

V12 Database Engine 3
For Macromedia Authorware

User Manual

 © Integration New Media Inc 1995–2003 | Version 3 |2003-06-12

 V12-DBE for Authorware User Manual 2

Contents

Contents 2
License agreement 7
Introduction 10

V12-Database Engine for Authorware 10
Where to start 10
Do I really need to master scripting to use V12-DBE? 10
Free tools 11
You’re not alone! 11

V12-L discussion list 11
Other online resources 11
Customer support 12
Developer assistance 12

About this manual 13
Typographic conventions in this manual 13

Welcome to V12 Database Engine 14
System requirements for running V12-DBE 14

Macintosh versions 14
Windows version 14
Macromedia Authorware 14

Installing V12-DBE 15
What’s new in version 3.3? 15

Release history 15
How to register your V12-DBE license 16
Files needed to use V12-DBE 16

Using Xtras 17
What is an Xtra? 17
Making an Xtra available to Authorware 17
Creating an Xtra instance 17
Checking if NewObject was successful 18
Using the Xtra instance 18
Closing an Xtra 18
Checking for available Xtras 18
Dealing with pathnames 18
Passing parameters to Xtras 19
Basic documentation 19

Database basics 21
Overview 21
What is a database? 21

 V12-DBE for Authorware User Manual 3

Records, fields and tables 21
Indexes 22
Compound indexes 22
Full-text indexing 23
Database 24

Flat and relational databases 24
Field types 25

Typecasting 26
International support 26
Selection, current record, search criteria 27

Using V12-DBE: step-by-step 29
Overview 29
V12-DBE components 29
The main steps 29

Step 1: Decide on a Data Model 31
Defining identifiers 31

Step 2: Prepare the Data 32
TEXT file formats 32

Field descriptors 32
Dealing with delimiter ambiguity 33
Character sets 34
Dealing with dates 35
Exporting a FileMaker Pro database to text 35
Exporting a MS Access database to text 35

DBF file formats 35
Field buffer size 36

Step 3: Create a database 37
Database descriptors 37

Defining both an index and a full-index on a field 38
Alternate syntax for creating indexes 38
Compound indexes 39
Adding comments to database descriptors 39
Multiple tables in a descriptor 40

Using the V12-DBE Tool 40
Loading a descriptor from a source file 41

Script the database creation 41
Step 3a: Create a database Xtra instance 42
Step 3b: Define the database structure 42
Step 3c: Build the database 43

View the structure of a database 43
Step 4: Import data into a V12-DBE database 45

 V12-DBE for Authorware User Manual 4

Import data with the V12-DBE Tool 45
Script the data importing 45

Import data with mImport 46
Step 5: Implementing the user interface 47

Using the V12-DBE Knowledge Objects library 47
Using scripts 47

Open and close a database, a table 47
Selection and current record 49
Selection at startup 49
Select all the records of a table 49
Browse a selection 50
Read data from a database 52
Add records to a database 56
Update data in a database 57
Delete a record 58
Delete all the records of a selection 58
Search data with mSetCriteria 58
Exporting data 64
Cloning a database 65
Freeing up disk space (packing) 65
Fixing corrupted database files 66
Checking the Vversion of the Xtra 66
Changing a password 66
Dynamically downloading databases via the Internet 66

Errors and defensive programming 68
Error management in applications 68
Checking the status of the last method called 68

Errors and warnings 68
Using the verbose property 69

Delivering to the end user 70
Standalone packaged pieces 70
Web-packaged pieces 70
Testing for end-users 70

Advanced feature: Multi-user access 71
Multi-user access 71
Opening a file in Shared ReadWrite mode 71

Shared access rules and exceptions 71
Shared databases and record locking 71
Counting the number of users 72
Possible configurations 73

Customizing the V12 database engine 74

 V12-DBE for Authorware User Manual 5

Progress indicators 74
Options of the progressIndicator property 74

Properties of databases 74
Predefined properties 75
The String property 78
Custom properties (advanced users) 80

Appendix 1: Capacities and Limits 81
Database 81
Creation 81
Selection 81
Importing 81
Table 81
Field 82
Index 82
Media 82

Appendix 2: Database Creation and Data Importing Rules 83
Text Files 83
Literals 85
Lists or Property Lists 86
V12 DBE files 86
DBF (Database Format) 87
Microsoft FoxPro 91
Microsoft Access 92
Microsoft Excel 94
Microsoft SQL Server 96

Appendix 3: mGetSelection examples 99
Read an entire selection 99
Read a range of records in a string variable 99
Read a range of records in a list 99
Read a range of records in a property list 99
Read the entire contents of the current record 100
Read a record without making it the current record 100
Read the entire selection with special delimiters 100
Read selected fields in a selection 100
Read records with a determined order of fields 101

Appendix 4: String and custom string types 102
The default string 103
Predefined custom string types 104

Appendix 5: Character sets 107
Windows-ANSI character set 107
Mac-Standard character set 108

 V12-DBE for Authorware User Manual 6

MS-DOS character set 109
Appendix 6: Japanese support 110

New field types 110
Field of type SJIS 110
Field of type Yomi (Yomigana) 110

Data importation 117
Index 118

Apple, Mac and Macintosh are trademarks or registered trademarks of Apple Computer, Inc. FileMaker
is a trademark of FileMaker, Inc., registered in the U.S. and other countries. Macromedia, Authorware,
Director and Xtra are trademarks or registered trademarks of Macromedia, Inc. in the United States
and/or other countries. Microsoft, Windows and Windows NT are trademarks or registered trademarks
of Microsoft Corporation, registered in the U.S. and/or other countries.

Other trademarks, trade names and product names contained in this manual may be the trademarks or
registered trademarks of their respective owners, and are hereby acknowledged.

 V12-DBE for Authorware User Manual 7

License agreement

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING V12 DATABASE ENGINE. BY
USING V12 DATABASE ENGINE, YOU AGREE TO BECOME BOUND BY THE TERMS OF THIS LICENSE
AGREEMENT.

The enclosed computer program(s), license file, manuals, sample files and data (collectively, "Software") are licensed, not
sold, to you by Integration New Media, Inc. ("INM") for the purpose of using it for the development of your own product
("Product") only under the terms of this Agreement. INM and its licensors reserve any rights not expressly granted to you.
INM and its licensors grant you no right, title or interest in or to the Software. The Software is owned by INM and its
licensors and is protected by International copyright laws and treaties.

If you are using V12-Tracker, Section 2 applies to you.

1. LicenseLicenseLicenseLicense. INM grants you a non-exclusive, non-transferable, perpetual (unless terminated in accordance with this
Agreement), royalty-free, worldwide license to:

(a) Install one (1) copy of the Software on a single computer. To "install" the Software means that the Software is
either loaded or installed on the permanent memory of a computer (i.e., hard disk). This installed copy of the
Software may be accessible by multiple computers, however the Software cannot be installed on more than one
computer at any time. You may only install the Software on another computer if you first remove the Software
from the computer on which it was previously installed.

(b) Make one copy of the Software in machine-readable form solely for backup purposes. As an express condition of
this Agreement, you must reproduce on each copy any copyright notice or other proprietary notice that is or
included with the original copy supplied by INM.

(c) Reproduce and distribute the files named "V12-DBE for Authorware.XTR", "V12-DBE for Authorware.X32" and
"V12DBE-A.X16" (collectively, "Runtime Kit") provided that: (i) you distribute the Runtime Kit only in
conjunction with and as part of your own Product, and (ii) own a license for the Software that contains the
Runtime Kit.

(d) Any third party who may distribute or otherwise make available a product containing the Runtime Kit must
purchase its own license of the Software.

(e) Any third party who will use the Runtime Kit in an authoring environment must purchase its own license of the
Software.

(f) If the Software is licensed as an upgrade or update, then you may only use the Software to replace previously
validly licensed versions of the same software. You agree that the upgrade or update does not constitute the
granting of a second license to the Software (i.e., you may not use the upgrade or update in addition to the
software it is replacing, nor may you transfer the software which is being replaced to a third party).

(g) All intellectual property rights in and to the assets which may be accessed through the use of the Software are the
property of the respective asset owners and may be protected by applicable copyright or other intellectual property
laws and treaties. This Agreement grants you no rights to use such content.

2. V12V12V12V12----Tracker waiver. Tracker waiver. Tracker waiver. Tracker waiver. V12-Tracker is a fully functional version of V12 Database Engine and a fully licensed V12
database file named V12-Tracker.V12. You are waived from section 1(c)(ii) provided that:

(a) Your Product uses V12-Tracker.

(b) Your Product does not use a V12 database other than V12-Tracker.

(c) The V12-Tracker.V12 database file has the exact same structure as the one delivered to you by INM.

 V12-DBE for Authorware User Manual 8

3. Restrictions.Restrictions.Restrictions.Restrictions.

(a) The Software contains a license file (.LIC) that may not be distributed by you in any way.

(b) You may not sublease, rent, loan or lease the Software.

(c) You may not transfer or assign your rights under this License to another party without INM's prior written
consent. Assignment application forms can be obtained from INM's sales department.

(d) The Software contains trade secrets and, to protect them, YOU MAY NOT MODIFY, ADAPT, TRANSLATE OR CREATE

DERIVATIVE WORKS BASED UPON THE SOFTWARE OR ANY PART THEREOF. YOU MAY NOT REVERSE ENGINEER,
DECOMPILE, DISASSEMBLE OR OTHERWISE REDUCE THE SOFTWARE TO ANY HUMAN PERCEIVABLE FORM. YOU MAY

NOT ALTER OR CHANGE THE COPYRIGHT NOTICES AS CONTAINED IN THE SOFTWARE.

(e) THE SOFTWARE IS NOT INTENDED FOR USE IN THE OPERATION ENVIRONMENTS IN WHICH THE FAILURE OF THE

SOFTWARE COULD LEAD TO DEATH, PERSONAL INJURY, OR PHYSICAL OR ENVIRONMENTAL DAMAGE.

4. Copyright noticesCopyright noticesCopyright noticesCopyright notices. You may not alter or change INM's and its licensors' copyright notices as contained in the
Software. As well, you must include:

(a) a copyright notice, in direct proximity to your own copyright notice, in substantially the following form: "Portions
of code are Copyright ©1995-2003 used under license by Integration New Media, Inc."; and

(b) the "Powered by V12" logo on the packaging of your Product or place the "Powered by V12" logo within your
Product in the credits section.

5. AcceptanceAcceptanceAcceptanceAcceptance. The Software shall be deemed accepted by you upon delivery unless you provide INM, within two (2)
weeks therein, with a written description of any bona fide defects in material or workmanship.

6. TerminationTerminationTerminationTermination. This Agreement is effective until terminated. This Agreement will terminate immediately without notice
from INM or judicial resolution if you fail to comply with any provision of this Agreement. Upon such termination you
must destroy the Software, all accompanying written materials and all copies thereof, and Sections 7, 8, 9 and 10 will
survive any termination.

7. Limited WarrantyLimited WarrantyLimited WarrantyLimited Warranty. INM warrants for a period of ninety (90) days from your date of purchase (as evidenced by a copy
of your receipt) that the media on which the Software is recorded will be free from defects in materials and workmanship
under normal use and the Software will perform substantially in accordance with the user manual. INM's entire liability
and your sole and exclusive remedy for any breach of the foregoing limited warranty will be, at INM's option,
replacement of the disk, refund of the purchase price or repair or replacement of the Software.

8. Limitation of Remedies and DamagesLimitation of Remedies and DamagesLimitation of Remedies and DamagesLimitation of Remedies and Damages. In no event will INM or its licensors, directors, officers, employees or affiliates
of any of the foregoing be liable to you for any consequential, incidental, indirect or special damages whatsoever
(including, without limitation, loss of expected savings, loss of confidential information, presence of viruses, damages for
loss of profits, business interruption, loss of business information and the like), whether foreseeable or not, arising out of
the use of or inability to use the Software or accompanying materials, regardless of the basis of the claim and even if INM
or an INM representative has been advised of the possibility of such damage. INM's liability to you for direct damages for
any cause whatsoever, and regardless of the form of the action, will be limited, at INM’s option to refund of the purchase
price or repair or replacement of the Software.

THIS LIMITATION WILL NOT APPLY IN CASE OF PERSONAL INJURY ONLY WHERE AND TO THE EXTENT THAT APPLICABLE LAW

REQUIRES SUCH LIABILITY. BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR

CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

9. IndemnityIndemnityIndemnityIndemnity. By using the Software, you agree to indemnify, hold harmless and defend INM and its licensors from and
against any claims or lawsuits, including attorney's fees, that arise or result from the use or distribution of your Product
with the Software

 V12-DBE for Authorware User Manual 9

10. GeneralGeneralGeneralGeneral. This Agreement will be construed under the laws of the Province of Quebec, except for that body of law
dealing with conflicts of law. If any provision of this Agreement shall be held by a court of competent jurisdiction to be
contrary to law, that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
Agreement will remain in full force and effect.

11. LanguageLanguageLanguageLanguage. The parties acknowledge having requested and being satisfied that this Agreement and its accessories be
drawn in English. Les parties reconnaissent avoir demandé que cette entente et ses documents connexes soient rédigés en
anglais et s'en déclarent satisfaits.

 V12-DBE for Authorware User Manual 10

Introduction

Welcome to V12 Database Engine (V12-DBE), the most versatile and user-friendly
cross-platform database management Xtra for Macromedia Authorware and
Director.

V12-Database Engine for Authorware
V12-Database Engine (DBE) was originally designed in 1996 to be used specifically
with Director and Authorware. It extends Director and Authorware’s features and
helps you speed up the development of your multimedia titles.

You will discover many benefits in using V12-DBE to create multimedia
applications, such as electronic storybooks, training material, games and more.
Used as a back-end to your multimedia projects, V12-DBE allows you to store and
manage content separately from the Authorware development platform.

V12 Database Engine helps you provide advanced functionality to your end-users
while bringing down your development and maintenance costs.

V12-DBE is very flexible and scalable and can be used in a wide range of
applications; from simple projects where Script Lists and FileIO have become
difficult to manage, to true database-driven applications.

Where to start
Before browsing through this User Manual, we recommend that you look at the
First StepsFirst StepsFirst StepsFirst Steps manual, which includes a tutorial, designed to help you get up and
running with V12-DBE in a few short steps. The First Steps tutorial is available for
download at:
http://www.integrationnewmedia.com/support/v12authorware/manuals/.

You may also benefit from browsing through the Authorware pieces available in the
DemosDemosDemosDemos section of our website. As with the First Steps tutorial, these sample
Authorware pieces are designed to help you understand V12-DBE’s various
features, but in more depth. Download them at:
http://www.IntegrationNewMedia.com/products/v12Authorware/Demos/.
Please make sure you understand V12 Database Engine's license agreement before
proceeding. The full license agreement is at the beginning of this user manual (see
License agreement).

Do I really need to master scripting to use V12-DBE?
How comfortable do you need to be with scripting to use V12-DBE efficiently? The
answer varies according to the complexity of your projects.

Simple projects require no knowledge of scripting at all. If your project uses a single
database and shows one record at a time on Authorware’s stage, chances are you
can implement it using the V12-DBE Knowledge Objects Library only. If you don’t
need any more functionality than the Knowledge Objects library provides, then no
script programming will be required. See Free tools, below.

The V12-DBE Knowledge Object
library features only the basic essential

features of V12-DBE's functionality.
Before you commit yourself to using the

V12-DBE Knowledge Object in your
project, you may first want to ask

Support@IntegrationNewMedia.com or
other V12-DBE users on V12-L

(http://www.IntegrationNewMedia.co
m/support/list/) for advice.

mailto:Support@IntegrationNewMedia.com
http://www.integrationnewmedia.com/support/list/
http://www.integrationnewmedia.com/support/list/
http://www.integrationnewmedia.com/support/v12authorware/manuals/
http://www.integrationnewmedia.com/products/v12Authorware/Demos/

 V12-DBE for Authorware User Manual 11

For more advanced projects, V12 Database Engine's comprehensive scripted
interface requires knowledge of scripts, but it provides as much guidance as possible
when programming, such as checking the number of parameters, the types of the
parameters, etc.

In a nutshell, before delving into V12-DBE you need to know the following basic
scripting concepts:

• Variables.

• Control structures (if statements, for loops repeat loops, etc.).

• Object instances (this is covered in detail later in the Using Xtras section of
this manual).

Free tools
If you are looking for a fast and easy way to integrate V12-DBE into your
multimedia projects, you will want to check out the V12-DBE Tool and V12-DBE
Knowledge Objects library. The V12-DBE Tool helps you perform V12 database
management tasks, such as database creation, viewing, editing, importing,
exporting, and more. The V12-DBE Knowledge Objects library includes a set of
Authorware Knowledge Objects that allow you to quickly implement the most
common of V12-DBE’s functionalities. Both of these products are available for
download from the Free Tools section of Integration New Media’s web site at:
http://www.IntegrationNewMedia.com/products/v12authorware/tools/.

You’re not alone!
Whether you are looking for a quick answer or in-depth information, there are
many resources available online and offline to help you. There are many, many
registered owners of V12 that are sharing concepts and strategies online daily. And,
you can always call or e-mail INM’s customer support team to help you with any
specific problems you may have. The following resources may be very helpful.

V12-L discussion list
On the V12-L discussion list, you will find developers at every level of expertise,
and in a wide variety of expertises in the multimedia arena. This friendly group is
the perfect place to bounce ideas around with other V12 developers. Sign up at:
http://www.IntegrationNewMedia.com/support/list/

Other online resources
Macromedia’s web site at http://www.macromedia.com/support, is also a possible
source of information. It contains, among other things, directions on how to
subscribe to Macromedia's support Newsgroups (the NNTP server is
"forums.macromedia.com").

You may want to check alternate Internet resources such as

- Aware-L join:

http://listserv.cc.kuleuven.ac.be/cgi-bin/wa?SUBED1=aware&A=1

- Dazzle Technologies Corp.(Joseph Ganci) site:

 http://www.authorware.com/AWHome.htm

- Stefan van As’s website site:

http://www.xs4all.nl/~svanas/

http://www.integrationnewmedia.com/products/v12authorware/tools/
http://www.integrationnewmedia.com/support/list/
http://www.macromedia.com/support
http://listserv.cc.kuleuven.ac.be/cgi-bin/wa?SUBED1=aware&A=1
http://www.authorware.com/AWHome.htm
http://www.xs4all.nl/~svanas/

 V12-DBE for Authorware User Manual 12

- Macromedia:

http://www.macromedia.com/software/authorware

Customer support
If you need additional assistance, INM’s experienced team will be happy to help.

Customer support is available from 9:00 am to 5:00 pm EST, Monday through
Friday by email to support@IntegrationNewMedia.com or by phone at:

+1 514 871 1333, Option 6.

Priority will be given to registered V12-DBE users. Customer support covers:

� Helping you to understand V12-DBE, clarifying specifications.

� Supplying you with sample scripts for generic concepts.

� Providing useful tips.

Developer assistance
Where Customer Support stops, Developer Assistance begins. If you are familiar
enough with V12-DBE, but want to take your project to a more sophisticated level,
Developer Assistance is for you. Our team of programmers can help you discover
easier ways to take advantage of databases in your multimedia projects. Here are
just some of the services we offer:

� Project design, data structure analysis, planning

� Technical guidance throughout the various steps of your project

� Troubleshooting and debugging your scripts

� Optimization (how to obtain superior performance)

� Assistance with other Xtras, custom development of Xtras

You can think of Developer Assistance as an additional team member, or members
that you can add on to your project team. They can fulfill a small or large role on
your team, depending on your needs.

http://www.macromedia.com/software/authorware
mailto:support@IntegrationNewMedia.com

About this manual
If you are familiar with other database management systems, you will find V12-
DBE very easy to use. If you are only vaguely familiar with database management,
the First Steps tutorial, which includes a manual and sample Authorware piece, will
guide you, step-by-step, through the basics required to implement simple database
management in your multimedia projects.

This manual is organized to help you get the information you need efficiently.

• The Using Xtras section deals with basics concerning Xtras.

• The Database basics gives an overview of databases.

• In Using V12-DBE, we lead you through the basic steps on how to use V12-DBE
in detail. You will learn how to prepare data, create the database and import
data.

• Subsequent sections show you how to use the methods available to you in V12-
DBE.

• The remaining sections cover the integration of V12-DBE with Macromedia
Authorware. Here you can get a sense of how V12-DBE can be helpful to your
projects.

• The Appendices deal with very specific issues such as capacities and limitations,
errors, end-user delivery, portability, etc.

Typographic conventions in this manual
Important terms, such as the names of methods, are in boldboldboldbold.

Sample code is indented and printed in this font.

Although the sample scripts throughout this manual contain both upper and lower
case characters, V12-DBE is not case sensitive. This applies to the methods names,
NoteNoteNoteNote: Special annotations and
tips are enclosed in the sidebar,

like this one.
 V12-DBE for Authorware User Manual 13

the parameters as well as to the actual data. They are described using mixed case in
order to improve readability and facilitate debugging, and we recommend you
adopt a similar strategy in your Script programming. It really does help to improve
the readability of your Scripts!

 V12-DBE for Authorware User Manual 14

Welcome to V12 Database Engine

Welcome to V12-DBE, the most powerful and user-friendly cross-platform database
management Xtra for Macromedia Authorware™ (version 4.x and later) on
Macintosh and Windows.

If you are familiar with other database management systems, you will find V12-
DBE very easy to use. If you are only vaguely familiar with database management
systems, the next few sections will give you an overview of what you need to know
to help you get started with V12-DBE.

System requirements for running V12-DBE

Macintosh versions
• PowerMac with System 7.1 +

• Mac OS X

On the Macintosh, V12-DBE (and any other Xtra) will share the same memory
partition as Macromedia Authorware.

For simple database applications, you probably do not need to change the memory
partition allocated to Authorware or to packaged pieces generated by Authorware.
For more advanced development, you may need to increase the memory partition.

In general, we recommend that your Authorware application’s memory partition be
set at the maximum you can afford to give to it, with enough RAM memory
reserved for any other applications you may need to run at the same time as
Authorware.

We also recommend that you allocate an absolute minimum of 8 megabytes of
RAM to the packaged piece’s minimum RAM requirements. You may also want
to ensure that Authorware’s preference for “Use Temporary Memory” setting is set
before creating your packaged piece (this will ensure that if the packaged piece does
run out of memory, it will start using free System memory and dynamically increase
the memory allocated to the application.

Windows version
• Windows 95, 98, ME, NT4, 2000, XP.

Windows uses a Virtual Memory scheme, which dynamically allocates memory to
applications. This means that an application can "borrow" as much memory as
needed from the Operating System. It also means that Windows shows
unpredictable behaviors when it is short of memory. Try to establish the minimum
equipment requirements of your project as conservatively as possible.

Always test your project thoroughly on the minimum required equipment you have
determined for your application.

For Windows 3.1 and Mac68K versions, please contact us!

Macromedia Authorware
Macromedia Authorware version 4, 5.2, 6, 6.5 or 7 is required.

Tip:Tip:Tip:Tip: INM recommends that you
always thoroughly test your final

project using the minimum
standard equipment you have

determined for your application, on
all supported operating system

platforms.

This process will also help you
confirm that your product

functions correctly within the
minimum memory requirement
you have recommended to your

users.

mailto:support@IntegrationNewMedia.com

 V12-DBE for Authorware User Manual 15

Installing V12-DBE
The name of this Xtra is V12V12V12V12----DBE for Authorware.XTRDBE for Authorware.XTRDBE for Authorware.XTRDBE for Authorware.XTR on the Macintosh and
V12V12V12V12----DBE for Authorware.X32DBE for Authorware.X32DBE for Authorware.X32DBE for Authorware.X32 on Windows.

To install the V12-DBE Xtra in your authoring environment:

• Make sure that Authorware is closed.

• Move the V12-DBE Xtra to the Xtras folder located in the same folder as
Authorware.

• Start Authorware.

To confirm that V12-DBE is properly installed, check the Xtras menu in
Authorware. You should see "V12-DBE for Authorware" in the Xtras menu.

What’s new in version 3.3?
New Features:

• Now supports two Japanese sort orders: Yomigana and Shift-JIS Japanese.

Bug fixes:

• Searching: in some cases, problems occurred when using multiple operators (ex:
<= and >=).

• Record deletion: some data was incorrectly deleted when deleting indexed string
fields that contained over 251 characters.

Release history
For details on what changed in previous releases of V12-DBE, please visit the
support section of Integration New Media’s web site:
http://www.IntegrationNewMedia.com/support/

http://www.integrationnewmedia.com/support/

 V12-DBE for Authorware User Manual 16

How to register your V12-DBE license
Evaluation copies of V12 Database Engine are available on Integration New
Media's web site (http://www.IntegrationNewMedia.com/) along with full
documentation and sample pieces. You can download those files and start
developing your project without purchasing a V12-DBE license.

The evaluation copy of V12-DBE is not limited in any way: it only displays a splash
screen upon startup. To get rid of the splash screen, you must purchase a V12-DBE
license (or as many as required by the V12-DBE license agreement). As a licensed
user, you are given a registration number that you must enter in Authorware's Xtras
> V12-DBE for Authorware > Register… menu item.

Once your copy of V12-DBE is licensed, all new databases you create are
automatically registered and do not show a splash screen. Existing databases are
also registered as soon as they are opened by the registered V12-DBE.

Files needed to use V12-DBE
Only one file is required for the "Runtime" version (also called "end-user" version)
of V12-DBE. The name of this file is V12V12V12V12----DBE for Authorware.XTRDBE for Authorware.XTRDBE for Authorware.XTRDBE for Authorware.XTR on Mac, V12V12V12V12----
DBE for Authorware.X32DBE for Authorware.X32DBE for Authorware.X32DBE for Authorware.X32 on Windows and V12V12V12V12DBEDBEDBEDBE----A.X16A.X16A.X16A.X16 on Win16.

The “Development” version requires an additional file – the license file – located in
the System:PreferencesSystem:PreferencesSystem:PreferencesSystem:Preferences folder of your Macintosh, or the WindowsWindowsWindowsWindows\\\\SystemSystemSystemSystem folder of
your PC. This encoded file is generated by V12-DBE upon the registration of your
license number.

Although the “Runtime” version of V12-DBE can be distributed freely in as many
copies as you wish, you cannot distribute your license file.

Note: Note: Note: Note: Existing V12 databases
must be opened once in

ReadWrite or Shared ReadWrite
mode to be licensed. If you open
them in ReadOnly mode or from

a CD-ROM, they cannot be
licensed and the splash screen will
continue to appear on computers
that do not have the license file.

V12-DBE returns a warning when
opening unlicensed databases in

such circumstances.

http://www.integrationnewmedia.com/

Using Xtras

This section deals with Xtras and how they are used in Macromedia Authorware.
The V12-DBE Xtra is used as an example throughout the manual. You will be
introduced to the basic steps involved in using V12-DBE successfully before you
actually begin to work with V12-DBE.

This section covers:

• What is an Xtra

• Making an Xtra available to Authorware

• Creating a Script Xtra instance

• Verifying whether the instance was successfully created

• Using the Script Xtra instance

• Freeing the Script Xtra instance

• Where to get additional Documentation

What is an Xtra?
Xtras are components (alternatively know as add-ons, or plug-ins) that add new
features to Macromedia Authorware. Many of Authorware's own functions are
implemented as Xtras.

A few complex tasks can be performed using Authorware's scripting language.
However very complex and time-critical tasks are normally implemented as XtraXtraXtraXtras.
Xtras are a new "add-on" standard introduced with Macromedia Authorware 4.0
that add functionality to your multimedia applications. Four types of Xtras are

docum

Note: Note: Note: Note: In the rest of this
ent, the term Xtra refers

to Scripting Xtras, unless
otherwise specified.
 V12-DBE for Authorware User Manual 17

supported by Authorware: Scripting Xtras, Tool Xtras, Transition Xtras and Sprite
Xtras.

Making an Xtra available to Authorware
Xtras are designed to be opened automatically by Authorware (in authoring mode)
by its runtime packages (in runtime mode, also called playback mode). The Xtras
must be placed in the XtrasXtrasXtrasXtras folder, located either in Authorware's folder or
Authorware’s runtime folder. This feature is supported on both Macintosh and
Windows.

