 1 n

REAL(x) Converts x to real Integer Real

SIN(x) Sine of x in rads Real Real

SQRT(x) Square root of x Real Real

TAN(x) Tangent of x rads Real Real

random_seed Provides Seed None Internal

random_number quasi-random number Internal seed Real

Introduction of Fortran-90 for Numerical Programming

 Page 14

.TRUE.
.FALSE.

program get_pi
implicit none
real :: pi
pi = 4.0 * atan(1.0) ! Intrinsic Function atan (arc-tangent)
write(*,*) ' PI = ',pi
end program get_pi

It is important to note that all trigonometric intrinsic functions such as sine and
cosine use radians for angles not degrees.

8.0 Structured Programming

Fortran programs may be structured in sequential, selective or repetition forms. Each structure
offer powerful tools for solving numerical problems. Logical expressions and variables are
essential to advanced methods of control and will be introduced in this section.

Sequential Programming

Each FORTRAN statement is executed exactly one time in the order of appearance. Simple to
code and follow-up, however, limited to relative simple programming needs.

Logical Operations

Logical Data Type

There are only two logical constants in FORTRAN and a variable typed LOGICAL may only have
one of these two logical constants:

Note: The periods are required

Introduction of Fortran-90 for Numerical Programming

 Page 15

Logical Variable Declaration

Logical variables are declared in the specification part of the program unit (i.e. main program or
sub-program) just as other types:

LOGICAL :: name-list

e.g. LOGICAL :: LOVE, CHECK, SANITY

Logical variables may specify actions to be taken during program execution

Logical Expressions

• Simple Expressions • Logical Constants
• Logical Variables • Relational Expressions

� Compound Logical Expressions

Combination of logical expressions using logical operators

� Relational Operators

expression-1 relational-operator expression-2

Relational Operators

Symbol Meaning

< Is less than

> Is greater than

== Is equal to

<= Is less than or equal to

>= Is greater than or equal to

/= Is not equal to

Introduction of Fortran-90 for Numerical Programming

 Page 16

Logical expressions formed by comparing real variables with .EQ. are evaluated as
.FALSE. even though the quantities are algebraically equal.

Examples: X = 4.5 N = 400
(X < 5.0) is .TRUE. (N == -999) is .FALSE.

Example: Real :: X
Logical :: EQUALS
Y = X * (1.0/X)
EQUALS = (Y.EQ.1.0) results is usually .FALSE.

� Compound Logical Expressions

Compound logical expressions are formed by combining logical expressions using logical
operators.

Logical Operators

.NOT.

.AND.

.OR.

.EQV.

.NEQV.

Introduction of Fortran-90 for Numerical Programming

 Page 17

For: LOGICAL :: P,Q

.NOT. .NOT. P .TRUE. if P is .FALSE.
.FALSE. if P is .TRUE.

.AND. P.AND.Q Conjunction of P and Q
.TRUE. only if both P and Q are .TRUE.

.OR. P.OR.Q Disjunction of P and Q
.TRUE. if P or Q or both are.TRUE.

.EQV. P.EQV.Q Equivalence of P and Q
.TRUE. if both P and Q are .TRUE. or .FALSE.

.NEQV. P.NEQV.Q Non-equivalence of P and Q
.TRUE. if P or Q is .TRUE. and the other is .FALSE.

Logical Truth Tables

P .NOT. P

.TRUE. .FALSE.

.FALSE. .TRUE.

P Q P.AND.Q P.OR.Q P.EQV.Q P.NEQV.Q

.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE.

.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.

.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE.

Introduction of Fortran-90 for Numerical Programming

 Page 18

� Order of Combined Logical Operations and Relational Expressions

1. Relational Operators (<=, >= , == , /= , < , >)
2. .NOT.
3. .AND.
4. .OR.
5. .EQV. (or .NEQV.)

Example:

N = 4

N**2 + 1 > 10 .AND. .NOT. N< 3 .TRUE.

