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Abstract of the Dissertation

A Two-Tier Resource Allocation Framework

for the Internet

by

Andreas Terzis

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2000

Professor Lixia Zhang, Chair

This dissertation research addresses one of the fundamental issues in networking

research: how to provide support for data delivery with assured quality over the

global Internet. The Internet today provides robust, global-scale data delivery

with one single best effort service class. To become the ubiquitous communication

infrastructure of the 21st century, however, the Internet must be enhanced to

effectively support the diverse quality of service requirements of different network

users and applications.

Finding a good solution to this problem is challenging because of the following

two facts: (1) the solution must scale with extremely large numbers of network

users and applications; and (2) the solution must work well in today’s Internet

environment which is made of an interconnection of a large number of networks,

each under different administrative control. Although previous efforts have led

to a rich literature in Quality of Service (QoS) support schemes, most solutions

apply only within limited scope of small networks; none of them have explicitly

addressed the issue of how to control resource allocation across multiple adminis-

xiv



trative domains in order to provide QoS assured end-to-end data delivery across

the global Internet.

In this dissertation research we developed a Two-Tier resource allocation ar-

chitecture to address the above problems. Following the paradigm of the current

two-tier routing hierarchy, our architecture design divides the resource allocation

in two levels: intra-domain and inter-domain. Intra-domain resource control allo-

cates resources within individual administrative domains according to the traffic

demand. The inter-domain control mechanism is used to coordinate resource

requests and allocations between domains.

Under this architecture, individual administrative domains are free to inde-

pendently decide what strategies and protocols to choose for internal resource

allocation. At the inter-domain level, aggregate traffic crossing domain borders

is served according to relatively stable, long-lived bilateral service level agree-

ments. The end-to-end QoS support is achieved through the concatenation of

intra-domain resource allocation coupled with bilateral inter-domain agreements

between neighboring domains.

The principal advantages of our Two-Tier architecture design, compared with

previous QoS support mechanisms include drastically improved scaling properties

and a close match to the business reality of the Internet. These benefits however

are associated with a number of new research challenges. Specifically, allocating

resources for traffic aggregates implies that detailed resource requirements along

different network paths are not communicated between domains. Furthermore,

resource allocation in a large system such as the global Internet, requires that

the frequency of re-adjustments must be limited to ensure system stability. To

overcome the lack of information on resource requirements we have developed

a measurement-based approach to estimate QoS traffic directions and allocate

xv



resources inside individual administrative domains. To keep the resource re-

adjustment frequency low in face of rapid changes in traffic load we have devised a

cushion mechanism which inflates the allocation slightly above the actual request

level. The cushion mechanism provides a tool to control the tradeoff between the

level of resource under-utilization and the frequency of allocation re-adjustment.

The same mechanism is used to ameliorate the effects of traffic estimation errors

and shifts in traffic direction.

We have developed a set of intra-domain and inter-domain resource allocation

protocols which implement the Two-Tier architecture. Our simulation results

show that our design can effectively allocate network resources to meet end-

user applications QoS requirement, at the same time requires drastically less

state inside the network compared to conventional per-flow resource allocation

approaches. As a proof of concept we have also implemented a partial prototype

of the Two-Tier architecture. This prototype showcases the ability of the Two-

Tier model to provide end user applications the service assurances they require.
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CHAPTER 1

Introduction

As the Internet matures from a small research network in the 1960’s to the global

commercial infrastructure of the twenty-first century, user needs and expectations

change dramatically. While traditionally the Internet has offered only one level

of service, users already need different services from the network infrastructure.

For example, large corporations want to move their mission critical applications

away from the existing leased lines infrastructure to the public Internet given the

cost reduction, but will only do that when better assurances about the level of

service provided can be guaranteed. The appearance of broadband access tech-

nologies (i.e. cable modems and xDSL) coupled with streaming media offerings

from content providers will entice home users to the use of QoS. Along with

traditional network users, the emergence of Voice over IP is driving telecommu-

nication companies (or their competitors) to move their infrastructure away from

the traditional circuit-switched architecture to an IP infrastructure. At the same

time, Internet Service Providers recognize the need for quality network service.

They want to provide their customers the distinct services that will set them

apart from their competitors and give them higher profit margins.

It is the way that these services should be implemented at the network that

brings us to the problem we want to solve. We could state our goal in very few

words as: Define a framework for the provision of service differentiation over the

Internet in a scalable and incrementally deployable way.
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1.1 The need for Quality of Service Mechanisms

Having established the need for service differentiation in the network we want to

address another question before we begin presenting our solutions to the prob-

lem of resource allocation. The question can be roughly formulated as follows:

Given that, with the advent of technologies such as Dense Wavelength Division

Multiplexing (DWDM), bandwidth in the future will be plentiful and therefore

essentially free what is the need for any Quality of Service mechanisms?

One can immediately see that answering this question is essential before we

even begin to work on a resource allocation architecture. If bandwidth is ever

going to be free then there is no need to invent mechanisms that control how it

should be allocated between different network users. However, we believe that

bandwidth is not going to be free in the foreseeable future for several reasons

which we explain next. First of all, even if bandwidth is relatively inexpensive,

service providers will never build a network that cannot return their investment

in terms of building the infrastructure. This means that the utilization of this

network is going to be considerable. Network traffic however is long tailed (see

[WTS95], [LTW93] and [FGW98] among others for evidence and explanation of

this behavior) which means that there are going to be congestion epochs during

which the offered traffic is going to be higher than the network’s capacity. It is

exactly during those congestion epochs that service differentiation is needed.

Our second argument is that there are always going to be regions of the net-

work where bandwidth is going to be less plentiful. Access networks (especially

wireless) fall into this category since technology forecasts show that these net-

works will have lower capacity for the foreseeable future. Bandwidth at domain

boundaries is also limited but the reasons in this case are not technical but rather

economical. Even in the case were bandwidth is more abundant in the core of

2



the network, resource allocation in the regions where bandwidth is more scarce

is the only way a provider can create the desired service differentiation.

For the reasons mentioned above we believe that resource allocation is going

to be important in future networks providing different levels of service. We now

continue discussing what are the steps in providing the Quality of Service in

future networks.

1.2 Providing Quality of Service

Providing QoS control over the Internet has been a research and engineering

challenge for many years. Achieving QoS in a small, controlled environment seems

simple: if adequate amount of bandwidth either is provisioned or otherwise can

be reserved along the path of a specific data flow, all the packets can be delivered

with minimal transmission delay and no congestion loss. The great challenge

however, is to assure such high performance over the global Internet. One does

observe good performance from time to time when the network is not congested,

but long delays and heavy packet losses are common when the network becomes

heavily loaded. Fundamentally, differentiation of network services requires only

four simple steps:

1. Defining packet treatment classes,

2. Allocating adequate resource to each class at each router,

3. Sorting packets to their corresponding classes and controlling the volume

to be within the allocated amount,

4. Limiting the traffic using the resources allocated to each service class.

3



Over the last three years the Differentiated Services architecture [BBC98] has

emerged trying to address the three points above. By definition, this architecture

contains two main components. The first component includes the fairly well-

understood behavior in the forwarding path (corresponding to points 1 and 3

above), which is quickly moving through the Internet standardization process.

The second component, corresponding to points 2 and 4 in the list above, involves

the more challenging and largely open, research issues regarding the background

resource allocation component that configures parameters used in the forwarding

path. As we already said before, the topic of scalable resource allocation over the

global Internet is the topic of this thesis.

1.3 Design Goals

The first and foremost goal in our design is scalability. The Internet is expand-

ing at a sustained exponential rate ([RRS98]). Internet backbones run currently

at OC-12 (622 Mbps) and OC-48 (2.4Gbps) speeds, while the introduction of

a OC-192 (10Gbps) is imminent ([Int],[Qwe98]). Any new approach in resource

allocation should therefore aggressively look towards simple solutions suitable for

tomorrow’s even faster, bigger and more complex network. The first step we took

towards achieving the goal of scalability is to adopt a hierarchical design, which

divides resource allocation at two levels: the inter-domain level and the intra-

domain level. As we describe in Chapter 4, our design specifically limits inter-

domain resource allocations to be bilateral only, so control overhead can remain

constant when the number of top level Autonomous Systems (AS’s) increases. In

order for resource allocation protocols to scale, no fine granularity information

about individual applications or even about individual client domains should be

propagated through the global network. However to support policy control over
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resource usage, especially in situations where the network falls into unexpected

resource shortages due to link or node failures, one must keep necessary informa-

tion regarding the usage of individual client domains, so that one can readjust

the allocation appropriately.

Our second design goal is system simplicity, robustness and responsiveness.

Any new mechanism as critical to network operation as resource management is,

should be very robust to failures and changes in network state.Considering that

down-time translates to lost revenue for ISPs and corporate users, continued op-

eration under any circumstances is critical. Our intra-domain allocation protocol

adopts the soft-state approach to achieve both protocol simplicity and robust-

ness. Following the work we proposed in [WTZ99] we also enhance the soft-state

protocol with acknowledgments for quick loss recovery, thereby improving system

responsiveness.

A commonly cited deficiency for previous QoS architectures was the lack of

mechanisms that associated the improved service that some of the customer’s

packets received, with an increased cost on the customer’s side. ISPs will deploy

QoS only when these mechanisms are in place since this is the only way that they

can protect the investment associated with the deployment of QoS. To keep our

proposal in perspective with the network reality, we want to make sure that our

architecture matches the business model used by Internet Service Providers (ISPs)

for offering network services to their customers. On the other hand, building a

billing architecture is not one of our goals.

Given the current size of the Internet as well as its decentralized administra-

tion nature, it is not reasonable to assume that all equipment could be upgraded

overnight to support the architecture we propose in this work. The proposed

solution should be amenable to incremental deployment and should inter-operate
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as much as possible with other mechanisms for providing QoS as well as legacy

equipment.

1.4 Outline

The rest of this document is structured as follows: In Chapter 2 we present two

mechanisms we have proposed to increase the scalability of the RSVP signaling

protocol. Chapter 3 gives a brief overview of the routing infrastructure in the

Internet today and introduces the Differentiated Services architecture. These two

underlying architectures are discussed since they have influenced the design of the

Two-Tier architecture which we present next in Chapter 4. Chapter 5 elaborates

on the inner workings of the Intra-domain resource allocation protocol, while

Chapter 6 describes the Inter-domain protocol. In Chapter 7 we discuss how the

Two-Tier architecture can be integrated with other solutions to provide end-to-

end Quality of Service and describe a mechanism for providing feedback on the

state of the network in terms of delay and bandwidth available. Chapter 8 gives an

overview of a partial prototype implementation of the Two-Tier architecture and

in Chapter 9 we discuss about the relative merits of this architecture compared

to other proposals in the area of resource allocation. Finally, we close in Chapter

10 with a summary of our work and a list of future work topics.

6



CHAPTER 2

RSVP Enhancements

2.1 Introduction

In this Chapter we present two proposals for increasing the scalability of the

RSVP signaling protocol used in the Integrated Services architecture. These

two proposals are not directly connected to the Two-Tier resource allocation

architecture which is the main contribution of this work but are related to the

main goal of providing techniques for scalable resource allocation in the global

Internet.

Our starting point for these proposals was as we already said, improving the

scalability of the RSVP signaling protocol (which can be a candidate for the

intra-domain resource signaling protocol in the Two-Tier architecture). There is

however another side effect of this effort: the experience gained from the work

in these two projects influenced the character of the Two-Tier architecture. For

these two reasons we present these two enhancements before we present the Two-

Tier architecture in the following chapter.

In the sections that follow, we will present the RSVP Tunnels proposal for

encapsulating individual RSVP sessions to larger aggregates as a way of reducing

the amount of RSVP state kept at routers in the core of the network. The second

proposal, involves mechanisms for reducing the overhead of RSVP refreshes as

another way of enabling RSVP to scale. Before we begin though, as a way of
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introduction we give a brief overview of RSVP.

2.1.1 RSVP

RSVP [ZDE93],[BZB97] is the signaling protocol for the Integrated Services ar-

chitecture. RSVP is a soft-state, receiver-oriented, two-phase resource reservation

protocol for simplex flows supporting one-to-one and multi-party communication.

Figure 2.1 provides a representative example of RSVP’s operation.

[rgb]0,0,0RESV[rgb]0,0,0Sender

[rgb]0,0,0PATH

[rgb]0,0,0Receivers

Figure 2.1: Basic RSVP Operation

Senders advertise the characteristics of the traffic they generate (i.e. in terms

of token buffer parameters), by sending PATH messages to the potential re-

ceiver(s). When there are more than one receivers, they are members of a multi-

cast group and senders send their PATH messages to receivers’ multicast group.

Receivers interested in receiving higher QoS send RESV messages requesting a

specific level of service. RESV messages travel on the reverse path from receivers

to senders reserving resources along the way. Receiver orientation matches the In-

ternet multicast model where receivers are responsible for initiating data delivery

and simplifies receiver heterogeneity.

Senders and receivers periodically send their PATH and RESV messages re-

spectively. Routers that do not receive regular refreshes tear down the associated

RSVP state and network resources are released. This approach (Clark in [Cla88]

used the term soft state) provides an elegant yet powerful way of handling net-
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work failures and stale state. At the same time, periodic refreshes capture very

well the dynamics of large multicast groups where group membership is highly

dynamic.

2.2 RSVP Tunnels

2.2.1 Introduction

IP-in-IP tunnels have become a widely used mechanism for routing packets over

regions of the network that do not implement a particular service (e.g., multicast)

or for augmenting and modifying the behavior of the deployed routing architec-

ture (e.g., mobile IP). Recently IP-in-IP tunneling has been used to implement

Virtual Private Networks (VPNs) over the public Internet. The proposal of pro-

viding RSVP support over IP-in-IP Tunnels [TWK00] was born from the need

to support resource reservations over general purpose IP-in-IP tunnels. On the

other hand, RSVP Tunnels can be used to aggregate reservations over the com-

mon path shared by a number of individual RSVP flows. The basic idea is to

encapsulate all flows that share the same path with an outer container and then

allocate resources for the container rather than allocate resources for each of the

individual flows.

During the development of the RSVP Tunnels proposal, a number of issues

related to making resource reservations for aggregate data flows became apparent

to us. We believe that these findings are general in nature and are common in

all reservations schemes for aggregate flows.
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2.2.2 Encapsulation Tunnels

Many large corporations would like to move their networking infrastructure away

from leased lines to the public Internet, as a way of cutting down communication

costs. Virtual Private Networks (VPNs), offered today by most of the nation-wide

Internet service providers, are the response to this market demand.

A VPN provides the illusion of a private network overlaid over the public

Internet. In a VPN scenario, as Fig. 2.2 shows, the company’s sites are connected

over the public Internet with virtual links called “tunnels”. Packets that have

to cross sites, enter one end of the virtual link and are transported, through the

common infrastructure, to the other end of the link.

Telecommuters

Virtual Link

Headquarters
Corporate

Public Internet

Virtual Link

Exit Point

Tunnel

Tunnel

Entry Point

Branch Office

Figure 2.2: A Virtual Private Network

The encapsulation technique used in tunneling is fairly simple. An outer IP

header is added in front of the original IP header. This is done by the tunnel

“entry” point as a way to ensure that the packet will first reach the desired

intermediate point specified in the outer destination address, before reaching its

final destination. When the encapsulated packet reaches the tunnel exit point, the

outer header is discarded and the packet is routed towards its final destination.
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2.2.3 Mechanism Description

From RSVP’s point of view a tunnel, and in fact any sort of link, may participate

in an RSVP-aware network in one of two ways:

1. The (logical) link may not support resource reservation or QoS control at

all. We call this a “best-effort” link.

2. The (logical) link may be able to promise some overall level of level of

resources to carried traffic. Moreover the link may be able to support

reservations for individual end-to-end data flows.

The first type of tunnels exist when some of the routers or the links comprising

the tunnel do not support RSVP. In this case, the tunnel acts as a best-effort link.

The best that we can do is to make sure that the RSVP messages traverse this

logical link correctly, and that the presence of the uncontrolled link is detected.

On the other hand, when the intermediate routers along the tunnel are capable

of supporting RSVP, we would like to have proper resources reserved along the

tunnel to meet clients’ QoS control requests.

Unfortunately, such reservations are not possible with the current IP-in-IP

encapsulation model. Since all the packets that reach one of the tunnel end-

points are encapsulated before being sent to the other side, two main problems

arise:

1. The end-to-end RSVP messages become invisible to intermediate RSVP-

capable routers residing between the tunnel end-points.

2. The usual RSVP filters can no longer be used, since data packets are also

encapsulated with an outer IP header, making the original IP (and UDP
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or TCP) header(s) invisible to intermediate routes between the two tunnel

end-points.

Fig. 2.3 shows a simple tunnel topology, where the senders and the receivers

of an RSVP session are connected through a tunnel between Rentry and Rexit. We

refer to the first RSVP session as the end-to-end or original session. An RSVP

session may be in place between Rentry and Rexit to provide resource reservation

over the tunnel. We refer to this as the tunnel RSVP session, and its PATH and

RESV messages as the tunnel RSVP messages.

RexitRentry

Core Network

Tunnel

Sender S1

Intranet Intranet

Receiver R1

Figure 2.3: RSVP-Tunnels Model

A tunnel RSVP session may exist independently from any end-to-end sessions.

One may create, for example through some network management interface, an

RSVP session over the tunnel to provide QoS support for data flows from S1 to

R1, although there is no end-to-end RSVP session between S1 and R1.

When an end-to-end RSVP session crosses an RSVP-capable tunnel, there

are two cases to consider in designing mechanisms to support the end-to-end

reservation over the tunnel: mapping the end-to-end session to an existing tunnel

RSVP session, and creating a new tunnel RSVP session. In either case, the
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picture looks like a recursive application of RSVP. The tunnel RSVP session

views the two tunnel endpoints as two end hosts with a unicast Fixed-Filter style

reservation in between. The original, end-to-end RSVP session views the tunnel

as a single (logical) link along the path between the source(s) and destination(s).

The PATH and RESV messages of the end-to-end session are encapsulated at one

tunnel end-point and get decapsulated at the other end, where they get forwarded

as usual.

In both cases, it is necessary to coordinate the actions of the two RSVP ses-

sions, to determine whether or when the tunnel RSVP session should be created

and torn down, and how to correctly map the errors and other reservation related

information from the tunnel RSVP session to the end-to-end RSVP session. The

association between the end-to-end and the tunnel sessions is conveyed through

the SESSION ASSOC object shown in Fig. 2.4.

Sender FILTER-SPEC

length class c-type

SESSION object

Figure 2.4: SESSION ASSOC Object

This object is carried by tunnel PATH messages and associates the end-to-end

session described by the SESSION object to the tunnel session described by the

FILTER-SPEC object. As explained below, Rentry encapsulates packets in IP and

UDP headers whose destination address and UDP destination port are the same

for all the tunnel sessions. Hence a tunnel session must be identified primarily

by the UDP source port. The tunnel exit point Rexit, records this association, so
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that when it receives reservations for the end-to-end session, it knows to translate

them to reservations for the corresponding tunnel session.

Treating the two tunnel end-points as a source and destination host, one can

easily set up a FF-style reservation between them. Now the question is what

kind of filterspec to use for the tunnel reservation, which directly relates to how

packets get encapsulated over the tunnel. We discuss two cases below.

If all the packets traversing a tunnel can use the reserved resources, then the

current IP-in-IP encapsulation could suffice. The RSVP session over the tunnel

simply specifies a FF style reservation with Rentry as the source address and Rexit

as the destination address and zero as source and destination ports.

However if only a subset of the packets traversing the tunnel can use the

reservation, we encapsulate the qualified packets not only with an IP header but

also with a UDP header. This allows intermediate routers to use standard RSVP

filterspec handling without knowing the existence of tunnels. To simplify the

implementation by reducing special case checking and handling, we decided that

all data packets using reservations are encapsulated with an outer IP and a UDP

header. The source port for the UDP header is chosen by the tunnel entry point

Rentry when it establishes the initial PATH state for the new tunnel session. The

destination UDP port used in tunnel sessions is a well known port (363), assigned

by IANA.

2.2.4 Session Association and Error Mapping

In the previous paragraph we presented the SESSION ASSOC object which is

used to associate end-to-end sessions with tunnel sessions. We have already

mentioned two possible associations: mapping all end-to-end sessions to a single

tunnel session, or creating a one-to-one mapping between end-to-end sessions
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and tunnel sessions. In general, deciding which end-to-end sessions map to which

tunnel sessions is a policy decision that should be left to network managers.

Numerous other modes of aggregation are also possible, for example all traffic for

one service could be aggregated, or all traffic for one customer, etc.

When more than one end-to-end sessions are mapped to the same tunnel

session, then including a “bind” object, that contains the full association, to

every tunnel PATH message may prove to be burdensome. A possible solution

would be to incrementally include and exclude end-to-end sessions to a specific

tunnel session. For example, when Rentry decides that a new end-to-end session

should be mapped to an existing tunnel session, then it includes only this one

in the SESSION ASSOC object, notifying Rexit about this association. When

Rentry wants to remove an end-to-end session from the association it sends a

“negative membership” SESSION ASSOC object to Rexit containing the session

to be removed. A new c-type could be defined for a “negative membership”

SESSION ASSOC object.