Creating an Xtra instance
A mandatory first step before using a Script Xtra is to create an instance of it. This
is how a Script Xtra comes to life and, from then on, you can use its methods.

Call NewObject to create an instance of an Xtra. Generally, you store a newly
created Xtra instance into a global variable for future use. It uses the NewObject
method of the database Xtra.

Example:
gDB := NewObject("V12dbe", "myBase.V12", "Create", "myPassword")

 V12-DBE for Authorware User Manual 18

Checking if NewObject was successful
You should always ensure that the Xtra was created successfully immediately after
calling NewObject. NewObject can fail for many reasons, such as a lack of free
memory or as a result of misplaced files.

Example:
gDB := NewObject("V12dbe", "myBase.V12", "Create", "myPassword")

if V12Status() <> 0 then GoTo(@"NotifyUser")

Using the Xtra instance
Once the preliminary steps have been executed, you can start using the Xtra
instance of your database for creating tables, fields and indexes, or for using an
existing database. MethodsMethodsMethodsMethods of the Xtra need to be called to perform these
operations. By convention, V12-DBE method names begin with the letter m such as
mGetfield and mSelect (except for NewObject). NewObject is a compulsory
method and scripting Xtra’s support it.

This example creates a table called TableName in the database referred to by gDB:
CallObject(gDB, “mCreateTable”, “TableName”)

Closing an Xtra
When the Xtra instance has completed its function and is no longer required, close
it by calling DeleteObject. Closing an Xtra performs mandatory housekeeping
tasks and closes unneeded files. It also frees the memory occupied by the Xtra. All
Xtra instances created with NewObject must be ultimately closed with
DeleteObject once they are no longer needed.

Example:
DeleteObject(gDB)

Although DeleteObject does exactly what it is intended for, it is always a good
practice to systematically set the deleted objects reference to 0. This makes it
simpler to know whether a database is open or closed: you only need to check
wheter the variable used to refer to it is zero or not.

Example:
DeleteObject(gDB)

gDB := 0

Checking for available Xtras
You can learn which Xtras are available to Authorware by opening the Functions
window from the Window menu and checking the content of the Category menu.
The available Xtras are listed right after the “Xtra’s(All)” item.

If V12-DBE is installed, you should see V12dbe and V12table listed in the Category
menu as well as all other available Scripting Xtras. Note that this technique applies
to Scripting Xtras only.

Dealing with pathnames
The NewObject method in V12dbe requires that you specify the name of the V12-
DBE file you want to create or open. If only a file name is specified, the file is

Note:Note:Note:Note: This is a generic approach
and works with all Xtras. In V12-
DBE, the preferred way to check

for errors is the V12Status()
method. See Errors and defensive

programming in this manual.

Note:Note:Note:Note: If a V12-DBE Xtra
instance is not properly deleted
(DeleteObject), the file it refers
to remains open and cannot be
re-opened unless the computer
is restarted. In some cases, the

database could be corrupted.

Note:Note:Note:Note: In order to learn which
methods are supported by an

Xtra, use the Xtra's built-in
documentation. See Basic

documentation below.

 V12-DBE for Authorware User Manual 19

assumed to be located in the same folder as Authorware or the Authorware
runtime.

Example:
gDB := NewObject("V12dbe", "myBase.V12", "Create", "myPassword")

assumes that "myBase.V12" is in the same folder as Authorware or the Authorware
runtime.

Most of the time, however, placing the database file in the same folder as the piece
that uses it is more convenient. Use the FileLocation variable to get the current
piece’s folder.

Example:
gDB := NewObject ("V12dbe", FilFilFilFileLocation eLocation eLocation eLocation ^ "myBase.V12", "Create",

"myPassword")

Passing parameters to Xtras
As in any programming language (including Authorware’s scripting language),
functions, commands and methods require a certain number of parameters. For
example, in Script, the Trace function expects one parameter: the string to output
in the Control Panel window (example: Trace(“Database successfully
created”). Likewise, the ResizeWindow function expects two parameters: width
and height.

While the two aforementioned examples require exactly one and two parameters
respectively, some commands and functions offer more flexibility by accepting
optional parameters. For example, in Authorware, the Capitalize function
requires at least one parameter: the string to capitalize. However, an additional
parameter can be specified to modify its behaviour. In this case, assign the
parameter “1” would capitalize only the first word in the string.

Xtras offer the same mechanism: some methods require an exact number of
parameters (fixed number of parameters), others assume default values if
parameters are omitted (variable number of parameters). Each of these methods can
be easily identified in the Xtras built-in documentation explained below (see Basic
documentation).

Basic documentation
In Authorware, Xtras contain a built-in mechanism that provides documentation
for developers.

Open the Functions window from the Window menu (or type Ctrl+Shift+F) and
select the name of the Xtra you need documentation for in the Category pop-up
menu. Then select the method for which you need documentation. The lower part
of the Functions window will display a description of that function along with its
calling syntax.

For example, selecting mCreateTable in the Xtra V12dbeXtra V12dbeXtra V12dbeXtra V12dbe category of the
Functions window will display the following text in the Description area.

CallObject(gDB, “mCreateTable”, “tableName”)

–- PARAMETERS : tableName = name of table to create. DESCRIPTION :
Creates a new table named tableName…

 V12-DBE for Authorware User Manual 20

Methods that expect a fixed number of parameters are those for which each
parameter is listed. Methods that accept a variable number of parameters are those
followed by a [[[[*]*]*]*].

Following are a few examples:
CallObject(object, "mFlushToDisk")

means that the mFlushToDisk method requires exactly one parameter: the
database instance.

CallObject(object, "mSetProperty", "property", "value")

means that mSetProperty requires three parameters: the database instance, the
property (a string) and the value of the property (a string).

CallObject(object, "mDumpStructure"[, *])

means that mDumpStructure requires at least one parameter, and possibly more
(indicated by the asterisk). You must refer to the documentation of this method to
know what additional parameters are accepted.

CallParentObject("V12dbe", "mXtraVersion")

the mXtraVersion is a static method - a method that can be used with a database
instance (i.e. mXtraVersion(gDB)) and a database library instance (i.e.
mXtraVersion(Xtra "V12dbe")). Static methods are seldom used in V12-DBE.

V12Status()

V12status is a global method - a method that can be used at any time, regardless
of Xtra instances. It is only required that the Xtra be present when that function is
called.

 V12-DBE for Authorware User Manual 21

Database basics

Overview
If you want a clearer understanding of what a database is and does, we recommend
that you read this section. The following topics introduce you to database basics:

• What is a database?

• Records, fields and tables

• Indexes, Compound indexes, and Full-text indexing

• Flat and relational databases

• Field types

• Selection, current record, and search criteria

What is a database?
A database is a collection of information that can be structured and sorted. A
telephone book is an example of a hardcopy database, and government statistical
records are examples of electronic databases. Database management programs
such as V12-DBE provide many advantages over hardcopy databases. Unlike a
telephone directory, where you can look up data that is sorted in alphabetical order
only, database management programs allow you to change the way you sort and
view information. Moreover, you can find, modify and update information quickly
and easily.

Records, fields and tables
An entry in a database is called a recordrecordrecordrecord.

Each record consists of pieces of information called fieldsfieldsfieldsfields.

All records are stored in a tabletabletabletable.

For example, data entry in an address book typically consists of seven pieces of
information called fields: last name, first name, street address, city, state, zip code
and phone number. All the information relevant to one person makes up one
record. The collected records make up the table and are contained in a database
file. Entries below are typical of those found in an address book:

This is an example of a tabletabletabletable:

Last Name First Name Address City State Zip Phone --- These are fieldsfieldsfieldsfields

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 --- This is the 1st recordrecordrecordrecord

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 --- ...the 2nd recordrecordrecordrecord

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 --- ...the 3rd recordrecordrecordrecord

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 --- ...the 4th recordrecordrecordrecord

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 --- ...etc…

Note:Note:Note:Note: Some database
management systems refer to

fields as columns and to records
as lines or rows. In V12-DBE, the

terms remain fields and
records.

 V12-DBE for Authorware User Manual 22

Indexes
In a telephone directory, information is indexed by last name - a typical way to
search for a telephone number. There are directories that index information by
order of phone number or address, but such static directories sort information in
only one specific predetermined order.

V12-DBE, by contrast, allows you to determine how you want to sort information
by defining one or more indexesindexesindexesindexes in a table. When a field is indexed, V12-DBE
creates an internal list that can be used to sort and search quickly the data it
contains. Non-indexed fields can also be searched and sorted, but at a slower speed.

In this example, the address book entries are listed according to an index of the first
name field and sorted in ascending order (A to Z), thus appearing in alphabetical
order by first name.

Last Name First Name Address City State Zip Phone

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267

Compound indexes
A compound index — or complex index —organizes entries composed of two or
more fields, as opposed to simple indexes — or indexes, for short — which organize
single-field entries. Compound indexes are useful to determine the sorting order of
records when some fields contain identical values.

In this example, three records share the same last names (Cartman). Indexing the
field LastName alone would certainly force Last Names to be properly ordered. But
this would not determine the order in which the Cartman’s are sorted.

Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Wendy San Mateo CA 94403

Cartman Lucy Richmond VA 23233

Cartman Eric Lebanon MO 92023

Pintado Jack Bowie MD 20712

If you want your records sorted by Last Name, and by First Name in case of
identical Last Names, you define a compound index on the fields LastName and
FirstName. The sorted result would then be:

 V12-DBE for Authorware User Manual 23

Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Eric Lebanon MO 92023

Cartman Lucy Richmond VA 23233

Cartman Wendy San Mateo CA 94403

Pintado Jack Bowie MD 20712

If you want them sorted by Last Name, and then by State in case of identical Last
Names you define a compound index on the fields LastName and State. The
sorted result would then be:

Last Name First Name City State Zip

Brown Charles San Francisco CA 94115

Cartman Wendy San Mateo CA 94403

Cartman Eric Lebanon MO 92023

Cartman Lucy Richmond VA 23233

Pintado Jack Bowie MD 20712

Up to twelve fields can be declared in a single compound index in V12 Database
Engine.

Full-text indexing
Defining an index on a field allows for quick sorting and searching of the first few
characters of a field. In some applications – typically when fields contain extensive
information – you need to search for words that appear anywhere in a field
efficiently. This is where you need to define a full-text index, or fullfullfullfull----index index index index for short,
on that field. A full-index is an index defined on every single word of a field.

Last Name First Name Publication Title

Jordan Ann Soups and Salads for Dummies

Brown Charles The Hunchback of the Empire State Building

Pintado Jack Bounds on Branching Programs

Van Damme Lucie Natural and Artificial Intelligence

Peppermint Patty Mastering Soups in 32,767 Easy Lessons

In this example, looking for the word "Soup" in the Publication Title field requires a
full-index for optimal search performance. If no index is defined on the Publication
Title field, the same result can be achieved, but with a slower performance. If a
regular index is defined on the Publication Title field, publications that start with
the word "Soup" can be quickly located, but publications that contain that word
somewhere in the middle of the field require more time. Full-indexes apply only to
fields of type string, including those that contain styled text (see Field types and
International support).

Defining full-text indexing options

For optimal full-text search efficiency, some level of control is required on the way
it is performed. For example, indexing trivial words such as "and", "or", "the", etc.
(or equivalent words that appear frequently in your application's language) is
useless as most records would contain one or more occurrences of those words.

Likewise, some applications or languages require that digits be full-indexed whereas
others would prefer to ignore them. V12-DBE enables you to fine-tune the behavior

Note:Note:Note:Note: Each index takes up disk
space, so it is not recommended
that all fields be indexed. Full-

indexes require much more space
than regular indexes. Indexed

fields should be limited to those
most likely to be searched and/or

sorted.

 V12-DBE for Authorware User Manual 24

of the full-indexes by allowing for the definition of Stop WordsStop WordsStop WordsStop Words (words that must be
ignored), DelimitersDelimitersDelimitersDelimiters (characters that delimit word boundaries) and
MinWordLength MinWordLength MinWordLength MinWordLength (the size of the shortest word that must be considered for full-
indexing).

Database
A table, its fields and the indexes defined are stored in a databasedatabasedatabasedatabase. A database can
contain one or more such tables.

Flat and relational databases
A flat databaseusually consists of one table. In flat database management systems
such as FileMaker Pro, the terms table and database are interchangeable.

A relational database presents a more sophisticated use of information. In
relational database management systems, two or more tables are contained in the
database. Therefore, you can store as many tables as you need in a single database
file and each table could have one or more indexes. Tables can be linked so that
information can be shared, saving you the trouble of copying the same information
into several locations and eliminating the maintenance of duplicate information.
Linking is important if there are relationships between the various pieces of
information.

For example, if you want to add information to the entries contained in the address
book in our first example, such as the company address and phone number, one
way to do this would be to add them to the table:

Last Name First Name Address City State Zip Phone Company Phone

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 Rocco & Co. 526-2342

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 National Laundry 982-9400

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 Rocco & Co. 526-2342

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 Presto Cleaning 751-5290

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 Presto Cleaning 751-5290

Note:Note:Note:Note: There is a practical limit to
the number of tables you can have
in a V12 database. See Appendix

1: Capacities and Limits for
specific limitations.

 V12-DBE for Authorware User Manual 25

However, adding this information might lead to duplication of information, given
that some people might be working for the same company. To prevent duplication
and to save on disk space and time required to update, you could create a new table
containing only the business information. For example, the new table could be
called: Companies. Each record of that new table would have a unique ID number,
Company Ref, which would also be stored in the first table.

The database now contains two related tables, each having a field containing the
common information, named “Company Ref”:

Table 1: containing information about each person:

Last Name First Name Address City State Zip Phone Company RefCompany RefCompany RefCompany Ref

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 RORORORO

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 NANANANA

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 RORORORO

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 PRPRPRPR

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 PRPRPRPR

Table 2: containing information about the companies:

Company refCompany refCompany refCompany ref Company Phone

NANANANA National Laundry 982-9400

PRPRPRPR Presto Cleaning 751-5290

RORORORO Rocco & Co. 526-2342

The two databases could also be compared as follows:

The relational database is smaller because it avoids useless data duplication. In
order to retrieve full information about any given individual in your address book,
you would perform a search in your first table, retrieve the company reference, and
then perform a search in the second table. The flat model may be easier to manage
when retrieving data given that only one search is required, however it tends to
consume valuable disk space. The flat model also introduces the risk of data
discrepancies due to the duplication of data.

Field types
For optimal data sorting and searching, you can specify the kind of information to
be stored in each field. In V12-DBE, fields can be designated to contain strings, , , ,
integers, , , , floating----point numbers,,,, dates, pictures, sounds, palettes, etc. A field
would then be of type stringstringstringstring, integerintegerintegerinteger, floatfloatfloatfloat, or datedatedatedate. See Appendix 1: Capacities and
Limits at the end of this manual for a formal definition of each field type.

For example, if you wanted to organize a contest where each person listed in your
address book were collecting points, you would need to keep track of the number of

Note:Note:Note:Note: Relational Database
Management Systems (RDBMS)

are usually programmed with
SQL (System Query Language)

statements, which have the ability
to automatically resolve relations

between related tables.

Although V12 Database Engine
can store multiple tables per

database, it relies on Lingo scripts
to resolve relations. It cannot

automatically resolve such
relations.

 V12-DBE for Authorware User Manual 26

points accumulated by each person. Therefore, you would update your address
book to include a new field: number of points. Since you would want to search and
sort this new field quickly, you would need to define an index. This new field could
be one of two types: string or integer.

If you define the new field as type string, you might end up with the following
listing when the table is sorted by ascending order of points:

Jordan Ann 1

Brown Charles 12

Peppermint Patty 127

Pintado Jack 6

Van Damme Lucie 64

This order occurs because the string "12" is alphabetically lower than the string "6"
given that the ASCII code for "1" is 49 which is smaller than the ASCII code for
"6", 54. To sort the list in the expected ascending order, you must define the field
number of points to be of type integer to get this result:

Jordan Ann 1

Pintado Jack 6

Brown Charles 12

Van Damme Lucie 64

Peppermint Patty 127

Typecasting
Typecasting (or casting, for short) is the process of converting a piece of data from
one type to another. This is a common mechanism to most programming
languages, including Authorware scripting language.

For example, the integer 234 can be casted to the string "234". Conversely, the
string "3.1416" can be casted to the float 3.1416.

Typecasting can be performed explicitly in Authorware’s scripting language using
the Integer, String and Float functions (i.e., String(234) returns the string
"234") or automatically (i.e., 12&34 returns the string "1234").

V12-DBE has the same ability as Authorware’s scripting language to typecast data
when it is required by the context. However, some borderline conditions can lead to
ambiguous results such as trying to store the value " 123" in a field of type Integer
(note the leading space).

You must always make sure that the data supplied to V12-DBE does not contain
spurious characters, otherwise typecasting will not be performed properly.

International support
Although the 26 basic letters of the Roman alphabet sort in the same order in all
roman languages, the position of accented characters (also called mutated
characters) varies from one language to another. For example, the letter ääää sorts as a
regular aaaa in German whereas it sorts after z z z z in Swedish. Likewise, in Spanish, chchchch
sorts after czczczcz and llllllll sorts after llllz.z.z.z.

V12-DBE's default string was designed to satisfy as many languages as possible. It
can sort and search texts in English, French, Italian, Dutch, German, Norwegian,

 V12-DBE for Authorware User Manual 27

etc. See Appendix 4: String and custom string types in the appendices of this
manual for a detailed description of string's behavior.

V12-DBE also offers the option of defining fields of type Swedish, Spanish,
Hebrew, etc. that index and sort data in a way that is compliant with these
languages. See Appendix 4: String and custom string types for an exhaustive list
and description of those behaviors called custom string types.

The Regular Edition of V12-DBE allows you to create custom string types , where
you define a sort/search description table for each. Therefore, you can define your
own string type for any language supported by single-byte characters, including
Klingon.

Selection, current record, search criteria
Besides sorting a table through indexes, you can find information based on search
criteria. You can define simple search criteria, also called simple queriessimple queriessimple queriessimple queries, such as:

• First name is Jack

• State is California

• Number of points is less than 30

• Last name begins with P

Or you can define complex search criteriacomplex search criteriacomplex search criteriacomplex search criteria, also called Boolean queries using
and/or, such as:

• First name is Jack oooorrrr Last name begins with P

• State is California andandandand Number of points is less than 30

• State is California andandandand Number of points is less than 30 andandandand Last name contains
"pe"

The selectionselectionselectionselection is a set of records currently available in the table. When a table is
opened the selection contains all the records of the table. If you search through a
table after having defined search criteria, the resulting set of records that satisfy the
search is the new selection. When a selection is first defined, the current record is
the first record of that selection.

• If exactly one record satisfies the search criteria, the selection contains only that
record, which automatically becomes the current record.

• If two or more records satisfy the search criteria, the selection is the set of those
records, and the first record of the selection becomes the current record.

• If no record satisfies the search criteria, then the selection is empty and the
current record is undefined. Any attempt to read or write in a field will result in
an error.

This figure illustrates the idea of searching a table for records satisfying a certain
criteria. The result is placed in a selection, the first record of which becomes the
current record.

Note:Note:Note:Note: Everything that applies to
the type string also applies to

custom string types. Throughout
this manual, the term string is

used to designate both the default
V12-DBE string and custom string

types.

Note:Note:Note:Note: Database Management
Systems that use SQL as their

programming language can define
search criteria such as: (Dish is

soup or appetizer) and (Main
Ingredient is celery or eggplant or
pumpkin). V12 Database Engine
does not support alternating uses

of ANDs and ORs.

See technical notes on
http://www.IntegrationNewMedi
a.com/support/v12director/techn

otes for possible workarounds.

http://www.integrationnewmedia.com/support/v12director/technotes
http://www.integrationnewmedia.com/support/v12director/technotes
http://www.integrationnewmedia.com/support/v12director/technotes

 V12-DBE for Authorware User Manual 28

All operations on any fields (such as reading and writing data) are done on the
current record. Therefore, before performing these operations, you must designate
the record on which you wish to work as the current record by selecting it, and by
using methods such as mGoFirst, mGoLast, mGoNext, mGoPrevious and mGo.

You can read the contents of a field in the current record, modify its contents or
delete the entire record. When you move from one record to then next in the
selection, the current record pointer changes. Note that if you modify the fields of
the current record, you must call mUpdateRecord to save your changes to the
database before moving to another record, otherwise your changes will be lost.

 V12-DBE for Authorware User Manual 29

Using V12-DBE: step-by-step

Overview
This section covers the main steps in using V12-DBE. If you have looked at the
First Steps manual (recommended), you should already be familiar with some of
these steps. Here we will explain in detail how to prepare the data, design a data
model and create a V12-DBE database. A script review and a detailed explanation
of table and database Xtra methods will follow.

V12-DBE components
V12-DBE is a powerful database management engine, composed of two Xtras
libraries: a databasedatabasedatabasedatabase Xtra named "V12dbe" and a tabletabletabletable Xtra named "V12table". The
database Xtra is used to create a new database or to open an existing database in a
given mode (Read Only, ReadWrite or Create). The table Xtra is used to manage
the content of the table in your database.

The main steps
If you have read the First StepsFirst StepsFirst StepsFirst Steps manual and followed the accompanying ShowMe,
you have seen a typical step-by-step use of V12-DBE. The individual steps to using
V12-DBE are explored in greater detail in this section. Other useful examples that
cover these steps are illustrated in the ShowMeShowMeShowMeShowMe pieces named V12Glossary and
V12Quiz. These pieces are available for download from our website at:
http://www.IntegrationNewMedia.com/products/v12authorware/demos/.

StepStepStepStep 1:1:1:1: DecideDecideDecideDecide onononon aaaa DataDataDataData ModelModelModelModel: Before you create your database, decide which
fields are needed, the data type of each field, how the fields should be grouped in
the tables and which fields should be indexed. This design effort does not require a
special tool (with the possible exception of a word processor to help you edit your
ideas). If your original data is managed in FileMaker Pro, MS Access, or a similar
database management product, that database's model is probably the best starting
point for your V12 database model.

StepStepStepStep 2:2:2:2: PreparePreparePreparePrepare thethethethe DataDataDataData: : : : If your original data is managed in FileMaker Pro, MS
Access, or a similar database management product, in step 2, you make sure that
your data is properly entered and that it is in a format readable by V12 Database
Engine (Text file, DBF file or one of V12-DBE's ODBC-compliant formats).

StepStepStepStep 3:3:3:3: CreateCreateCreateCreate aaaa databasedatabasedatabasedatabase: Use the V12-DBE Tool to create the V12 database you
designed at Step 1. Alternatively, you can use the database Xtra's (i.e. Xtra
V12dbe's) methods to write an automated database creation script in Script.

StepStepStepStep 4:4:4:4: ImportImportImportImport datadatadatadata into a V12-DBE database:::: Use the V12-DBE Tool to import the
Text or DBF file exported at Step 2. Alternatively, you can write Scripts to
automate the process of importing data into your V12-DBE databases.

Note:Note:Note:Note: Although steps 1 and 2 do
not involve any production work

or programming, they are the
most criticalmost criticalmost criticalmost critical ones to the success of

your project.

A well-designed project will yield
high-quality results, on time, on
budget. Similarly, failing to lay

solid foundations at steps 1 and 2
will lead to an unmanageable

project with fragile results. If you
don't feel comfortable with steps 1

and 2, we recommend that you
seek advice or hire professional

help.
 (See You’re not alone!)

http://www.integrationnewmedia.com/products/v12authorware/demos/

 V12-DBE for Authorware User Manual 30

StepStepStepStep 5:5:5:5: ImplementingImplementingImplementingImplementing thethethethe useruseruseruser interfaceinterfaceinterfaceinterface: : : : In this step you develop the means by
which users will search for, retrieve and modify data at runtime. This interaction
with the database can be developed either using V12-DBE Knowledge Objects
attached to Authorware sprites, or as functions in Authorware Script.

Download the Knowledge Objects from the Free Tools section on Integration New
Media's web site:
http://www.IntegrationNewMedia.com/products/v12authorware/tools/.

Sample Authorware pieces are provided on the Demos page:
http://www.IntegrationNewMedia.com/products/v12authorware/demos/.

Each of the aforementioned steps is discussed more in depth in subsequent sections.
Since V12-DBE offers more than one way to attain a goal, the simplest approach is
explained first; then alternate and more powerful or versatile approaches are
discussed.

http://www.integrationnewmedia.com/products/v12authorware/tools/
http://www.integrationnewmedia.com/products/v12authorware/demos/

 V12-DBE for Authorware User Manual 31

Step 1: Decide on a Data Model

Before creating a database file, you need to decide how you want to organize your
data. If your original data is managed in FileMaker Pro, MS Access, or a similar
database management product, that database's model is probably the best starting
point for your V12 database model. The questions you need to address are:

• which fields are required and what are their respective types?

• which fields should be indexed for quick searching and sorting?

• how many tables are required to group the fields?

• are there any relationships between the various tables?

In the stationary catalog example below, only one table is needed. It is called
"Articles". The seven fields you need are :

• Field "ItemName" of type String

• Field "Category" of type String

• Field "Description" of type String

• Field "Price" of type Float

• Field "CatalogNumber" of type Integer

• Field "Date" of type Date

Since only the fields "ItemName", "Price" and "CatalogNumber" will be searchable,
only they are indexed.

Defining identifiers
Tables, fields and indexes are given names called identifiersidentifiersidentifiersidentifiers, and V12-DBE makes
reference to them by use of these identifiers. An identifier must start with a low-
ASCII alphabetic character (a..z, A..Z) and can be followed by any combination of
alphanumeric characters (0..9, a..z, A..Z, à, é, ö, …). The maximum length for an
identifier is 32 characters. No two fields or indexes of a table can have the same
name.

V12-DBE is not case-sensitive. That is, upper cases and lower cases are identical.
These identifiers are considered identical in V12-DBE: "articles", "ARTICLES",
"Articles", "aRtICleS".

 V12-DBE for Authorware User Manual 32

Step 2: Prepare the Data

Step 2 is relevant only if your original data is managed in FileMaker Pro,
4th Dimension, DBase or any other database management system that has the
ability to export TEXT or DBF files.

If you plan to use an ODBC driver to import your data from MS Access, MS
FoxPro, MS Excel or MS SQL Server, or if the records must be keyed-in by the
user, skip to Step 3.

In brief, Step 2 consists in making sure that your original data is properly structured
and in exporting it as Text or DBF files. Those files are then imported to V12
databases at Step 4: Import data into a V12-DBE database.

TEXT file formats
Text files are the most popular data interchange file formats. Usually, TAB-
delimited Text files are used to exchange data between database management
systems.

A typical TAB-delimited file is in this format:
Field_A1 TAB Field_A2 TAB Field_A3 TAB ... TAB Field_An CR

Field_B1 TAB Field_B2 TAB Field_B3 TAB ... TAB Field_Bn CR

Field_C1 TAB Field_C2 TAB Field_C3 TAB ... TAB Field_Cn CR

where Field_A1, Field_A2, etc. represent the actual data in those fields. TAB is
the ASCII character 9, indicating the end of a field.

On the Mac, CR is the ASCII character 13, indicating the end of a record. On
Windows, CR is the ASCII character 13 followed by the ASCII character 10 (Line
Feed). Since V12-DBE always ignores Line Feed characters, you need not worry
about exceptional cases between the Mac and Windows with respect to Record
Delimiters.

Generally, using the V12-DBE Tool or the mImport method to import a text file
into a V12-DBE database is a straightforward process, unless your fields contain
TAB or CR characters. In such cases, V12-DBE confuses the real delimiter with the
legitimate content of your field. See Dealing with delimiter ambiguity below.

Field descriptors
V12-DBE requires a special type of Delimited Text file format. The file's first line
must contain field descriptorsfield descriptorsfield descriptorsfield descriptors, or the names of the fields into which the data that
follow must be imported. This file format is sometimes referred to as mail merge mail merge mail merge mail merge
formatformatformatformat. This is an example of such a file:

Name Price CatNumber

Ruler 1.99 1431

Labels 1.19 1743

Tags 6.19 …

You can easily have FileMaker Pro and MS Access export those field names before
exporting the records data (See Exporting a FileMaker Pro database to text or
Exporting a MS Access database to text).

