

EMC Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E

Model: SDC-MSD30AG

IC CERTIFICATION #:	6616A-SDCMSD30AG
FCC ID:	TWG-SDCMSD30AG

APPLICANT: Summit Data Communications Inc. 526 South Main St. Suite 805 Akron, OH 44311

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-5

REPORT DATE: April 12, 2010

FINAL TEST DATES: January 11, 12, 13 and 14, 2010

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer Elliott Laboratories

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	April 12, 2010	First release	

TABLE OF CONTENTS

COVER PAGE	
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	9
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS OUTPUT POWER LIMITS –LELAN DEVICES	
OUTPUT POWER AND SPURIOUS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMILE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
ΑΓΓΕΝΡΙΑ Ο ΙΕΘΙ ΡΑΙΑ	<i>L</i>

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications Inc. model SDC-MSD30AG, pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications Inc. model SDC-MSD30AG complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Summit Data Communications Inc. model SDC-MSD30AG and therefore apply only to the tested sample. The sample was selected and prepared by Jerry Pohmurski of Summit Data Communications Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	26.0 MHz	Limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a: 10.8 dBm (0.012W)	17dBm	Complies
15.407 (a) (1)	-	Power Spectral Density	802.11a: -0.8 dBm/MHz	4 dBm/MHz	Complies
-	A9.5 (2)	Density	dBIII/ WITIZ	5 dBm/MHz	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions found	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	51.1dBµV/m @ 5147.7MHz (-2.9dB)	Refer to Standard	Complies
15.407(a)(6)	_	Peak Excursion Ratio	12.8 dB	< 13dB	Complies

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	26.2 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 10.3 dBm (0.011 W)	24dBm (250mW)	Complies
15.407(a) (2))	-	Power Spectral Density	802.11a: 3.4 dBm/MHz	11 dBm/MHz	Complies
-	A9.5 (2)	Peak Spectral Density	3.4 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions found	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	50.6dBµV/m @ 5350.1MHz (-3.4dB)	Refer to Standard	Complies
15.407(a)(6)	-	Peak Excursion Ratio	12.1 dB	<13dB	Complies

				Report Dute. Apr	<i>u</i> 12, 2010
Operation in th	ne 5.47 – 5.725	GHz Band			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	26dB Bandwidth 26.3 MHz		N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 10.5 dBm (0.011 W)	if < 20MHz 24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a) (2))		Power Spectral Density	802.11a: 1.5	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density	dBm/MHz	11 dBm / MHz	Complies
N/A	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate i MHz band –refer to Op		Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions found	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	50.7dBµV/m @ 5458.7MHz (-3.3dB)	Refer to Standard	Complies
15.407(a)(6)	-	Peak Excursion Ratio	12.9 dB	<13dB	Complies
Requirements f		ELAN bands			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	A9.5a	Modulation Digital Modulation is used D		Digital modulation is required	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions found	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	51.1dBµV/m @ 5147.7MHz (-2.9dB)	Refer to Standard	Complies
15.407(a)(6)	-	Peak Excursion Ratio	12.9 dB	< 13dB	Complies
	A9.5 (3)	- Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A
15			Measurements on three channels in each band	and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 10ppm		Complies
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R78278	Channel move time < 10s Channel closing transmission time < 260ms	Complies

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The EUT uses u.FL connectors	Refer to standard	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	44.3dBµV/m (164.1µV/m)@ 3720.0MHz (-9.7dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	45.1dBµV @ 0.176MHz (-19.6dB)	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	5.1GHz: 16.9 MHz 5.25GHz: 17.1 MHz 5.47GHz: 17.1 MHz	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions	0.15 to 30 0.015 to 30	± 2.4 ± 3.0
Radiated Emissions Radiated Emissions	30 to 1000 1000 to 40000	$\begin{array}{c} \pm 3.6 \\ \pm 6.0 \end{array}$

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications Inc. model SDC-MSD30AG is a 802.11ag compliant wireless LAN radio Module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC =/-5%. It's typical power consumption is 400mA (1320mW) while in transmit mode, 180mA (594mW) while in receive mode and 10mA (33mW) while in standby mode.

The sample was received on November 8, 2009 and tested on January 11, 12, 13 and 14, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Summit Data	SDC-MSD30AG	802.11AG Mini	-	TWG-
Communications		Compact Flash		SDCMSD30AG
Inc.		Module with		
		antenna		
		connectors		

ANTENNA SYSTEM

The SDC-MSD30AG will be marketed with the following antenna options:

Monopole Antenna - 2.4 and 5GHz bands, Huber+Suhner, SOA 2459/360/5/0/V_C, 3dBi (2.4GHz), 6.5dBi (5GHz) Dipole Antenna #1 - 2.4 and 5GHz bands - Larsen, R380.500.314, 1.6dBi (2.4GHz), 5dBi (5GHz) Dipole Antenna #2 - 2.4 GHz only - Cisco Air-Ant 4941 2dBi(2.4GHz) Dipole Antenna #3 - 5GHz only - Cisco Air-Ant 5135 3.5dBi(5GHz) Dipole Antenna #4 - 2.4GHz only - Summit SDC-CF22G - 0dBi

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld	-	-
		Computer		

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
iPAQ Power	AC Mains	2wire	Unshielded	1.5
Flash Module	iPAQ Module	-	-	-
	Port			

EUT OPERATION

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Testing performed at 6Mbs for 802.11a mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on January 11, 12, 13 and 14, 2010 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration	Location		
Site	FCC	Canada	Location	
Chamber 3	769238	2845B-3	41039 Boyce Road	
Chamber 5	211948	2845B-5	Fremont, CA 94538-2435	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

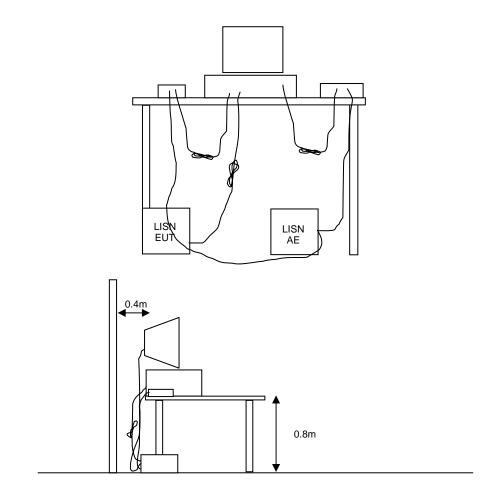
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

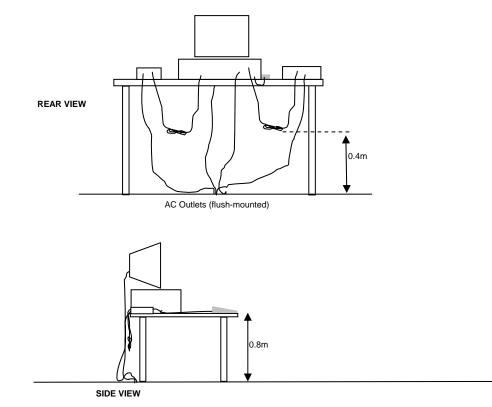

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

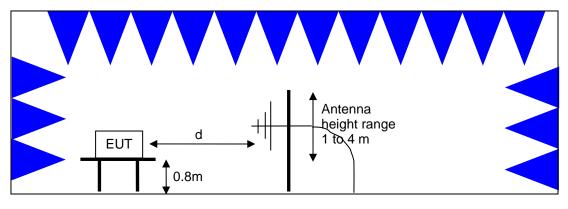

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

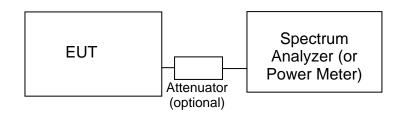
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS –LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^3$ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

² If EIRP exceeds 500mW the device must employ TPC

³ If EIRP exceeds 500mW the device must employ TPC

OUTPUT POWER AND SPURIOUS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_{S} = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter

where P is the eirp (Watts)

Appendix A Test Equipment Calibration Data

Radiated Emission	ns, 30 - 6,500 MHz, 11-Nov-09			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/6/2009
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/10/2010
Radiated Emissior	ns, 1000 - 40,000 MHz, 11-Dec-09			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/10/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/10/2010
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/25/2010
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	9/17/2010
Radiated Emissior	ns, 30 - 40,000 MHz, 12-Jan-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	6/3/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/10/2010
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/25/2010
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/25/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	9/30/2010
, 10-Mar-09				
Manufacturer	Description	<u>Model</u>	Asset #	<u>Cal Due</u>
Hewlett Packard	Test Sys (SA40, 30Hz - 40GHz),	85620A	Rental	4/20/2009
, 12-Mar-09				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Test Sys (SA40, 30Hz - 40GHz),	85620A	Rental	4/20/2009
Padia Antonna Pa	rt (Power and Sourious Emissions) 44 Jan	10		
Manufacturer	rt (Power and Spurious Emissions), 14-Jan Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/10/2010
i iomoti i uonalu			.000	1,10,2010

Appendix B Test Data

T77318 34 Pages T77319 12 Pages

EMC Test Data

5 company		
Summit Data Communications	Job Number:	J77268
SDC-MSD30AG	T-Log Number:	T77318
	Account Manager:	Christine Krebill
Jerry Pohmurski		
FCC 15.E/RSS 210	Class:	-
-	Environment:	-
	SDC-MSD30AG Jerry Pohmurski FCC 15.E/RSS 210	Summit Data Communications Job Number: SDC-MSD30AG T-Log Number: Account Manager: Account Manager: Jerry Pohmurski FCC 15.E/RSS 210

EMC Test Data

For The

Summit Data Communications

Model

SDC-MSD30AG

Date of Last Test: 1/14/2010

Elliott	EMC Test L
Client: Summit Data Communications	Job Number: J77268
Model: SDC-MSD30AG	T-Log Number: T77318
	Account Manager: Christine Krebil
Contact: Jerry Pohmurski Standard: FCC 15.E/RSS 210	Class: N/A
(ዞ	(UNII) Radiated Spurious Emissions H&S Antenna)
Test Specific Details Objective: The objective of this test session specification listed above.	is to perform final qualification testing of the EUT with respect to the
General Test Configuration The EUT and all local support equipment were located o	on the turntable for radiated spurious emissions testing.
For radiated emissions testing the measurement antenna	a was located 3 meters from the EUT.
Ambient Conditions: Temperat Rel. Humi	
Date of Test: Refer to each run Test Engineer: Refer to each run Test Location: Refer to each run	Config. Used: 1 Config Change: None Host Unit Voltage 120V/ 60Hz
Modifications Made During Testing No modifications were made to the EUT during testing	
Deviations From The Standard No deviations were made from the requirements of the s	standard.