As long as the tunnel session is refreshed properly, there is no danger of Rexit

losing the associations between end-to-end and tunnel sessions. For added ro-

bustness, it might be desirable that the refresh period for tunnel sessions be

shorter than the one for end-to-end sessions and/or that the tunnel PATH mes-

sages include the full association list every K refreshes (where K is the value

defined in [BZB97] as the number of refreshes that can be lost before the session

is timed-out).

Since tunnel sessions “represent” end-to-end sessions in the tunnel, error mes-

sages from the tunnel session should be relayed back to the original session.

Specifically, when a tunnel session PATH message encounters an error, it is re-

ported back to Rentry which should relay the error back to the original sender.

15



When Rexit receives a RESV for an end-to-end session, it first sends or re-

freshes (with possibly changed parameters) the corresponding tunnel RESV mes-

sage and waits for a confirmation from Rentry that the reservation was successful

before forwarding the end-to-end reservation request. If Rexit immediately for-

warded the end-to-end request over the tunnel, then if the tunnel reservation

failed, it would have to explicitly tear down, the installed reservation “past”

Rentry.

When a tunnel session RESV request fails, an error message is returned to

Rexit. Rexit must treat this as an error crossing the logical link and forward the

error back to the receiver.

2.2.5 Scaling Issues

As mentioned in [Bra97], a critical characteristic of any widely deployed QoS

framework is scalability. Quoting from the text: “QoS support must be extensible

eventually from the local network and the campus network through the Gigapop

to the backbone networks and other ISPs”.

Along with scalability, the need for control on the network’s resources from

network managers is identified by the authors of [Bra97] as an equally crucial

characteristic of every QoS framework. Recently, RSVP has been criticized as

lacking both of the above desired characteristics. Some of the arguments used to

support this claim include the following:

• Since the reservations are initiated, from the end hosts, and the reservation

granularity is a source IP address and port number, all the RSVP routers on

the path from the senders to the receivers, have to keep state per sender, per

group. This can burdensome, especially for backbone routers than connect
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to high speed links, carrying thousands of flows.

• At the same time, network managers cannot configure static reservations

for aggregate flows.

Some authors [GBH97], [BV97], [Boy97], have already tried to identify the

sources of these problems, outlining some possible solutions. In the rest of this

section, we discuss the scaling properties of RSVP reservation over tunnels. We

show that tunnel reservations, when used properly, can substantially reduce the

amount of RSVP control state at backbone routers, reduce the number of RSVP

messages exchanged across backbone routers, as well as provide more control of

the network resources to network managers.

2.2.5.1 State reduction

Using Voice over IP as the candidate service, we can calculate the memory re-

quirements of RSVP in a backbone router. Assuming that every voice flow over

an IP backbone has an RSVP connection a router may have to manage thousands

of flows. For example, if each voice call is using 16 KBps then an OC-3 link can

carry 38875 calls.

Taking into account that the current RSVP implementation from ISI1 uses

around 500 bytes per session, then using the same example as above a backbone

router needs approximately 19 MB to store RSVP related state. In comparison,

today’s routers require approximately 0.7MB to store the full routing table (close

to 80,000 entries).

In the RSVP Tunnels proposal, state aggregation is achieved for backbone

1The authors of [PS97] quote similar numbers for an implementation of the protocol from
IBM.
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routers because they do not have to inspect and record state for the end-to-end

RSVP messages, but only for the RSVP messages generated by Rentry and Rexit.

The larger the degree of aggregation at the tunnel endpoints the larger the

gain in reduced RSVP state in the network backbone routers. At one end of

the spectrum, we have individual end-to-end senders getting mapped to different

tunnel senders. Here of course, we have no state reduction in the network back-

bone routers. At the opposite end of the spectrum, we have the case where all

end-to-end sessions are mapped to a single tunnel sender. In this case we have

the largest amount of state aggregation for routers in the tunnel, since they only

see one aggregate session per tunnel, comprising of all the end-to-end sessions

crossing that tunnel.

2.2.5.2 Reducing the number of messages

Along with the memory requirements, the other source of overhead imposed on

routers from RSVP is the processing of RSVP messages. We will see in Section

2.3 another way to reduce the number of RSVP refresh messages but in the rest

of this section we will see how RSVP Tunnels can help reducing the number of

RSVP messages that have to be created and processed.

Let us consider the RSVP message exchanges for the tunnel sessions. Al-

though end-to-end RSVP messages are still sent through the tunnel, since they

are encapsulated, they are invisible to intermediate routers in the tunnel and

therefore require no RSVP processing.

In the case of tunnel PATH messages, instead of sending every single PATH

message from all the end-to-end senders, Rentry collects the PATH information

from all the senders of end-to-end sessions and sends one PATH message per

tunnel session. The Tspec in the tunnel PATH message is equivalent to the

18



sum of Tspecs of all the senders belonging to end-to-end sessions mapped to the

specific tunnel session.

According to [TWK00], end-to-end RESV messages will trigger a new RESV

message if they represent changes from the originally reserved value. However, if

we change that rule so that the tunnel end points can only send RESV messages

for specific increments (for example only in the order of hundreds of kilobits) then

Rexit could send a new tunnel RESV message only when the aggregate amount

from end-to-end reservations became higher than this threshold value. We call

this scheme, the threshold scheme.

The threshold scheme does not affect the soft-state character of the proto-

col. After a crash Rexit will have to re-acquire the PATH state and send RESV

messages to restore the amount of reserved resources in any case. Once Rentry be-

comes alive after the crash, the end-to-end RESV messages will drive the amount

of the tunnel reservations to the level that existed before the crash.

2.2.6 Limitations

While the solution of using RSVP Tunnels to aggregate RSVP sessions over the

core of the network offers a credible solution to the problem of scalability in

resource allocation is still has some fundamental problems that limit its applica-

bility. The biggest limitation is the overhead imposed by having to encapsulate

packets with an outer IP (and UDP) header. This limitation could be ameliorated

by having a more lightweight encapsulation mechanism (e.g. MPLS [CDF99]) but

it can never be totally removed. The second limitation is that tunnel endpoints

have to be statically configured and therefore the mechanism is difficult to adapt

to routing changes. Finally the tunneling mechanism does not address the issue

of inter-domain resource allocation which as we said in Chapter 1 is the most im-
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portant problem that has to be solved if a QoS architecture is to be commercially

deployed.

We believe that these problems are evidence of the fundamental limitations of

the Integrated Services Architecture and RSVP in particular to provide scalable

resource allocation. These observations were one of reasons that propelled us to

create the Two-Tier resource allocation architecture we present in Chapter 4.

2.3 RSVP Refresh Overhead Reduction

2.3.1 Introduction

In this section we present a mechanism we created for reducing the overhead

created by RSVP refresh messages. As we already said in Section 2.1.1, RSVP is

a soft-state protocol in the sense that all the state established by RSVP messages

has an associated lifetime. RSVP nodes update this state by periodically sending

refresh messages along the data path. If a session’s state is not refreshed, it’s

deleted when its refresh timer expires. Thus the network is free from obsolete or

orphaned reservations.

Refresh messages play the following important roles in assuring correct pro-

tocol operation:

1. Automatic adaptation to route changes. Routing changes cause data

flows to switch to different paths. Because RSVP refresh messages follow

the data paths, the first RSVP messages along the new paths will establish

new reservations, while the state along the old path is either explicitly torn

down or automatically timed out.

2. Persistent state synchronization. Since RSVP messages are sent as IP
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datagrams which can be lost on the way, and RSVP state at individual

nodes may change due to rare or unexpected causes (e.g. undetected bit

errors), periodic refreshes serve as a simple repairing mechanism to correct

any and all inconsistencies in RSVP state along data flow paths.

3. Built-in adaptation mechanism for parameter adjustment. When

either a sender or a receiver needs to change its traffic profile or reservation

parameters during a session, it simply puts these modified parameter values

in the next refresh message.

There is, however, a price to pay for the advantages of simplicity and robust-

ness that come with soft state: the overhead of RSVP refresh messages grows

linearly with the number of active RSVP sessions. Even in the absence of new

control information generated by sources or destinations, an RSVP node sends

one message per active sender-session pair per refresh period to its neighboring

nodes. A related problem is the state setup or tear-down delay caused by the

occasional loss of RSVP messages. Although periodic RSVP refreshes eventually

recover from any previous losses, the recovery delay, which is proportional to

the refresh period, is considered unacceptable for certain applications. One may

consider reducing the recovery delay by reducing the refresh period. Doing so,

would however worsen the refresh overhead problem since refresh messages would

be sent at a higher frequency. To resolve this dilemma we have proposed a new

approach to soft-state overhead reduction by state compression.

The crux of our proposal is to replace all the refresh messages sent between

neighboring nodes for each of the RSVP sessions with a digest message that

contains a compressed “snap shot” of all the shared RSVP sessions between

two neighbor nodes. When an RSVP node, say N , receives a digest from a

neighbor node, it compares the value carried in the digest message with the value
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computed from N ’s local RSVP state. If the two values agree, N refreshes all

the corresponding local state; otherwise N will start the state re-synchronization

process to repair the inconsistency. To assure quick state synchronization we also

enhance RSVP with an acknowledgment option, so instead of waiting for the next

refresh, any lost RSVP messages can be quickly retransmitted.

Before we proceed with our proposed RSVP state compression algorithm we

give the definitions of some terms that will be used in the rest of this section.

RSVP State An RSVP path or reservation state.

Regular/Raw RSVP Message RSVP messages defined in RFC2205 [BZB97],

e.g. PATH, RESV, PathTear and ResvTear messages.

Refresh Message An RSVP message triggered by a refresh timeout to refresh

one or a set of RSVP states. It can be a PATH message for a path state, a

RESV message for a reservation state or a Digest message (in our scheme)

for aggregate state.

MD5 Signature The result of the computation of the MD5 algorithm.

Digest A set of MD5 signatures that represents a compressed version of the

RSVP state shared between two neighboring RSVP nodes.

2.3.2 Design Overview

The goal of our proposal is to improve RSVP’s scalability allowing efficient op-

eration with large number of sessions (e.g. tens of thousands sessions). More

specifically, we aim at reducing the number of refresh messages while still pre-

serving the soft-state approach of RSVP. In this section we briefly describe our
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state compression approach; the details of the compression scheme are presented

in the next section.

Instead of sending a refresh message per session sender to a neighbor, our

approach is to let each RSVP node send a digest message which is a compact

way of representing all the RSVP session state shared between two neighboring

nodes. In this way, the number of refresh messages sent and processed per refresh

period is reduced from being proportional to the number of sessions to being

proportional to the number of neighbor nodes. Raw RSVP messages are sent

either when triggered by state changes or after state inconsistency is detected to

re-synchronize the state shared between two nodes.

These benefits cannot come without any overhead. Generally speaking, the

protocol overhead of RSVP can be divided into two components, the bandwidth

overhead for message transmissions, and the computation overhead for processing

these messages. One can further subdivide the computation overhead to system

overhead (e.g. system interrupts by packet arrivals) and message processing over-

head. The state compression scheme can effectively decrease the bandwidth and

system overhead, however at the cost of increased message processing overhead

as we apply additional processing to compress RSVP state to a single digest mes-

sage per neighbor. Therefore, one important part of our design is to minimize

the cost of digest computation.

To compress RSVP state into a digest, one can simply concatenate the state

of all the RSVP sessions into a long byte stream and compute a digest over it.

However this brute-force approach suffers from a high overhead of recomputing

the whole digest again whenever any change happens. To scale the digest com-

putation we compute the digest in a structured way. First, we hash all the RSVP

sessions into a table of fixed size. We then compute the signature of each session,
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and for each slot in the hash table we further compute the slot signature from the

signatures of all the sessions hashed to that slot. On top of this set of signatures,

we build an N -ary tree to compute the final digest (a complete description of the

data structures used is given in section 2.3.3.3).

There are two advantages in using a tree structure to compute the digest:

1. Whenever the digests computed at two neighboring nodes differ, the two

nodes can efficiently locate the portion of inconsistent state by walking

down the digest tree;

2. When an RSVP session state is added/deleted/modified, an RSVP node

only needs to update the signatures along one specific path of the digest

tree, i.e. the branches from the root of the tree to the the leaf node where

the changed session resides.

In our current design, we use the MD5 algorithm to compute state signatures.

As stated in [Riv92], “it is computationally infeasible to produce two messages

having the same message digest, or to produce any message having a given pre-

specified target message digest.” We can therefore conclude, with a high level

of assurance, that no two sets of different RSVP states will result in the same

signature. However, it should be noted that our state compression scheme can

work well with any hash function that has a low collision probability, such as

CRC-32, as long as two neighboring nodes agree upon their choice of the hash

function.

As a further optimization, we also add an acknowledgment option (ACK) to

the RSVP protocol. The ACK is used to minimize the re-synchronization delay

after an explicit state change request. A node can request an ACK for each

RSVP message that carries state-change information, and promptly retransmit
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the message until an acknowledgment is received. It is important to note the

difference between a soft-state protocol with ACKs and a hard-state protocol.

A hard-state protocol relies solely on reliable message transmission to assume

synchronized state between entities. A soft-state protocol, on the other hand,

uses ACKs simply to assure quick delivery of messages; it relies on periodic

refreshes to correct any potential state inconsistency that may occur even when

messages are reliably delivered, for example state inconsistency due to undetected

bit errors, or due to undetected state changes.

2.3.3 State Organization

One can suspect that the increase in refresh efficiency cannot come for free. This

is indeed the truth and the trade-off comes in the form of increased storage and

computation. The increase in storage originates from the need to keep per neigh-

bor state, since separate digests are sent to different neighbors. Consequently,

computation costs are inflated since we have to compute the per-neighbor digests

and we have to operate on the per-neighbor data structures.

In the sections that follow we elaborate on the requirements for extra state

introduced by the compression mechanism. Computation costs are further ana-

lyzed in Section 2.3.5.

2.3.3.1 Neighbor Data Structure

Current RSVP implementations structure the RSVP state inside a node as a

common pool of sessions, regardless of their destinations. On the other hand,

digest messages sent towards a particular neighbor contain a compressed version

of the RSVP state shared with that neighbor. The need therefore arises to further

organize RSVP state inside a node according to the neighbor(s) each session
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comes from or goes to. To satisfy this need we introduce the Neighbor data

structure which holds all the information needed to calculate, send and receive

digests to and from a specific node.

In essence the Neighbor data structure is the collection of RSVP sessions that

the current node sends to or receives from a particular neighbor. For efficiency,

neighbor data structures may not actually store the sessions but contain pointers

to the common pool of sessions. This way a session shared with multiple neigh-

bors is not copied multiple times to the corresponding neighbor structures. In

addition to sessions, the neighbor structure contains the digest computed from

the sessions shared with the neighbor and some other auxiliary information such

as retransmission and cleanup timers.

A node needs to compute two digests for each neighbor, one for the state

refreshed by messages received from that neighbor and one for the state the

local node is responsible for refreshing towards that neighbor. We call these two

digests InDigest and OutDigest respectively. OutDigest is sent in lieu of raw

refreshes while InDigest is used to compare whether the local state matches the

state refreshed by that neighbor. In the next section we present how we compress

each session state into an MD5 signature. In section 2.3.3.3 we delve into the

details of the data structure and algorithm we use to derive a digest from the

session signatures.

2.3.3.2 Session Signature

To compress a session state into a signature, we first need to identify which

session parameters need to be constantly synchronized between neighbors. Table

2.1 shows the session objects included in the digest computation. A session is

uniquely identified by a session object which contains the IP destination address,
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RSVP Objects sub-objects to Include

Session session object

PSB sender template, sender tspec,

adspec, policy

RSB filterspec, flowspec, reservation style,

policy

Table 2.1: Objects Included in Digest Computation

protocol ID and optionally a destination port number of the associated data

packets. A Path State Block (PSB) is comprised of a sender template (i.e. IP

address and port number of the sender), and a Tspec that describes the sender’s

traffic characteristics and possibly objects for policy control and advertisements.

A Reservation State Block (RSB) contains filterspecs (i.e. sender templates) of

the senders for which the reservation is intended, the reservation style and a

flowspec that quantifies the reservation. It may also contain objects for policy

control and confirmation. Although PSBs and RSBs contain some other fields

such as incoming interface and outgoing interfaces, these fields have only local

meaning to a specific node and therefore should be excluded from the digest

computation. As for RSVP objects defined in the future, the digest computation

can also be applied to them if necessary.

We noticed that, in the current RSVP specification, RSBs record only reser-

vations made on links to downstream neighbors, but not reservation requests

forwarded upstream. However, for a multicast session or many-to-one unicast

session, the reservation request a node receives from a downstream neighbor may

not be the same as the one it sends to an upstream neighbor if the node is a

merging or splitting point. Since the sender of a digest has to compute the digest

based on what flowspec and filterspec are sent to its neighbor, we require such
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information to be kept in associated RSBs to facilitate the digest computation.

2.3.3.3 Hash Table and Digest Tree

The existence of the structures described in this section is not fundamental for the

correct operation of our compression scheme. However given the context where

our proposed solution will be most useful (e.g. tens of thousands of sessions),

these structures provide the desired performance to make the scheme practically

viable. Two are the principal reasons that compelled us to include these data

structures:

• Given the need for expeditious response to state changes and the high

volatility resulting from the high volume of sessions, updates, insertions

and deletions must be done efficiently. This requirement can be translated

to two subgoals: a data structure that supports efficient session insertions

and deletions and second, incremental digest computation. Unfortunately,

the design of the MD5 algorithm does not allow incremental digest compu-

tation. To overcome this limitation we compute the state digest recursively,

by applying the algorithm to session sets of increasing size.

• State inconsistencies must be resolved rapidly without requiring complete

state retransmission. To do so, we need to quickly locate which part of

RSVP state contains the inconsistency and then send raw refreshes only for

these sessions.

In addition to the two primary reasons, simplicity and robustness are essential

if this mechanism is to supersede the minimalism and potency of raw refreshes.

With this set of goals in mind, we continue by presenting each one of the two

data structures next.
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Sessions are stored inside a hash table. The size of the hash table is M

and sessions are hashed to one of the M hash table slots. Hashing is done over

some fixed session fields (e.g the session’s address). If multiple sessions hash

to the same slot, they are inserted in a linked list. Sessions inside the linked

list are stored in-order according to their destination address. Figure 2.5 shows

the session hash table. Slot i contains a pointer to the head of the linked list

of all stored sessions that hash to i. It also contains an MD5 signature that is

computed by concatenating all the sessions’ MD5 signatures and applying the

MD5 algorithm on the compound message.
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Figure 2.5: Hash Table

The second step is to reduce the total number of signatures from M to N ,

the number of signatures that can fit inside a single message. To do that we have

introduced a complete N -ary tree whose leaves are the slots of the hash table.

This digest tree is shown in Figure 2.6.

A node constructs the digest tree in the following way: As we said earlier,

the leaves of the tree are the signatures stored in the slots of the hash table. The

signatures of N slots are concatenated and the MD5 algorithm is applied on the

compound message. The result is stored at the parent node on the tree. Looking

at Figure 2.6, signatures x1, . . . , xN are concatenated and the MD5 algorithm

result is stored in node y1. This grouping results in M/N level-1 signatures. If
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Figure 2.6: Digest Tree

the number of level-1 signatures is still larger than N , the node continues on to

group each of N level-1 signatures to compute a level-2 signature to get M/N2

level-2 signatures. If Ci is the number of level-i signatures, we repeat the grouping

until Ci is less than or to equal to N . The top level signatures represent the digest

of that RSVP state.

We have chosen the degree of the tree to be the same as the maximum number

of MD5 signatures inside the digest object to simplify the data structure and to

reduce the number of parameters. Note that all insertions and deletions are done

in the hash table while the purpose of the digest tree is to reduce the number

of signatures from M to N and to store intermediate results that will be used

during the recovery phase, after inconsistencies are detected.

The hashing table size M and the maximum number N of signatures in a

digest are two important factors that affect the performance of digest computation

and exchange. A larger M means fewer sessions on average hashed to each hash

slot and less overhead in updating a level-1 signature. A large N means possibly

fewer levels in the digest tree and thus fewer messages exchanged during recovery.

In general, one would like M to be comparable to the expected number of active

sessions and N to be the largest value allowed by the link MTU. Furthermore,
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when the actual number of sessions exceeds the expected number of sessions, the

sender of a digest may choose a higher M and the receiver will need to use the

modified M in its digest computation.

2.3.4 Mechanism Description

2.3.4.1 New RSVP Messages and Objects

Our compression mechanism requires three new RSVP messages, namely: Digest,

ACK and DigestErr. A Digest message carries a timestamp object that uniquely

identifies it and a digest object that represents the state shared between a node

and its neighbor (i.e. the receiver of the message). After a node discovers a

neighbor capable of exchanging digests (see section 2.3.4.2), it periodically sends

Digest messages refreshing the total RSVP state of that neighbor. If a node wishes

to send Digest messages at a different interval than the standard, it can specify

that interval in the Digest message. In this way, the receiver will know when to

expect Digest messages and in their absence when to delete the associated state.

ACK messages are used to acknowledge raw RSVP messages or Digest mes-

sages. Since many messages may be outstanding when an ACK is received at

the sender side, the ACK message contains the timestamp of the message it

acknowledges. The receipt of an ACK message indicates that the original mes-

sage was received and processed by the receiver. Moreover, the message was

processed at the receiver side without creating any errors. Otherwise, an error

message (ResvErr, PathErr or DigestErr) would have arrived instead of the ACK

message.

A DigestErr message acts as a negative acknowledgment to a Digest message.

