

DEVELOPER GUIDE

Lab Topics and Additional Information

RC Camera Car

P14226

Tim Southerton

Brian Grosso

Alex Reid

Kevin Meehan

Lalit Tanwar

Matthew Morris

Developer Guide RC Camera Car P14226

I. Chassis Construction and Information

A. Assembly Instructions

For assembling the Freescale Car Cup chassis, the directions can be found on the site below,

which is part of the Freescale community site where all sorts of helpful information can be

found. Unfortunately, not all of the directions are that helpful, so some are copied here and

modified to give extra clarity.

General Freescale Community Site for Freescale Cup Car Assembly

Assembly of the car focuses on three main aspects, namely mounting the steering servo,

mounting the freedom board (KL25Z) to the car, and mounting the line following camera. These

items will be addressed individually.

1. Servo and Steering

Inside the kit are various mounting options for different servo manufacturers. Look for the

Futaba bushing of the servo as this is the most common.

Before doing anything, you want to center the servo bushing for the car on the servo. This means

connecting the tab on the plastic piece to be so that it fits on the gearing of the servo pointing

vertically upward WHEN THE SERVO IS AT ITS MIDDLE POSITION. The only way to move

the servo to the center position is by feeding it power, ground, and a PWM signal.

The easiest way to do this is using an Arduino, but since this is not a Freescale item I will not go

into much detail. Anyway, this Youtube video gives you the code you need to center a servo with

an Arduino Uno, and additionally you can just modify the sample code for the Sweep Arduino

Example to do this. The example is helpful because it will show you the full range of motion of

the servo, giving you an idea of what can go wrong. These servos only spin 180 degrees, so if

you don’t mount the connecting pieces so that the wheels are straight when the servo is at the

center, you might limit your turning capabilities in one direction of burn out the servo. Remove

any existing servo horns and screws when you understand the servo’s range of motion. When

everything is centered in looks right, you should see something like the images below. MAKE

https://community.freescale.com/docs/DOC-1014
https://community.freescale.com/docs/DOC-1015
https://community.freescale.com/docs/DOC-1015
http://www.youtube.com/watch?v=enXhmgfKbB0
http://arduino.cc/en/Tutorial/sweep
http://arduino.cc/en/Tutorial/sweep
http://thefreescalecup.wdfiles.com/local--files/en:servo-assembly/Servo_Assembly.JPG

Developer Guide RC Camera Car P14226

SURE THE TAB POINTS TO THE SAME SIDE OF THE SERVO AS BELOW, OTHERWISE

YOU WILL HAVE TO MOUNT THE OTHER COMPONENTS IN THE OPPOSITE

ORIENTATION.

You will need the pieces shown below. You will screw this into the servo. Pieces are notched, so

assembly is straight forward. Mount the yellow servo plate assembly to the servo as shown

below. Make sure to add the small yellow washer (pictured below) in between the servo plate

and the screw. Tighten well, a servo produces a good amount of torque and will slip if not tight,

but remember this is metal-on-plastic, so you can strip the connection.

Assemble the short arm and long arm. The plastic pieces are identical in this case, but the rods

are of different length. This process is most easily accomplished with two pairs of pliers or a

small adjustable wrench, one to grab the metal rods and the other to tighten each end

individually. These will take some adjusting, so just get the threading started and leave for later.

Developer Guide RC Camera Car P14226

Once finished, the metal balls need to be installed in the open plastic ends. The easiest way to do

this seems to be to put the balls down on a table using the hole to sit flat, then push the plastic

end down over the ball until you hear a snap. This will take some force, so alternatively do the

same process with a pair of pliers.

While doing this, locate the black, round-headed screws pictured. These are used for mounting

the arms to the servo horn. Screw the plastic screws into the servo horn as seen below. This also

takes some force, as the plastic is not threaded. If this is not going well, mark the position of the

servo horn, remove the yellow pieces, and clamp that to assemble this separately before

reattaching in the same orientation.

https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5257/Steering5.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5258/Steering6.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5259/Steering7.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5260/Steering8.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5261/Steering9.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5262/Steering10.jpg

Developer Guide RC Camera Car P14226

Now the servo has to be mounted to the chassis. Locate the small plastic blocks seen below,

along with two more of the same screws you used to mount the servo horn arms. Set the servo

flat against the table and brace (or clamp) the plastic blocks behind the set of tabs one either side.

Again, with great force screw the screws into the top holes until the blocks are tight against the

servo plastic mounts from the back.

Now slide the servo assembly in from the center of the car outward and screw the attachment

blocks in from the bottom of the car, as seen below. The screws used for this are the tapered head

screws (all of which are the same length), which should leave a flat finish and not catch the floor.

https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5268/Steering20.jpg
https://community.freescale.com/servlet/JiveServlet/showImage/102-1015-4-5269/Steering21.jpg

Developer Guide RC Camera Car P14226

Almost there. Now all you need to do is adjust the length of the servo arms and attach the plastic

end cap pieces to the metal hitch pieces on each wheel. Here we removed the wheels using the

provided metal tool. Be careful not to lose the washers that are behind each wheel nut.

The difficult part is making the wheels straight when the servo is centered. The servo arms and

plastic ends have to be adjusted repeatedly to give the correct length for connecting to the hitch

points, and when the plastic caps snap into place, the wheel rods will not be perpendicular to the

car centerline, which is where you want them. A helpful hint can be seen in the image below,

which is what you do to get the plastic caps off of the hitch points when it turns out you need to

adjust the arm length. Simple put a flat head screw driver in as seen and pry CCW until the

plastic cap pops off. This may mar up the plastic slightly, so don’t do this many times.

If you can’t get the rods perfectly straight, it is better to have the wheels slightly angled forward

than backward, as this will steer more preferably. The image below shows how well we did.

Developer Guide RC Camera Car P14226

Now just put the wheels back on. At this point you will probably want to mount the bumper. This

is as simple as that seen below. The indent that corresponds to the plastic on the front of the

chassis press together (translate the bumper upward in the picture) and the bumper is secured

with screws and nuts. Depending on how well Freescale did with your set, the taped flat-headed

screws that look like every other screw on the bottom of the chassis may work, but if they do not

just use the same screws that you used for the servo horn arm mounts. They do not protrude

much below the chassis anyway so it works and is significantly easier to mount a nut on.

Helpful Tip: DON’T MOVE THE SERVO BY HAND OR PAST THEIR STOPS. THIS WILL

BREAK THE PLASTIC GEARS INSIDE. Just saying.

Developer Guide RC Camera Car P14226

2. Freedom Board

For our project, significant modification was made to accommodate significant amounts of extra

electronics that are not necessary for the car. This included the addition of a Lexan mounting

plate over the entire chassis, which can be seen in the Modifications Section. As for basic mount

of the Freedom Board to the Freescale Cup Car, see the video below, as it proposes the easiest

solution with parts provided.

3. Line Scan Camera

Similar, for our project, the line following camera was not needed for anything, so little was

done in the mounting of this component. The method seen below from the link above is the

easiest way to mount the components with some of the parts provided, which seems to just use

the servo attachment posts and some L-brackets. These brackets can be purchased from Parallax

for cheap here or from Home Depot here. For reference, previous teams have needed to mount

the camera significantly higher for viewing area, but this can be done by adding a post between

the L-brackets and camera. The rest is up to you.

To attach the camera we found useful to prepare two metal L-shaped pieces made from

aluminum. With the help of black plastic distance posts (already available in the kit) and these

metal stands, you may freely change the position of the camera over the surface. See link above

in header for CAD files.

https://community.freescale.com/videos/1568
https://community.freescale.com/docs/DOC-1018
http://www.parallax.com/product/720-00011
http://www.homedepot.com/p/Everbilt-3-4-in-Zinc-Plated-Corner-Braces-4-Pack-13542/202950157
http://www.robotika.sk/events/12TFC/TFC_CameraMount1.jpg
http://www.robotika.sk/events/12TFC/TFC_CameraMount2.jpg

Developer Guide RC Camera Car P14226

B. Modifications

1. Suspension Removal

 The first design feature that was deemed useless for our project goals was the rotary joint

suspension system implemented on the back of the car. This allows for three wheels to be on the

ground when going over uneven terrain, but due to the ground clearance of the car this effect

cannot be realized. For our purposes it makes more sense to have a rigid chassis to which the

electronics are mounted, so these components were removed.

As can be seen, many parts were removed and the result gave considerably more open space on

the chassis. The plastic T-bracket was secured using two #8-32 flat heat screws with nuts and

washers to prevent movement between the two sections. This design is further reinforced by the

adapter plate noted later, which connects the front and rear chassis sections through standoffs.

2. Servo Position Adjustment

After some preliminary testing it was noted that more room would be available in the front of the

car for bumper mounting and standoffs if the servo was reversed in orientation on the chassis.

The provided plastic servo mounting blocks also became loose frequently and required excessive

work to fix. Aluminum L-brackets were used along with left over screws and nuts from the kit

Developer Guide RC Camera Car P14226

to mount the servo in a reverse orientation using two of the holes already available in the chassis.

Two small plastic tabs had to me snipped off of the back of the servo screw mounts, and two

more holes were drilled directly in front of the mounting holes for increased support. The new

design allows for easier component removal and service and provides the same turning

capabilities as the original mounting configuration.

3. Prototyping Plate

The hole layout of the original chassis was not suitable for either the Freescale microcontroller or

any of the other electronics we needed to add for this project. For this reason, we decided to

make a prototyping plate out of Lexan. This plate attaches to the car at several points to increase

rigidity, is elevated on stand-offs, and contain the hole pattern of all of the parts we are attaching

to the car. In the diagram below, all dimensions are in inches for machining purposes. For the

CAD model check out Fixed Adapter Plate. To download any CAD file, right click the

“Display” link in the CAD directory and choose “Save link as…” This will save a .SLDPRT or

.SLDASM file to the desired location.

Additional CAD work and component testing had to be done to optimize the hole layout for all

of the components. This yielded the following CAD rendering, which shows where all of the

components mount on the frame. Of course, this differs slightly from the final product, but it

gives a good idea of the final objective of the design. For the CAD check out Fixed Car

Components. To download any CAD file, right click the “Display” link in the CAD directory

and choose “Save link as…” This will save a .SLDPRT or .SLDASM file to the desired

location.

http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

4. Protective Plate

To protect the electronics added to the car, an additional Lexan plate was added above the

adapter plate and separated by standoffs. This design allows for some protection from outside

forces while still allowing access to the electronics for modification. This standoffs are simple

3.5” long #8-32 aluminum hexes. A schematic of the plate to be fabricated is below, with

dimensions again in inches for fabrication purposes. For the CAD model check out Protective

Plate. To download any CAD file, right click the “Display” link in the CAD directory and

choose “Save link as…” This will save a .SLDPRT or .SLDASM file to the desired location.

http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

5. Wheels

The original Freescale cup chassis wheels were 2 inches in diameter. This left only a few

millimeters in terms of ground clearance. In addition, the locknuts attaching the front wheels

stuck out such that the future goal of driving on the two side wheels would not work. In order to

better accommodate this goal for future iterations of the project, softer, larger tires were deemed

more useful. Fitting the car with monster truck tires would be out of the question due to the

limited power of the small motors. For this reason, it was decided that the tires should be in the

vicinity of 3 inches in diameter.

The new tires obtained are 2.8 inches (70mm) in diameter and much better suited (softer, bigger,

and no pieces sticking out) to the task of providing a platform that could potentially be used for

driving on two wheels in the future while not negatively affecting the usability of the car for

normal driving purposes.

Developer Guide RC Camera Car P14226

6. Front Transaxles

a) Length Calculation

Since the wheels were larger, the front wheels would now contact the chassis while turning if the

original transaxle was kept. Some geometry was done in mapping out the shape of the chassis

and determining the length of the new transaxle. A goal of 5mm clearance at a turning angle of

35 degrees for the inner wheel on a turn was assumed in the geometry as this was deemed to be

the limiting case since the front bumper would not get in the way because it would need to be

redesigned anyway. An excel file was set-up to iterate transaxle length given the parameters

above and the radial distance inward from where the wheel rim met the transaxle and the inner

edge of the tire which was 17 mm.

From iterating this map with new transaxle lengths, it was decided that the new transaxle length

should be anywhere for 40 to 60mm. The old transaxle length was about 15mm.

b) Practical Design of Front Transaxles

The real transaxle would need to have additional length to stick out on either side. The inner

side needed to clear where it was mounted on the kingpin so that a snap ring could be fitted to

y = 0.0089x3 + 0.2145x2 + 3.1826x + 68.443

y = 0.0091x3 + 0.0902x2 + 1.7379x + 55.452

y = 0.7002x + 1.7896

y = -1.4281x + 45.886

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

-25.00 -15.00 -5.00 5.00 15.00 25.00 35.00

Front left Chassis shape [mm] (Left turn)

Tire Bounds

Chassis

clearance line

Transaxle

Tire Line

Poly. (Chassis)

Poly. (clearance
line)
Linear (Transaxle)

Green dot is
inner edge of
tire.

Developer Guide RC Camera Car P14226

hold it in. The outer side needed room for threads and a lock nut to hold the wheel in place from

the outside.5mm centerless ground rod made from tool steel was used in the construction of the

transaxles. Below is the technical drawing. As can be seen when comparing the drawing to the

picture, a step-up was added to the drawing after spacers had to be made with the given

dimensions to reduce movement in the connection point. This should be done in the initial

machining for future parts. For the CAD model check out Front Axle Extension. To download

any CAD file, right click the “Display” link in the CAD directory and choose “Save link as…”

This will save a .SLDPRT or .SLDASM file to the desired location.

http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

All dimensions are given in inches because that is how the lathes in the machine shop are set-up.

All length dimensions are based off of the outside edge of the kingpin mount. The 3mm E-ring

groove holds the transaxle from sliding outward. The outer opening of the kingpin mount is a

3.5mm hex and the inner opening is a 3mm hole, this hex in the previous transaxle prevented the

transaxle from sliding inward. In the new transaxle, that hex is replaced by a step-up, and the

step from 0.118” (3mm) to 0.162” and finally to 0.197” (5mm) prevents the transaxle from

sliding inward. The 5mm E-ring slot was positioned to leave room for the washers, two

bearings, and wheel rim, but leave just enough overhang (over the 0.125” diameter) so that the

locknut could tighten up and eliminate slop in the system. The overall length of the transaxle is

about 74mm; it is about 50mm in the length used in the calculation which falls right in the

middle of the range.

Due to the rod being about 5.03mm in diameter and the bearings being about 4.98mm in

diameter, the sections of the transaxles outside of the 5mm E-ring groove had to be turned down

slightly to allow the bearings to fit.

7. Rear Encoder / Wheel Adapters and Optical Gates

a) First Iteration Encoder

The new wheels came with new requirements to be mounted on the car. The old adapter for the

wheels was a cylinder with two flats and a central hole for the alignment axle. The new wheels

required a 12mm hex to transmit torque. So an adapter to go between these two shapes had to be

designed. Since there was currently no good way to measure wheel speed on the original

chassis, it was decided that these new adapters for the rear wheels would also act as encoder

disks. The concept for out encoder design stems from a commercially available speed sensing

encoder set that can be found here. The optical gates used for this project were donated and

datasheets can be found here. These are reflective optical switches that are to be mounted to the

chassis facing the encoder. A prototype of the encoder idea was 3D-printed before new front

wheels were considered for testing purposes and design feedback. This design was later updated

when the new wheels were added. For the CAD model check out Encoder Wheel Mount. To

download any CAD file, right click the “Display” link in the CAD directory and choose “Save

link as…” This will save a .SLDPRT or .SLDASM file to the desired location.

http://www.robotshop.com/en/cytron-simple-rotary-encoder-kit.html
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

b) Second Iteration

In order to provide a platform for balancing on two wheels, the track width of the front and back

wheels had to be the same. The new front transaxles and wheels put the new track width target

at 8.4”. The new encoders had to be designed to meet the same value for the rear track width.

The position to mount the optical sensor also changed. So between iterations, the encoders got

longer, larger in diameter, and the encoder teeth were moved closer to the wheel hubs to provide

optimum spacing with the optical sensors mounted on the back. The color was also changed

from black to white to obtain better values from the photo sensor. In addition the hex was

widened by about 0.5mm to eliminate slop. The inner diameter of the encoders were drilled out

with a #7 drill to 0.201” (5.1mm) to allow them to spin freely on the alignment rod. Depending

on the material used in 3D printing, the interface between the encoder and hub may be tight and

require minimal amounts of material to be removed to slide on easily. For the CAD model check

out Encoder Wheel Mount rev2. To download any CAD file, right click the “Display” link in the

CAD directory and choose “Save link as…” This will save a .SLDPRT or .SLDASM file to the

desired location.

The new encoders were made larger so that the optical switches could read the rotational data

while being mounted rigidly to the chassis with screws. The design also allowed for adjustability

in the disk to switch distance, which was set at the optical 3mm gap. The connecting wires had

to be replaced with more flexible connections to accommodate wiring constraints on the chassis.

Be careful when drilling the screw holes into the side of the plastic where seen below. There is

limited extra material in this location so size the mounting screws and tighten appropriately.

http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

8. Rear Axle / Alignment Rod

A new rear axle (which only serves to align the rear wheels and keep them from falling off) had

to be designed to accommodate the new length of the encoders and to allow the locknuts on the

threads to tighten up against the wheel to eliminate slop. For the CAD model check out Back

Drive Rod. To download any CAD file, right click the “Display” link in the CAD directory and

choose “Save link as…” This will save a .SLDPRT or .SLDASM file to the desired location.

The rod is from the same piece of 5mm center ground rod made of tool steel. The inner diameter

of the wheels were also drilled out with a #7 drill to 0.201” (5.1mm) to allow them to spin freely

on the alignment rod.

9. Bumper Modification

The bumper design that would allow for the significant chassis weight increase and adequately

protect the electronics went through many iterations, as quick analysis techniques do not really

exist for impact testing. Instead, we went through some material and design testing before

coming to an acceptable final product. The design consists of two Lexan plates that sandwich a

piece of polyethylene foam and are held together with screws and nuts. Two holes for the

original bumper had to be enlarged to mount the new bumper with #8-32 screws. The foam as

free from senior design (it is suggested to find packing material rather than buying foam, which

can get expensive) and was cut using a hot wire foam cutter to get the desired geometry.

However, reasonable results can be achieved with a sharp knife. After the shape was cut, reliefs

were cut into the back of the foam to allow for more compression. A back bumper was added by

simply cutting an additional piece of foam and using the existing standoffs for the frame as

securing points. The foam simply slides over the standoffs. For the CAD model check out

Bumper Frame Bottom and Top. To download any CAD file, right click the “Display” link in

the CAD directory and choose “Save link as…” This will save a .SLDPRT or .SLDASM file to

the desired location.

http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

Developer Guide RC Camera Car P14226

C. Car Steering Servo and Drive Motor Specs

As measured on the console and confirmed online, the range of the steering wheel is +/- 120

degrees. The steering angles of the car wheels are targeted at +/- 35 degrees to simulate normal

car handling. These values yield a steering ratio of 3.4.

D. Battery and Power Management Specs

The Freescale Cup Car is powered by a 3000 mAh NiMH battery that is charged with the

supplied Tenergy brick charger. The status LED will be red while charging and green when

charged. The current level selector switch can be in either setting: 2A will charge more quickly,

1A will prolong the life of the battery but will take longer to charge. This is a very robust battery

that outputs 7.2 V nominal and 8.2 V at max charge, and they can be fully discharged without

issue with damaging the battery. These batteries do not have a quick charge time (2 - 4 hours), so

two batteries are supplied with this car so that one can be charged while the other is being used.