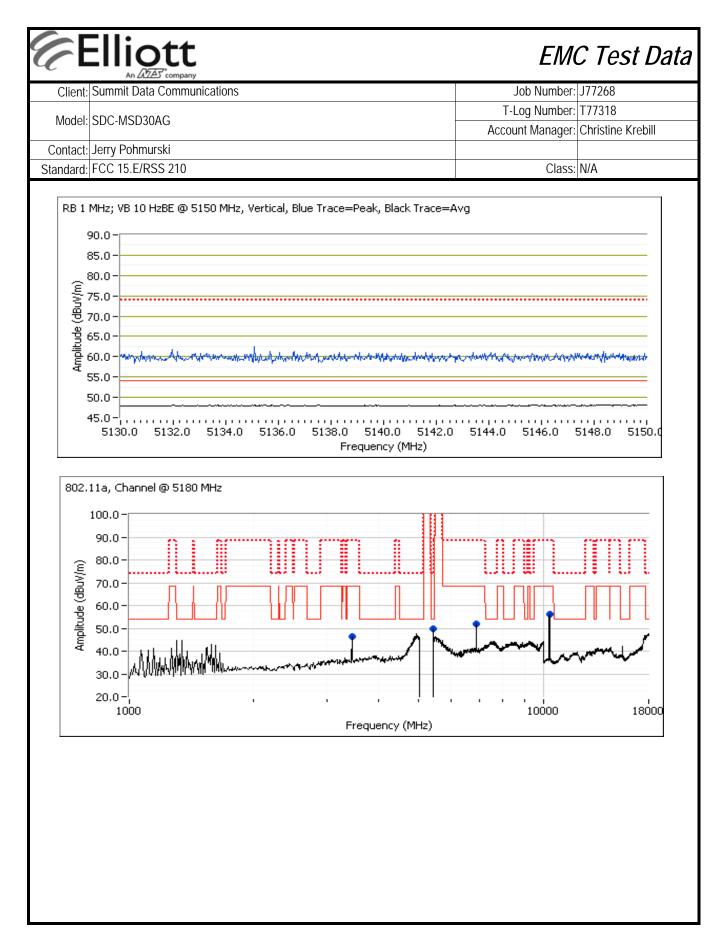
CEII	iott
-------------	------

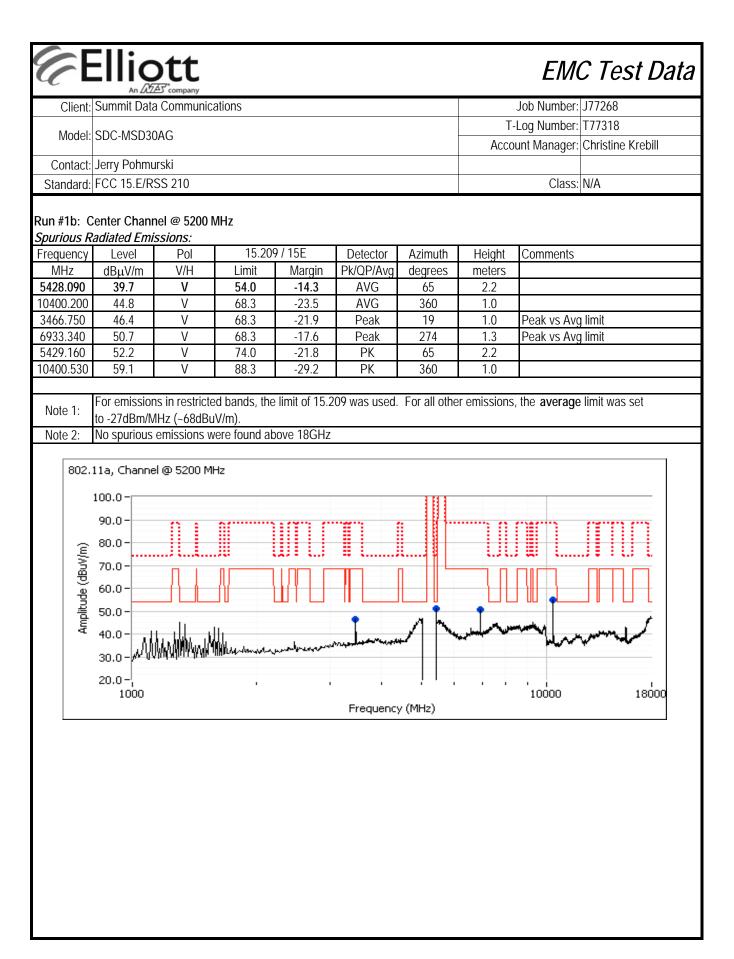
EMC Test Data

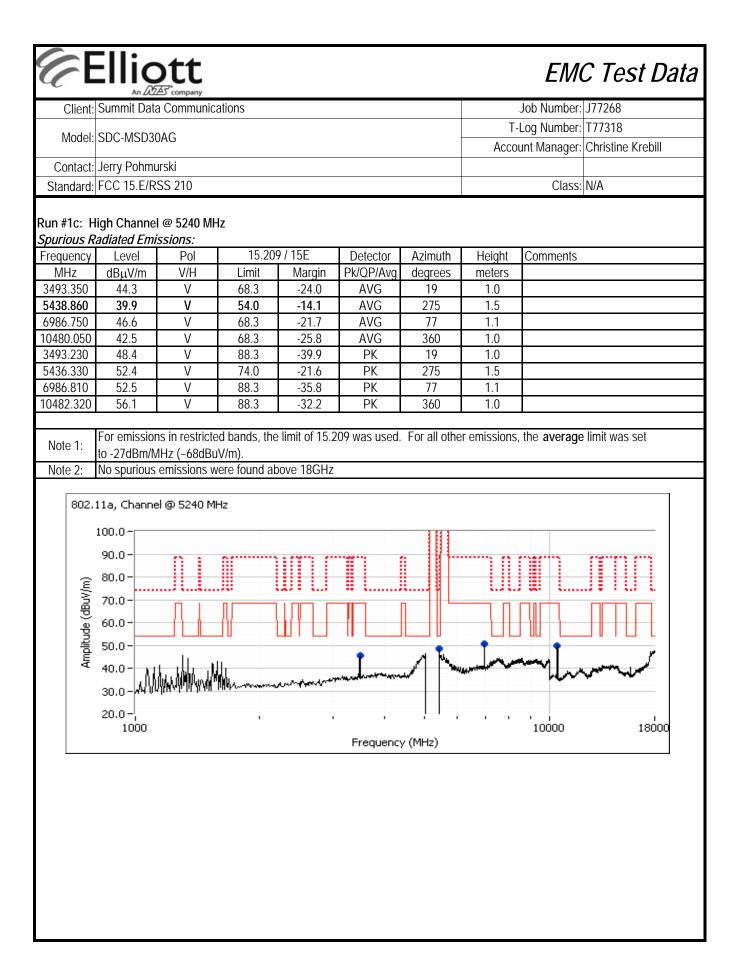
	An Z(ZA) company		
Client:	Summit Data Communications	Job Number:	J77268
Model	SDC-MSD30AG	T-Log Number:	T77318
woder: 3	20C-101202040	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.E/RSS 210	Class:	N/A

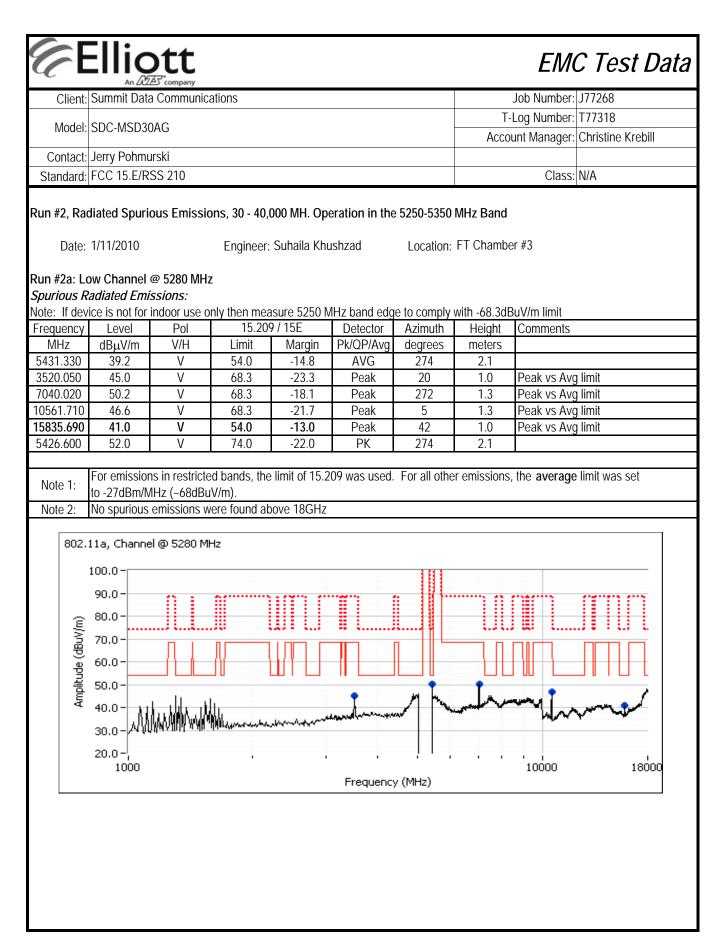
Summary of Results

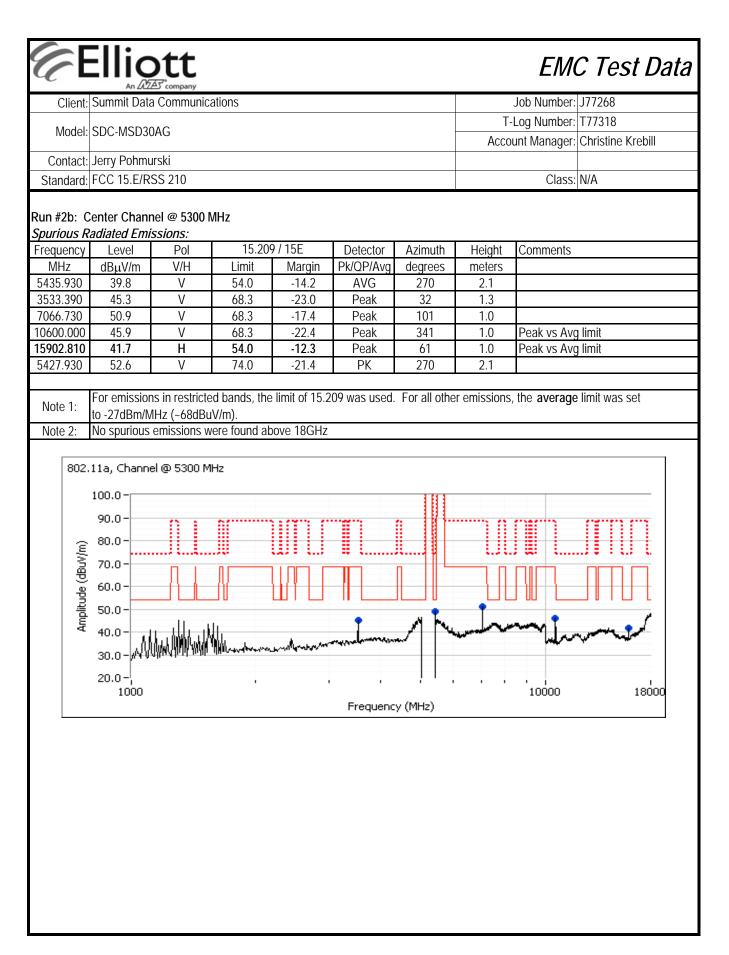
NOTE: A preliminary check of output power was performed. The port with the highest power was used for the final testing. Preliminary tests showed no radio related emissions below 1 GHz.

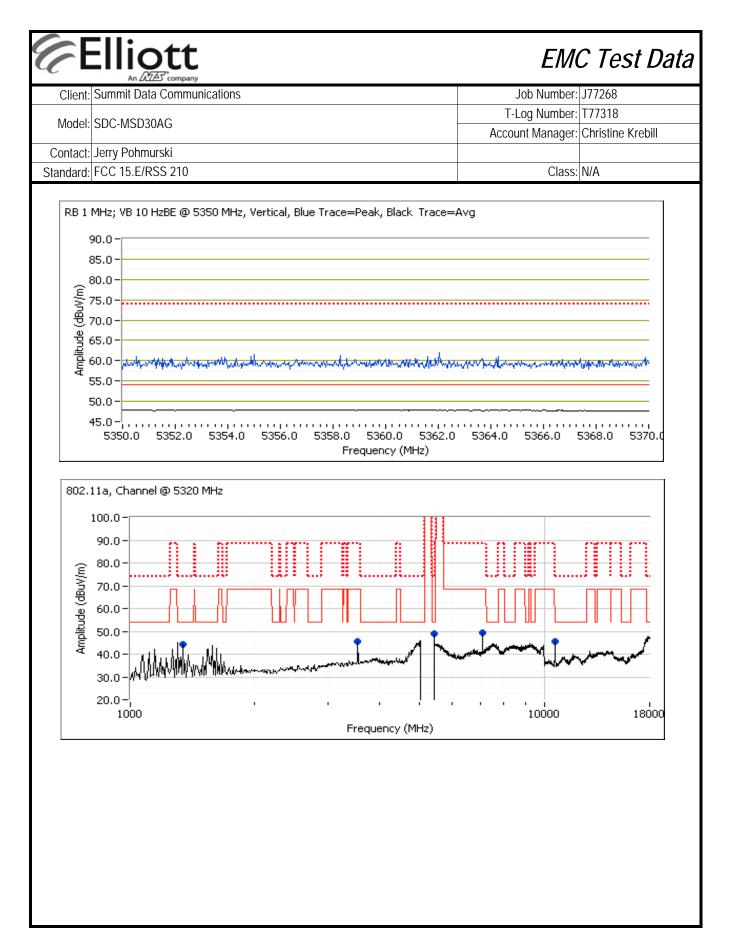

Run #	Mode	Channel	Power Setting	Port	Test Performed	Limit	Result / Margin
	802.11a Chain A	5150-5250 Low	18	Main	Restricted Band Edge at 5150 MHz	15.209	49.6dBµV/m @ 5135.3MHz (-4.4dB)
1	802.11a Chain A	5150-5250 Low	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	40.3dBµV/m @ 5433.4MHz (-13.7dB)
I	802.11a Chain A	5150-5250 Center	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	39.7dBµV/m @ 5428.1MHz (-14.3dB)
	802.11a Chain A	5150-5250 High	18	Main Radiated Emissions, FC		FCC 15.209 / 15 E	39.9dBµV/m @ 5438.9MHz (-14.1dB)
	802.11a Chain A	5250-5350 Low	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	41.0dBµV/m @ 15835.7MHz (-13.0dB)
2	802.11a Chain A	5250-5350 Center	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	41.7dBµV/m @ 15902.8MHz (-12.3dB)
Z	802.11a Chain A	5250-5350 High	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.5dBµV/m @ 1345.4MHz (-10.5dB)
	802.11a Chain A	5250-5350 High	18	Main	Restricted Band Edge at 5350 MHz	15.209	49.2dBµV/m @ 5350.2MHz (-4.8dB)
	802.11a Chain A	5470-5725 Low	18	Main	Restricted Band Edge at 5460 MHz	15.209	43.4dBµV/m @ 5350.4MHz (-10.6dB)
	802.11a Chain A	5470-5725 Low	18	Main	Restricted Band Edge at 5470 MHz	15.209	44.5dBµV/m @ 5469.8MHz (-23.8dB)
3	802.11a Chain A	5470-5725 Low	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.9dBµV/m @ 10986.7MHz (-7.1dB)
	802.11a Chain A	5470-5725 Center	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.9dBµV/m @ 3713.3MHz (-7.1dB)
	802.11a Chain A	5470-5725 High	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	47.1dBµV/m @ 3795.8MHz (-6.9dB)