Similar to ACK messages, the DigestErr message carries the timestamp of the
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received digest message. In addition, it contains the digest value computed at

the receiver side, which is used later in the recovery process (see section 2.3.4.4).

The timestamp object mentioned before, contains two basic fields: the Times-

tamp field which is the time that the packet was sent and the Epoch field which is

a random 32-bit value initialized at boot time. All timestamp objects sent from

a node should use the same Epoch value as long as the node is not rebooted.

If, after the initialization phase, a node receives two consecutive messages with

different Epoch values, it can conclude that the sender of these messages has

rebooted. The receiving node must then purge all state associated with that

sender.

We chose to use time as the message identifier because it is always increasing

and so a sender does not have to check if the value is in use or has been used before.

It also helps the receiver to identify which of the RSVP messages for the same

state is the most recent one. However, depending on the node’s processing speed

and timer granularity, two consecutive messages may get the same timestamp

value. Therefore, we define the timestamp to be max(t, tlast + 1), where t is the

current time and tlast is the last timestamp value used.

Furthermore, the timestamp object carries a flag indicating whether the sender

is requesting an acknowledgment for this message. This flag should be turned off

in the timestamp objects carried by ACK and DigestErr messages to avoid an

infinite exchange of ACK messages.

Last, the digest object carries a set of MD5 signatures. These signatures can

be either the digest or some set of MD5 signatures from some other level of the

digest tree.
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2.3.4.2 Neighbor Discovery

To use the compressed refresh scheme, a node needs to discover which of its

neighbors are capable of exchanging digests. For this reason, when a RSVP

node starts sending (raw) RSVP messages for a session, it should request that

the neighbor(s) acknowledge these messages by including a timestamp object

with the ACK Requested flag turned on. If the node receives an ACK message

in response from a neighbor whose address is not currently on the Neighbor

Structure list, it has then discovered a new compression-capable neighbor. If on

the other hand, that neighbor does not understand timestamp objects (legacy

node), it will return an error message. We can then conclude that this neighbor

is compression-incapable.

When a non-RSVP cloud exists between two RSVP neighbor nodes, although

the nodes can discover each other using acknowledgments during the initial mes-

sage exchanges, the upstream neighbor may not be able to detect whether sessions

crossing the cloud switch next hops. These changes are caused by route changes

inside the non-RSVP cloud and are not detectable if the upstream neighbor’s

outgoing interface remains the same. The original RSVP specification does not

share this problem since RSVP messages for individual sessions carry the session’s

address and therefore naturally follow any route changes. In the compression

scheme however, digest messages are explicitly addressed to particular next hops

and therefore the same solution cannot be used.

Figure 2.7 illustrates our point. In this scenario node A originally has B as

its downstream neighbor for session D. After a route change, node C becomes

A’s downstream neighbor for that session. However, since A’s outgoing interface

remains unchanged, A will not notice the route change, hence it will continue to

include session D when calculating the digest to B. Node B will not be informed
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of the change either as long as A sends it the same digest. Therefore, node C will

never get a PATH message from A. As a result, resources will be reserved on the

path between A and B while data packets will follow the path from A to C.
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Figure 2.7: RSVP Session over a non-RSVP cloud

The digest scheme therefore, cannot be used over non-RSVP clouds until an

effective way of detecting route changes is found. Fortunately, the existence of

non-RSVP clouds can be detected by mechanisms described in [BZ97]. If a non-

RSVP cloud exists between two nodes, regular refreshes should be used instead

of the compression mechanism.

2.3.4.3 Normal Operation

Neighboring nodes start by exchanging regular RSVP messages as usual. Once

a node discovers a compression-capable neighbor, it creates a digest for the part

of its RSVP state that it shares with each of this neighbors. Subsequently, the

node sends Digest messages instead of raw RSVP refreshes at regular refresh

intervals. When an event that changes the RSVP state (e.g. a sender changes its

traffic characteristics (Tspec)) occurs, raw RSVP messages are sent immediately

to propagate this change.

Raw RSVP messages are sent as before, with the added option of asking

for an ACK. A sender requesting an acknowledgment, includes in the message a
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timestamp object with the ACK Requested flag turned on. The sender also sets a

retransmission timer for the packet sent. Processing at the receiver side includes

updating the digest of the session that the message belongs to as well as updating

the digest tree. If during processing a condition occurs that requires sending back

an error message back to the sender (e.g a ResvErr) then the receiver sends back

to the sender that error message. This error message will cancel any pending

retransmissions of the original message.

If no ACK is received before the retransmission timer expires, the sender

retransmits the message up to a configured number of times. Each of the re-

transmissions carries the same timestamp contained in the original message. If

an updated message (i.e. a PATH message from the same sender but with dif-

ferent Tspec) is sent before an ACK is received, the original message becomes

obsolete and no longer needs to be retransmitted. If no ACK arrives even af-

ter the message has been retransmitted for the maximum number of times, the

message is purged from the node’s list of pending messages. Any inconsistencies

created by the possible loss of this message will be later resolved by digests.

Digest messages are always sent with the ACK Requested flag turned on.

Digest messages are also retransmitted for a maximum number of times in the

absence of ACK messages. However, following the original RSVP design where

an RSVP node never stops sending refresh messages for each active session, a

node should not stop sending digest refreshes even if it fails to receive an ac-

knowledgment in the previous refresh interval. If the neighbor node crashed and

becomes alive again, it will find the digest value different from its own and the

two routers will start the re-synchronization process. When the digest value is

changed, the node needs to cancel any pending retransmission of the obsolete

Digest message and promptly send a Digest message with the new digest value.
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When a node receives a Digest message, it checks to see if the state reported

by the Digest message is consistent with the corresponding state stored locally.

To do so the node does a binary comparison between each of the MD5 signatures

contained in the digest object and the corresponding MD5 signatures in the

InDigest (see section 2.3.4.2). If all of them agree then the state is consistent

and an ACK is sent back. Otherwise the receiver returns a DigestErr message

containing its InDigest and the process described in the next section begins.

Figure 2.8 gives an example of message exchanges between two nodes under

normal condition. Nodes A and B had consistent state at time t1. A sent a Digest

message to B and received an ACK message for it. A then had a state change

at time t2 which triggered a PATH message sent to B. This message was lost, so

A didn’t receive an ACK until it timed out and it had to retransmit the PATH

message (using the same timestamp t2). B received the retransmitted PATH

message and sent an ACK message back to A. Up to this point, the two nodes

were synchronized. When the digest refresh timer timed out at t3, A sent a Digest

message with updated digest value to B. Since A and B were still consistent, B

sent an ACK to A for the Digest message.

2.3.4.4 Recovery Operation

Two RSVP neighbors may become out-of-sync due to a number of reasons. For

instance, a state-changing RSVP message got lost and the sender did not ask for

ACK. It may also happen that a node crashed and lost part or all of its state.

Since it is impossible to enumerate all the possible reasons, the best that one can

do is to detect state inconsistencies once they arise and have a way of repairing

the damaged state.

As we mentioned in section 2.3.4.3, a node sends a DigestErr message if the
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Figure 2.8: Message Exchange

received digest value disagrees with the local digest. The timestamp and digest

value in the DigestErr message help the two neighbors localize the problem. If

the timestamp acknowledged is smaller than the timestamp of the last Digest

message sent, this error message is for an obsolete message. This message should

be ignored since it may not represent the current state of the neighbor. If they

are equal, the node starts a depth-first search of the mismatching signatures from

the root of the digest tree.

When a node receives a DigestErr message it compares the digest value with

its own to find the states that are inconsistent. When it finds the first mismatch-

ing signature (call it S1), it sends a Digest message containing the signatures used

to compute S1. A DigestErr is expected for this Digest message since at least one

of the children signatures should not match. The node again looks for the first

mismatching signature (S2) in the second DigestErr message and sends the chil-

dren of S2 in a Digest message. This procedure is repeated until the leaf signature

(Sh)
2 causing the problem is found. Now, the node knows that one or more of

2h = dlogNMe, see Figure 2.6
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the sessions in that hash table slot (represented by Sh) must be inconsistent with

those in the neighbor. It can then locate these sessions by further exchanging

the session signatures with the receiver. However, we found that locating specific

sessions may get quite complicated in some cases, for example, when the sender or

receiver has sessions that do not exist in the peer. When a node encounters these

cases, it can simply send raw refreshes for all the sessions in that particular bin.

After refreshing these sessions, the node re-examines Sh−1 (the parent of Sh) for

other inconsistencies and continues to traverse the tree until all the mismatching

sessions are located and refreshed.

Notice there is a tradeoff between the latency of the recovery procedure and

the transmission efficiency. For example, if the tree has many levels, many RTTs

are needed to exchange the digests at all the tree levels in order to find the

leaf-level sessions that contribute to the inconsistency. However, if speed of con-

vergence is more important than efficiency, one can stop at an intermediate tree

level and refresh all the states represented by the mismatching signature at that

level.

2.3.4.5 Time Parameters

There are two time parameters associated with digest messages: the refresh period

between successive digest refreshes R and the retransmission timeout T . A node

sends digests at intervals of r, where r is randomly chosen from the range [0.5 ∗

R, 1.5∗R]. Randomization is used to avoid the synchronization of digest messages.

If an acknowledgment is not received after time T from the transmission of a

digest, the node will retransmit that digest message.

The current RSVP specification [BZB97] states that the default refresh period

for regular RSVP messages is 30 seconds but the interval “should be configurable
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per interface”. To be consistent, digest refreshes are also sent every 30 seconds

by default and this interval should be configurable. As we mentioned in Section

2.3.4.3, digest messages are explicitly acknowledged and therefore there is no

need to decrease R to protect against lost digest messages. However, R affects

the frequency of consistency checking between neighbors, so smaller values of

R should be used in environments where prolonged periods of inconsistency are

unacceptable. The retransmission timeout T should be proportional to the round-

trip time between two directly connected neighbors. A node can measure the time

interval between a message and the corresponding ACK and estimate the mean

RTT by performing exponential averaging on the measurements.

Another important time parameter is the state lifetime L. If state represented

by a digest is not refreshed for a period L, it is considered stale and is deleted.

The naive approach would be to set L to be equal to the refresh period R. This

would however lead to premature state time-outs at the receiving side. There

are at least two reasons for this: first, clocks at neighboring nodes may drift and

second as we said before the refresh timer is randomly set to a value in the range

[0.5∗R, 1.5∗R], which means that the sender may send digests at intervals larger

than R. These examples illustrate that L should be larger than R. Following

the current RSVP specification, we decided to set L = (K + 0.5) ∗ 1.5 ∗R, where

K = 3.

2.3.4.6 Backward Compatibility

The extensions we have introduced are fully compatible with the existing version

of RSVP. If an RSVP node sends a message with a timestamp object and sub-

sequently receives an “Unknown Object Class” error, it should stop sending any

more messages with attached timestamp object and start using regular refreshes
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instead of digest refreshes. Digest messages do not pose a compatibility problem

since a node will start sending Digest messages only when it discovers that its

particular peer is compression-capable using the procedure outlined in section

2.3.4.2.

2.3.5 Computation Costs

In this section we focus on the operations applied to the data structures described

in Section 2.3.3 and analyze their requirements in terms of processing.

We begin with some definitions. Let the number of sessions be T , the size

of the hash table be M and the maximum number of MD5 signatures inside

the digest message be N . Let’s further define the cost of computing the MD5

signature of a message of size x to be f(x). To determine the behavior of f(x),

we have to study the algorithm’s behavior. Summarizing the description in RFC

1321 [Riv92], the algorithm divides the input message to 64-byte blocks and

applies a sixty-four step process to each one of these 64-byte blocks. In each

of the sixty-four steps, a number of bit-wise logical operations are applied to

that 64-byte block. The results of the computation on the nth block are used as

input for the computation of the (n + 1)th block. After all the blocks have been

processed, the message’s signature is produced. From this description, one can

see that f(x) is a linear function of x, the size of the input message measured in

bytes.

When a session is modified, a new signature for that session as well as a new

digest of the whole RSVP state has to be computed. To illustrate this procedure,

imagine that we want to update session S1 inside the hash table of Figure 2.5.

First, we look up the session inside the hash table. In our example, we would

come up with the index i. If multiple sessions map to the same hash table slot,
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we traverse the linked list of sessions until we find the session in question. Once

the session is found and its new MD5 signature is computed, we have to compute

the new MD5 signature stored at the base of the linked list which represents all

the sessions mapped to that hash table slot. On the average dT/Me sessions

will occupy the same slot. The total time needed for this operation is therefore

f(16 ∗ dT/Me), since each MD5 signature is 16 bytes long. The next step is to

update the values on the digest tree. We begin by computing the MD5 signature

of the contents of slot i concatenated with its N − 1 siblings which will be stored

in their parent node on the digest tree. We continue this procedure until we reach

the top of the tree. Since there are dlogN(M)e levels on the tree and at each level

we apply the MD5 algorithm on a message of size 16∗N (the combined size of N

MD5 signatures), the time spent during this step is (dlogN(M)e− 1) ∗ f(N ∗ 16).

Notice that the term is dlogN (M)e−1 since we do not calculate an MD5 signatures

out of the N topmost signatures.

From the discussion above, we can conclude that the total time needed to

calculate the new digest after a session is modified is given by the following

formula, where S is the size of a session in bytes:

f(S) + f(16 ∗ dT/Me) + (dlogN(M)e − 1) ∗ f(N ∗ 16) (2.1)

When a new session has to be inserted in the hash table, we locate the slot

this session hashes to and insert the session to that slot’s linked list, if one exists.

Given that the list is ordered, the new session has to be inserted in order inside

the list, which means traversing the list until we find a session whose destination

address is larger than the destination address of the session we want to add and

inserting the new session before that session. Deleting a session, involves finding

the slot it hashes to, searching for it inside the linked list, and “splicing” its

predecessor to its successor on the list.
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The computation cost for the creation of the new digest after an insertion or

deletion operation, is almost identical to the update cost. The only difference is

that in the case of deletion we don’t calculate the MD5 signature of the session

(since we are deleting it). Equations 2.2 and 2.3 respectively, show the insertion

and deletion costs.

f(S) + f(16 ∗ dT/Me) + (dlogN(M)e − 1) ∗ f(N ∗ 16) (2.2)

f(16 ∗ dT/Me) + (dlogN (M)e − 1) ∗ f(N ∗ 16) (2.3)

We can see from Equations 2.1, 2.2 and 2.3 that when the size M of the hash

table is small compared to the number of sessions T , the cost of updating the

linked list of sessions will be linear to T . In this case, updating the linked list

becomes the most expensive operation, forcing the total cost to also be linear to

T . The size M of the hash table should therefore be comparable to T to avoid

increased update complexities.

2.3.6 Limitations of our Approach

The ability of two RSVP neighbors to exchange digests in place of raw RSVP

messages relies on the assumption that the two nodes know precisely all the

RSVP sessions that go through these two nodes in sequence. Whenever a route

change occurs, the upstream node must be able to receive a notification from the

RSVP/Routing interface and synchronize the state with the new downstream

node (as well as tear down the session with the old downstream neighbor). For

multicast sessions, another complication arises if a router is attached to a broad-

cast LAN. A router must detect all changes of membership in the downstream

neighbors, for example when a downstream router on the broadcast LAN joins

or leaves a group, which does not affect the list of outgoing interfaces of the as-
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sociated RSVP state. Again the proposed scheme relies on the RSVP/Routing

interface to provide notification of such changes.

Furthermore, we have identified two cases where an RSVP node must resort to

the current refresh scheme. The first case is when both compression-capable and

compression-incapable downstream neighbors exist on the LAN. To accommo-

date the compression-incapable neighbors one must use per session RSVP refresh

messages. The second case is when two RSVP nodes are interconnected through

a non-RSVP cloud as we explained in Section 2.3.4.2.

In summary, a seemingly inevitable limitation of the state compression ap-

proach is the loss of RSVP’s automatic adaptation to routing changes. Because

refresh messages for each RSVP session follow the same path as data flow, RSVP

reservation can automatically adapt to routing changes including multicast group

membership changes. When a node compresses the RSVP sessions currently

shared with a neighbor node to a single digest, however, RSVP loses the ability

to trace down the paths of individual flows.
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CHAPTER 3

Underlying Architectures

3.1 Introduction

In this chapter we will present the two underlying architectures which have in-

fluenced the Two-Tier Architecture. The type of reliance is different for each of

these two architectures. For the first one, namely the Internet’s routing archi-

tecture, the influence is conceptual since many of the principles first presented

in the routing architecture are also shared by the Two-Tier architecture. On the

other hand for Differentiated Services, which is the second related architecture,

the influence is more technological. What we by this is, that the Two-Tier archi-

tecture uses the building blocks created by former architecture as the low level

mechanisms for providing the Quality of Service requested by network users.

In the sections that follow we introduce the two architectures mentioned here

in more detail and explain the ways the Two-Tier architecture relates to them.

3.2 Routing in the Internet

One of the major criticisms for Integrated Services and RSVP is that they require

per-flow state in the network and end-to-end signaling. Result of this criticism

was the search for aggregation schemes in resource reservation. We believe in

this respect, that the evolution of resource management in the Internet closely
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resembles the evolution of routing protocols that also had to employ aggregation

schemes to cope with exponential increase in routing state as the network’s size

increased. In a similar fashion, routing was the first technology that had to

take into account the administratively diverse nature of the Internet where the

network is a collection of different domains under different administrative control.

For these two reasons, we briefly describe the evolution of the routing architecture

in this section trying to draw any possible analogies.

In the original days of the ARPAnet, all routers had full knowledge of the

network topology and they all participated in the network-wide routing protocol.

As the network grew, memory size needed to keep the routing tables, processing

time needed to update routes and size of routing updates increased substantially.

At the same time, the network had grown administratively diverse, having many

organizational entities wanting to control their own part of the network. Fur-

thermore, given that some of these entities were service providers, they wanted

to hide the internal topology of their network from their competitors.

To address these two problems, the single routing domain of the early network

was replaced by a collection of independent Autonomous Systems (by definition

an Autonomous System (AS for short) is a collection of inter-connected routers

under a single administrative control) connecting to each other. Figure 3.1 shows

such a collection of interconnected ASes.

Each of the administrative domains, or Autonomous Systems, is free to choose

whatever routing protocol that deems proper to run internally (This routing pro-

tocol is the Internal Gateway Protocol, or IGP for short). To assure global con-

nectivity, neighboring domains exchange network reachability information using

an Exterior Gateway Protocol (the EGP of choice these days is BGP-4 [RL95]).

One of the features of BGP is that reachability information can be aggregated.
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Figure 3.1: Intra Domain Routing in the Internet

For example, if nearby networks share common address prefixes, then reachability

reports for them can be merged, so a remote site will need to have a single entry

in its forwarding table only for the common prefix.

We believe that any wide-scale resource allocation scheme should recognize

the structure in the Internet today and try to take advantage of it. There are two

characteristics of the routing hierarchy that are specifically relevant to resource

allocation. First, the independence between intra- and inter-domain mechanisms

and second the ability to handle and export information (or in the case of resource

allocation, resources) on different scales, are directly applicable in the resource

allocation scope.
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3.3 Differentiated Services

The Differentiated Services architecture [BBC98] was conceived by the IETF

community as a way to overcome the shortcomings of Integrated Services in

providing scalable service discrimination in the Internet. This new framework

achieves scalability and flexibility by making a fundamental distinction between

the two components of the architecture:

1. Forwarding Path. This part includes the differential treatment of in-

dividual packets at each network node, as implemented by queue service

disciplines and/or queue management disciplines. In addition, the forward-

ing path may require that some monitoring, policing and shaping be done

on the network traffic designated for “special” treatment.

2. Management Plane. This component includes the co-ordinated configu-

ration of network nodes with respect to which packets get special treatment

and what kind of rules are to be applied to the use of resources.

The division between forwarding path and management plane is beneficial

because it decouples the deployment of the forwarding path elements from the

evolution of the management plane mechanisms. Figure 3.2 shows the division

between the two components of the differentiated services architecture and ex-

poses the resemblance with a similar division followed earlier in the Internet

architecture; the division between forwarding and routing components. Packet

forwarding is the relatively simple task that needs to be performed on a per-packet

basis as quickly as possible. Forwarding uses the packet header to find an entry

in a forwarding table that determines the packet’s output interface. Routing sets

the entries in that table and may need to reflect a range of transit and other
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Figure 3.2: Division between forwarding path and management plane in routing

and differentiated services

policies as well as keep track of route failures. Routing tables are maintained as a

background process to the forwarding task. Further routing is the more complex

task and it has continued to evolve over the past 20 years.

In the forwarding path, differentiated services are realized by mapping a value

contained Differentiated Services field of the IP header to a particular forward-

ing treatment, at each network node on its path. In Diffserv terminology these

treatments are called Per Hop Behaviors or PHBs for short. For example, if

the value that a packet carries translates to the “low delay” PHB then a router

would put that packet on a priority queue to service it promptly. Since routers

only have to look at the header field to decide how to service a packet, no in-

tricate classification or per-flow state is needed, leading to increased scalability

and flexibility. Marking is performed by traffic conditioners at network bound-

aries, including the edges of the network (first-hop router or source host) and

administrative boundaries.
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Given the mode of operation described above, it is to easy to see that if packets

are marked irrespectively of the amount of underlying resources then the desired

behavior cannot be obtained. The need therefore arises to control the amount of

traffic injected to the network at every service level. This is done in two ways.