Example:
program decay

 !
 ! Calculate the decay of radioactive material and provide error checks
 ! for input.
 !

implicit none
logical :: error
real :: n,n0,lambda,t
write(*,*) “ Enter n_0,lambda, and time”
read(*,*) n0,lambda,t
error = (lambda.lt.0.0).OR.(t.lt.0.0)
if(error.eqv..true.)then
 write(*,*)" Error detected in input"
 stop
end if
n = n0 * exp(-lambda * t)
write(*,*)" Radioactive nuclide remaining ",n
end program decay

Selective Programming Structure

This structured programming approach provides two or more paths of program execution. The
control scheme is by logical expressions.

Introduction of Fortran-90 for Numerical Programming

 Page 19

I F construct or Block I F statement

construct_name : IF (logical-expression) THEN

statement-sequence

END IF construct_name

Examples:

IF (X >= 0) THEN CHECK_X: IF (X >= 0) THEN

Y = X**2 Y = X**2

Z = SQRT(X) Z = SQRT(X)

END IF END IF CHECK_X

The Logical expression is evaluated first. If it returns .TRUE., then the next two statements are
executed. If the logical expression returns .FALSE., then the "nested" expressions are bypassed.

The logical expression in an IF construct must be enclosed in parenthesis. The structure on the
right is given the name CHECK_X to easily identify the purpose.

Logical IF Statement

Simplified form of the IF construct (and an old popular one!) for single statement sequences.

IF (logical-expression) action-statement

Execution of the IF statement causes evaluation of the logical expression. If the logical expression
is .TRUE., the action statement is executed. If .FALSE. , the action statement is not executed.

Examples: REAL :: LAMBDA
IF (LAMBDA < 0.0) LAMBDA = ABS(LAMBDA)

IF-THEN-ELSE Constructs

IF constructs also allow for an alternative statement sequence for execution when the logical
expression is .FALSE.

Introduction of Fortran-90 for Numerical Programming

 Page 20

construct_name : IF (logical-expression) THEN
statement-sequence-1
ELSE
statement-sequence-2
END IF construct_name

IF-ELSE-IF Constructs

The IF-ELSE-IF construct supports Multi-Alternative selection structures.

IF (logical-expression-1) THEN
statement-sequence-1

ELSE IF (logical-expression-2) THEN
statement-sequence-2

. . .
ELSE

statement-sequence-n
END IF

Example

 IF (x < = 0.0) THEN
funct = -x

ELSE IF (x < 1.0) THEN
funct = x**2

ELSE
funct = 1.0

END IF

Fortran Repetition Structures

The third Fortran control structure is the Repetition Structure which is also called Loops

Introduction of Fortran-90 for Numerical Programming

 Page 21

Loop Control

� Loops controlled by a counter (DO Loops)

� Loops controlled by a logical expression (DOWHILE Loops)

DO Loops

� Loop is executed once for each value of a pre-determined control variable range

� The initial value, the limit, and the step size of the control variable are determined before
repetition begins

� These values may not be modified during loop execution

DO Loop Structure

DO index = lower_limit,upper_limit, step_size

{ statement sequence}

END DO

� The Loop structure automatically increments or decrements the loop index variable

sum_do: do i=10,1,-1 !
sum = sum + i**2 ! Named Fortran 90 Do

end do sum_do ! construct

do while(i < 10)
sum = sum + i ! Note: DO WHILE requires

 i = i+ 1 ! incrementing control index

end do !

Introduction of Fortran-90 for Numerical Programming

 Page 22

Below are Fortran-90 DO structures with an EXIT. The EXIT statement causes the process to exit
the loop and can be very useful.

do i=1,100 !
if(.not.(sum < = 100.0)) exit ! Highly desirable EXIT

sum = sum + i ! of DO construct prevents

end do ! infinite loops. Safer
! than DO WHILE

THINGS TO REMEMBER

� Repetition structures with logic controls may easily become infinite. Make sure the
structure has a finite number of cycles

EXAMPLE of INFINITE LOOP

do while(i > 0) !
sum = sum + I ! Note: > will lead to

i = i+ 1 ! an infinite loop

 end do !

� Never change the loop index variable in a counter controlled DO loop

Introduction of Fortran-90 for Numerical Programming

 Page 23

9.0 FUNCTION Program Unit

� INTRINSIC Functions

Compiler provided, relatively "safe" to use, careful with type of function and type of
argument.