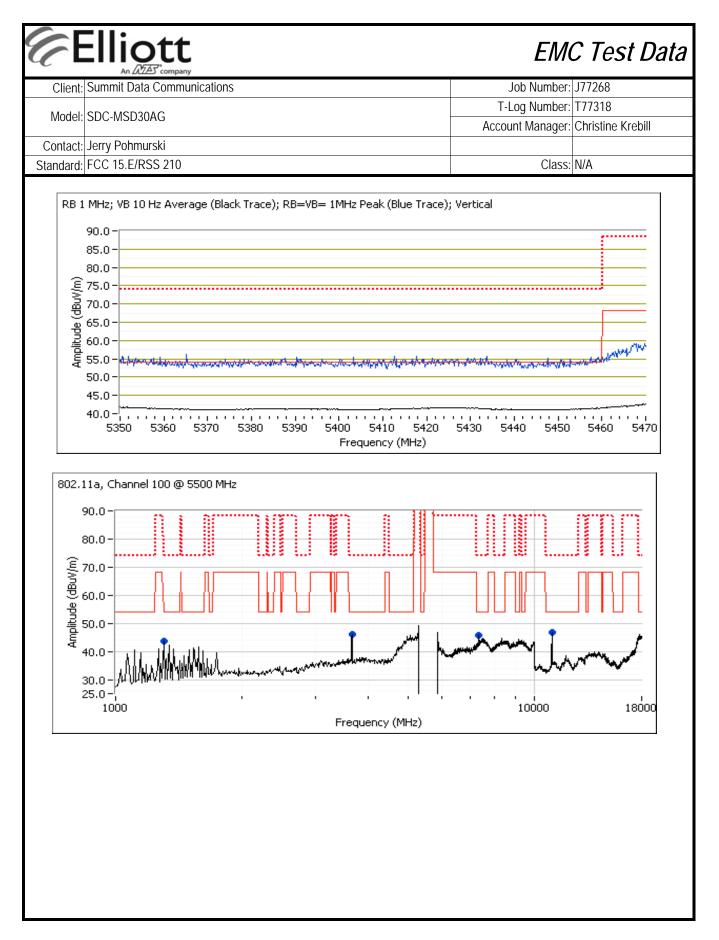

Antenna: H&S 6.5 dBi dipole antenna (Elliott 2009-1388) Module: 00000002A DRIVER: V3.00.50

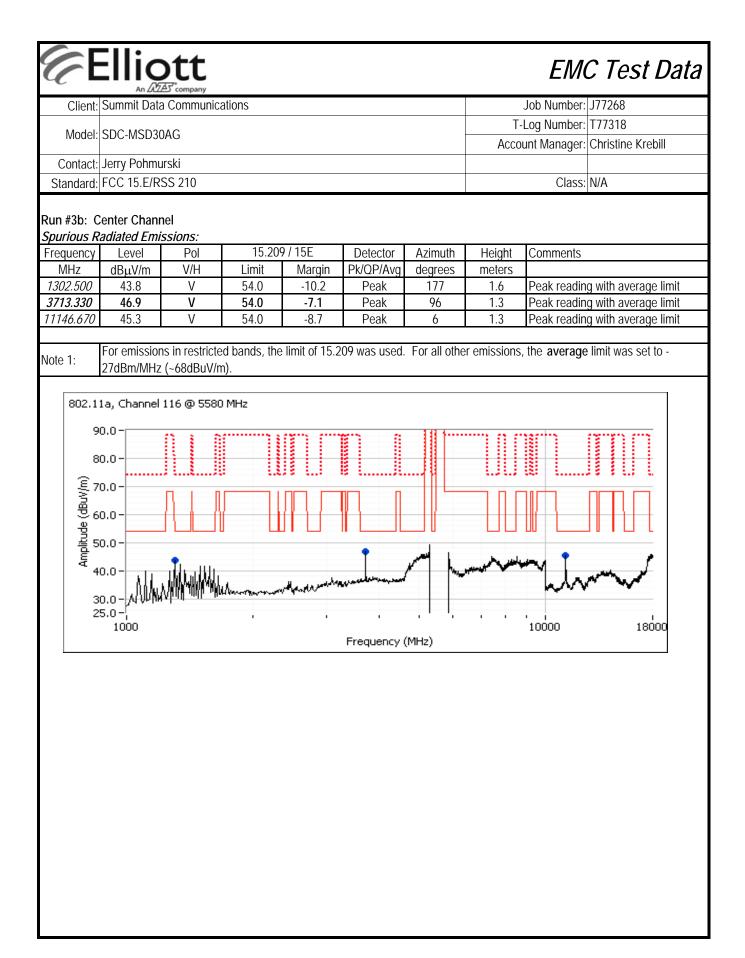

SCU: V2.03.18

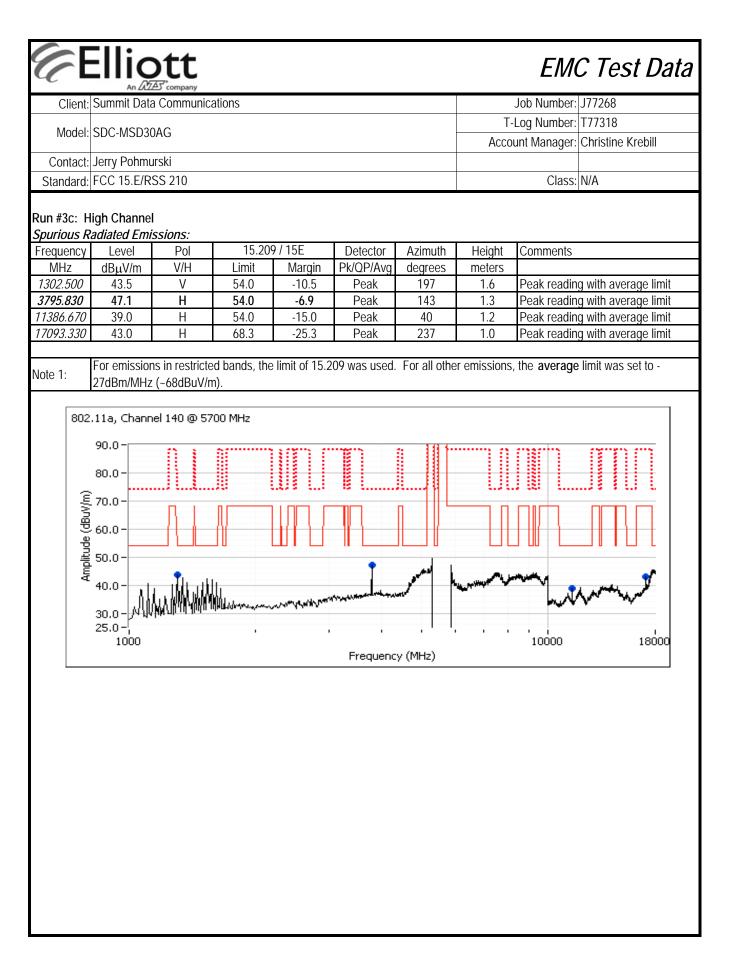

Note: For emission from 18-40GHz, the EUT was scanned manually. All signals were more than 20dB below the limit.


Contact: Standard:	Jerry Pohmu FCC 15.E/RS	rski					I •	Log Number:					
Standard:	FCC 15.E/RS				SDC-MSD30AG								
		SS 210		Jerry Pohmurski									
Run #1, Rad								Class:	N/A				
	liated Spuric 1/11/2010 w Channel @		Engineer	000 MH. Op Suhaila Kh	e ration in th e		MHz Band FT Chambo	er #3					
	al Signal Fiel												
Frequency	Level	Pol		9/15.E	Detector	Azimuth	Height	Comments					
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters						
5179.800	96.0	V	-	-	AVG	62	1.4						
5179.600	105.7	V	-	-	PK	62	1.4						
5179.930	92.3	Н	-	-	AVG	134	1.4						
5180.130	103.2	Н	-	-	PK	134	1.4						
	and Edge Si	¥											
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments					
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters						
5135.270	49.6	V	54.0	-4.4	AVG	62	1.4						
5142.000	49.4	Н	54.0	-4.6	AVG	134	1.4						
5141.000	61.2	V	74.0	-12.8	PK	62	1.4						
5144.870	61.4	Н	74.0	-12.6	PK	134	1.4						
Sourious P:	adiated Emis	scions											
Frequency	Level	Pol	15 20	9/15E	Detector	Azimuth	Height	Comments					
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	oominonto					
5433.400	40.3	V	54.0	-13.7	AVG	310	2.2	1					
6906.740	47.4	V	68.3	-20.9	AVG	274	1.0	1					
10360.270	45.3	V	68.3	-23.0	AVG	1	1.0						
3453.360	46.3	V	68.3	-22.0	PK	19	1.0	Peak vs Avo	g limit				
5429.870	54.1	V	74.0	-19.9	PK	310	2.2						
6906.800	53.0	V	88.3	-35.3	PK	274	1.0						
10361.600	58.7	V	88.3	-29.6	PK	1	1.0						