First, applications have to request for specific amounts of resources and they

have to get authorization before they can start using them. Usage is policed at

points close to the source where the traffic load is light. Second, if data flows

across domains then resources must also be allocated at the boundaries between

domains. To achieve scalability these resources are allocated in bulk for all the

flows crossing domains and not on a per flow basis. Agreements between domains

on the aggregate amount of traffic crossing the domains’ boundaries are called

Service Level Agreements (SLAs). SLAs represent business agreements and are

supposed to be long lived.

The idea of using a simple bit pattern in the header to specify differentiated

treatment was also used in Frame Relay networks as well as in ATM for the

ABR service. The difference here is that while these networks worked on a per-

connection basis, Diffserv applies to aggregates. Also Frame-Relay and ATM are

connection oriented networks, while Diffserv has to work on a connection-less

network making resource allocation more complicated.

3.3.1 Network Elements

In the Differentiated Services architecture the fundamental network entity acting

as a building block for the creation of end-to-end services is a Differentiated Ser-

vices node. A DS node is a network node (which can be a end-host or a switching

element) implementing at least some of the Per Hop Behaviors. DS nodes are

grouped to administrative entities called Differentiated Services domains. Such a
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domain is defined as a contiguous set of DS nodes which operate with a common

service provisioning policy and set of PHB groups implemented on each node. A

DS domain normally consists of one or more networks under the same adminis-

tration; for example an organization’s Intranet or an Internet Service Provider’s

network.
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Figure 3.3: Elements of the Differentiated Services Architecture

As shown in Figure 3.3, a DS domain consists of DS boundary nodes and

DS interior nodes. DS boundary nodes interconnect the DS domain to other DS

or non-DS-capable domains, whilst DS interior nodes only connect to other DS

interior or boundary nodes within the DS domain. Traffic enters a DS domain at

a DS ingress node and leaves a DS domain at a DS egress node. DS boundary

nodes act both as a DS ingress node and a DS egress node for different directions

of traffic. Functionally, DS boundary nodes have the added burden of performing

traffic conditioning of (aggregate) flows crossing domains. Traffic conditioning

performs metering, shaping and policing to ensure that the traffic entering the

DS domain conforms to the rules described in the inter-domain agreement. A
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DS ingress node is responsible for ensuring that the traffic entering a DS domain

conforms to the agreement between it and the upstream domain to which the

ingress is connected. A DS egress node may perform traffic conditioning functions

on traffic forwarded to a directly connected peering domain, depending on the

details of the agreement between the two domains. In what follows we describe

the network elements that accomplish these traffic conditioning functions.

The first part in the process of traffic conditioning is the identification of

packets belonging in particular streams or behavior aggregates. Packet classifiers

select packets in a traffic stream based on the content of some portion of the

packet header. Two types of classifiers are defined:

1. The BA (Behavior Aggregate) classifier, that classifies packets based only

on the value of the DS field in the IP header.

2. The MF (Multi-Field), classifier selects packets based on the value of a

combination of one or more header fields, such as source address, destination

address, DS field, protocol ID, source and destination port numbers and

other information such as incoming interface.

Given that the classification problem becomes much harder as the number of field

that have to be matched increases, BA classifiers are preferable to MF classifiers,

so one would prefer to have BA classifiers at the domain’s core and position MF

classifiers close to the data sources where the traffic load is lighter. Alas, there

are cases where MF classifiers have to be installed at the edges of domains, such

as the case where a customer’s domain has no DS capabilities but has contracted

a service provider to provide differentiated service to some of its flows. What the

service provider can do is install a MF classifier with filters for the specified flows

at the boundary of the two networks. The classifier identifies packets belonging
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to the specified flows, so that they can be marked with the right DS value.

The next logical step is profiling. A traffic profile specifies the temporal prop-

erties of a traffic stream selected by a classifier. It provides rules for determining

whether a particular packet is in-profile or out-of-profile. For example, a traffic

profile based on a token bucket for traffic belonging to codepoint X is a pair (r, b)

indicating that all packets marked with codepoint X should be measured against

a token bucket meter with rate r and burst size b.

Packets of the traffic stream that arrive when no tokens are available are called

out-of-profile. Different conditioning actions may be applied to out-of-profile

packets. These packets may be queued until they become in-profile (shaping),

discarded (policing) marked with a new codepoint (re-marking) or forwarded

unchanged while triggering some accounting procedure.

[rgb]0,0,0Dropper

[rgb]0,0,0Packets

[rgb]0,0,0Meter

[rgb]0,0,0Classifier
[rgb]0,0,0Shaper/

[rgb]0,0,0Marker

Figure 3.4: Block diagram of a Traffic Conditioner

Figure 3.4 gives the block diagram of a traffic conditioner. A traffic conditioner

of a DS boundary node may contain the following elements: meter, marker,

shaper and dropper. A traffic stream is selected by the classifier, which steers

the packets to a logical instance of a traffic conditioner. A meter is used (where

appropriate) to measure the the traffic stream against the traffic profile. The

state of the meter with respect to a particular packet (e.g., whether it is in- or

out-of-profile) may be used to affect a marking, dropping or shaping action.
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3.3.2 Per Hop Behaviors

As we said earlier there are two components in the Differentiated Services frame-

work. The first of these components is concerned with defining the treatment

that packets receive in the forwarding path. In this path, differentiated services

are realized by mapping the codepoint contained in the IP packet header to a

particular forwarding treatment, or per-hop behavior (PHB), at each network

node along its path. [NBB98] defines a PHB as: A description of the externally

observable forwarding behavior of a DS node applied to a particular DS behavior

aggregate.

An example of a simple PHB is one which guarantees a minimal bandwidth

allocation of X% of a link to a behavior aggregate. PHBs are expected to be

implemented by employing a range of queue service and/or queue management

disciplines on a network node’s output interface queue. Example of those are

weighted round-robin (WRR) queue servicing or drop-preference queue manage-

ment. But PHBs are defined in terms of behavior characteristics relevant to

service provisioning policies and not in terms of particular implementation mech-

anisms.

A replacement header field, called the DS field, is defined in [NBB98], which is

intended to supersede the existing definitions of the IPv4 ToS octet [Pos81a]and

the IPv6 Traffic Class octet [DH98]. The DS field structure is presented below:
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Figure 3.5: DS Field in IPv4 and IPv6

Six bits of the DS field are used as a codepoint (Differentiated Services Code-
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point or DSCP) to select the PHB a packet experiences at each node. A two-bit

currently unused (CU) field is reserved and it is supposed to be used for purposes

other than Differentiated Services.

With some exceptions the mapping of codepoints to PHBs is configurable.

Conceptually, there is a configurable mapping from codepoints to PHBs. Even

though specifications of PHBs must include a recommended default codepoint,

in the spirit of every domain being independent, different domains may choose

to use different codepoints for a PHB either in addition or in place of the the

recommended default. If a domain chooses to do so, remarking the DS fields may

be necessary at administrative boundaries even if the same PHBs are implemented

on both sides of the boundary.

PHBs may be specified individually, or as a group (a single PHB is a special

case of a PHB group). A PHB group usually consists of a set two or more PHBs

that can only be meaningfully specified and implemented simultaneously, due to

a common constraint applying to each PHB within the group, such as a queue

servicing or queue management policy. As an example, imagine implementing

drop priority with 4 levels of priority. Then the 4 PHBs needed to define each

of the levels of drop priority would belong to the same drop-priority PHB group.

The DS field in packets requiring a service implemented by a PHB group could

change from one codepoint of the group to some other codepoint in the same

group. Such an action could be taken for example when a flow is out-of-profile.

A PHB group specification should describe conditions under which a packet might

be re-marked to select another PHB within the group.

The structure of the DS field shown above is incompatible with the existing

definition of the IPv4 ToS octet in [Pos81a]. There is although limited backwards

compatibility with current practice in two ways. First, there are per-hop behav-
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iors that are already in widespread use (e.g., those satisfying the IPv4 Precedence

queuing requirements specified in [Bak95]) and the IETF felt that use of these

behaviors should be allowed with DS-compliant nodes. Second, some codepoints

that correspond to historical use of the IP Precedence and those codepoints were

reserved to map to PHBs having functionality equivalent to the historic use.

Those codepoints are collectively referred as Class Selector Codepoints. For more

on those codepoints, look at [NBB98].

There is a “default” PHB that specifies the common, best-effort forwarding

behavior available in existing routers. A reasonable implementation for this PHB

would be a queuing discipline that sends packets of this class whenever the output

link is not required to satisfy another PHB. A reasonable policy for constructing

services would ensure that the default class was not “starved”. In the paragraph

that follows we present the other two PHBs that have been so far proposed in

the Differentiated Services WF of the IETF.

3.3.2.1 Examples of Per Hop Behaviors

Other that the Default PHB (which corresponds to best-effort service) the Dif-

ferentiated Services Working Group has defined two other PHBs: the Expedited

Forwarding PHB[JNP99] and the Assured Forwarding PHB [HBW99]. In what

follows, we will briefly talk about these two services as a way of providing exam-

ples of per hop behaviors and services that can be constructed from them.

The Expedited Forwarding (EF) PHB was proposed by Van Jacobson et al as

a way of building a low loss, low latency, low jitter and assured bandwidth service

through DS domains. As the authors of [JNP99] explain, loss delay and jitter

are all due to queues that packets experience while going through the network.

Therefore the way to provide low loss, latency and and jitter is to ensure that no
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(or very small) queues are created on transit nodes. From elementary queuing

theory we know that this can only happen when the (total) arrival rate in a

node, is always smaller than the departure rate. Achieving such a goal requires

two actions: 1. Configuring nodes so that the aggregate EF traffic has a well-

defined minimum departure rate (that is independent of other traffic arriving at

the node) and 2. Conditioning the aggregate incoming rate to be always less than

any node’s configured minimum departure rate. The EF PHB tries to provide the

first part while the second part is achieved with mechanisms described in Section

3.3.1 and in later sections. Several types of queue scheduling mechanisms may

be used to deliver the EF PHB. A simple priority queue will give the appropriate

behavior as long as there is no higher priority queue that could preempt the

EF from more than a packet time at the configured rate. Another possible way

suggested, is to used a single queue but a with a weighted round robin scheduler

where share of the output bandwidth assigned to the EF queue is equal to the

configured rate.

In contrast with EF which wants to provide a quantifiable service to Diffserv

customers, Assured Forwarding chooses to define a service in relative terms. The

Assured Forwarding (AF) PHB group [HBW99] is a means for a provider DS

domain to offer different levels of delivery assurances for IP packets received

from a customer DS domain. Four AF classes are defined, where each AF class

has allocated in each DS node a certain amount of forwarding resources (buffer

space, bandwidth). IP packets that wish to use the services provided by the AF

PHB group are assigned by the customer or the provider DS domain into one or

more of these AF classes according to the subscribed services.

Within each AF class IP packets are marked (again by the customer or the

provider DS domain) with one of three possible drop precedence values. In case of
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congestion, the drop precedence of a packet determines the relative importance of

the packet within the AF class. A congested DS node tries to protect packets with

a lower drop precedence value from being lost by preferably discarding packets

with a higher drop precedence value.
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CHAPTER 4

The Two-Tier Architecture

The tenet of our design is what we call Two-Tier resource allocation. By this

term we mean that resource allocation should be done in two levels. The first

level is resource allocation inside each administrative domain while the second

level is resource allocation across neighboring domains. Inter-domain resource

allocations are bilateral between neighboring domains. Following the paradigm

of Internet Routing, each domain is free to choose whatever mechanism it wishes

for internal resource management as long as its bilateral resource agreements with

neighboring domains are met.
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Figure 4.1: Two-Tier Resource Management

While Intra-domain resource allocation can be fined grained (per flow), we
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require that Inter-domain resource agreements are made for the aggregate traffic

crossing domains. Furthermore, Inter-domain agreements should change infre-

quently at a larger time-scale than that of individual applications. These two

requirements on Inter-domain agreements provide substantial scaling character-

istics by decoupling Inter-domain allocations from individual end-to-end flows.

Figure 4.1 shows how resource allocation information is distributed in the

Two-Tier model. Leaf Domains contact their service providers asking for re-

sources to cover for the aggregate amount of high quality traffic leaving the do-

main. Once the agreement is in place, individual applications can request and use

portions of the aggregate allocated amount. When and if the allocated resources

are exhausted, the leaf domain may be able to re-negotiate the agreement with

its provider, allocating a larger amount of resources.

Note that the leaf domain only contacts its immediate neighbor for all its

traffic, independent from the traffic’s final destination. It is the responsibility

of the downstream domain, after agreeing to carry the client traffic, to allocate

resources for this traffic both internally but also at its domain boundaries for the

portions of the traffic that exit the domain. The concatenation of intra-domain

management and SLAs between domains creates End-to-End Quality of Service.

4.1 Research Challenges

In order for resource allocation protocols to scale, no fine granularity information

about individual applications or even about individual client domains should be

propagated through the network. The requirement to keep no detailed informa-

tion introduces however new research challenges that the Two-Tier architecture

has to solve. The domain that receives traffic has to predict where traffic flows
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to and to make appropriate allocations both internally and externally, since the

upstream domain does not provide any information about the destinations of its

traffic flows. Furthermore each domain that has accepted to carry QoS traffic has

to adapt resource allocations to match shifts in traffic directions. Second, in the

event of a failure, or when sufficient resources are not available to serve the total

amount of traffic, the affected leaf domains should be notified. Given that those

domains do not make explicit requests for traffic going to specific destinations it

becomes harder to notify those domains.

As the authors of [SLC00] have shown, if Inter-domain requests are allowed

to propagate through the domain mesh without control, over time the global al-

locations can become unstable in a manner that is conceptually similar to route

flapping. We therefore believe that at the inter-domain level the greatest chal-

lenge is how we can dampen the request dynamics so the allocation system does

not get into oscillatory behavior.

In the next paragraph we outline the solutions we have proposed to address

the research challenges presented while in the chapters that follow we give in

detail presentation of all the solution components.

4.2 Proposed Solutions

Domains use existing traffic measurements to predict future traffic destinations.

Specifically, ingress routers measure how much traffic entering a domain through

them, exits through each of the domain’s other border routers. Using these mea-

surements ingress routers decide how to divide inter-domain resource allocations

into a number of equivalent intra-domain requests. After an inter-domain request

has been divided to a number of intra-domain requests, these requests are ad-
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mitted using Measurement Based Admission Control (MBAC) techniques such

as the one present in [JDS95]. We will describe the details of this mechanism in

Sections 5.2, 5.3 and 5.3.1

Our design uses cushions to damp the Inter-Domain resource allocation dy-

namics and to accommodate errors in the destination estimation process. By

cushion, we mean a safety margin between the request amount and the actual al-

location (e.g if the request is for 10 units of bandwidth and 12 units are allocated,

we say that we have a cushion of 2 units of bandwidth). By this mechanism, in-

cremental changes arriving at a domain’s egresses are temporarily ”absorbed”

by the cushion area, giving egresses the ability to delay readjustments of inter-

domain allocations. The level of cushions is dynamically re-adjusted based on

the observed traffic and request dynamics. We will elaborate on the way cushions

are calculated and their use in Chapters 5 and 6.

The idea of a Bandwidth Broker (BB for short) was first introduced by Van

Jacobson et al in [NJZ99] as the logical entity in charge of resource management

in an administrative domain. Being the locus of control for a domain’s resource

management, the Bandwidth Broker has a dual role:

• Manage the domain’s internal resources. The BB can be responsible

for resource allocation itself or it can delegate resource allocation to an

internal resource management protocol and be responsible only for special

events and policy decisions (e.g. the admission of a new flow.)

• Allocate Inter-domain resources. Each BB maintains bilateral agree-

ments with its neighboring Bandwidth Brokers to allocate resources for the

aggregate amount of traffic crossing domains.

If Inter-domain resource agreements were on a per application-flow basis, the
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amount of state that would have to be kept by border routers and Bandwidth Bro-

kers would increase linearly with the number of flows crossing domains. Moreover

agreements between domains would have to change very frequently to accommo-

date for arrivals and departures of individual flows.

Such a behavior would seriously affect the scalability and stability of the

Inter-domain mechanism and of the resource allocation model in general. We

therefore require that resource allocations between domains are for the total ag-

gregate amount of Inter-domain traffic belonging to each service class.

Since Bandwidth Brokers are responsible for resource agreements and resource

agreements are associated with monetary cost it becomes important to protect

Bandwidth Broker communications from malicious attacks. IPsec [KA98] can be

used to provide authentication and confidentiality to messages exchanged between

Bandwidth Brokers. A related issue is how Bandwidth Brokers discover securely

neighboring Bandwidth Brokers and border routers belonging to their domain.

While manual configuration is a first step towards this direction, if the set of

border routers and neighboring Bandwidth Brokers is large and varying, some

discovery mechanism will be required.

For reasons similar to those mentioned about security, robustness is equally

important to the operation of Bandwidth Brokers. As we mentioned before,

the Bandwidth Broker is a logical entity that can map to a single or multiple

physical entities. If the Bandwidth Broker is materialized by multiple physical

entities then robustness is increased (one can imagine a system with one primary

and multiple backup systems implemented BB functionality). This increased

robustness though introduces the problem of consistency between the multiple

physical entities playing the role of the Bandwidth Broker.

An important question related to relationship between neighboring Band-
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width Brokers, is that of state (and fate) sharing. Depending on the granularity

of resource allocation and negotiation time scales, the amount of state informa-

tion shared between two BBs may vary. For the sake of robust, fault tolerant

operation, we believe that any sharing of state between BBs should be based on

the soft state model, so that necessary state can be re-established and recovered

quickly when a BB recovers from a crash or a BB is replaced by another one as

part of fault recovery. Therefore, we stipulate that any interaction among BBs

that requires establishment of shared state must involve periodic timeout and

refresh of shared state for robust operation.
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CHAPTER 5

Intra Domain Protocol

5.1 Introduction

The Intra-Domain protocol serves a dual purpose: First it decides whether to ad-

mit or not new Inter-Domain requests performed by a domain’s upstream neigh-

bors and second it periodically adjusts internal allocations to match the shifts in

traffic distribution. The sections that follow present each of the protocol’s tasks

in detail.

5.2 Handling of New Requests

The resource allocation process logically begins when an upstream domain C

sends a resource request to domain P . We will see later in Chapter 6 the details

of Inter-domain messages exchanges, but for now it suffices to say that an external

request reaches domain P . This request is for total projected QoS traffic that the

upstream domain will be sending. The customer domain does not specify the set

of destinations its traffic will flow to. Figure 5.1 represents this situation.

Once the request arrives at domain P , the domain has to decide whether to

admit the request or not. To do so, ingress router I splits the external request to

separate requests towards the domain’s other border routers. The split is done

according to the distribution of the current traffic the ingress sees. Suppose that
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Figure 5.1: Inter-Domain and Inter-Domain Delta Requests

the request was for Rd units of bandwidth and that I estimates (using the process

described in Section 5.3.1) that p1 percent of traffic goes towards egress router

E1, p2 percent of traffic goes to egress E2 and p3 percent of traffic goes towards

E3. I will then send a delta request (it’s called a delta request to differentiate it

from regular requests sent periodically from ingress to egress routers) for p1 ·Rd

to E1, for p2 ·Rd to E2 and a request for p3 ·Rd to E3.

Each request message carries a sequence number which has to be unique

among all border routers. In reality if the sequence number field is large enough

(i.e 64 or 128 bits) and ingress routers choose randomly a number from this

sequence space the probability of collision is practically zero. In addition to

the sequence number, each request carries the address of the egress router it is

destined to and is forwarded through the domain traveling towards that egress

router. Requests are forwarded in a hop-by-hop reliable fashion, that is each node

that sends a request message sets a timer and retransmits the request if it does

not receive an acknowledgment before the timer expires. Duplicate requests are

identified by identical sequence numbers.

Interior routers that receive these request messages have to make an admission

decision for the added traffic the messages represent. To do so, an interior router
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first finds the output link the request will be forwarded through and then checks

whether the current allocation (which is the amount of resources set aside for

existing traffic going out though that link) plus the new request is less than

the maximum amount of resources this traffic class can use. If so, the interior

node forwards the request downstream and increases its allocation by the amount

contained in the request, otherwise it sends a negative response message back to

the ingress router that sent the delta request. Interior routers copy the request’s

sequence number before they forward it, for reasons that we will see later.

Assuming the requests are admitted by all the routers on their path, they will

eventually arrive at the domain’s egress routers. These egress routers perform a

similar check to see whether these requests can be admitted. The admittance test

this time is whether there are enough resources to forward the traffic to the next

domain downstream or not. We will see in Chapter 6 exactly how egress routers

make this decision. For now, it suffices to say that if the new request cannot be

admitted the egress router will try to renegotiate the level of resources allocated

at the boundary with the next downstream domain. On the other hand, if the

new request can be admitted the egress router sends back a positive response

towards the ingress that originally sent this request.

Positive response messages are sent by the egress routers directly to the ingress

that generated the requests. Since response messages sent by the egresses can

be lost, the ingress sets a timeout interval and retransmits its requests if the

responses have not been received before the timers expire. Interior routers that

have already admitted the delta request being retransmitted can detect this by

checking the sequence number in the request against the set of sequence numbers

they have previously received and don’t apply admission control to the duplicate

request. Interior routers purge the list of sequence number they have received at
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the end of their allocation period (we will see the definition of allocation period

in the next interval) and therefore the amount of state required for sequence

numbers is bounded by the number of the domain’s border routers in the worst

case.