Use of a FUNCTION in a fortran statement returns the result of the FUNCTION to the statement.

Example
Pythagoras Theorem

HYPOTENUSE = SQRT(A**2 + B**2)

• SQRT is an intrinsic function of type real in this application
• Arguments to the function must also be real
• Execution sequence:

(B**2 + A**2)
SQRT
Assignment

� External Functions

• Programmer written to meet specific needs (e.g. factorials)
• Some care must be used
• Structure of an external function is similar to program unit

Introduction of Fortran-90 for Numerical Programming

 Page 24

 type FUNCTION NAME (d1, d2,)
•
•
specification part
•
execution part
•
RETURN
END FUNCTION NAME

type

Declares the type of the result

Name

It is called the "return variable" and the function must assign the results of the calculation
to this variable. This is the only time a program unit name is used in an assignment
statement.

d1, d2, ...

These are called dummy or formal arguments which represent the actual arguments
(variables) when the function is referenced.

RETURN and END Statements

� RETURN

Functions may have at least one RETURN statement which instructs the sub-program to
pass the calculated result to the program unit.

� END Statement

The END statement is the last statement in every FORTRAN program unit. The END
statement terminates execution and is an executable statement. Only one END statement
per function unit is allowed

Introduction of Fortran-90 for Numerical Programming

 Page 25

The external FUNCTION is referenced by the functions's NAME from the referencing program
unit

function_name (actual-argument-list)

� The actual-argument-list contains the actual arguments in the calling program unit.

� The number of actual arguments must be equal to the number of dummy (or formal) of the
FUNCTION

� Each actual argument must agree with the type of the dummy argument.

� Corresponding pairs of actual and dummy arguments are associated with the same memory
location

C A U T I O N

� Changing the values of dummy arguments within a FUNCTION program unit changes the
values of the corresponding actual arguments that are variables.

The FUNCTION dummy arguments reference the memory storage address of the
actual argument

If the FUNCTION changes the dummy argument, it will inadvertently change the
actual argument in the referencing program unit which usually leads to errors.
How does the programmer protect the actual argument? This is done by specifying
the “intent” of each dummy argument.

Dummy Argument and its INTENT

A dummy argument may be protected by specifying an INTENT(IN) for the dummy argument in
the procedure.

Introduction of Fortran-90 for Numerical Programming

 Page 26

Example

real function cube_root(x)
implicit none

!
! calculates the cube root of a positive real number using logs
!

real intent(in) :: x ! protect from changing dummy
! argument

real :: log_x ! local variable to function
!

log_x = log(x)
!

cube_root = exp(log_x / 3.0) ! the result variable cube_root
!

end function cube_root

In this example:

� Local variable is not accessible outside of the FUNCTION CUBE_ROOT

� INTENT(IN) tells compiler X can not be changed by the procedure

� Variable name CUBE_ROOT is same as function name. Special variable called the result
variable

� The type of the function program unit is declared BOTH in the referencing program unit
and in the function.

Introduction of Fortran-90 for Numerical Programming

 Page 27

Example

program example
implicit none

!
! uses function cube_root
!

real, external :: cube_root
real :: x , a

!
�

!
a = cube_root(x)

!
�

end program example
!

real function cube_root(x)
implicit none

!
! calculates the cube root of a positive real number using logs
!

real intent(in) :: x ! protect from changing dummy
! argument

real :: log_x ! local variable to function
!

log_x = log(x)
!

cube_root = exp(log_x / 3.0) ! the result variable cube_root
!

end function cube_root

Introduction of Fortran-90 for Numerical Programming

 Page 28

Example

real function fact(m)
implicit none

!
! Calculates the factorial of an integer
!

integer :: j ! Use j as local variable
integer, intent(in) :: m
real :: factorial

!
j = m
factorial = 1.0 ! Initialize here to reset value on each reference

!
if(j < 0) then

write(*,*) “ Error integer”, j , ”must be positive”
stop

else if(j == 0) then
fact = 1.0
return

 else
 do while(j > 0)
 factorial = factorial * j
 j = j - 1
 end do
 end if
!
 fact = factorial
!
 return
 end function fact

Introduction of Fortran-90 for Numerical Programming

 Page 29

10.0 Subroutine Program Unit

A SUBROUTINE differs from a FUNCTION in how it is referenced and how the results (if any)
are returned. A FUNCTION is referenced simply by using its name followed by the arguments
(if any) in parenthesis. A SUBROUTINE is accessed by means of a CALL statement followed
by the name of the subroutine and the arguments (if any) in parenthesis.