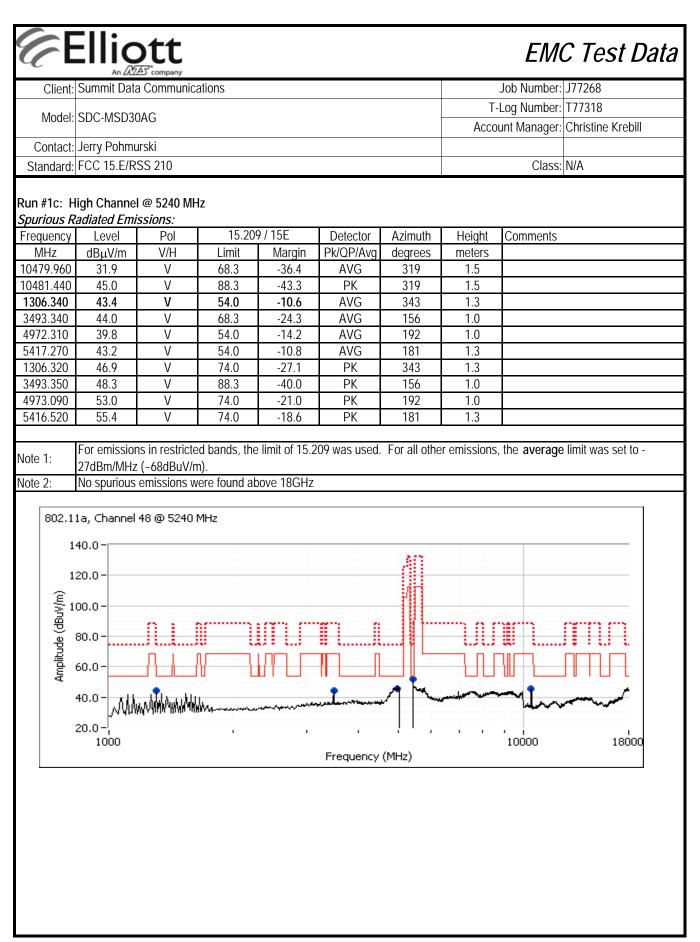


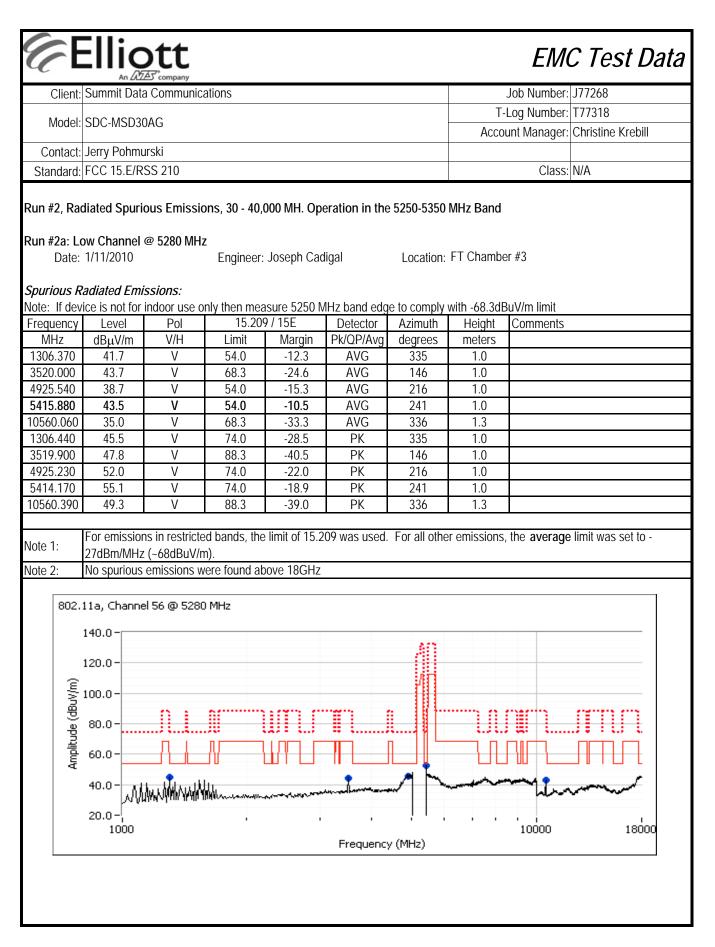


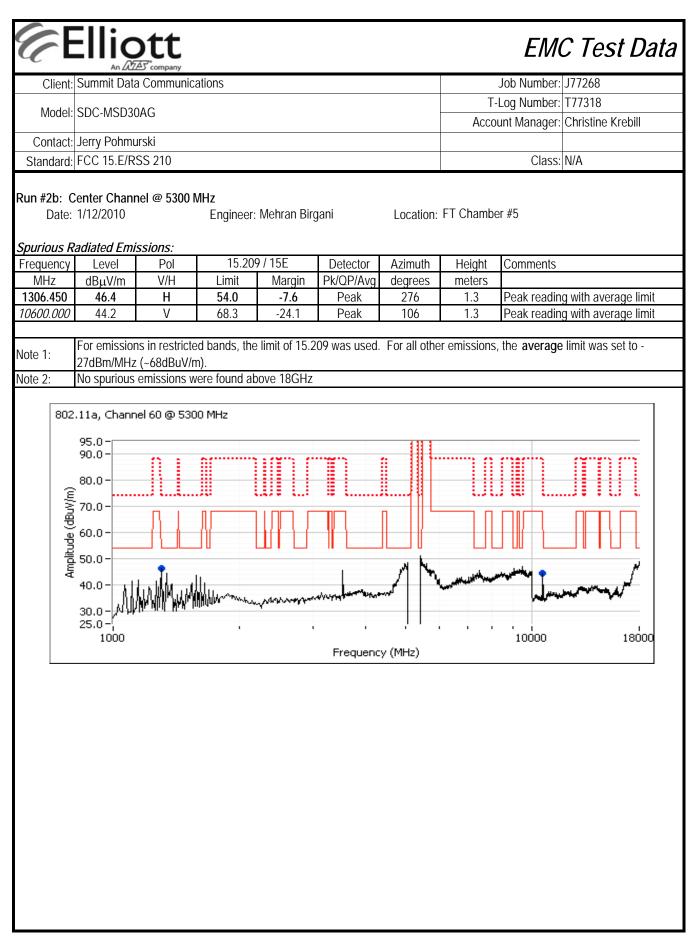

	Summit Data	a Communic	ations		Job Number:	J77268			
Model	SDC-MSD3)AG			-Log Number:				
				Acco	ount Manager:	Christine Krebi			
	: Jerry Pohmu								
Standard	lard: FCC 15.E/RSS 210							Class:	N/A
- "A I		- -							
	High Channel		IZ						
Frequency	<i>tal Signal Fie</i> Level	Pol	15 200	9/15.E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Commento	
5350.600	49.2	H	-	-	AVG	222	1.3	1	
5361.370	60.9	H	-	-	PK	222	1.3		
5322.800	93.2	V	-	-	AVG	226	2.1		
5324.270	103.6	V	-	-	PK	226	2.1		
	Band Edge S				1				
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	49.1	H	54.0	-4.9	AVG	222	1.3	-	
5350.230	49.2 61.1	V V	54.0 74.0	- 4.8 -12.9	AVG PK	226 226	2.1 2.1		
5356.670 5367.330	60.7	 H	74.0	-12.9	PK PK	220	1.3		
5507.550	00.7	ĨĬ	74.0	-13.3	ΓN	ZZZ	1.5		
Spurious F	Radiated Emis	ssions:							
Frequency		Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
1345.370	43.5	V	54.0	-10.5	AVG	157	1.6		
5460.320	39.1	V	68.3	-29.2	AVG	60	1.9		
10640.510	35.7	V	54.0	-18.3	AVG	360	1.0		
	45.6	Η	68.3	-22.7	Peak	17	1.9	Peak vs Avç	g limit
3546.730	49.2	V	68.3	-19.1	Peak	88	1.0	Peak vs Avo	g limit
7093.370	44 5	V	74.0	-27.5	PK	157	1.6		
7093.370 1345.500	46.5					10	1.9	1	
7093.370	51.6	V V	74.0 74.0	-22.4 -24.1	PK PK	60 360	1.0		

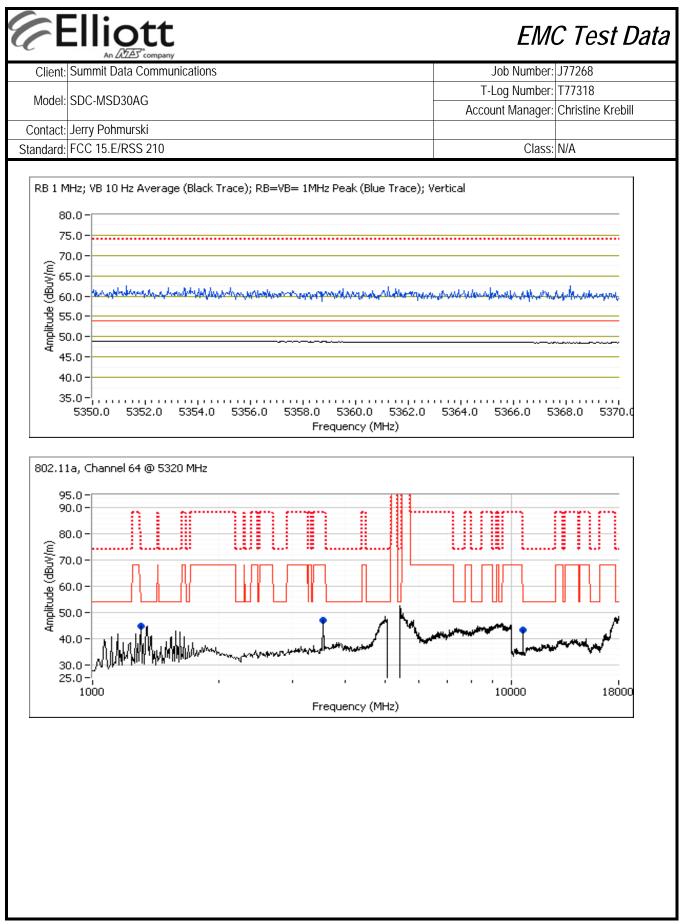
Client:	Summit Data Communications							Job Number: J77268
Model [.]	SDC-MSD30AG							-Log Number: T77318
							Account Manager: Christine Krebill	
	Jerry Pohmurski							
Standard:	FCC 15.E/RSS 210							Class: N/A
Date:	diated Spuric 1/11/2010 ow Channel	ous Emissic		000 MH. Op Mehran Birq			MHz Band FT Chambo	er #3
	tal Signal Fie	ld Strength						
Frequency	Level	Pol) / 15.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5500.100	94.5	V	112.3	-17.8	AVG	60	1.4	<u> </u>
5499.700	105.2	V	132.3	-27.1	PK	60	1.4	
5499.930	93.6	H	112.3	-18.7	AVG	151	1.3 1.3	
5493.330	104.1	Н	132.3	-28.2	РК	151	1.3	
5350-5460	MHz Restrict	ed Band Fo	lae Sianal R	adiated Fie	ld Strenath			
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.370	43.4	V	54.0	-10.6	AVG	60	1.4	
5389.600	55.8	V	74.0	-18.2	PK	60	1.4	
	MHz Restrict							
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz 5469.750	dBµV/m 44.5	V/H V	Limit 68.3	Margin -23.8	Pk/QP/Avg AVG	degrees 60	meters 1.4	
J407./JU	60.0	V	88.3	-28.3	PK	60	1.4	
	00.0	v	00.0	-20.3		00	1.7	
5468.100								
5468.100	Radiated Emis	sions:)/15E	Detector	Azimuth	Height	Comments
5468.100 Spurious R	Cadiated Emis	s <i>ions:</i> Pol	15.209					
5468.100 Spurious R	1		15.209 Limit	Margin	Pk/QP/Avg	degrees	meters	
5468.100 <i>Spurious R</i> Frequency	Level	Pol V/H V						Peak reading with average limit
5468.100 <i>Spurious R</i> Frequency MHz	Level dBµV/m	Pol V/H	Limit	Margin	Pk/QP/Avg	degrees	meters 1.6 1.3	Peak reading with average limit
5468.100 Spurious R Frequency MHz 1302.500 3713.330 7334.170	Level dBµV/m 43.6 46.1 45.7	Pol V/H V V V	Limit 54.0 54.0 54.0	Margin -10.4 -7.9 -8.3	Pk/QP/Avg Peak Peak Peak	degrees 177 96 287	meters 1.6 1.3 1.9	Peak reading with average limit Peak reading with average limit Peak reading with average limit
5468.100 Spurious R Frequency MHz 1302.500 3713.330	Level dBµV/m 43.6 46.1	Pol V/H V V	Limit 54.0 54.0	Margin -10.4 -7.9	Pk/QP/Avg Peak Peak	degrees 177 96	meters 1.6 1.3	Peak reading with average limit Peak reading with average limit Peak reading with average limit
5468.100 Spurious R Frequency MHz 1302.500 3713.330 7334.170	Level dBµV/m 43.6 46.1 45.7 46.9	Pol V/H V V V V	Limit 54.0 54.0 54.0 54.0 54.0	Margin -10.4 -7.9 -8.3 -7.1	Pk/QP/Avg Peak Peak Peak Peak	degrees 177 96 287 14	meters 1.6 1.3 1.9 1.3	Peak reading with average limit Peak reading with average limit Peak reading with average limit Peak reading with average limit
5468.100 Spurious R Frequency MHz 1302.500 3713.330 7334.170	Level dBµV/m 43.6 46.1 45.7 46.9	Pol V/H V V V V s in restricte	Limit 54.0 54.0 54.0 54.0 54.0 d bands, the	Margin -10.4 -7.9 -8.3 -7.1	Pk/QP/Avg Peak Peak Peak Peak	degrees 177 96 287 14	meters 1.6 1.3 1.9 1.3	Peak reading with average limit Peak reading with average limit