Dealing with delimiter ambiguity
Most of the time, TABs are used to delimit fields in a Text file, and CRs to delimit
records. If your fields contain TABs or CRs as part of their actual data, the legitimate
content of your fields would be confused with those delimiters once exported in a
text file. There is more than one way to deal with this problem. Choose the one —
or combination — that best fit your project's needs in the list below.

Virtual carriage returns

Some database management systems (e.g., FileMaker Pro) export a special
character other than ASCII #13 instead of the CRs that appear in your fields. For
example, FileMaker Pro exports ASCII #11 (Vertical Tab) instead of ASCII #13.
Those characters are called Virtual Carriage Returns or VirtualCR for short.

V12 Database Engine can recognize those characters and convert them to real
Carriage Returns (ASCII #13) once they are imported. See Import data with
mImport, in Step 4: Import data into a V12-DBE database, and VirtualCR in
Properties of databases.

Text qualifiers

A text qualifier is a special character used to begin and end each Text field. In most
database management systems, the quotation mark (") is the default text qualifier.
Its main purpose is to group a field's content between two identical marks so as to
enable the occurrence of field and record delimiters without the risk of confusion.

Example:
"Name","Description" CR

"Hat","high-quality, excellent fabric, available in:CRRedCRGreenCRBlue"

"Shoe","this description, field, contains, commas, and, CarriageCRReturns"

Text qualifiers are automatically placed in text files exported from MS Access,
FileMaker Pro (Mail Merge format) and MS Excel (only for fields that contain
commas).

Text files containing Text Qualifiers are easily imported to V12 databases by setting
the mImport method's TextQualifier property to the right character. See Import
data with mImport, in Step 4: Import data into a V12-DBE database.

Custom delimiters

Another way to avoid delimiter ambiguity is to choose delimiters other than TAB
and CR. Some database management systems allow you to select appropriate
delimiters before exporting to a TEXT file (e.g., 4th Dimension). Some others allow

c

Note:Note:Note:Note: Since V12-DBE always
ignores Line Feed characters,

(ASCII Character 10), those
annot be used as field or record

delimiters.
 V12-DBE for Authorware User Manual 33

only the selection of a custom field delimiter and always use CRs as record
delimiters (e.g., MS Access). FileMaker Pro and MS Excel do not allow for any
customization.

V12-DBE's mImport method assumes, by default, that the field and record
delimiters are TAB and CR. However, other delimiters can be specified. See Import
data with mImport, in Step 4: Import data into a V12-DBE database.

 V12-DBE for Authorware User Manual 34

Calculated fields

If your database management system does not support alternative delimiters you
can nonetheless force it to export your own delimiters by creating an additional
field and setting it as the result of the concatenation of all the other fields with the
desired delimiter in between each two fields. Then, export only the new field in a
text file.

Processing the exported text file

If the database management system used to store your data is not flexible enough,
or if the data themselves are not properly structured, you can export them in a text
file and use Third Party tools to search and replace sequences — or patterns — of
characters.

Below is a non-exhaustive list of helpful tools:

• BBEdit from Bare Bones Software (http://www.BareBones.com/) For MacOS.

• TextPad from Helios Software Solutions (http://www.Textpad.com/). For
Windows.

• UltraEdit from IDM Computer Solutions (http://www.Ultraedit.com/). For
Windows.

• Microsoft Excel from Microsoft Corp. (http://www.Microsoft.com/. For
MacOS and Windows.

BBEdit, TextPad and UltraEdit feature GREPs (General Regular Expression
Parsers), which are very convenient to reorganize unstructured data.

Character sets
Character sets are not standard across operating systems and file formats. For
example, the letter "é" is the 233rd on Windows, whereas it is the 142nd on
Macintosh and the 130th on MS-DOS.

Although all three operating systems use the ASCII characters set, only low-ASCII
characters (i.e., those below #127) are common to the many variants of the ASCII
set. Therefore, the rest of this topic is of interest to you only if you deal with high-
ASCII characters (such as €,€,€,€, å,å,å,å, æ,æ,æ,æ, ß,ß,ß,ß, êêêê,,,, ï,ï,ï,ï, ø,ø,ø,ø, ž,ž,ž,ž, ‰,‰,‰,‰, §,§,§,§, ¥,¥,¥,¥, etc.)

V12-DBE's CharacterSet property can be set to translate Windows, Macintosh or
MS-DOS character sets when importing or exporting Text or DBF files. Optionally,
mImport accepts the CharacterSet property to use only once to import a single
file (as opposed to the CharacterSet property which permanently affects mImport
and mExportSelection, or until it is set to another value). See Step 4: Import data
into a V12-DBE database and Import data with mImport.

MS Word documents, V12 databases as well as many other proprietary file formats
are cross-platform compatible. You should not worry about this portability issue if
your data contains only low-ASCII characters (e.g. English alphabet).

Note:Note:Note:Note: Most applications
import/export DBF files using the

MS-DOS character set.

http://www.barebones.com/
http://www.textpad.com/
http://www.ultraedit.com/
http://www.microsoft.com/

 V12-DBE for Authorware User Manual 35

Dealing with dates
Although V12-DBE can output dates in highly customizable formats, it requires
that they be input in a single unambiguous format called the raw format:
YYYY/MM/DD.

• YYYY: year in 4 digits (e.g., 1901, 1997, 2002)

• MM: month in 1 or 2 digits (e.g., 01 or 1 for January)

• DD: day in 1 or 2 digits (e.g., 04 or 4 for the 4th day of the month)

The separator between the three chunks of values can be any non-numeric
character, although slash (/), hyphen (-) and period (.) are most commonly used.

Any date that needs to be imported in a V12-DBE field of type date needs to be in
this raw format. This rule applies to the V12-DBE Tool as well as to V12-DBE's
Script methods that accept dates as input parameters (e.g., mImport, mSetField
and mSetCriteria).

Exporting a FileMaker Pro database to text
In FileMaker Pro, choose File > Import/Export > Export Records and select
"Merge (*.MER)" in the Save as Type menu. As a side effect, FileMaker Pro
exports your data with quotation marks surrounding each field and a comma as
field separator. Your file can easily be imported to the V12 database with quotation
marks as Text Qualifiers (see Text qualifiers) and commas as field delimiters (see
Custom delimiters).

Exporting a MS Access database to text
In MS Access, choose File > Export, to an external file or database. Then, select
Text Files in the Save as Type menu. Click Export or Save. Make sure that
Delimited is selected and click Next. Choose an appropriate field delimiter for your
data (see Dealing with delimiter ambiguity), choose a Text Qualifier from the list
(see Text qualifiers), and check "Include Field Names in First Row"; then click
Next.

DBF file formats
V12 Database Engine can import DBF files two ways:

• on both MacOS and Windows, it can read DBF files of type Dbase III, Dbase
IV, Dbase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0.

• on Win32 only, DBF files can be imported using the FoxPro ODBC driver.

You may want to export your data as DBF files, if that format is supported by your
database management system.

DBF is an old file format. It was enhanced over the years but most common
applications still use the popular Dbase III format whose features are common to all
other DBF file variants. Limitations include:

• Field names are limited to ten characters, all in upper case,

• The number of fields per DBF file is limited to 128,

• Records are of fixed length, determined upon the creation of the DBF file,

Note:Note:Note:Note: If you fail to initialize a
field of type Date in a new record,
or try to store an invalid date in it,

it is automatically set to
1900/01/01 (January 1st, 1900).

Note: Note: Note: Note: MS Access databases can be
imported directly to V12

databases either by using the V12-
DBE Tool, or through Lingo. See

Loading a descriptor from a
source file.

Note:Note:Note:Note: Years ago, DBF files were
convenient, given that they

contained fewer variants than
TEXT files. However, since the

introduction of Windows and the
popularization of DBF to other

Operating Systems, DBF files now
contain many categories and have
become difficult to manage. V12-

DBE’s preferred file importing
format is Text.

 V12-DBE for Authorware User Manual 36

• There is more than one way to deal with high-ASCII characters (accented
characters) with DBF files. This depends on the operating system and
application used to manage the DBF file,

• Indexes are saved in separate files with extensions such as IDX, MDX, NDX or
CDX (depends on the managing application),

• DBF files cannot be password-protected. However, some applications protect
DBF files by encrypting/decrypting them,

• Character fields (roughly, the equivalent of V12-DBE's string fields) are limited
to 255 characters. Any text longer than 255 characters, must be stored in
separate files called DBT files and referred to by Memo fields,

• Media (either Binary or Text) are stored in external DBT files pointed to by
Memo fields in the DBF file. DBF fields of type Media are not supported by
V12-DBE.

Various flavors of the DBF file format were introduced over the years, such as
DBase IV, DBase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro
5.0. They all include DBase III's features as core specifications and add new data
types or extend certain limits. See Appendix 2: Database Creation and Data
Importing Rules for more details.

In summary, the exact structure and limitations of your DBF files largely depend on
how your database management system deals with them.

Field buffer size
Prior to creating your database structures, you need to determine the size of the
largest chunk of data for each field of type string in your database. This helps you
optimize the size of the buffers needed to manage V12-DBE's internal data
structures for each of those fields.

If you are confident that your strings will not exceed 256 bytes, you do not need
to worry about the buffer size. Default buffers are set to 256 bytes for strings.

Note:Note:Note:Note: Database management
systems that use a fixed-length

record format, such as the DBF
file format, use the maximum
record length to allocate data

space on disk. Consequently, that
amount of space is lost for each

record of the database regardless
of the actual data stored in it.

V12 Database Engine uses a

variable-length record format.
This means that it uses the exact
amount of space needed for the

storage of a record on disk, with
no space loss at all. The Field
Buffer Size refers to the RAM
buffer, used while transferring
data between Director and the

V12 database files.

 V12-DBE for Authorware User Manual 37

Step 3: Create a database

At Step 3, you formalize the database you designed at Step 1: Decide on a Data
Model into a database descriptordatabase descriptordatabase descriptordatabase descriptor. Then, you provide that descriptor to the V12-
DBE Tool (if you choose to use the V12-DBE Tool), or to V12-DBE's
mReadDBstructure method (if you decided to script the database creation
process).

The V12-DBE Tool is a convenient point-and-click environment for small projects.
Scripting the database creation process requires a little more effort upfront but may
end up saving you a lot of time, if you need to experiment with your database
structure or data before committing to a final form. It enables you to automate the
database creation process.

If you use the V12-DBE Tool, just read the next two sections (Database descriptor
and Using the V12-DBE Tool) and skip toStep 4: Import data into a V12-DBE
database. If you wish to script the database creation process, read Script the
database creation as well.

Database descriptors
Following is the format of text (and literal) database descriptors required by both
the V12-DBE Tool and the mReadDBstructure method. It is used to build a
database structure from scratch.

If you build your V12 databases from other databases (e.g., MS Access, MS Excel,
etc.), you can directly skip to Using the V12-DBE Tool or Script the database
creation.

The desired V12-DBE database structure is stored in a text file (or Authorware
variable) called the database descriptor in this format.

[TABLE][TABLE][TABLE][TABLE]

NameOfTable

[FIELDS][FIELDS][FIELDS][FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

FieldName3 FieldType3 BufferSize3 IndexType3

(* if there are more than one table, their descriptors follow each
other *)

[Table][Table][Table][Table]

NameOfTable2

[FIELDS][FIELDS][FIELDS][FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

etc.

[END][END][END][END]

The [TABLE] tag is followed by one parameter: the name of the table. This is an
identifier (see Defining identifiers).

The [FIELDS] tag is followed by as many lines as you need to define fields in the
above defined table. The syntax of each line is as follows (see Database basics for a
thorough explanation of these concepts):

 V12-DBE for Authorware User Manual 38

• FieldName: the name given to the field to be created. This is an identifier (see
Defining identifiers),

• FieldType: string, integer, float, date or a custom string type (see Field
types),

• BufferSize: the amount of RAM to allocate for the internal management of
the field's content. This parameter is relevant only for fields of type string. If
omitted, fields of type string are created with a default buffer size of 255.
Characters are created with a default buffer size of 64K. See Field buffer size in
Step 2: Prepare the Data.

• IndexType: the word "indexed" if the field must be indexed, or the word "full-
indexed" if the field must be full-indexed, or nothing if no indexing is required. If
you need to both index and full-index a field, see Defining both an index and a
full-index on a field.

The [END] tag indicates the end of the descriptor. It is a mandatory tag.

In each line of the descriptor file, tokens (i.e. field name, index name, value, etc.)
must be separated by one or multiple Tabs and/or Space characters.

Example:
[TABLE][TABLE][TABLE][TABLE]

Recipes

[FIELDS][FIELDS][FIELDS][FIELDS]

NameOfRecipe string indexed

Calories integer indexed

CookingTime integer

TextOfRecipe string 5000 full-indexed

[END][END][END][END]

Defining both an index and a full-index on a field
In exceptional cases, you would need to define both an index and a full-index on a
field. Since the IndexType parameter defined above can represent only one of
"indexed" or "full-indexed", you would need to set it to "indexed" and define the
full-index separately under an additional tag named [FULL-INDEXES].

The [FULL-INDEXES] tag must follow the [FIELDS] section and must be followed
by a list of fields to be full-indexed, one per line.

Example:
[TABLE][TABLE][TABLE][TABLE]

Recipes

[FIELDS][FIELDS][FIELDS][FIELDS]

NameOfRecipe string indexed

Calories integer indexed

CookingTime integer

TextOfRecipe string 5000 indexed

[FULL[FULL[FULL[FULL----INDEXES]INDEXES]INDEXES]INDEXES]

TextOfRecipe

[END][END][END][END]

Alternate syntax for creating indexes
Database descriptors support an alternate syntax for the creation of indexes. The
[INDEXES] tag can be used right after the field definitions to explicitly name and
define the desired indexes.

This alternate syntax is used by mDumpStructure for clarity (see View the structure
of a database). It also allows the definition of unique-valued indexes and

NoteNoteNoteNote: If you try to store text
longer than the size of the buffer

allocated for the field type
string, V12-DBE signals a

warning and stores the truncated
text into the field. Media that are

larger than the maximum buffer
size of a field are not stored at all.

Note: A convenient way to build
a Descriptor File for a database

containing a large number of
tables, fields or indexes is to type
it into a spreadsheet thus taking
advantage of advanced editing

functions. The results can then be
saved into a TAB-delimited file or
Copied and Pasted into a Director

field for processing by
mReadDBStructure.

NoteNoteNoteNote:::: A valid database needs at
least one table, and each table

requires at least one field and at
least one index.

 V12-DBE for Authorware User Manual 39

descending indexes which are used only in exceptional cases (in summary, if you
don't know what they mean, you probably don't need them).

This database descriptor example is equivalent to the one above:
[TABLE][TABLE][TABLE][TABLE]

Recipes

[FIELDS][FIELDS][FIELDS][FIELDS]

NameOfRecipe string

Calories integer

CookingTime integer

TextOfRecipe string 5000

[INDEXES][INDEXES][INDEXES][INDEXES]

NameOfRecipeNdx duplicate NameOfRecipe ascending

CaloriesNdx duplicate Calories ascending

TextOfRecipeNdx duplicate TextOfRecipe ascending

[FULL[FULL[FULL[FULL----INDEXES]INDEXES]INDEXES]INDEXES]

TextOfRecipe

[END][END][END][END]

Compound indexes
Compound indexes are indexes defined on two or more fields (see Database
basics/Compound indexes). Compound indexes can be defined after the
[INDEXES] tag, as in:

[TABLE][TABLE][TABLE][TABLE]

Students

[FIELDS][FIELDS][FIELDS][FIELDS]

LastName string

FirstName string

Age integer

[INDEXES][INDEXES][INDEXES][INDEXES]

CompoundNdx duplicate LastName ascending FirstName ascending

[END][END][END][END]

The general syntax of a compound index definition is
[INDEXES][INDEXES][INDEXES][INDEXES]

Indx1 UniqueOrDup [FieldName AscOrDesc]1..10

where:

• Indx1 is the name of the compound index

• UniqueOrDup is either "unique" or "duplicate", depending upon whether or not
you allow duplicate entries for that index

• FieldName is the name of a field defined under the [FIELDS] tag

• AscOrDesc is "ascending" if you want that field sorted low-to-high, or
"descending" otherwise.

Up to ten FieldName AscOrDesc couples can be defined for a single compound
index.

Adding comments to database descriptors
Database descriptors can also contain comments in much the same way
Authorware Scripts do. In Script, comments are preceded by double hyphens ("--")
and must be followed by a CARRIAGE_RETURN. In database descriptors, comments
must be preceded by (* and be followed by *). They can include any sequences of
characters, including CARRIAGE_RETURNs.

 V12-DBE for Authorware User Manual 40

Example:
(*

 description of the Mega-Cookbook recipes table version 1.1

 by Bill Gatezky, 14-Feb-97

 This is a valid comment despite the fact that it contains

 Carriage Returns

*)

[TABLE][TABLE][TABLE][TABLE]

Recipes

(* this is also a valid comment *)

[FIELDS][FIELDS][FIELDS][FIELDS]

NameOfRecipe string indexed

...

[END][END][END][END]

The comment opening tag for database descriptors must be followed by a blank
character such as a space, tab or CARRIAGE_RETURN. Likewise, a comment closing
tag must be preceded by a blank character. Thus,

(*invalid comment: will generate an error*)

is an invalid comment, whereas
(* valid comment *)

is valid.

Multiple tables in a descriptor
If your database has more than one table, each new table follows the description for
the previous table, before the [END] tag.

Example:

[TABLE][TABLE][TABLE][TABLE]

NameOfTable1

[FIELDS][FIELDS][FIELDS][FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

FieldName3 FieldType3 BufferSize3

[Full[Full[Full[Full----INDEXES]INDEXES]INDEXES]INDEXES]

FieldName3Ndx duplicate ascending

[TABLE][TABLE][TABLE][TABLE]

NameOfTable2

[FIELDS][FIELDS][FIELDS][FIELDS]

FieldName1 FieldType1 IndexType1

FieldName2 FieldType2 IndexType2

etc.

[END][END][END][END]

Using the V12-DBE Tool
To create a V12 database using the V12-DBE Tool:

1 Choose File > New…

2 Fill out the Database Descriptor field according to the syntax described in
Database descriptors, or load a descriptor from an external file (see Loading a
descriptor from a source file),

3 Provide a name, and optionally a password, for your new V12 database,

4 Click the Create button

 V12-DBE for Authorware User Manual 41

Loading a descriptor from a source file
Instead of filling out the Database Descriptor field manually in the V12-DBE Tool,
you can load one from an external file. Click the SourceSourceSourceSource list to select the type of the
file that contains the descriptor information. File types that are supported by the
V12-DBE Tool include:

­ Text

­ DBF file

­ V12 file

­ Template

­ FoxPro file

­ Access file

­ Excel file

­ SQL Server Database

If your data is already in one of the database file formats listed here, you can simply
use that database to retrieve the descriptor information. Click the Load…Load…Load…Load… button
and browse to the file that contains the descriptor information.

Once the descriptor information appears in the Descriptor box, you may edit it. For
instance, your source database may contain several tables, and you may only want
to include a subset of these in your V12 database.

For more information, see the V12-DBE Tool's User Manual. The V12-DBE Tool
and User Manual are available for download from the Free Tools section of
Integration New Media’s web site:

http://www.integrationnewmedia.com/products/v12authorware/tools/.

Script the database creation
Automating the creation a V12 database through Scripts with V12-DBE consists in
three steps:

a. Create an Xtra instance of the database with NewObject

b. Define its structure with mReadDBstructure

c. Build the database with mBuild

The general form of a database creation Script is:
gDB := NewObject("V12dbe", FileLocation ^ "filename.v12", "create",

Password)

if V12Status() <> 0 then GoTo(@"NotifyUser")

mReadDBStructure(gDB, InputType, other params)

if V12Status() <> 0 then GoTo(@"NotifyUser")

CallObject(gDB, "mBuild")

if V12Status() <> 0 then GoTo(@"NotifyUser")

DeleteObject(gDB)

gDB := 0

where:

• FileName is the full pathname of the V12 database to create

• Password is the password to protect FileName

http://www.integrationnewmedia.com/products/v12authorware/tools/

 V12-DBE for Authorware User Manual 42

• InputType is one of "Text", "Literal", "DBF", "V12", "FoxPro", "Access",
"Excel" or "SQL Server".

• other params are one or more parameters depending on the selected
InputType.

• The resulting V12-DBE database can be immediately verified with
mDumpStructure (see View the structure of a database).

mReadDBStructure reads the structure of a DBF file, not its content. To import the
content of a DBF file, see Importing from a DBF File.

Step 3a: Create a database Xtra instance
Use the NewObject method to create a database Xtra instance.

Syntax:
gDB := NewObject("V12dbe", "Name", "create", "Password")

The parameters you provide are:

• Name: the name of the new database file, including its path if needed (see
Dealing with pathnames in Using Xtras).

• "Create" or the Mode: the mode in which the Xtra instance is defined. In
this case, the mode is Create (create a new database file). Other possible
modes are ReadOnly, ReadWrite and Shared ReadWrite. See Open an
existing database.

• Password: the password is required if you wish to protect your database
against tampering and/or data theft. You can lock the database with a
password, but make sure to record it in a safe place. If you forget it, you
will not be able to open your database again.

Example:
gDB := NewObject("V12dbe", "Catalog.V12", "Create", "top secret")

Step 3b: Define the database structure
The next method, after successfully creating a database Xtra instance, is to call
mReadDBstructure to read in the database structure you designed at Step 1:
Decide on a Data Model.

mReadDBstructure requires one the following inputs:

• a database descriptor as defined in Database descriptor above. Such as
descriptor is supplied either as a text file or as a literal (i.e. a Authorware
field or variable),

• a DBF file (DBase) which serves as a table template,

• a V12 database which serves as a database template,

• a directory containing one or more MS FoxPro files which serve
collectively as a database template (Windows-32 only, requires the FoxPro
ODBC driver),

• a MS Access database which serves as a database template (Windows-32
only, requires the Access ODBC driver),

• a MS Excel workbook which serves as a database template (Windows-32
only, requires the Excel ODBC driver),

• a MS SQL Server data source which serves as a database template
(Windows-32 only, requires the MS SQL Server ODBC driver).

NoteNoteNoteNote:::: For a number of reasons, the
creation of an Xtra instance can fail

(insufficient memory, invalid file
path, etc.) Always make sure that
your database instance is valid by

checking V12Error (see Errors and
defensive programming) or ObjectP

(see Checking if NewObject was
successful in Using Xtras) before

pursuing the database creation
process.

Note:Note:Note:Note: mReadDBStructure
reads the structure of a DBF file,

not its content.
Use mImport to import the

content of a DBF file.

(See Appendix 2: Database Creation and Data Importing Rules for complete
examples of each of the above variations of mReadDBStructure)

It is always a good practice to check the value returned by V12Error() or
V12Status() after calling mReadDBstructure (see Errors and defensive

m

l

sp
D

you
lice
en

c
you
NoteNoteNoteNote:::: A valid database needs at
least one table, and each table

ust contain at least one field and
at least one index.
 V12-DBE for Authorware User Manual 43

programming) to find out if an error occurred. You may also call mDumpStructure
right after calling mReadDBstructure to check the actual database structure V12-
DBE will build once mBuild is called.

Database structure translation rules from the above ODBC-compliant databases to
V12 Databases vary according to the specific ODBC driver installed on your
computer.

Step 3c: Build the database
Once the database structure is read by mReadDBstructure, whether from a text
file, a DBF file or otherwise, build the database by calling mBuild. mBuild checks if
the database is well defined and creates the file on your disk.

Syntax:
CallObject(database_instance, “mBuild”)

Once the database file is built, the database instance remains valid and data can be
immediately imported into the file. It is as if the database was opened in ReadWrite
mode.

View the structure of a database
You can view the structure of a database with mDumpStructure.

Syntax:
CallObject(database_instance, "mDumpStructure")

Example:
DBdump := CallObject (gDB, "mDumpStructure")

The above example sets the Authorware variable Dbdump to the structure of the
database referred to by gDB.

(*

 Structure of file 'HardDisk:myDatabase.V12'

 created on Thu Apr 25 15:55:07 2002,

 last modified on Tue May 14 15:31:53 2002,

 file format version = V12,3.3,Multi-User

*)

[TABLE]

Articles

[FIELDS]

name string 256

category string 256

price Float

catalognumber Integer

description string 600

[INDEXES]

nameNdx duplicate name ascending (* Default index *)

categoryNdx duplicate category ascending

priceNdx duplicate price ascending

cat#Ndx unique catalognumber ascending

catNameNdx duplicate category ascending name descending

Note: Note: Note: Note: For mBuild to create a
icensed database (that is, one that
does not display an UnRegistered
lash screen when opened), a V12-
BE license file must be present on
r Mac or PC. Since the V12-DBE
nse file cannot be delivered to the

d-user, mBuild cannot be used to
reate new databases at runtime. If
r application needs to create new

databases at runtime, use
mCloneDatabase

(see Cloning a database).

 V12-DBE for Authorware User Manual 44

[FULL-INDEXES]

description

[END]"

Note that the date/hour of the last modification mentioned in the header of the
above output is provided by the Operating System. Therefore, it reflects the
date/hour at which the V12 database was closed regardless of when the
modification occurred.

This output is fully compatible with the database descriptors discussed in Database
Descriptors and thus, can be used as is with mReadDBstructure.

 V12-DBE for Authorware User Manual 45

Step 4: Import data into a V12-DBE database

In Step 3: Create a database, you created a properly structured (although empty)
V12 database. Step 4 explains how to import the data prepared at Step 2: Prepare
the Data into your V12 database.

You can import data into a V12 database through one of the two following
methods:

• using the V12-DBE Tool. This is a convenient point-and-click environment for
small projects.

• using V12-DBE's mImport method in a Script handler. This approach is efficient
when you need to experiment with your database structure or data before
committing to a final form. However, it requires a bit more up-front effort to
write/adapt Script handlers than simply using the V12-DBE Tool.

For extensive examples on how to import databases from a variety of sources,
including Microsoft Access, Microsoft Excel, FoxPro

Import data with the V12-DBE Tool
To import data using the V12-DBE Tool:

1 Choose File > Open… to open the V12 database you want to import data to. A
newly created V12 database automatically opens and data can be immediately
imported to it.

2 In the File menu, you will see the following options for importing data:

­ Import Text File…

­ Import DBF File…

­ Import from V12…

­ Import from FoxPro…

­ Import from Excel…

­ Import from Access…

­ Import from SQL Server…

 Choose the appropriate option for the format for your data.

3 Browse through your disk to locate the file containing the data to import and fill
in any other information necessary to open the file. For some formats you may
also need to specify a table name. Click Import.

If the source data is in more than one file, you can successively import them by
repeating the above steps.

Script the data importing
mImport imports data to a V12-DBE table both at authoring time (i.e., in
Authorware's development environment) and at runtime (i.e., from a packaged
piece).

mImport is very flexible and can be adapted to a large number of situations. It can
import data from:

­ a Text file

­ a literal value, such as a string, a variable, etc.

NoteNoteNoteNote:::: mImport was introduced with
V12-DBE version 3.0. It replaces the

former mImportFile method and is
more comprehensive. Although

mImportFile is still supported in
V12-DBE version 3.2, it will be

phased out in future versions.

 V12-DBE for Authorware User Manual 46

­ a DBF file

­ a V12 database

­ a Script list

­ a MS Access database through an ODBC driver (Win-32 only)

­ a FoxPro file through an ODBC driver (Win-32 only)

­ a MS Excel file through an ODBC driver (Win-32 only)

­ a MS SQL data source through an ODBC driver (Win-32 only)

Data type translation rules from the above ODBC-compliant databases to V12
Databases vary according to the specific ODBC driver installed on your computer.

The general form of a table importing script is:
-- create a V12dbe instance

gDB := NewObject("V12dbe", database_filename, mode, password)

if V12Status <> 0 then GoTo(@"NotifyUser")

-- create a V12table instance

gTable := NewObject("V12table", CallObject (gDB, mGetRef),
TableName)

if V12Status <> 0 then GoTo(@"NotifyUser")

-- import data

CallObject(gTable, "mImport", InputType, InputSource, other params)

if V12Status <> 0 then GoTo(@"NotifyUser")

-- free the V12table and V12dbe instances

DeleteObject(gTable)

DeleteObject(gDB)

gTable := 0

gDB := 0

As for any V12table method, valid instances of V12dbe and V12table must exist
before the method is invoked. This is explained in details in Creating Instances.

mImport's syntax varies significantly according to the selected input source. This is
explained in details in Import data with mImport below.