The camera and video transmitter on the car are powered by a separate 3S 35C 11.1V LiPO

battery pack. This battery pack is estimated to have a run time of two hours, and we have an

additional battery pack for continuous use of the system. The batteries are charged with the silver

Tenergy balance charger (simply plug the white connector into the four pin connector port).

Make sure the switch is set to “LiPO,” and the 1-4cells Li-Po/LiFe LED will be red while

charging and green when fully charged.

http://en.wikipedia.org/wiki/Racing_wheel

Developer Guide RC Camera Car P14226

II. Physics Theory

Torque Vectoring for Cornering Performance

A. Goal

Define a desired wheel speed input signal to serve as a reference signal in the tangential speed

control loop for the inner and outer wheels on a turn. Use these reference speeds to change the

left and right wheel speeds to alleviate wheel slip through turns.

B. Assumptions

 No slip

 Car moves as rigid body through turn

C. Inputs

 Tangential (forward) speed of car (generated from throttle input).

 Steering angle (angle of front wheels)

D. Notation

1. Variables

 R, radius [m]

 V, tangential velocity [m/s]

 w, track width of vehicle [m]

 b, wheel base [m]

 δ, steering angle of front wheels [deg]

 ω, angular speed through turn [rad/s]

2. Subscripts

 r, right side of car

 l, left side of car

 i, inner side of car on a turn

 o, outer side of car on a turn

 No subscript means the variable applies to the center of the car

Developer Guide RC Camera Car P14226

E. Vehicle Parameters

Parameter Symbol Value Units

Wheel Base b 0.1981 m

Track Width w 0.1397 m

Tire Radius r 0.0356 m

Time Constant τ 1.4 s

Total Weight Fg 1670 g

Steering Angle δ -35 < δ < +35 deg

Tangential Velocity V 0 < V < 6 (ideal) m/s

Dead Zone DZ +/- 2.78 (0.5 PWM) m/s

Velocity Saturation - DZ Vsat +/- 1.52 (0.75 PWM) m/s

Torque Saturation - DZ Tsat +/- 0.7 (0.75 PWM) m/s2

1. Saturation and Dead Zone values

Note that the Dead Zone value, DZ, is reported by what speed the 0.5 Pulse Width Modulation

(PWM) corresponds to ideally as that is the PWM required to get the car moving while it is on

the ground. The Saturation values, Vsat and Tsat, reported in terms of Saturation minus the Dead

Zone for convenient use in Simulink since the control loops in the Simulink model are in terms

of m/s, the placement of the saturation blocks immediately after the compensators requires that

dead zone already be taken into account. The value of Tsat was obtained from the graph in the

System parameters of the Controls Application Section. The method used to determine Tsat can

be found in the Non-linearities section. Also note that the motor saturation is arbitrarily capped

at 0.75 PWM instead of 1.0 PWM. This is done as 1.0 PWM is just too noisy to get useful

encoder data. The arbitrary PWM cap affects the value of the Vsat and Tsat, and if that value

changes from 0.75 PWM, then Vsat and Tsat must be re-calculated. All values in this table appear

as they are used in the Simulink model, no addition conversions are needed. Use the chart below

to convert from PWM to speed if necessary:

y = 5.7267x - 2.7753

y = 5.7267x + 3E-14

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 0.2 0.4 0.6 0.8 1

C
ar

 S
p

ee
d

 (
m

/s
)

Motor PWM

Car Speed versus PWM while on the ground

Actual Speed Ideal Speed

Linear (Actual Speed) Linear (Ideal Speed)

Developer Guide RC Camera Car P14226

The data was obtained by passing through a timing gate 3 times at each PWM averaging the

results and drawing a trend line. The ideal speed line is drawn with the same slope as the Actual

Speed line, but with no Dead Zone, use this to determine what the input speed should be in

Simulink.

F. Method

The average steering angle δ corresponds theoretically to the average of the left and right

Ackerman steering angles:

 𝛿 =
𝛿𝑟+𝛿𝑙

2
 (1)

However due to slop in the steering linkages, δ is assumed to be a linear function of the

maximum turning angle of the wheels and the console steering wheel itself. The angle of the

console steering wheel θ is known from the encoder in the steering wheel. Both δ and θ are in

degrees. The value of δ varies from -35 degrees (left turn) to +35 degrees (right turn), while θ

varies from -120 degrees to +120 degrees.

 𝛿 = 𝜃(
70

240
) (2)

Use steering angle, δ, to determine turn the radius, R. The no slip assumption implies that this is

a low speed turn which assumes that lateral forces are negligible, and the turn radius is

independent of the car’s speed.

 𝑅 [𝑚] =
(𝑏 [𝑚])

tan (𝛿 [deg])
 (3)

*Note that if the steering angle becomes zero, R will tend toward infinity. In order to avoid this

the code simply contains an “if” statement that says if |δ| < 0.001°, then δ = 0.001°. This will

result in a turning radius so large, that the wheels will spin at the same speed, but the code will

believe the car is turning right.

Use the known track width, w. in meters to determine the radius of the turn as seen by the inner,

Ri, and outer rear, Ro, wheels in meters:

 𝑅𝑜[𝑚] = 𝑅 +
𝑤

2
 (4)

 𝑅𝑖[𝑚] = 𝑅 −
𝑤

2
 (5)

Use forward speed input and central turn radius to get the angular speed of the car through the

turn:

 𝜔 [
𝑟𝑎𝑑

𝑠
] =

𝑉 [
𝑚

𝑠
]

𝑅 [𝑚]
 (6)

Developer Guide RC Camera Car P14226

Use the rigid body assumption (all parts of car have the same angular speed, ω, through the turn

at a given time) to map the inner, Ri, and outer, Ro, radii to an inner and outer tangential speed:

 𝑉𝑜[
𝑚

𝑠
] = (𝑅𝑜[𝑚]) (𝜔[

𝑟𝑎𝑑

𝑠
]) (7)

 𝑉𝑖[
𝑚

𝑠
] = (𝑅𝑖[𝑚]) (𝜔[

𝑟𝑎𝑑

𝑠
]) (8)

These tangential wheel speeds are what the PID loops use as the set-points. Equations (3)-(8) are

useful for debugging purposes as the intermediate values have easy to grasp physical meanings,

however equations (3)-(8) can be reduced to:

 𝑉𝑜 [
𝑚

𝑠
] = 𝑉[

𝑚

𝑠
](1 + (

𝑤

2𝑏
) 𝑡𝑎𝑛(|𝛿|) (9)

 𝑉𝑖 [
𝑚

𝑠
] = 𝑉[

𝑚

𝑠
](1 − (

𝑤

2𝑏
) 𝑡𝑎𝑛(|𝛿|) (10)

Where V [m/s] is an input to the system, and represents the central tangential speed of the

vehicle, in the microcontroller code, V comes from the throttle input. When implementing the

control system on the KL25Z, equations (9) and (10) were used to reduce calculation time and

complexity instead of equations (3)-(8).

G. Notes

Equation (3) assumes an average steering angle, δ, for the front wheels. This angle would be the

average of the inner and outer wheel steering angles because they differ slightly due to the

Ackerman principle, however for us, δ comes from Eq. (2). In addition, using a bicycle model

with a high speed turn would vastly complicate Eq. (3) to:

 𝑅 = 57.3 (
𝑏

𝛿
+ [(

𝑊𝑓

𝐶𝛼𝑓
−

𝑊𝑟

𝐶𝛼𝑟
) + (

𝑊𝑟

𝐶𝛼𝑟

𝐹𝑥𝑟

𝐶𝛼𝑟
)]

𝑉2

𝑔𝛿
) (11)

Where δ [deg] is the average steering angle, b [m] is the distance between the front and rear

axles, Wf [N] is the weight felt by the front wheels, Wr [N] is the weight felt by the rear wheels,

V [m/s] is the tangential velocity, Cαf [N/deg] is the cornering stiffness for the front wheels, Cαr

[N/deg] is the cornering stiffness for the rear wheels, and Fxr [N]is the tractive (driving) force

coming from the rear wheels, g [m/s2] is the acceleration due to gravity, and 57.3 is the

conversion factor used if δ is in degrees.

Developer Guide RC Camera Car P14226

Radial slip is currently unaccounted for due to the no slip assumption. The differential drive

feedback will attempt to eliminate tangential slip, but will not affect radial slip. For this reason,

the radial slip may be estimated possibly by obtaining the centripetal force the car is

experiencing, and comparing it to the largest amount of centripetal force the tires can provide on

the given surface. (This would require estimating the coefficient of friction as well as measuring

radial speed or acceleration).

Developer Guide RC Camera Car P14226

III. Controls Application

A. Torque Vectoring Model

Theory of Operation

The goal of this torque vectoring control system is to improve the turning characteristics of the

car by accounting for the difference in speed required from the inner and outer drive wheels

during a turn. This system will use closed loop feedback to determine the speeds at which each

drive wheel should spin during a given turn.

B. System Inputs and Outputs

The required system input signals are:

 The wheel speeds of the rear wheels from the encoders (pulse widths of time measured

over the width of an encoder tooth converted later to [m/s]).

 The steering angle of the steering wheel θ [deg] (later converted to δ by Eq. (2).

The required system parameters are:

 The track width of the wheels (left/right)

 The wheel base (forward/back)

 Wheel diameter

 First order approximation time constant

The desired outputs of the system are:

 Left and right wheel speed

C. Signal Processing

The only remaining calculation before the PID loop can work is to convert the left and right

encoder data into a tangential speed so that the signal makes sense for debugging purposes. This

is done by measuring the distance from the center of the wheel at which the optical switch is

located and combing this with the knowledge that there are going to be 8 cycles of tooth/no tooth

to calculate the arc length subtended during a measured pulse width, Ts [ms]. When converted to

yield [m/s] the results are:

 𝑉𝑙,𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 [
𝑚

𝑠
] =

16.83

𝑇𝑠,𝑙[𝑚𝑠]
 (12)

 𝑉𝑟,𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 [
𝑚

𝑠
] =

16.83

𝑇𝑠,𝑟[𝑚𝑠]
 (13)

D. PI Control

Closed loop feedback will be used to determine the output inner and outer wheel speeds. These

loops require a reference signal which is based on the average velocity, V and instantaneous turn

radius, R which is based on the steering angle (see Physics Theory Section). The closed loop

feedback portions of the control system are to be tuned using PI control directly on the KL25Z

(freedom board) as shown below:

 𝐶𝑂 = 𝐶𝑂𝑏𝑖𝑎𝑠 + 𝐾𝑐 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝑑

𝑑𝑃𝑉

𝑑𝑡
) (14)

Where CO is the controller output (V), e(t) is the error at time t (setpoint V- encoder V), PV is the

process variable (encoder V), and Kc, Ti, and Td are the PID proportional, integral, and

Developer Guide RC Camera Car P14226

derivative coefficients. The PID coefficients can be modified by changing Kc, Ti, and Td in the

code.

E. Discretization of PID in MBED

The continuous Eq. (14) used by MBED must be discretized for use on the freedom board. First,

in MBED, the parameters given are Kc, Ti, Td, and Rate. Rate is the variable which describes

the discrete time-step to be used in seconds. The discretization method is as follows:

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 = 𝑒(𝑡) + 𝑒(𝑡 − 1) (15)

 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 =
𝑍−1

(𝑍)(𝑇𝑠)
 (16)

Where e(t) is the error between the set point and the process variable at sample time (t). The

integral contains an “if” statement which only integrates if the input is not pegged at a limit.

This is to prevent reset windup. Note that the derivative control is unfiltered.

F. Important Note

Wheel Speed Output

The PI control loops operate on the reference velocity for left and right wheel speeds, not inner

and outer wheel speeds. The reference inner and outer velocities are generated from throttle

input and steering input. The inner and outer reference velocities are then assigned to left and

right prior to entering the control loops. This is based on steering angle, for instance if the

steering angle is 20 degrees to the left, the right wheel reference will be assigned the outer wheel

speed. This will change when the steering angle crosses zero.

G. Simulink Model

1. System parameters

See Section E of the Physics Theory Section for a table of parameters used.

The motors are modeled using a first order approximation with a single time constant. Using

velocity versus time data for an acceleration from rest to maximum speed, an exponential curve

was fit to the data. The curve fit equation is:

 𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑(1 − 𝑒𝑥𝑝(−
𝑡−𝑡0

𝜏
) (17)

For a total system weight of 1670 grams (only affects time constant) and a max speed of 0.95

m/s, the time constant was fit to be 1.4s.

Developer Guide RC Camera Car P14226

The above data is unfiltered and PI control was off. The curve fitting was done by manually

iterating the time constant as Excel’s least squares approach was biased toward the earlier parts

of the curve due to the higher slope and greater data point density as the car was moving slower.

In addition, the noise would also throw off the least squares fit. Only the left wheel was fit, since

it was not exact and the data from each wheel was very close.

2. Control Loops

The Simulink model is continuous in time and relies on signal generators for steering angle, δ in

degrees, and left and right input wheel speeds in m/s. The user can make these whatever he/she

wishes as long as 0 < V < 6, and -35 < δ < 35. The system parameters are already in the

Simulink model, and once the input is given, it goes through Eq. (3)-(8). The feedback loops

then operate on the reference speeds for the left, Vl, and right, Vr, wheels. The control loops are

unity feedback with a PID compensator, a torque saturation Tsat (for acceleration), a max speed

saturation Vsat, and a 1st order approximation of the motors as seen below.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1.000 3.000 5.000 7.000 9.000 11.000

Sp
ee

d
 (

m
/s

)

Time (s)

Speed Data

Left Encoder Speed m/s Right Encoder Speed m/s
Left Target Speed m/s Right Target Speed m/s
Curve FIT

Developer Guide RC Camera Car P14226

The PID coefficients in Simulink can be changed by double clicking on the PID blocks and

adjusting P, I, and D. The PID model implemented by Simulink is as follows:

 𝐶𝑂 = 𝑒(𝑡) (𝑃 + 𝐼 ∫
1

𝑠
+ 𝐷

𝑁

1+𝑁
1

𝑠

) (18)

Where CO is controller output. Note that these values differ from Eq. (14) so any tuning done in

Simulink will need to be converted to the format in Eq. (14) for use on the car. Also note that N

is a coefficient used to filter the derivative control.

3. Non-linearities

Non-linearities are taken into account in the Simulink model as well. The speed input is subject

to the dead zone block before it enters the sub-system containing equations (3)-(8). In addition,

the outputs of the compensators are subject to the saturation blocks. Note that the control loops

work in [m/s] this corresponds to a certain rotational speed of the motors, which corresponds to a

certain voltage, but the DZ and Vsat values must be given in [m/s] which means some

experimenting must be done with motor pulse width modulation (PWM) values if each group is

to determine values for itself. Our version of this relationship is located in the vehicle

parameters section. The dead zone block in Simulink simply subtracts the DZ value for any

input higher than DZ (for positive inputs) or relays a zero for signal less than DZ (for positive

inputs). The velocity saturation blocks clip the velocity signal at the maximum/minimum values

given by Vsat, and the torque saturation blocks clip the acceleration signal at the maximum/

minimum values given by Tsat.

The values for Vsat [m/s] were obtained from the encoders as they simply correspond to the car’s

maximum speed (at maximum PWM). The values for Tsat [m/s2] were obtained from recording

the velocity versus time data using the current arbitrary PWM cap in the car code. The first few

points were fit with a line to get obtain the maximum acceleration value Tsat [m/s2]. The values

for DZ were obtained while the car’s wheels were on the ground by feeding increasing PWM

values to the motors until the car began to move. The value of DZ in m/s is obtained from

multiplying the motor’s fractional PWM value at the edge of the dead zone by the maximum

speed of the car in m/s.

Developer Guide RC Camera Car P14226

4. Logic

Lastly, the Simulink model must decide which reference velocity to send to the left/right wheels.

This is accomplished by using a variable called “sig” which equals 1 when δ > 0, and equals 0

when δ < 0. So sig is 1 when the vehicle is turning right. Sig is defaulted to read to the right due

when δ = 0 to avoid the turn radius going to infinity. Sig is then used as the switch criterion for

the two switches required before the control loops to determine whether left or right is inner or

outer. On a right turn, right will be the inner wheel.

IV. Console Electrical Information

The driving console (Logitech MOMO steering wheel) features a KL25Z microcontroller. More

information about this microcontroller can be found at the MBED handbook page. The wheel is

powered with the stock USB connector, and the signals from the different internal components

are conditioned and fed into the microcontroller.

A. Electronics Modifications

1. Schematic

Above is a schematic that represents the connections made in the MOMO console. These

connections are made to enable the sensors in the MOMO console to communicate safely with

the FRDM Board. The FRDM operates at 3.3 V for most of its input signals, while the MOMO

console’s sensors operate at 5V. To protect the FRDM board, the above circuitry has been

designed. For the Encoder 1 & 2, Gas Pedal and Brake Pedal, a resistor network was created.

The Wheel Centering Signal requires a level shifter. A level shifter is a series of MOSFETS and

resistors designed to step up or down a voltage to the desired range. In this case, the level shifter

is only being used in one direction, and it’s to step down the centering signal voltage to 3.3 V.

https://mbed.org/handbook/mbed-FRDM-KL25Z

Developer Guide RC Camera Car P14226

The level shifter requires two different voltage supplies to operate. The HV (High Voltage) pin is

connected to the power supply from the MOMO console. This was previously attached to FRDM

board’s power supply, but it was found that the FRDM did not provide enough current to make

the output signal from the level shifter reach 3.3 V. The LV (Low Voltage) pin on the level

shifter is attached to the FRDM board’s 3.3 V output. The output pin, labeled RXI, has a low

pass filter attached between it and the input pin on the FRDM Board. This is because the signal

was noisy when first measured.

2. Wiring Harness Pinout

Inputs Wire Color Outputs Wire Color

5V Red Xbee TX Dark Green

Steering Encoder 1 Dark Green Xbee RX Blue

Steering Encoder 2 Blue Steering Encoder 1 White

Gas Light Green Steering Encoder 2 Yellow

Brake Grey Gas Green

3.3 V Yellow Brake Blue

GND Black Centering Out White

3. Signal Conditioning

There are many different kinds of signal conditioning, and, depending upon what the project

requires, only a few will be needed for any project. The most common is filtering, which is

useful for isolating desired signals and reducing noise. The MOMO console does this often

throughout its system, so the only filtering needed was for the centering signal, which was just to

remove a little noise. In this case, a low-pass filter with a time constant of 0.1 was used.

The other kind of signal conditioning used for the MOMO console was a voltage level shifter.

Level shifters are most commonly used when trying to communicate between two different

systems that operate at two different voltages. The most common example of this is

communicating with almost any microcontroller and serial RS-232 logic on a computer. RS-232

operates at 3.3 VDC, while most micro controllers operate at 5 VDC, similarly to USB.

The level shifter used in this project was the BOB - 11978, from sparkfun.com. This level shifter

shifts between the two voltages 5 VDC and 3.3 VDC, because it is meant for RS-232

communications. The following pins were assigned the following values:

Pin Value

HV 5 VDC

LV 3.3 VDC

GND GND (0 VDC)

TXO Centering Signal Input

TXI Centering Signal Output

B. Console Components

The Logitech MOMO steering wheel, donated to the team, was analyzed for use without using

the pre-existing and historic drivers for it. The original driver which existed can only be run on a

Developer Guide RC Camera Car P14226

windows machine and still had numerous errors and bugs. Also, the readings from the controller

could only be seen by using the GUI from Logitech.