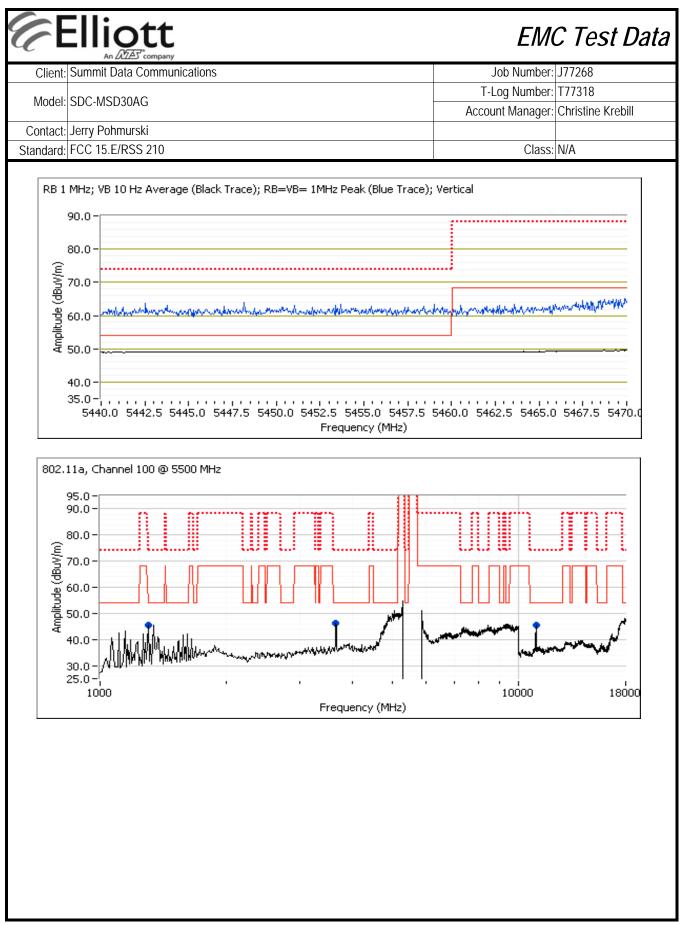


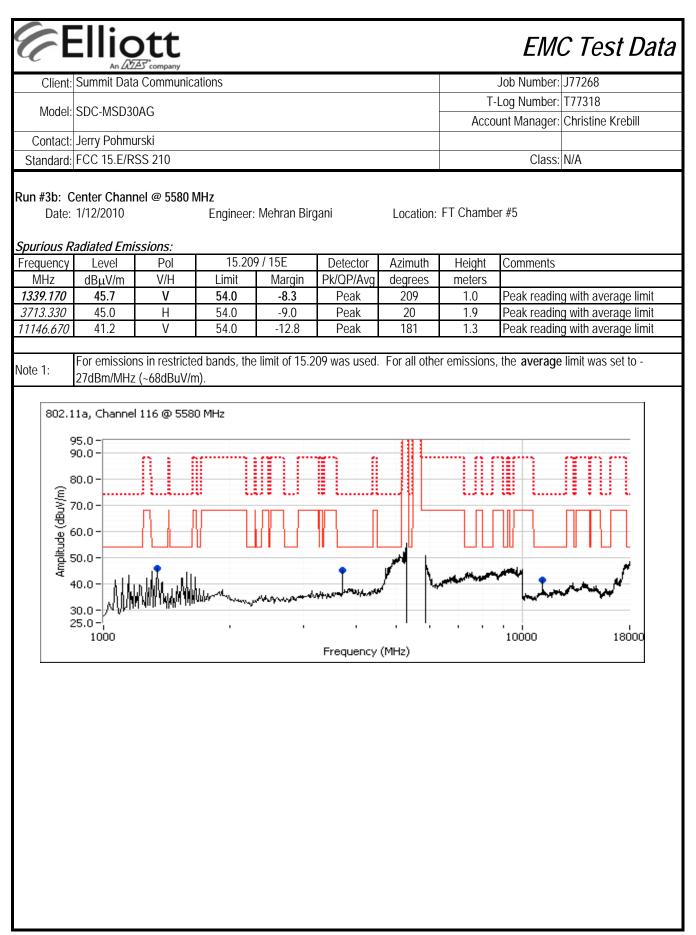

CElliott			EMC Test Da
Client: Summit Data Communications			Job Number: J77268
Model: SDC-MSD30AG			T-Log Number: T77318
			Account Manager: Christine Krebill
Contact: Jerry Pohmurski Standard: FCC 15.E/RSS 210			Class: N/A
RSS 210 and FCC	-	III) Radiated n Antenna)	Spurious Emissions
Test Specific Details Objective: The objective of thi specification listed		rform final qualificatio	on testing of the EUT with respect to the
General Test Configuration The EUT and all local support equipment we	re located on the turn	table for radiated spu	rious emissions testing.
or radiated emissions testing the measuren	nent antenna was loca	ated 3 meters from the	e EUT.
Ambient Conditions:	Temperature: Rel. Humidity:	10-15 °C 30-50 %	
Date of Test: Refer to each run Test Engineer: Refer to each run Test Location: Refer to each run		Config. Used Config Change Host Unit Voltage	: None
Modifications Made During Testing No modifications were made to the EUT d	•		
Deviations From The Standard No deviations were made from the require	ments of the standard	I.	

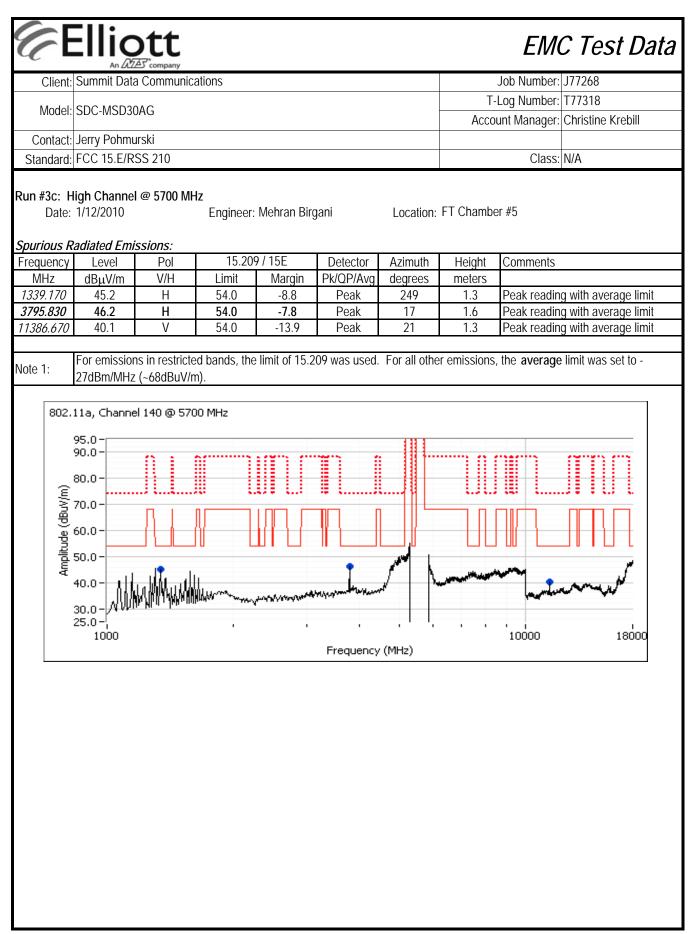

Client		a Communica	ations			Job Number:	177268
Client.	Summe Date					T-Log Number:	
Model:	SDC-MSD3	0AG			_	Account Manager:	
Contact [.]	Jerry Pohm	urski					
	FCC 15.E/R					Class:	N/A
	100.002	00210					
NOTE: A			sions below ²	•	. The port with the highest	power was used for the	final testing. Preliminar
Run #	Mode	Channel	Power Setting	Port	Test Performed	Limit	Result / Margin
	802.11a	5150-5250	18	Main	Restricted Band Edge at	15.209	51.1dBµV/m@
	Chain A 802.11a	Low	!	┢────	5150 MHz Radiated Emissions,		5147.7MHz (-2.9dB) 44.4dBµV/m @
	802.11a Chain A	5150-5250 Low	18	Main	1 - 40 GHz	FCC 15.209 / 15 E	5418.4MHz (-9.6dB)
1	802.11a	5150-5250	10	Main	Radiated Emissions,	500 15 000 / 15 E	44.9dBµV/m@
	Chain A	Center	18	Main	1 - 40 GHz	FCC 15.209 / 15 E	5415.8MHz (-9.1dB)
	802.11a	5150-5250	18	Main	Radiated Emissions,	FCC 15.209 / 15 E	43.4dBµV/m@
	Chain A	High	· · ·	····	1 - 40 GHz Padiatod Emissions		1306.3MHz (-10.6dB)
	802.11a Chain A	5250-5350 Low	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.5dBµV/m @ 5415.9MHz (-10.5dB)
	802.11a	5250-5350			Radiated Emissions,		46.4dBµV/m @
ſ	Chain A	Center	18	Main	1 - 40 GHz	FCC 15.209 / 15 E	1306.5MHz (-7.6dB)
2	802.11a	5250-5350	18	Main	Radiated Emissions,	FCC 15.209 / 15 E	44.9dBµV/m @
	Chain A	High	Io	IViairi	1 - 40 GHz	FUU 10.2077 TO L	1302.5MHz (-9.1dB)
	802.11a	5250-5350	18	Main	Restricted Band Edge at	15.209	50.6dBµV/m@
	Chain A	High	· -	····	5350 MHz Postricted Band Edge at		5350.1MHz (-3.4dB)
	802.11a Chain A	5470-5725 Low	18	Main	Restricted Band Edge at 5460 MHz	15.209	50.7dBµV/m @ 5458.7MHz (-3.3dB)
	802.11a	Low 5470-5725	{I}		Restricted Band Edge at		5458.7MHZ (-3.30B) 51.4dBµV/m @
	Chain A	Low	18	Main	5470 MHz	15.209	5469.9MHz (-16.9dB
ſ	802.11a	5470-5725	10	Main	Radiated Emissions,	500 15 000 / 15 E	46.4dBµV/m @
3	Chain A	Low	18	Main	1 - 40 GHz	FCC 15.209 / 15 E	3658.3MHz (-7.6dB)
	802.11a	5470-5725	18	Main	Radiated Emissions,	FCC 15.209 / 15 E	45.7dBµV/m@
	Chain A	Center		TVICAL .	1 - 40 GHz		1339.2MHz (-8.3dB)
	802.11a Chain A	5470-5725	18	Main	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.2dBµV/m @ 3795.8MHz (-7.8dB)
	Chain A	High		<u> </u>	I - 40 GNZ		טעעט. <i>ו</i> -) ארוועוס. פאר 373
	Larsen 5 dB 000000024	Bi dipole anten A	nna (Elliott 20 DRIVER:		SCU: \	V2.03.18	
Note:	For emission	n from 18-400	GHz, the EU	T was scann	ned manually. All signals we	re more than 20dB belo	w the limit.
Amhient (Condition	c٠	Т	emperature:	10-15 °C		
Ambient	Solution	3.		eniperature.			


Client:	Summit Data	Communic	ations					Job Number:	
Model	SDC-MSD30						T	Log Number:	T77318
MOUEI.	200-1012030	IAG					Acco	unt Manager:	Christine Krebill
Contact:	Jerry Pohmu	rski							
Standard:	FCC 15.E/RS	SS 210						Class:	N/A
Date:	1/11/2010		Engineer:	000 MH. Op Joseph Cad	eration in the digal		MHz Band FT Chamb	er #3	
	ow Channel (tal Signal Fie								
Frequency	Level	Pol	15.209) / 15.F	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5179.920	101.0	V	-	-	AVG	162	1.0	1	
5180.000	110.8	V	-	-	PK	162	1.0		
5180.000	85.7	Н	-	-	AVG	121	1.5		
5179.930	95.0	Н	-	-	PK	121	1.5		
Frequency MHz 5130.600 5147.670 5130.530 5149.300	Level dBµV/m 50.1 51.1 61.7 64.2	Pol V/H H V H V	FCC 1 Limit 54.0 54.0 74.0 74.0	5.209 Margin -3.9 -2.9 -12.3 -9.8	Detector Pk/QP/Avg AVG AVG PK PK	Azimuth degrees 120 162 120 162	Height meters 1.5 1.0 1.5 1.0	Comments	
/	adiated Emis							1-	
Frequency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments	
MHz 1306.370	dBµV/m 42.8	<u>V/H</u> H	Limit 54.0	Margin -11.2	Pk/QP/Avg AVG	degrees 229	meters 1.5		
3453.340	42.0	V	68.3	-11.2	AVG	348	1.3		
4926.560	43.7	V	54.0	-10.3	AVG	32	1.0		
5418.440	44.4	V	54.0	- 9.6	AVG	209	1.0		
6906.670	47.4	V	68.3	-20.9	AVG	123	1.5	1	
10359.920	49.6	V	68.3	-18.7	AVG	141	1.0		
1306.420	46.3	Н	74.0	-27.7	PK	229	1.5		
3453.340	48.3	V	88.3	-40.0	PK	348	1.3		
4926.510	56.1	V	74.0	-17.9	PK	32	1.0		
5418.360	56.8	V	74.0	-17.2	PK	209	1.0		
6906.810	53.3	V	88.3	-35.0	PK	123	1.5		
10360.140	62.9	V	88.3	-25.4	PK	141	1.0		
Note 1:		s in restricte (~68dBuV/r	ed bands, the n).	limit of 15.2				, the average	limit was set to







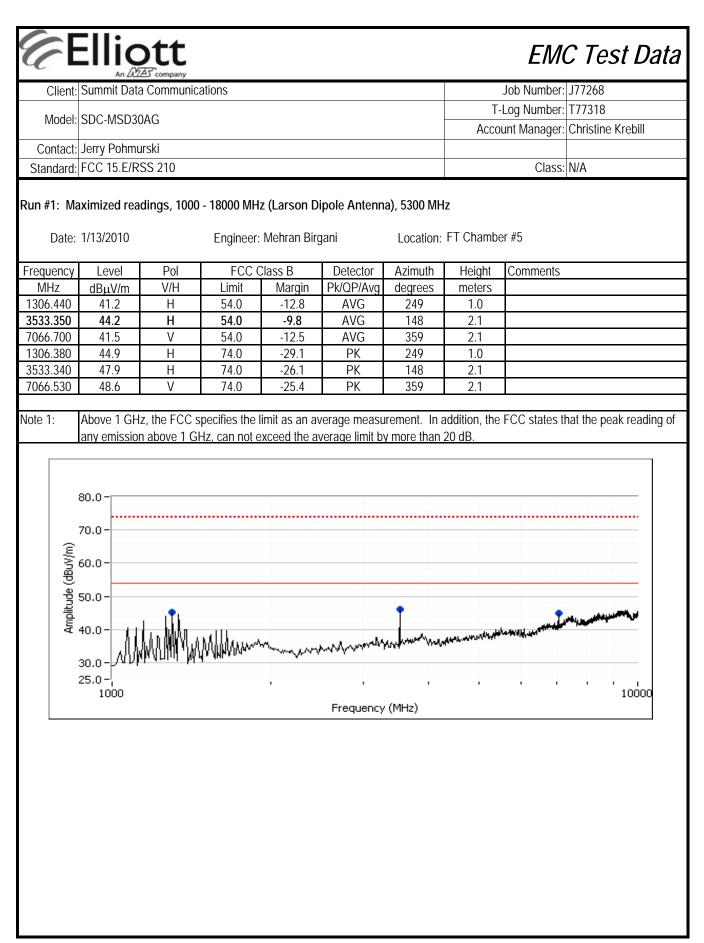

Client:	Summit Data	a Communica	ations					Job Number:	J77268
							T.	-Log Number:	T77318
Model:	SDC-MSD30)AG						0	Christine Krebill
Contact:	Jerry Pohmu	ırski							
Standard:	FCC 15.E/R	SS 210						Class:	N/A
Date: High Chanı	ligh Channel 1/11/2010 nel @ 5320 N tal Signal Fié	IHz	Engineer:	Joseph Cac	ligal	Location:	FT Chambo	er #3	
Frequency	Level	Pol		9/15.E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENIES	
5320.000	104.9	V/11	-	-	AVG	181	1.0	1	
5319.990	112.3	V	-	-	PK	181	1.0		
5320.040	89.3	H	-	-	AVG	70	1.0	1	
5320.060	97.7	H	-	-	PK	70	1.0	1	
5350 MHz I	Band Edge S	ional Radia	ted Field Str	renath				•	
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.120	50.6	V	54.0	-3.4	AVG	181	1.0		
5350.400	49.9	Н	54.0	-4.1	AVG	69	1.0		
5350.680	62.1	Н	74.0	-11.9	PK	69	1.0		
5352.980	62.2	V	74.0	-11.8	PK	181	1.0		
	2adiated Emi 1/12/2010 Level dBμV/m 44.9 46.9	SSIONS: Pol V/H V H	0	Mehran Birg 9 / 15E <u>Margin -9.1</u> -21.4	pani Detector Pk/QP/Avg Peak Peak	Location: Azimuth degrees 196 27	FT Chambo Height meters 1.6 1.3	Comments Peak readin	g with average lim g with average lim
10640.000	43.4	H	54.0	-10.6	Peak	93	1.2		g with average lim
Note 1:	For emissior 27dBm/MHz			limit of 15.2	09 was used.	For all othe	r emissions	, the average	e limit was set to -