Deleting Xtra instances when they are no longer needed is mandatory, as explained
in Closing an Xtra, to make sure that the imported data is secured on hard disk.

Import data with mImport
The general syntax for mImport is:

CallObject(table_instance, "mImport", InputType, InputSource, other
params)

where:

• InputType is one of "Text", "DBF", "Literal", "List", "PropertyList", "V12",
"Access", "FoxPro", "Excel" or "SQLserver".

• InputSource is the data to import or a reference to the data to import. It varies
according to the selected InputType.

• other params are parameters that depend upon the selected InputType. For
example, if InputType is "text", other params is an optional property list that
specifies the source text file's field delimiter, record delimiter, etc. If InputType
is "Access", other params are the user name, password and table to import.
The details are explained below.

See Appendix 2: Database Creation and Data Importing Rules for complete
examples of each of the above variations of mImport.

 V12-DBE for Authorware User Manual 47

Step 5: Implementing the user interface

Steps 1 through 4 (Step 1: Decide on a Data Model through Step 4: Import data
into a V12-DBE database) explain how to design, build and import data into a V12-
DBE database.

This section discusses the elements needed to manage your V12-DBE database at
runtime.

There are two basic strategies you can follow when creating your Macromedia
Authorware front-end to your data:

1 Using the V12 Knowledge Objects Library

2 Using Scripting

Using the V12-DBE Knowledge Objects library
The fastest and easiest way to implement V12-DBE into your project's user interface
is to use the V12-DBE Knowledge Objects. Download them from the V12 for
Authorware product page on our web site:
http://www.IntegrationNewMedia.com/products/v12authorware/tools/

Using scripts
As with any V12-DBE method, a valid V12dbe or V12table Xtra instance
(depending on which Xtra the method belongs to) must exist before the method is
invoked.

Generally, you create instances of V12dbe and V12table at the beginning of your
movie, store their references in variables and use those instances throughout your
project.

Likewise, at the end of the execution of your movie, you delete those variables, thus
disposing of the Xtra instances and closing the V12 database file.

The creation of such Xtra instances is often referred to as Opening a Database and
Opening a Table. Disposing the Xtra instances is often referred to as Closing the
Database and Closing the Table instances.

Open and close a database, a table

Open an existing database

Use the NewObject("V12dbe"…) method to open an existing V12 database. If your
V12 database is not created yet, see Step 3: Create a database to learn how to create
it.

Syntax:
gDB := NewObject("V12dbe", database_filename, mode, password)

Opening a database means creating a V12dbe Xtra instance with the following
parameters:

• database_Filename: the name if the database file. This is usually a filename
preceded by the Scripting function FileLocation to indicate that the file is
located in the same folder as the current Authorware piece (see Dealing with
pathnames in Using Xtras).

Tip: Tip: Tip: Tip: Before you commit yourself to
using the V12-DBE Knowledge

Objects Library in your project, you
may first want to ask

support@IntegrationNewMedia.com
or other V12-DBE users on V12-L

<http://www.IntegrationNewMedia.
com/support/list/ > for advice.

TipTipTipTip: If you chose to script the database
creation and importing processes, once

the database file is ready you do not
need those scripts any longer.

Moreover, they do not necessarily need
to be delivered to the end-user.

At this point, you may want to consider
removing those scripts, or storing them
in an appropriate place. You may also

want to keep all the scripts related to
project creation in a single Authorware

piece.

mailto:support@IntegrationNewMedia.com
http://www.integrationnewmedia.com/support/list/
http://www.integrationnewmedia.com/support/list/
http://www.integrationnewmedia.com/products/v12authorware/tools/

 V12-DBE for Authorware User Manual 48

• mode: the mode in which the Xtra instance is opened. To allow for
modifications to the database, open it in "Shared ReadWrite" or "ReadWrite"
mode. If you open your database in "Shared ReadWrite" mode, up to 128 users
can access your database simultaneously (see Multi-user access). If you open
it in "ReadWrite" mode, only one user at a time can access your database. If
you do not allow modifications to your database, open it in "ReadOnly" mode.

• password: the password. If you do not use the correct password, the
database cannot be opened.

Example:
gDB := NewObject("V12dbe", FileLocation ^ "Catalog.V12", "ReadWrite",

"top secret")

Always make sure that the NewObject method succeeded by checking the validity
of the returned reference with V12Status.

Example:
gDB := NewObject("V12dbe", FileLocation ^ "Catalog.V12", "ReadWrite",

"top secret")

if V12Status() <> 0 then GoTo(@"NotifyUser")

Open a table

Records belong to tables. Creating new records, reading the contents of records, and
searching and sorting records are operations that are performed on tables. Prior to
performing any of these operations, you must create a table Xtra instance

Syntax:
gTable := NewObject("V12table", CallObject(gDB, "mGetRef"),

TableName)

To create a table Xtra instance, use the NewObject method with the following
parameters:

• gDB: the database Xtra instance to which the current table belongs.

• TableName: the name of the table to open.

Example:
gTable := NewObject("V12table", CallObject(gDB, "mGetRef"), "Articles")

mGetRef is a standard Xtra method that returns the exact reference of an Xtra
instance.

Always make sure that the NewObject method succeeded by checking the validity
of the returned reference with V12Status.

Example:
gTable := NewObject("V12table", CallObject(gDB, "mGetRef"),

"Articles")

if V12Status() <> 0 then GoTo(@"NotifyUser")

This is a complete example of a script that open a database and one of his table:
gDB := NewObject("V12dbe", FileLocation ^ "Catalog.V12",

"ReadWrite", "pwd")

if V12Status() <> 0 then GoTo(@"NotifyUser")

gTable := NewObject("V12table", CallObject(gDB, "mGetRef"),
"Articles")

if V12Status() <> 0 then GoTo(@"NotifyUser")

-- other init instructions

 V12-DBE for Authorware User Manual 49

Close a table

To close a table, call the DeleteObject method and set the variable that refers to it to
0.

Example:
DeleteObject(gTable)

gTable := 0

Close a database

To close a V12 Database, call the DeleteObject method and set the variable that
refers to it to 0.

 Example:
DeleteObject(gDB)

gDB := 0

Always make sure to dispose of all V12table instances before you dispose of the
V12dbe instance that contains them.

Selection and current record
To read or write data to a record, set it as the current recordrecordrecordrecord. The current record
concept is strongly related to the concept of selselselselectionectionectionection. Both concepts are
fundamental to this section. See Database basics earlier in this manual for more
details.

At any time, the selection is sorted according to one of its fields. You can enforce
that sorting order with mOrderBy (see Sort a selection (mOrderBy)). Otherwise, the
selection's sorting order would be defined by the index chosen by V12-DBE for its
last search. The field that determines the selection's sorting order is called the
master fieldmaster fieldmaster fieldmaster field.

Selection at startup
When a table is first opened, its selection is the entire content of that table sorted by
the field that is indexed by the default index. The first record of that selection –
which is also the first record of the table – is the current record. The default index is
the first index that was defined for the table in the database descriptor. You can use
mDumpStructure to verify which of the table's indexes is the default index (see
View the structure of a database).

You never need to explicitly manage indexes in V12-DBE. The best index is always
chosen by V12-DBE to perform a search.

Select all the records of a table
Call mSelectAll at any time to set the selection to the whole table..

Syntax:
CallObject(table_instance, "mSelectAll")

Example:
CallObject(gTable, "mOrderBy", "StudentID", "ascending")

CallObject(gTable, "mSelectAll")

This example sets the selection to the whole table as referred by gTable, in
ascending order of StudentID’s (lowest to highest). The field "StudentID" must be
indexed for mSelectAll to work efficiently. Otherwise, it would be very slow.

Note:Note:Note:Note: If you want the results of
your query to be sorted, always
call mOrderBy before calling
mSelectAll. See Sort a

selection (mOrderBy)

 V12-DBE for Authorware User Manual 50

Browse a selection
Browsing a selection means changing the position of the current record. The
following methods enable you to change the current record in a selection (to set the
current record to various values related to a given selection).

mGetPosition

mGetPosition checks the position of the current record in a table and returns an
integer between one and the total number of records in the selection.

Example:
currRec := CallObject (gTable, "mGetPosition")

–- the current record's position is assigned to the variable currRec

mGoNext

mGoNext sets the current record to the record following the current record.

Example:
CallObject (gTable, "mGoNext")

Suppose that the current record is the tenth item in the selection. After calling
mGoNext, the current record becomes the eleventh. If the selection contains only
ten records, the current record does not change and a warning is reported by V12-
DBE (see Errors and defensive programming)

mGoPrevious

mGoPrevious sets the current record to the record preceding the current record.

Example:
CallObject(gTable, "mGoPrevious")

Suppose that the current record is the tenth item in the selection. Upon calling
mGoPrevious, the current record becomes the ninth. If the current record is the
first record of the selection, upon calling mGoPrevious the current record does not
change and a warning is reported by V12-DBE (see Errors and defensive
programming)

mGoFirst

mGoFirst sets the current record to the first record of the selection.

Example:
CallObject(gTable, "mGoFirst")

mGoLast

mGoLastsets the current record to the last record of the selection.

Example:
CallObject(gTable, "mGoLast")

mGo

mGo takes an integer parameter (call it n) and sets the current record to the nth item
of the selection.

Example:
CallObject(gTable, "mGo", 11)

 V12-DBE for Authorware User Manual 51

This example sets the current record to the eleventh record of the selection. If no
such record exists, mGo signals a warning.

mFind

mFind sets the current record to one, in the selection, whose Master Field equals or
starts with the keyword provided as a parameter (see definition of Master Field in
Selection and current record).

mFind is a great complement to mGo, which can set the current record only based
on its position in the selection.

The syntax is:
CallObject(gTable, "mFind", "First", Keyword)

CallObject(gTable, "mFind", "Next")

CallObject(gTable, "mFind", "Previous")

where Keyword is the value to look for in the Master Field. If the Master Field is of
type String, the matching record's content must start with Keyword. If it is of type
Integer, Float or Date, it must equal Keyword.

Use the first form (with the "First" parameter), if you want the new current record
to be the first one of the selection that matches Keyword

Use the second form (with the "Next" parameter) if you want it to be the next
record in the selection relative to the present current record. Use the third form
("Previous") if you want it to be the previous record in the selection relative to the
present current record.

If, for example, you run this script:
CallObject(gTable, "mSetCriteria", "Age", ">", 30)

CallObject(gTable, "mOrderBy", "LastName")

CallObject(gTable, "mSelect")

and get this selection:
FirstName LastName Age

Marie Curie 39

Albert Einstein 75

Kurt Gödel 36

Mona Karp 53

Joe Karp 31

Richard Karp 62

Eric Kartman 31

Marshall McLuhan 48

Claude Shannon 33

Alan Turing 36

John Von Neumann 51

The selection's Master Field is "LastName". Thus, a call to mFind would
automatically look for values in this field. For example:

CallObject(gTable, "mFind", "First", "Kar") -- current rec becomes
Mona Karp's

CallObject(gTable, "mFind", "Next") -- current rec becomes Joe
Karp's.

CallObject(gTable, "mFind", "Next") -- current rec becomes Richard
Karp's.

CallObject(gTable, "mFind", "Next") -- current rec becomes Eric
Kartman's.

CallObject(gTable, "mFind", "Next") -- current rec remains Eric
Kartman's.

CallObject(gTable, "mFind", "Previous") -- current rec becomes
Richard Karp's.

NoteNoteNoteNote:::: Because mFind uses the
selection's Master Field, it is

advised that you call mOrderBy
with the appropriate field before
calling mSelect and mFind.

(see Search data with
mSetCriteria).

If you don't call mOrderBy,
mFind sets the current record

based on the Master Field chosen
by default by V12-DBE, which is

either the one indexed by the
default index (if the table was just

opened), or the one indexed by
the best index chosen by V12-

DBE during the last search.

mFind can be used to quickly locate one occurrence of a keyword in a selection
where many duplicate values exist, as opposed to mSetCriteria and mSelect,
which find all occurrences but need more time.

Read data from a database
In order to read or write the content of a record, you must first set it as the current
record. Setting the appropriate current record is accomplished by use of the
mGoNext, mGoPrevious, mGoFirst, mGoLast, mGo and mFind methods (see
Browse a selection).

Read fields of type string, integer, float and date

Once the current record is properly set, mGetField retrieves the data from a specific
field.

Syntax:
var := CallObject(table_instance, "mGetField", fieldName [,

dataFormat])

NoteNoteNoteNote: mGetField retrieves only
unformatted text. If you store

styled text in a V12 record, you
can retrieve the text without the

style formatting using
mGetField.
 V12-DBE for Authorware User Manual 52

Example:
sID := CallObject(gTable, "mGetField", "StudentID")

This example stores the content of the StudentID field from the current record in
the variable sID. You do not need to specify the type of field you are reading. The
Script variable is automatically set to the appropriate type after a successful call to
mGetField (see Typecasting in Database basics).

Example:
Avg := CallObject(gTable, "mGetField", "AverageScore", "99.99")

This example retrieves the formatted content of the AverageScore field to the Avg
variable. The formatting is according to the pattern "99.99". That is, if the field
AverageScore contains the value 1245.5, the string "1,245.50" is returned by
mGetField. Note that the result of a formatted value is always a string.

Data formatting applies to mGetField the same way it does to mDataFormat. If
two distinct formatting patterns are applied to a field with the mGetField option
and mDataFormat, the mGetField option overrides mDataFormat. See Data
formatting for a complete explanation on formatting patterns.

Read one or more entire records

mGetSelection allows for the retrieval of one or more fields in one or more
records of the selection. The result is one of the followings:

• a string where fields are delimited by TABs and records by
CARRIAGE_RETURNs (the default delimiters), or by any other custom
delimiters you specify.

• a list of lists, where each sub-list represents a record and each item of each
sub-list is the data contained in the corresponding field.

• a list of property lists, where each sub-list represents a record and each item
is a property/value pair: the property is the name of the field and the value
is the data contained in it.

• mGetSelection is powerful and flexible. Its behavior depends on the
syntax used to call it. The syntax for mGetSelection to return a result of
type String is:

 V12-DBE for Authorware User Manual 53

CallObject(table_instance, "mGetSelection" [, "LITERAL", [From [, #recs
[, FieldDelimiter [, RecordDelimiter [, FieldNames]*]]]])

The syntax for mGetSelection to return a Script list is:
CallObject(table_instance, "mGetSelection", "LIST" [, From [, #recs [,

FieldNames]*]])

The syntax for mGetSelection to return a Script property list is:
CallObject(table_instance, "mGetSelection", "PROPERTYLIST" [, From [,

#recs [, FieldNames]*]])

where:

• gTable is the instance of the table from which records must be retrieved
(mandatory parameter).

• From is the number of the first record to retrieve data from. It is optional.
The default value is 1.

• #recs is the number of records to retrieve starting from record number
From. It is optional. The default value is the number of records between
From and the end of the selection plus 1 (convenient to retrieve all the
records of a selection starting from record number From).

• FieldDelimiter is the character to use as the field delimiter. It is
optional. The default field delimiter is a TAB.

• RecordDelimiter is the character to use as the record delimiter. It is
optional. The default field delimiter is a CARRIAGE_RETURN.

• FieldNames are the names of the fields to retrieve, in the specified order. If
the field names are omitted, mGetSelection returns the contents of all the
fields of gTable, in their order of creation.

• Besides gTable, all other parameters are optional. However, if a parameter
is present, all its preceding ones must also be present. For example, if
#recs is present, result_format and From must also be present.

• mGetField requires that you set the current record to the record you need
to retrieve data from. mGetSelection does not.

See Appendix 3: mGetSelection examples for complete examples of each of the
above variations of mGetSelection.

Read unique values of a field

mGetUnique returns unique values of the Master Field in a string or a list (See
Selection and current record for a definition of Master Field).

Syntax:

a := CallObject(gTable, "mGetUnique", "LITERAL")

b := CallObject(gTable, "mGetUnique", "LIST")

mGetUnique is very convenient to populate a user interface element (such as
scrolling list or pull-down menu) with search values that are relevant only for a
specific database and context.

Example: In a clothing catalog, you want to display only the available colors for a
specific category and size of product (e.g., T-shirt and XXL). You run this script:

CallObject(gTable, "mSetCriteria", "category", "=", "T-shirt")

CallObject(gTable, "mSetCriteria", "and", "size", "=", "XXL")

CallObject(gTable, "mOrderBy", "color")

CallObject(gTable, "mSelect")

ScrollList := CallObject(gTable, "mGetUnique", "LITERAL")

NoteNoteNoteNote Because mOrderBy
uses the selection's Master Field,
it is recommended that you call
mOrderBy with the appropriate

field before calling mSelect and
mGetUnique.

If you don't call mOrderBy,
mGetUnique returns unique
values from the Master Field

chosen by default by V12-DBE,
which is either the one indexed by
the default index (if the table was
just opened), or the one indexed
by the best index chosen by V12-

DBE for the last selection. See
Selection and current record.

 V12-DBE for Authorware User Manual 54

This script retrieves unique values of the "color" field (which is the Master Field) to
the field "ScrollList". Assuming that your selection contains 30 records (10 with
Color = "Red", 10 with Color = "Green" and 10 with Color = "Blue"), the above
script puts the string:

Blue

Green

Red

in the variable "ScrollList".

Running this script:
CallObject(gTable, "mSetCriteria", "category", "=", "T-shirt")

CallObject(gTable, "mSetCriteria", "and", "size", "=", "XXL")

CallObject(gTable, "mOrderBy", "color")

CallObject(gTable, "mSelect")

ScrollList := CallObject(gTable, "mGetUnique", "LIST")

returns the list:
["Blue", "Green", "Red"]

Data formatting

mDataFormat assigns a display pattern to a field so that all data read from that field
are formatted according to that pattern. All V12-DBE methods that read data from
a formatted field are affected. These include mGetField and mGetSelection

Syntax:
CallObject(table_instance, "mDataFormat", FieldName, Pattern)

The following example forces all data retrieved from the field AverageScore to be
formatted with 2 integral digits and 2 decimal places.

Example:
CallObject(gTable, "mDataFormat", "AverageScore", "99.99")

mDataFormat can be applied to fields of type float, integer and date. String
fields cannot be formatted.

To reset the formatting of a pattern to its original value, call mDataFormat with an
empty string.

Example:
CallObject(gTable, "mDataFormat", "AverageScore", "")

Format integers and floatsFormat integers and floatsFormat integers and floatsFormat integers and floats

Valid patterns for fields of type integer and float contain:

• 9 designates a digit at that position (possibly 0),

• # designates a digit or a space at that position,

• . (period) designates the decimal point,

• any other character is interpreted literally.

This example forces the output of the field ratio to 2 integral digits, 2 decimal
places and a trailing "%" sign:

CallObject(gTable, "mDataFormat","ratio", "99.99%")

TheRatio := CallObject(gTable, "mGetField","ratio")

If the value in field ratio is 34.567, the displayed string is "34.57%".

The pattern "###9999" forces the output of an integer field to be formatted with no
less than four digits and with three leading spaces, if necessary. Thus:

 V12-DBE for Authorware User Manual 55

4 is formatted as " 0004"

123 is formatted as " 0123"

314159 is formatted as " 314159"

3141592 is formatted as "3141592"

31415926 is formatted as "#######"

The last formatting in the above example fails because an eight-digit integer does
not fit in a seven-digit pattern.

The pattern "(999) 999-9999" is convenient for formatting phone numbers stored as
integers. For example:

CallObject(gtable, "mDataFormat", "phone", "(999) 999-9999")

thePhone := CallObject(gTable, "mGetField", "phone")

-- returns something formatted as "(514) 871-1333"

Format datesFormat datesFormat datesFormat dates

Valid patterns for fields of type date are combinations of:

• D for days,

• M for months,

• Y for years,

• any other character is interpreted literally.

This example formats the date in the "Year-Month-Day" numerical format:
CallObject(gTable, "mDataFormat", "TheDate", "YY-MM-DD")

MyDate := CallObject(gTable, "mGetField", "TheDate")

Assume the content of field TheDate for the current record is April 30, 1945 – the
returned string is "45-04-30".

Ds, Ms and Ys can be combined in the following way:

To formatTo formatTo formatTo format Use this sequenceUse this sequenceUse this sequenceUse this sequence

Days as 1-31 D

Days as 01-31 DD

Weekdays as Sun-Sat DDD

Weekdays as Sunday-Saturday DDDD

Months as 1-12 M

Months as 01-12 MM

Months as Jan-Dec MMM

Months as January-December MMMM

Years as 00-99 Y or YY

Years as 1900-9999 YYY or YYYY

NoteNoteNoteNote:::: If a formatting pattern is
assigned to a field, all values

retrieved from that field become
strings (see Typecasting in

Database basics).

 V12-DBE for Authorware User Manual 56

Examples:

The patternThe patternThe patternThe pattern Formats 5 January 1995 asFormats 5 January 1995 asFormats 5 January 1995 asFormats 5 January 1995 as

D 5

DDDD Thursday

MM 01

DD-MM 05-01

MMM DD, YY Jan 05, 95

On D MMMM, YYYY On 5 January, 1995

'Weekday='DDDD; 'Month='
MMMM

Weekday=Thursday; Month=January

In this last example, apostrophes around 'Weekday' and 'Month' are mandatory,
otherwise the "d" in Weekday and the "m" in Month would interfere with the
pattern itself. To specify real apostrophes within date patterns, use two consecutive
apostrophes.

When a table is first opened, the default format of all its Date fields is set to
"YYYY/MM/DD".

By default, the names for the months in V12-DBE are (MMMM)
January, February, March, April, May, June, July, August, September,

October, November, December

The short names for the months are (MMM)
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The names for the weekdays are (DDDD)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

The short names of the weekdays are (DDD)
Sun, Mon, Tue, Wed, Thu, Fri, Sat

All of these names can be replaced by custom names through the properties of the
database (see Properties of databases).

Add records to a database
To add a new record to a V12-DBE table, use mAddRecord, then call mSetField as
many times as needed (typically once for each field of your table) and finally call
mUpdateRecord.

In this example, a new record is created for the item "goggles" and its price is set to
$158.99:

CallObject(gTable, "mAddRecord")

CallObject(gTable, "mSetField", "ItemName", "Goggles")

CallObject(gTable, "mSetField", "Price", 158.99)

CallObject(gTable, "mUpdateRecord")

If mUpdateRecord is not called, the record created with mAddRecord is not saved
to the database. After calling mUpdateRecord, the record is created and kept in a
cache: it is not immediately written to disk. Thus, if the computer crashes or a
power failure occurs, the database file on disk may become corrupt. To ensure that
the newly added records are saved onto the hard disk, Flush the database to the disk
(see FlushToDisk).

NoteNoteNoteNote:::: Only mSetField can
be called after mAddRecord

and before mUpdateRecord.
Calling any other method

aborts the new record adding
process and sets the current

record to the previous current
record.

Thus, if you started to add a
record and wish to abort the

operation, simply call
mGetField instead of calling

mUpdateRecord.

 V12-DBE for Authorware User Manual 57

New records are always added to the end of the selection regardless of the criteria
used to form the selection.

Update data in a database
Writing data is very similar to reading data. Writing data is accomplished with
mSetField. Prior to updating a field, you must set the current record, and your
intentions must be indicated in V12-DBE with mEditRecord. Once this is
completed, V12-DBE will update your database with mUpdateRecord.

After calling mUpdateRecord, the modified record is kept in a cache: it is not
immediately written to disk. Thus, if the computer crashes or a power failure
occurs, the database file on disk may become corrupt. To ensure that the newly
added records are saved onto the hard disk, Flush the database to the disk (see
FlushToDisk).

Write to fields of type integer, float and string

In this example, student #666’s first name is modified for “Bill” and his average
score for 2.72.

The Authorware scripts is as follows:
-- first make sure the current record is properly set

CallObject(gTable, "mEditRecord")

CallObject(gTable, "mSetField", "FirstName", "Bill")

CallObject(gTable, "mSetField", "AverageScore", 2.72)

CallObject(gTable, "mUpdateRecord")

Like mAddRecord, every call to mEditRecord must be balanced with a call to
mUpdateRecord. Calls to mSetField will result in an error if not preceded by
mEditRecord.

If an error occurs when updating a record (e.g. Duplicate Key error in a given field),
none of the preceding calls to mSetField are taken into consideration.

When writing to a field whose type is not the same as the supplied parameter, V12-
DBE tries to cast the parameter to the appropriate type and to interpret it as
accurately as possible (see Typecasting).

Example
CallObject(gTable, "mSetField", "score", "2.72") -– stores 2.72

CallObject(gTable, "mSetField", "score", "xyz") -– stores 0.00

CallObject(gTable, "mSetField", "score", "12.34") -– stores 12.34

Write to fields of type date

Writing to a field of type Date is similar to writing to field of type Integer, Float or
String, except that V12-DBE requires the date to be supplied in raw format
(YYYY/MM/DD).

Example:
CallObject(gTable, "mSetField", "theDate", "1993/02/22") –- is valid

CallObject(gTable, "mSetField", "theDate","02/22/1993") –- is not valid

Storing the current date in Raw format may be difficult as Authorware’s Date
function returns the current date as formatted in the Control Panel settings of the
computer it is running on. In this case, use mGetProperty(gDB,
"CurrentDate") to retrieve the current date in raw format (see CurrentDate in
Properties of databases).

NoteNoteNoteNote:::: Updating the contents of
fields that have a full-index may

take more time to write to the
database than equivalent fields

without full-indexes.

 V12-DBE for Authorware User Manual 58

Delete a record
Call mDeleteRecord to delete the current record.

Syntax:
CallObject(table_instance, "mDeleteRecord")

Example:
CallObject(gTable, "mDeleteRecord")

After calling mDeleteRecord, the record that follows the record being deleted
becomes the new current record. If no record follows the deleted record, the
preceding record becomes the new current record. If no record precedes the deleted
record, the selection is then empty and the current record is not defined.

Delete all the records of a selection
Call mSelDelete to delete all the records of a selection at once.

Syntax:
CallObject(table_instance, "mSelDelete")

After mSelDelete has been completed, the selection is empty and the current
record is undefined.

Search data with mSetCriteria
When searching data, you often need to isolate a specific group of records that
satisfy a common condition in a table. These conditions are called search criteria search criteria search criteria search criteria
and the subset of isolated records is the selectionselectionselectionselection (see Database basics for an
explanation of selections and current records). mSetCriteria is the method used
to specify search criteria, followed by mSelect to trigger the search process.

Syntax:
CallObject(table_instance, "mSetCriteria", FieldName, operator, Value)

CallObject(table_instance, "mSelect")

Simple search criteria

A search criterion has at least three characteristics:

• FieldName: this is a valid field name in the table instance,

• operator: this is a comparison keyword. Valid operators are =, <, <=, >, >=,
<>, starts, contains, wordStarts and wordEquals.

• value: this is the value to which the field contents must be compared, in order
to be selected.

This example selects all records with scores lower than 12.
CallObject(gTable, "mSetCriteria", "score", "<", 12)

CallObject(gTable, "mSelect")

Upon completion of mSelect, the resulting selection contains the set of records that
satisfy the defined criteria. In the above example, all records that contain a score
field with a value that is strictly smaller than 12 are selected. In addition, the
selection is sorted with an increasing order of prices given that a search with a
defined ascending index was performed on that field.

The current record is the first record of that selection. In our example, it would be
the record with the lowest score.

NoteNoteNoteNote: Use this method with
caution. There is no way to

undelete records in V12-DBE. As
a general rule, avoid giving direct
access of this method to the end-
user through your user interface.

 V12-DBE for Authorware User Manual 59

If you want the selection sorted in an order other than the one proposed by
mSelect, you can do so by calling mOrderBy right before calling mSelect.
However, keep in mind that this may cost some additional processing time.

Values provided to mSetCriteria need to be in the same type as FieldName. As
discussed in Database basics / Typecasting, V12-DBE tries to automatically
typecast value to the proper type. Borderline conditions such as criteria containing
extra spaces, carriage returns or other unwanted characters must be avoided.