When the ingress router I, that originated the Intra-Domain delta requests

receives replies for all the messages it sent, it can reply back to the upstream

domain. If all the responses were positive, then the ingress also sends back a

positive response and updates its policing rate, otherwise it sends back a negative

response and keeps the policing rate unchanged.

If the ingress router crashes during the time where delta requests are out-

standing it will not be able to respond to pending upstream domains’ requests

even if it does receive the response messages. The rebooted ingress router then,

notifies all of it’s exterior neighbors of this failure. Upstream domains should

then try to resubmit their original request after the ingress comes online again.

5.3 Normal Operation

Ingress Routers periodically send Intra-Domain request messages to allocate re-

sources inside the domain for the Inter-Domain requests they have received from

upstream domains. We call these requests refresh or regular requests to differen-

tiate them from delta requests covered in the previous section. The purpose of

these requests is to adjust the allocation levels inside the domain trying to match

the variations in traffic going towards each of the domain’s border routers For

example suppose that in Fig. 5.1, 30% of the traffic entering through I initially

goes towards E1. Later on this percentage rises to 45% (while the total external

request remains constant). The following refresh request sent by I to E1 will then
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be for 0.45·Rd.

Ingress routers calculate the request amounts sent in refresh requests by split-

ting the total external request according to the traffic distribution towards each

of the domain’s other border routers (see Section 5.3.1 for the traffic distribution

estimation). So in our example in Fig. 5.1, router I will send every Ta seconds

(where Ta is the refresh or allocation interval) one request message towards each

other border router it detects is active (i.e. traffic from ingress I goes to that

egress). The requested amount will be the total externally requested amount

multiplied by the estimated percentage of traffic sent towards that egress router.

Refresh request messages also carry the address of the egress router and are for-

warded hop-by-hop towards that egress. The same reliability mechanism used for

delta requests is used for refresh requests as well.

Interior routers also divide their time in allocation intervals. For now, let’s

assume that all routers both interior and border have the same allocation interval

Ta (we will see how we can relax this requirement in Section 5.3.2). At the begin-

ning of each allocation period each interior router initializes the total request for

each of it’s outgoing links to zero. For each subsequent refresh request messages

it receives, each interior node increases the total request for the link the message

is forwarded through by the amount contained in the request and forwards the

request downstream towards the egress.

At the end of each allocation interval each interior router must decide how

much resources to allocate on each of its links for the next interval. Allocation

is based on the requested amount but depends also on locally observed network

conditions. The fact that interior routers do not depend entirely on the signals

sent by border routers to make local decisions but also consider information

gathered locally gives our design an added level of robustness against failures. If
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Ri,j,k is the total request on router i and link j during interval k, the allocation

Ai,j,k+1 for the next interval then is:

Ai,j,k+1 = Ri,j,k + Ci,j,k (5.1)

Where Ci,j,k is the cushion calculated by router i for link j during interval

k. The cushion’s role is to absorb disparities between the requested amount and

the actual traffic seen on that link. This disparities might arise from a couple

of reasons: First, the estimation process at ingress routers normally introduces

errors and therefore the estimated amount of traffic never completely matches the

actual traffic and second there is a time lag between the time a traffic surge occurs

and the time an ingress router sends an updated refresh request. The cushion

is a node’s protection against those two factors ensuring that the allocation is

rarely overrun by the QoS traffic.
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Figure 5.2: Intra-Domain Requests and Allocations

Figure 5.2 illustrates our point. The figure shows the correlation among al-
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location, request and cushion on a specific link. The total requested amount is

represented by the dashed line, the upper solid line is the allocation while the

lower solid line which is close to traffic volume represents the estimation of the

forwarding path rate. During the first three allocation periods the requested

amount remains constant and the allocation is equal to the requested amount

plus the computed cushion. Approximately at the middle of the third period,

actual traffic rises above the requested amount possibly due to a traffic shift.

The existence of the cushion however, enables the router to successfully serve

the traffic until the end of the third interval where the requested amount is in-

creased. If data traffic had overrun the allocation QoS packets would either have

been buffered or in the worst case dropped.

From the example above, one can see that for cushion to be effective it’s value

should be in the order of the difference between the request level and the actual

traffic rate. With this observation in mind, let’s see now how the cushion Ci,j,k

is calculated in more detail. At the end of each Tf interval (cf. Sec 5.3.1) the

traffic rate estimate fp rate is updated and then the following algorithm is used

to update the cushion:

if(fp_rate > cur_req)

extra = fp_rate - cur_req;

else

extra = 0;

err = extra-avg_cushion;

avg_cushion = avg_cushion + gamma*extra; /* gamma = 1/8 */

dev_cushion = dev_cushion + delta*(abs(err)-dev_cushion);

/* delta = 1/4 */
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The code fragment above computes the cushion as an exponential weighted

moving average (EWMA) of the positive difference between fp rate and cur req

which is the current request level. This is as we said above is what we are looking

for. Finally, Ci,j,k is equal to avg cushion+beta*dev cushion where beta=2.

From the description so far, one can see that the state requirements for interior

routers are proportional to the number of links each router has. The reason is that

interior routers need to hold information about the current allocation, requested

amount and cushion for each of their adjacent links.

The second role of refresh requests apart from updating allocations on internal

paths is to detect allocation failures. These failures can be the result of either

routing changes or dramatic shifts in traffic distribution. Suppose for example

that an internal link fails and all the traffic previously flowing through that link

has to be re-routed through a different path. It may then happen that the new

path does not have enough capacity to serve the additional traffic routed through

it. Since refresh messages follow the same route as data packets, subsequent

refreshes will flow through the new path raising the request level on nodes on

that path. The interior router where the request level is above the maximum

possible allocation will then send an alert to the domain’s Bandwidth Broker

notifying it about this failure. We will see later on in Section 5.4, how a domain

collectively responds to a failure notification.

Refresh request messages eventually arrive at the domain’s egress routers.

Refresh request messages do not trigger any positive response messages as delta

requests do. We made this design decision since a positive response for refresh

packets does not provide any information to the ingress (to put it another way:

refresh requests are supposed to succeed). The only useful information is that

a refresh was rejected, but this information is delivered by negative response
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messages from the point of failure.

5.3.1 Traffic Estimation Techniques

Given that upstream domains do not provide any information about the desti-

nations or the current level of injected traffic, domains that have agreed to carry

this traffic have to discover where traffic is headed, check resource availability and

allocate resources on the paths from the point where traffic enters the domain up

to the point where traffic exits the transit network.

Border routers have an enhanced forwarding table, where for each known

destination not only the next hop is listed, but also a set of counters are kept.

Each of these counters counts the number of bytes contained in packets of a

particular service class sent towards that specific destination. Each time that a

packet arrives at an ingress router, the routers looks up the packet’s destination

address in its forwarding table to properly forward the packet towards its next

hop. Additionally, for packets that require higher than best effort service the

ingress router increases the counter associated with that destination.

Once the amount of traffic sent towards each destination in the forwarding

table is measured, the next step is to map destinations to egress routers. For this

task, we assume that each of the border routers participates in the BGP routing

protocol [RL95]. Each BGP router in an Autonomous System, advertises the

destinations learned by exterior peers to all other interior BGP peers in that AS.

Using this information, an ingress router can map each destination to the egress

router used to reach it.

Having this information, ingress routers periodically execute the following

algorithm to compute the amount of traffic sent towards each egress router:
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for (k=0;k < num_of_BRs;k++) {

egress_router = BR[k];

counter[k] = 0;

for (i=0;i < num_of_destinations;i++) {

if(egress(dest[i]) == egress_router) {

counter[k] += dest[i].counter;

}

}

}

num of destinations is the number of destinations in the router’s forward-

ing table, num of BRs is the number of the domain’s border routers while the

table BR[...] holds the addresses of the domain’s border routers. The function

egress() returns the egress router towards a destination (by looking at the BGP

routing table). The table dest[i] contains the i-th destination in the forwarding

table, while counter[k] holds the number bytes sent towards egress router k.

The pseudo-code above assumes a single class of service but it is trivial to extend

it to account for multiple classes of service. The only addition required would be

another loop for that collects counters for each of the supported services.

Each ingress router uses the number of bytes sent towards each exit point

during the previous measurement period to calculate the average traffic rate over

the last measurement period. This rate is then used to update the long term

traffic estimate of traffic sent to each of the domain’s egress routers. The traffic

estimation model we have used is a time window measurement process borrowed

from [JDS97], [JB97]. The time window measurement process uses two param-

eters, Tf and S. Tf is the measurement window and S is the sampling period,

with Tf being a multiple of S. During every sampling period, S, the average rate

mentioned above is computed. The rate estimate, r, is then updated as follows:
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1. If a newly computed average rate for a given sampling period S is larger

than the current value of r, r is set to the newly computed average.

2. At the end of every measurement window, Tf , r is set to the highest average

rate computed for any S during the previous window.

Increasing Tf increases the amount of history remembered by the measure-

ment process. For a fixed Tf , decreasing S makes this measurement process more

sensitive to bursts of data. Appropriate values of S are likely to be on the order

of thousands of packet transmission times.

5.3.2 Variable Allocation Intervals

In Section 5.3 we used the assumption that all routers use the same allocation

interval Ta. The question that naturally arises then is: What is an appropriate

value for the interval Ta? We believe that the only answer to this question

is that there is no single value for Ta which is appropriate for all situations.

Ingress routers that observe frequent traffic fluctuations would like to have a

small Ta value to quickly adapt to the changing conditions, while ingress routers

that observe stable traffic flow could use a large allocation interval value thereby

reducing the protocol’s overhead. In order to accommodate both operational

regimes, we have extended the mechanism described above to include variable

allocation intervals.

Ingress routers adaptively change the allocation interval used for their refresh

messages based on external request variations. The justification for this adapta-

tion algorithm is that when an ingress router observes that its external request

has remained stable for a long time period it gradually increases its Ta replacing

multiple identical refresh requests with a single one that has a larger allocation
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interval. On the other hand when an ingress router notices variable external

requests it decreases its allocation interval Ta. Furthermore, we want to slowly

increase the allocation internal, while on the other hand we want to quickly re-

spond to changes in external requests. The rationale behind this decision is that

the system has to react slowly to “good news” (the fact that requests are sta-

ble) while it has to react fast to “bad news” (in this case the fact that external

requests vary a lot with time). This philosophy is similar to the TCP window

adjusting algorithm using additive increase and multiplicative decrease.

Having these rules in mind we present the adaptation algorithm performed at

ingress I, below:

• I decides what the next allocation interval will be at the end of the current

allocation interval.

• If the external request level has remained stable (by stable we mean that

0.6 ∗ Re ≤ Re′ ≤ 1.2 ∗ Re, where Re′ is the total external request in this

period and Re is the total external in the previous period) for K (e.g.

K = 5) consecutive allocation internals, the ingress additively increases its

Ta by a fixed amount Ti, (Ta′ = Ta + Ti).

• If Re′ ≥ 1.2∗Re or Re′ ≤ 0.6∗Re then I decreases Ta by a 0.8 multiplicative

factor (Ta′ = 0.8 ∗ Ta).

• Otherwise, I keeps Ta constant for the next allocation internal.

The complication that arises from using variable allocation intervals is that

interior routers can no longer use the simple update algorithm described in Section

5.3 to calculate the request level at the end of each allocation period. Fortunately

the modifications required are minimal.
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Requests messages carry, in addition to the requested amount r, the allocation

interval Tr this amount is requested for. Interior routers choose as their allocation

interval the largest Tr value they have seen in the previous interval. Then, when

an interior router i with allocation interval Ti receives a request message for r

for link j it updates the request level Ri,j,k = Ri,j,k + r ∗ (Tr)/(Ti). For example

suppose that Ti = 3 ∗ Tr, then for each r request Ri,j,k is incremented by r/3.

However, since Ti is 3 times larger than Tr three requests should arrive in a single

Tr interval. One can see then, that at the end of the interval Ri,j,k contains the

requested amount r.

The careful reader at this point may argue that due to delays in requests

arrivals and unsynchronized clocks fewer than Tr/Ti refresh requests can arrive

during an allocation period. The safeguard against these situations is that the to-

tal request amount Ri,j,k is not allowed to decrease by more than a multiplicative

factor (e.g 0.8) and so the effect of delayed refresh requests is reduced. Further-

more since the cushion is calculated as the difference between total request and

actual traffic rate the decrease in the request level will be compensated by the

cushion’s increase.

5.4 Reject Behavior

Our discussion so far has been about successful allocations. It is now time to see

how resource allocation failures are handled by our design. The term resource

allocation failure denotes resource requests that cannot be honored because not

enough resources are available. There are at least two reasons why this can

happen: First a physical failure can happen (i.e. a link goes down) or second,

due to a traffic shift more traffic may start traveling towards a new path that

does not have enough capacity.
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From a domain’s perspective, failures can happen at two different locations:

(1) at an interior router or (2) at the domain’s boundary. Let’s see first what

happens when a failure is detected at an interior node. As we said in Section

5.3 such a failure will be detected when an interior router observes that the total

request on an outbound link is above the maximum possible allocation. At this

point multiple ingress nodes might be using the internal link where the failure

occurred and at least some of them have to be notified about the failure.

In order to find which ingress routers send requests towards the failure point,

the interior router waits until the end of the next allocation interval by when all of

the ingress routers will have sent new requests trying to allocate resources over the

failed path. During this interval, the ingress collects the identities of these ingress

routers and at the end of the next allocation interval sends a failure message

(containing this list of ingresses) to the domain’s Bandwidth Broker. The fact

that the system waits until the end of the next allocation period and does not try

to respond immediately follows the spirit of system where allocation of resources

is done “loosely” without trying to keep tight control over resource allocation.

However loose control does not mean reckless control. The system protects excess

traffic during the time when information is collected by utilizing the cushion set

aside during normal operation. Another way to protect high performance traffic

during this period is to use the bandwidth allocated to best-effort traffic, letting

the best-effort traffic get penalized instead of the high performance traffic.

Once the Bandwidth Broker has been notified, it then consults its Policy

Database to decide which of the ingress routers contained in the failure message

should be notified to reduce their sending rates. For example, if two customers

are affected (because they connect to the ingresses contained in the failure mes-

sage) and one of them pays a higher price in exchange for higher availability,
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the domain’s Bandwidth Broker will try to limit the effect on the higher pay-

ing customer. In addition to ordering the chosen ingress routers to reduce their

policing rates, the domain’s Bandwidth Broker contacts the affected upstream

peering Bandwidth Brokers to reduce the traffic sent towards the failure point,

which brings us to the second failure scenario: failure at a domain boundary.

In this case, the Bandwidth Broker after receiving the notification from a

downstream domain, it instructs the affected egress router to reduce its send-

ing rate by the amount contained in the notification. Egress routers as interior

routers, keep a list of the ingress routers that have received requests from. So

when an egress router receives a request to reduce its sending rate it forwards a

reply back containing this list of ingress addresses to the domain’s BB which can

then decide (based on the domain’s policy and its agreements with its upstream

neighbors) how much each of the involved ingress routers have to reduce their

sending rate.

In this domain-by-domain manner, failure information is propagated upstream

until it finally reaches the leaf domains that will be ultimately affected by the

resource exhaustion.

5.5 Simulation Results

To validate the design of the intra-domain protocol we have simulated it using a

simulator we have written ourselves. Our simulator is written in PARSEC [Que98]

and is based on a RSVP simulator [TWN98] we had earlier developed. There

are five entities in the simulator: Senders, Border Routers, Interior Routers,

Bandwidth Brokers and Receivers. Senders are the sources of data and receivers

are the final destinations. Interior and Border Routers forward packets according
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to their service class. In addition, Border Routers are responsible for measuring

data, creating intra- and inter-domain resource allocation messages as well as

shaping and policing traffic. In our simulations we have used the EF PHB as an

example of a service for which resources can be allocated using our protocols. To

implement the EF PHB we have used a priority queue.

To help readers better understand our intra-domain protocol, we first simulate

a single domain with sparse connectivity as shown in Figure 5.3. With this simple

topology (call it ST), we show the relationship among three components of our

intra-domain protocol, i.e. traffic estimation, periodic refreshing of requests, and

resource allocation. We also measured link utilization and loss rate with traffic

sources of different degree of burstiness. The second set of experiments involve a

more realistic topology derived from BBN’s backbone network (Figure 5.6). We

use this topology to verify the conclusions we drew based on the observations

from the simple topology. Moreover, we collected delay and loss statistics to

show the end-to-end services received by receivers. Table 5.1 and 5.2 summarize

the main characteristics of the two topologies.

Topology Border

Routers

Core

Routers

EF

Senders

BE

Senders

Receivers Links

ST 8 2 8 4 4 33

BBN 24 9 26 0 19 104

Table 5.1: Simulation Topologies

In all the experiments, we use ON/OFF UDP sources. Sources send at con-

stant rate during ON periods and then become silent during OFF periods. To

simulate customer domains where traffic destinations change over time, we switch

the destination of each source at the end of each OFF period (each source has
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Topology Border-Core Core-Core Access Links

ST 1.5M 5M 1.5M

BBN 1M 10M 250K

Table 5.2: Link Speeds

a list of destinations and they randomly pick one for the next ON period). The

ON and OFF periods are Pareto distributed with shape parameter 1.2 and 1.1

respectively, the same as those of the POO1 sources in [JDS97]. All the sources

start sending traffic at time 0 and continue to send traffic until the simulation

terminates. All the experiments are run for 1000 seconds of simulated time.

As we said before, EF PHB is implemented using a priority queue. The EF

queue is serviced at a rate specified by the management plane. At the end of

each allocation period, the management plane decides how much bandwidth to

allocate for the EF traffic for the next period and it adjusts the service rate of

the EF queue accordingly. The maximum bandwidth that can be allocated for

EF is 40% of the link capacity. Both EF and BE queues have a queue size of 20

packets.

In the ST topology (Figure 5.3), there are two EF senders and one BE sender

connected to each of the four border routers on the left, simulating traffic from

customer domains. Both EF and BE senders send 200-byte packets. As we have

mentioned before, we simulate traffic switching by changing the destination of

packets at the end of each OFF period using a uniform distribution. Since des-

tinations are selected randomly, multiple senders may send to the same receiver

at the same time, resulting in a sudden traffic surge on the links to that par-

ticular receiver. Indeed, we have observed such traffic surges in our simulations,

but since our allocation process periodically receives refresh requests that are
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Figure 5.3: Single Domain with 8 Border Routers and 2 Interior Routers (ST)

adjusted based on traffic estimation, it can quickly adapt its allocation to absorb

the extra traffic.

In the first experiment, we set the ON period to be 860ms and OFF period to

be 140ms. The peak rate for EF senders is 125Kbps and 400Kbps for BE senders.

Figure 5.4 and 5.5 show the estimated traffic rate, the requested bandwidth and

the allocated bandwidth in each allocation period for EF traffic (they are ncur,

tr and alloc respectively in the figures) on two links. As you can see, the traffic

is much smoother on the link from 4 to 5 than that on the link from 5 to 6,

due to a higher degree of multiplexing. One can also observe that the curves

corresponding to requested bandwidth and allocated bandwidth in Figure 5.4

eventually converge. This is because the estimated traffic rate never exceeds

the requested bandwidth. In other words, we do not need a cushion to absorb

extra traffic for this particular link. However, one should note that the cushion

size does not abruptly drop to 0, but it gradually reaches 0, i.e. the cushion

mechanism we use reacts to good news relatively slowly. On the other hand, the
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Figure 5.4: Allocation on Link 4-5

link from 5 to 6 has burstier traffic and we can see that the cushion size has

larger variations. There are a few times when the estimated traffic rate is higher

than the allocated bandwidth, but the allocation quickly adjusts to the increased

traffic rate afterwards. One may suspect that there are packets lost during those

periods, but the simulation traces show that there is no loss for any flows in this

experiment. There are two reasons for this result. First, the estimated traffic

rate is usually higher than the actual traffic rate, so we can actually get warnings

before the actual traffic rate exceeds the allocated bandwidth. Second, as long

as the EF queue does not get full, packets coming in those periods do not get

dropped but are rather queued, experiencing higher delay than usual.

To verify that, under our scheme, EF traffic gets its desired service without

being affected by BE traffic, we increased the rate of BE senders until the sum

of EF and BE traffic exceeded the maximum capacity of the bottleneck link. We
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Figure 5.5: Allocation on Link 5-6

found that EF senders did not get any packet loss while BE senders experienced

higher packet loss as their sending rate increased. Table 5.3 contains the average

loss rate of flows destined to each receiver. We have to note here that just the

fact that EF traffic has priority over BE traffic does not explain why BE traffic is

penalized by having its packets dropped. The reason is that while EF traffic has

priority over EF traffic the percentage of traffic used by EF traffic is configured

by the management plane as we said before and therefore if the management

plane is consistently miscalculating the amount of EF traffic then EF would also

be penalized.