Due to the lack of usability of the pre-existing software it was decided that the analogue signals

from the internals be taken in, calibrated and then used directly. Ideas of creating a self-

programmed driver were also brainstormed and it was decided that for obtaining only steering

data it was too exhaustive of an effort to design and program a driver for it. Utilizing the signals

straight from the internal circuitry also enabled the use of a low powered microprocessor.

It must be given note that there were two sources of power to the steering controller, the 5V from

the USB and the 24V from the wall outlet. The 24V supply was only connected to the motor.

When the 5V power supply was not connected all the signals read noise when the steering was

moved. This was postulated to be due to the back EMF from the motor. Determining that only

the 5V supply is needed was a major discovery, and only this USB is used to power the steering

wheel electronics.

The concept for steering requires the following known quantities:

Turn Direction – Obtained from the quadrature encoder signal.

Turning Displacement – Obtained from the encoder PWM which will be calibrated to

encompass the whole steer angle with PWM count. This will require the wheel to be

centered.

Centering Location – The steering wheel center position is determined from the optical

centering sensor present on the wheel axle.

1. Quadrature Steering Encoder

Quadrature encoders are a type of encoder used to determine angular velocity and direction.

Normal encoders cannot tell direction on their own. If one were to start turning the encoder in the

opposite direction, the encoder would just keep counting tics the same as if the direction hadn’t

changed.

The way quadrature encoders solve this problem is by using two encoders that are slightly offset

by each other. The encoder plate needs to have slits in it that are big enough for both encoders to

see though it at the same time, and have the space between each gap big enough to block both

encoder signals when positioned over them. What the encoders generate are two PWM signals

that are offset by 90 degrees from each other.

This results in a binary counter that determines the direction of movement based on the previous

number that was received.

When the encoders are both seeing the gap in the encoder, their signals will be 00. When one

starts to get covered up, but the other is still uncovered, the signals will read 10. When both

encoders are covered, the signal will read 11. When the second encoder is covered and the first

encoder is uncovered, the signal will read 01. These numbers can be converted into decimal, and,

based on which number the encoders were reading previously, will determine if the encoders

have changed direction.

To better understand this, the following tables show the two possible rotations and all possible

encoder positions.

Developer Guide RC Camera Car P14226

CW Rotation CCW Rotation

 Encoders Encoders

Phase A B Phase A B

1 0 0 1 1 0

2 0 1 2 1 1

3 1 1 3 0 1

4 1 0 4 0 0

Below is an oscilloscope screen capture of the voltage levels of the two encoder signals reacting

to movement can be seen.

Encoder PWM

Developer Guide RC Camera Car P14226

2. Optical Gate

The centering on the wheel is done by utilizing the signal from the optical encoder attached at

the axle of the wheel. There is a white reflective strip present which triggers the optical sensor

whenever it passes by the receiver-transmitter to detect that the wheel has been centered.

Originally, with the windows software installed, the steering wheel would go into a centering

reset routine where when the white strip would pass over the optical sensor and the motor would

stop rotating and record that as the center position.

Steering Wheel Centering Reflective Strip

Steering Centering Optical Sensor Signal

Since the windows software was not being used, raw signals from the pins of the encoder were to

be recorded. Whenever the white strip (as seen in Figure 3) passed over the optical sensor there

was a sharp drop in voltage detected. This drop can be used to determine that the center position

has been achieved and the encoder count set to zero at this point. With the center determined, the

direction pulled from the diodes and the encoder PWM count reset, all the necessary signals for

effective and accurate steering are now set and can be utilized.

All signals have a certain chance of error. When a computer is counting the encoder tics, and an

error occurs, the computer has no way to know that it is in error, and therefore, will keep it in the

encoder count. This results in a long-term offset between where the computer thinks the steering

wheel is, and where the steering wheel actually is.

With a fine-toothed encoder, these errors are negligible. But, as with all errors, they are

undesirable and can add up to significant problems further down the road. The constant resetting

of the encoder count by the centering signal removes this error as a problem. Now, the only error

that can occur has to occur within the time it takes for the user to turn the wheel from the center,

to one side as far as possible, and back to the center. The error becomes virtually nonexistent

because of this narrow window in which it has to occur.

The centering signal, similarly to all the signals on the MOMO console, operates between 0 - 5

VDC. This is an industry standard, however, the FRDM Board requires that all signals operate

between 0 - 3.3 VDC, which means this signal needed to be conditioned.

Developer Guide RC Camera Car P14226

3. Pedal Potentiometers

The MOMO pedals are designed to replicate the accelerator and the brake pedals of an actual

car. The signals are sent as voltage values. The pedals are attached to potentiometers which vary

the voltage according to the depression in the corresponding pedals. These voltage values can

easily be read and calibrated to determine the depression-to-voltage value and accordingly use to

set the PWM increase or decrease in the motor signal.

The pin-outs can be seen below in the figure.

http://www.tytlandsvik.no/momo/

Pedal Pin Layout

4. Communications Switch

As final modifications to our system based on testing, a switch was added to the console that

switches between two-way communications (scanning the received data on the console) and one

way communication to the car. This switch connects PTB8 to ground on the console Kl25Z. This

was added due to the fact that enabling scanning seems to cause the XBees to occasionally lose

communications. Since this functionality is only needed for data logging, this switch makes it

considerably easier to demo, removing the need to upload new code. We were unable to resolve

this issue with the communications, but it would be an area to investigate in the future.

http://www.tytlandsvik.no/momo/

Developer Guide RC Camera Car P14226

C. Video RX

The video from the RC car camera is transmitted over RF at 5.8 GHz (well outside the range of

most other wireless communication protocols) to the receiver module on the console. This

module is a Uno 5800 module designed specifically for RC planes that normally operates using a

battery for power. Because of this, on startup the module will beep a number of times

corresponding to the number of cells of the battery input voltage, and will continue to beep if the

voltage drops below some specified levels. Being as in our application the module is powered by

a wall DC converter, the voltage was dropped to within the specified levels for a 2S LiPo battery

as specified in the user manual. This was done using a simple voltage regulator circuit. The kit

comes from Ready Made RC and can be found here. Consult the user manual if the video is not

being broadcast, as the button on the front of the module scrolls through the available channels if

pressed and simply needs to be pressed into the correct channel is found again. As a final note,

during operation the receiver will get slightly warm, which is expected and does not cause issue.

The current setup of the wireless video involves plugging the receiver through the DC barrel jack

into the DC wall converter labeled “Video RX.” The wiring harness is then plugged into “A/V 1”

on the video receiver and the yellow RCA on the left-hand side of the screen.

http://www.readymaderc.com/store/index.php?main_page=product_info&products_id=877
http://edge.rit.edu/edge/P14226/public/Video_RX_Uno_5800_Manual.pdf
http://www.fairchildsemi.com/ds/LM/LM317.pdf
http://www.readymaderc.com/store/index.php?main_page=product_info&cPath=4&products_id=433

Developer Guide RC Camera Car P14226

To see the image being broadcast, the TV channel has to be adjusted to “Video.” This is done

using the Channel + and – keys on the right-hand side of the monitor. The selection options in

order of decreasing progression can be seen below.

Channel Function

0 N/A

PC Used for Computer Image

HDMI2 N/A

HDMI1 N/A

Component N/A

Video Used for Camera Image

95 N/A

On the car side, the battery voltage indicator should be attached to the white four wire battery

connector as indicated in the image below. This indicator monitors the voltage in all cells

individually and will emit a warning when the voltage gets low. Be aware that the indicator will

beep loudly when plugged in for the first time. The indicator can be stuck to the Velcro on the

top of the battery, and the battery can be stuck to the Velcro on the car, as below. The red/black

transmitter wire then needs to be plugged into the battery using the red plastic connectors.

Developer Guide RC Camera Car P14226

Developer Guide RC Camera Car P14226

V. Car Electrical Information

On-Car Microcontroller & Shield Modifications

A. RC Car Onboard Control

The RC car operates utilizing the Freedom board provided by Freescale. To successfully

interface the motors on the RC car with the microcontroller the Freedom board motor shield

(Insert part number) was fitted on top of the microcontroller board. This however brought in

significant limitations on the number of I/O pins that could be utilized for other sensors. To

overcome this certain modifications had to be made on the motor shield. These modifications

required the construction of a separate module which further altered the motor shield and utilized

the pins in a manner that enabled easy access to various I/O pins on the microcontroller board.

One important information to note is that all the external connections were done using

combinations of male and female headers. This helped the connection of the different inputs and

outputs easy and removed the probability of an erroneous connection.

B. Freedom Board Motor Shield

The Freedom Board Motor shield is a shield that is used to control the motors and allow for other

sensors such as speed sensors, line camera, and servos to be controlled. This is mainly used in

the Freescale Cup competitions but in order to be used for this projects use certain modifications

were required. Those modifications are described in the next Section. This Section talks about

the functionality of the shield as it arrived from the package. Only parts of the shield that are still

being used in the project are described below.

1. Jumper Interface & Pin Names

The motor shield sits on top of the Freedom board and therefore occupies all the I/O pins on the

micro controller. The different header names which will be referenced to in the later Sections of

this guide are given below in Figures A.

Developer Guide RC Camera Car P14226

Figure A. - Freedom Board & Motor Shield Jumper I/O Headers

To describe these I/O further, Freescale has labelled the pins on the boards itself as well and each

of these pins are given an alias for easy programming. Figure B shows the aliases and the pins

for each female jumper. Table A shows the different pins and their mappings to the aliases for

programming.

Figure B. - Freedom Board Interface

Developer Guide RC Camera Car P14226

Table A. - Pin Map for Freedom Board

2. H-Bridge

An H-Bridge is necessary for the fast switching of battery voltage and thereby controlling the

speed of the motor. A PWM signal is sent to the H-Bridge where the optocouplers turn the motor

on and off at high frequencies to reduce the overall voltage sent to the motors. The H-Bridges

used for motor control are the ones fitted on the motor shield. The H-Bridge pins are already

connected to the micro controller through the jumpers and these pins can be seen in Figure C

below. Care must be given to not use these pins for any other use as the H-Bridges are necessary

for RC car control.

Figure C. - Motor H-Bridge Connections

3. Potentiometers

Potentiometers on the motor shield are necessary to trim the servos. These potentiometers are

used for two servo trimming and centering. The connections to these potentiometers which are

on the motor shield can be seen in Figure D below.

Developer Guide RC Camera Car P14226

Figure D. - Potentiometer Connections

4. Servos

To connect to the servos the motor shield has two placements of male headers each internally

connected to the appropriate I/O pins. Figure E shows the connections for the steering servo.

This is similar to the additional servo connection available. To control the servo the necessary

signals required are the power source, ground source, and input signal source. The camera servo

had the same schematic except for the signal line being PTB1 instead of PTB0.

Figure E. - Servo Connections

C. Freedom Board Modifications

Removal of Pins & Direct Connections

 Certain pins had to be removed from the motor shield and direct connections had to be made so

as to enable the use of the encoder signals to accurately calculate the speed of the rear wheels as

well as to accommodate for the sending and receiving of data by using an XBee. Table 1 shows

which of the pins were used removed and the function implemented on those pins. The pins were

chosen in such a manner that after the removal of the connection between the motor shield and

the Freedom board, there was no loss in original functionality. Only the pins removed for XBee

transmission and receipt of data affected the original functionality as those pins were being

utilized for the Line Scan camera. This however did not affect the operability of the car since the

Line Scan camera is not utilized for the purposes of this project. The removal was necessary to

avoid any cross talk between the motor shield’s H-Bridge and also to remove any unnecessary

signals coming in from the motor shield board due to prior connections. Figure 1 shows the

external wires that were attached to the Freedom board directly.

Developer Guide RC Camera Car P14226

Figure 1. - Motor Shield Direct Wiring

Table 1 - Direct Connection Wiring Map

Pin Functionality Pin Alias Jumper Location Jumper Pin Number

Left Encoder Input PTA13 J2 2

Right Encoder Input PTD0 J2 6

XBee Receive PTD3 J2 10

XBee Transmit PTD2 J2 8

D. Motor Shield Modifications

Addition of Headers

Originally, the motor shield utilized the I/O pins by enabling access to them with the use of

certain male headers. These headers were designed to perfectly accommodate for the sensors

required to compete in the Freescale Cup. These sensors were the Line Scan cameras, speed

sensors, and servos. Additional male headers were added to fill both the slots on the motor shield

board as can be seen in Figure 2 below. These headers enabled the operation of two servo control

signals; one for the steering, and one for the RF camera attached on the car.

Figure 2. - Additional Headers on Motor Shield

The servo headers can be seen on the right and are labeled n the board with serial numbers 0 and

1. The 3-pin female headers are attached to the servo wires and they connect to the male adapters

Developer Guide RC Camera Car P14226

on the adapter board. The motor shield jumpers were modified for access to custom sensors. The

jumpers on the motor shield were changed from what they were originally. This change can be

seen below in Figure 3.

Figure 3. - Freedom Board Motor Shield Jumper Modifications

E. Adapter Board

An adapter board had to be made so as to be able to obtain access to certain pins on the micro

controller board as the motor shield board restricted access to a majority of the pins. This adapter

board also enabled the placement of necessary passive devices such as pull up and pull down

resistors for the encoder signals. It also housed pins that provided power and ground. On top of

this adapter board an XBee module was also placed. To access the trimming potentiometers

placed on the motor shield two holes had to be drilled into the Adapter Board. These can be seen

in the figures below as well.

 Figure 3. - Adapter Board Top View Figure 4. - Adapter Board Bottom View

The schematic for the adapter board can be seen in Figure 5 below. This schematic was made in CadSoft Eagle 6.5 software. In the

center can be seen the XBee module. To the top are the JP10 and JP9 headers. Also on the extreme top is the capacitor and switch

additions, described in later Sections, fitted across the battery. The battery used was a 7.2 Volt, 3000 mAh NiMH battery pack. The

extreme bottom has the other side of the jumpers from the motor shield to which further input and output signals are made. Towards

the right can be seen the speed encoders which are actually attached externally to the wheels.

Figure 5. - Schematic of the Adapter Board

1. Placement of Adapter Board

The adapter board was placed on top of the motor shield. This required some modifications,

which were described in the previous Section, by the addition of male headers. A harness as can

be seen in Figure 6 below was attached on the Adapter Board and it sat perfecto on top of the

male pins of the motor shield. This also allowed access to the male pins through the female dual

line headers.

Figure 6. - Sitting Harness for Adapter Board

2. XBee

The XBee module is used to communicate between the MOMO steering wheel and the RC car.

One of the XBee receiver-transmitter modules had to be fitter on the RC car and was harnessed

on the Adapter Board. The XBee module was placed on female header pins, as shown in Figure

7 below, and was powered, and connected, by the input bus connections. The only connections

required were the power, ground, transmission, and receipt. Table 2 shows the pin layout.

Table 2 - XBee Pin Connections

Pin Functionality XBee Pin Number Jumper Number Jumper Pin Number

Power (Vcc) 1 J9 8

Ground 2 J9 14

RX 10 J2 8

TX 3 J2 10

Figure 7 below shows the female harness for the XBee. This harness requires the XBee to be

placed in a certain direction so as to operate correctly. The direction is induced by a sticker on

the final Adapter Board.

Developer Guide RC Camera Car P14226

Figure 7. - XBee Harness

3. Input Bus

The input bus is simply a collection of wires connected to a single line female header. These

wires carry the input signals from the various sensors and modules such as the encoders,

Freedom Board, servos, power, etc. Figure 8 shows the different input busses that are in use.

Figure 8. - Input Bus

The two 3-pin male bus connections towards the bottom left are for the steering and camera

servos. It did not matter which servo pin was connected to which 3-pin header as the servos were

scaled 1:1 ratio. These connections were exactly the same as that for the original Freedom Board

Motor Shield as it is simply a furthering of the male headers originally on the shield. Towards

Developer Guide RC Camera Car P14226

the top are the bus headers for other signals to and from the XBee module. Table 3 shows the

different pins being used. Pin numbering starts from the left of Figure 8.

Table 3 - Input Pin Bus Layout

Adapter Board Pin

Number
Pin Functionality Jumper

Number

Jumper Pin

Number

1 Left Encoder Collector J2 2

2 GND J9 12

3 Left Encoder Anode - -

4 Right Encoder Collector J2 6

5 GND J9 12

6 Right Encoder Anode - -

7 XBee TX J2 8

8 XBee RX J2 12

9 Right Encoder Input J2 6

10 Left Encoder Input J2 2

11 GND J9 12

12 NC - -

4. Servo Pin Extensions

The servo extension pins, as described in the previous Section, are simply 3-pin male headers

brought on the Adapter Board from below via the Adapter Board placement harness. This does

not change functionality in any manner and only acts as male pins coming out of the Adapter

Board rather than the motor shield itself. Figure 9 shows the servo pin extension.

Figure 9 - Servo Pin Extension

5. Encoder Input Bus

Described previously, and with the pin layout from Table 3, the encoder pin bus can be seen on

the left side of the Adapter Board in Figure 10 below. These pins act as connections to the

encoder placed on the wheel. Figure 10 shows these pins.

Developer Guide RC Camera Car P14226

Figure 10. - Encoder Pin Bus

The pins for the two encoders are similar and are divided into 3 pins. The pin layout can be seen

on the QRB1134 data sheet but on the Adapter Board the pins are as follows:

 1) Leftmost pin in Figure 10 - Collector Pin

 2) Middle pin in Figure 10 - Emitter and Cathode Pin

 3) Rightmost pin in Figure 10 - Anode Pin

Finally, with all the connections made, the adapter board placed on top of the motor shield can

be seen in Figure 11 & 12 below.

Figure 11. - Adapter Board on top of Motor Shield Side View 1

Developer Guide RC Camera Car P14226

Figure 12. - Adapter Board on top of Motor Shield Side View 2

F. Other Modifications

Certain other modifications were made to the overall setup to reduce noise, and obtain better

signals as inputs.

1. Ferrite Core

A ferrite core was added as a choke to the two batteries being used to power the whole apparatus.

One choke was placed on the positive and negative terminals on the RC car battery, as seen in

Figure 13, and another choke was added to the RC Camera battery as well, as seen in Figure 14.

The whole purpose of the core is to prevent eddy currents as the battery is being used to power

the motors.

Figure 12. - Ferrite Core Choke on RC Car Battery

Developer Guide RC Camera Car P14226

Figure 13. - Ferrite Core Choke on RC Camera Battery

2. Filtering Capacitors

Due to the use of H-Bridges to control the motor speed there was a lot of noise on the power

terminals of the motor shield which in turn caused all the pins to have the high frequency noise.

To remove this high capacity capacitors were added on the battery power terminal as well as the

3.3 volt and ground line on the Adapter Board. These capacitors can be seen in Figure 14 and 15

below.

Figure 14. - Capacitor Added Over Battery Terminals

As seen in Figure 14, the center harness of the motor shield allows for connection of the battery

power. The left is connected to the positive terminal and the right is connected to the negative

terminal of the battery. The capacitor added is also seen in the figure.

Developer Guide RC Camera Car P14226

To the right can be seen the green screw-in harness of the right motor. The connections for this

had to be reversed so as to make the car go forward as the motor on the right side is flipped. The

positive terminal of the motor is connected to the negative terminal of the harness and vice versa.

To the left can be seen a green screw-in harness of the left motor. The connections for this were

similar to the power harness connection with the positive side of the harness (left) connected to

the positive terminal of the motor and the negative side of the harness (right) connected to the

negative terminal of the motor.

Figure 15. - Capacitor Added Over Power and Ground Pins

In Figure 15 can be seen the capacitor added on top of the power pins for the adapter board. This

capacitor sits over the 3.3V and the GND pin which powers all the circuitry on the adapter board.