Example:
CallObject(gTable, "mSetCriteria", "score", "<", "100")

is strictly equivalent to
CallObject(gTable, "mSetCriteria", "score", "<", 100.00)

but beware of the unpredictable results of
CallObject(gTable, "mSetCriteria", "score", "<", "..100.00..")

Operations on fields of type Date require that Value be supplied in raw format (see
Step 2: Prepare the Data /Dealing with dates). This example locates all records
where field theDate contains a date occurring before May 21st, 1997.

mSetCriteria(gTable, "theDate", "<", "1997/05/21")

Sort a selection (mOrderBy)

You can define a sort order on a selection by calling the mOrderBy method prior to
calling mSelect. Specify the sorting order (whether ascending or descending)
and the field upon which the sort is performed.

Example:
CallObject(gTable, "mSetCriteria", "LastName", "starts", "Mac")

CallObject(gTable, "mOrderBy", "score", "descending")

CallObject(gTable, "mSelect")

The above example selects all hats in gTable and returns a selection sorted by a
descending order of prices (most expensive to least expensive).

If mOrderBy is not called before calling mSelect, the sort order of the selection
depends on the index used to perform the search. That index is automatically
chosen by V12-DBE to optimize the search time. See mOrderBymOrderBymOrderBymOrderBy in the V12V12V12V12----DBE DBE DBE DBE
Methods Reference Methods Reference Methods Reference Methods Reference manual....

Operators

Following is a list of valid operators and their meanings. Although comparisons of
integers, floats and dates are straightforward, comparing strings and custom
string types depends on how those comparison rules are defined (see Appendix 4:
String and custom string types).

Equal (=)Equal (=)Equal (=)Equal (=)

The "=" operator is used to locate data that exactly match the specified value.

Example:
CallObject(gTable, "mSetCriteria", "score", "=", 3.14)

specifies a search for records that contain exactly the score 3.14 .

Example:
CallObject(gTable, "mSetCriteria", "FirstName", "=", "John")

specifies a search for records that contain exactly the first name John. Other first
names such as Johnny or John-Paul will not be selected. Since V12-DBE does not

 V12-DBE for Authorware User Manual 60

differentiate upper case and lower case characters, “john” and “John” will also be
selected.

Not Equal (<>)Not Equal (<>)Not Equal (<>)Not Equal (<>)

The "<>" operator has the opposite effect of the "=" operator. It is used to locate
data that are different than the specified value.

Example:
CallObject(gTable, "mSetCriteria", "score", "<>", 9.99)

specifies a search for all records except those that contain a score of 9.99.

Less than (<)Less than (<)Less than (<)Less than (<)

The "<" operator is used to locate data that are strictly smaller that the specified
value.

Example:
CallObject(gTable, "mSetCriteria", "score", "<", 10)

specifies a search for scores lower then 10. Scores equal to or higher then 10 are not
selected.

Example:
CallObject(gTable, "mSetCriteria", "LastName", "<", "M")

specifies an alphabetical search for records with last names that precede the letter
“M”. This includes all last names from A to L, and excludes last names that begin
with an M.

Less or equal (<=)Less or equal (<=)Less or equal (<=)Less or equal (<=)

The "<=" operator is used to locate data that are smaller or equal to the specified
value.

Example:
CallObject(gTable, "mSetCriteria", "score", "<=", 10)

specifies a search for scores no higher than 10 (including scores of 10).

Example:
CallObject(gTable, "mSetCriteria", "LastName", "<=", "Mad")

specifies a search for records with last names that alphabetically precede the word
“Mad”. This includes all last names from A to M, including names such as
“Macaroni” and “MacDonald” but excluding “McGill” and “Mobutu”.

Greater than (>)Greater than (>)Greater than (>)Greater than (>)

The ">" operator is used to locate data that are strictly larger than the specified
value.

Example:
CallObject(gTable, "mSetCriteria", "studentID", ">", 950)

specifies a search for students who’s ID is larger than 950. Sudent ID #950 will not
be selected.

Example:

CallObject(gTable, "mSetCriteria", "birth date", ">", "1961/12/31")

specifies a search for records with a "birth date" field occurring after Dec 31st, 1961,
(excluding that date). The earliest birth date in the selection should be Jan 1st, 1962
or later.

 V12-DBE for Authorware User Manual 61

Greater or equal (>=)Greater or equal (>=)Greater or equal (>=)Greater or equal (>=)

The ">=" operator is used to locate data that are larger or equal to the specified
value.

Example:
CallObject(gTable, "mSetCriteria", "studentID", ">=", 950)

specifies a search for student’s who’s ID is larger or equal to 950. Student ID #950
will be selected.

Example:
CallObject(gTable, "mSetCriteria", "birth date", ">=", "1961/12/31")

specifies a search for records with a "birth date" field occurring on or after Dec 31st,
1961. Therefore, the earliest birth date in the selection may be Dec 31st, 1961.

StartsStartsStartsStarts

The "starts" operator can be used with fields of type string only (including custom
string types). It locates records that start with a given sub-string in the specified
field.

Example:
CallObject(gTable, "mSetCriteria", "LastName", "starts", "Mac")

sets records with last names beginning with "Mac”, such as MacIntosh, MacDonald
and Mac for selection.

If an index is defined on the field description, the search process is very fast. If
not, the search takes more time but can be performed nonetheless.

ContainsContainsContainsContains

The "contains" operator can be used with fields of type string only (including
custom string types). It locates records that contain a given sub-string in the
specified field.

Example:
CallObject(gTable, "mSetCriteria", "Resume", "contains", "DOS")

sets records with resumes containing the string “DOS” for selection.

Searches using the "contains" operator are inherently sequential. They cannot take
advantage of any index definition and can be very slow.

WordStartsWordStartsWordStartsWordStarts

The "wordStarts" operator can be used only with fields of type string (including
custom string types) with defined full-indexes. It locates records that contain words
that fully or partially match the value specified to mSetCriteria.

Example:
CallObject(gTable, "mSetCriteria", "fld", "wordStarts", "ham")

sets records for selection containing descriptions such as "Gigantic hamburger with
fries" and "The greatest hammer in the world". It does not find records containing
descriptions such as "Champion" or "Gotham City" because the words in these
records don't start with the sub-string "ham".

Note:Note:Note:Note: Although words such as
"hamburger" and "hammer" can
be quickly found by the example

query uing "wordStarts", the
word "ham" will never be found

because it is shorter than the
minimum word length set for
full-indexing, and therefore is

not stored in the index.

Since "wordStarts" operates on full-indexes, searching is performed very quickly.

WordEqualsWordEqualsWordEqualsWordEquals

The "wordEquals" operator can be used only with fields of type string with
defined full-indexes. It locates records that contain words that fully match the value
specified to mSetCriteria.

Example:
CallObject(gTable, "mSetCriteria", "fld", "wordEquals", "ham")

sets records for selection containing descriptions such as "green eggs and ham".
Records containing words such as "hams" or "hamburger" would not be selected.

m

cas

NoteNoteNoteNote: Words shorter than the
inimum word length set for full-

indexing cannot be looked for
with the "wordEquals" or

"wordStarts" operators. In such
es, you must use the "contains"

operator instead.
Since "wordEquals" operates on full-indexes, searching is performed very quickly.

Difference between ‘Contains’ and ‘WordStarts'Difference between ‘Contains’ and ‘WordStarts'Difference between ‘Contains’ and ‘WordStarts'Difference between ‘Contains’ and ‘WordStarts'

Why should you bother using the slow "contains" operator if "wordStarts" does the
job faster?

Because "wordStarts" requires that a full-index be defined on a field. Full-indexes
allow for quick searches, but require more disk space and more time when updating
data.

Another reason is that "wordStarts" can only search for words that match or begin
with a given string. For example, if the description field of a certain record contains
the text "Dark chocolate with hazelnuts":

CallObject(gTable, "mSetCriteria", "descr", "contains", "cola")

would locate that record ("chocolate" contains the sub-string "cola"), whereas
CallObject(gTable, "mSetCriteria", "descr", "wordStarts", "cola")

would not. This is because no word in the description field starts with the string
"cola".

Complex search criteria

mSetCriteria can also be called with four parameters. The additional parameter
is the Boolean operator "AND" or "OR". It is added to the second call to
mSetCriteria and inserted before the field to be searched.

Example:
CallObject(gTable, "mSetCriteria", "LastName", "starts", "Mac")

NoteNoteNoteNote: Complex searches that use
the OR operator are always

slower than those that use the
AND operator. This is true with
V12 Database Engine as well as

with most other database
management systems.
 V12-DBE for Authorware User Manual 62

CallObject(gTable, "mSetCriteria", """"and", "score", "<=", 50)

CallObject(gTable, "mSelect")

The above example selects the records of all students whose last name starts with
”Mac” and whose score is lower or equal to 50.

The first call to mSetCriteria should use three parameters, and it can be chained
with as many four-parameter calls as needed to specify your query. Using
mSetCriteria with three parameters will reset and ignore the preceding search
criteria.

Another example, using the Boolean "OR" operator is:
CallObject(gTable, "mSetCriteria", "LastName", "starts", "Mac")

CallObject(gTable, "mSetCriteria", "or", "LastName", "starts", "Mc")

CallObject(gTable, "mSetCriteria", "or", "LastName", "=", "Mobutu")

CallObject(gTable, "mSelect")

It selects all records whose "LastName" field starts either with "Mac" or starts with
"Mc" or matches exactly "Mobutu".

 V12-DBE for Authorware User Manual 63

Complex criteria are very powerful but can be tricky to use. This example
illustrates complex criteria.

CallObject(gTable, "mSetCriteria", "LastName", "=", "MacDonald")

CallObject(gTable, "or", "mSetCriteria", "LastName", "=", "McGill")

CallObject(gTable, "and", "mSetCriteria", "score", "<=", 50)

CallObject(gTable, "mSelect")

This section of script selects all MacDonalds and all McGills who’s scores are lower
than 50. This is very different from:

CallObject(gTable, "mSetCriteria", "LastName", "=", "MacDonald")

CallObject(gTable, "and", "mSetCriteria", "score", "<=", 50)

CallObject(gTable, "or", "mSetCriteria", "LastName", "=", "McGill")

CallObject(gTable, "mSelect")

where the selection consists of all MacDonalds with scores lower that 50 and all
McGills regardless of their scores.

To illustrate the semantic difference between the two requests, we could express the
first as:

(LastName = "MacDonald" or LastName = "McGill") and score <= 50

whereas the second could be written as:
(LastName = "MacDonald" and score <= 50) or LastName = "McGill"

Important: Important: Important: Important: The current version of V12-DBE does not have the ability to perform
searches such as

 name = "hat" or (name="helmet" and price<=50)

 (note the parentheses).

The first two criteria are always grouped first and the third criteria is added to the
result.

Partial selections

The selection process can be time-consuming if a large number of records match the
criteria you specify. The worst-case scenario is when all the records of a table match
the specified criteria. This can handicap your project if you have no control over the
queries the end-user can express.

To speed up the selection process, you can limit the number of records V12-DBE
places in the selection with this syntax of mSelect.

CallObject(table_instance, "mSelect", from, #recs)

Example:

CallObject(gTable, "mSetCriteria", "LastName", "=", "Smith")

CallObject(gTable, "mSelect", 1, 100)

The above example returns up to a maximum of 100 records in the selection,
regardless of the total number of Smith in the database. If less than 100 Smith exist,
all of them would be selected.

To retrieve the next 100 records that contain "Smith" in the "LastName" field, call:

CallObject(gTable, "mSelect", 101, 100)

Check the size of a selection

It is sometimes useful to know the number of items localized in a selection. This is
the purpose of the mSelectCount method.

Example:

NoteNoteNoteNote Partial selections also
work with complex searches, but

not all of them. They are only
accepted for complex searches

that do not use full-text indexes
(i.e., WordStarts or

WordEquals).

 V12-DBE for Authorware User Manual 64

CallObject(gTable, "mSetCriteria", "FirstName", "=", "Elmo")

CallObject(gTable, "mSelect")

selSize := CallObject(gTable, "mSelectCount")

In this example, the number of records in the selection (the number of items named
"Elmo") is stored in selSize.

Exporting data
mExportSelection allows exporting of data from a V12-DBE table to TEXT or
DBF files (DBase III). Only the selected records are exported (i.e. those in the
selection). To export a complete table, make sure it is entirely selected first (see
Selection and Select all the records of a table).

Exporting in TEXT format

The syntax for exporting all the fields of a table's selection is:
CallObject(table_instance, "mExportSelection","TEXT", FileName)

The above instruction exports all the fields of the selection to the file named
FileName. The field and record delimiters are TAB and CARRIAGE_RETURN
respectively.

To specify custom field and record delimiters, use:
CallObject(table_instance, "mExportSelection","TEXT", FileName,

FldDelimiter, RecDelimiter)

Example:
CallObject(gTable, "mExportSelection", "TEXT", FileLocation ^

"Output.txt", "~", "%")

This example exports the selection in a text file named "Output.txt" with the field
delimiter "~" and the record delimiter "%".

mExportSelection can also export only selected fields in the following way:
CallObject(table_instance, "mExportSelection", FileLocation ^ "TEXT",

FileName, FldDelimiter, RecDelimiter, Field1, Field2, ...)

Example:
CallObject(gTable, "mExportSelection", "TEXT", "Data.TXT", TAB, RETURN,

"ItemName", "catalog number", "price")

This example exports the selection in a text file named "Data.TXT" with TAB and
RETURN delimiters. The only exported fields are ItemName, catalog number
and price, in that order.

The first line in the exported file contains the names of the exported fields separated
by the selected field delimiter. The resulting text file is in the character set of the
current Operating System (this is relevant only if accented characters are present in
the exported data).

mExportSelection takes the format patterns specified in mDataFormat into
account. The sorting order of the exported records is identical to the one set on the
selection.

Exporting in DBF format

The parameters for exporting DBF files are identical to those of exporting text,
without the field and record delimiters.

Example:
CallObject(gTable, "mExportSelection", "DBF", "Goliath.DBF")

-- exports all fields of gTable

Or:

 V12-DBE for Authorware User Manual 65

CallObject(gTable, "mExportSelection", "DBF", "Goliath.DBF",
"ItemName", "catalog number", "price")

-- exports only fields ItemName, catalog number and price.

These rules apply when exporting to a DBF file format

• String fields are exported to fields of type Character, if the buffer size of the
string field is declared to be no larger than 255 characters. Otherwise, they are
exported to field of type Memo.

• Integer fields are exported to fields of type Numeric.

• Float fields are exported to fields of type Numeric with 10 digits after the fixed
point.

• Date fields are exported to fields of type Date.

Cloning a database
Cloning a database makes a copy of an existing database file, with all the table, field
and index definitions but with none of the data. This is similar to creating a
database file from a template rather than starting a new project. Contrary to
creating a database with mReadDBstructure (which requires a V12-DBE license to
create legal V12-DBE databases) this method can be used at runtime.

Syntax:
CallObject(db_instance,”mCloneDatabase”, new_pathname)

Example:
CallObject(gDB, “mCloneDatabase”, FileLocation ^ "myClone.V12")
if V12Status() <> 0 then GoTo(@"NotifyUser")

gDB_cloned := NewObject("V12dbe", FileLocation ^ "myClone.V12",
“ReadWrite”,”secret password”)

In this example, a new database file named "myclone.V12" is created using the
same tables, fields and index definitions, as well as the same password as the
database file designated by the global variable gDB. This implies that the original
database file, designated by gDB, must be opened with the appropriate password
before cloning. After the new database has been cloned, you need to create an
instance of it, using NewObject, before you can use it.

Freeing up disk space (packing)
Most database management systems, including V12-DBE, do not reclaim the space
freed by deleted records, for the sake of performance. Consequently, as records are
created and deleted, the size of the database grows continuously. mPackDatabase
can be used periodically to reclaim lost bytes.

Syntax:
CallObject(database_instance, "mPackDatabase", NewFilePathName)

Example:
CallObject(gDB, "mPackDatabase", FileLocation ^ "Packed_DB.V12")

CallObject(gDB, "mPackDatabase",
"LAN/Shared/Projects/Barney/KidsStuff.V12")

This example compresses gDB into a new file named Packed_DB.V12 located in
the same folder as the current Authorware piece.

At the end of the operation, database_instance stays valid (referring to the non-
packed database) and NewFilePathName is a new file that can be opened with V12-
DBE.

 V12-DBE for Authorware User Manual 66

If you just need to compress your current database without creating a new file, you
can do so by compressing it into a new temporary database, deleting your initial
database and renaming the temporary database to your initial database's name.

-- let fName be your V12 database's name

-- first make sure to set all table instances to 0

DeleteObject(gTable)

gTable := 0

CallObject(gDB, "mPackDatabase", FileLocation ^ "temp.V12")

if V12Status() <> 0 then GoTo(@"NotifyUser")

DeleteFile(FileLocation ^ fName)

RenameFile(FileLocation ^ "temp.V12", FileLocation ^ fName)

Fixing corrupted database files
Databases may become corrupt if a power failure or system crash occurs while
updating records. Therefore, V12-DBE is unable to reopen the database and returns
an explicit error code when trying to create a database instance.

Some of these corrupt databases can be fixed with mFixDatabase. The syntax for
mFixDatabase is:

 CallParentObject("V12dbe", "mFixDatabase", pathname, new_pathname)

pathname is the name of the database to fix and new_pathname is the name of the
fixed database, which may reside on a different volume.

mFixDatabase is a static method (its first parameter is the Xtra library itself, not on
an instance of V12dbe). In this example:

CallParentObject("V12dbe", "mFixDatabase2, "Crash.V12",
"Recovered.V12")

mFixDatabase tries to read data from "Crash.V12" and saves the data to
"Recovered.V12".

Checking the Vversion of the Xtra
At authoring time, you check the V12-DBE Xtra's version by opening its Get Info
window in the MacOS Finder, or by checking its Properties in Windows' Explorer.

Both at authoring time and runtime, you can call mXtraVersion to retrieve the
version of the Xtra.

Example:
xtraversion := CallParentObject("V12dbe", "mXtraVersion")

Changing a password
You can change the password assigned to a database by using the mSetPassword
method. The new password can be an empty string. The syntax is as follows:

CallObject(database_instance, "mSetPassword", oldPassword, newPassword)

Example:
CallObject(gDB, "mSetPassword", "houdini", "ali baba")

Dynamically downloading databases via the Internet
V12 has the ability to dynamically download an updated database via the Internet
to a local storage device. V12Download is the method that you use to replace a
database on a user’s local drive.

The syntax is as follows:

NoteNoteNoteNote: mFixDatabase
attempts to save a corrupted file as

much as possible, but there is no
guarantee on the result.

mFixDatabase essentially
attempts to rebuild the indexes of

a damaged V12-DBE file, but if
the file's headers or data clusters

are damaged, chances are that the
recovery process will fail.

 V12-DBE for Authorware User Manual 67

The syntax is as follows:
V12Download(url, local_file, password, completion_callback_variable,

status_callback_variable)

V12download resumes and returns control to Authorware immediately after
initiating the download query. It updates the variable
status_callback_variable as frequently as possible during download
(generally used to display the download status in the user interface) and updates the
variable completion_callback_variable when the download is complete
(generally used to determine when to open the database and start working with it).

If a local V12 database of the same name already exists, the downloaded file
replaces it. The Xtra automatically ensures that it is a valid V12 database and its
password is supplied and correct.

For an example of its use, see the V12 Methods Reference: V1V12 Methods Reference: V1V12 Methods Reference: V1V12 Methods Reference: V12Download.2Download.2Download.2Download.

V12DownloadInfo is a method that you can use to determine the size of the
database to be downloaded. This can be useful in determining whether or not the
database has changed since the last time it was downloaded. Due to the fact that
not all HTTP servers support time and date stamps on files, this method helps you
diagnose the status of the database files.

Tip: Tip: Tip: Tip: You may also want to
consider having an associated text

file or a separate database with a
time stamp or other important

information within it, which you
can use to determine whether or
not the database has changed or

needs to be downloaded.

 V12-DBE for Authorware User Manual 68

Errors and defensive programming

Error management in applications

Effective error management is key to any reliable script or program. If you choose
to implement your project with the V12-DBE Knowledge Objects Library, you
automatically take advantage of this Library's efficient built-in error management.
You just need to make sure that the "Show Alert on Error" check box is checked
when dragging/dropping a Knowledge Object.

V12-DBE's Script interface provides methods that allow you to keep a close check
on your programming. Use the global functions V12Status() and V12Error(), to
confirm each step of database creation and handling.

As well, Authorware has an interesting tool to help you detect your script errors:
the Control Panel (by putting traces), available in the Windows menu. Also, a good
tool to take advantage of in database projects that write data to a storage device is
FlushToDisk. It will help you ensure that all of your data is written to the storage
device at important intervals, flushing the disk cache.

Checking the status of the last method called
Call V12Status() after each call to V12-DBE methods (both V12dbe and V12table
methods) to check its outcome. V12Status() returns 0 if no error occurred during
the execution of that method. Otherwise, it returns a non-zero error code.

Example:
theID := CallObject(gTable, "mGetField", "StudentID")

if V12Status <> 0 then GoTo(@"NotifyUser")

V12Status() returns a non-zero result, you can call V12Error() to get the details
of the error. When called with no parameter – as in V12Error()- this global
function returns a plain-English explanation of the outcome of the last called
method. If an error occurred in that last call to V12-DBE, V12Error() provides a
detailed contextual report on it.

Example:
aPrice := CallObject(gTable, "mGetField", "price")

if V12Status <> 0 then

 GoTo(@"NotifyUser"))

end if

NotifyUser would then call V12Error() and display the message to the user. For an
example of how to implement this type of feedback, download the V12V12V12V12----DBE QuizDBE QuizDBE QuizDBE Quiz
on the Demos section of our webiste at:
http://www.integrationnewmedia.com/products/v12authorware/demos/.

Errors and warnings
Typically, two types of faults can occur in using V12-DBE:

• ErrorsErrorsErrorsErrors, which lead to major problems that require that you, stop the execution
of your script.

• WarningsWarningsWarningsWarnings, which happen while executing certain instructions partially or in
borderline conditions that you need to be aware of.

Note:Note:Note:Note: Usually, you call
V12Status() to get an error

or warning code, then
V12Error() to get a full

explanation of that error or
warning. Alternatively, your

application can choose to
handle specific error codes

uniquely.

http://www.integrationnewmedia.com/products/v12authorware/demos/

 V12-DBE for Authorware User Manual 69

An example of an error is File not found, when trying to import data. When a file is
not found, it does not make sense to continue the importing operation until the
problem is solved.

An example of a warning is No previous record, when trying to go to the previous
record from the first record of the selection. In such a case, the current record
remains valid (although unchanged).

V12Status() returns negative codes for errors and positive codes for warnings.
Often, the term error is used to designate faults of both types (i.e. errors and
warnings).

Based on the value returned from V12Status() you can display specific messages
to your end-users.

Example:

CallObject(gTable, "mSetCriteria", "UserName", "=", EnteredName)

errCode := V12Status()

if errCode = -8690 then

 ErrorMessage:="Please fill in your username."

 GoTo(@"Show Message and Retry")

end if

CallObject(gTable, "mSelect”)

In this example the application reminds the user to fill in his name before doing the
search operation.

For a complete listing of all V12 error codes, consult the V12-DBE Methods
Reference and Error Codes manual or V12 Help. Both are available for download
from:
http://www.integrationnewmedia.com/support/v12authorware/manuals/.

Using the verbose property
The verbose property offers a convenient way to monitor and debug your
application’s interactions with a V12 database during the testing phase. When
verbose is turned “on”, both successful v12 method calls and errors are reported to
Authorware’s Control Panel window. Turn verbose “on” at the beginning of a
script segment that includes several V12-DBE method calls; then turn it “off” at the
end of that section of code. Although verbose allows you to monitor database
activity while in authoring and testing mode, it should not substitute for checking
V12Status and handling runtime errors.

Make sure all calls to CallObject(gDB, "mSetProperty", "verbose", "on")
are deleted or commented out before distributing your application. For more
information on the verbose property see Verbose in Properties of databases.

http://www.integrationnewmedia.com/support/v12authorware/manuals/

 V12-DBE for Authorware User Manual 70

Delivering to the end user

V12-DBE is designed in a way that minimizes any last minute changes needed
before delivery to the end-user. Unlike other database management systems where
you need to swap the development version of certain files with the runtime versions,
no swapping is required with V12-DBE.

Standalone packaged pieces
You deliver the Xtra file V12-DBE for Authorware.XTR (on Mac) and/or V12-
DBE for Authorware.X32 (on Windows). For an Xtra to be available to an
Authorware packaged piece, you must to place it in a folder named "Xtras" located
in the same folder as the packaged piece itself.

V12-DBE databases are cross-platform compatible.

As stated in the licensing agreement, you DO NOT deliver the license file
"V12-30a.LIC", which is in the System:Preferences folder of your Macintosh, or the
Windows\System folder of your PC. It is not needed, nor is it recommended that
you distribute this file to end users, because it contains your personal licensing
information.

Web-packaged pieces
Authorware can automatically download Xtras via the Internet. If you are using
V12 in your project, you need to ensure that all end-users have the Xtras properly
installed and running before executing any V12 functions.

After the completion of a piece, you can package it for the web by using the Web
Packager tool from Macromedia. In Authorware 6 and higher, the one-button
publishing function creates a web package as well as a regular packaged piece.
You can embed the web-packaged piece in an HTML page and put the web-
packaged piece and all its external files on a web server.

See the TechNote named, How to rename V12-DBE Xtra for web-packaged pieces, , , ,
for special instructions for web packaging pieces that use V12-DBE for Authorware.

Testing for end-users
It is always a good idea to thoroughly test the product before delivering it to the
end-user. Tests must be performed on computers with configurations very similar
to those of end-users. However, if you need to perform end-user tests on the
computer that contains the V12-DBE license, you can reproduce an end-user
environment by proceeding as follows:

• Make sure Authorware or an Authorware packaged piece is not running.

• Open the System:Preferences folder of your Macintosh, or the
(Windows\System folder) of your PC.

• Move the V12*.LIC file out of that folder to the destination of your choice,
except of course, the trashcan or the recycle bin.

• Open your project either with a packaged piece or Macromedia Authorware and
perform the tests.

• Once the tests are completed, close the packaged piece or Macromedia
Authorware and put the license file back in its original folder.

NoteNoteNoteNote: DO NOT attempt to
rename or tamper with the
license file. If you do, you

may need to re-register
V12-DBE.

http://www.integrationnewmedia.com/support/v12authorware/technotes/

 V12-DBE for Authorware User Manual 71

Advanced feature: Multi-user access

Multi-user access
V12-DBE allows for multi-user access to its databases. This means that a V12-DBE
file can be shared by many users, provided the V12-DBE file is available to them on
a mounted volume.

An icon on the desktop represents a mounted volume on the Macintosh computer.
You can mount such a volume by selecting it in the Chooser, from the Apple menu.

On Windows, a mounted volume is either a volume that is mapped to a drive letter
or a volume or partition accessible in the Network Neighborhood.

Opening a file in Shared ReadWrite mode
To open a V12 database in a multi-user environment, create a V12dbe Xtra instance
in "Shared ReadWrite" mode. Syntax:

gDB := NewObject("V12dbe", File_Pathname, "Shared ReadWrite",
"MyPassword")

Mac OS example:
NewObject("V12dbe", "MyNetworkDrive:Data:Catalog.V12", "Shared

ReadWrite", "password")

Windows example (F is a mapped volume):
NewObject("V12dbe", "F:\Data\Catalog.V12", "Shared ReadWrite",

"password")

Windows example:
NewObject("V12dbe", "//BigServer/Data/Catalog.V12", "Shared ReadWrite",

"password")

At most 128 users can open a V12-DBE file in Shared ReadWrite mode.

Shared access rules and exceptions
V12 Database Engine relies on Windows and MacOS file and network managers to
access shared files on a LAN. Thus, the following exceptions apply:

• If a V12 database is open in Shared ReadWrite mode by one or more V12-DBE
clients, new clients can open it only in Shared ReadWrite mode. Shared
ReadOnly opening is refused until the last client has dismissed its V12-DBE Xtra
instances. If a V12 database is open by one or more V12-DBE clients in Shared
ReadWrite mode, any Mac client will also be able to open it in Shared
ReadOnly mode.