Unlike a FUNCTION a SUBROUTINE does not need to return anything to the referencing
program unit. If the SUBROUTINE does return results it does so by means of one or more
arguments.

Subroutine Program Unit Structure

SUBROUTINE name (dummy-argument-list)
�

Declaration Part
�

Execution Part
�

END SUBROUTINE name

name is a legal FORTRAN identifier. The name should be distinct from all other names in the
program and should be chosen to indicate the purpose of the subroutine

Dummy-argument-list or Dummy arguments are used to "associate" values to and from the
subroutine.

If there are no formal arguments, the parentheses may be omitted

Documentation should follow the SUBROUTINE as comment lines.

Specification

This section includes non-executable statements. These provide information to be used during
compilation of the program.

• REAL, INTEGER, CHARACTER, COMPLEX, etc

• EXTERNAL, INTENT(IN)

Introduction of Fortran-90 for Numerical Programming

 Page 30

Execution Statements

Statements in FORTRAN are classified as executable or non-executable

• Executable Statements

Specify actions to be taken during program execution

RETURN and END Statements

� RETURN

Subroutines have at least one RETURN statement which instructs the sub-program to pass
the calculated values to the main program unit

Syntax: RETURN

Note: Declared Obsolete in Fortran-90

� END Statement

The END statement is the last statement in every FORTRAN subroutine. IT IS
REQUIRED.

The END statement terminates execution and is an executable statement. Only one END
statement per subroutine unit is allowed

Syntax: END

A subroutine is referenced by the CALL Statement

CALL name (actual-argument-list)

� The actual-argument-list contains the actual arguments in the referencing program unit.

� The number of actual arguments must be equal to the number of dummy arguments.

� Each actual argument must agree with in type with the dummy argument.

Introduction of Fortran-90 for Numerical Programming

 Page 31

� Corresponding pairs of actual and dummy arguments are associated with the same memory
location

� Declaring an dummy argument with INTENT(IN) protects it from being modified.

� Changing the values of dummy arguments within a sub-program changes the values of the
corresponding actual arguments that are variables.

INTENT(option)

Attribute used ONLY in the declaration of dummy arguments in FUNCTIONS and
SUBROUTINES

INTENT(IN)

As with a FUNCTION variables with attribute INTENT(IN) means the variables are used to
transfer information to the FUNCTION or SUBROUTINE

INTENT(OUT)

A FUNCTION does not have any variables with this attribute since a FUNCTION does not return
"arguments"

A SUBROUTINE variable with attribute INTENT(OUT) indicates that these variables are used to
transfer information from the SUBROUTINE back to the referencing program

INTENT(INOUT)

Implies dummy argument may be used for information transmission in both directions.

Introduction of Fortran-90 for Numerical Programming

 Page 32

PROGRAM SUBROUTINE_EXAMPLE
!

IMPLICIT NONE
INTEGER :: N=0
REAL :: FACTORIAL

!
WRITE(*,*)' Factorial Program, enter an integer ==> '
READ(*,*)N

!
CALL FACT(N,FACTORIAL) ! Reference SUBROUTINE using CALL

!
WRITE(*,*)' Factorial of ',N,' is ',FACTORIAL

!
STOP
END

!
!*********** subroutine fact ************
!

SUBROUTINE FACT(M,F)
!
 IMPLICIT NONE

INTEGER :: J
INTEGER, INTENT(IN) :: M
REAL, INTENT(OUT) :: F

!
J = M
F = 1.0 ! Initialize here to reset value on each call
FACTORIALS: IF(J.LT.0)THEN

STOP
ELSE IF(J.EQ.0)THEN

F = 1.0
ELSE

DO WHILE(J.GT.0)
F = F * J
J = J - 1

END DO
END IF FACTORIALS

!
 END SUBROUTINE FACT

Introduction of Fortran-90 for Numerical Programming

 Page 33

11.0 Formatted Input and Output

Fortran formatted I/O with the READ and WRITE statements allows for programmer specified
formats and file access.