These capacitor placements, known as decoupling capacitors or bypass capacitors, are generally

placed across the power and ground for any electronics that needs to be isolated from noise.

Furthermore, to reduce the motor noise, additional capacitors were added to the motor terminals

as can be seen in Figure 16 and 17 below.

Developer Guide RC Camera Car P14226

 Figure 16. - Motors without Capacitors Figure 17. - Motors with Capacitors

One major drawback to working with motors is the large amounts of electrical noise they

produce which can interfere with your sensors and can even impair your micro-controller by

causing voltage dips on your regulated power line. Large enough voltage dips can corrupt the

data in the micro-controller or cause it to reset.

The main source of motor noise is the commutator brushes, which can bounce as the motor shaft

rotates. This bouncing, when coupled with the inductance of the motor coils and motor leads, can

lead to a lot of noise on your power line and can even induce noise in nearby lines.

The solution is to solder capacitors across your motor terminals. Capacitors are usually the most

effective way to suppress motor noise, and as such we recommend you always solder at least one

capacitor across your motor terminals. Typically you will want to use anywhere from one to

three 0.1 µF ceramic capacitors, soldered as close to the motor casing as possible. For

applications that require bidirectional motor control, it is very important that you do not use

polarized capacitors!

The capacitors seen in Figure 17 were soldered across the motor terminals directly for each

motor to achieve sufficient noise suppression. Instead of electrolytic capacitors the ceramic

capacitors were used to account for the dual direction nature of the motors since both reverse and

forward direction operations are being performed by the RC car.

Other precautions that were observed to reduce noise were that the motor power wires were kept

very short and the motor lead wires were spiraled around each other to decrease the noise as

well. Care was also given to keep the motor power cables away from the electronics, such as the

XBee, for fear of induced currents on the signal lines.

3. Power Switch

A power switch was added to the car for safety purposes. Although it is not included in the

Freedom board documentation, if the board is powered by an external battery source in addition

Developer Guide RC Camera Car P14226

with the USB programming interface, the micro controller seemed to get damaged every time.

The cause for this was unknown but the solution was a very simplistic one. A power switch, as

seen in Figure 15, was added to turn the battery power off whenever the microprocessor needed

to be programmed. The schematic can be seen in Figure 16.

Figure 15. - Power Switch and Wire Connections Placed Discretely On Car Chassis

Figure 16. - Schematic for Switch

4. Encoders

To successfully apply the use of control systems and a PID loop the wheel speeds were needed to

be measured. For this encoder sensors were attached to the wheels. The sensors used were the

QRB1134 sensors. The wiring for these sensors can be seen in Figure 17 below. The collector,

emitter, anode, and cathode internal wirings can be seen in the sensor datasheet or in Figure 18.

Developer Guide RC Camera Car P14226

Figure 17. - Encoder Sensor Wiring Diagram

Figure 18. - Encoder Sensor Hookup

5. Camera TX

The camera and transmitter used for the car are standalone modules that can be seen in the links

under the “Video RX” Section. Nothing should have to be modified with the setup apart from

replacing the separate 3S LiPo 11.1V 35C battery for the transmitter when the battery indicator

warning goes off. The transmitter has a heat sink for thermal dissipation at the back of the car

and has no user settings. The camera is powered through this transmitter and data is transmitted

through the same cable. The servo that articulates the camera is controlled off of the

microcontroller shield.

Testing of the runtime of the camera and transmitter from a single LiPO battery is as follows.

Starting at a max voltage of 12.5V, the camera and transmitter broadcast a good quality image

for 2 hours and 55 minutes, setting the voltage indicator off at 10.1V. During this time the heat

sink reached a steady state temperature which is warm to the touch but not hot, which is a worst

Developer Guide RC Camera Car P14226

case airflow scenario and is desirable. This is significantly longer than the runtime of the car

battery, so that metric is ideal.

Developer Guide RC Camera Car P14226

VI. Wireless Communication Information

A. XBee Distance Stats and Info

For this project, XBee 802.15.4 XB24 2mW chip antenna modules are used for the data

transmission. From the detailed XBee guide, these XBees operate in the 2.4 GHz range and have

an operating distance significantly affected by Line of Sight and other interference sources.

Range testing of the XBees was done in the Brinkman hallway in Building 9. A table was set up

at the end of the hallway and data was successfully collected from the Xbee all the way to the

other end, which was measured to be approximately 141 ft. The XBees also transmitted through

glass to the outside, but the range was greatly reduced. Walls seemed to cause packet loss after

the 141 foot mark, but for our purposes this is more than adequate.

B. Camera Distance Stats and Info

Range testing of the wireless camera modules was done in the Brinkman hallway of building 9 as

well. Starting with the monitor and receiver at one end of the hallway, the image was still

acceptable quality at 141 ft (the end of the hallway). The image had some interference while

moving at all distances. The image was still broadcast as far away as Xerox auditorium,

estimated at over 200 ft away with many obstacles in between. Based on these results it is clear

that the camera range surpasses the XBee range, which was the target of our design.

Following testing, it seems that interference in the image quality can be caused by obstacles,

outside signals, and sharp movement of the transmitter. Most notably, metal objects tend to cause

significant interference and should be removed from the operating area.

A rendering of the field of view relative to what a person would see normally when using the

camera can be seen below. Only the horizontal limitations are considered, as it is difficult to limit

the view in the vertical direction. As can easily be seen, the limitations of camera FPV are

notable but still reasonable for driving purposes.

C. X-CTU, Updating, and Bricking Issues

The primary debugging program for the XBees is the X-CTU software from Digi. Download the

“XCTU Next Gen Installer, v. 6.1.0, Windows x32/x64” and install the software (this is the

newest version). In this program you can “Add” or “Discover” the XBee Devices connected over

USB using the buttons on the top left of the interface. Once you go through these initializations

(should be all the default settings: 9600 baud, 8 data bits, 1 stop bit, no parity, no flow control,

http://edge.rit.edu/edge/P14226/public/Detailed_Xbee_Guide_v1.0.1.pdf
http://www.digi.com/support/productdetail?pid=3352&osvid=57&type=utilities

Developer Guide RC Camera Car P14226

etc.), you can modify the “Configuration” and monitor the “Console” outputs using the buttons

on the top right of the interface.

If you simply double click the listed XBee device, some basic settings that are worth mentioning

can be found below. The channel setting for both XBee devices (yes, you have to repeat this

process with both XBees) should be the same (here we are on channel C) as well as the PAN

ID’s of both devices. Similarly, DD, IC, and IR should be the same value for both XBees. To

make the XBees communicate directly with only the each other specifically, one XBee has to be

set with DL and MY values (here we used 10 and 20 to keep it simple). The other XBee should

be set with DL equal to the MY value of the other XBee, and the MY value of the second XBee

should be the same as the DL value of the other XBee. By default the DL and MY values on both

XBees will be 0, which means there is no direct pairing. For further settings and more detailed

explanations of the functioning of the program, consult the Digi website and the Getting Started

Guide for our specific modules.

XBee Console Car

Parameter Value Value

Ch C C

PAN ID 3332 3332

DL 10 20

MY 20 10

DD 10000 10000

IC 0 0

IR 0 0

An additional program that is useful for debugging is the Putty terminal window application.

This can be configured to read what data is being transmitted to and from the XBees. This

program is a bit more in depth for how it can be used, so consult tutorials for doing so.

The XBees used for this project seem to be prone to “bricking” or going into a mode that yields

them unusable when used incorrectly, so some information will be given here on the issue. The

following link here can give some insight into how to sort out the problem, but the general gist

can be summed up as follows.

 Connect the XBee that seems to be causing problems (normally the LEDs will not blink

quickly as they should when data is being sent) to the Xbee Explorer USB breakout

board. Connect this to the computer and open X-CTU.

 The newer version of X-CTU may have some troubleshooting functionality (we have not

had any issues since the new version was released), but what you can do is set the Baud

to 115200 and the flow control to Hardware. This forces the XBee into its max hardware

settings. Once you change this setting, try reading the XBee data to see if the current

version is recognized.

 Once done with this (working or not) change the XBee settings back to 9600 Baud and

hardware flow control and repeat the process. After this you should be able to remove the

flow control and use the XBee as intended. Some important settings to check are below.

 Protocol should be XB24 802.15.4 and the version this was developed with is 10EC.

http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#docs
http://ftp1.digi.com/support/documentation/90002160_A.pdf
http://ftp1.digi.com/support/documentation/90002160_A.pdf
https://www.sparkfun.com/products/11215
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.kobakant.at/DIY/?p=163

Developer Guide RC Camera Car P14226

It would be advised for this setup to never update the firmware for either XBee, as the current

configuration is stable and further changes are unnecessary,

D. Using Xbee's with MBED

XBee modules were used to transmit data between the console and the car. In MBED, the XBee

is treated as a serial device. In the console code, PTD3 and PTD2 are the RX and TX pins that

connect to the XBee's data pins. In order to transmit data, the printf and scanf functions were

used. Seen below are some statistics gathered for data transmission of the XBees used.

XBEE data rate = 250,000 bits/sec

Packet size = 48 bits

Maximum packet frequency = 5208 packets/sec

Developer Guide RC Camera Car P14226

VII. KL25Z and MBED

As both the console and car use KL25Z microcontrollers, we used mbed as our primary

compiler. This online software is openly available and has a wealth of documentation and

premade libraries submitted by an online community of users that allow for easy implementation

of many basic functions. For official directions and getting started with the KL25Z in MBED<

the best reference is the handbook dedicated to the board. The major steps required in setting up

the board with any new computer are as follows:

1. Upgrade to the latest firmware.

2. Install the Windows serial port driver.

3. Create and download a program to the KL25Z.

4. Press the reset button to run the newest program.

A. Coding Logic Flow Chart

The following UML was created to show an overview of the coding done in this setup. This

shows the interplay between the console and car microcontrollers, along with the libraries used

for on each system.

B. Console Code Documentation

The console code makes use of the MBED QEI (quadrature encoder) library in order to capture

the position and direction of the Logitech wheel. A digital interrupt was connected to the

centering signal from the Logitech wheel. This provided the ability to correctly zero the position

and direction of the wheel.

Analog inputs were used to read the potentiometer values from the Logitech gas and brake

pedals. The Logitech console drew power from a 5V DC adapter. This provided the console with

a constant voltage so that the potentiometer values remained in the same range. The range for the

pedals was determined by recording the raw values when the pedal was not pressed and when it

was fully pressed. This range was determined to be quite large. Unsigned characters were used

http://mbed.org/handbook/mbed-FRDM-KL25Z-Getting-Started
http://mbed.org/handbook/Firmware-FRDM-KL25Z
http://mbed.org/handbook/Windows-serial-configuration
http://mbed.org/handbook/mbed-FRDM-KL25Z-Downloading

Developer Guide RC Camera Car P14226

to transmit the data, therefore, the pedal range was compressed down via a scaling factor.

Similarly, a scaling factor was also used to compress the wheel position's range.

The unsigned char was chosen to be the transmission data type. The char type was well suited for

this task because of its minimal bit size. The char type is 8 bits, versus the integer type which is

32 bits. Since wireless bandwidth should be conserved, characters use is critical in order to

maximize message throughput.

The code first calls the libraries and initializes the PC (USB) and XBee (TX: PTD3 and RX:

PTD2) communications. It then sets up to read analog in values on PTB1 for the gas pedal, PTB0

for the brake pedal, and reads QEI values using PTD5 and PTD0 with 624 pulses per revolution

(based on testing). PTA13 is setup as an interrupt pin for the zeroing signal, and sets PTB8 as a

digital in pin for enabling and disabling two way communications using the switch in the

console.

//Libraries

#include "mbed.h"

#include "QEI.h"

//SERIAL Information

Serial pc(USBTX, USBRX);

Serial XBee(PTD3, PTD2);

int baud_rate = 9600;

//CONSOLE PIN Information

AnalogIn gas_pedal(PTB1);

AnalogIn brake_pedal(PTB0);

QEI wheel (PTD5, PTD0, NC, 624);

InterruptIn zero_sig(PTA13);

DigitalIn enableTwo(PTB8); //toggle two way communication

The wheel range is initialized at 650 to make sure that the values of the wheel are always inside

the range (since sometimes the count gets a bit messed up at higher turning speeds). Then the

wheel, gas, brake, and encoder variables are initialized.

//CONVERSION Variables

//Steering Wheel

int wheel_range = 650; //established through testing, larger than actual

range so no characters are lost

int wheel_int; //wheel values

int wheel_pos_char; //character range conversion for positive wheel values

(extend range to 93*2 characters)

int wheel_neg_char; //character range conversion for negative wheel values

(extend range to 93*2 characters)

//Pedals

int gas_val; //gas pedal values

int brake_val; //brake pedal values

int gas_int; //character range conversion of gas pedal values

int brake_int; //character range conversion of brake pedal values

//Encoders

unsigned char encoder_left_char; //received left encoder character range data

Developer Guide RC Camera Car P14226

unsigned char encoder_right_char; //received right encoder character range

data

The centering ISR is setup to only reset the wheel count whenever the interrupt is triggered by

the wheel passing the center position with the optical gate. Debugging code is also commented

out which can help for testing.

//Centering ISR

void center(){

 //pc.printf("Center\r\n"); //for debugging

 //Reset count to 0 when falling edge detected

 wheel.reset();

}

The main loop contains three major parts. It reads the raw wheel and pedal information. Then it

adjusts the ranges and checks for invalid data. Finally, it transmits the data to the car, via the

XBee.

The first part enables the serial communications and interrupt ISR on falling edges.

int main() {

 //Initialize XBee and PC communications

 pc.baud(baud_rate);

 XBee.baud(baud_rate);

 //Interrupt Centering ISR on signal falling edge

 zero_sig.fall(¢er);

The while loop then runs indefinitely for transmitting data. The 20 ms wait time is setup to

mimic the car code wait times used in the PID loop. This value was established experiementally

through testing and works very well for smooth vehicle turning without overloading the

transmissions.

 while(true) {

 //XBee Data Transmission

 wait(0.05); //data tx / rx speed control

The pulse count of the encoder is then sampled and stored (with 624 pulses for a full revolution,

or one side of the steering stop to the other). The gas and brake pedal values are then captured

and converted to values between 35 and 126 for transmission purposes. This gives adequate

resolution for user input. The range of 35 to 126 was established so that no bad characters are

sent that interfere with communications reading and writing (such as carriage return, new line,

and quotes).

 //Record steering values

 wheel_int = (int)(wheel.getPulses());

 //Record pedal values and conver to character ranges

 gas_int = 126-(gas_pedal.read_u16()-15000)/500; //should output 35-

126

 brake_int = (brake_pedal.read_u16()-15000)/460+35; //should output

35-126

Developer Guide RC Camera Car P14226

Wheel pulses inside of the range -650 to 650 are then converted to positive or negative characters

if the wheel is clockwise of center or counterclockwise of center, respectively. This is done to

give the steering wheel effectively twice the range of values for greater resolution. The values

are converted to the range of 35-126, and depending on which side of center the wheel is on, the

other character is written to the lowest value, 35. If the reading is outside of the range, the code

does nothing.

 //Constrain steering range and convert to character range

 if(wheel_int >= -1.0f*wheel_range && wheel_int < wheel_range){

 if(wheel_int > 0) {

 wheel_pos_char = (wheel_int/7 + 35); //35-126

 wheel_neg_char = 35;

 }

 else {

 wheel_pos_char = 35;

 wheel_neg_char = (wheel_int/7 - 35)*-1; //35-126

 }

 }

 else{

 }

Due to the springs in the pedals not always returning the values to the same position, the values

of the pedals were always capped to the range of 35 to 126 to make sure no bad transmissions

occur.

 //cap gas values to account for potentiometer inconsistency

 if(gas_int < 35){

 gas_int = 35;

 }

 if (brake_int < 35){

 brake_int = 35;

 }

 if(gas_int > 126){

 gas_int = 126;

 }

 if (brake_int > 126){

 brake_int = 126;

 }

For debugging, it is useful to print out the values that are being sent as characters so that you can

see what might be going wrong with the transmissions. This is commented out in the code.

 //Debugging

//pc.printf("%d\t%d\t%d\t%d\n\r",wheel_pos_char,wheel_neg_char,gas_int,

brake_int);

//pc.printf("Enable: %d\n\r",enableTwo);

Once everything is setup, the input is convered to unsigned characters and sent over XBee as

four characters with a start character of “!” and an ending character of a new line and carriage

Developer Guide RC Camera Car P14226

return. If the write buffer is full already, the code does nothing, making the transmissions are not

being overloaded.

 //XBee Data Transmission

 if(XBee.writeable()){

 XBee.printf("!%c%c%c%c\n\r",(unsigned

char)wheel_pos_char,(unsigned char)wheel_neg_char,(unsigned

char)gas_int,(unsigned char)brake_int);

 }

 else{

 }

Two-way communications have not been able to be resolved, as enabling this bit of code

constantly causes the communications to disconnect so the car runs off on it’s own. We have

narrowed down the problem to the scanf command on the console, and none of the workarounds

we tried seemed to work. A switch was added then that enables or disables the functionality,

which is checked first. A 20 character buffer is established to give plenty of room for the

message being sent from the car. The first two characters are then sent to the last character in the

range, 126, and the code checks to see if there is data in the buffer to be read. If this is readable

and there are a full 3 characters to be read, the first two characters are assigned to characters in

the code.

 //XBee Data Reception

 //Assign a 3 character buffer

 if(enableTwo){

 char message[20];

 message[1] = 126;

 message[2] = 126;

 if(XBee.readable()){

 if(XBee.scanf("%3s",&message) == 1) {

 //Store Individual Characters

 encoder_left_char = message[1];

 encoder_right_char = message[2];

Once the messages are read, the car characters are combined with the characters from the user

input and sent to the computer over the USB connection as 6 characters with a new line and a

carriage return. If there are not three characters to be read or if the read buffer is empty, the code

does nothing.

 //Send Characters

 pc.printf("%c%c%c%c%c%c\n\r",(unsigned

char)encoder_left_char,(unsigned

char)encoder_right_char,\

 (unsigned char)wheel_pos_char,(unsigned

char)wheel_neg_char,(unsigned char)gas_int,(unsigned

char)brake_int);

 }//if scanf

 }//if readable

 else{

 }//else readable

 }

 }//while true

Developer Guide RC Camera Car P14226

}//main

C. Car Code Documentation

1. KL25Z Motor Shield Functions

Several functions from the TFC motor shield library were used in order to easily interface with

the KL25Z motor shield MBED library.

#include "TFC.h"

/* Initialize Motors and HBridge */

void Init(){

 TFC_Init();

 TFC_SetMotorPWM(0,0);

 TFC_HBRIDGE_ENABLE;

}

/* Sets the PWM value for each motor.

*

* @param MotorA The PWM value for HBridgeA.

* The value is normalized to the floating point range of -1.0 to +1.0.

* @param MotorB The PWM value for HBridgeB.

* The value is normalized to the floating point range of -1.0 to +1.0.

*

* -1.0 is 0% (Full Reverse on the H-Bridge) and 1.0 is 100%

* (Full Forward on the H-Bridge)

*/

void SetMotorPWM(float MotorA ,float MotorB){

 TFC_SetMotorPWM(MotorA, MotorB);

}

/* Sets the servo channels

*

* @param ServoNumber Which servo channel on the FRDM-TFC to use (0 or 1).

* 0 is the default channel for steering.

* @param Position Angle setting for servo in a normalized (-1.0 to 1.0)

* form.