• If a V12 database is open in Shared ReadOnly mode by one or more V12-DBE
clients, both Shared ReadOnly and Shared ReadWrite access are permitted.
However, if a client opens the database in Shared ReadWrite mode, all Shared
ReadOnly operations are suspended until the Shared ReadWrite instances are
dismissed.

As before, only Microsoft and Apple networking protocols are supported. Third
party networking software such as Dave, CopsTalks, etc. are not supported.

Shared databases and record locking
If you want to allow users to modify the content of your shared database, note the
following rules:

Note:Note:Note:Note: If a user opens a database
in "Shared ReadWrite" mode, any

attempt to open it in ReadWrite,
ReadOnly or Shared ReadOnly

mode will fail.
If a database is open in "Shared

ReadWrite", other users can also
open it in "Shared ReadWrite"

mode.
If a database is open in an

exclusive mode ("ReadWrite" or
"ReadOnly"), it cannot be opened

by any other user.

Note: Note: Note: Note: Although up to 128 users
can share the same V12 database

over a network, performance
degrades rapidly if records must

be read or written concurrently. If
such situations occur in your

project, we recommend using a
client-server architecture, such as

our GoldenGate Database
Connector

http://www.GGdbc.com

http://www.ggdbc.com/

 V12-DBE for Authorware User Manual 72

• V12-DBE uses a record locking technique, which means that if a user is editing
the current record after a mEditRecord, no other user can call mUpdateRecord
until that user is finished. Any other call to mEditRecord fails because the
record is locked. Both V12Error() and V12Status() report such failures, so
your application can alert the user with an appropriate message when this
occurs.

• Any attempt to retrieve the content of a locked record using mExportFile,
mGetSelection, etc., returns a warning and cancels the action.

If many users proceed to make modifications on the same table simultaneously,
synchronization problems may arise between the actual content of the table and the
selection as reflected in the users' V12table instances. Such instances must be
"refreshed" by invoking mSelect(). To detect whether a table has been modified
by another user, call mNeedSelect() at any time. mNeedSelect() returns TRUE
if records have been added, deleted or modified since the current instance last called
mSelect(). In some cases, it is a good idea to check for mNeedSelect() on idle
and refresh the displayed records when signaled to do so.
Example:

If (CallObject(gTable, "mNeedSelect")) then

 CallObject(gTable, "mSelect")

 -- do whatever necessary to refresh the display

end if

Counting the number of users
The sharedRWcount property is ReadOnly and non persistent. It returns the
number of users currently sharing the V12-DBE database file in Shared ReadWrite
mode.

Syntax:
CallObject(gDB, "mGetProperty", "sharedRWcount")

 V12-DBE for Authorware User Manual 73

Possible configurations

Scenario 1

User 1 and User 2 access the same V12 database
on a Remote Server. This is the typical multi-user
access configuration.

Scenario 2

User 2 accesses the same V12 database file as User
1, on User 1’s computer. User 1 and User 2 use
separate instances of the projector and V12-DBE
Xtra.

Scenario 3

User 1 with two distinct Projectors, each with its
own copy of the V12-DBE Xtra that share a single
V12 database. NOTE: for the Mac version to
properly run in this scenario, File Sharing must be
set and the V12 database must be in a shared
folder.

Scenario 4

User 1 and User 2 share the same projector, V12-
DBE Xtra, and V12-DBE database file (this
scenario requires a locked projector file on a
Windows computer).

Customizing the V12 database engine

Progress indicators
V12 Database Engine can display a progress indicator to the user when performing
time-consuming tasks such as mImport, mExportFile, mGetSelection, mSelect,
mSelDelete, mFixDatabase and mPackDatabase. Such a progress indicator can
optionally feature a Cancel button to enable users to interrupt the current task. You
can also replace the standard V12-DBE progress bar by any custom progress
indicator you provide via Authorware and Scripting.

To activate the progress indicator, set the ProgressIndicator property to
With_Cancel, Without_Cancel or UserDefined. To deactivate it, set it to None.

m

w

o
pr
NoteNoteNoteNote: mSelect preceded by
SetCriteria with simple or

complex criteria enables the
display of a single progress

indicator for the selection task,
except if the criteria contain

ordStarts or wordEquals
perators. In that case, as many
ogress indicators as criteria are

displayed.
 V12-DBE for Authorware User Manual 74

Options of the progressIndicator property

With_Cancel

V12-DBE displays its own progress bar when performing one of the above-
mentioned tasks. The user can click on the Cancel button to abort it. You can set
the ProgressIndicator.Message property to whatever message you wish to
display in the upper part of the progress window. If you set the
ProgressIndicator.Message property to an empty string, V12-DBE displays its
own context-dependant message.

Without_Cancel

Without_Cancel: V12-DBE displays its own progress bar when performing one of
the above-mentioned tasks. No "Cancel" button is shown and the current task
cannot be interrupted. You can set the ProgressIndicator.Message property to
whatever message you wish to display in the upper part of the progress window. If
you set the ProgressIndicator.Message property to an empty string, V12-DBE
displays its own context-dependant message.

None

No Progress Indicator is shown and no callbacks are performed to Script handlers.
None is the default value of the property.

See also Properties of databases and ProgressIndicator.

Properties of databases
V12-DBE databases contain generic properties that provide for technical
information on the current V12-DBE environment (such as the number of available
indexes and the state of the active debugger) and allow for the control of the V12-
DBE environment (such as custom string types and custom weekday names).

mSetProperty and mGetProperty are used to assign and read these generic
database properties. Certain properties can only be read, not written (i.e. the
number of available indexes) while others can be read and written (i.e. custom
string types)

 V12-DBE for Authorware User Manual 75

Certain properties are persistent (i.e. saved to the database and recovered when the
database is reopened), others are not.

The syntax for mGetProperty is:
val := CallObject(gDB, "mGetProperty", PropertyName)

The syntax for mSetProperty is:
CallObject(gDB, "mSetProperty", PropertyName, Value)

PropertyName is a valid identifier (see Appendix 1: Capacities and Limits for the
definition of a valid identifier).

Value is always a string, even if PropertyName refers to a number.

mSetProperty can be used to define a new property or to change an existing one.
Using mSetProperty with a value of EMPTY deletes that property. Properties
pertaining to Strings (see The String property below) cannot be deleted.

Valid PropertyNames and Values are listed below. Both parameters must be of
type String. Both are case insensitive (hence "resources", "Resources" and
"RESOURCES" are all equivalent).

You can retrieve the list of all the properties of a database by calling
mGetPropertyNames, as in

set props = mGetPropertyNames(gDB)

Predefined properties

ProgressIndicator

ReadWrite, persistent. Valid values are "None", "With_Cancel",
"Without_Cancel", "UserDefined". Default value is "None".

x := CallObject(gDB, "mGetProperty", "ProgressIndicator")

CallObject(gDB, "mSetProperty", "ProgressIndicator", "With_Cancel")

Enables V12-DBE to show a progress indicator while performing time-consuming
tasks, or calls back Scripting handlers to enable custom progress indicator
implementations. See Progress indicators.

ProgressIndicator.Message

ReadWrite, persistent.
msg := CallObject(gDB, "mGetProperty", "ProgressIndicator.Message")

CallObject(gDB, "mSetProperty", "ProgressIndicator.Message","Exporting
records. Please be patient…")

This property sets the text that is displayed in the upper part of V12-DBE's progress
window. If you set it to an empty string, V12-DBE displays a message that depends
on the current operation. See Progress indicators.

VirtualCR

ReadWrite, persistent. Valid values: any ASCII character.

When importing or exporting data, convert Carriage Returns (ASCII #13) to this
ASCII character. This is convenient to avoid the confusion of real Carriage Returns
with Record Delimiters. This property can be overridden by a specific VirtualCR
character passed as parameter to mImport.

Note:Note:Note:Note: Value is limited to 4096
characters.

NoteNoteNoteNote: mSetProperty is a very
powerful tool. If you are unsure

about what you’re doing, always
work on a copy of your original

database.

Note: Note: Note: Note: V12-DBE properties can
only be accessed by the
mSetProperty and

mGetProperty methods. They
are totally unrelated to Win32 file

properties.

Note:Note:Note:Note: The VirtualCR property
requires an ASCII character as a

parameter, not an ASCII number.

To convert an ASCII number to a
character, use the example provided

here.

 V12-DBE for Authorware User Manual 76

Example:

c := CallObject(gDB, "mGetProperty", "VirtualCR")

CallObject(gDB, "mSetProperty", "VirtualCR", Char(10)) -- define ASCII
character #10 as virtual CR

See Step 2: Prepare the Data / Virtual carriage returns.

CharacterSet

ReadWrite, persistent. Valid values: "Windows-ANSI", "Mac-Standard", and "MS-
DOS". Default: "Windows-ANSI" on the Windows version of V12-DBE and "Mac-
Standard" on the Macintosh version of V12-DBE. This property affects all of V12-
DBE's import and export functions. It can be overridden by a specific character set
passed as a parameter to mImport.

Translates imported and exported files (whether Text or DBF) with the "Windows-
ANSI", "Mac-Standard" or "MS-DOS" character set tables.

CallObject(gDB, "mSetProperty", "CharacterSet", "Mac-Standard")

See Step 2: Prepare the Data / Character sets.

Resources

ReadOnly, non-persistent.
CallObject(gDB, "mGetProperty", "resources")

Returns information on the number of available indexes and the index used by the
last call to mSelect.

Example:
-- Number of indexes used: 6

-- Current index in table 'students': 'StudentIDNdx', using field
'StudentID'

V12-DBE resources should not be confused with the MacOS resources (those
normally edited with ResEdit) - they are completely unrelated.

CurrentDate

ReadOnly, non-persistent.

mGetProperty returns the current date in V12-DBE's raw format
(YYYY/MM/DD) regardless of the Control Panel settings of the Mac or PC.

Example
aDate := CallObject(gDB, "mGetProperty", "CurrentDate")

-- "2002/05/09" is assigned to the variable aDate

Verbose

ReadWrite, non-persistent. Valid values are "on" and "off".

When Verbose is set to "on", V12-DBE constantly displays a detailed feedback on
the tasks it is performing in Authorware's Control Panel window,

Example:
CallObject(gDB, "mSetProperty", "verbose", "on")

CallObject(gDB, “mGetProperty“, "verbose")

This property is extremely useful for debugging database errors, during testing.
Turn verbose “on” at the beginning of a script segment that includes several V12-

Warning: If you put calls to set the
verbose property on in your script,

you must remember to remove
them before distributing your

application.

 V12-DBE for Authorware User Manual 77

DBE method calls; then turn it “off” at the end of that section of code. Although
verbose is convenient for authoring and testing purposes, you should not use it in
place of V12Status and V12Error to trap potential runtime errors and to display
feedback appropriate for your application’s end-users. See Errors and defensive
programming.

Months

ReadWrite, persistent. Valid values: any 12-word string.

The Month property contains the names of the months used by mDataFormat to
format dates (the MMMM pattern in mDataFormat). The Value parameter is any 12-
word string. Words must be separated by spaces. Names of months that contain
spaces themselves must be enclosed between apostrophes.

Example:
CallObject(gDB, "mSetProperty ", "Months", "Gennaio Febbraio Marzo

Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre
Dicembre")

ShortMonths

ReadWrite, persistent. Valid values: any 12-word string.

The ShortMonth property contains the short names of the months used by
mDataFormat to format dates (the MMM pattern in mDataFormat). The Value
parameter is any 12-word string. Words must be separated by spaces. Short names
of months that contain spaces themselves must be enclosed between apostrophes.

Example:
CallObject(gDB, "mSetProperty", "ShortMonths", "Jan Fév Mar Avr Mai

Juin Juil Août Sep Oct Nov Déc")

Weekdays

ReadWrite, persistent. Valid values: any 12-word string.

The Weekdays property contains the names of the weekdays used by mDataFormat
to format dates (the DDDD pattern in mDataFormat). The Value parameter is any
12-word string. Words must be separated by spaces. Names of weekdays that
contain spaces themselves must be enclosed between apostrophes.

Example:
CallObject(gDB, "mSetProperty", "Weekdays", "Montag Dienstag Mittwoch

Donnerstag Freitag Samstag Sonntag")

ShortWeekdays

ReadWrite, persistent. Valid values: any 12-word string.

The ShortWeekdays property contains the short names of the weekdays used by
mDataFormat to format dates (the DDD pattern in mDataFormat). The Value
parameter is any 12-word string. Words must be separated by spaces. Short names
of weekdays that contain spaces themselves must be enclosed between apostrophes.

Example:
CallObject(gDB, "mSetProperty", "ShortWeekdays", "Lun Mar Mie Jue Vie

Sab Dom")

SharedRWcount

ReadOnly, non-persistent. Returns the number of users currently using the database
in Shared ReadWrite mode.

Example:
nbUsers := CallObject(gDB, "mGetProperty", "SharedRWcount")

DBversion

ReadOnly, non-persistent. Returns the version of the V12-DBE Xtra used to create
the database.

Example:
dbversion := CallObject(gDB, "mGetProperty", "DBversion")

The above example puts "V12,3.3.0,Multi-User" in the variable dbversion.

FlushToDisk

If set to "true", this property will set the database to automatically flush the data to
disk after every write operation.

V12 uses a disk cache system in order to speed up write operations, and normally
flushes to disk on an irregular basis, as needed. This method is useful when you
have an application running on a user’s machine that may be prone to power
failures, or when you want to be absolutely sure that you have stored a write
operation to the hard drive.

When a database is opened in Shared ReadWrite mode, the FlushToDisk property
is automatically set to "true" to ensure that modified records are immediately
available to all users.

Flush

info
you w
a po

datab
cause

sys
comm
has
Tip:Tip:Tip:Tip: A common use for the
ToDisk property is in a kiosk

situation where you store
rmation into a database, and
ant to increase the odds that

wer-failure will not affect the
ase. Power failures may still
 problems with the operating

tem and/or database, but this
and will ensure that the data

been written to the hard drive
or storage device.
 V12-DBE for Authorware User Manual 78

If you prefer to manually control when the database is flushed to disk, use the
mFlushToDisk method.

The String property
The String property is covered in a separate section because other sub-properties
(Delimiters, StopWords and MinWordLength) depend on it. Properties below
must be modified before fields of the corresponding string types are created in the
database.

String.Language

ReadWrite, persistent. Valid values: any valid search/sort table (see Appendix 4:
String and custom string types)

The String property defines or modifies custom string types (i.e. string fields that
obey specific searching and sorting rules). To define a new string type, or modify an
existing one, you append its name to "String.". The chosen name must be a valid
identifier and cannot contain periods (".").

Example:
CallObject(gDB, "mSetProperty", "String.Klingon", CompTable)

In this example, the variable "CompTable" contains the search/sort descriptor for
Klingon as defined in Appendix 4: String and custom string types. Once this
property is defined, you can use the type "Klingon" to define new fields with
mCreateField or mReadDBstructure. You also need to define this property first

 V12-DBE for Authorware User Manual 79

before modifying other string properties such as Delimiters, StopWords and
MinWordLength.

To modify the sort order of the default string, just omit the Language identifier:
CallObject(gDB, "mSetProperty", "String", CompTable)

String.Language.Delimiters

ReadWrite, persistent. Valid values: any valid delimiters descriptor.

Delimiters defines, for an existing string type, the list of characters that are
acceptable as word delimiters for full-text indexing. By default, word delimiters for
the predefined types are all non-alphanumeric characters (everything except 0-9, A-
Z, a-z and accented characters).

Example:
CallObject(gDB, "mSetProperty", "String.Spanish.Delimiters",

"!?@$%?&*()[]^®{}£¢§¨¶==º=+-,./\|")

In the above example, the punctuation characters indicated as the Value parameter
are considered as delimiters.

If you need to specify the double-quote as part of the delimiters, place the delimiters
in an Authorware variable and use that variable as a Value parameter as follows:

CallObject(gDB,"mSetProperty","String.Spanish.Delimiters",
myDelimiters)

All non-printing characters such as TAB, Space, CTRL+J, etc. (i.e. characters
lower than ASCII 32) are always considered as delimiters.

To modify the delimiters of the default string, just omit the Language identifier:
CallObject(gDB, "mSetProperty", "String.Delimiters", newDelimiters)

String.Language.MinWordLength

ReadWrite, persistent. Valid values: an integer in the range 2..8 passed as a String
parameter.

MinWordLength determines the size of the shortest word that must be considered
for full-indexing. All words shorter than MinWordLength are ignored and hence
refused by the mSetCriteria method when used with the operator "WordEquals".

Example:
CallObject(gDB, "mSetProperty", "String.Spanish.MinWordLength", "3")

Note that the Value parameter is "3" (with quotation marks). This is because
mSetProperty expects a Value parameter of type String only. The following is also
a valid formulation:

CallObject(gDB, "mSetProperty", "String.Spanish.MinWordLength",
String(3)))

To modify the MinWordLength of the default string, just omit the Language
identifier:

CallObject(gDB, "mSetProperty", "String.MinWordLength", "2")

The default value for MinWordLength is 4.

String.Language.StopWords

ReadWrite, persistent. Valid values: a string no longer than 32K.

StopWords allows for the definition of a list of words that must be ignored in the
full-indexing process. The Value parameter is a string containing the stop words in
any order separated by spaces, TABs or Carriage Returns).

 V12-DBE for Authorware User Manual 80

Example:
CallObject(gDB, "mSetProperty", "String.Spanish.StopWords", "el está en la

de ")

To modify the stop words list of the default string, just omit the Language identifier:
CallObject(gDB, "mSetProperty", "String.StopWords","a the on for in by

as")

By default, the StopWords property is empty. A typical list of stop words in
English is:

 “a by in the an for is this and from it to are had not was as have
of with at he on which be her or you but his that”

Custom properties (advanced users)
Advanced users may want to define their own properties and make them persistent
to a database. This is a convenient way to store preferences in your database and it
eliminates the trouble of having to create a table that includes only one record.

For example, if you need to save the name of the user who last accessed your
application:

CallObject(gDB, "mSetProperty", "LastUser", currentUser)

-- currentUser contains the name of the current user.

Next time the application is opened, you can check for the name of the last user and
possibly take an appropriate action if it matches/doesn't match the current user.

LastUser := CallObject(gDB, "mGetProperty", "LastUser")

if (lastUser = currentUser) then

 -- take appropriate action

end if

Custom properties are always read-write and persistent.

NoteNoteNoteNote: Remember that at most
4096 characters can be stored in

individual properties.

 V12-DBE for Authorware User Manual 81

Appendix 1: Capacities and Limits

Database
• The size of a V12-DBE database file is limited by disk space.

• The number of database instances and table instances is limited by RAM. Up to
128 instances of a single database can be opened by 128 different executables
(Authorware pieces or packaged piece) in Shared ReadWrite mode. Each
executable is entitled to only one database instance of a given database
(although, you may create as many instances of distinct databases as you wish in
a single executable). Multiple instances of a table can be created on a single
computer. Note, however, that you may run into significant performance issues
as the number of instances increases.

• A valid V12-DBE database contains at least one table, and each table requires at
least one field and one index.

• For multi-user databases, the maximum number of ReadWrite users is 128. The
Maximum number of ReadOnly users is unlimited.

Creation
• In order to create licensed V12 database structures at runtime, you must have a

registered V12-DBE license file on your workstation. If you do not have a
licensed V12-DBE on the workstation, your databases will be unlicensed and
will display a splash screen each time they are opened. The best approach is
often to clone new databases from existing databases.

Selection
• Up to 100 criteria can be chained with sequences of mSetCriteria separated by

Boolean operators.

Importing
• DBF files of type DBase III, DBase IV, DBase V, FoxPro 2.0, FoxPro 2.5,

FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0 can be imported, exported and used as
templates for the definition of V12 databases. Fields of type DateTime are not
supported. The following DBF data types are ignored: General, Character-
Binary, Memo-Binary.

• On Win32, MS Access databases, MS FoxPro files, MS Excel workbooks and
MS SQL Server data sources can be used as templates for creating new V12
databases and as sources of data for importing records through ODBC drivers.
The exact database translation/data importing rules varies among ODBC
drivers and versions of ODBC drivers.

Table
• Because a maximum of 128 indexes is permitted, and since each table requires at

least one index, the maximum number of tables in a V12-DBE database is 128.

• Identifiers (names of fields, tables and indexes) are limited to 32 characters.
They must start with a low-ASCII alphabetic character (a..z, A..Z), which can

 V12-DBE for Authorware User Manual 82

be followed by any alphanumeric character (0..9, a..z, A..Z, à, é, ö). Keywords
such as NOT, AND, OR, String, Integer, Float, or Date are not suitable for use
as identifiers.

Field
• No two fields or indexes can have the same name in the same table. However,

two fields or two indexes might have the same name in different tables.

• All records are of variable length. Fields of type string are limited to 64K.

• The range of the type Integer is -231 to 231-1 (-2147483648 to 2147483647).

• The range of the type Float is ±1.79769313486232E+308 to
±2.22507385850720E-308.

• Any date later than January 1st, 1600 can be compared, retrieved and stored to
fields of type Date. However, date formatting is limited to the range Jan 1st 1904
through Dec 31st 2037.

Index
• A maximum of 128 indexes can be defined on a V12-DBE database. Each index

can operate on up to 12 fields.

• Up to 32 custom string types can be defined.

• When indexing fields of type String, up to the 251 first characters of each string
are actually entered in the index. The remaining characters are ignored.

• Full-indexes are built with words not exceeding 31 characters. Words longer
than 31 characters are truncated to 31 characters for the purpose of indexing
(this does not affect the actual data).

Media
Fields of type media are not supported in V12-DBE for Authorware.

 V12-DBE for Authorware User Manual 83

Appendix 2: Database Creation and Data
Importing Rules

Following are examples of how to work with existing databases from a variety of
vendors, in order to use them in V12-DBE.

As well, we have outlined standard Rules that can be referenced when you are
trying to import the structures or the data from a specific database format.

The basic steps for converting a database from another database format into V12 are
as follows:

1 Determine and/or Import the structure of the original database(s) into a
readable format (using mReadDBStructure).

2 Create the V12 database and indexes, based on the structure of the original
database(s).

3 Import the data from the original database(s) into the V12 databases you created
in Step 2 (using mImport).

Below are examples of how to read the database structure and import files from the
following text or database formats, as well as rules for each:

Database FormatDatabase FormatDatabase FormatDatabase Format PagePagePagePage

Text Files...83

Literals ..85

Lists or Property Lists ..86

V12 DBE...86

DBF (Database Format) ..87

Microsoft FoxPro ..91

Microsoft Access ...92

Microsoft Excel ...94

Microsoft SQL Server ..96

Text Files

mReadDBstructure from a Text File

To read a database descriptor into V12-DBE, use the following Script statement:
CallObject(database_instance, "mReadDBStructure", "TEXT",

File_Pathname)

Assuming that the name of the database descriptor's filename is "Def.txt", the
following Script creates a new V12-DBE database file named "Catalog.V12" and
structures it as described in "Def.txt".

gDB := NewObject("V12dbe", "Evaluations.V12", "create", "top secret")

CallObject(gDB, "mReadDBStructure", "TEXT", FileLocation ^
"Definition.txt")

CallObject(gDB, "mBuild")

 V12-DBE for Authorware User Manual 84

DeleteObject(gDB)

gDB := 0

Importing a Text File

The imported text file must begin with a field descriptor line. A field descriptor is a
sample record that contains the names of the fields in which subsequent rows of
data must be formatted (see Field descriptors in Step 2: Prepare the Data). The field
names used in the field descriptor line must match those supplied to the
mReadStructure method. However, these fields can be listed in any order. Some of
them can even be omitted.

Syntax:
CallObject(gTable, "mImport", "TEXT", FileName [, Options])

where FileName is the pathname of the text file to import, and Options is an
optional Property list such as:

 [#FieldDelimiter:TAB, #RecordDelimiter:RETURN,
#CharacterSet:"Windows-ANSI", #VirtualCR: Char(11),
#TextQualifier:QUOTE]

Options may contain some or all of the properties below, or can even be empty:

• #FieldDelimiter determines which character is used to delimit fields in the
text file. The default character is TAB (ASCII #9).

• #RecordDelimiter determines which character is used to delimit records in the
text file. The default character is RETURN (ASCII #13). If the Text file
contains Carriage Returns (ASCII #13) followed by Line Feeds (ASCII #10) as
records delimiters, Line Feeds are automatically ignored.

• #CharacterSet is one of "Mac-Standard", "Windows-ANSI" or "MS-DOS". It
determines which character set the Text file is encoded in. Usually, Text files
exported on MacOS are encoded in the Mac-Standard character set, and Text
files exported on Windows are encoded in the Windows-ANSI character set. See
Character sets in Step 2: Prepare the Data. The default character set is the one
defined by the CharacterSet property (see CharacterSet in Properties of
databases).

• #VirtualCR determines which character is used as a Virtual Carriage Return,
and thus must be converted to ASCII #13 after importing (see Virtual carriage
returns in Step 2: Prepare the Data). The default character is the one defined by
the VirtualCR property, which is usually ASCII #11 (see VirtualCR in
Properties of databases).

• #TextQualifier determines which character is used to begin and end each
Text field. Those qualifiers delimit the field so to allow it to contain special
characters, including those used as field and record delimiters. Text qualifiers are
removed after importing the file. See Text qualifiers in Step 2: Prepare the Data.
The default text qualifier is " "

For example, this instruction imports the Text file "myTextData.txt" located in the
same folder as the current movie into gTable with all the default options (field
delimiter = TAB, records delimiter = RETURN, Character set = the current
operating system's, virtual CR = ASCII #11, Text Qualifier = " ").

CallObject(gTable, "mImport", "TEXT", FileLocation ^ "myTextData.txt")

This example imports the Text file "myFile.txt" where "%" is used as a field
delimiter and "\" as a record delimiter.

 V12-DBE for Authorware User Manual 85

CallObject(gTable, “mImport”, "TEXT", the MoviePath & "myTextData.txt",
[#FieldDelimiter: "%", #RecordDelimiter: "\"])

Literals

mReadDBstructure from a Literal

A literal is a Script variable that actually contains the database descriptor (as
opposed to containing the pathname of the descriptor Text file). Building a database
from a literal description is very similar to the building it from a text file. The literal
must contain the database descriptor as defined in Database descriptor. The Script
to build the database is:

CallObject(gDB, "mReadDBStructure", "LITERAL", variable)

For example, assume that the Authorware variable named "Dbdescriptor" contains
a database descriptor; the following example creates a V12-DBE database
compliant to that description.

gDB := NewObject("V12dbe", "Evaluations.V12", "create", "top secret")

CallObject(gDB, "mReadDBStructure", "LITERAL", Dbdescriptor)

CallObject(gDB, "mBuild")

DeleteObject(gDB)

gDB := 0

If your tables, fields, index and full-indexes definitions are stored in four
Authorware variables named "tbl", "flds", "idx"and "fidx", which don't start with
the mandatory tags, the following example creates a valid database structure.

gDB := NewObject("V12dbe", "Evaluations.V12", "create", "top secret")

CallObject(gDB, "mReadDBStructure", "LITERAL", "[TABLE] " ^ tbl ^
"[FIELDS] " ^ fld ^ "[INDEXED] " ^ idx ^ "[FULL-INDEXES] " ^ fidx)

CallObject(gDB, "mBuild")

DeleteObject(gDB)

gDB := 0

Import from a Literal

Sometimes, you need to process data with Scripting before importing it into a V12-
DBE table. A convenient place to store such data is an Authorware variable..
mImport allows you to import the content of such a variable through this syntax:

CallObject(gTable, "mImport","LITERAL", variable [, Options])

where variable is an expression of type Text.

and Options is a property list identical to the one used for importing Text files (see
Importing a Text File above).

Following is an example of an Authorware variable containing data to split into
V12-DBE fields and records (assume the name of the variable is "Discounts"):

LevelLevelLevelLevel----1,Level1,Level1,Level1,Level----2,Level2,Level2,Level2,Level----3333

12,14,16

45,58,72

33,56,68

224,301,451

 V12-DBE for Authorware User Manual 86

This instruction imports the above Authorware variable (discounts) to gTable:

CallObject(gTable, "mImport", "LITERAL", discounts, ",", RETURN)

Lists or Property Lists

Importing from a List or Property List

Lists, or a Property Lists can easily be imported to V12 tables through mImport.
This is very convenient for the conversion of projects that use Scripting lists to
manage data and that have become difficult to debug and maintain.