Client:	Summit Data	a Communica	ations					Job Number: J77268
							T	Log Number: T77318
Model:	SDC-MSD30	JAG					Acco	unt Manager: Christine Krebill
Contact:	Jerry Pohmu	ırski						-
Standard:	FCC 15.E/R	SS 210						Class: N/A
Run #3a: Lo	diated Spurio ow Channel 1/11/2010		<u>.</u>	000 MH. Op Joseph Cac	e ration in th e ligal		MHz Band	er #3
Fundament	al Signal Fie	old Strenath						
Frequency	Level	Pol	15.209	/ 15.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5500.000	103.5	V	-		AVG	225	1.0	
5500.040	111.5	V	-	-	PK	225	1.0	
5499.980	89.9	Н	-	-	AVG	124	1.1	
5500.100	98.2	Н	-	-	PK	124	1.1	
5250 5160 1	MHz Restrict	tod Rand Ed	lao Sianal D	adiatod Eio	ld Stronath			
Frequency	Level	Pol	FCC 1		Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5457.300	50.2	Н	54.0	-3.8	AVG	123	1.1	
5458.690	50.7	V	54.0	-3.3	AVG	225	1.0	
5455.570	61.7	Н	74.0	-12.3	PK	123	1.1	
5460.340	62.8	V	88.3	-25.5	PK	225	1.0	
	ALL- Destrict	tod Donal Ed	lan Cianal D	adiated Fig	ld Ctronath			
Frequency	<i>MHz Restrict</i> Level	Pol	<i>ge Signal R</i> FCC 1		Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
5469.260	50.2	H	68.3	-18.1	AVG	123	1.1	
5469.880	51.4	V	68.3	-16.9	AVG	225	1.0	
5465.080	65.0	V	88.3	-23.3	PK	225	1.0	
5469.060	62.0	Н	88.3	-26.3	PK	123	1.1	
Date:	<i>adiated Emi</i> 1/12/2010		U	Mehran Birç	- -		FT Chambo	
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Dooly roading with success the "
<i>1302.500</i> 3658.330	45.5	H H	54.0	-8.5	Peak	276	1.3	Peak reading with average limit Peak reading with average limit
3038.330 10986.670	46.4 45.6	H V	54.0 54.0	-7.6 -8.4	Peak Peak	24 23	1.9 1.5	Peak reading with average limit Peak reading with average limit
10700.070	40.0	V	J4.U	-0.4	ισαΝ	ZJ	1.0	Theak reading with average IIIIII
lote 1:	For emissior 27dBm/MHz			limit of 15.2	09 was used.	For all othe	er emissions	, the average limit was set to -

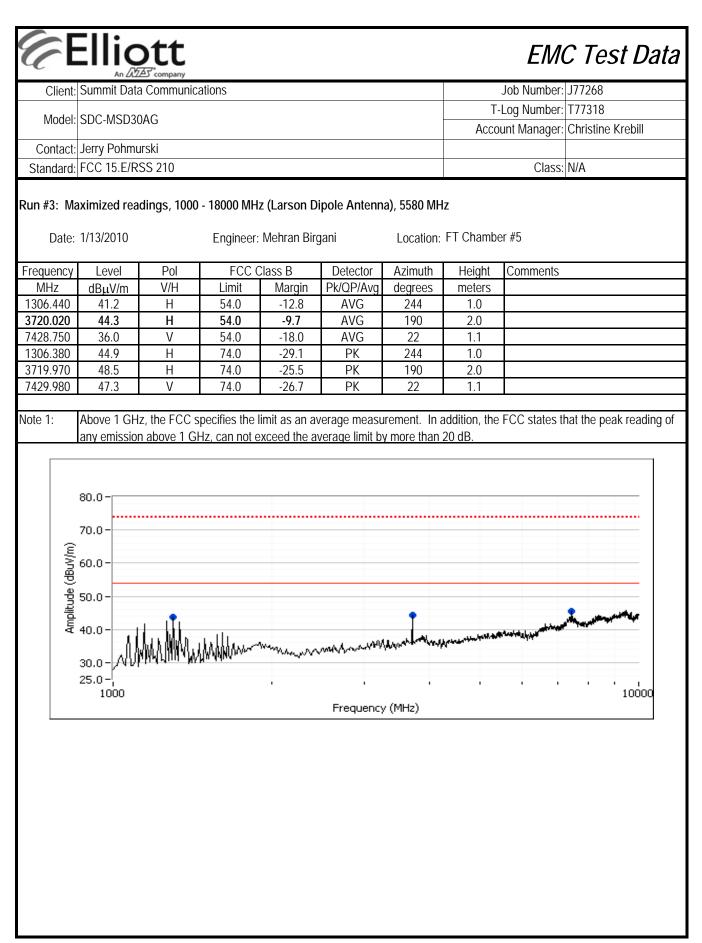
Ellio	tt			EMC Test Dat
Client: Summit Data C	Communications		J	ob Number: J77268
			T-L	.og Number: T77318
Model: SDC-MSD30A	G			nt Manager: Christine Krebill
Contact: Jerry Pohmurs	ki			
Standard: FCC 15.E/RSS				Class: N/A
	Radiated Sp	ourious Emis	sions	
-	ne objective of this test session is to necification listed above.	perform final qualificati	on testing of th	e EUT with respect to the
General Test Configu	ration oport equipment were located on the	e turntable for radiated e	emissions testir	na.
				5
The test distance and ext Note, preliminary testing	rapolation factor (if applicable) are o I indicates that the emissions were n	letailed under each run naximized by orientatio	description. n of the EUT a	nd elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes	rapolation factor (if applicable) are c	letailed under each run naximized by orientatio	description. n of the EUT a	nd elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes	rapolation factor (if applicable) are o I indicates that the emissions were n ting indicated that the emissions we	letailed under each run naximized by orientatio	description. n of the EUT a	nd elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes antenna, <u>and</u> manipulation Ambient Conditions:	rapolation factor (if applicable) are of indicates that the emissions were n ting indicated that the emissions we n of the EUT's interface cables. Temperature:	letailed under each run naximized by orientatio re maximized by orient 10-15 °C	description. n of the EUT a	nd elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes antenna, and manipulation Ambient Conditions: Summary of Results Run #	rapolation factor (if applicable) are of indicates that the emissions were n ting indicated that the emissions we n of the EUT's interface cables. Temperature:	letailed under each run naximized by orientatio re maximized by orient 10-15 °C	description. n of the EUT a	nd elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes antenna, and manipulation Ambient Conditions: Summary of Results Run # 1 (802.11a), 5300MHz	rapolation factor (if applicable) are o indicates that the emissions were n ting indicated that the emissions we n of the EUT's interface cables. Temperature: Rel. Humidity:	letailed under each run naximized by orientatio re maximized by orient 10-15 °C 30-50 %	description. n of the EUT a ation of the EU	nd elevation of the measurement T, elevation of the measurement
The test distance and ext Note, preliminary testing antenna. Maximized tes antenna, and manipulation Ambient Conditions: Summary of Results Run # 1 (802.11a), 5300MHz Larson Antenna, MAIN	rapolation factor (if applicable) are of indicates that the emissions were n ting indicated that the emissions we on of the EUT's interface cables. Temperature: Rel. Humidity: Test Performed RE, 1000 - 18000 MHz	letailed under each run naximized by orientatio re maximized by orient 10-15 °C 30-50 % Limit	description. n of the EUT ar ation of the EU Result	nd elevation of the measurement T, elevation of the measurement <u>Margin</u> 44.2dBµV/m (162.2µV/m) @
The test distance and ext Note, preliminary testing antenna. Maximized tes antenna, and manipulation Ambient Conditions: Summary of Results Run # 1 (802.11a), 5300MHz Larson Antenna, MAIN 2 (802.11a), 5300MHz	rapolation factor (if applicable) are of a indicates that the emissions were noting indicated that the emissions were on of the EUT's interface cables. Temperature: Rel. Humidity: Test Performed RE, 1000 - 18000 MHz Maximized Emissions RE, 1000 - 18000 MHz	letailed under each run naximized by orientatio re maximized by orient 10-15 °C 30-50 % Limit RSS-GEN	description. n of the EUT at ation of the EU Result Pass	nd elevation of the measurement T, elevation of the measurement <u>Margin</u> 44.2dBµV/m (162.2µV/m) @ 3533.4MHz (-9.8dB) 42.6dBµV/m (134.9µV/m) @

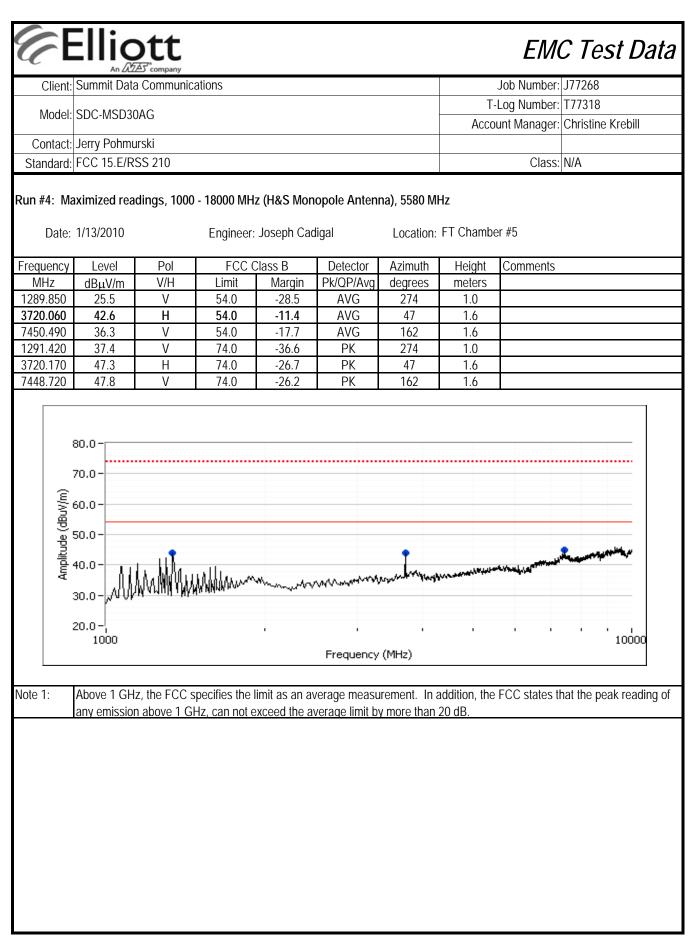
Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.


Antenna: Larsen 5.0 dBi dipole antenna (Elliott 2009-2119) Antenna: H&S 6.5 dBi dipole antenna (Elliott 2009-1388) Module: 00000002A **DRIVER:** V3.00.50


SCU: V2.03.18

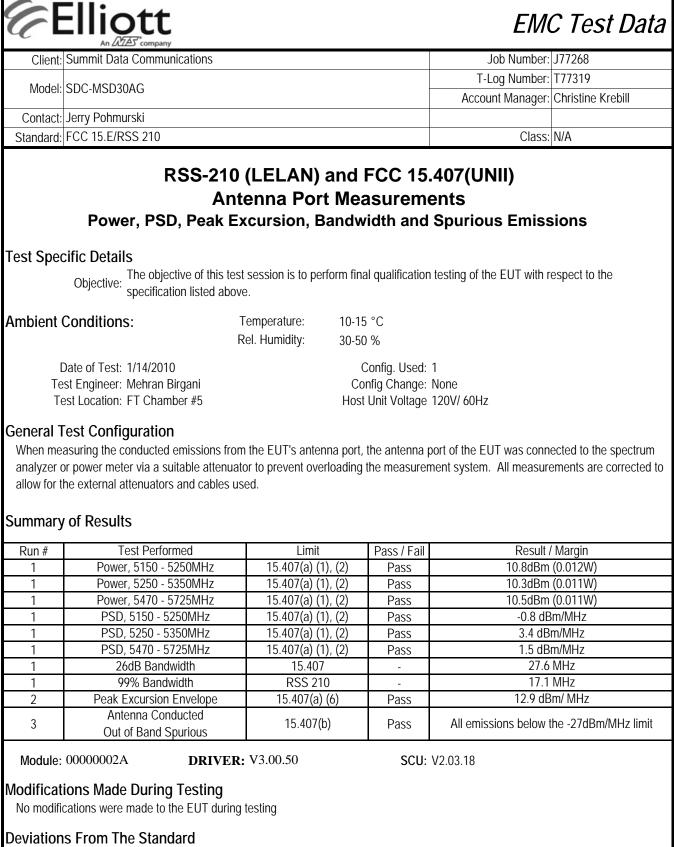
Note: For emission from 10-18GHz, the EUT was scanned manually. All signals were within noise floor.