*/

void SetServo(int ServoNumber, float Position){

 TFC_SetServo(ServoNumber, Position);

}

Developer Guide RC Camera Car P14226

2. Code Selection and Modifiable Parameters
DIP Switch Settings

Switch

1
Switch 2 Switch 3 Switch 4 Binary Kc Ti

Camera

Scale

Steering

Scale

Max

Speed
Setting

0 0 0 0 0 - - 0.25 0.33 -
Adjustable Max

Speed Cap

1 0 0 0 1 3 1 0.5 0.5 1.0
PID Optimal

Straight

1 1 0 0 3 3 1 0.5 0.5 0.6
PID Optimal

Turning

1 1 1 0 7 - - 0.25 0.5 - Open Loop

1 1 1 1 15 1 1.07 0.5 0.5 1.0 PID Old Straight

0 1 1 1 14 1 1.07 0.25 0.33 0.6 PID Old Turning

Any Other Combination - - - 0.25 0.33 -

Adjustable Max

Speed Cap No

Transmit

For the car code, the KL25Z DIP switch was employed to allow the user to easily switch

between a PID enabled car functionality and a straight user input to car output setup. Following

some testing, it was determined that for the PID enabled version, the optimum amount of turning

for both the camera and steering wheels was around 30 degrees to aptly demonstrate the

application of a controls algorithm at the desired speeds, which corresponds to a scaling factor of

0.5. In the straight input setup, the camera only turns half this distance and the wheels only turn

two thirds as much. Extended turning of the wheels at higher speeds tends to make the car handle

too quickly for the average user, and the camera turning angle tends to make users overshoot

corrections upon coming out of corners.

//DIP Switch Configuration

switch_setting = TFC_GetDIP_Switch();

if (switch_setting == 0){ //PID Control and Open Loop Disabled

 PID_Enable = false;

 Open_Loop_Enable = false;

 camera_scale = 0.25f;

 steering_scale = 0.33f;

}

else if (switch_setting == 1){ //PID Control Enabled, Open Loop Disabled

 PID_Enable = true;

 Open_Loop_Enable = false;

 camera_scale = 0.5f;

 steering_scale = 0.5f;

 leftController.setTunings (3.0f, 1.0f, 0.0f); //Kc, tauI, tauD (floats)

 rightController.setTunings (3.0f, 1.0f, 0.0f); //Kc, tauI, tauD

(floats)

 max_speed = 1.0f; //(m/s) used for PID output limits and setpoint

calculations

 initializePidControllers(); //PID Initialization

}

else if (switch_setting == 3){ //PID Control Enabled, Open Loop Disabled

 PID_Enable = true;

 Open_Loop_Enable = false;

 camera_scale = 0.5f;

 steering_scale = 0.5f;

 leftController.setTunings (3.0f, 1.0f, 0.0f); //Kc, tauI, tauD (floats)

Developer Guide RC Camera Car P14226

 rightController.setTunings (3.0f, 1.0f, 0.0f); //Kc, tauI, tauD

(floats)

 max_speed = 0.6f; //(m/s) used for PID output limits and setpoint

calculations

 initializePidControllers(); //PID Initialization

}

else if (switch_setting == 7){ //PID Control Disabled, Open Loop Enabled

 PID_Enable = false;

 Open_Loop_Enable = true;

 camera_scale = 0.25f;

 steering_scale = 0.5f;

}

else if (switch_setting == 15){ //PID Control Enabled, Open Loop Disabled

 PID_Enable = true;

 Open_Loop_Enable = false;

 camera_scale = 0.5f;

 steering_scale = 0.5f;

 leftController.setTunings (1.0f, 1.07f, 0.0f); //Kc, tauI, tauD

(floats)

 rightController.setTunings (1.0f, 1.07f, 0.0f); //Kc, tauI, tauD

(floats)

 max_speed = 1.0f; //(m/s) used for PID output limits and setpoint

calculations

 initializePidControllers(); //PID Initialization

}

else if (switch_setting == 14){ //PID Control Enabled, Open Loop Disabled

 PID_Enable = true;

 Open_Loop_Enable = false;

 camera_scale = 0.5f;

 steering_scale = 0.5f;

 leftController.setTunings (1.0f, 1.07f, 0.0f); //Kc, tauI, tauD

(floats)

 rightController.setTunings (1.0f, 1.07f, 0.0f); //Kc, tauI, tauD

(floats)

 max_speed = 0.6f; //(m/s) used for PID output limits and setpoint

calculations

 initializePidControllers(); //PID Initialization

}

else{ //PID Control and Open Loop Disabled

 PID_Enable = false;

 Open_Loop_Enable = false;

 camera_scale = 0.25f;

 steering_scale = 0.33f;

}

For the functionality of the car, the only major control parameter is the cap_default. This can be

used to cap the speed PWM of the car directly, which can be any value between 0.6 and 1.0 to

help draw data curves for establishing the deadzone. With the value limited, you simply run the

car in a straight line at full speed and record the speed of the car. We used a timing gate to

measure this, but the encoders are also a valid option.

//Variable Parameters for Performance

float cap_default = 1.0f; //(PWM) adjustable for no PID output capping

Developer Guide RC Camera Car P14226

3. Initialization and Declaration

The libraries included correspond to those seen in the UML diagram given previously. Each will

be discussed as it is used in the code.

//Libraries

#include "rtos.h"

#include "mbed.h"

#include "TFC.h"

#include "PID.h"

The PID rate set for our car is 0.05, or 20 updates per second, as this was determined to be

adequate. The PID constants were determined using the characterizations seen in the Controls

Section. Due to the fact that both motors showed essentially the same performance, the same

values were used for both left and right PID controllers. The max_speed variable is declared so it

can be modified later on in the code.

//PID Information

#define RATE 0.05

#define Kc 1.0

#define Ti 1.0

#define Td 0.0

PID leftController(Kc, Ti, Td, RATE);

PID rightController(Kc, Ti, Td, RATE);

float max_speed; //(m/s) adjustable for PID speed calculations

The calculation parameters were initialized as floats as storage space is not currently a limitation.

Only the gas and wheel floats need an initialization as all others are calculated from these

quantities. The Booleans are used for enabling and disabling PID and open loop controls later in

the code.

//CALC Information

bool PID_Enable;

bool Open_Loop_Enable;

float gas_float = 0 ;

float wheel_float = 0;

float steering_servo_float;

float camera_servo_float;

float steerplus;

float left_wheel_speed;

float right_wheel_speed;

float out_speed;

float in_speed;

float left_target_speed;

float right_target_speed;

The hardware information declares the variables used by the switches, potentiometers, servos,

and battery level reader. The steering and camera servo center defaults are declared separately so

that they can be modifed in the future without issue.

//HARDWARE Information

int switch_setting;

int steering_pot = 0;

int cap_pot = 1;

Developer Guide RC Camera Car P14226

int servo_channel = 0;

int camera_channel = 1;

float steering_center_default = 0.25f; //adjustable center steering servo

position value

float camera_center_default = 0.25f; //adjustable center camera servo

position value

float camera_scale;

float steering_scale;

float steering_pot_value;

float cap_pot_value;

float battery_volt;

float steering_center;

float cap;

The serial communication from the XBee is initialized with TX on PTD3 and RX on PTD2. The

pc serial can also be enabled for debugging, but this interface cannot be used at the same time

that the board is powered with the battery, so debugging is limited on the car currently. The baud

rate variable was added for quick modification.

The unsigned characters correspond to these values read in from the XBee to be converted to

user input. The encoder left and right integers are used to send data back over the XBees to the

console.

//SERIAL Information

Serial XBee(PTD3, PTD2);

int baud_rate = 9600;

unsigned char wheel_pos_char;

unsigned char wheel_neg_char;

unsigned char gas_char;

unsigned char brake_char;

int encoder_left_int;

int encoder_right_int;

The encoder signals are read as interrupts on pins PTD0 for left and PTA13 for right. These pins

look for high states of over 2.0V and low states of below 0.8V. The timers are used to measure

pulsewidths between consecutive falling edges caused by one set of teeth passing each optical

switch. The timeout value is used to limit the pulsewidths read by the encoder so that the code

can determine when the car is not moving, rather than how long the last pulsewidth read was.

The min_pw and max_pw were added for transmission purposes and to deal with some of the

noise issues from the h-bridges. Values faster than 5 ms as impossible for our car given out

limitations, and values slower than 96 ms basically mean the car is moving slow enough to

consider it not moving. The pulsewidth values for each side are written to this maximum value at

the start, and a previous value variable is declared for each encoder to store the last received

value.

//INTERRUPT Information

InterruptIn encoder_left(PTD0);

InterruptIn encoder_right(PTA13);

Timer timer_left, timer_right;

float time_out = 150.0f; //(ms) between pulses too long for encoders to be

detecting a speed

float min_pw = 5.0f; //(ms) minimum pulsewidth that should be considered as a

possible speed

Developer Guide RC Camera Car P14226

float max_pw = 96.0f; //(ms)maximum pulsewidth that is possible for

transmission

float pulsewidth_left_val = max_pw;

float pulsewidth_right_val = max_pw;

float pulsewidth_left_val_prev = pulsewidth_left_val;

float pulsewidth_right_val_prev = pulsewidth_right_val;

The PID setup only needs the input limits and output limits specified as well as auto mode for

each controller. The max speed variable (in meters per second) is employed for quick

modification of the inputs, while the outputs are fixed at 0.0 (min) to 1.0 (max) to correspond to

the same range of PWM values that can be written to the motors. The PID controller works on

scaling the inputs and working in percentages, so attention to units in these assignments

determines the functionality of the controller.

//PID Initialization

void initializePidControllers(void){

 leftController.setInputLimits(0.0, max_speed); //(m/s) travel speed

 leftController.setOutputLimits(0.0, 1.0); //working range of car

 leftController.setMode(AUTO_MODE);

 rightController.setInputLimits(0.0, max_speed); //(m/s) travel speed

 rightController.setOutputLimits(0.0, 1.0); //working range of car

 rightController.setMode(AUTO_MODE);

}

4. Encoder Wheel Speed

The MBED RTOS library was used to provide multithreading support to the car program.

Multithreading was needed in order to handle the interrupts from the wheel encoders, which have

separate interrupt service routines (ISR’s) and codes as well.

For each main interrupt thread, the timer is first reset (to 0) and started when the thread is first

called in the main loop. The mode of the interrupt pin is then called as a “PullNone,” which

means that it does not use the internal pullup resistor of the KL25Z board for reading input. The

KL25Z board does not have an internal pulldown resistors, so this step is critical as external

pullup resistors are used in the encoder circuit on the XBee protoboard that correctly limit the

ranges of the output to trip the encoder. The interrupt is then attached to the corresponding ISR

using falling edges as triggers.

//INTERRUPT Code

 //LEFT Main Thread

 void encoder_thread_left(void const *args){

 timer_left.reset();

 timer_left.start();

 encoder_left.mode(PullNone);

 encoder_left.fall(&ts_left);

 }

 //RIGHT Main Thread

 void encoder_thread_right(void const *args){

 timer_right.reset();

 timer_right.start();

 encoder_right.mode(PullNone);

 encoder_right.fall(&ts_right);

 }

Developer Guide RC Camera Car P14226

On trigger, the ISR’s use the timer read function in milliseconds (as integers) to read the elapsed

time since the last falling edge. The time is reset for timing the next interrupt. These ISR’s are

kept short to reduce processing time on triggering.

//LEFT ISR

void ts_left(){

 pulsewidth_left_val = timer_left.read_ms();

 timer_left.reset();

}

//RIGHT ISR

void ts_right(){

 pulsewidth_right_val = timer_right.read_ms();

 timer_right.reset();

}

5. Main Loop

The main loop of the code first sets up the XBee communications, initializes and enables the

needed TFC library components for the motors, sets the h-bridge PWM to 9000 Hz (to eliminate

the buzzing noise), and sets the motors to 0 so the car does not move.

//Main Loop

int main(){

 //Initialize Serial Comms

 XBee.baud(baud_rate);

 //TFC Setup

 TFC_Init();

 TFC_InitMotorPWM(9000); //switching frequency of H-Bridges that

yields no audible noise (1000-9000 Hz)

 TFC_SetMotorPWM(0,0); //make sure motors are off

 TFC_HBRIDGE_ENABLE;

The DIP switch setting is then read as noted in the previous section for selecting the car code.

The encoder threads are then initialized.

 //Thread Setup

 Thread thread_l(encoder_thread_left);

 Thread thread_r(encoder_thread_right);

A buffer (message) size of twenty characters is used for the code as that gives plenty of room for

the message for the console. The message is only four characters and a new line character being

sent from the console. The rest of the loop runs indefinitely on a while (true) loop.

 char message[20];

 while(true){

Before running any of the serial-based commands, the code checks the TFC hardware for

potentiometer settngs and battery voltage, converting and storing these values for later use. The

servo adjustment gives about 5 degrees of change on either side of the zero for fine turning of the

steering servo. The speed capping servo limits the speed down from 1.0 PWM to 0.5 PWM at the

minimum to prevent people from driving too fast during the demonstrations.

Developer Guide RC Camera Car P14226

To calculate the battery voltage thresholds, the TFC shield and KL25Z board were powered by a

variable power supply and the associated readings were recorded and plotted in the chart below.

Based on these values the different voltage thresholds for the battery level indicators were set in

the code. The car simply reads the battery voltage and lights up from 0 to 4 LEDs on the voltage

range of 6 to 8.4V.

//Hardware Adjustments

 steering_pot_value = TFC_ReadPot(steering_pot); //(-1 to 1) float

potentiometer reading

 cap_pot_value = TFC_ReadPot(cap_pot); //(-1 to 1) float potentiometer

reading

 steering_center = steering_pot_value*0.05f+steering_center_default;

//(0.2 to 0.3 PWM) servo center range adjustment

 cap = cap_default -(cap_pot_value+1.0f)*0.25f; //(0.5 to 1.0 PWM)

speed cap range adjustment

 battery_volt = TFC_ReadBatteryVoltage()*6.28f; //(V) voltage of

battery

 if (battery_volt >= 7.8f){ //voltage cutoff threshold for 4 LEDS

 TFC_SetBatteryLED_Level(4);

 }

 else if(battery_volt >= 7.2f){ //voltage cutoff threshold for 3 LEDS

 TFC_SetBatteryLED_Level(3);

 }

 else if(battery_volt >= 6.6f){ //voltage cutoff threshold for 2 LEDS

 TFC_SetBatteryLED_Level(2);

 }

 else if(battery_volt >= 6.0f){ //voltage cutoff threshold for 1 LEDS

 TFC_SetBatteryLED_Level(1);

 }

 else{ //voltage cutoff threshold for 0 LEDS

 TFC_SetBatteryLED_Level(0);

y = 6.2837x - 0.0047
R² = 0.9998

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

V
B

A
T

(V
)

Analog Read (Float)

Curve Fitting Analog Read to Voltage Conversion

Voltage vs Float Linear (Voltage vs Float)

Developer Guide RC Camera Car P14226

 }

To deal with issues encountered when data transmission is lost (holding onto the last received

command and having the car take off), a readable command was employed to first check and see

if there is any data in the buffer before trying to perform any operations. It also checks to make

sure that the length of the message is 5 characters so that no short packets are being read.

If there is no data in the buffer, an else condition at the end of the code writes both motors to stop

moving and sets the servos back to straight, stopping the car instead of allowing it to take off.

This still does not always work and should be looked into for future work.

 //XBee Data Reception

 if(XBee.readable() && XBee.scanf("%5s",&message) == 1){

The message data is then parsed into individual characters for steering wheel, gas pedal, and

brake pedal inputs.

 //Store Individual Characters

 wheel_pos_char = message[1];

 wheel_neg_char = message[2];

 gas_char = message[3];

 brake_char = message[4];

The steering data employs both a positive and negative character to extend the resolution of the

steering wheel range to 186 characters. If the encoder is clockwise of center, the negative

character gets written to the lowest value (35) and the wheel float value is based on the converted

positive character, less the lowest value, and scaled from 0 to 1. A similar operation is employed

for counterclockwise of center.

//STEERING Calculations

 if((int)wheel_neg_char == 35) {

 wheel_float = ((int)wheel_pos_char - 35)/-92.0f;

 }

 else {

 wheel_float = ((int)wheel_neg_char - 35)/92.0f;

 }

The “steerplus” variable is then calculated, which converts the wheel float to an absolute value of

the radian measurement of the angle of the wheels. If this value is near 0, it writes the variable to

a value of 0.001 to be small, constant, and non-zero for further calculations.

 steerplus = wheel_float*0.611f; //If steer is zero, make it

something small [rad]

 if (steerplus < 0){

 steerplus = steerplus*-1.0f;

 }

 if (steerplus < 0.001) {

 steerplus = 0.001;

 }

Developer Guide RC Camera Car P14226

Steering and camera servo PWM values are then calculated using the wheel float using the

scaling factors declared in the initialization (different for each running scenario). The centering

value declared in the initialization is added to each calculation as this is the PWM corresponding

to the center position of each servo with our current setup. This value may vary depending on

configuration of the servo horn on the servo as well as the PWM being sent by the specific

microcontroller being used.

 steering_servo_float = wheel_float * steering_scale +

steering_center; //-30 degrees to 30 degrees, depending on

scaling

 camera_servo_float = wheel_float * camera_scale +

camera_center_default; //-30 degrees to 30 degrees, depending on

scaling

As a final check, the servo values are only written to the corresponding servo if the values are

within the range of -1 to 1 to prevent damaging the servo motors.

 if(steering_servo_float > -1.0f && steering_servo_float < 1.0f &&

camera_servo_float > -1.0f && camera_servo_float < 1.0f){

 TFC_SetServo(servo_channel,steering_servo_float);

 TFC_SetServo(camera_channel,camera_servo_float);

 }

To prevent reading random values repeatedly from the encoders when the car is stopped

corresponding to the last pulsewidth seen, a zeroing function is used on each encoder. This

function reads the time since the last interrupt and sets the value to the maximum pulsewidth

(126) if it has been more than 150 ms, resetting the timer again afterwards.

 //Encoder Data Zeroing

 if (timer_left.read_ms() >= time_out){

 pulsewidth_left_val = max_pw;

 timer_left.reset();

 }

 if (timer_right.read_ms() >= time_out){

 pulsewidth_right_val = max_pw;

 timer_right.reset();

 }

Similarly, the median pulsewidths are then capped to prevent any impossible values from making

it through which correspond to noise, as noted in the initialization. For very short pulsewidths

(noise data), the pulsewidth value is written to the previous good value so that that data stream is

slightly cleaner to look at.

 //Encoder Data Capping

 if (pulsewidth_left_val >= max_pw){

 pulsewidth_left_val = max_pw;

 }

 else if (pulsewidth_left_val <= min_pw){

 pulsewidth_left_val = pulsewidth_left_val_prev;

 }

 else{

 }

Developer Guide RC Camera Car P14226

 if (pulsewidth_right_val >= max_pw){

 pulsewidth_right_val = max_pw;

 }

 else if (pulsewidth_right_val <= min_pw){

 pulsewidth_right_val = pulsewidth_right_val_prev;

 }

 else{

 }

For the transmission of the data over the XBee to the console, the encoder values are translated

by 30 to always be in a safe range for character transfer.

 //XBee Data Transmission

 encoder_left_int = pulsewidth_left_val + 30;

 encoder_right_int = pulsewidth_right_val + 30;

We now have to send the encoder data back to the console. Similarly, this uses a writeable

command that first checks to make sure the buffer on the console is not already filled with data.

If it is, the car does not send the data at all. If the buffer is empty, the character encoder

pulsewidths are then transmitted as a string with a new line character. Having this in line with the

code seems to work the best based on our testing.