We then tried different ON and OFF period lengths to simulate sources with

different degrees of burstiness. As you can see from Table 5.4, link utilization

increases as the traffic gets smoother. One can also observe that the links near the

receivers have higher utilization than the link between the interior routers (link
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Receiver 19 20 21 22

BE Sender’s Rate (Kbps) BE EF BE EF BE EF BE EF

400 0 0 0 0 0 0 0 0

800 0.9 0 1.8 0 0.9 0 3.7 0

1600 18.9 0 25.5 0 18.4 0 33.2 0

Table 5.3: BE and EF Flow Loss Rate (%)

4–5). This is because all the flows (and requests) go through link 4–5. Recall that

the bandwidth to be allocated for EF traffic on an intra-domain link is the sum

of the requested bandwidth and the cushion size (the cushion size is 0 in this case

as explained before), so the allocated bandwidth on link 4–5 is essentially the

sum of all the senders’ subscribed rates. On the other hand, the links near the

receivers receive requests that match the actual traffic more closely. Figure 5.5

shows that the requested bandwidth is actually lower than the estimated traffic,

because the traffic estimation at internal links is quite conservative (it always

remembers the maximum traffic rate in each time window).

After analyzing the results of the simple topology, we turn to the more com-

plex BBN topology (Figure 5.6). In the following experiments, EF sources send

125-byte packets at 64Kbps with an average ON/OFF period of 300ms/300ms.

Our results show that 73% of the links between interior routers have a utiliza-

tion higher than 70%. Let’s now look at the resource allocation process. Fig-

ure 5.7 shows three curves corresponding to the estimated traffic rate, requested

bandwidth and allocated bandwidth on link 8–6 (other links are similar). It is

consistent with what we saw in Figure 5.5, where traffic is quite bursty and the

allocation curve follows the traffic curve closely to cover traffic surges in a timely

fashion.
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ON/OFF 500ms/ 750ms/ 860ms/ 960ms/ 990ms/

500ms 250ms 140ms 40ms 10ms

Link 4–5 0.54 0.55 0.55 0.61 0.77

Link 0–4 0.59 0.62 0.62 0.60 0.63

Link 1–4 0.56 0.56 0.58 0.57 0.63

Link 2–4 0.56 0.55 0.55 0.58 0.60

Link 3–4 0.56 0.59 0.58 0.58 0.64

Link 5–6 0.75 0.82 0.72 0.72 0.76

Link 5–7 0.74 0.76 0.82 0.80 0.83

Link 5–8 0.76 0.76 0.77 0.78 0.81

Link 5–9 0.78 0.75 0.75 0.78 0.82

Table 5.4: Link Utilization and Source Burstiness

What’s more, receivers experienced low loss and low delay jitter in this exper-

iment. We observed the flow from 59 to 42 which goes through 4 interior routers

(router 8, 6, 5 and 1) and 2 border routers (router 24 and 14). Figure 5.8 plots the

packet delay as the simulation proceeds. Analyzing the results from this figure

we find that 93.9% of the packets had a delay of 91 ms while the maximum delay

is 97ms, a 6.6% difference from the minimum.
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Figure 5.6: Single Domain with 24 Border Routers and 9 Interior Routers (BBN)
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CHAPTER 6

Inter-Domain Protocol

6.1 Introduction

The function of the Inter-Domain protocol is to adjust Inter-domain allocations

according to changes in traffic distribution and the arrival and departure of new

resource requests originating from leaf domains. These adjustments are however

constrained by two crucial factors: (1) the frequency and sequence of adjustments

has to be regulated if instability is to be contained and (2) the allocation amount

should not be artificially “inflated” (e.g. by adding successive cushions on top

of original requests) as it travels through successive domains. We will see in this

Chapter how our Inter-Domain protocol tries to achieve these two (sometimes

conflicting) goals.

6.2 Protocol Description

Adjustments in Inter-Domain allocations are initiated by an egress router de-

tecting that the amount of resources allocated at the domain boundary with the

downstream domain does not reflect the current request level. There are two

situations when this condition can be triggered.

As we saw in Sections 5.2 and 5.3, delta as well as refresh interior requests are

terminated at the domain’s egress routers. Requests arriving at egress routers
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are apportioned according to the traffic distribution towards each of the egress’

external neighbors. If the egress then finds that the current traffic level plus

the new request (be it delta or refresh) is above the existing allocation, then a

readjustment is necessary. The level of readjustment is equal to (Fi,j,k + rn) -

Ai,j,k, where Fi,j,k is the traffic estimate on the link between egress i and it’s

downstream neighbor j, rn is the new request and Ai,j,k is the current allocation

level.

The second case where a Inter-domain readjustment can occur, is during the

regular refresh cycle used by egress routers. This inter-domain refresh cycle

is decoupled from the intra-domain refresh cycle and is negotiated by the two

external peers. During each refresh cycle an egress router checks for the following

conditions:

1. If Fi,j,k +Ce
i,j,k > Ai,j,k, where Ce

i,j,k is the inter-domain cushion that is if the

current traffic estimate plus the cushion is above the allocation, then the

egress requests an increase in the allocation. The additive increase request

should be equal to Fi,j,k + Ce
i,j,k − Ai,j,k.

2. If Fi,j,k + Ce
i,j,k < ε ∗ Ai,j,k, (ε ≤ 1 is a constant specifying the low water-

mark threshold), for M consecutive refresh intervals, the egress requests a

decrease in the inter-domain allocation. We use the hysteresis interval of

M consecutive refresh periods so that decrease requests are sent only when

the existing allocation is persistently higher than the actual request level.

The total new allocation should be equal to the level of actual traffic plus

the cushion, that is Fi,j,k + Ce
i,j,k.

3. Otherwise, the egress keeps the allocation constant.

At this point the reader will notice that while internally the allocation level
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is equal to the total amount requested by requests messages plus the cushion, in

domain borders the allocation is equal to the actual traffic rate plus a (different)

cushion. This disparity is indeed intentional and has to do with keeping inter-

domain allocations from being artificially inflated.
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Figure 6.1: Artificial Allocation increase

Fig. 6.1 shows an example of what would happen if Inter-domain requests were

based on intra-domain requests rather than actual traffic estimates. The customer

domain in Fig. 6.1 sends an Inter-domain request Rd. Provider domain A then

creates an intra-domain request r = Rd,
1 which eventually reaches the egress of

domain A. If this egress was to add it’s cushion Ce
A on top of the intra-domain

request then it would have to forward an Inter-domain request R′

d = Rd + Ce
A.

Similarly the egress of domain B would have to request R′′

d = (Rd+Ce
A)+Ce

B. On

the other hand the actual traffic traveling between the chain of domains remains

unchanged and so applying the cushions on top of the traffic estimate to compute

the Inter-domain allocation eliminates the demonstrated potential inflation effect.

The last point we want to make is about the difference between cushions C

and Ce applied at interior nodes and domain boundaries respectively. Cushions

at domain boundaries have one extra role in addition to those outlined in Section

5.3. This role is to absorb most new Intra-domain requests. If all Intra-domain

requests were immediately forwarded through domain boundaries then a ripple

1actually the intra-domain request could be larger than Rd given errors in the traffic distri-
bution estimation process
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effect would be created in the network leading to the instabilities described in

[SLC00]. For this purpose Ce has an additional factor used to compensate for

increases intra-domain requests. We call this new factor the request cushion Cr.

Egress routers keep an exponential weighted moving average of the request deltas

(that is the difference between the total request in the current period and the

previous total request) and Cr is calculated as the mean of the weighted moving

average plus a constant multiple ζ of the variation of this exponential weighted

moving average.

6.3 Inter- and Intra-domain protocol relations

Ð Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð ÐÐ Ð Ð Ð Ð Ð Ð

Ñ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ ÑÑ Ñ Ñ Ñ Ñ Ñ

Ò Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò ÒÒ Ò Ò Ò Ò

Ó Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó ÓÓ Ó Ó Ó Ó

Ô Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô ÔÔ Ô Ô Ô Ô Ô Ô Ô

Õ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ ÕÕ Õ Õ Õ Õ Õ Õ Õ

Ö Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö ÖÖ Ö Ö

× × ×× × ×× × ×× × ×× × ×× × ×× × ×× × ×× × ×

Ø Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø ØØ Ø Ø

Ù Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù ÙÙ Ù Ù
Ú Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú ÚÚ Ú Ú Ú Ú Ú

Û Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û ÛÛ Û Û Û Û Û

Ü Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü ÜÜ Ü Ü Ü Ü

Ý Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý ÝÝ Ý Ý Ý Ý

Þ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ ÞÞ Þ Þ Þ Þ Þ

ß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ßß ß ß ß ß ß

à à àà à àà à àà à àà à àà à àà à àà à àà à àà à à

á á áá á áá á áá á áá á áá á áá á áá á áá á áá á á

â â ââ â ââ â ââ â ââ â ââ â ââ â ââ â ââ â â

ã ã ãã ã ãã ã ãã ã ãã ã ãã ã ãã ã ãã ã ãã ã ã
ä ää ää äååå æææççç

èèè
è
ééé
é

êêêëëë

[rgb]0,0,0Network B

[rgb]0,0,0Network A

[rgb]0,0,0(4)

[rgb]0,0,0ER1
[rgb]0,0,0IR1

[rgb]0,0,0ER2

[rgb]0,0,0ER3

[rgb]0,0,0(5)

[rgb]0,0,0(6)

[rgb]0,0,0BB1
[rgb]0,0,0BB2

[rgb]0,0,0(1)

[rgb]0,0,0(2)

[rgb]0,0,0(3)

[rgb]0,0,0(6)

[rgb]0,0,0(7)

[rgb]0,0,0(8)

[rgb]0,0,0Transit

[rgb]0,0,0Transit

Figure 6.2: Inter-Domain protocol message exchanges

Once the egress has decided that an Inter-domain adjustment is required the

sequence of messages shown in Figure 6.2 is executed. We present the sequence

of events required for an increase adjustment but decreases are also similar. The

sequence begins when egress router ER1 notifies BB1 by sending it a message
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containing the delta Rd between the current allocation and the new increased

inter-domain allocation. BB1 in turn, sends a message to its downstream neigh-

bor BB2 asking for this additional allocation. When BB2 receives this increase

request, it forwards a request to ingress router IR1 querying whether there are

sufficient internal resources to service this increase in entering traffic. The mech-

anism used by IR1 to make this decision is the one we presented in Section 5.2.

If enough internal resources are available, IR1 replies positively to BB2, at the

same time adjusting the parameters of it’s policer for incoming traffic from do-

main A based on the contents of the request. When BB2 receives the positive

reply from IR1 it sends a reply to BB1 accepting the requested increase in traffic.

As a last step then BB1 informs ER1 to increase it’s shaper parameter by Rd.

In the case of a decrease request, steps (4) and (5) would be omitted since no

admission control has to be applied.

6.4 Simulation Results

The purpose of our Inter-Domain simulations is to show how our Inter-domain

protocol can dynamically adjust to changes in traffic crossing domain boundaries

while complying to the constraints we set forth in Section 6.1. Specifically we

want to show how the tuning of inter-domain parameters, such as the cushions

sizes and the hysteresis interval M affect the level and the dynamics of inter-

domain allocations.

Figure 6.3 shows the topology we have used for our inter-domain simula-

tions. In this topology, traffic sources and destinations are connected to domains

C5, . . . , C15 while Domains 0, . . . , 4 are transit domains. Senders start sending

traffic at time t = 0, 100, 200 and 300 sec and switch destinations at the end

of each ON period. Each source has destinations at different customer domains
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Figure 6.3: TwoTier Topology

thus creating a traffic variability at the inter-domain level. Table 6.1 shows the

characteristics of the inter-domain topology simulated.

Figures 6.4 and 6.5 present the allocation at the 3-11 inter-domain link for

two sets of inter-domain parameters. In Fig. 6.4 we have used a hysteresis

interval of M = 8 intervals and ζ = 2 (ζ is the multiplicative factor used in

request cushion Cr) while Fig. 6.5 shows the allocation level for M = 20 and

ζ = 4. The effects of these two parameters on the allocation level are obvious. A

larger hysteresis interval (M = 20) makes the inter-domain allocation more stable

since a longer timer period is required for a decrease operation. For example, in

Fig. 6.4 the allocation level is reduced at t = 890 sec only to be increased

later on. Furthermore using higher requests cushions (Cr with ζ = 4) makes

the inter-domain allocation less sensitive to changes in intra-domain requests.
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Border Routers 64

Core Routers 23

EF Senders 104

BE Senders 0

Receivers 48

Links 323

Border-Core 10M

Core-Core 15M

Border-Border 4.5M

Table 6.1: Topology Characteristics and link speeds

This effect is clear in Fig. 6.4 where inter-domain readjustments are triggered at

t = 100, t = 200 and t = 300. On the other hand in Fig. 6.5, the request cushion

increases fast during the first interval (t = 0) and stays high. New requests

then arriving at t = 100, 200 and 300 do not trigger inter-domain readjustments.

The downside however is that the inter-domain allocation level in Fig. 6.5 is

higher. The justification is that the cushion keeps the allocation high expecting

possible new increases in intra-domain requests. This cushion however gradually

subsides, as one case see in Fig. 6.5 and eventually the inter-domain allocation

will be reduced.

Figures 6.6 and 6.7 show the effects of the different inter-domain parameters

in application performance. Flow f1 (sender 103 to receiver 216) starts at t = 0

while flow f2 (sender 105 to receiver 223) starts at time t = 100. The delay

perceived by the first flow is initially large since the inter-domain agreements

have not yet been setup. Later on, however f1’s delay is virtually constant and

equal to the transmission and propagation delay. When f2 arrives at t = 100,
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Figure 6.4: Allocation on Inter-domain link 3-11, parameter set 1

the situation is better since inter-domain resources have been already allocated

and for this reason f2 experiences a smaller initial delay. The difference however

is that in Fig. 6.6 the delay experienced by f1 temporarily increases while re-

allocations are on the way, while in Fig. 6.7 f1 is practically unaffected.
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CHAPTER 7

End to End Resource Allocation

7.1 Introduction

In the previous chapters we have talked how the intra- and inter-domain protocols

can effectively allocate resources in transit networks, that is networks that are

neither the sources nor the destinations of data traffic. The goal of the Two-

Tier architecture is however the provision of service differentiation to end-user

applications, so in this chapter we will concentrate on the missing pieces of this

global architecture. Specifically we will discuss how resources can be allocated

at stub networks and how resource allocation in these networks is coupled with

resource allocation in transit networks. In Section 7.3 we are going to discuss the

mechanisms by which feedback information about resource allocation is provided

by the system.

7.2 Resource Allocation in Stub Networks

This section describes how the Two-Tier architecture can be integrated with other

QoS technologies to provide end-to-end Quality of Service support visible to user

applications. In our approach we don’t assume that an end-to-end RSVP session

exists between the source and the destination(s). This approach decouples the re-

source allocation mechanism used in the source domain from the mechanism used
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in the destination domain following the guidelines of the Two-Tier architecture.

7.2.1 Source Domain

We look in this paragraph how resources are allocated in the domain where the

source of a traffic flow resides. A host at the source domain that requires for one

of its flows a level of service higher than best effort, starts sending RSVP PATH

messages containing its identification, the flow’s characteristics and the flow’s

destination. The first hop router intercepts those PATH messages and informs

the domain’s Bandwidth Broker about the new request.
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Figure 7.1: RSVP as an Intra-Domain protocol for source networks

The Bandwidth Broker then takes the following steps:

1. Decides whether the host has the right credentials, according to the do-

main’s policies to get the request level of service. If not, an error message

is sent back to the host and the whole process stops there.

2. If the request can proceed, the Bandwidth Broker maps the IntServ pa-

rameters in the PATH message to the appropriate Diffserv parameters. For

example, Guaranteed Service could be mapped to the EF PHB while the

Controlled Load service could be mapped to (some level of) AF.
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3. Based on these parameters and the flow’s destination, the Bandwidth Bro-

ker decides if there are enough inter-domain resources available.

If enough resources are available, then the Bandwidth Broker instructs the

first hop router to forward the PATH message. The BB also informs the appro-

priate egress router to increase the total amount of traffic crossing the domain

by the requested amount and to start producing RESV messages for the host’s

flow. If on the other hand, the new flow cannot be admitted without violat-

ing the inter-domain agreement, then based on the type of SLA between the

two domains (static vs. dynamic) the Bandwidth Broker may request additional

resources from the downstream domain. If the resources are granted then the

request proceeds as in the case above, otherwise an error message is sent back to

the sending host.

Once the egress router receives the PATH message, it starts sending RSVP

RESV messages upstream towards the sender. PATH messages do not flow

through outside the domain but are terminated at the egress router. The RESV

messages reserve resources on the path from the egress router to the sending

host. If at some point on the path not enough resources are available then an

error message will be sent back to the egress router. In this case the egress router

notifies the Bandwidth Broker. The BB can in turn notify the sender about this

failure.

The reception of a RESV message from the first hop router is an indication

that resources have been reserved on the path to the egress router. There are

two possible next steps 1:

• If the mapping between IntServ and Diffserv parameters is fixed, then based

1We assume here that the first hop router is responsible for setting the DS field. We describe
another solution in the following section
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on the parameters in the PATH message a filter can be set to recognize

packets belonging to the new flow. Packets belonging to this flow will be

stamped with the appropriate DS value and will be policed to the level

advertised by the source in its PATH messages.

• Otherwise, the first hop router receives the mapping between IntServ and

Diffserv parameters as part of the response by the Bandwidth Broker in the

first step described above.

7.2.1.1 Source Marking

In the previous section we said that the first hop router is responsible for setting

the DS field of application packets. An alternative is to have the source host to do

the marking instead. While this assumes that source hosts have this capability,

there are considerable advantages in source marking:

• Since the hosts are marking the packets, no MF classifiers are needed at

first hop routers leading to better scaling properties.

• The first hop router may not be able to identify specific application flows

based on network and/on transport layer fields in the packet. For example,

consider the case of encrypted traffic flows (IPSec) where transport layer

fields are not visible to the first hop router.

• Applications can mark their packets using knowledge that is not available

to first hop routers. For example, an application that stamps packets with

codepoints from the AF group can selectively decide which packets receive

the lowest drop priority based on application semantics, while the first hop

router could pick arbitrary application packets as long as the right amount

of packets is being stamped with the lowest drop priority.
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The fact that the source host is marking packets does not mean that the first

hop router is relieved from all of its duties. It will still have to use policing to

make sure that hosts do not send more traffic at a specific PHB level, than what

they have asked for.

7.2.2 Destination Domain

At the destination domain, we have a similar goal of trying to allocate resources

from the domain’s ingress to the destination host. Our scheme works as follows:

the ingress router of the Destination domain starts sending PATH messages to-

wards the final destination. The destination host responds by sending RESV

messages reserving the needed resources inside the destination domain.

There are two issues here. First, how does the receiving host at the destination

domain learn about the sending host and the characteristics of the flow it is

sending. The answer is that the sender and the receiver communicate with each

other through some application level protocol (what is sometimes called out of

band communication). Through that protocol the sender can “advertise” its flow

characteristics to potential receivers. The receiver after receiving the sender’s

advertisement can express its resource requirements from the local domain.

The second question is, who tells the ingress router of the destination domain

to start sending PATH messages. Based on our model, the right entity to do

this is the domain’s Bandwidth Broker. The alternative of having the end host

notifying the ingress router may be infeasible (since the receiving host may not

have enough routing information to discover the domain’s ingress router) and

also has security and policy problems. So the destination host requests from the

Bandwidth Broker that the specific flow coming from a particular host receives

the specified level of service inside the destination domain. The request from the
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receiving host contains (at least) the following information.

• The address of the destination host along with any possible security cre-

dentials.

• The amount and level of resources needed.

• The source of the application flow for which the resources are requested.

Once the Bandwidth Broker receives the request it performs the following

steps:

1. Checks if the receiving host has the right according to the domain’s policy to

receive the requested resources. If not, then the Bandwidth Broker responds

with an error message back to the requesting host and the whole process

stops there.

2. The Bandwidth Broker, based on the address of the source host in the re-

quest and BGP information, decides which is the appropriate ingress router.

Note: This step is not necessary if there is only one ingress router for traffic

coming outside the domain.

3. If the existing SLA between the destination domain and its upstream provider

is in terms of the incoming as well as the outgoing traffic, then the Band-

width Broker has to check if the admission of this new flow will violate the

SLA.

4. Next, the Bandwidth Broker sends a message to that ingress router in-

structing it to start sending PATH messages. The destination host is spec-

ified in the SESSION Object, the service requested by the host is in the
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SENDER TSPEC Object while the PHB is specified in the SENDER TE-

MPLATE in the place of the port number.
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Figure 7.2: RSVP as an Intra-Domain protocol for destination networks

When the end host receives the PATH messages sent by the ingress router

it responds by sending a RESV message with Fixed Filter style and the ingress

router as the only FILTER SPEC. The FLOWSPEC requested by the end host

is “equivalent” to the SENDER TSPEC sent in the PATH message.

7.2.3 Mapping between IntServ and Diffserv

There are two instances where mapping between IntServ and Diffserv is required.

First, when a domain’s Bandwidth Broker gets an IntServ request from an end-

host and has to translate it to a Diffserv request to the appropriate edge router so

that availability of resources at the domain’s boundary can be checked. Second,

once the new flow is admitted the sending host (or the first hop router) has to

translate the request for a specific level of IntServ to a value for the DS field in

applications packets.

We assume that one of two schemes is used to map IntServ service types to

Diffserv service levels. In the first scheme (called default mapping), a standard

mapping from IntServ service type to a PHB that will invoke the appropriate
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behavior is defined. The mapping is not necessarily one-to-one. For example,

controlled-load interactive voice traffic will likely map to a PHB having differ-

ent latency characteristics than controlled-load latency tolerant traffic. For this

reason we suggest adding a qualifier to the IntServ service type indicating its rela-

tive latency tolerance (high or low). The qualifier would be defined as a standard

object in IntServ signaling messages.