READ(*,*) and WRITE(*,*) Statements

� (* , *)

• UNIT = * (first *)

The * implies default I/O unit number - Typically the CRT monitor

• Format Specifier = * (second *)

The * implies compiler default format for I/O operations

Formatted Output

PRINT format-specifier, output-list

WRITE (unit-number, format-specifier) output-listing

The format specifier specifies format for displaying expressions in the output list:

� An asterisk (*)

� A character constant or variable specifying format for the output
' (list of format descriptors) '

� The label number of a FORMAT statement

FORMAT (list of format descriptors)

Introduction of Fortran-90 for Numerical Programming

 Page 34

Examples:

PRINT*, NUMBER,TEMP

PRINT “(TR1,I5,F8.2)” NUMBER,TEMP

PRINT 20, NUMBER, TEMP

20 FORMAT(TR1,I5,F8.2)

WRITE(*,*) NUMBER,TEMP

WRITE(*, “(TR1,I5,F8.2)”) NUMBER,TEMP

WRITE(*,20) NUMBER,TEMP

20 FORMAT(TR1,I5,F8.2)

Format Descriptors

Format descriptors (TR1, I5, and F8.2) specify the format in which values of variables in the
output-list are displayed.

Example: For NUMBER = 17 and TEMP = 10.25

1 7 1 0 . 2 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Introduction of Fortran-90 for Numerical Programming

 Page 35

Summary of FORMAT Descriptors

Format Descriptor Intended Use

rIw Integer Data

rFw.d Real Data in decimal notation

rEw.d & rDw.d Real Data in Engineering Notion (single and double precision)

rGw.d For E or F I/O depending on the value of the variable

rAn Character Data

rLw Logical Data

Tc Tab Descriptors

/ Vertical spacing

: Format scanning control

S Sign descriptors

kPE Scale Factor for scientific notation

BN Blanks

� Formatted READ is often needed for reading the formatted output of another code

Introduction of Fortran-90 for Numerical Programming

 Page 36

12. Structured Data Types

A collection of data values can be efficiently processed using structured data type such as arrays.
Arrays are very useful for processing a list of numerical, character, or logical variables and for
numerical linear algebra.

1-D Arrays

A list of values stored in memory allow for fast and efficient data retrieval. The list may be
organized in memory using an ARRAY data type which groups a fixed number of data items of
the same data type in a sequence. Each data item in an array can be directly accessed from
memory by specifying the position in the sequence.

Example:

REAL VALUE(5)
READ(*,*) VALUE(1), VALUE(2),..., VALUE(5)

VALUE(1)

VALUE(2)

VALUE(3)

VALUE(4)

VALUE(5)

1-D Array Declaration

The name and the subscript range of each one-dimensional array may be declared in two ways:

� DIMENSION array-name(l:u)

DIMENSION array-name(l:u) or DIMENSION array-name (:)

Introduction of Fortran-90 for Numerical Programming

 Page 37

Fortran-90 enhances the classic array declaration with help of the double colon (::) operator.

REAL, DIMENSION(10) :: A

The extent of the array must be an integer value or integer parameter

REAL :: A
DIMENSION A(100)

and
INTEGER :: LIMIT
PARAMETER (LIMIT=100)
REAL :: A(LIMIT)

These methods of declaring the array type and size require the number of elements to be know prior
to run time

� DIMENSION array-name (:)

Fortran 90 allows the size or dimension of the array to be specified at run-time as:

ALLOCATABLE :: DIMENSION array-name (:)

This is a Fortran-90 declaration for an array. The size is determined during run time. These are
called ALLOCATABLE arrays since the size is ALLOCATED at run time.