 //XBee Data Transmission

 if (XBee.writeable()){

 XBee.printf("%c%c\n",(unsigned

char)encoder_left_int,(unsigned char)encoder_right_int);

 }

 else{

 }

Finally, the wheel speeds seen are written to 0 if the max pulsewidth is currently being seen. For

any other values the pulsewidth is converted to m/s using the formula developed in the Physics

Section based on the geometry of the encoder.

 //ENCODER Conversions

 if (pulsewidth_left_med == max_pw){

 left_wheel_speed = 0;

 }

 else {

 left_wheel_speed = 16.83/pulsewidth_left_med;

 }

 if (pulsewidth_right_med == max_pw){

 right_wheel_speed = 0;

 }

 else {

 right_wheel_speed = 16.83/pulsewidth_right_med;

 }

The gas float value (0 to 1) is established by taking the relative difference between the gas and

brake characters. This was a simple coding solution that allows for no output to the motors when

both pedals are being pressed (as a safety).

Developer Guide RC Camera Car P14226

During testing with the car, a deadzone for the gas pedal was required. This was caused by the

spring used to return the pedal to the zero position being too weak, which sometimes lead to

static input values without the user even touching the pedal. This was accounted for in the coding

through testing by ignoring inputs below a certain limit (0.25). The modification was done here

as it is most effective to account for after all other data conversions have been completed.

 //THROTTLE Calculations

 gas_float = ((int)gas_char)/92.0f - ((int)brake_char)/92.0f;

 if (gas_float <= 0.25 && gas_float >= -0.25){ //Pedal spring does

not always bring pedal back to zero

 gas_float = 0;

 }

Now the actual PID loop is employed. For gas floats great than 0 (not stopped or going in

reverse), if the PID is enabled in the initialization, the outer wheel speed and inner wheel speed

(in ft/s) are calculated using the formulas determined in the Controls Section.

 if (gas_float > 0){ //going forward, implement PID control

 if (PID_Enable == true){

 //PID Calculations

 out_speed = max_speed*gas_float*(1 +

0.353*tan(steerplus)); //tangential speed of outer side

of car [m/s]

 in_speed = max_speed*gas_float*(1 -

0.353*tan(steerplus)); //tangential speed of inner side

of car [m/s]

Based on the wheel position, if the car is making a left or right turn is then established, which

establishes the assignment of outer and inner wheel speed to either left or right wheel as the set

point to be achieved by the car using the control system.

 if (wheel_float < 0){ //turning left

 leftController.setSetPoint(in_speed);

 rightController.setSetPoint(out_speed);

 }

 else{ //turning right

 leftController.setSetPoint(out_speed);

 rightController.setSetPoint(in_speed);

 }

The process values (what feedback the system is seeing) is then set as the encoder speeds

calculated earlier, directly this time as the wheel designation corresponds directly to the

controller with the same name.

 leftController.setProcessValue(left_wheel_speed);

//encoder value

 rightController.setProcessValue(right_wheel_speed);

//encoder value

The PID library compute function calculates the target output PWM for the car based on the PID

algorithm, set points, process values, and input / output limits.

Developer Guide RC Camera Car P14226

 left_target_speed = leftController.compute();

 right_target_speed = rightController.compute();

Due to limitation in the motor outputs due to noise, the computed output PWM’s are then limited

to 0.75 PWM. This highest value is also scaled back from a 1.0 PWM to allow the outer wheel to

spin at its max speed (at around 1.0 PWM) when the car centerline speed is less than 1.0 PWM

(basically a geometry limitation). Around 1.0 PWM the car experiences excessive noise in the

data, which we want to avoid.

 left_target_speed = left_target_speed*0.75f; //(0.0 -

0.75 PWM) range for max speed noise issue

 right_target_speed = right_target_speed*0.75f; //(0.0 -

0.75 PWM) range for max speed noise issue

 }

If open loop control is enabled, the car basically takes the wheel speed calculations from the PID

loop and directly writes those values to the inside and outside wheels based on the steering angle.

This does not use any encoder feedback, hence the open loop control.

 else if (Open_Loop_Enable == true){

 out_speed = 0.8f*gas_float*(1 + 0.353*tan(steerplus));

//outside wheel PWM maximum less than 1.0

 in_speed = 0.8f*gas_float*(1 - 0.353*tan(steerplus));

//inside wheel PWM scaled the same as the outside wheel

 if (wheel_float > 0){ //turning left

 left_target_speed = in_speed;

 right_target_speed = out_speed;

 }

 else{ //turning right

 left_target_speed = out_speed;

 right_target_speed = in_speed;

 }

 }

If the PID is not enabled and the gas float is greater than zero, we want to map the user throttle

input directly to the motor PWM for both wheels in the range of 0.5 to 1.0 PWM. A cap is then

implemented to limit user speed if necessary. This can also be helpful for testing, as multiple

fixed data points can be taken for max speed at a given PWM for curve fitting and establishing

the motor deadzone.

 else{

 //Running with capped speed and no PID

 left_target_speed = gas_float/2+0.5f; //0.5 - ~1.0 range

for max speed issue

 if (left_target_speed > cap){ //cap speed value

 left_target_speed = cap;

 }

 right_target_speed = left_target_speed;

 }

 }

Developer Guide RC Camera Car P14226

If the gas float is zero in either case, set all speeds to zero so the car does not move.

 else if (gas_float == 0){ //stopped, write motors to not move

 out_speed = 0;

 in_speed = 0;

 left_target_speed = 0;

 right_target_speed = 0;

 }

Similarly to the PID disabled case above, if the gas float is less than zero in either case, write the

user input directly to both wheels in the range of 0.5 to 0.75. This is limited to less than one

because people tend to drive too quickly in reverse and run into objects.

 else { //going in reverse, just use the gas_float, scaled

 left_target_speed = gas_float/4-0.5f; //0.5 – 0.75 speed ok

for reverse

 right_target_speed = left_target_speed;

 }

Finally, in one write the motor speeds are actually written to the motor encoders. Here there is

also some debugging code for printing the values back to a putty terminal window.

 //Writing Motor Speeds and Debugging

 TFC_SetMotorPWM(right_target_speed, left_target_speed);

//pc.printf("%c\t%c\t%c\t%c\t%.2f\t%.2f\t%.2f\n\r",wheel_pos_c

har,wheel_neg_char,gas_char,brake_char,gas_float,wheel_float,s

ervo_float);

//pc.printf("%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n\

r",pulsewidth_left_med,pulsewidth_right_med,left_wheel_speed,r

ight_wheel_speed,out_speed,in_speed,left_target_speed,right_ta

rget_speed);

//pc.printf("%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n\r",lef

t_wheel_speed,right_wheel_speed,gas_float,out_speed,in_speed,l

eft_target_speed,right_target_speed);

 }//if readable

Mentioned above, if the car loses data reception, the car needs to be written to stop so that it does

not take off with the last command given to it.

 else{//if data lost, stop car movement completely

 TFC_SetMotorPWM(0,0);

 TFC_SetServo(servo_channel,0.26f);

 TFC_SetServo(camera_channel,0.26f);

 }//else readable

 }//while loop

}//main loop

Developer Guide RC Camera Car P14226

VIII. Testing

A. Uploading Code

There are separate codes that have been developed in MBED for the console and car which can

be uploaded to the KL25Z boards on the car and console using the direction found in Section

VII. These codes are also documented in Section VII so that changes can be made for future

modifications.

B. Logging Data

1. Serial Data

The design of the car and console code is to transmit data back to a computer as serial over a

USB cable connected to the Open SDA port of the console KL25Z. This data comes in the form

of six characters followed by a new line and a carriage return that represent the following

quantities.

String Character Value Quantity Range Units

1 Carriage Return N/A N/A nd

2 Encoder Left Char Left Encoder Pulsewidth 35-126 ms

3 Encoder Right Char Right Encoder Pulsewidth 35-126 ms

4 Wheel Pos Char Scaled Wheel Displacement CW 35-126 nd

5 Wheel Neg Char Scaled Wheel Displacement CCW 35-126 nd

6 Gas Int Scaled Gas Pedal Displacement 35-126 nd

7 Brake Int Scaled Brake Pedal Displacement 35-126 nd

8 New Line N/A N/A nd

Characters two and three come directly from the car over XBee, recorded as the pulsewidths seen

between encoder falling edges in milliseconds. Characters four through seven are the same

values as those sent to the car from the console based on user input from the steering wheel, gas

pedal, and brake pedal. The first and last character are for data formatting. The character ranges

of 35-126 were established based on the unsigned character limitation with normal ASCII

characters. The minimum of 35 was established to not try and use any bad transmission

characters, (new line, carriage return, etc.) along with the quote character (34), since this is used

in VBA for reading strings.

2. Using the Excel Sheet

The following documentation is for the 2013 version of Excel. Previous versions still support the

ActiveX control and main VBA functionality, but the macros do not work in previous versions as

VBA has changed its syntax for chart formatting. A working version for 2010 can also be found

on EDGE, which effectively just has the same main macro and slightly modified plotting macros.

In essence, the strategy is to give the computer the same raw data that the car is seeing before it

is converted to useable quantities to better understand how the car is functioning and to make

data transmission easier. To log data, an Excel VBA code was developed that relies on the

StrokeReader ActiveX control for Excel. This control is a serial port interface with event-driven,

asynchronous data transfer that can be downloaded here. Due to budgetary limitations we area

only using the free version, but a license only costs $7 so it might be worth the investment for

http://strokescribe.com/en/serial-port-about.html
http://strokescribe.com/en/serial-port-download.html

Developer Guide RC Camera Car P14226

future development. This interface was developed for scanning barcodes, but it provides a

convenient interface for all serial data communications. The basic background VBA macro

associated with this control was modified extensively for our application in the specific Excel

sheet being used. For additional information about including this control in other applications a

good tutorial can be found here.

In the macro enabled Excel sheet that is included in the Final Documents Subdirectory on

EDGE, the interface you will see on the right-hand side of the screen is as seen below. The small

ActiveX control box labeled “COM” will not be visible, but this is made visible by clicking the

“Show COM” button. The “Enter Max Speed (m/s)” box (F2) is used as the input for the coding

as it is in the car code. Normal values will be either 1.0 for straight runs and 0.6 for turns,

depending on the DIP switch setting.

If you double click the “COM” ActiveX control, you will get a window that looks like the image

below. This is used to record the data directly. The port number for data transmission will vary

from computer to computer, but it can be found by typing “Device Manager” into the Windows

search bar. Under the “Ports” heading you should see the Freescale board with the associated

port number listed when the device is connected. The rest of the settings stay the same as below.

http://strokescribe.com/en/read-serial-port-excel-2007.html

Developer Guide RC Camera Car P14226

To take data, the console has to be powered and the USB has to be connected. The car also has to

be on. First press the reset on the car KL25Z, then press the reset on the console KL25Z. The car

XBee LEDs for TX and RX should light up and blink quickly (one blue, one red), and the RSSI

LED should be steady red (meaning signal strength is strong). On the console, the red RSSI and

blue connection LEDs should be on. If this does not work, first check to make sure that the

wiring harnesses in the console on the perfboard are well seated in the pin headers, as this can

cause disconnection.

To check if data is being read correctly on the port you are using, you can first open a Putty

window, chose the Serial connection type, enter the COM number of the port, and hit open. You

should see a stream of data characters being printed with carriage returns. If the data ever stops,

hit the reset button on the console and it should begin again. Again, this is signaled by the

blinking LEDs on the car XBee.

Once data is being read correctly, all that needs to be done in Excel is checking the “Connect”

box in the ActiveX control window as above and clicking “Apply.” You should see data start to

be displayed in the Excel document as below, even without clicking “Ok” in the ActiveX

control. To stop data collection, simply uncheck the Connect box and click Apply again.

The way the VBA macro works in the background is that once you click “Ok” in the ActiveX

control window following data collection, the program will scan the five data columns for data

and plot these points with formatting in cell G9 of the active sheet. If you want to trim the data

quickly you can hit the “Trim Plot Data” button above the graph and enter the start and end time

of the data you want to look at in the window as seen below left.

Developer Guide RC Camera Car P14226

If the data set is good, click the “Save Data” button and you will get a window as above right.

Enter a quick name for that data set that records what was being done in the testing, for

reference, and click “Ok.” The data will be saved in a separate sheet, along with the plot and title

label as seen below.

3. VBA Program Documentation

The VBA program is quite involved, but it can be modified by pressing Alt+F11 and selecting

VBAProject(*File_Name*) >> Microsoft Excel Objects >> Sheet1 (COM). Additionally you can

use the Developer Tab in Excel. If your Developer Tab is not visible, follow these directions. In

the Developer Tab, click the “Design Mode” button and double click on the “COM” ActiveX

control. This will open the code.

a) Initialization

The first part of the code is just initializing the variables in the code for completeness. VBA does

not require this, but by uncommenting the top line the hard data type functionality will be

enabled, which may help for checking with issues caused by modification.

The received characters include the buffer, cell printing, buffer length, and character string arrays

used for data reception and parsing. The calculation integers are the limits used in the mbed code

along with the integer conversions of the ASCII data characters. The calculation doubles are the

same floats used in the mbed code for storing the values calculated from the physics and controls

equations. The reference time value is initialized as public to enable functionality throughout the

program cases.

http://msdn.microsoft.com/en-us/library/bb608625.aspx

Developer Guide RC Camera Car P14226

'Option Explicit

'Received Characters

Dim buf As String 'Buffer for incoming serial data

Dim cell_idx As Integer 'The row number cell to store a received barcode

Dim LF As String

Dim data_chars As String

Dim encoder_left_char As String

Dim encoder_right_char As String

Dim wheel_pos_char As String

Dim wheel_neg_char As String

Dim gas_char As String

Dim brake_char As String

'Calculation Integers

Dim max_pw As Integer

Dim encoder_left_int As Integer

Dim encoder_right_int As Integer

Dim wheel_pos_int As Integer

Dim wheel_neg_int As Integer

Dim gas_int As Integer

Dim brake_int As Integer

Dim pulsewidth_left_val As Integer

Dim pulsewidth_right_val As Integer

'Calculation Doubles

Public time_ref As Double 'global reference time reset when connection

checked

Dim max_speed As Double

Dim time_system As Double

Dim time_sample As Double

Dim left_wheel_speed As Double

Dim right_wheel_speed As Double

Dim wheel_float As Double

Dim gas_float As Double

Dim steerplus As Double

Dim out_speed As Double

Dim in_speed As Double

Dim left_target_speed As Double

Dim right_target_speed As Double

b) Received Data

The program starts at the Private Sub line, and the general structure is a set of cases that

correspond to events caused by checking (connect) or unchecking (disconnect) the “Connect”

box in the ActiveX control. When the connection is disconnected, you can see that the program

simply runs the plot macro, which will be documented later. When the connection is connected,

the program selects all of the existing data in columns A through E and clears the contents. It

also initializes the cell row index for printing the first line of data, the reference time (Timer is an

internal system clock call function in VBA that returns the number of seconds since midnight),

the max speed constant, and the max pulsewidth constant. The last two values are the same as

those initialized in the mbed code.

Private Sub StrokeReader1_CommEvent(ByVal Evt As StrokeReaderLib.Event, _

 ByVal data As Variant)

 Select Case Evt 'Can be EVT_DISCONNECT or EVT_DATA or EVT_SERIALEVENT

Developer Guide RC Camera Car P14226

 Case EVT_DISCONNECT 'if USB serial port adapter is just disconnected from

the PC

 plot 'goes to plot sub

 Range("A1").FormulaR1C1 = "Timer"

 Range("A2").FormulaR1C1 = "s"

 Range("B1").FormulaR1C1 = "Left Encoder Speed"

 Range("B2").FormulaR1C1 = "m/s"

 Range("C1").FormulaR1C1 = "Right Encoder Speed"

 Range("C2").FormulaR1C1 = "m/s"

 Range("D1").FormulaR1C1 = "Left Target Speed"

 Range("D2").FormulaR1C1 = "m/s"

 Range("E1").FormulaR1C1 = "Right Target Speed"

 Range("E2").FormulaR1C1 = "m/s"

 Range("F1").FormulaR1C1 = "Enter Max Speed (m/s)"

 Range("A1").Select

 Case EVT_CONNECT

 ActiveSheet.Range("a3",

ActiveSheet.Range("a3").End(xlDown)).ClearContents

 ActiveSheet.Range("b3",

ActiveSheet.Range("b3").End(xlDown)).ClearContents

 ActiveSheet.Range("c3",

ActiveSheet.Range("c3").End(xlDown)).ClearContents

 ActiveSheet.Range("d3",

ActiveSheet.Range("d3").End(xlDown)).ClearContents

 ActiveSheet.Range("e4",

ActiveSheet.Range("e4").End(xlDown)).ClearContents

 cell_idx = 2 'start at row 3

 time_ref = Timer 'reset timer column

 max_speed = ActiveCell.Value 'm/s actual max speed

 max_pw = 96 'ms pulsewidth

When the program receives serial data, it then enters the “DATA” event and adds the received

data to the buf string. The program than uses the “InStr” function to look through the buf string

for the new line character (ASCII decimal 10), recording the length of the data to that character

as an integer in LF. If less than 8 characters are received (the length of the whole string we are

sending), it parses that data off of the buffer and exits the loop, and waiting for new data.

 Case EVT_DATA 'Incoming serial data

 buf = buf + data 'Incoming serial data accumulated in buf

 Do

 'Read from Buffer

 LF = InStr(buf, Chr(10)) 'Scan buffer for ASCII <LF>

 If LF < 8 Then 'Waiting for full ASCII string to <LF> to be

received

 buf = Right(buf, Len(buf) - LF) 'Cut the parsed data from the

buffer

 Exit Do

 End If

The system time at the time of data reception is then recorded as time_system. The time_sample

is then calculated as the time difference between this time and the reference time, effectively

making a timer that starts at roughly 0 seconds for recording data sample times.

Developer Guide RC Camera Car P14226

 'Establish Time

 time_system = Timer

 time_sample = time_system - time_ref

Data parsing uses some of VBAs canned string functions. First, the Left function is used to copy

the string of characters from the buffer up to and including the new line character from the left

side of the string to the new string data_chars. The Mid function then parses off each character

individually from the data_chars string according to the position in the string for 1 character

length. Since the first character is the carriage return, this value is ignored and the data starts at

the second position.

 'Parse Data from Buffer and Remove

 data_chars = Left(buf, LF)

 encoder_left_char = Mid(data_chars, 2, 1) 'Parse data from

data_chars string starting at position 2 with 1 character length

 encoder_right_char = Mid(data_chars, 3, 1)

 wheel_pos_char = Mid(data_chars, 4, 1)

 wheel_neg_char = Mid(data_chars, 5, 1)

 gas_char = Mid(data_chars, 6, 1)

 brake_char = Mid(data_chars, 7, 1)

Now that the data is stored in individual characters, the string just parses is removed from the

buffer using the Right function (from the right side of the string) for the length of the total buffer

less the distance to the new line character.

 buf = Right(buf, Len(buf) - LF) 'Cut the parsed data from the

buffer

With the data removed, the characters are now converted back to the corresponding decimals

from 35 to 126, as done in the mbed code.

 'Convert Received Data

 encoder_left_int = Asc(encoder_left_char) 'convert ASCII

characters to integers

 encoder_right_int = Asc(encoder_right_char)

 wheel_pos_int = Asc(wheel_pos_char)

 wheel_neg_int = Asc(wheel_neg_char)

 gas_int = Asc(gas_char)

 brake_int = Asc(brake_char)

The pulsewidth values are calculated by removing 30 from the integer value of each data

character, which is the opposite of the data transmission step in the car code.