In an alternate scheme (called configurable mapping), we allow the edge de-

vices to modify the well-known mapping. Under this approach, RESV messages

originating at hosts carry the usual IntServ service type (with a qualifier, as de-

scribed above). When RESV messages arrive at an edge device (e.g. the first

hop router in Figure 7.1), the edge device will determine the PHB (possibly by

consulting with the BB) that should be used to obtain the corresponding Diffserv

service level. This value is appended to the RESV message by the edge device

and is carried to the sending host. When the RESV message arrives at the send-

ing host, the sender (or intermediate IntServ routers) will mark outgoing packets

with the indicated PHBs.

The decision to modify the well-known mapping at the edge devices will be

based on edge-device configuration and/or policy decision at the edges. For ex-

ample, when a reservation arrives at the edge of a Diffserv network and if enough

reservations have already been accepted to reach the pre-negotiated capacity

limit at the corresponding service level, the device may decide to use a PHB

corresponding to a different (with possibly less assurance) service level based on

an administratively set policy.
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7.2.4 Support for legacy applications

So far we have discussed how applications that can invoke RSVP signaling can

work over a Differentiated Services infrastructure. There is, though, another

type of applications (much larger in number) that we collectively call Best-effort

applications. These are applications that were not designed to take advantage of

the improved level of service provided by Differentiated Services. Applications of

this type include e-mail and Web browsing.

Even-though these applications are not aware of the underlying capabilities

of the network they can still take advantage of them. For example, critical ap-

plications could use the AF PHB so that their packets would be the last to be

dropped during congestion epochs. Since applications are not aware of the un-

derlying differentiated services, some other entity has to set the DS field in their

packets to take advantage of these services. This entity is different depending on

which side of the application flow we are, sending or receiving. We discuss these

two cases next.

7.2.4.1 Sender Domain

If we are managing resources from the sending side of the application then the

first hop router should be in charge of setting the DS field. In this case we install

an MF classifier at the first hop router for setting the right value in the DS field

of the application’s packets. Then the question naturally arises: what are the

parameters in the MF filter? Given that applications cannot supply us with any

information there has to be some form of static configuration that contains long

lived information about applications requiring different service. The domain’s

network administrator enters in a policy database the application specific infor-

mation and then it is the Bandwidth Broker’s job to instruct the first hop router
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to create the right MF classifiers.

Furthermore the Bandwidth Broker instructs the first hop router to start

sending PATH messages to either the last hop before the destination, if the

destination is local, or to the domain’s egress router, if the destination is beyond

the local domain. That router as well as the Tspec describing the application’s

sending rate is also defined in the policy database. The router on the receiving

side (or the egress router) responds by sending RESV messages thereby reserving

resources inside sender’s leaf domain.

7.2.4.2 Destination Domain

We assume here that the sender of traffic is outside the local domain, otherwise

the solution described above would be sufficient. There are two sub-cases that

we have to consider depending on whether packets arrive at the ingress router of

the domain with the right DS value or not.

The Bandwidth Broker instructs the appropriate ingress router to start send-

ing PATH messages and the last hop router to respond with RESV messages.

Once again this information is available though configuration. If application

packets arrive at the local domain with their DS value set to Best Effort, then

the ingress router has the additional task of setting the appropriate value so that

the packets will receive the requested service inside the receiver’s domain.

7.3 Propagation of QoS Information

The last missing piece for a complete end-to-end Quality of Service architecture

is a feedback mechanism that provides information about the level of existing

allocations so network users can have an estimate about the service they should
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expect to receive from the network. This information could be for example a

delay estimate that traffic belonging to a particular service will experience going

to a specific destination or the bandwidth that is available for this traffic class

towards that destination. This type of information could be used by end-user

applications (for example a service that requires an upper bound in delay or a

minimum amount of bandwidth to work properly, would use this information to

see whether communication is feasible) or by QoS routing protocols. For example

if there are two paths towards a particular destination with one of them having

lower delay than the other then a QoS routing protocol could decide to route delay

sensitive traffic over the shortest delay path. In this section we present a scheme

to provide this type of information in the context of the Two-Tier architecture.

7.3.1 Design Issues

Before we start with the description of the mechanism we want to provide a list

of design goals we set for this mechanism. We do this so the design decisions we

have been are justified later when we present the scheme in more detail.

• Measurement accuracy. We are not interested in high accuracy just ballpark

figures. The reason is that we want the feedback mechanism to be in tune

with the whole philosophy of the Two-Tier architecture where the system

is loosely controlled.

• Separation of measurement and report mechanisms. We want to decouple

the two mechanisms so domains can individually decide about the method

they will use to measure the local domain’s QoS characteristics.

• Measurement granularity. The granularity of our measurements is the ad-

dress prefixes advertised in BGP. A consequence of this decision, is that
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the mechanisms presented here cannot provide fine grain QoS characteris-

tics (e.g the delay from one host to another host.)

• Service class granularity. We measure the QoS characteristics per service

class. In accordance with the Differentiated Services architecture no fine

grain service differentiation is supported rather only information about the

service that traffic aggregates will experience.

7.3.2 Data Collection

The first component of the feedback scheme is the mechanisms used to measure

the delay and throughput on the intra-domain path from a domain’s ingress to a

domain’s egress. We do not claim that we have any new mechanisms to perform

this tasks but we just briefly mention some candidate mechanisms for reasons of

completeness.

Before we present the delay and throughput measurement techniques in the

paragraphs that follow, we need to say that our scheme can also work with static

information instead of dynamic information. That is, a domain may choose to

statically define the delay and throughput on the path between the ingress(es)

and egress(es) of that domain. If the domain is small enough and if the traffic

through the domain is stable then the static approach can be of comparable

quality to the measurements approach we present below.

7.3.2.1 Delay

At this this point, is worth saying that we are measuring the QoS characteristics

in the direction towards the origin domain. That is if a domain O advertises

a prefix IPf , then we measure what are the QoS characteristics of the path to
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reach O. Another way to say this, is that we measure the characteristics of the

path from a domain’s ingress to the domain’s egress, where ingress and egress are

defined by the direction of the traffic destined to domain O.

We measure delay by sending pings [Pos81b]. Since we are measuring delay

per DSCP, our ping packets have to carry the appropriate DSCP. If the border

routers are synchronized then we can measure one way delay. If they are not then

we measure round trip delay and divide it by two.

7.3.2.2 Throughput

The quantity we want to measure in this case is the available bandwidth that

is the bandwidth that is not currently being used by existing traffic. There are

two possible ways to collect this information, either by inferring the amount of

available bandwidth using measurements done by the border routers or by asking

interior routers about the amount of available bandwidth in each of their adjacent

links. The first mechanism does not rely on any support from interior routers

but will probably produces less accurate results. Paxson in [Pax99] presented a

mechanism that can be used to measure the available bandwidth on a network

path. His mechanism is based on packet pair a mechanism also used in [Bol93],

[RC96] and [Kes91]. The basic idea is to transmit a number of packets from one

side and measure the the packet inter-arrival time at the other end. If a packet

carries a total of b bytes and the bottleneck bandwidth on the path from ingress

to egress is B Bps then Qb = b/B is the transmission time for this packet at

the bottleneck link. If the sender transmits two b−byte packets with an interval

of ∆Ts < Qb between them, then the second one is guaranteed to have to wait

behind the first one at the bottleneck link. However this mechanism discovers the

bottleneck bandwidth and not the available bandwidth. [Pax99] discusses how
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the mechanism can be modified to discover the available bandwidth.

The second mechanism, where interior routers co-operate in the process of

discovering available bandwidth, works as follows: Ingress routers send probe

messages towards each of the domains other border routers. Each message carries

an estimate on the available bandwidth on the path from the domain’s ingress to

the domain’s egress. Interior routers forward the message towards its destination

updating the bandwidth estimate each step of the way. As we saw in Chapter

5 each router knows how much resources have been allocated on each outbound

link. By subtracting the amount currently allocated from the total link capacity,

the router can update the available bandwidth estimate before forwarding the

probe downstream. If the bandwidth available locally is less than the current

estimate then the estimate is replaced by the local value, otherwise the probe is

forwarded downstream unchanged.

7.3.3 Propagation of Data

Our mechanism leverages on the existence of BGP [RL95] to propagate the QoS

information between domains. Given BGP’s prevalence as the mechanism to

propagate routing information between administrative domains, this solution can

be implemented with the minimum amount of effort and can be deployed rela-

tively easily. Our scheme requires two additions to the current version of BGP.

First we need to add the attributes carrying the QoS information and second we

have to slightly change the BGP processing rules so routers can update the QoS

information carried in routing updates. Specifically, we propose adding two op-

tional transitive attributes one for carrying delay information and one for carrying

throughput information. We describe the required changes in the processing rules

next.
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Figure 7.3: Propagation of Data

Figure 7.3 shows how our scheme works. The Origin domain at the right,

advertises one or more IP prefixes to neighboring domains B and F . The original

advertisements A1 and A
′

1 contain the delay and throughput values for the Origin

domain. Egress routers EB and EF forward this prefix (using I-BGP) to the

respective ingress routers IB and IF in their domains after updating the delay

and throughput characteristics based on the inter-domain connection between the

egress and the ingress of the Origin domain. Ingress routers then use the delay

and throughput measurements they have obtained using the methods described

in the previous section to update the QoS characteristics of the path, before

advertising it to their upstream neighbors.

In the case of delay, the ingress router takes the sum of the reported delay

plus the delay from the ingress to the egress. For throughput the ingress router

takes the minimum of the reported throughput and the measured intra-domain

path throughput.

After updating the QoS characteristics, the ingress router re-advertises the
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prefix to the domain’s upstream neighbors. The same process of domain-wise

measurement, updating and re-advertising is repeated until the prefix is globally

advertised.

7.3.4 Issues related with propagation of QoS data

The way that BGP currently works, after a router has advertised a list of prefixes

it does not have to re-advertise them as long the session between the two BGP

peers is still active and the routing policy has not changed. On the other hand,

QoS characteristics potentially have to be updated on a shorter time-scale to

reflect changes in delay and available throughput on the advertised path. This

higher update frequency requirement can potentially create a burden on BGP

routers that have to process and forward these updates. We believe however, that

the increased update frequency will first be bounded (under certain conditions

which we explain later) and second it will be justified since it provides extra

information which otherwise would not be available. In some respects we can

view changes in delay and throughput as potential policy changes since they may

change the path selection for a particular address prefix that have therefore to

be propagated.

In the previous paragraph we mentioned that, at least in some cases, the

increase in the frequency of updates is going to be modest. To show why this

is the case, consider the case of delay for EF traffic. If the resource allocation

mechanisms are allocating resources for EF traffic successfully then the delay that

EF traffic experiences will be close to the sum of transmission and propagation

delays on the path from ingress to egress and therefore relatively stable. For

throughput, if the amount of allocated resources is static (or slowly changing)

then the available throughput is also stable.
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Another way that propagation of QoS data may potentially impose larger

load on BGP routers, is that aggregation of address prefixes now becomes harder

since individual aggregatable prefixes may have different QoS characteristics and

aggregation would result in loss of information. The reader can see that in this

case, there is a tradeoff between the number of prefixes being advertised and

the accuracy of the information contained in the routing updates. If processing

and forwarding of updates is at a premium then aggregation of QoS information

could be done in a conservative way: In the case of delay, the largest of all the

paths delays would be reported, while in the case of throughput the smallest of

all paths throughputs should be reported.
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CHAPTER 8

Implementation

8.1 Introduction

To validate the Two-Tier architecture and gain actual experience on the perfor-

mance that can be delivered to applications, we built a partial research prototype

of this architecture. Our prototype implements resource allocation on a single

administrative domain through a combination of a Bandwidth Broker that con-

tains administrative policies and a set of routers which impement these policies

giving different services to different network flows.

8.2 Architecture

As Fig. 8.1 reveals, the implementation design is divided in two major compo-

nents:

1. Bandwidth Broker: The entity responsible for resource allocation. The

Bandwidth Broker contains a domain’s Quality of Service policies and com-

municates these policies to the domain’s network nodes handling the net-

work traffic.

2. Routers: The network nodes that forward packets from source to desti-

nation providing the required level of service. Routers implement all the
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forwarding path services required by the Differentiated Services architecture

such as policing, shaping and different Per Hop Behaviors (PHBs).
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Figure 8.1: Implementation Architecture

There are two types of routers in the prototype: interior and edge routers. An

edge router is a router that connects the local domain to neighboring domains. It

is the task of edge routers to enforce that traffic crossing domain boundaries con-

forms to the existing SLAs. Edge routers do so, by utilizing policing and shaping

for incoming and outgoing traffic respectively. Another difference between edge

and interior routers is that while resource allocation at edge routers is dynamically

adjustable from the domain’s Bandwidth Broker, resources at interior routers are

statically allocated. As an alternative, a dynamic resource setup protocol, such

as the one presented in Chapters 5, could be used to allocate resources on the

intra-domain paths from Ingress to the Egress Routers.

The Bandwidth Broker (BB) maintains the domain’s policy, which contains

information regarding flows requesting increased level of service. These flows are
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either local or represent aggregate requests from neighboring domains for transit

traffic through the local domain. Based on the contents of the flow database,

the Bandwidth Broker instructs the domain’s edge routers to set their policer

and shaper parameters appropriately. The protocol used for this communication

is COPS [BCD00]. The Bandwidth Broker contains a COPS server that sends

configuration commands to COPS clients residing at edge routers. At the edge

router side, the COPS client receives these commands and via the Forwarding

Path Driver (FPD), translates them to parameters understood by the forwarding

path elements.

8.3 Forwarding Path

As outlined in the previous section, the set of forwarding path elements imple-

mented at routers is one of the two major components of our implementation. By

forwarding path elements we mean all the low level mechanisms used to forward

packets from one network node to the next, ensuring that packets receive the

requested network level service. In our prototype we use PCs running FreeBSD

as end hosts as well as routers. We took this decision since FreeBSD offers high

performance, is freely available and is based on the BSD code, which has been

highly optimized and well documented. In addition we use the ALTQ [Cho98]

package, that provides a wide range of queuing disciplines for FreeBSD and is

freely available from SONY CSL.

As an example of improved network service we decided to implement the

EF per hop behavior described in [JNP99]. The EF behavior can be used to

build a low loss, low latency, low jitter, assured bandwidth, end-to-end service

through differentiated services domains. Even-though we have implemented only

one service other than best effort, our implementation is extensible and in the
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future we plan to implement more services.

If we subdivide the forwarding path functionality furthermore we can distin-

guish two subsets: the functionality required at the routers and the functionality

required at the end-hosts. Routers do shaping, policing and forwarding according

to Per Hop Behaviors, while end-hosts set the DS field in outgoing application

packets. We describe each of these in the next two sections.

8.3.1 Router

As we have already mentioned, we use PCs running FreeBSD as our routers.

Figure 8.2 shows the path that packets follow inside a router. The shaded areas

show the places where changes were made in the existing router code to implement

policing and shaping. Packets arrive through an incoming interface, are processed

inside the kernel and are finally forwarded through an outgoing interface. The

processing phase consists of several stages. Initially the packet is delivered from

the network interface to kernel space. After some sanity checks are performed

to make sure that the packet is in good shape, the packet is delivered to the

forwarding code that decides which is the appropriate outgoing interface based

on the destination address in the packet’s header. Once this decision has been

made, the packet is delivered in the outgoing interface’s queue where it awaits its

turn to be transmitted.

In our architecture policing is implemented in the incoming interface while

shaping is implemented in the outgoing interface. We took the decision of imple-

menting policing at the input interface to make flow identification and separation

easier, since flows from different incoming interfaces that converge to the same

outgoing interface can be policed separately before getting multiplexed over the

same outgoing interface. Had we decided to do policing at the outgoing inter-
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Figure 8.2: Forwarding Path Architecture

face, we would have to implement more complex classifiers able to discern between

packets belonging to flows from each of the incoming interfaces.

Since all of ALTQ’s functionality is implemented at the outgoing interface we

had to enhance it with the needed functionality in the incoming interface. Once

packets arrive at the kernel, they go through a classifier that categorizes them

according the value of the DS field in the IP header. If the packet is an EF

packet, it is passed to the Policer module otherwise it is immediately given to

the forwarding module. The Policer module is implemented using a token bucket

mechanism. A token bucket has two parameters: a token rate and a bucket depth.

Tokens are generated at the specified rate. No more tokens than the bucket depth

can be accumulated. Each time a packet arrives, the Policer checks if there are

enough tokens. If there aren’t the packet is dropped, otherwise the packet moves

to the next stage. This next stage is forwarding where a route lookup is made

and the appropriate outgoing interface is found.

The specification of the EF behavior dictates that EF packets should be given

priority at the outgoing interface over best-effort packets. Moreover at domain

boundaries the amount of EF traffic must be shaped according to the existing

SLA. For these two tasks, we use the existing CBQ module [FJ95] provided by

ALTQ. CBQ is a mechanism that allows a hierarchy of arbitrary defined traffic
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classes to share the bandwidth on a link in a controlled fashion. In our case, the

trivial CBQ hierarchy shown in Fig. 8.3 is used. There are only two classes: EF

and best effort traffic. EF traffic is allocated up to x% of the outgoing interface’s

bandwidth and is given priority over best effort traffic. Best effort traffic can in

the worst case use the remaining (100−x)% of the outgoing interface’s bandwidth.
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Figure 8.3: Allocation of resources at the output interface

The difference between interior and edge routers inside a domain is that the in-

terior routers’ policer and shaper parameters are statically configured while these

parameters in edge routers are configured by an agent following the commands

of the domain’s BB, as we will see in later sections.

8.3.2 End Host

At the end host, applications can specify their need for increased level of network

service for their packets by requesting from the kernel to mark their packets

with the EF codepoint. To do so, we have implemented a new socket option

named SO EF. This option supports TCP, UDP and raw sockets. Applications

wanting enhanced level of service for their traffic open a socket using the socket()

function and then call setsockopt(SO EF) for that socket. When the kernel

receives a packet from that socket it sets the appropriate value in the DS field of

the IP header and forwards the packet. Based on this feature, we have modified
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the tg traffic generator utility to make it send EF packets. We have used this

utility to test our router implementation and measure its performance.

8.4 The Bandwidth Broker

As we said in Section 4.2, the Bandwidth Broker is the entity in charge of re-

source management in an administrative domain. There are two fundamental

requirements for an entity to be able to perform this task:

1. The entity must have enough information regarding the flows requiring

network service inside and through the local domain.

2. The entity should be able to control the behavior of the domain’s forwarding

elements in order to provide the required service.

To satisfy this dual needs our Bandwidth Broker implementation consists of

two parts: i.) A flow database that contains information about flows requiring

differentiated levels of service and ii.) a COPS server that communicates with

a COPS client at the edge routers to set the appropriate parameters at the

forwarding path. We present each of the components in more detail, in the

following two sections.

8.4.1 Flow database

The Flow Database stores information about the flows that request increased level

of network service from the local domain. For this database a flow is defined as

a set of packets that have the sane DS codepoint, enter the domain through

a common interface, share the same path through the domain and finally exit

through the same interface. The flows stored in the datanase are either local
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flows whose sender resides in the local domain or flows that transit through the

local domain on their way to their final destinations. The database stores the

following information about each of these flows:

• Ingress interface: This is the interface through which the flow enters this

domain.

• Egress interface: This is the interface from which a flow exits the domain.

• Resources requested: These are expressed as token bucket parameters, that

is a pair [r, b] where r is the rate in bytes/second and b is the bucket depth

in bytes.

• Start time: Starting from this instant, the flow requires the above men-

tioned resources.

• Finish time: After this time has passed, no resources should be allocated

for this flow and the ones reserved must be revoked.

• Auxiliary information: such as contact information etc.

We have implemented the database using the freely available MySQL RDBMS

[TcX]. To provide easier access to the flow database we have also implemented

a Web-based front-end to it. Using this front-end, the network administrator

after being authenticated can make queries about existing flows, add new flows

or delete old ones. The implementation of the front-end has been based on the

PHP3 scripting language. PHP3 is a server-side scripting language that integrates

nicely with our database back-end, is relatively easy to use and is supported by

the Apache web server. For more information on PHP3, the interested user can

find a wealth of information in [PHP].
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8.4.2 COPS Server

Once the requested resource allocation information is loaded into the flow database,

the next step is for the Bandwidth Broker to send the appropriate configuration

parameters to the domain’s edge routers. But before this is done, an intermediate

step takes place. As we have seen in the previous section, the policy database

contains individual flows that have an entry and an exit point through the local

interface. Some of these flows will have the same entry or exit points and therefore

their resource requirements have to be aggregated before configuration parame-

ters for the total resource usage can be passed to the domain’s routers. The BB

goes through this process twice, once for incoming traffic and once for outgoing

traffic and when this process is complete, it contacts each of the domains edge

routers to configure the shaping and policing parameters. The detailed message

exchange between the BB and the edge routers is described in detail in Section

8.5.1.

8.5 Edge Router

8.5.1 Edge router-BB Communication

The COPS (Common Open Policy Service) Protocol [BCD00], is a client/server

protocol used for the communication between policy servers and policy clients.