A program unit declares an allocatable array named NUMBERS as follows:

REAL, ALLOCATABLE :: NUMBERS(:)

Once the array dimension is know during program execution the size is allocated as follows:

ALLOCATE (NUMBERS(N))

� Alternate Method for Array Declaration

type :: array_name(extent)

real :: a(0:10) declares an array “a” with an extent of 11 units of type real storage.

Introduction of Fortran-90 for Numerical Programming

 Page 38

Subscripted Variables

Each individual element of an array is uniquely identified and accessed by means of a subscripted
variable

array_variable-name(subscript-identifier)

The subscript identifier is an integer value or variable:

� VALUE(1) � VALUE(i)

VALUE(1)

VALUE(2)

VALUE(3)

VALUE(4)

VALUE(5)

I/O and 1-D Arrays

Initializing a 1-D array is efficiently performed with a DO LOOP

Interactively initializing a 1-D array

INTEGER, PARAMETER :: LIMIT=50
REAL :: AXIS(LIMIT)

!
DO I=1,LIMIT
READ(*,*) AXIS(I)
END DO

IMPLIED DO LOOP

!
READ(*,*) (AXIS(I), I=1,LIMIT) ! <==== NICE

!

Introduction of Fortran-90 for Numerical Programming

 Page 39

program allocatable_array !
!
! Introduce the concept of allocatable storage for a
! 1-D array for storing a set of observables and calculating
! the average value of the observables.
!

real, allocatable :: numbers(:) !
real sum, avg !
integer n !

!
sum = 0.0 ; avg = 0.0 !

!
write(*,"(a)", advance ="no")' How many observables in the set? '!
read(*,*) n !

!
allocate (numbers(n)) !

!
write(*,"(a)",advance="yes")' Enter the numerical values: '
do i=1,n !

read(*,*) numbers(i) !
sum = sum + numbers(i) !

end do !
!

avg = sum/n
!

write(*,*)' Avg = ', avg
!

end program allocatable_array

Introduction of Fortran-90 for Numerical Programming

 Page 40

program array_demo
!

implicit none
!

real, allocatable :: elements(:)
real :: sum,average
integer :: i,j,ii

!
write(*,*)' Enter the array''s starting and ending points '
read(*,*) i,j

!
allocate(elements(i:j))

!
write(*,*)' Enter the values for elements '
read(*,*) (elements(ii), ii = i,j)

!
do ii=i,j,1

sum = sum + elements(ii)
end do

!
average = sum/(abs(i)+abs(j)+1.0)

!
write(*,'(//)')
write(*,*)' The following values have been entered for elements'
write(*,'(//)')

!
do ii=i,j,1

write(*,10) ii,elements(ii)
end do
write(*,'(//A,f8.3)')' The average is ',average

!
 10 format(tr2,'Element ',i2,' is ',f8.4)
!

end

Introduction of Fortran-90 for Numerical Programming

 Page 41

Multidimensional Arrays

Arrays are FORTRAN's version of "structured" data types. Fortran-90 allows up-to seven (7)
dimensions which refered to as a rank seven array. The shape of the array is determined from the
rank and extent.

2-D Array Declaration

The name and the subscript range of each two-dimensional array may be declared in two ways:

DIMENSION array-name(l :u , l :u)1 1 2 2

Example:

REAL, DIMENSION :: FLUX(1:2000,1:1000)

REAL, DIMENSION :: FLUX(2000,1000)

The second and prefered way to declare an array is to subscript the variable when declaring the type

REAL :: FLUX(1:2000,1:1000)

REAL :: FLUX(2000,1000)

� The range or "dimension" of the array must be an integer value or integer parameter

� Memory locations for the data type items are "reserved" according to the dimension of the
array

REAL,DIMENSION :: A(100,100)

Array A has reserved 10,000 floating point (real) words in memory

� FORTRAN-77 does not allow for dynamic memory allocation for arrays, but FORTRAN-90
does.