 'Convert Encoder Data

 pulsewidth_left_val = encoder_left_int - 30 'convert to original

pulsewidths

 pulsewidth_right_val = encoder_right_int – 30

The conversion from the pulsewidths to wheel speeds is identical to that seen in the car code in

VBA format.

Developer Guide RC Camera Car P14226

 If pulsewidth_left_val = max_pw Then

 left_wheel_speed = 0

 Else

 left_wheel_speed = 16.83 / pulsewidth_left_val

 End If

 If pulsewidth_right_val = max_pw Then

 right_wheel_speed = 0

 Else

 right_wheel_speed = 16.83 / pulsewidth_right_val

 End If

The conversion of steering data to wheel float and steerplus values is also identical to the car

code for consistency.

 'Convert Steering Data

 If wheel_neg_int = 35 Then

 wheel_float = (wheel_pos_int - 35) / -92

 Else

 wheel_float = (wheel_neg_int - 35) / 92

 End If

 steerplus = Abs(wheel_float * 0.611) 'If steer is zero, make it

something small [rad]

 If steerplus < 0.001 Then

 steerplus = 0.001

 End If

The conversion of gas and brake values to gas float and speed calculations used in the PID loop

are also identical to the car code, with the exception that obviously the VBA code does not

include the ability to calculate the PID output the same way as the car code works. This

functionality may be a nice area to explore in future work, but for the time being we are only

concerned in comparing the signal we are applying to the setpoint of the control loops (left and

right target speeds as calculated by out speed and in speed assigned using the steering logic) with

the wheel speed from the encoders that we are using as the process variable in the control loops.

This allows us to see the square value inputs we are applying against the actual speed we are

seeing from the encoders.

 'Convert Throttle Data

 gas_float = gas_int / 92 - brake_int / 92

 If gas_float <= 0.25 And gas_float >= -0.25 Then 'Pedal spring

does not always bring pedal back to zero

 gas_float = 0

 End If

 If gas_float > 0 Then 'going forward, implement PID control

 'PID Calculations

 out_speed = max_speed * gas_float * (1 + 0.353 *

Tan(steerplus)) 'tangential speed of outer side of car [ft/s]

 in_speed = max_speed * gas_float * (1 - 0.353 *

Tan(steerplus)) 'tangential speed of inner side of car [ft/s]

Developer Guide RC Camera Car P14226

 If wheel_float <= 0 Then 'turning left

 left_target_speed = in_speed 'showing target max speed in

m/s

 right_target_speed = out_speed

 Else 'turning right

 left_target_speed = out_speed

right_target_speed = in_speed

 End If

 ElseIf gas_float = 0 Then 'stopped, write motors to not move

 out_speed = 0

 in_speed = 0

 left_target_speed = 0

 right_target_speed = 0

 Else 'going in reverse, just use the gas_float, scaled

 left_target_speed = gas_float / 4 - 0.5 '0.5 – 0.75 speed ok

for reverse

 right_target_speed = left_target_speed

 End If

Finally, the values calculated are written to individual cells using the Cell function (row, column)

and incrementing the cell index each time. The placement of the cell index before the cell

assignments is why the data starts printing in row three.

 'Write to Cells

 cell_idx = cell_idx + 1 'increment the row number of cell where

the barcode will be stored

 Cells(cell_idx, 1) = time_sample

 Cells(cell_idx, 2) = left_wheel_speed

 Cells(cell_idx, 3) = right_wheel_speed

 Cells(cell_idx, 4) = left_target_speed

 Cells(cell_idx, 5) = right_target_speed

 Loop

 End Select

End Sub

c) Plot Macro

The macros used for plotting and recording data as not as critical to the basic functioning of the

program, but they do make data collection and evaluation more efficient. Again, these macros

only work for 2013 and should be modified for 2010 functionality. These macros were created

using Excel’s macro recording functionality, so they will only be minimally documented as it is

very easy to record your own macros that do anything you want to the data sets created. These

macros can be found in in the VBA interface under VBAProject(*File_Name*) >> Modules >>

Module 1 and Module 2.

The plot function first deletes all charts in the main sheet and creates a new chart in cell G9.

Sub plot()

'deletes the old plot and creates a new one of all the data

 Dim chtObj As ChartObject

 For Each chtObj In ActiveSheet.ChartObjects

 chtObj.Delete

 Next

 Sheets("COM").Shapes.AddChart2(240, xlXYScatter).Select

Developer Guide RC Camera Car P14226

 ActiveChart.SetSourceData Source:=Range("COM!A1:E425") 'repopulate

chart

 With Selection

 .Top = Range("G9").Top 'adjust top

 .Left = Range("G9").Left

 End With

For all charts in the active sheet, the following formats the plot with titles, colors, axis labels,

legends, and data marker types. This section was recorded directly using the record functionality.

'*************** Format Chart ***************************************

For Each chtObj In ActiveSheet.ChartObjects

chtObj.Activate

ActiveChart.ChartTitle.Select

 Selection.Format.TextFrame2.TextRange.Characters.Text = "Speed Data"

 With Selection.Format.TextFrame2.TextRange.Characters(1,

10).ParagraphFormat

 .TextDirection = msoTextDirectionLeftToRight

 .Alignment = msoAlignCenter

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(1, 5).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 14

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Spacing = 0

 .Strike = msoNoStrike

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(6, 5).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 14

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Spacing = 0

 .Strike = msoNoStrike

 End With

 ActiveChart.SetElement (msoElementPrimaryCategoryAxisTitleAdjacentToAxis)

 Selection.Caption = "Time"

Developer Guide RC Camera Car P14226

 Selection.Format.TextFrame2.TextRange.Characters.Text = "Time (s)"

 With Selection.Format.TextFrame2.TextRange.Characters(1,

8).ParagraphFormat

 .TextDirection = msoTextDirectionLeftToRight

 .Alignment = msoAlignCenter

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(1, 8).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 10

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Strike = msoNoStrike

 End With

 ActiveChart.Axes(xlValue).Select

 ActiveChart.SetElement (msoElementPrimaryValueAxisTitleNone)

 Selection.HasTitle = True

 ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Speed (m/s)"

The following code can be modified to adjust y-axis limits quickly, as these are critical to data

viewing and interpretation. Currently they are from 0 to 2 m/s, which completely encompasses

our target speeds.

 'Legend and y-axis limits

 ActiveChart.SetElement (msoElementLegendTop)

 ActiveChart.Axes(xlValue).MaximumScale = 2

 ActiveChart.Axes(xlValue).MinimumScale = 0

 'Change target speeds to lines, not points

 ActiveChart.FullSeriesCollection(4).Select

 With Selection.Format.Line

 .Visible = msoTrue

 .ForeColor.ObjectThemeColor = msoThemeColorAccent2

 .ForeColor.TintAndShade = 0

 .ForeColor.Brightness = 0

 End With

 Selection.MarkerStyle = -4142

 ActiveChart.FullSeriesCollection(3).Select

 With Selection.Format.Line

 .Visible = msoTrue

 .ForeColor.ObjectThemeColor = msoThemeColorAccent1

 .ForeColor.TintAndShade = 0

 .ForeColor.Brightness = 0

 .Transparency = 0

 End With

 Selection.MarkerStyle = -4142

Developer Guide RC Camera Car P14226

Next

End Sub

d) Trimming Data Macro

Similar to the plot macro above, this macro is only used when trimming data and was recorded

using Excel’s macro functionality. It uses the User Form that can be found under

VBAProject(*File_Name*) >> Forms >> TrimPlotUserForm and is displayed by clicking the

button on the main sheet.

Sub TrimPlotData()

'trims the maximum and minimum time on the chart to focus on an area of

interest

TrimPlotUserForm.Show

End Sub

To access the code, you must open the above mentioned form, right click the form, and click

“View Code.” It is as seen below.

Private Sub CommandButton1_Click()

tstart = Val(TextBox1.Value)

tstop = Val(TextBox2.Value)

Dim chtObj As ChartObject

 For Each chtObj In ActiveSheet.ChartObjects

 chtObj.Select

 ActiveChart.Axes(xlCategory).MinimumScale = tstart

 ActiveChart.Axes(xlCategory).MaximumScale = tstop

 Next

Unload Me

End Sub

Private Sub CommandButton2_Click()

Unload Me

End Sub

Private Sub Label1_Click()

End Sub

Private Sub UserForm_Initialize()

'Empty NameTextBox

TextBox1.Value = ""

'Empty PhoneTextBox

TextBox2.Value = ""

End Sub

e) Saving Data Macro

Finally, the save data macro is called in Module 1 as below.

Sub ShowCOM()

'makes the COM block visible

Sheets("COM").Shapes("StrokeReader1").Visible = True

Developer Guide RC Camera Car P14226

End Sub

The actual code is found in Module 2 as below. The macro copies and formats the data to a new

sheet and formats the headers.

Sub savedata()

Dim WS As Worksheet

Set WS = Sheets.Add

 'copy, paste, and format data

 Sheets("COM").Range("A:F").Copy

 WS.Range("A:F").PasteSpecial Paste:=xlPasteValues

 WS.Range("A:A").NumberFormat = "0.000"

 WS.Range("B:E").NumberFormat = "0.00"

 WS.Range("F:F").NumberFormat = "0.0"

 WS.Columns("A:E").ColumnWidth = 15.6

 WS.Columns("F:F").ColumnWidth = 19

 WS.Columns("G:G").ColumnWidth = 20

 'Format headers

 With WS.Range("A:G")

 .HorizontalAlignment = xlCenter

 .VerticalAlignment = xlBottom

 .WrapText = False

 .Orientation = 0

 .AddIndent = False

 .IndentLevel = 0

 .ShrinkToFit = False

 .ReadingOrder = xlContext

 .MergeCells = False

 End With

 WS.Shapes.AddChart2(240, xlXYScatter).Select

 ActiveChart.SetSourceData Source:=WS.Range("A1:E425") 'repopulate

chart

 With Selection

 .Top = Range("F4").Top 'adjust top

 .Left = Range("F4").Left

 End With

Formatting the chart is very similar to the code seen earlier in the plot macro.

'*************** Format Chart ***************************************

For Each chtObj In WS.ChartObjects

chtObj.Activate

ActiveChart.ChartTitle.Select

 Selection.Format.TextFrame2.TextRange.Characters.Text = "Speed Data"

 With Selection.Format.TextFrame2.TextRange.Characters(1,

10).ParagraphFormat

 .TextDirection = msoTextDirectionLeftToRight

 .Alignment = msoAlignCenter

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(1, 5).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

Developer Guide RC Camera Car P14226

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 14

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Spacing = 0

 .Strike = msoNoStrike

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(6, 5).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 14

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Spacing = 0

 .Strike = msoNoStrike

 End With

 ActiveChart.SetElement (msoElementPrimaryCategoryAxisTitleAdjacentToAxis)

 Selection.Caption = "Time"

 Selection.Format.TextFrame2.TextRange.Characters.Text = "Time (s)"

 With Selection.Format.TextFrame2.TextRange.Characters(1,

8).ParagraphFormat

 .TextDirection = msoTextDirectionLeftToRight

 .Alignment = msoAlignCenter

 End With

 With Selection.Format.TextFrame2.TextRange.Characters(1, 8).Font

 .BaselineOffset = 0

 .Bold = msoFalse

 .NameComplexScript = "+mn-cs"

 .NameFarEast = "+mn-ea"

 .Fill.Visible = msoTrue

 .Fill.ForeColor.RGB = RGB(89, 89, 89)

 .Fill.Transparency = 0

 .Fill.Solid

 .Size = 10

 .Italic = msoFalse

 .Kerning = 12

 .Name = "+mn-lt"

 .UnderlineStyle = msoNoUnderline

 .Strike = msoNoStrike

 End With

 ActiveChart.Axes(xlValue).Select

 ActiveChart.SetElement (msoElementPrimaryValueAxisTitleNone)

Developer Guide RC Camera Car P14226

 Selection.HasTitle = True

 ActiveChart.Axes(xlValue, xlPrimary).AxisTitle.Text = "Speed (m/s)"

Again, the new chart y-axis limits are set here, which could be modified to be more efficient.

 'Legend and y-axis limits

 ActiveChart.SetElement (msoElementLegendTop)

 ActiveChart.Axes(xlValue).MaximumScale = 3

 ActiveChart.Axes(xlValue).MinimumScale = 0

 'Change target speeds to lines, not points

 ActiveChart.FullSeriesCollection(4).Select

 With Selection.Format.Line

 .Visible = msoTrue

 .ForeColor.ObjectThemeColor = msoThemeColorAccent2

 .ForeColor.TintAndShade = 0

 .ForeColor.Brightness = 0

 End With

 Selection.MarkerStyle = -4142

 ActiveChart.FullSeriesCollection(3).Select

 With Selection.Format.Line

 .Visible = msoTrue

 .ForeColor.ObjectThemeColor = msoThemeColorAccent1

 .ForeColor.TintAndShade = 0

 .ForeColor.Brightness = 0

 .Transparency = 0

 End With

 Selection.MarkerStyle = -4142

Next

The rest of the code makes the window into which you input the saved data name and creates the

text box on the new sheet accordingly.

Sheets("COM").Activate 'Re-selects the COM worksheet

'Make a note on the circumstances of your data

note = InputBox("Input the scenario this data represents: ", "Data

Description")

WS.Range("G1") = "This data was recorded:"

WS.Range("G2") = Now

'Add a textbox with the note in it

Dim shp As Shape

Set shp = WS.Shapes.AddTextbox(msoTextOrientationHorizontal, 100, 100, 200,

50) ' add shape

With shp

.TextFrame.Characters.Text = note 'add text to display

.Top = Range("J1").Top 'adjust top

.Left = Range("J1").Left 'adjust left

.TextFrame.AutoSize = True 'turn on autosize

.Fill.ForeColor.RGB = RGB(255, 255, 204) 'choose fill color

.Line.Weight = 1 'adjust width

.Line.ForeColor.RGB = RGB(255, 0, 18) 'choose color

.Line.DashStyle = msoLineSolid 'choose style

End With

Developer Guide RC Camera Car P14226

End Sub

C. Implementing Model Changes

On the car you can turn on and off the PID controls, depending on what type of testing you want

to do. If the PID controls are off, the “cap” variable is the only parameter that needs to be

changed, as this sets the limit of the PWM set to the motor at max throttle input. Reasonable

values are within the range of 0.6 to 1.0 PWM. This allows for data collection at different fixed

speeds. It is important to note that there is a finite resolution of this limit which seems to be two

decimal places.

With the PID controls enabled, the PID coefficients on the car and the max speed value on the

car and in the VBA code are critical to collecting correct data. The max speed will limit the

target values of the throttle input so that data without noise can be collected. This value

decreases with increased turning angle to around 0.6 m/s, with a max value of 1 m/s for straight

runs of the car with a step input.

D. Verifying Results

Of course, the goal of this testing is to see that the wheel speeds and setpoints of the car are

around the same value and that the approach to these values reflects changes in the PID

coefficients accordingly with the theory. Some sample data can be seen in the Physics Theory

section. The current setup is limited by undersized motors and signal noise from the h-bridges

when operating at high PWM values, so few modifications are currently possible. See the

Difficulties Documentation in the Additional Information section for more information on these

limitations.

Developer Guide RC Camera Car P14226

IX. Additional Information

A. Imagine RIT

The demonstration at Imagine RIT went very well, and the exhibit was a huge hit with both

children and adults. The basic setup we used was keeping the car in the direct drive mode (no

PID or open loop feedback) with a capped max speed of around 0.7 PWM. The console was near

the front of the Freescale Cup track area, and participants drove the car around one of two tracks

in the morning session while students were testing their cars for the competition. Later in the

afternoon (following the competition) the entire track was available for participants to drive. We

actually had a line all the way up until 5 PM, then the students from the competition wanted to

drive the car without speed limits. Needless to say, the exhibit was awesome.

Participants were given a few laps to drive the car (~5) and were asked a series of short survey

questions afterwards to gain feedback on their experience. Most of these questions collected data

for the test plan document, but we also had a comments section for any input given. The

comments can be seen below.

Appearance:

 It was good. I like it very much.

 It looks like it took a long time to build.

 The "-X-" on top is cool.

 The project is professional

 The setup looks cool and safe

Suggestions:

 Brighter colors for the components could improve experience.

 The car needs fiberglass body.

 The steering is a little sensitive.

 We could make the controls a little better.

 We could make it a little faster.

Issues:

 The car gave a participant vertigo.

 Young children need to sit on parent’s laps because they cannot touch the pedals.

Observations:

 Pulling on the wheel can break it, since it is not load bearing.

 It is hard to separate the camera delay from the control delay.

 Sometimes the car wouldn't drive straight and the video cut out.

As the car speed was limited using a potentiometer on the car and operators were already busy

enough trying to deal with the influx of people, adjustments could not be made to increase speed

on an individual basis. Having this adjustability on the console would be a nice touch for future

work, but would require changing our communications significantly. The sensitivity of the

controls could be adjusted in a similar fashion.

Though our design attempted to make the console adjustable for people of all sizes, very small

children seem to be outside of this range. For the future, it would be helpful to make the pedals

fixed to the table base and adjustable in height with around a foot of travel upward. More

Developer Guide RC Camera Car P14226

adjustment in the height of the seat and being able to reduce the height of the top table surface

may be desirable. Effectively the lack in adjustability made it difficult for children to press the

pedals, which would move on the table base and had to be held in place. Since the seat had to be

low to reach the pedals, children were below the height of the steering wheel, which made them

pull downwards to see the screen. This broke the clamping mechanism, which had to be held in

place manually by a team member. This was replaced by a bolted connection. An additional

option may be a small console specifically set up for small participants, now that the

functionality is fully developed. With this, some additional time could be spend on the aesthetics

of the car and console (fiberglass body, brighter colors, etc.)