In this model, a server, named Policy Decision Point (PDP), keeps configuration

information about a domain’s resource management and installs these configu-

rations to clients, named Policy Enforcement Points (PEPs). Although COPS

supports several operations, we mainly use the Configuration operation. In this

method of operation, the PDP sends configuration commands to the PEPs. In

our architecture, the BB plays the role of the PDP and edge routers contain the
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PEPs. A detailed specification of the message exchanges between the BB and

the edge routers is contained in [CDG00], but we also briefly present here.

Communication between the BB and the edge routers consists mainly of three

kinds of the COPS messages namely Request, Decision and Report messages.

When an edge router requires some configuration, such as during initialization,

it sends a Request message to the BB, requesting configuration information. The

BB replies by sending a Decision message containing the appropriate parameters

for each interface. The edge router replies to this message, by sending the con-

figuration results (i.e. success or failure) to the BB via a Report message. Figure

8.4 shows this sequence of messages exchanged between the Bandwidth Broker

and one edge router.
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Figure 8.4: Message Exchange between BB and Edge Routers

As time passes, some of the installed parameters may have to be altered. One

example of such a situation, is when a network administrator adds or deletes a

flow from the flow database. A situation like this will trigger the transmission

of an updated Decision message from the BB towards the edge router and the
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subsequent transmission of a Report message from the edge router.

Our current implementation supports a list of configuration parameters. These

include enabling and disabling a router’s policer and shaper, setting the rate and

the depth token bucket parameters for the EF policing, and setting the shaper

parameters.

8.5.2 Forwarding Path Driver (FPD)

The Forwarding Path Driver provides an interface between the COPS client and

the Forwarding Path. When the PEP receives a configuration request from the

BB, it removes the COPS specific headers and sends it to the FPD. The FPD

then installs the appropriate parameter to the forwarding path (e.g. the policing

parameters) and sends the reply received from the forwarding path back to the

PEP. It is this value that will be sent back to the BB inside a Report message.

One of the significant characteristics of the FPD is its ability to do parameter

checking. The FPD before installing any parameters received in a request to the

Forwarding Path, it verifies their validity. For example, a request that requests

more bandwidth than the interface’s capacity does not make sense. If any errors

are found, the FPD sends a negative notification to the PEP without installing

any parameters. Finally, the FPD can also be used to install a static configuration

at the forwarding path independently from the BB. Such a capability provides

increased robustness against BB crashes.

8.6 Experimental Results

To test our implementation and to get some first estimates of its capabilities

we run some initial experiments. The topology we used for these experiments
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is shown in Fig. 8.5. The topology contains 3 hosts (Camelot, Gawain and

Lancelot) and one router (Avalon). Camelot and Gawain are the sending hosts

and Lancelot is the destination for all traffic streams. Gawain is sending EF traffic

while Camelot is sending EF and best effort traffic. All of Avalon’s interfaces are

10Mbps Ethernets and are connected with point-to-point links with the three

hosts. In our experiment, Avalon acts both as an ingress and as an egress router.

So the incoming interfaces fxp1 and fxp2 do policing while the outgoing interface

towards Lancelot does shaping.
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Figure 8.5: Implemetation Topology

Figure 8.6 shows the traffic arriving at interface fxp1 from Camelot. As the

figure shows, Camelot is sending a constant best effort stream at 6Mbps and a

EF stream at 4 Mbps. The best effort stream begins at time t = 100 sec, while

the EF stream starts at time t = 110 sec.

Host Gawain is sending a constant stream of EF traffic at 5 Mbps as Figure

8.7 shows.

For policing, the token bucket parameters on fxp1 have been set to [4Mbps,

30000bytes] where 4Mbps is the policing rate and 30000 bytes is the bucket depth

while fxp2 has a [2MBps,30000bytes] token bucket. On the outgoing interface 6

Mbps have been allocated to EF traffic and 4 Mbps to best effort traffic.
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Figure 8.6: Incoming traffic from host Camelot

Figure 8.7: Incoming traffic from host Gawain

Figure 8.8 shows the traffic at Avalon’s output interface. There are several

interesting results shown in this graph. First of all note that while Gawain is

sending 5 Mbps of EF traffic only 2 Mbps exit through Avalon’s output interface.

This is because Gawain’s traffic is policed at 2 Mbps on Avalon’s fxp2 interface.

On the other hand Camelot’s EF traffic goes through Avalon unharmed since it

conforms to it’s policing rate on interface fxp1. The last interesting point is that

when at time t = 120 sec, the EF flow from Camelot starts to send packets, the

throughput the best effort traffic gets drops from 6 to 4 Mbps. This effect is due
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Figure 8.8: Outgoing traffic to host Lancelot

to the shaping done at Avalon’s output interface and the fact that EF traffic has

priority over best effort traffic.
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CHAPTER 9

Previous and Related Work

9.1 Introduction

The goal of this chapter is to present previous attempts to provide Quality of

Service in different types of networks. The reason for this presentation is to expose

the differences between the Two-Tier architecture and these previous attempts.

This way the reasons for some of the decisions we have made in our architecture

will be justified.

9.2 ATM

Asynchronous Transfer Mode [Bou92], [Gor95] (ATM for short) was proposed

in the early 90’s as a new network architecture that would unite many existing

networks under a single technology. The main idea behind ATM is to trans-

mit all information in small, fixed-size packets called cells. Unlike the Internet,

ATM networks are connection-oriented. Making a call requires first setting up

the connection between the endpoints. This process, called connection setup cre-

ates a virtual circuit in the network that all subsequent cells are going to follow.

ATM supports two ways of creating virtual circuits: Permanent Virtual Circuits

(PCVs) that are created in advance by network operators and Switched Virtual

Circuits that are established at connection setup time. Permanent virtual circuits
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resemble the idea of Per Hop Behaviors in the Differentiated Services architecture

since they are established in advance and they provide application flows with a

predefined level of service. However PVCs couple Quality of Service with routing

(all packets through a PVC will follow the same path), while PHBs are the ab-

solutely simplest building block providing simply predefined forwarding behavior

at a single node.

Since ATM networks were envisioned to carry a large amount of real-time traf-

fic, such as audio and video, Quality of Service is an important issue. Therefore

at connection setup time a host can ask for a particular service from the network

for its traffic. As of version 4.0 of the ATM specification, [Com96b] there are four

main services provided by ATM networks: CBR, VBR, ABR and UBR. UBR is

the equivalent of best-effort in the Internet, CBR provides the equivalent of a

physical link at a specified rate and finally VBR as well as ABR are designed for

bursty traffic whose bandwidth is roughly known.

Once the application has defined the characteristics of its traffic1 and the level

of service it is requesting, the network will try to build a virtual circuit to the

destination that can provide the level of service requested. The protocol used for

this task is PNNI [Com96a]. If such a virtual-circuit is found, the application is

notified and it can start sending traffic, otherwise an error is returned and the

application can try re-establishing a new connection with new parameters.

Even-though the amount of research done in supporting QoS in ATM net-

works was considerable, the premise of ATM QoS was never realized. One of the

main reasons for this failure, was that the architecture was complex and there-

fore not scalable. Moreover PNNI, which was the signaling protocol for ATM

was extremely complex resulting in buggy early implementations which couldn’t

1this traffic descriptor is expressed in terms of a token bucket filter
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provide the QoS guarantees promised by the architecture.

9.3 Integrated Services

In the early 90’s, when multicast was being developed along with the first gener-

ation of multimedia conferencing tools, it was thought that the best-effort service

model provided by the Internet could not satisfy the requirements of multime-

dia applications. What sets multimedia applications apart from traditional data

applications is that they have more stringent requirements for bandwidth and

delay. For example, user studies have shown that interactive conversation be-

tween two parties requires at most 200ms of round-trip time. Many researchers

therefore concluded at that time, that the existing Internet architecture should

be augmented with provisions for real time applications such as bounded delay

and minimum bandwidth. The outcome of this work, was the Integrated Services

architecture [CSZ92], [BCS94].

The architecture is defined in terms of two major elements: the services of-

fered to applications and the structural elements needed to implement these ser-

vices. Two new services were proposed: Guaranteed service [SPG97] provides

firm (mathematically provable) bounds on end-to-end packet queuing delays.

This service makes it possible to provide a service that guarantees both delay

and bandwidth. In contrast to the guaranteed service, the controlled load ser-

vice [Wro97] provides only statistical guarantees on available bandwidth but has

the advantage of increased network utilization. One important aspect of both

services is that applications are required to give a description (e.g., in terms of

token bucket parameters) of the traffic they will generate.

To implement these new services the architects of IntServ argued that the
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network architecture should be augmented with the following building blocks: at

each node a packet scheduler, manages the forwarding of different packet streams

using a set of queues and perhaps other mechanisms like timers. Admission

control implements the decision algorithm that a router or host uses to determine

whether a new flow can be granted the requested QoS without impacting earlier

guarantees. Finally a signaling protocol which is necessary to create and maintain

flow-specific state in the endpoint hosts and in routers along the path of a flow.

Lately many researchers ([EBB97] provides an example of the critique) have

expressed their concerns about the limitations of the IntServ model. The most

important of those concerns are the following:

• Scalability. If the IntServ model is used to make per application flow

reservation then the amount of signaling state kept on routers increases

proportionally to the the number of separate flows. Supporting numer-

ous small reservation on a high-bandwidth link may create an considerable

burden on routers. Furthermore, implementing the packet classification

and scheduling capabilities currently used to provide enhanced services for

reserved flows may be very difficult for some router products or on some of

their high-speed interfaces.

• Complexity. Many researchers argue that,the need for application signal-

ing and the per flow processing at routers introduce excessive complexity

to the network infrastructure. Furthermore, for the services to be available

on a large scale, a large portion of all the routers on the Internet have to

be upgraded or replaced. On the client side, legacy applications have to be

rewritten to take advantage of the new services.

• Lack of Policy Control. Policy control addresses the issue of who can,
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or cannot, make reservations once a reservation protocol can be used to set

up unequal services. A related matter is monetary cost of reservations and

how compensations for services provided are shared among providers. Even-

though the architecture has provisions for transporting policy information,

there is no clear understanding of these topics and ISPs are unwilling to

deploy new technologies without knowing the financial benefits from the

introduction of new services.

9.4 BGRP

Recently the authors of [PHS99], have proposed the Border Gateway Reservation

Protocol (BGRP) as a mechanism inter-domain aggregate resource reservations.

The main idea of this approach is to build a sink tree for each destination do-

main. Each sink tree aggregates reservations from all data sources in different

source domains. Sink tree initiation, maintenance and termination involve only

backbone border routers. Within each domain, the network service providers

manage network resource and direct user traffic independently. At the border

routers, the service providers can use BGRP to setup domain-level reservation

trunks. Since routers only maintain the sink tree information, the total number

of reservation states at each router scales, in the worst case, linearly with the

number of domains in the Internet.

The differences between BGRP and the Two-Tier architecture are numerous.

First of all, the solution in BGRP does not follow the business realities of the

Internet since it is still based on multilateral agreements among the ISPs partic-

ipating in the sink tree towards each destination domain. Second, BGRP still

depends on end signals (e.g RSVP reservations) to establish inter-domain resource

reservations. The result of this dependence is a higher degree of variability in
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inter-domain allocations if care is not take to dampen the reservation dynamics.

Finally BGRP provides a solution only for the inter-domain problem while the

work presented here also address the issue of intra-domain resource allocation

9.5 Dynamic Packet State

Stoica et al proposed Dynamic Packet State (DPS) in [SZ99] as another approach

to solve the resource allocation problem in the core of the network. The idea

behind DPS is to carry resource allocation requests in each of the data packets

traveling through the network rather than sending separate signaling messages.

Routers then collect individual requests from each of the packets they forward and

decide the level of allocated resources. In this model each end-user flow performs

admission control by sending a single message that tests resource availability

before any data packets are sent. This message also pins the path that subsequent

packets will follow.

The DPS approach has a number of limitations. First of all it does not ad-

dress the issue of resource allocations between neighboring ISPs. Either ISPs

have to trust each other and believe that the amount of resources requested

by the initial request message is not lower than the actual traffic used by data

flows, or if they do not trust each other they will have to install per-flow state

at domain boundaries to police each of the incoming flows. Even-though, DPS

requires only constant state at interior routers the overhead of this system can

be high since each data packet carries state (i.e. request to allocate resources)

and therefore has to be processed before it is forwarded downstream. This added

processing required by DPS might be prove to be burdensome for today’s high

end routers which are optimized to forward packets fast by implementing for-

warding path actions in hardware (specialized ASICs are used by most high end
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routers). Packets that carry DPS headers then have to be taken out of the fast

path for further processing, thereby reducing the router’s throughput. On the

other hand low volume signaling messages (such as those used by the protocols

described in Chapter 5 and Chapter 6 can be processed separately without any

degradation of performance for the forwarding path. Finally the need for route

pinning requires special low-level forwarding mechanisms that can provide this

function (e.g. MPLS) thereby limiting the applicability of this solution and at

the same time making it vulnerable to route changes.

9.6 MultiProtocol Label Switching (MPLS)

The MultiProtocol Label Switching (MPLS) architecture [CDF99] currently be-

ing developed by the MPLS group of the IETF is another proposal for QoS inside

an ISP’s network. The major difference between an MPLS network and a stan-

dard IP network is that individual packets are assigned to Forwarding Equivalent

Classes (FECs) at the edge of the network. All packets that belong to the same

FEC are encapsulated with the same outer label [RRT99]. Interior routers route

packets by only looking at the label each packet carries without looking at the IP

header. In that sense, FECs can be thought as equivalent to PVCs in the ATM

network.

The path which data packets will follow through the network can be controlled

by appropriately assigning packets to different FECs and controlling the path that

FECs will follow inside the domain. This ability to control the path that packets

follow is often called Traffic Engineering and is the conceived benefit from the

introduction of MPLS. At the same time, network resources can be allocated

to different FECs in a way that provides different levels of service to different

network flows.
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From our description, one can see that MPLS is another low level forward-

ing path mechanism providing QoS capabilities such as ATM or Differentiated

Services IP networks and therefore does not the solve the problem of resource al-

location. To cover this missing gap, Li et al have proposed in [LR98] the PASTE

mechanism where aggregate reservations are made between edges of an MPLS

domain. Reservations can be between pairs of ingress and egress routers or on a

sink tree towards each egress and a modified version of RSVP is used to allocate

the resources along the Label Switched Paths. Our view is that PASTE fits eas-

ily in our model as a possible alternative to our Intra-domain resource allocation

mechanism presented in Chapter 5. However PASTE (as well as MPLS) does not

address the problem of inter-domain resource allocation addressed in this work.
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CHAPTER 10

Conclusions

10.1 Summary of Existing Work

Our task has been defining and realizing a scalable resource allocation architec-

ture for the global Internet. The outcome of this work is the Two-Tier resource

allocation architecture presented in Chapter 4. But before we reached the point of

coming up with the concept of the Two-Tier architecture we worked on enhance-

ments to the RSVP signaling protocol used in the previous QoS architecture of

the Internet, the Integrated Services architecture. These mechanisms presented

in Chapter 2, had the goal of increasing the scalability of the RSVP protocol

both by reducing the number of RSVP sessions carried through the backbone

and reducing the overhead created by the periodic refresh of RSVP sessions.

This exercise with RSVP lead us to look at the fundamental problems of RSVP

and Integrated Services in general and search for alternatives. In short, two of

the fundamental shortcomings of the previous architecture are that it scales with

the number of end-to-end flows and that it does not match the business reality

of the Internet where all agreements between service providers are bilateral.

The Two-Tier architecture addresses these two problems by proposing a rad-

ically different architecture. At the core of the architecture lies the division of

the resource allocation problem into two levels. The intra-domain level which is

responsible for resource allocation inside individual administrative domains and
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the inter-domain level which is responsible for resource allocations between do-

mains. Inter-domain resource allocations are based on long lived bilateral service

level agreements which describe the level of service that traffic crossing domains

will receive. Domains do not exchange detailed information about the individ-

ual flows crossing domain, only information about the aggregate resource needs.

Each administrative domain is free to choose the internal mechanism that best

fits its needs as long as it can honor the external agreements it has made with

neighboring domains.

The advantages of this architecture are numerous. First of all long-term bilat-

eral inter-domain agreements between neighboring service providers fit perfectly

into the business model of service providers. Second, by keeping only aggre-

gate state at the core of network the Two-Tier architecture scales much better

compared to other solutions. With these advantages however come new research

challenges. Since at the core of network no per flow state is kept, domains have to

predict the traffic’s spatial distribution inside their domain and allocate resources

for this traffic. Domains have also to adapt resource allocations following traffic

changes and at the event of resource exhaustion or physical failure they have to

notify upstream domains affected by the failure. At the inter-domain level, the

major challenge is how to keep resource allocations relatively stable in order to

avoid resource allocation oscillations.

The Two-Tier architecture introduces a logical entity, called the Bandwidth-

Broker which is responsible for resource allocation in an administrative domain.

The task of the Bandwidth Broker is to coordinate resource allocation between

the inter-domain and the intra-domain levels following a domain’s policy rules.

Being a logical entity, the Bandwidth Broker can be implemented either as a

centralized server or as a distributed entity where a number of different physical
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entities collectively play the role of the Bandwidth Broker. For our work we have

chosen a distributed implementation given the benefits both in terms of scaling

as well as reliability. Chapters 5 and 6 presented our work in Intra- and Inter-

domain resource allocation protocols that let a set of routers to collectively play

the role of a Bandwidth Broker.

In Chapter 5 we presented the set of solutions for the intra-domain resource

allocation problem. The main idea is that ingress routers measure the amount

of traffic that enters the domain through them and exits at each of the domains

other border routers and try to allocate resources for this traffic. New requests

are distributed internally using the spatial distribution of existing traffic and mea-

surement based admission control is used to check whether enough resources are

available inside the domain for them. Ingress routers periodically send requests

messages towards each egress router they detect traffic to, trying to allocate re-

sources on the internal path from ingress to egress. Interior routers periodically

collect these request messages and decide how much resources to allocate on each

of their outbound links. The amount of resources allocated is equal to the sum

of the requests plus a cushion calculated from locally observed traffic conditions.

This cushion protects QoS traffic from estimation errors done by ingress routers

as well as shifts in traffic destinations. The fact that cushions are computed lo-

cally gives our system a high degree of robustness since interior routers do not

solely rely on the information sent by border routers but make resource allocation

decisions reinforced by local information. When a failure occurs, interior routers

collect the identities of the ingress routers that send towards the failure point

and report them to the domain’s Bandwidth Broker which then makes a policy

decision regarding which of the upstream domains should be notified about the

failure.

139



Our solutions for the inter-domain problem were presented in Chapter 6. A

similar theme to the one that exists in the intra-domain solution is followed

at the inter-domain level as well. Egress routers measure the outbound traffic

destined to domains downstream and adjust the allocations when actual data

traffic approaches the allocated amount of resources. Cushions are used on inter-

domain allocations also but their main role in this case is to dampen inter-domain

request dynamics. Simulation results in Section 6.4 have shown that inter-domain

cushions provide an effective mechanism to explore the trade-offs between high

frequency of inter-domain updates and resource under-utilization.

To complete the end-to-end QoS path, in Chapter 7 we have shown how the

Two-Tier architecture can be integrated with other solutions to provide end-to-

end resource allocations. The Two-Tier architecture is mainly used to provide

resource allocation in transit or provider domains than neither source or are the

destinations of user traffic. The missing part therefore is how resource allocation

is done at end-user (or stub) domains in a manner that is consistent with the

rules of the Two-Tier architecture. The solutions we have presented are variants

of RSVP with the difference that RSVP is no longer used to allocate resources

on the end-to-end path but rather only on the path inside the source and/or

destination domain. Finally, in Section 7.3 we presented a mechanism based on

BGP for providing feedback about the current QoS status (in terms of end-to-end

delay and available bandwidth) of routing paths advertised in the global routing

architecture. This feedback mechanism closes the cycle of resource allocation

since it provides information to resource users about what to expect from the

network.

140



10.2 Future Work

While our work so far in the Two-Tier Architecture has covered the largest issues

there are a few issues that we would like to work on in the future:

1. The design of a measurement infrastructure for the Two-Tier architecture.

Since the Two-Tier architecture and Differentiated Services in general, are

associated with monetary exchanges between parties that do not fully trust

each other, there is going to be a need to monitor that agreements between

neighboring domains about the level of service provided are kept.

2. Bring the intra- and inter-domain allocation protocols to a mature enough

state that they will be ready for standardization. As we saw in Chapter

8 the prototype we have built is only partial since it covers only a single

administrative domain and does not implement the intra-domain protocol

described in Chapter 5. In the future we plan to implement both protocols

in a bigger test-bed to gain more experience on their behavior.

3. To further test the performance of our Two-Tier architecture we would like

to get real network traffic traces from large Internet backbones. Only when

we have access to these traces our assumptions about the predictability of

network traffic can be verified.

4. We want to further study the relation between the guarantees that a service

provider gives its customers and how aggressive or conservative the provider

is in allocating resources both internally as well as the borders with other

downstream providers. Our intuition says that the stronger the guarantee

the more conservative one has to be but we would like to get a better

idea exactly how the tradeoff between utilization and the level of assurance

provided looks like.
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5. Finally we would like to refine the algorithms for adjusting the cushions.

Even-though at their current form cushions provide all the functions we

have defined in Chapters 5 and 6, they need to be fine tuned in order to

reduce the resource waste while at the same traffic protecting data traffic

from under-allocation.
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