� Care is needed to only "reserve" the memory needed

Introduction of Fortran-90 for Numerical Programming

 Page 42

Subscripted Variables

Each individual element of a 2-D array is uniquely identified and accessed by means of a
subscripted variable:

variable-name (row-subscript-id, column-subscript-id)

The subscript identifiers are integer values or variables:

VALUE(1, 2) VALUE(i, j)

VALUE (I , J) refers to array element (and contents) in the I row and J columnth th

Each element of the 2-D array can be accessed directly by using a two-subscripted variable
consisting of the array name and the desired element subscript

INTEGER IMORN (2 , 3)

11 12 13

21 22 23

IMORN(1,3) = 13 IMORN(2,3) = 23

Two-Dimensional arrays suggests two natural orders for processing the data entries:

� Row wise
� Column wise

The Fortran default processing order is column wise which is different from c/c++ which uses row
wise processing.

Introduction of Fortran-90 for Numerical Programming

 Page 43

Row wise processing:

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Column-wise processing:

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Example: Desired array initialization order:

33.0 41.0 1.2

11.0 12.3 98.0

23.0 14.0 21.0

Desired Order for entering data at the keyboard:

33.0, 41.0, 1.2, 11.0, 12.3, 98.0, 23.0, 14.0, 21.0

Method required: Row-wise Processing

Desired Order for entering data at the keyboard:

33.0, 11.0, 23.0, 41.0, 12.3, 14.0, 1.2, 98.0, 21.0

Method required: Column wise processing (Fortran default)

Introduction of Fortran-90 for Numerical Programming

 Page 44

The FORTRAN default convention is that 2-D arrays will be processed column-
wise

COLUMN WISE PROCESSING

The first subscript is varied first and the second subscript varies
second

ROW WISE PROCESSING

The second subscript is varied first and the first subscript varies
second

The programmer can select the processing order by controlling the use and
order of subscripts

Introduction of Fortran-90 for Numerical Programming

 Page 45

I/O and 2-D Arrays

Initializing a 2-D array is efficiently performed with a DO LOOP

Interactively initializing a 2-D array

Desired array initialization order:

33.0 41.0 1.2

11.0 12.3 98.0

23.0 14.0 21.0

REAL :: DEMO(3,3) User must enter:
!
! ROW WISE PROCESSING: 33.0
! Nested Do Loops 41.0
! 1.2

DO I=1,3 11.0
DO J=1,3 12.3
READ(*,*) AXIS(I,J) 98.0

 END DO 23.0
 END DO 14.0

to obtain:

33.0 41.0 1.2

11.0 12.3 98.0

23.0 14.0 21.0

Use:

Row-Wise Processing Order

Introduction of Fortran-90 for Numerical Programming

 Page 46

ROW WISE PROCESSING

The second subscript is varied first and the first subscript varies
second

REAL AXIS(3,3)
!

DO I=1,3
DO 20 J=1,3

READ(*,*) AXIS(I,J)
END DO

END DO

When I = 1 (First Row) When I = 2 (Second Row)
DO J = 1, 3 DO J = 1, 3
READ(*,*) AXIS(1,J) READ(*,*) AXIS(2,J)
END DO END DO

When I = 3 (Second Row)
DO J = 1, 3

READ(*,*) AXIS(3,J)
END DO

Introduction of Fortran-90 for Numerical Programming

 Page 47

COLUMN WISE PROCESSING

The first subscript is varied first and the second subscript varies
second

Desired array initialization order:

33.0 41.0 1.2

11.0 12.3 98.0

23.0 14.0 21.0

REAL AXIS(3,3) User must enter: 33.0
! 11.0
! COLUMN WISE PROCESSING: 23.0
! 41.0

DO J=1,3 12.3
 DO I=1,3 14.0

READ(*,*) AXIS(I,J) 1.2
 END DO 98.0
END DO 21.0

REAL :: AXIS(3,3)
DO J=1,3

DO I=1,3
READ(*,*) AXIS(I,J)

END DO
END DO

When J = 1 (Column 1) When J = 2 (Column 2)
DO I = 1, 3 DO I = 1, 3
READ(*,*) AXIS(I,1) READ(*,*) AXIS(I,2)
END DO END DO

Introduction of Fortran-90 for Numerical Programming

 Page 48

NOTE:

The READ statement is only encountered once per loop and all the data
for that loop can be on the same line

When J = 3 (Column 3)
DO I = 1, 3

READ(*,*) AXIS(I,3)
END DO

� It must be noticed that the READ statement is encountered nine (9) times in the nested do
loop structure above.