It is also convenient to import XML documents into V12 tables.

Syntax:

CallObject(gTable, "mImport", "LIST", theList)

CallObject(gTable, "mImport", "PROPERTYLIST", thePropertyList)

where:

• theList is a list of lists. The first element is a list containing the names of
the V12 fields to which subsequent items must be imported, in the right
order. If the first item of the list contains field names that are not present in
the current V12 table, the corresponding data is ignored.

• thePropertyList is a list of property lists, where properties have the
same names as the V12 fields into which the corresponding data must be
imported.

Examples of valid lists:
 [["LastName", "FirstName", "Age"], ["Cartman", "Eric", 8],

["Testaburger", "Wendy", 9], ["Einstein", "Albert", 75]]

[["CatalogNumber"], [8724], [9825], [1745]]

Examples of valid Property lists:

[[#LastName:"Cartman", #FirstName:"Eric", #Age:8],

 [#FirstName:"Wendy", #LastName:"Testaburger", #Age:9]

 [#LastName:"Einstein", #FirstName:"Albert"]]

 [[#CatalogNumber:8724], [#CatalogNumber:9825],

 [#CatalogNumber:1745]]

V12 DBE files

mReadDBstructure from V12-DBE

Any V12-DBE database can be used as a template for the creation of a new V12-
DBE database, provided you know the password to unlock it. The syntax is as
follows:

CallObject (database_instance, mReadDBStructure, "V12", FileName,
Password)

This example uses the database "Catalog.V12" as a template for a new database
named "Specials.V12".

 V12-DBE for Authorware User Manual 87

gDB := NewObject("V12dbe", FileLocation ^ "Specials.V12",
"create", MyNewPassword")

CallObject (gDB, "mReadDBStructure", "V12", FileLocation ^
"Catalog.V12", "top secret")

CallObject(gDB, "mBuild")

DeleteObject(gDB)

gDB := 0

mReadDBStructure reads the structure of a V12-DBE file, not its content. To
import the content of a V12-DBE file, see Importing from another V12-DBE and
Add records to a database.

Importing from another V12-DBE file

Data can be imported from one V12 table into another. The name of the source
table need not necessarily match the name of the destination table. However, field
names must match. Non-matching field names are ignored. If the source and
destination tables have different indexes, the destination table's indexes are used.

Syntax:
CallObject(gTable, "mImport", "V12", FileName, Password, TableName)

where FileName is the pathname of the V12 database to import from, password is
the password to unlock it and TableName is the name of the table to import.

Example:
CallObject (gTable, "mImport", "V12", FileLocation ^ "Catalog.V12",

"top secret", "articles")

If two fields have the same name but are of different types when importing data
from a V12-DBE database, mImport tries to typecast the data fields.

DBF (Database Format)

mReadDBstructure from a DBF File

A DBF file alone represents a flat file, thus a single V12-DBE table. A DBF file can
be used as a template for a V12-DBE table in much the same way as a text file or
literal can. The name of the created V12-DBE table is identical to the DBF filename
without the ".DBF" extension. The syntax is:

 CallObject (gDB, "mReadDBStructure", "DBF", File_Pathname)

For a DBF file to be used as a complete and valid V12-DBE table descriptor, at least
one index must be defined. If that index is defined by an IDX or NDX file located
in the same folder as the DBF file, mReadDBstructure detects its presence and
automatically defines an index for that field in the current table.

This example uses the file VIDEO.DBF as a template to build a table named
"video" in the V12-DBE database named "VideoStore.V12". The structure of the file
VIDEO.DBF is as follows:

FieldFieldFieldField TypeTypeTypeType WidthWidthWidthWidth

TITLE Character 30

DESCRIPT Memo 10

RATING Character 4

TYPE Character 10

Tip: Tip: Tip: Tip: V12-DBE does not check the
validity of the content of the index

file; therefore you can fool it into
creating an index for a field

named "MyField" by creating an
empty file named "MyField.IDX"

in the same folder as your DBF
file.

 V12-DBE for Authorware User Manual 88

DATE_ARRIV Date 8

AVAILABLE Logical 1

TIMES_RENT Numeric 5

NUM_SOLD Numeric 5

Two index files named TITLE.IDX and TYPE.IDX are available in the same
folder as VIDEO.DBF.

The Script is as follows:
gDB := NewObject("V12dbe", FileLocation ^ "VideoStore.V12",
"create", "")

CallObject (gDB, "mReadDBStructure", "DBF", FileLocation ^
"Video.DBF")

CallObject (gDB, "mBuild")

DeleteObject(gDB)

gDB := 0

The resulting V12-DBE database can be verified immediately with
mDumpStructure (see View the structure of a database). The following is a sample
output from mDumpStructure:

[TABLE][TABLE][TABLE][TABLE]

Video

[FIELDS][FIELDS][FIELDS][FIELDS]

TITLE String 30

DESCRIPT String 30000

RATING String 4

TYPE String 10

DATE_ARRIV Date

AVAILABLE Integer

TIMES_RENT Integer

NUM_SOLD Integer

[INDEXES][INDEXES][INDEXES][INDEXES]

TitleNdx duplicate TITLE ascending (* Default Index *)

TypeNdx duplicate TYPE ascending

[END][END][END][END]

Importing from a DBF File

Importing a DBF file is similar to importing text files, except that you cannot
specify a subset of fields to import: all the fields in the DBF file must be imported.
The field names of the DBF file must match those in the destination V12-DBE
table. Non-matching field names are ignored during the importing process and a
warning is reported by V12Error (see Errors and defensive programming).

Syntax:
CallObject(gTable, "mImport", "DBF", FileName [, Options])

where FileName is the pathname of the DBF file to import, and Options is an
optional Property list containing the #CharacterSet property:

#CharacterSet is one of "Mac-Standard", "Windows-ANSI" or "MS-DOS". It
determines which character set the DBF file is encoded in. Most systems
automatically encode DBF file in the MS-DOS character set. See Character sets in
Step 2: Prepare the Data. The default character set the one defined by the
CharacterSet property (see CharacterSet in Properties of databases). It is
normally "Windows-ANSI" on the Windows version of V12-DBE and "Mac-
Standard" on the Macintosh version of V12-DBE.

NoteNoteNoteNote: DBF is an antiquated file
format. It is always assumed to be
encoded in the MS-DOS character

set. When importing DBF files, make
sure to assign the right Character Set.

See CharacterSet in Properties of
databases.

 V12-DBE for Authorware User Manual 89

Example:

CallObject (gTable, "mImport", "DBF", FileLocation ^ "Pier1-
Import.DBF", [#CharacterSet: "MS-DOS"])

If a field in the destination table has the same name as a field in the source DBF
file, but is of a different type, mImport tries to typecast the data to match the
destination field type. When importing data from a DBF file that contains Memo
fields, the corresponding DBT files are automatically processed and imported by
V12-DBE. See Dealing with dates and DBF (Database Format) Rules below for
more details on DBF files and data importing rules.

 V12-DBE for Authorware User Manual 90

DBF (Database Format) Rules

The following rules apply to the translation of DBF file structures:

DBF DBF DBF DBF
field typefield typefield typefield type

Translated to Translated to Translated to Translated to
V12 field typeV12 field typeV12 field typeV12 field type NotesNotesNotesNotes

Character String
Buffer size = size of field in
DBF file

Integer Integer

Numeric with no
digit after fixed
point

Integer

Numeric with
one or more
digits after fixed
point

Float

Float Float

Double Float

Currency Float

On Windows 3.1 and
Mac68K, acceptable values are
in the range -2k to 2k-1, where k
= 31 minus the number of
decimal places.

Date Date

DateTime Date

Data cannot be converted from
fields of type DateTime. Only
the default date (1900/01/01)
is imported.

Logical Integer

FALSE values are translated to
0s, TRUE values to 1s and
undefined values (represented
by "?" in the DBF file) to -1s

Media String Buffer size = 32K

General Ignored

Character-Binary Ignored

Memo-Binary Ignored

Memo fields are those typically used to store text longer than 255 characters. Memo
fields can also store binary data of arbitrary formats: Binary formatted memo fields
cannot be imported directly into V12-DBE databases. When importing standard
ASCII data from a DBF file that contains Memo fields, the corresponding DBT
files are automatically processed by V12-DBE.

 V12-DBE for Authorware User Manual 91

Microsoft FoxPro

mReadDBstructure from FoxPro (Win-32 Only)

A FoxPro database is a directory containing a collection of DBF files along with
their index files. A directory containing one or more MS FoxPro files can be
collectively used as a template for a V12 database. The FoxPro ODBC driver is
required to perform this operation. The names of your FoxPro files and their field
names must be valid V2-DBE identifiers (see Defining identifiers in Step 1: Decide
on a Data Model).

Syntax:
CallObject(gDB, "mReadDBStructure", "FoxPro", DirectoryPath)

where DirectoryPath is the path to a directory — not a file. Thus, it must
necessarily end with a "\".

Example:
gDB := NewObject("V12dbe", FileLocation^"myDB.V12", "create", "secret")

CallObject(gDB, "mReadDBStructure","FoxPro", FileLocation ^ "FoxDB\")

CalloBject(gDB, "mBuild")

DeleteObject(gDB)

gDB := 0

Once the corresponding V12 database structure is created, with
mReadDBStructure, the data from your FoxPro tables can be imported.

Importing from Microsoft FoxPro (Win-32 only)

Fox Pro (*.DBF) files can be imported to V12 tables provided a MS FoxPro ODBC
driver is present on your PC. No DSN (Data Source Name) is required.

Syntax:
CallObject(gTable, "mImport", "FoxPro", FileName)

where FileName is the path to the source *.DBF file. Always make sure to set V12-
DBE's CharacterSet property to the encoding that matches your DBF file's (see
CharacterSet in Properties of databases).

Example:
CallObject(gTable, "mImport", "FoxPro", FileLocation ^ "Results.XLS",

TableName)

Converting a FoxPro database into a V12 database is a two-step process: First,
create the V12 database, and then import data to each of its tables with mImport, as
explained above.

 V12-DBE for Authorware User Manual 92

FoxPro (Microsoft Fox Professional Format) Rules

The following rules apply to the translation of FoxPro databases to V12 databases:

FoxProFoxProFoxProFoxPro
field typefield typefield typefield type

Translated to Translated to Translated to Translated to
V12 field typeV12 field typeV12 field typeV12 field type

NotesNotesNotesNotes

Character String
Buffer size is the size of the
field in the DBF file

Integer Float

Numeric Float

Float Float

Double Float

Currency Float

Date Date

DateTime Date

Data cannot be converted from
fields of type DateTime. Only
the default date (1900/01/01)
is imported.

Logical Integer

Memo String Buffer size = 32K

General String
Buffer size is the size of the
field in the DBF file

Character-Binary String Buffer size is 32K

Memo-Binary String Buffer size is 32K

Microsoft Access

mReadDBstructure from MS Access (Windows only)

MS Access databases can be used as templates to V12 databases. Like V12-DBE,
MS Access can store multiple tables per database. mReadDBstructure imports the
structure of all such tables to V12-DBE. The MS Access ODBC driver is required to
perform this operation.

The names of the tables and fields of your MS Access file must be valid V12-DBE
identifiers (see Defining identifiers in Step 1: Decide on a Data Model).

Syntax:

CallObject(gDB, "mReadDBStructure", "Access", FileName, Username,
Password)

where:

 V12-DBE for Authorware User Manual 93

• FileName is the path to the *.MDB file,

• Username is a valid user name to access the MDB file, or EMPTY if the MDB
file is not protected,

• Password is Username's matching password, or EMPTY if the MDB file is not
protected.

Once the corresponding V12 database structure is created, the data from your MS
Access tables can be imported.

Import from Microsoft Access (Windows only)

MS Access (*.MDB) files can be imported to V12 databases, one table at a time. A
MS Access ODBC driver must be present but no DSN (Data Source Name) is
required.

Syntax:
CallObject(gTable, "mImport", "Access", FileName, UserName, Password,

TableName)

where:

• FileName is the path to the source *.MDB file,

• Username is a valid user name to access the MDB file, or EMPTY if the MDB
file is not protected,

• Password is Username's matching password, or EMPTY if the MDB file is not
protected.

• TableName is the name of the table to import.

Converting an MS Access database into a V12 database is a two-step process: First,
create the V12 database (see mReadDBstructure from MS Access (Windows only)).
Then, import data to each of its tables with mImport, as explained above.

Generally, MS Access databases are encoded in the Windows ANSI character set.
Thus, you must make sure that the CharacterSet Property is properly set to
"Windows-ANSI" before importing the data. ("Windows-ANSI" is the default
setting for the CharacterSet property. See CharacterSet in Properties of
databases).

 V12-DBE for Authorware User Manual 94

Microsoft Access Rules

The following rules apply to the translation of MS Access file structures to V12
databases:

MS Access MS Access MS Access MS Access
field typefield typefield typefield type

Translated to Translated to Translated to Translated to
V12 field typeV12 field typeV12 field typeV12 field type

NotesNotesNotesNotes

Text String
Buffer size is same as Access
field size

Number (byte) Integer

Number (integer) Integer

Number
(long integer)

Integer

Number (single) Float

Number (double) Float

Number
(replication ID)

Ignored

Currency Integer

Date / Time Ignored

Autonumber Integer

Yes/No Integer

OLE Object Ignored

HyperLink String URL imported as text

Memo String Buffer size is 32K

MS Access unique and duplicate indexes are properly converted to unique and
duplicate V12-DBE indexes with ascending field values.

Microsoft Excel

mReadDBstructure from MS Excel (Windows only)

MS Excel workbooks can be used as templates to V12 databases. MS Excel
workbooks can contain one or more worksheets, with each worksheet
corresponding to a V12 table and each column to a V12 field. The resulting V12
database contains as many tables as there are worksheets in the Excel file. The MS
Excel ODBC driver is required to perform this operation.

The names of the worksheets and columns of your MS Excel file must be valid V2-
DBE identifiers (see Defining identifiers in Step 1: Decide on a Data Model).

The types of the field defined in the new V12 database depend on the format of the
corresponding MS Excel columns. To change the format of a entire column in MS
Excel, select it by clicking in its heading, choose Format > Cells… and select the
Number tab. It may be necessary to Save As… your workbook with a new name to

 V12-DBE for Authorware User Manual 95

force MS Excel to commit to the new column's format (depends on version of
Excel).

Syntax:
CallObject(gDB, "mReadDBStructure", "Excel", FileName)

where FileName is the path to the *.XLS file.

Importing from Microsoft Excel (Windows only)

MS Excel workbooks (*.XLS) can be imported to V12 databases, one table at a
time, through a PC's ODBC driver. No DSN (Data Source Name) is required.

Syntax:
CallObject(gTable, "mImport", "Excel", FileName, TableName)

where:

• FileName is the path to the source *.XLS file. It is assumed to be encoded in the
Windows ANSI character set (default encoding on Windows).

• TableName is the name of the table to import.

Example:
CallObject(gTable, "mImport", "Excel", FileLocation ^ "Results.XLS")

Protected MS Excel workbooks cannot be imported

Converting a MS Excel workbook into a V12 database is a two-step process: First,
create the V12 database (see Importing from Microsoft Excel (Windows only)).
Then, import data to each of its tables with mImport, as explained above.

NoteNoteNoteNote: It is important that the first row
contains the field names. This way,

V12-DBE can associate an Excel
column to a V12-DBE field.

 V12-DBE for Authorware User Manual 96

Microsoft Excel Rules

The following rules apply to the translation of MS Excel file structures to V12
databases:

MS Excel MS Excel MS Excel MS Excel
field typefield typefield typefield type

Translated to Translated to Translated to Translated to
V12 field typeV12 field typeV12 field typeV12 field type

NotesNotesNotesNotes

General Float

Number Float

Currency Integer

Accounting Integer

Date Ignored
Convert to text first if
importing to V12-DBE is
needed

Time Ignored
Convert to text first if
importing to V12-DBE is
needed

Percentage Float

Fraction Float

Scientific Float

Text String Buffer size = 255 bytes

Special Float

Custom Float

MS Excel cannot define indexes on its fields, when reading an Excel workbook;
V12-DBE automatically indexes the leftmost field of each worksheet.

Microsoft SQL Server

mReadDBstructure from MS SQL Server (Windows only)

A MS SQL Server version 6 or 7 data source can be used as a template to a V12
database. In contrast to MS Access, MS FoxPro and MS Excel files,
mReadDBstructure requires a DSN (Data Source Name) to be supplied instead of
a pathname. The MS SQL Server ODBC driver is required to perform this
operation.

Syntax:

CallObject(gDB, "mReadDBStructure", "SQLserver", DSN, Username,
Password)

where

• DSN is the name of a valid User DSN, System DSN or File DSN (see Window's
Control Panel),

• Username is a valid user name to access the DSN,

 V12-DBE for Authorware User Manual 97

• Password is Username's matching password.

Importing from MS SQL (Windows only)

MS SQL Server data sources can be imported to V12 databases, one table at a time,
through a PC's ODBC driver and a valid DSN (Data Source Name). Data sources
can be created through Window's ODBC Data Sources Control Panel which is
accessible from Start > Settings > Control Panel menu.

Syntax:
CallObject(gTable, "mImport","SQLserver", DSN, Username, Password,

TableName)

where:

• DSN is a valid Data Source Name.

• Username is a valid user name to access the SQL Server.

• Password is Username's matching password.

• TableName is the name of the table to import.

Example:
CallObject(gTable, "mImport", "SQLserver", "InventoryDSN", "Admin",

"XBF48", "Products")

Converting an MS SQL Server data source into a V12 database is a two-step
process: First, create the V12 database (see mReadDBstructure from MS SQL
Server (Windows only)). Then, import data to each of its tables with mImport, as
explained above.

 V12-DBE for Authorware User Manual 98

Microsoft SQL format Rules

The following rules apply to the translation of MS SQL Server data sources to V12
databases:

MS SQL ServerMS SQL ServerMS SQL ServerMS SQL Server
field typefield typefield typefield type

Translated to Translated to Translated to Translated to
V12 field typeV12 field typeV12 field typeV12 field type

NotesNotesNotesNotes

Binary Ignored

Bit Integer

Char String
Buffer size is same as MS SQL
Server field size

DateTime Ignored

Decimal Float

Float Float

Image String
Buffer size = 32K. Data cannot
be imported from Image fields.

Int Integer

Money Float

Numeric Integer

Real Float

SmallDateSize Ignored

SmallInt Integer

SmallMoney Float

SysName String
Buffer size is same as MS SQL
Server field size

Text String Buffer size = 32K

TimeStamp Ignored

TinyInt Integer

VarBinary String
Buffer size is same as MS SQL
Server field size

VarChar String
Buffer size is same as MS SQL
Server field size

Note that V12 does not support unicode SQL data type such as nchar, nvarchar and
ntext.

 V12-DBE for Authorware User Manual 99

Appendix 3: mGetSelection examples

The examples below show various ways of using mGetSelection. All examples
assume that the table gTable contains 3 fields ("name", "price" and "number",
declared in that order when creating the table), and that the selection contains 6
records.

Read an entire selection
This example retrieves the entire content of each record of the selection with TABs
as field delimiters and CARRIAGE_RETURNs (CRs) as record delimiters. Fields are
sorted in their order of creation. The records' sort order is the one defined by the
selection.

x := CallObject(gTable, "mGetSelection")

sets the variable x to the following string:

Batteries TABTABTABTAB 9.20 TABTABTABTAB 6780 CRCRCRCR

Floppies TABTABTABTAB 1.89 TABTABTABTAB 9401 CRCRCRCR

Labels TABTABTABTAB 1.19 TABTABTABTAB 1743 CRCRCRCR

Pencils TABTABTABTAB 5.55 TABTABTABTAB 6251 CRCRCRCR

Ruler TABTABTABTAB 1.99 TABTABTABTAB 1431 CRCRCRCR

Tags TABTABTABTAB 6.19 TABTABTABTAB 7519 CRCRCRCR

Read a range of records in a string variable
This example retrieves the content of 3 successive records in the selection, starting
with record #2, with TABs as field delimiters and CARRIAGE_RETURNs (CRs) as
record delimiters.

x := CallObject(gTable, "mGetSelection", "LITERAL", 2, 3)

sets the variable x to the following string:

Floppies TAB 1.89 TAB 9401 CR

Labels TABTABTABTAB 1.19 TABTABTABTAB 1743 CRCRCRCR

Pencils TABTABTABTAB 5.55 TABTABTABTAB 6251 CRCRCRCR

Read a range of records in a list
This is identical to the previous example, except that the result is returned in an
Authorware Script list:

x := CallObject(gTable, "mGetSelection", "LIST", 2, 3)

sets the variable x to the following list:
[["Floppies", 1.89, 9401], ["Labels", 1.19, 1743], ["Pencils", 5.55,

6251]]

Read a range of records in a property list
Same as the two previous examples, except that the result is returned in an
Authorware Script property list:

x := CallObject(gTable, "mGetSelection", "PROPERTYLIST", 2, 3)

sets the variable x to the following list:
[[#name:"Floppies", #price:1.89, #number:9401], [#name:"Labels",

#price:1.19, #number:1743], [#name:"Pencils", #price:5.55,
#number:6251]]

 V12-DBE for Authorware User Manual 100

Read the entire contents of the current record
This example retrieves the entire contents of the current record in a single call to
V12-DBE.

x := CallObject(gTable, "mGetSelection", "LITERAL", CallObject(gTable,
"mGetPosition"), 1)

sets the variable x to the following string:

Batteries TABTABTABTAB 9.20 TABTABTABTAB 6780 CRCRCRCR

The "List" and "ProperyList" would respectively return:
[["Batteries", 9.20, 6780]]

and
[[#name:"Batteries", #price:9.20, #number:6780]]

Read a record without making it the current record
This example retrieves the content of record #4 without making it the current
record.

x := CallObject(gTable, "mGetSelection", "LITERAL", 4, 1)

sets the variable x to the following string:

Pencils TABTABTABTAB 5.55 TABTABTABTAB 6251 CRCRCRCR

The "List" and "ProperyList" would respectively return:
[["Pencils", 5.55, 6251]]

and
[[#name:"Pencils", #price:5.55, #number:6251]]

Read the entire selection with special delimiters
This example retrieves the entire content of each record of the selection with
commas (",") as field delimiters and slashes ("/") as record delimiters.

x := CallObject(gTable, "mGetSelection", "LITERAL", 1,
CallObject(gTable, "mSelectCount"), ",", "/")

sets the variable x to the following string:

Batteries , , , , 9.20 , , , , 6780 / / / / Floppies , , , , 1.89 , , , , 9401 / / / / Labels , , , , 1.19 , , , , 1743 / / / / Pencils , , , , 5.55 , , , , 6251
/ / / / Ruler , , , , 1.99 , , , , 1431 / / / / Tags , , , , 6.19 , , , , 7519 ////

Read selected fields in a selection
This example retrieves the content of a single field ("name") for all the records of the
selection. Note that the TAB parameter is unused in the result, but it should
nonetheless be present.

x := CallObject(gTable, "mGetSelection", "LITERAL", 1,
CallObject(gTable, "mSelectCount"), TAB, RETURN, "name")

sets the variable x to the following string:

Batteries CRCRCRCR

Floppies CRCRCRCR

Labels CRCRCRCR

Pencils CRCRCRCR

Ruler CRCRCRCR

Tags CRCRCRCR

The syntax for the Script List result would be:
x := CallObject(gTable, "mGetSelection", "LIST", 1, CallObject(gTable,

"mSelectCount"), "name")

 V12-DBE for Authorware User Manual 101

and the result would be
[["Batteries"],["Floppies"],["Labels"],["Pencils"],["Ruler"], ["Tags"]]

(Note: This is a list where each element is itself a single element list).

The syntax for the Property List result would be:
x := CallObject(gTable, "mGetSelection", "PROPERTYLIST", 1,

CallObject(gTable, "mSelectCount"), "name")

and the result would be
[[#name:"Batteries"],[#name:"Floppies"],[#name:"Labels"],

[#name:"Pencils"],[#name:"Ruler"],[#name:"Tags"]]

Read records with a determined order of fields
This example retrieves the content of all the records of the selection with TABs as
field delimiters and CARRIAGE_RETURNs (CRs) as record delimiters, with fields
ordered in the sequence "number", "name", and "price".

x := CallObject(gTable, "mGetSelection", "LITERAL", 1, CallObject
(gTable, "mSelectCount"), TAB, RETURN, "number", "name", "price")

sets the variable x to the following string:

6780 TABTABTABTAB Batteries TABTABTABTAB 9.20 CRCRCRCR

9401 TABTABTABTAB Floppies TABTABTABTAB 1.89 CRCRCRCR

1743 TABTABTABTAB Labels TABTABTABTAB 1.19 CRCRCRCR

6251 TABTABTABTAB Pencils TABTABTABTAB 5.55 CRCRCRCR

1431 TABTABTABTAB Ruler TABTABTABTAB 1.99 CRCRCRCR

7519 TABTABTABTAB Tags TABTABTABTAB 6.19 CRCRCRCR

The syntax for the Script List result would be:
x := CallObject(gTable, "mGetSelection", "LIST", 1, CallObject(gTable,

"mSelectCount"), "number", "name", "price")

and the result would be
[[6780, "Batteries", 9.20], [9401, "Floppies", 1.89], [1743, "Labels",

1.19], [6251, "Pencils", 5.55], [1431, "Ruler", 1.99], [7519,
"Tags", 6.19]]

The syntax for the Property List result would be:
x := CallObject(gTable, "mGetSelection", "PROPERTYLIST", 1,

CallObject(gTable, "mSelectCount"), "number", "name", "price")

and the result would be
[[#number:6780, #name:"Batteries", #price:9.20], [#number:9401,

#name:"Floppies", #price:1.89], [#number:1743, #name:"Labels",
#price:1.19], [#number:6251, #name:"Pencils", #price:5.55],
[#number:1431, #name:"Ruler", #price:1.99], [#number:7519,
#name:"Tags", #price:6.19]]

Although, this latter request would not be of much interest because property lists
are parsed by property names, not item positions.

 V12-DBE for Authorware User Manual 102

Appendix 4: String and custom string types

V12-DBE enables you to develop applications containing different types of strings
such as English, German, Swedish and Spanish. Basically, each V12-DBE table
can contain any combination of those string types.

String comparisons depend on how special characters are defined in their
corresponding languages. For example, the letters aaaa and ääää may be considered
identical in some languages but different in others. This behavior is determined by
the sorting and searching rules attached to each type of string.

V12-DBE's default and custom String types' sorting and searching rules are defined
by the following tables where equivalent characters are listed on the same line
separated by one or more spaces and strict precedence is indicated by characters on
successive lines. For example:

j J j J j J j J

k K k K k K k K

l L l L l L l L

means that:

• K sorts after J and before L,

• j and J are equivalent (likewise, k and K are equivalent, and l and L are
equivalent too)

Characters omitted from a sorting and searching rules table are considered to sort
after those listed in the table, except for Control characters (such as Carriage
Return, Horizontal Tab, Vertical Tab, etc.), which are considered to sort before
those listed in the table.

 V12-DBE for Authorware User Manual 103

The default string
The default string type has predefined rules that accommodate a large number of
languages (English, French, German, Italian, Dutch, Portuguese, Norwegian, etc.).

(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

Sorting and searching rules table for the default string type:
1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ ­ – —

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. 0

39. 1

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã ä A À Á Â Ã Ä

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n ñ N Ñ

62. o ò ó ô õ ö œ O Ò Ó Ô Õ Ö Œ

63. p P

64. q Q

65. r R

66. s ß S

67. t T

68. u ù ú û ü U Ù Ú Û Ü

69. v V

70. w W

71. x X

72. y ÿ Y Ÿ

73. z Z

74. æ Æ

75. ø Ø

76. å Å

 V12-DBE for Authorware User Manual 104

Predefined custom string types
Along with the standard string type, V12-DBE contains a number of predefined
custom string types. They include Swedish, Spanish and Hebrew.