Model: SDC-MSD30 Contact: Jerry Pohmu Standard: FCC 15.E/RS un #2: Maximized read Date: 1/13/2010 requency Level MHz dBµV/m 1306.390 40.0 3533.390 42.6 7096.650 34.3 1306.420 44.2 3533.400 47.0 7099.070 46.2	ski S 210 lings, 1000 - 18000 Engin	eer: Joseph Ca CC Class B Margin -14.0 -11.4 -19.7 -29.8 -27.0	·	Location: Azimuth degrees 248 139 342	Acco Iz FT Chambe Height meters 1.6 1.0	Class:	Christine Krebill
Contact: Jerry Pohmu Standard: FCC 15.E/RS In #2: Maximized read Date: 1/13/2010 equency Level MHz dBµV/m 306.390 40.0 533.390 42.6 096.650 34.3 306.420 44.2 533.400 47.0 099.070 46.2 te 1: Above 1 GHz	ski S 210 lings, 1000 - 18000 Engin Pol FC V/H Limit H 54.0 H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	eer: Joseph Ca CC Class B Margin -14.0 -11.4 -19.7 -29.8 -27.0	adigal Detector Pk/QP/Avg AVG AVG AVG PK	Location: Azimuth degrees 248 139 342	Iz FT Chambe Height meters 1.6 1.0	Class: er #5	
tandard: FCC 15.E/RS n #2: Maximized read Date: 1/13/2010 equency Level MHz dBµV/m 306.390 40.0 i33.390 42.6 196.650 34.3 306.420 44.2 i33.400 47.0 1999.070 46.2 e 1: Above 1 GHz	S 210 lings, 1000 - 18000 Engine Pol FC V/H Limit H 54.0 H 54.0 V 54.0 H 74.0 V 74.0 V 74.0	eer: Joseph Ca CC Class B Margin -14.0 -11.4 -19.7 -29.8 -27.0	adigal Detector Pk/QP/Avg AVG AVG AVG PK	Location: Azimuth degrees 248 139 342	FT Chambe Height meters 1.6 1.0	er #5	N/A
n #2: Maximized read Date: 1/13/2010 equency Level MHz dBμV/m 306.390 40.0 33.390 42.6 196.650 34.3 306.420 44.2 33.400 47.0 199.070 46.2 e 1: Above 1 GHz	lings, 1000 - 18000 Engin Pol FC V/H Limit H 54.0 H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	eer: Joseph Ca CC Class B Margin -14.0 -11.4 -19.7 -29.8 -27.0	adigal Detector Pk/QP/Avg AVG AVG AVG PK	Location: Azimuth degrees 248 139 342	FT Chambe Height meters 1.6 1.0	er #5	N/A
Date: 1/13/2010 equency Level MHz dBµV/m 306.390 40.0 333.390 42.6 096.650 34.3 306.420 44.2 333.400 47.0 099.070 46.2 te 1:	Pol FC V/H Limit H 54.0 H 54.0 H 54.0 H 74.0 H 74.0 V 74.0 V 74.0	eer: Joseph Ca CC Class B Margin -14.0 -11.4 -19.7 -29.8 -27.0	adigal Detector Pk/QP/Avg AVG AVG AVG PK	Location: Azimuth degrees 248 139 342	FT Chambe Height meters 1.6 1.0	-	
MHz dBµV/m 06.390 40.0 33.390 42.6 96.650 34.3 06.420 44.2 33.400 47.0 99.070 46.2 e 1: Above 1 GHz	V/H Limit H 54.0 H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	Margin -14.0 -11.4 -19.7 -29.8 -27.0	Pk/QP/Avg AVG AVG AVG PK	degrees 248 139 342	meters 1.6 1.0	Comments	
MHz dBµV/m 806.390 40.0 533.390 42.6 096.650 34.3 806.420 44.2 533.400 47.0 099.070 46.2	V/H Limit H 54.0 H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	Margin -14.0 -11.4 -19.7 -29.8 -27.0	Pk/QP/Avg AVG AVG AVG PK	degrees 248 139 342	meters 1.6 1.0	Comments	
06.390 40.0 33.390 42.6 96.650 34.3 06.420 44.2 33.400 47.0 99.070 46.2 e 1: Above 1 GHz	H 54.0 H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	-14.0 -11.4 -19.7 -29.8 -27.0	AVG AVG AVG PK	248 139 342	1.6 1.0		
33.390 42.6 96.650 34.3 06.420 44.2 33.400 47.0 99.070 46.2 e 1: Above 1 GHz	H 54.0 V 54.0 H 74.0 H 74.0 V 74.0	-11.4 -19.7 -29.8 -27.0	AVG AVG PK	139 342	1.0		
96.650 34.3 06.420 44.2 33.400 47.0 99.070 46.2 e 1: Above 1 GHz	V 54.0 H 74.0 H 74.0 V 74.0	-19.7 -29.8 -27.0	AVG PK	342			
33.400 47.0 99.070 46.2 e 1: Above 1 GHz	H 74.0 V 74.0	-27.0		240	1.9		
99.070 46.2 e 1: Above 1 GHz	V 74.0		PK	248	1.6		
e 1: Above 1 GHz		-27.8		139	1.0		
	, the FCC specifies t		PK	342	1.9		
70.0 - (@, 60.0 - gp) sp0 - pn,iiduw 40.0 -			A mark of the state	where the	Programmed Allower	1000 Party of the	an a
30.0-AU	Mrt Alder a MATAbabara						
20.0-							
1000		·	Frequency				10000
			ricquericy	- (1-11-12-)			

EMC Test Data

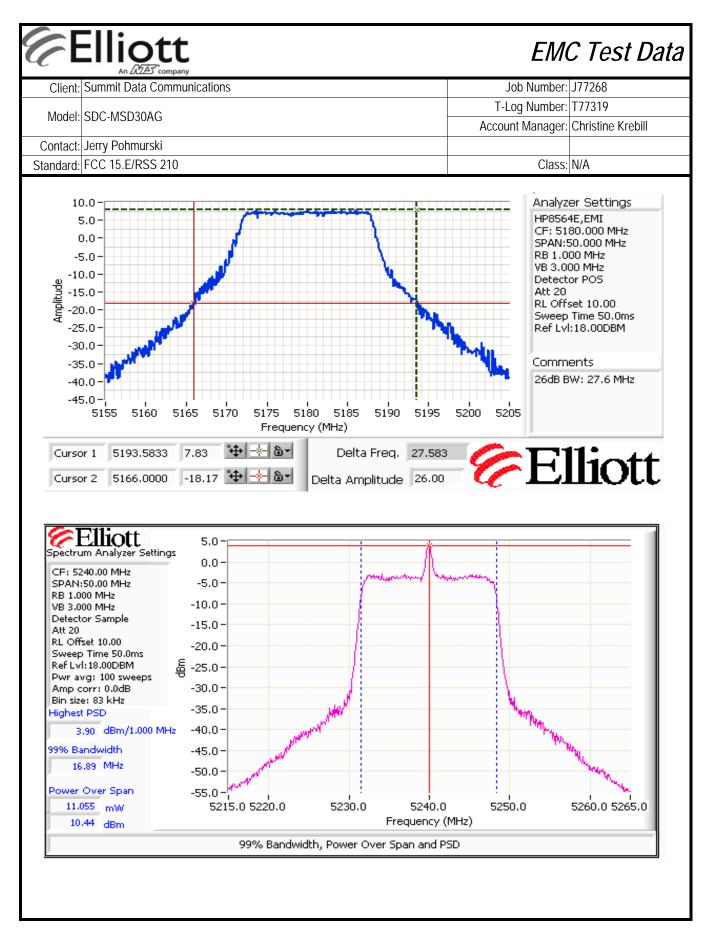
			은 company	An DCZE
	J77268	Job Number:	Summit Data Communications	Client:
	T77319	T-Log Number:	SDC-MSD30AG	Model:
rebill	Christine K	Account Manager:		
			Jerry Pohmurski	Contact:
	-	Class:	FCC 15.E/RSS 210	Emissions Standard(s):
	-	Environment:	-	Immunity Standard(s):
rebi	Christine K	Account Manager: Class:	Jerry Pohmurski FCC 15.E/RSS 210	Contact: Emissions Standard(s):

EMC Test Data


For The

Summit Data Communications

Model


SDC-MSD30AG

Date of Last Test: 1/15/2010

No deviations were made from the requirements of the standard.

(CE								EM	C Test	Data
Client:	Summit Data	Communic	ations					Job Number:	J77268	
Madal							T-l	_og Number:	T77319	
wodel:	SDC-MSD30	IAG					Αссоι	Int Manager:	Christine Kre	ebill
Contact:	Jerry Pohmu	rski								
Standard:	FCC 15.E/RS	SS 210						Class:	N/A	
Run #1: Ba	ndwidth, Out	put Power	and Power	spectral Den	sity					
					Antenna	a Gain (dBi):	6.5			
Frequency	Software	Band	width	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/MH	Ηz	Decult
(MHz)	Setting	26dB	99 % ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
5180	18.0	27.6	16.9	10.8	16.5	0.012	-1.7	3.5	3.5	Pass
5200	18.0	28.3	16.9	10.3	16.5	0.011	-2.0	3.5	3.5	Pass
5240	17.0	26.0	16.6	10.6	16.5	0.011	-0.8	3.5	3.5	Pass
5260	18.0	26.2	16.9	10.3	23.5	0.011	3.4	10.5	8.6	Pass
5300	18.0	27.8	17.0	10.0	23.5	0.010	-1.5	10.5	11.0	Pass
5320	18.0	25.8	17.1	9.1	23.5	0.008	1.1	10.5	9.6	Pass
5500	18.0	27.6 26.3	17.1	10.5	23.5	0.011	1.5	10.5	10.7	Pass
5580 5700	18.0 18.0	20.3	16.9 17.1	9.9 10.5	23.5 23.5	0.010 0.011	1.5 0.9	10.5 10.5	10.1 11.0	Pass Pass
5700				•			0.9	10.5	11.0	F 455
Note 1:	RBW=1MHz, over 50 MHz	, VB=3 MHz	, sample de	ctrum analyze tector, power	averaging or	n (transmitte	d signal was o	continuous) a	and power inte	egration
Note 2:				settings used f						
Note 3:	10dBm/MHz. PSD (calcula the measure	. The limits a ited from the d value exce	are also corr measured eds the ave	5250 MHz bar rected for insta power divided erage by more	nces where by the meas than 3dB.	the highest sured 99% b	measured val andwidth) by	lue of the PS more than 3	D exceeds th	e average
Note 4:	99% Bandwi	dth measure	ed in accord	ance with RSS	GEN - RB	> 1% of spai	n and VB >=3	xRB		

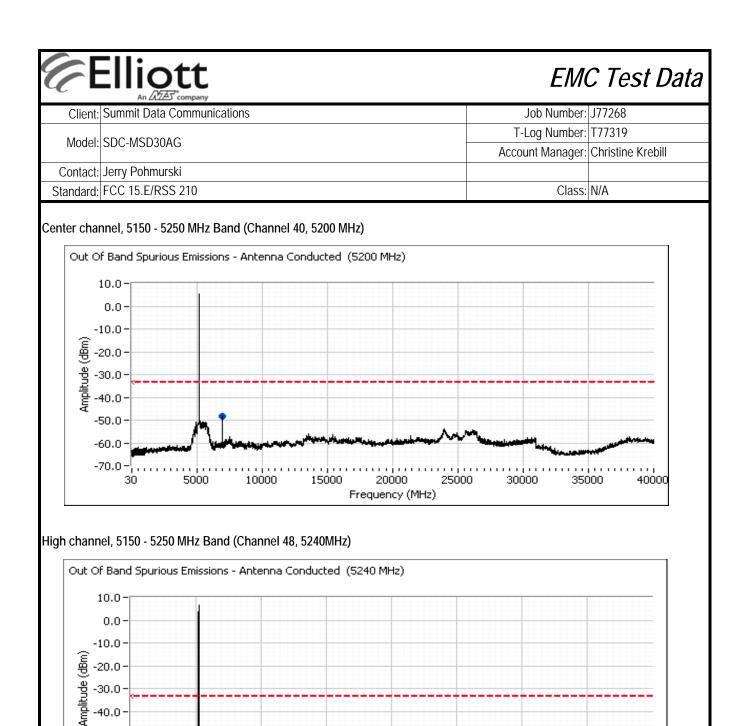
EMC Test Data

•	An AZAS company		
Client:	Summit Data Communications	Job Number:	J77268
Model	SDC-MSD30AG	T-Log Number:	T77319
wouer.	200-101202040	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.E/RSS 210	Class:	N/A