� This means the data values must also be entered on nine separate lines.

� If the data is in a file, the file structure for the column processing is, for example:

33.0
11.0
23.0
41.0
12.3
14.0
 1.2
98.0
21.0

� The same limitation occurs with the WRITE statement

I/O Using Implied Do Loops

AXIS (ROW, COLUMN)

� Row-wise order READ(*,*) ((AXIS(I,J), J=1,COLUMN), I=1,ROW),

� Column-wise order READ(*,*) ((AXIS(I,J), I=1,ROW), J=1,COLUMN)

Introduction of Fortran-90 for Numerical Programming

 Page 49

FILE: 33.0 41.0 1.2
11.0 12.3 98.0
23.0 14.0 21.0

READ(10,*) ((A(I ,J), J=1,3),I=1,3)

A(I ,J)

33.0 41.0 1.2

11.0 12.3 98.0

23.0 14.0 21.0

READ(10,*) ((A(I ,J), I=1,3),J=1,3)

A(I ,J)

33.0 11.0 23.0

41.0 12.3 14.0

1.2 98.0 21.0

Introduction of Fortran-90 for Numerical Programming

 Page 50

The FORTRAN default convention is that 2-D arrays will be processed column-
wise

ROW WISE PROCESSING

The second subscript is varied first and the first subscript varies
second

COLUMN WISE PROCESSING

The first subscript is varied first and the second subscript varies
second

Important to Remember

Introduction of Fortran-90 for Numerical Programming

 Page 51

eos%> add nagf90
Numerical Algorithms Group (NAG) "NAGWare f90 Rel.2.1 " Fortran-90 Compiler.

eos%> f90 filename.for {options ...}

Appendix A

Fortran 90 Compiler Available at NCSU

Numerical Algorithms Group's (NAG) Fortran-90 Compiler

A third party Fortran-90 compiler was installed on the eos computing environment in early 1996.
Since this is not a native compiler to the workstation, the software most be added to the session:

Above will produce a file named a.out which is an executable program

Introduction of Fortran-90 for Numerical Programming

 Page 52

Appendix B

Derived Data Type

This section is presented only because the introduction of derived data type was an important
addition to the Fortran language.

Fortran-90 allows for user defined data types that are derived from intrinsic data types providing
considerable flexibility in defining data structures.

The programmer defines a derived data type using the new Fortran-90 type statement in the
declaration part of the program. The general form is as follows:

TYPE :: derived_name
intrinsic type declaration :: symbolic_name

{ ... :: ... }
END TYPE derived_name

A variable is declared a derived data type by using the type statement as follows in the declaration
part of the program unit.

TYPE(derived_name) :: variable_name

The variable has been declared type derived_name and is composed of a number of intrinsic data
types. It is important to notice the sequential order of the intrinsic data types and to use the %
symbol to separate these intrinsic components. The following example demonstrate initializing
variable:

variable_name % symbolic_name = constant

Example

! declare a derived data type

 type :: periodic_table !
 character(len=12) :: element_name !
 real :: atomic_mass !
 integer :: atomic_number !
 logical :: fissile !
 end type periodic_table !

Introduction of Fortran-90 for Numerical Programming

 Page 53

! declare a variable to be declared with the derived data type

 type(periodic_table) :: elements(106) ! Array of the
 ! elements
!
! initialize one a array element for the element Uranium
!
 elements(92) % element_name = "Uranium" !
 elements(92) % atomic_mass = 238.05 !
 elements(92) % atomic_number= 92 !
 elements(92) % fissile = .false. !
!

Introduction of Fortran-90 for Numerical Programming

 Page 54

Appendix C

Fortran-90 Pause Routine

SUBROUTINE F90_PAUSE !
!
! subroutine to pause program; requiring user to re-initiate !

execution
!
IMPLICIT NONE !
CHARACTER :: PAUSE !
!
WRITE(*,'(A)', ADVANCE = 'NO') 'Press < ENTER > to continue ==>' !
READ(*,'(A)') PAUSE !
!
END SUBROUTINE F90_PAUSE !