Searching and sorting rules for strings of type Swedish

(If the tables below are not properly formatted in this version of this manual, please
refer to the PDF version)

1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ ­ – —

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. 0

39. 1

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã A À Á Â Ã

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n ñ N Ñ

62. o ò ó ô õ œ O Ò Ó Ô Õ Œ

63. p P

64. q Q

65. r R

66. s ß S

67. t T

68. u ù ú û ü U Ù Ú Û Ü

69. v V

70. w W

71. x X

72. y ÿ Y Ÿ

73. z Z

74. æ Æ

75. ø Ø

76. å Å

77. ä Ä

78. ö Ö

 V12-DBE for Authorware User Manual 105

Searching and sorting rules for strings of type Spanish

(If the tables below are not properly formatted in this version of this manual, please
refer to the PDF version)

1. ' ‘ ’

2. " « » “ ”

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. ¬ ­ – —

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. 0

39. 1

40. 2

41. 3

42. 4

43. 5

44. 6

45. 7

46. 8

47. 9

48. a à á â ã ä A À Á Â Ã Ä

49. b B

50. c ç C Ç

51. d D

52. e è é ê ë E È É Ê Ë

53. f F

54. g G

55. h H

56. i ì í î ï I Ì Í Î Ï

57. j J

58. k K

59. l L

60. m M

61. n N

62. ñ Ñ

63. o ò ó ô õ ö œ O Ò Ó Ô Õ Ö Œ

64. p P

65. q Q

66. r R

67. s ß S

68. t T

69. u ù ú û ü U Ù Ú Û Ü

70. v V

71. w W

72. x X

73. y ÿ Y Ÿ

74. z Z

75. æ Æ

76. ø Ø

77. å Å

 V12-DBE for Authorware User Manual 106

Searching and sorting rules for strings of type Hebrew

(requires a Hebrew font such as "Web Hebrew")

1. ' ’ ‘

2. " « » ” “

3. ! ¡

4. ? ¿

5. .

6. ,

7. :

8. ;

9. …

10. #

11. $

12. ¢

13. £

14. ¥

15. % ‰

16. °

17. |

18. † ‡

19. []

20. { }

21. ()

22. < >

23. *

24. +

25. -

26. /

27. \

28. =

29. ~

30. - – ¬

31. §

32. µ

33. &

34. @

35. ©

36. ƒ

37. ®

38. à (aleph)

39. á (beth)

40. â (ghimel)

41. ã (daleth)

42. ä (he)

43. å (vau)

44. æ (zain)

45. ç (heth)

46. è (teth)

47. é (iod)

48. ê ë (caph)

49. ì (lamed)

50. í î (mem)

51. ï ð (nun)

52. ñ (samech)

53. ò (ain)

54. ó ô (phe)

55. õ ö (sadi)

56. ÷ (koph)

57. ø (resch)

58. ù (sin)

59. ú (tau)

60. 0

61. 1

62. 2

63. 3

64. 4

65. 5

66. 6

67. 7

68. 8

69. 9

70. a A À Á Â Ã Ä

71. b B

72. c C Ç

73. d D

74. e E È É Ê Ë

75. f F

76. g G

77. h H

78. i I Ì Í Î Ï

79. j J

80. k K

81. l L

82. m M

83. n N Ñ

84. o O Ò Ó Ô Õ Ö

85. p P

86. q Q

87. r R

88. s ß S

89. t T

90. u û ü U Ù Ú Û Ü

91. v V

92. w W

93. x X

94. y ÿ Y Ÿ

95. z Z

96. Æ

97. Ø

98. Å

 V12-DBE for Authorware User Manual 107

Appendix 5: Character sets

Windows-ANSI character set
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 �
129 �
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141 �
142 �
143 �
144 �
145 ‘

146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153 ™
154 š
155 ›
156 œ
157 �
158 �
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·

184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð
209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý

222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

 V12-DBE for Authorware User Manual 108

Mac-Standard character set
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ä
129 Å
130 Ç
131 É
132 Ñ
133 Ö
134 Ü
135 á
136 à
137 â
138 ä
139 ã
140 å
141 ç
142 é
143 è
144 ê
145 ë

146 í
147 ì
148 î
149 ï
150 ñ
151 ó
152 ò
153 ô
154 ö
155 õ
156 ú
157 ù
158 û
159 ü
160 †
161 °
162 ¢
163 £
164 §
165 •
166 ¶
167 ß
168 ®
169 ©
170 ™
171 ´
172 ¨
173 �
174 Æ
175 Ø
176 �
177 ±
178 �
179 �
180 ¥
181 µ
182 ð
183 Ý

184 Þ
185 þ
186 Š
187 ª
188 º
189 ý
190 æ
191 ø
192 ¿
193 ¡
194 ¬
195 ¯
196 ƒ
197 ¼
198 Ð
199 «
200 »
201 …
202
203 À
204 Ã
205 Õ
206 Œ
207 œ
208 -
209 —
210 “
211 ”
212 ‘
213 ’
214 ÷
215 ×
216 ÿ
217 Ÿ
218 �
219 ¤
220 ‹
221 ›

222 �
223 �
224 ‡
225 ·
226 ‚
227 „
228 ‰
229 Â
230 Ê
231 Á
232 Ë
233 È
234 Í
235 Î
236 Ï
237 Ì
238 Ó
239 Ô
240 �
241 Ò
242 Ú
243 Û
244 Ù
245 ¦
246 ˆ
247 ˜
248 –
249 š
250 ²
251 ¾
252 ¸
253 ½
254 ³
255 ¹

 V12-DBE for Authorware User Manual 109

MS-DOS character set
32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ç
129 ü
130 é
131 â
132 ä
133 à
134 å
135 ç
136 ê
137 ë
138 è
139 ï
140 î
141 ì
142 Ä
143 Å
144 É
145 æ

146 Æ
147 ô
148 ö
149 ò
150 û
151 ù
152 ÿ
153 Ö
154 Ü
155 ø
156 £
157 Ø
158 ×
159 ƒ
160 á
161 í
162 ó
163 ú
164 ñ
165 Ñ
166 ª
167 º
168 ¿
169 ®
170 ¬
171 ½
172 ¼
173 ¡
174 «
175 »
176 _
177 _
178 _
179 ¦
180 ¦
181 Á
182 Â
183 À

184 ©
185 ¦
186 ¦
187 +
188 +
189 ¢
190 ¥
191 +
192 +
193 -
194 -
195 +
196 -
197 +
198 ã
199 Ã
200 +
201 +
202 -
203 -
204 ¦
205 -
206 +
207 ¤
208 ð
209 Ð
210 Ê
211 Ë
212 È
213 i
214 Í
215 Î
216 Ï
217 +
218 +
219 _
220 _
221 ¦

222 Ì
223 _
224 Ó
225 ß
226 Ô
227 Ò
228 õ
229 Õ
230 µ
231 þ
232 Þ
233 Ú
234 Û
235 Ù
236 ý
237 Ý
238 ¯
239 ´
240 -
241 ±
242 _
243 ¾
244 ¶
245 §
246 ÷
247 ¸
248 °
249 ¨
250 ·
251 ¹
252 ³
253 ²
254 _
255

 V12-DBE for Authorware User Manual 110

Appendix 6: Japanese support

New field types
V12 Database Engine supports Japanese text by adding two new field types:
String.SJIS and String.YOMI. The mReadDBStructure method must be used to
create those two new fields.

Example:

[TABLE][TABLE][TABLE][TABLE]

NameOfTable

[FIELDS][FIELDS][FIELDS][FIELDS]

sjisfield string.SJIS

yomifield string.YOMI

[INDEXES][INDEXES][INDEXES][INDEXES]

sjisfieldndx duplicate sjisfield ascending

yomifieldndx duplicate yomifield ascending

[END][END][END][END]

Field of type SJIS
SJIS fields can hold Japanese text in the Shift-JIS format. Katakana, Hiragana,
English alphabets, punctuation, numerals and Kanji are available in this
representation.

Sorting

A SJIS sort will order the fields (thus the records) according to the Shift-JIS
numerical code of the characters (1 or 2 bytes) in it. There is no strict equivalence of
characters in this sort order. This means that each character has a distinct location
in the table and will always sort the same way in a similar sort operation.

Searching

All operators are supported and Boolean set operators AND and OR are also
supported.

Field of type Yomi (Yomigana)
This field can hold a subset of Shift-JIS character. This subset is restricted to the full
range of Katakana, hiragana including those with voiced diacritic marks (nigori,
maru) and small characters (contracted sounds). It can also contain punctuation
characters. This field doesn’t contain kanji.

Sorting

The exact sorting order of the syllabaries is given by the following table:

NoteNoteNoteNote: The SJIS field does not support
full text indexing. The following

operators are not supported:
wordStarts and wordEquals.

Phonetic characters (hiragana Phonetic characters (hiragana Phonetic characters (hiragana Phonetic characters (hiragana and and and and
katakana)katakana)katakana)katakana)

Pronunciation (each sounds Pronunciation (each sounds Pronunciation (each sounds Pronunciation (each sounds
corresponds to 2 characters in the corresponds to 2 characters in the corresponds to 2 characters in the corresponds to 2 characters in the
NoteNoteNoteNote: requires a Japanese font such as
"MS Mincho".
 V12-DBE for Authorware User Manual 111

left column)left column)left column)left column)

ぁァあアぃィいイぅゥうウぇェ

えエぉォおオ

(a) a (i) i (u) u (e) e (o) o

かカがガきキぎギくクぐグけケ

げゲこコごゴ

ka ga ki gi ku gu ke ge ko go

さサざザしシじジすスずズせセ

ぜゼそソぞゾ

sa za shi ji su zu se ze so zo

たタだダちチぢヂっッつツづヅ

てテでデとトどド

ta da chi dzi (tsu) tsu dzu te de to
do

なナにニぬヌねネのノ na ni nu ne no

はハばバぱパひヒべビぴピふフ

ぶブぷプへヘべベぺペほホぼボ

ぽポ

ha ba pa hi bi pi fu bu pu he be pe
ho bo po

まマみミむムめメもモ ma mi mu me mo

ゃャやヤゅュゆユょョよヨ (ya) ya (yu) yu (yo) yo

らラりリるルれレろロ ra ri ru re ro

わワをヲんン wa wo n

Dash symbol

The dash symbol has a special meaning in Yomigana. This special treatment breaks
the uniformity of the comparison method of the sorting procedure. To remove this
problem, the dash symbol should be replaced by its respective vowel in the input
data. In other words, the compare method does not take into account the semantic
of the dash symbol. The mSetCriteria method translates the dash symbol to the
correct (preceding) vowel. The translation is defined in the following table.

Reading KanaKanaKanaKana DashedDashedDashedDashed

1/2 a (hiragana) ぁ ぁあ

1/2 a (katakana) ァ ァア

a (hiragana) あ ああ

a (katakana) ア アア

1/2 i (hiragana) ぃ ぃい

1/2 i (katakana) ィ ィイ

 V12-DBE for Authorware User Manual 112

i (hiragana) い いい

i (katakana) イ イイ

1/2 u (hiragana) ぅ ぅう

1/2 u (katakana) ゥ ゥウ

u (hiragana) う うう

u (katakana) ウ ウウ

1/2 e (hiragana) ぇ ぇえ

1/2 e (katakana) ェ ェエ

e (hiragana) え ええ

e (katakana) エ エエ

1/2 o (hiragana) ぉ ぉお

1/2 o (katakana) ォ ォオ

o (hiragana) お おお

o (katakana) オ オオ

ka (hiragana) か かあ

ka (katakana) カ カア

ga (hiragana) が があ

ga (katakana) ガ ガア

ki (hiragana) き きい

ki (katakana) キ キイ

gi (hiragana) ぎ ぎい

gi (katakana) ギ ギイ

ku (hiragana) く くう

ku (katakana) ク クウ

gu (hiragana) ぐ ぐう

gu (katakana) グ グウ

ke (hiragana) け けえ

 V12-DBE for Authorware User Manual 113

ke (katakana) ケ ケエ

ge (hiragana) げ げえ

ge (katakana) ゲ ゲエ

ko (hiragana) こ こお

ko (katakana) コ コオ

go (hiragana) ご ごお

go (katakana) ゴ ゴオ

sa (hiragana) さ さあ

sa (katakana) サ サア

za (hiragana) ざ ざあ

za (katakana) ザ ザア

shi (hiragana) し しい

shi (katakana) シ シイ

ji (hiragana) じ じい

ji (katakana) ジ ジイ

su (hiragana) す すう

su (katakana) ス スウ

zu (hiragana) ず ずう

zu (katakana) ズ ズウ

se (hiragana) せ せえ

se (katakana) セ セエ

ze (hiragana) ぜ ぜえ

ze (katakana) ゼ ゼエ

so (hiragana) そ そお

so (katakana) ソ ソオ

zo (hiragana) ぞ ぞお

zo (katakana) ゾ ゾオ

 V12-DBE for Authorware User Manual 114

ta (hiragana) た たあ

ta (katakana) タ タア

da (hiragana) だ だあ

da (katakana) ダ ダア

chi (hiragana) ち ちい

chi (katakana) チ チイ

dzi (hiragana) ぢ ぢい

dzi (katakana) ヂ ヂイ

1/2 tsu (hiragana) っ っう

1/2 tsu (katakana) ッ ッウ

tsu (hiragana) つ つう

tsu (katakana) ツ ツウ

dzu (hiragana) づ づう

dzu (katakana) ヅ ヅウ

te (hiragana) て てえ

te (katakana) テ テエ

de (hiragana) で でえ

de (katakana) デ デエ

to (hiragana) と とお

to (katakana) ト トオ

do (hiragana) ど どお

do (katakana) ド ドオ

na (hiragana) な なあ

na (katakana) ナ ナア

ni (hiragana) に にい

ni (katakana) ニ ニイ

nu (hiragana) ぬ ぬう

 V12-DBE for Authorware User Manual 115

nu (katakana) ヌ ヌウ

ne (hiragana) ね ねえ

ne (katakana) ネ ネエ

no (hiragana) の のお

no (katakana) ノ ノオ

ha (hiragana) は はあ

ha (katakana) ハ ハア

ba (hiragana) ば ばあ

ba (katakana) バ バア

pa (hiragana) ぱ ぱあ

pa (katakana) パ パア

hi (hiragana) ひ ひい

hi (katakana) ヒ ヒイ

bi (hiragana) び びい

bi (katakana) ビ ビイ

pi (hiragana) ぴ ぴい

pi (katakana) ピ ピイ

fu (hiragana) ふ ふう

fu (katakana) フ フウ

bu (hiragana) ぶ ぶう

bu (katakana) ブ ブウ

pu (hiragana) ぷ ぷう

pu (katakana) プ プウ

he (hiragana) へ へえ

he (katakana) ヘ ヘエ

be (hiragana) べ べえ

be (katakana) ベ ベエ

 V12-DBE for Authorware User Manual 116

pe (hiragana) ぺ ぺえ

pe (katakana) ペ ペエ

ho (hiragana) ほ ほお

ho (katakana) ホ ホオ

bo (hiragana) ぼ ぼお

bo (katakana) ボ ボオ

po (hiragana) ぽ ぽお

po (katakana) ポ ポオ

ma (hiragana) ま まあ

ma (katakana) マ マア

mi (hiragana) み みい

mi (katakana) ミ ミイ

mu (hiragana) む むう

mu (katakana) ム ムウ

me (hiragana) め めえ

me (katakana) メ メエ

mo (hiragana) も もお

mo (katakana) モ モオ

1/2 ya (hiragana) ゃ ゃあ

1/2 ya (katakana) ャ ャア

ya (hiragana) や やあ

ya (katakana) ヤ ヤア

1/2 yu (hiragana) ゅ ゅう

1/2 yu (katakana) ュ ュウ

yu (hiragana) ゆ ゆう

yu (katakana) ユ ユウ

1/2 yo (hiragana) ょ ょお

 V12-DBE for Authorware User Manual 117

1/2 yo (katakana) ョ ョオ

yo (hiragana) よ よお

yo (katakana) ヨ ヨオ

ra (hiragana) ら らあ

ra (katakana) ラ ラア

ri (hiragana) り りい

ri (katakana) リ リイ

ru (hiragana) る るう

ru (katakana) ル ルウ

re (hiragana) れ れえ

re (katakana) レ レエ

ro (hiragana) ろ ろお

ro (katakana) ロ ロオ

wa (hiragana) わ わあ

wa (katakana) ワ ワア

wo (hiragana) を をお

wo (katakana) ヲ ヲオ

n (hiragana) ん n/a

n (katakana) ン n/a

dash ー n/a

Searching

The Yomi field has exactly the same search characteristics as the SJIS field. See the
details under Fields of Type SJIS, Searching.

Data importation
V12-J import Japanese text through the mImport method. No validation is done on
the incoming data. It is up to the user to ensure that the text is valid. Fields and
record delimiters remain 1-byte characters.

NoteNoteNoteNote: The last 3 entries (n, n, dash)
wouldn't be followed by a dash in

Japanese text, so those can be ignored
for the purposes of dash-ing

 V12-DBE for Authorware User Manual 118

Index

A
Adding Records to a Database, 56

Alternate Syntax

for Creating Indexes, 38

Ascending, 59

ASCII Character Set, 34

B
Behaviors Library, 47

Boolean operator, 62

Buffer size, 38

Build the Database, 43

C
Calculated Fields, 34

Capacities, 25, 75, 81

Character Set, 26, 34, 76, 102

CharacterSet, 76

Cloning, 65

Closing a Database, 49

Closing a Table, 49

Closing an Xtra, 18

Comments (in database descriptors), 39

Compound Indexes, 39

Compressing a Database file, 65

Corrupted Database Files, 66

Creating

Database, 41

Xtra-Instance, 17, 42

Creating a Database, 37

Current Record, 27, 49, 50

CurrentDate, 76

Custom Delimiters, 33

Customer Support, 12

D
Data Formatting, 52, 54

Data Model, 31

Database, 24

database descriptor, 37

Database Descriptors, 37

Date, 65

raw format, 35, 57, 59

Dates, 35

DBF File Formats, 35, 87

DBversion, 78

Debugger, 68

Defensive Programming, 68

Deleting a Record, 58

Delimiter Ambiguity, 33

delimiters, 33

Delimiters (Full-Text), 24

Delivering to the End User, 70

Descending, 59

Descriptors, 37

Documentation, 19

Downloading Databases via the Internet, 66

E
Error Codes, 69

Error detection, 18

Errors, 68

Exporting

Data, 64

DBF Format, 64

Text Format, 64

Exporting Data, 64

F
Field Buffer Size, 36

Field Delimiter, 52

 V12-DBE for Authorware User Manual 119

Field Descriptor, 84

Field Descriptors, 32

Field Types, 25

Files Needed, 16

Fixing a Database file, 66

Flat Databases, 24

Float, 65

FlushToDisk, 78

Formatting

Dates, 55

Integers and Floats, 54

Freeing up Disk Space, 65

Full-index, 38

Full-text Indexing, 23

Delimiters, 79

Shortest words, 79

Stop words, 79

G
Global functions, 20

I
Identifiers, 31

Importation Examples and Rules, 83

Importing

A text File, 84

Data into a V12-DBE Database, 47

DBF files, 87

FoxPro, 91

From a DBF File, 88

From a Literal, 85

Lists, 86

Literals, 85

Microsoft Access, 92

Microsoft Excel, 94

Property Lists, 86

SQL, 83, 96

Text Files, 83

V12 DBE files, 86

Importing DataImporting DataImporting DataImporting Data, 29, 32, 33, 34, 37, 45, 46, 47

Index, 38

Indexes, 22

Installing V12-DBE, 15

Integer, 65

International, 102

Character Sets, 26

L
Languages, 26, 102

License Agreement, 7

Limits, 81

M
Mailing List, 11

Master Field, 49

memory partition, 14

Methods, 18

interface, 19

mAddRecord, 56

mBuild, 43

mCloneDatabase, 65

mDataFormat, 54, 64

mDeleteRecord, 58

mDumpStructure, 43

mEditRecord, 57

mExportSelection, 64

mFind, 51

mFixDatabase, 66

mGetField, 52

mGetPosition, 50

mGetProperty, 74

DBversion, 78

ProgressIndicator, 74, 75

ProgressIndicator.Message, 75

SharedRWcount, 78

Verbose, 76

mGetPropertyNames, 75

mGetRef, 48

mGetSelection, 52

mGetSelection examples, 99

mGetUnique, 53

mGo, 50

 V12-DBE for Authorware User Manual 120

mGoFirst, 50

mGoLast, 50

mGoNext, 50

mGoPrevious, 50

mImport, 84, 85, 86, 87, 88, 91, 93, 95, 97, 99, 100,
101

mPackDatabase, 65

mReadDBstructure, 42, 83, 85, 86, 87

mSelDelete, 58

mSelect, 58

mSelectAll, 49

mSelectCount, 63

mSetCriteria, 58

mSetField, 56, 57

mSetPassword, 66

mSetProperty, 74

CharacterSet, 76

ProgressIndicator, 74, 75

ProgressIndicator.Message, 75

Verbose, 69, 76

VirtualCR, 76

mUpdateRecord, 57

mXtraVersion, 66

new, 42, 47, 48

NewObject, 19

NewObject, 17

V12Error, 68

V12Status, 68

Microsoft Access, 92

Microsoft Excel, 94

Microsoft SQL, 83, 96

Mode, 42

Months, 77

Multi-user Access, 71

O
Online Resources, 11

Opening a Table, 48

Opening an Existing Database, 47

Operators

Greater than (>), 60

Operators, 59

Contains, 61

Equal (=), 59

Greater or equal (>=), 61

Less or Equal (<=), 60

Less Than (<), 60

Not Equal (<>), 60

Starts, 61

WordEquals, 62

WordStarts, 61

Operators searching, 59

P
Packing a Database file, 65

Parameters, 19

Partial Selections, 63

Password, 42, 66

Pathnames, 19

Progress Indicator, 74, 75

ProgressIndicator, 74, 75

ProgressIndicator.Message, 75

Properties

Custom, 80

of Databases, 74

Predefined, 75

String, 78

Properties, Custom, 80

Q
Queries

Boolean, 27

Complex, 27

Simple, 27

R
RAM buffer, 38

Reading a record, 52

Reading an entire selection, 52

Reading fields

of type date, 52

of type float, 52

of type integer, 52

 V12-DBE for Authorware User Manual 121

of type string, 52

Record Delimiter, 52

Relational Databases, 24

Resources, 76

S
Search Criteria, 27

Complex, 27, 62

Contains, 61

Simple, 27, 58

Starts, 61

WordEquals, 62

WordStarts, 61

Selection, 27, 49

Records, 49

Size, 63

Shared ReadWrite Mode, 71

SharedRWcount, 78

Shortest word (Full-Index), 79

ShortMonths, 77

ShortWeekdays, 77

SQL, 83, 96

Standalone Packaged Pieces, 70

Stop Words, 24

String, 65, 102, 104

String Property, 78

String Types (Custom), 102, 104

String.Language, 78

String.Language.Delimiters, 79

String.Language.MinWordLength, 79

String.Language.StopWords, 79

Strings

Hebrew, 106

Japanese, 110

Spanish, 105

Swedish, 104

Structure

Database, 42

System Requirements, 14

T
TAB-delimited file, 32

Testing, 70

Text files, 32

Text Qualifiers, 33

Tool, 40, 45

Typecasting, 26

U
Using

Xtra Instances, 18

V
V12-DBE Tool, 40, 45

V12Download, 66

V12DownloadInfo, 67

V12Error (method), 68

V12Status, 68

V12Status (method), 68

Verbose, 76

Version

Determining, 66

Virtual Carriage Returns, 33

Virtual CR, 33, 76

VirtualCR, 75

W
Warnings, 68

Web Package, 70

Weekdays, 77

What is ?

A database, 21

A field, 21

A record, 21

A search criterion, 27

A selection, 27

A table, 21

The current record, 27

Writing Data, 57

of type Date, 57

 V12-DBE for Authorware User Manual 122

of type Float, 57

of type Integer, 57

of type String, 57

X
Xtra Instance, 17

	Contents
	License agreement
	Introduction
	V12-Database Engine for Authorware
	Where to start
	Do I really need to master scripting to use V12-DBE?
	Free tools
	You’re not alone!
	V12-L discussion list
	Other online resources
	Customer support
	Developer assistance

	About this manual
	Typographic conventions in this manual

	Welcome to V12 Database Engine
	System requirements for running V12-DBE
	Macintosh versions
	Windows version
	Macromedia Authorware

	Installing V12-DBE
	What’s new in version 3.3?
	Release history

	How to register your V12-DBE license
	Files needed to use V12-DBE

	Using Xtras
	What is an Xtra?
	Making an Xtra available to Authorware
	Creating an Xtra instance
	Checking if NewObject was successful
	Using the Xtra instance
	Closing an Xtra
	Checking for available Xtras
	Dealing with pathnames
	Passing parameters to Xtras
	Basic documentation

	Database basics
	Overview
	What is a database?
	Records, fields and tables
	Indexes
	Compound indexes
	Full-text indexing
	Database

	Flat and relational databases
	Field types
	Typecasting

	International support
	Selection, current record, search criteria

	Using V12-DBE: step-by-step
	Overview
	V12-DBE components
	The main steps

	Step 1: Decide on a Data Model
	Defining identifiers

	Step 2: Prepare the Data
	TEXT file formats
	Field descriptors
	Dealing with delimiter ambiguity
	Character sets
	Dealing with dates
	Exporting a FileMaker Pro database to text
	Exporting a MS Access database to text

	DBF file formats
	Field buffer size

	Step 3: Create a database
	Database descriptors
	Defining both an index and a full-index on a field
	Alternate syntax for creating indexes
	Compound indexes
	Adding comments to database descriptors
	Multiple tables in a descriptor

	Using the V12-DBE Tool
	Loading a descriptor from a source file

	Script the database creation
	Step 3a: Create a database Xtra instance
	Step 3b: Define the database structure
	Step 3c: Build the database

	View the structure of a database

	Step 4: Import data into a V12-DBE database
	Import data with the V12-DBE Tool
	Script the data importing
	Import data with mImport

	Step 5: Implementing the user interface
	Using the V12-DBE Knowledge Objects library
	Using scripts
	Open and close a database, a table
	Selection and current record
	Selection at startup
	Select all the records of a table
	Browse a selection
	Read data from a database
	Add records to a database
	Update data in a database
	Delete a record
	Delete all the records of a selection
	Search data with mSetCriteria
	Exporting data
	Cloning a database
	Freeing up disk space (packing)
	Fixing corrupted database files
	Checking the Vversion of the Xtra
	Changing a password
	Dynamically downloading databases via the Internet

	Errors and defensive programming
	Error management in applications
	Checking the status of the last method called
	Errors and warnings

	Using the verbose property

	Delivering to the end user
	Standalone packaged pieces
	Web-packaged pieces
	Testing for end-users

	Advanced feature: Multi-user access
	Multi-user access
	Opening a file in Shared ReadWrite mode
	Shared access rules and exceptions

	Shared databases and record locking
	Counting the number of users
	Possible configurations

	Customizing the V12 database engine
	Progress indicators
	Options of the progressIndicator property

	Properties of databases
	Predefined properties
	The String property
	Custom properties (advanced users)

	Appendix 1: Capacities and Limits
	Database
	Creation
	Selection
	Importing
	Table
	Field
	Index
	Media

	Appendix 2: Database Creation and Data Importing Rules
	Text Files
	Literals
	Lists or Property Lists
	V12 DBE files
	DBF (Database Format)
	Microsoft FoxPro
	Microsoft Access
	Microsoft Excel
	Microsoft SQL Server

	Appendix 3: mGetSelection examples
	Read an entire selection
	Read a range of records in a string variable
	Read a range of records in a list
	Read a range of records in a property list
	Read the entire contents of the current record
	Read a record without making it the current record
	Read the entire selection with special delimiters
	Read selected fields in a selection
	Read records with a determined order of fields

	Appendix 4: String and custom string types
	The default string
	Predefined custom string types

	Appendix 5: Character sets
	Windows-ANSI character set
	Mac-Standard character set

	Appendix 6: Japanese support
	New field types
	Field of type SJIS
	Field of type Yomi (Yomigana)

	Data importation

	Index