Run #2: Peak Excursion Measurement

Elliott

Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	11.3	13.0	5260	10.6	13.0	5500	12.7	13.0
5200	12.4	13.0	5300	11.7	13.0	5580	12.9	13.0
5240	12.8	13.0	5320	12.1	13.0	5700	12.8	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated **average** power)

Client	Summit Data Communications		Job Number:	J77268
Model	SDC-MSD30AG		T-Log Number:	
			Account Manager:	Christine Krebill
	: Jerry Pohmurski : FCC 15.E/RSS 210		Class:	Ν/Δ
Stariuaru.	1 66 13.E/K33 210		01033.	
In #3: O	ut Of Band Spurious Emissions - Antenna Conducted			
	Maximum Antenna Gain: 6.5 dBi			
	Spurious Limit: -27.0 dBm/N	IHz eirp		
	Limit Used On Plots Note 1: -33.5 dBm//V	IHz Average L	imit (RB=1MHz, VB=10Hz)	
	Linit used of Piots13.5 dBm/N	IHz Peak Limi	t (RB=VB=1MHz)	
	The -27dBm/MHz limit is an eirp limit. The limit for antenr	na port conducte	d measurements is adjuste	d to take into
Note 1:	consideration the maximum antenna gain (limit = -27dBm			
NOLE T:	more than 50MHz from the bands and that are close to th	e limit are made	to determine compliance a	s the antenna gain is
	known at these frequencies.	ital daviaa radiai	ad amingiona toat	
Note 2: Note 3:	All spurious signals below 1GHz are measured during dig Signals within 10MHz of the 5.725 or 5.825 Band edge ar			
Note 4:	If the device is for outdoor use then the -27dBm eirp limit			
Note 5:	Signals that fall in the restricted bands of 15.205 are subje			
	el, 5150 - 5250 MHz Band (channel 36, 5180 MHz)		th Average Limit of -33.5	
Complian	tel, 5150 - 5250 MHz Band (channel 36, 5180 MHz) ace with the radiated limits for the restricted band immediated		-	
Complian tests.		ely below 5150M	-	
Complian tests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian tests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian ests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian iests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian ests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian ests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian ests.	Df Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian iests. Out ((ugp) ut (Df Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian tests.	DF Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	-	
Complian ests. Out ((ugp) aprilidue	Df Band Spurious Emissions - Antenna Conducted (5180	ely below 5150M	IHz is demonstrated throug	
Complian iests. Out ((ugp) aprilidue	Dr Band Spurious Emissions - Antenna Conducted (5180 10.0 - -0.0 - -10.0 - -20.0 - -30.0 - -50.0 - -60.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -30.0 - -50.0 - -30.0 - -70.0 - -70.0 - 30 5000 10000 15000	ely below 5150M	IHz is demonstrated throug	

30

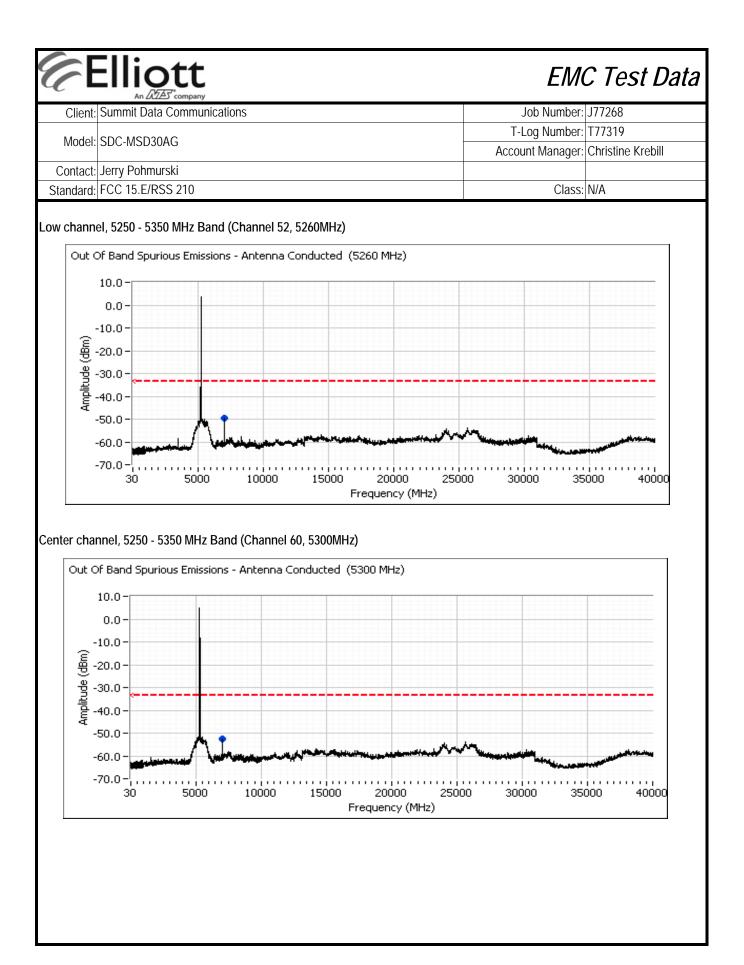
5000

10000

15000

-30.0 -40.0 -50.0 -60.0 -70.0

20000

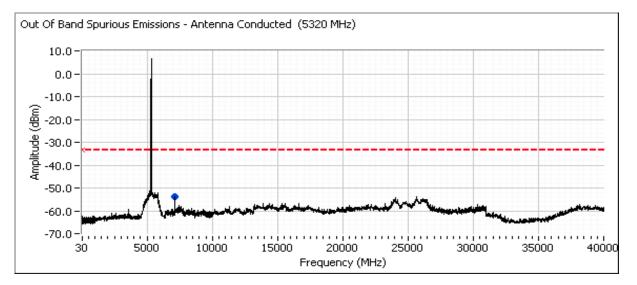

Frequency (MHz)

25000

30000

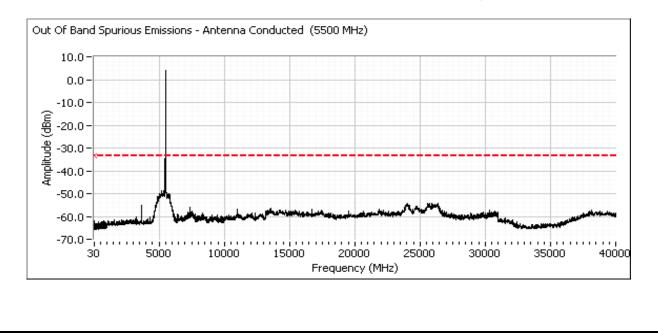
35000

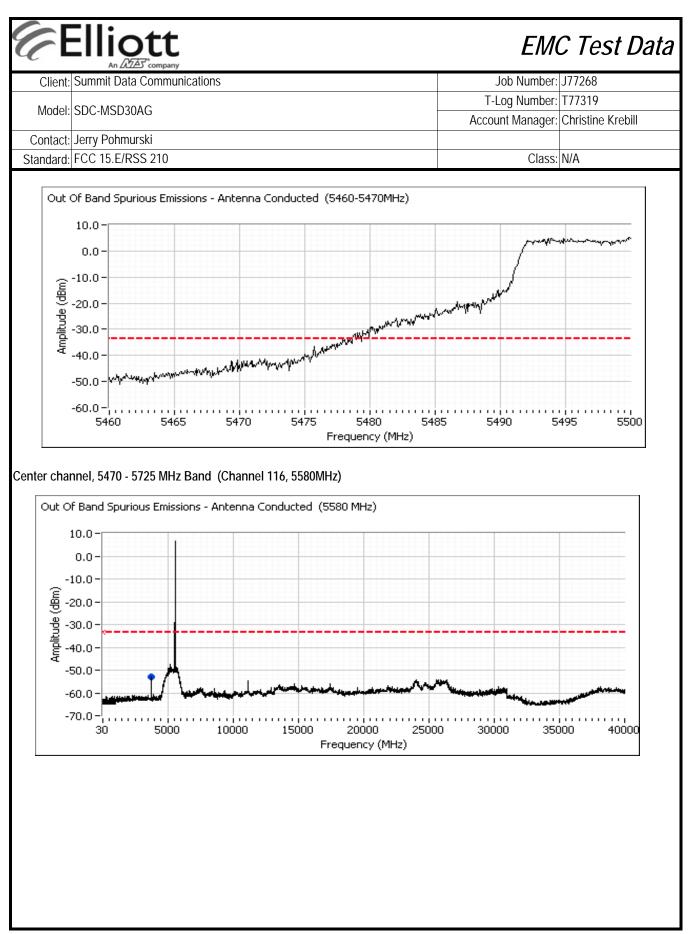
40000

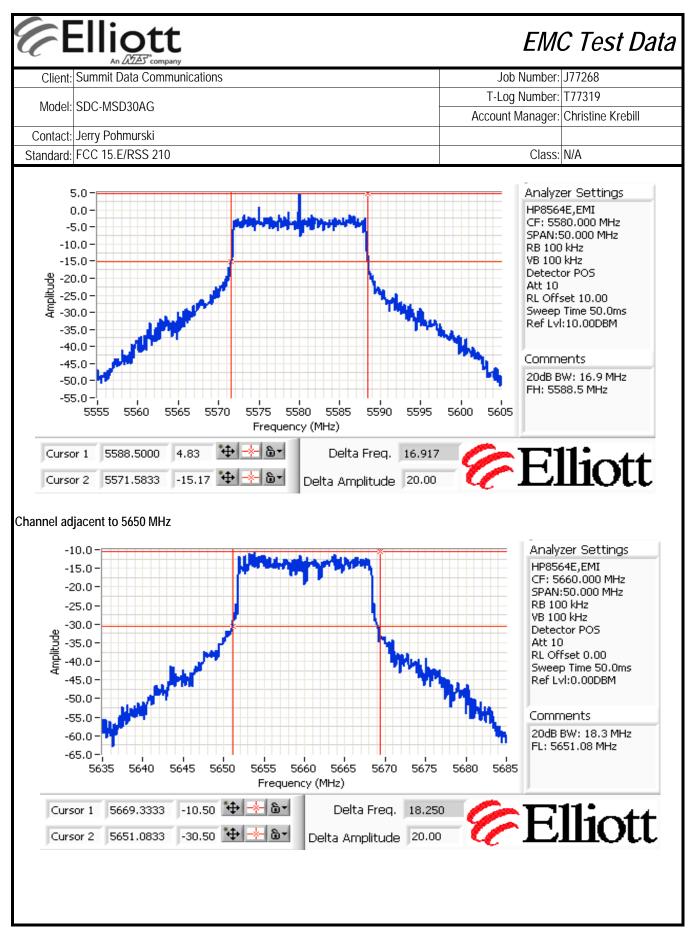


	EMC Test Data
Client: Summit Data Communications	Job Number: J77268
Model: SDC-MSD30AG	T-Log Number: T77319
	Account Manager: Christine Krebill
Contact: Jerry Pohmurski	
Standard: FCC 15.E/RSS 210	Class: N/A

High channel, 5250 - 5350 MHz Band (Channel 64, 5320MHz)

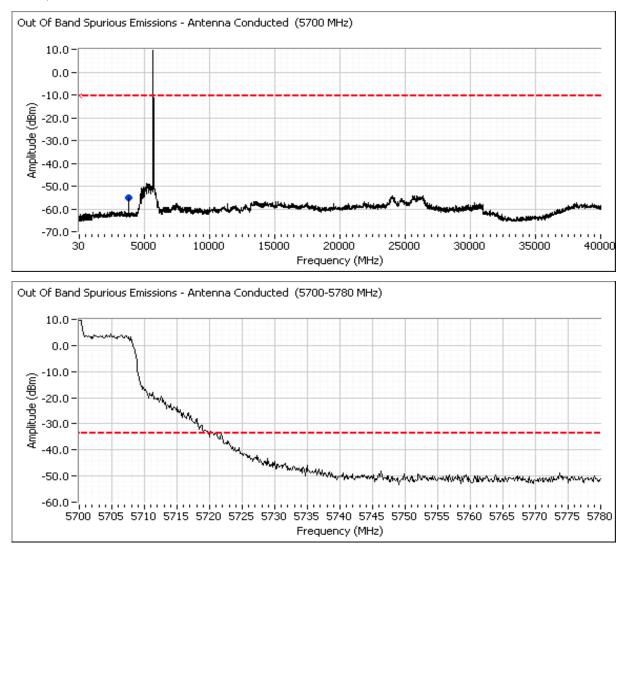



Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.



Low channel, 5470 - 5725 MHz Band (Channel 100, 5500MHz)

Includes a plot from 5460 - 5500 MHz showing compliance with the limit immediately below the allocated band from 5460-5470 MHz. Compliance with the radiated limits for the restricted band below 5460 MHz is demonstrated through the radiated emissions tests.



Elliott	EMC Test Data
Client: Summit Data Communications	Job Number: J77268
Model: SDC-MSD30AG	T-Log Number: T77319
	Account Manager: Christine Krebill
Contact: Jerry Pohmurski	
Standard: FCC 15.E/RSS 210	Class: N/A

High channel, 5470 - 5725 MHz Band

Includes a plot from **5700** - **5780** MHz showing compliance with the -**27dBm/MHz eirp limit** immediately above the allocated band (5725 MHz).