Developer Guide RC Camera Car P14226

B. Controls Class User BOM
Controls Class User BOM (screws not included)

Number Item Qty. needed Total Price Purpose/Description

nd # $ nd

1 Microcontroller 1 0.00 Freescale KL25Z, 1 is included in chassis kit

2 Wireless Tx/Rx kit 1 84.99 Transmit driving controls (XBee kit)

3 Motor Controller 1 0.00 Freescale Motor Shield, Included with chassis kit

4 Batteries

4.1 Car Battery w/Connectors 1 9.99 3000 mAh NiMH

5 Battery Chargers

5.1 Car battery charger 1 7.99 To charge the car batteries

6 Drive wheel encoder system

6.1 Encoder 2 23.14 Encoders are 3D-printed

6.2 Optical Switches 2 8.00 For wheel speed sensing

7 Console

7.1 Computer, mouse, keyboard 1 0.00 Run the entire Console

8 Car Chassis Kit 1 200.00 Freescale Cup chassis, KL25Z, motor shield

9 Assorted other components

9.1 5mm rod (x3ft) 1 3.62

For new wheel layout

9.2 3mm E-rings (x100) 1 for whole class 0.00

9.3 5mm E-rings (x100) 1 for whole class 0.00

9.4 8-32 locknuts (x100) 1 for whole class 0.00

9.5 2.8" diameter wheels (x2) 2 18.98

9.6 bearings (x10) 1 9.99

9.7 8x10x.1" Lexan sheet 1 3.98 Adapter Plate, chassis modifications

9.8 Stand-offs .75 in 2 1.22 stand-offs for back Lexan plate

9.9 Stand-offs 2 in 2 1.94 stand-offs for front of Lexan plate

Total Price 373.84

Number Source

nd

1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-
KL25Z&tab=Buy_Parametric_Tab&nodeId=015210045A&pspll=1&fromSearch=false

2 http://www.parallax.com/product/32440

3 https://community.freescale.com/docs/DOC-93914

4

4.1 http://www.tenergy.com/11204-01

5

5.1 http://www.tenergy.com/01025

6

6.1 http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD

6.2 http://www.digikey.com/product-detail/en/QRB1134/QRB1134-ND/187533

7

7.1 Provided

8 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TFC-KIT&tab=Buy_Parametric_Tab&fromSearch=false

9

9.1 http://www.mcmaster.com/#88625k64/=r1qj8m

9.2 http://www.mcmaster.com/#98543a101/=r1qh4b

9.3 http://www.mcmaster.com/#98543a112/=r1qih6

9.4 http://www.mcmaster.com/#90631a009/=r1qkau

9.5
http://www.amain.com/product_info.php/cPath/1_25_2981_2983/products_id/251671/n/Vaterra-Gravel-Spec-Pre-Mounted-Tire-

Set-2

9.6
http://www.amain.com/product_info.php/cPath/1576_63/products_id/5728/n/ProTek-R-C-5x11x4mm-Metal-Shielded-Speed-
Clutch-Bearings-10

9.7 http://www.homedepot.com/p/LEXAN-10-in-x-8-in-Polycarbonate-Sheet-31-GE-XL-1/202090134?N=5yc1vZbrdg

9.8 http://www.mcmaster.com/#93505a825/=r1rg66

9.9 http://www.mcmaster.com/#91780a770/=r1rcyn

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z&tab=Buy_Parametric_Tab&nodeId=015210045A&pspll=1&fromSearch=false
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z&tab=Buy_Parametric_Tab&nodeId=015210045A&pspll=1&fromSearch=false
http://www.parallax.com/product/32440
https://community.freescale.com/docs/DOC-93914
http://www.tenergy.com/11204-01
http://www.tenergy.com/01025
http://edge.rit.edu/edge/P14226/public/Detailed%20Design%20Subdirectory/CAD
http://www.digikey.com/product-detail/en/QRB1134/QRB1134-ND/187533
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TFC-KIT&tab=Buy_Parametric_Tab&fromSearch=false
http://www.mcmaster.com/#88625k64/=r1qj8m
http://www.mcmaster.com/#98543a101/=r1qh4b
http://www.mcmaster.com/#98543a112/=r1qih6
http://www.mcmaster.com/#90631a009/=r1qkau
http://www.amain.com/product_info.php/cPath/1_25_2981_2983/products_id/251671/n/Vaterra-Gravel-Spec-Pre-Mounted-Tire-Set-2
http://www.amain.com/product_info.php/cPath/1_25_2981_2983/products_id/251671/n/Vaterra-Gravel-Spec-Pre-Mounted-Tire-Set-2
http://www.amain.com/product_info.php/cPath/1576_63/products_id/5728/n/ProTek-R-C-5x11x4mm-Metal-Shielded-Speed-Clutch-Bearings-10
http://www.amain.com/product_info.php/cPath/1576_63/products_id/5728/n/ProTek-R-C-5x11x4mm-Metal-Shielded-Speed-Clutch-Bearings-10
http://www.homedepot.com/p/LEXAN-10-in-x-8-in-Polycarbonate-Sheet-31-GE-XL-1/202090134?N=5yc1vZbrdg
http://www.mcmaster.com/#93505a825/=r1rg66
http://www.mcmaster.com/#91780a770/=r1rcyn

Developer Guide RC Camera Car P14226

C. Difficulties Documentation

Many unforeseen challenges were tackled in the course of completing this project. This Section

mentions many of them as a means to prevent future groups working on this project from having

to deal with the same issues.

Difficulties Documentation

Difficulties Solution

E
le

ct
ri

ca
l

FRDM KL25Z Board has 3.3 V inputs only
Use drop down resistors and a level shifter

to change sensor voltage ranges

Centering signal was not reaching high

enough voltage levels when going through

the level shifter

This was due to the level shifter receiving

its power from the FRDM board, which

cannot provide enough power to achieve

the desired voltages. The level shifter is

now powered from the MOMO's 5V power

supply.

Encoder values are very noisy

Capacitors were added to the motors and

power supplies, but this was not enough.

Encoders are still noisy. Problem comes

from the H-Bridge.

The system was very electrically noisy in

general.

Ferrite cores were added to the batteries to

help reduce noise propagation.

Wires often slipped out of their positions

during operation

Headers and harnesses were created for

each wire so the wires fit more securely and

could not be misplaced in the boards.

Camera feed would occasionally drop out

while operating indoors

Replaced antennas to give the wireless

signal more axes of operation. Indoors is

still not best for operation, but rooms with

higher ceilings are best.

Connecting and disconnecting the battery for

testing was inconvenient and inefficient.

A simple switch was added to the chassis

that allows for easy code development and

testing on the chassis.

The addition of a separate LiPo battery added

the possibility of the voltage dropping too

low and making the battery unusable during

testing.

A LiPo battery level indicator with audible

alarm was added to signal when voltage is

getting low.

Default motor wires included unnecessary

connectors that made connecting to the TFC

shield inconvenient.

New wires were added at the optimal length

for the chassis layout.

The encoder wires were also possibly

targeted as a cause of the noise seen, as they

sit directly on the motors.

Tin foil was added over the motor area

around the wires to protect against signal

interference.

Video receiver was designed to be powered

by LiPo batteries at fixed voltage ranges that

did not readily correspond to DC wall

adapter values.

A voltage regulator was added to a DC wall

adapter to provide the desired supply

voltage.

Developer Guide RC Camera Car P14226

Issues were encountered with trying to power

the console Freedom board with external

power sources while allowing for serial

connection over the Open SDA port.

A separate cord and USB adapter (or the

computer when data logging) are used to

power the console board through the Open

SDA port from those used to power the rest

of the console.

Dead pins on the console Freedom board

were encountered in interfacing (PTE1 and

PTD7).

Suitable working pins were substituted to

enable functionality.

C
o
m

p
u

te
r

The motors were emitting a high pitched

noise while the car was powered on and the

H-bridges were supplying a 50% duty cycle

signal.

The motors were initialized with 9000 Hz

frequency using the TFC library, which

reduced audible noise completely.

Hardware interrupts from the wheel encoders

were disrupting the wireless communication.

It caused noticeable lag in the system.

The solution was to multithread the car

code. A thread for each encoder was

created.

Communication problems were difficult to

debug when the data was redirected through

Matlab.

The solution was to remove Matlab and

transmit the data directly through the

XBee's.

There was difficulty with calibrating the

Logitech pedals. The pedals used

potentiometers, however originally, they

drew power from a USB port on the

computer. The problem was that the range of

potentiometer values changed for no

apparent reason. It was determined that the

USB ports on the computer did not output 5V

consistently.

The solution was to use a 5V DC wall

adapter to power the pedals. This resulted

in a fixed, consistent range of potentiometer

values.

It is difficult to keep track of the NiMH

battery voltage powering the car.

Analog read and battery LED indicators

built into the TFC shield and TFC library

were used to signal decreasing voltage

levels.

The center position of the steering servo

sometimes needed to be adjusted slightly

during testing for straight driving.

Potentiometer reading functionality on the

TFC shield was enabled using the TFC

library to allow for fine tuning of the servo

center on the fly during testing.

The max speed of the car during demos

needed to be adjustable to allow for different

drivers during the demonstrations.

Potentiometer reading functionality on the

TFC shield was enabled using the TFC

library to allow for limiting of the max

speed of the car during forward movement

when control systems are disabled.

Developer Guide RC Camera Car P14226

Issues were encountered with the internal

pullup resistors used on the Freedom board

and TFC shield that were interfering with the

use of interrupt pins for encoder reading.

External pullup resistors were removed

from the TFC shield. Separate pins from

those used by the motor shield for speed

sensing (PTA1 and PTA2) since these pins

disable the UART functionality of the

board for debugging. Separate external

pullup resistors were calibrated and

integrated into the XBee shield that yielded

good voltage ranges for the encoder

circuitry. The PULLNONE functionality of

the interrupts was used.

Noise issues caused by the motor shield led

to multiple configuration attempts for

powering the XBee shield, as can be seen by

the extra open pins on the shield.

Power and ground for the shield was pulled

from the 3.3V source for the speed sensors

from the TFC shield to reduce external

wiring.

XBee communications kept dropping out

once two-way communications were

enabled.

Clearing the area around the front of the car

XBee of electrical components was

observed to greatly reduce the issue.

Two-way data communications were

otherwise inconsistent.

A compromising range of 50 ms between

transmissions was reached, and printf and

scanf commands in the code were enclosed

in readable and writeable conditions to

prevent buffer overflow.

Excessive encoder noise was encountered at

higher H-bridge PWM values.

H-bridge saturation was limited in coding

to 0.75 PWM for the PID control. The max

speed output of the PID was also limited to

a range which did not produce much noise

in the signal separately for straight driving

and turning, as turning requires higher

PWM values to the outside wheel.

Steering servo values and camera servo

values are frequently different due to slop in

the steering servo gearing and frequent

contact with objects. It was also determined

through testing that adjusting the camera the

same range as the wheels only worked for

PID control (slow speed) and needed to be

limited during higher speed driving.

Completely separate assignments for the

camera and steering servos were established

in the code.

Developer Guide RC Camera Car P14226

Issues were encountered with sending

multiple values over the Xbee's for signals.

Transmission signals were converted to

ASCII characters in the range of 35-126 to

simply transmission. This range allows for

the start bit of 33 corresponding to "!" and

does not interfere with the new line or

carriage return characters found at 32 and

below. With the XBee's in transparent

mode, they only read the characters as

characters and not other transmission

functions so this is safe.

Character data transmission limited the

resolution of the steering wheel, which has a

large range.

Separate positive and negative characters

corresponding to displacements CW and

CCW of center, respectively, were used to

transmit the steering signal.

Separate modes of operation were necessary

for PID control, open loop control, data

transmission, standard driving with capped

max speed, and other parameters that could

be easily selected without uploading new

code.

Fixed configurations are enabled through

coding at startup based on TFC shield DIP

switch settings.

Encoder were reading static non-zero values

when the car was not moving corresponding

to the last pulsewidth length that triggered

the interrupt.

A timeout was added to the code that writes

the speed of the wheels to zero if a long

time has elapsed since the last interrupt was

detected.

Median filtering was targeted as a possible

solution to the issue of noise in the encoder

data.

After testing it was determined that a five

point median filter was actually making the

data worse due to the consistent high

frequency nature of the noise. Capacitors

cannot be used as low pass filters as this

reduces the square wave produced by the

encoder circuit to a useless range.

Noise pulsewidths in the encoder readings

sometimes yielded values smaller than

anything possible by the car. Very slow

movement also yielded values outside the

range that could be transmitted to the console

using characters.

Encoder pulsewidths were capped at high

and low values. If the value seen was

unrealistically small, the value is set to the

previous reasonable value. If the value is

too large, it is set to the maximum

pulsewidth which corresponds to no

movement.

The gas pedal spring data not always return

the pedal back to exactly the same position,

so the car would sometimes statically run

without input.

Throttle and brake input was added together

to produce only one signal from the user. A

deadzone was established to ignore input

under a certain limit that corresponded to

the highest value seen in the throttle return

range.

Developer Guide RC Camera Car P14226

Gas float (throttle input) values at 0 were

causing strange output from the PID loop.

The reverse functionality also was to be

isolated from the PID loop.

Separate conditions for no throttle input and

reverse were made that bypass the PID

loop.

The car kept taking off with the last signal

received when data transmission was lost.

The motors are written to zero when data is

not received, but this still does not seem to

work. Speeds in reverse and otherwise were

limited to mitigate this issue.

One-way communications never have the

issue of dropping signals.

Functionalities in both car and console code

for turning on and off data transmission

were made.

Wheel range pulse signals from the

quadrature encoder varied depending on the

speed of turning the wheel from one extreme

to the other.

A range of 650 was set that is larger than

any values seen by a small margin to allow

for reading of all values within range. A

centering signal was also read in as an

interrupt to reset the values to around zero

whenever the center was passed. This

sensor was already in the console

electronics.

Gas pedal and brake pedal voltage ranges

differed in orientation from low to high and

high to low.

Ranges were converted to be near the same

from low to high for simplicity.

Steering wheel, gas pedal, and brake pedals

sometimes read inconsistent values.

Value maximum and minimum caps were

added to prevent the transmission of bad

characters over XBee.

C
o
n

tr
o
ls

Steering inputs near zero led to singularities

in the wheel speed calculations.

Steering inputs less than 0.001 radians were

limited to that value to correspond to

roughly a straight signal without division

by zero.

Accumulated error needed to be reset when

running the car from time to time.

Every time the car comes to a stop the error

is reset for the next movement.

Assignment of the correct wheel to assign

outer and inner speeds based on turning

signal was confusing.

The car was tested unloaded at slow speeds

while holding one wheel constant to

determine when PID was functioning

correctly.

Open loop feedback led to the possibility that

the outside wheel could be written to a value

greater than 1.0 PWM.

Both inside and outside wheel speeds were

limited linearly so that the highest value the

outside wheel could see is slightly less than

1.0 PWM. This logic did not need to be

employed in the PID loop as saturations at

0.75 PWM were already in place due to

noise issues.

Developer Guide RC Camera Car P14226

M
ec

h
a
n

ic
a
l

The original car suspension system added no

functionality to the car and made mounting

components difficult.

The suspension system was removed and

removed with fixed connections that were

reinforced with other structures to provide a

solid platform.

Little room was available for mounting

electrical components on the original chassis,

and the position over the motor posed noise

issues for the microcontroller.

A Lexan mounting plate that spans the

entire chassis was created that increases the

rigidity of the frame and provides ample

mounting room for electrical components

far away from motor interference areas.

The electrical components added that need to

be accessed and monitored frequently were

otherwise unprotected from outside forces.

A Lexan protection plate was mounted on

standoffs above the electronics to allow for

easy access from the sides while protecting

from impacts from the top.

The car's existing bumper was very small and

provided little protection.

Front and rear polyethylene foam bumpers

were designed and added to the chassis that

adequately protect the components from

front and rear impacts.

Stock tires and wheels on the chassis did not

provide adequate ground clearance for

getting over small obstacles and did not

allow for the addition on encoder

functionality.

New tires and wheels with normal

mounting connections for RC cars were

purchased for the car. Transaxles and a rear

axle was fabricated to extend the car's track

width to support the larger wheels and

provide adequate room for 3D printed

encoders to be mounted to the rear wheels.

Standard mounting location for the servo on

the chassis was inconvenient, used weak

components, and in the way of more useful

supports for the Lexan mounting plate.

The servo orientation was reversed and

more robust mounting brackets were used

to mount the servo for easy accessibility.

Fabricated rear axles was making a

squeaking noise while turning from rubbing

on the inside of the encoder plastic.

Grease was put on the rear axle that

reduced the noise completely and reduce

rolling resistance.

Encoder optical switches were not reading

the same values.

The switches were moved so that an

optimal distance of 3 mm was achieved

between the emitter and encoder face. The

mounting locations are somewhat

adjustable to accommodate this issue.

Encoder optical switch wires were very stiff

and could not be used with chassis.

Wires replaced with flexible speaker wire

and servo headers for easy connection to

the XBee shield.

Quick connection of the light camera battery

and voltage monitor were necessary for quick

change out.

Velcro was used to secure both components

in a minimal configuration.

Developer Guide RC Camera Car P14226

Multipath interference was targeted as the

cause of noise in the camera signal.

The transmitter was mounted as high as

possible on the console and the transmitter

was moved to the highest point on the car to

reduce the number of objects in the way of

the signal path between these components.

People of different heights were going to be

using the console for driving and would be

frequently getting into and out of the seat for

testing and demonstrations.

Height adjustability was added to the seat

along with mobility of the desk to bring the

pedals and steering wheel closer to the user.

Console electrical components needed to be

mounted in the console for protection.

Access to the inside of the console is also

frequent necessary for monitoring of

component performance.

An access hatch was created in the console,

along with the addition of mounting

locations for the interfacing electronics and

access points for sub connections.

Data logging, programming, and MATLAB

usage made version control of programs

problematic for the final deliverable.

A computer was procured for the project

which was secured to the console as a

dedicated programming station.

The console needed to be mobile for various

demonstrations and testing.

A robust subframe was fabricated for

connecting the chair, desk, and computer.

Casters were added to allow for easy

moving. A pull rope with quick mounting

catch was also made to making movement

easier.

The image of the camera became blurry on

the screen after testing.

There is a small set screw that holds the

lens at a fixed adjustment on the camera

that can come lose through vibration. This

was adjusted until the image was clear

again and tightened.

	I. Chassis Construction and Information
	A. Assembly Instructions
	1. Servo and Steering
	2. Freedom Board
	3. Line Scan Camera

	B. Modifications
	1. Suspension Removal
	2. Servo Position Adjustment
	3. Prototyping Plate
	4. Protective Plate
	5. Wheels
	6. Front Transaxles
	a) Length Calculation
	b) Practical Design of Front Transaxles

	7. Rear Encoder / Wheel Adapters and Optical Gates
	a) First Iteration Encoder
	b) Second Iteration

	8. Rear Axle / Alignment Rod
	9. Bumper Modification

	C. Car Steering Servo and Drive Motor Specs
	D. Battery and Power Management Specs

	II. Physics Theory
	A. Goal
	B. Assumptions
	C. Inputs
	D. Notation
	1. Variables
	2. Subscripts

	E. Vehicle Parameters
	1. Saturation and Dead Zone values

	F. Method
	G. Notes

	III. Controls Application
	A. Torque Vectoring Model
	B. System Inputs and Outputs
	C. Signal Processing
	D. PI Control
	E. Discretization of PID in MBED
	F. Important Note
	G. Simulink Model
	1. System parameters
	2. Control Loops
	3. Non-linearities
	4. Logic

	IV. Console Electrical Information
	A. Electronics Modifications
	1. Schematic
	2. Wiring Harness Pinout
	3. Signal Conditioning

	B. Console Components
	1. Quadrature Steering Encoder
	2. Optical Gate
	3. Pedal Potentiometers
	4. Communications Switch

	C. Video RX

	V. Car Electrical Information
	A. RC Car Onboard Control
	B. Freedom Board Motor Shield
	1. Jumper Interface & Pin Names
	2. H-Bridge
	3. Potentiometers
	4. Servos

	C. Freedom Board Modifications
	D. Motor Shield Modifications
	E. Adapter Board
	1. Placement of Adapter Board
	2. XBee
	3. Input Bus
	4. Servo Pin Extensions
	5. Encoder Input Bus

	F. Other Modifications
	1. Ferrite Core
	2. Filtering Capacitors
	3. Power Switch
	4. Encoders
	5. Camera TX

	VI. Wireless Communication Information
	A. XBee Distance Stats and Info
	B. Camera Distance Stats and Info
	C. X-CTU, Updating, and Bricking Issues
	D. Using Xbee's with MBED

	VII. KL25Z and MBED
	A. Coding Logic Flow Chart
	B. Console Code Documentation
	C. Car Code Documentation
	1. KL25Z Motor Shield Functions
	2. Code Selection and Modifiable Parameters
	3. Initialization and Declaration
	4. Encoder Wheel Speed
	5. Main Loop

	VIII. Testing
	A. Uploading Code
	B. Logging Data
	1. Serial Data
	2. Using the Excel Sheet
	3. VBA Program Documentation
	a) Initialization
	b) Received Data
	c) Plot Macro
	d) Trimming Data Macro
	e) Saving Data Macro

	C. Implementing Model Changes
	D. Verifying Results

	IX. Additional Information
	A. Imagine RIT
	B. Controls Class User BOM
	C. Difficulties Documentation

