ﬁ; PM0237
” life-augmented Programming manual

BlueNRG, BlueNRG-MS stacks programming guidelines

Note:

Introduction

The main purpose of this document is to provide a developer with some reference
programming guidelines about how to develop a Bluetooth low energy (BLE) host
applications using BlueNRG, BlueNRG-MS stacks APIs.

The document describes the BlueNRG, BlueNRG-MS stacks architecture, APls interface
and callbacks allowing to get access to the Bluetooth low energy functions provided by the
BlueNRG, BlueNRG-MS network coprocessors.

This programming manual also provides some fundamental concepts about the Bluetooth
low energy (BLE) technology in order to associate the BlueNRG, BlueNRG-MS APlIs,
parameters, and related events with the BLE protocol stack features. It is assumed that the
user already has a basic knowledge about the BLE technology and its main features.

For more information related to the full set related to the BlueNRG, BlueNRG-MS devices
and the Bluetooth specification v4.0 and v4.1, refer to Section 5: References at the end of
this document.

The BlueNRG is a very low power Bluetooth low energy (BLE) single-mode network
processor, compliant with Bluetooth specification v4.0 and supporting master or slave role.

The BlueNRG-MS is a very low power Bluetooth low energy (BLE) single-mode network
processor, compliant with Bluetooth specification v4.1 and supporting both master and slave
roles.

The manual is structured as follows:
e Fundamentals of Bluetooth low energy (BLE) technology

¢ BlueNRG, BlueNRG-MS stacks architecture and application command interface (ACI)
overview

e How to design an application using the BlueNRG, BlueNRG-MS stacks ACI APls

The document content is valid for both BlueNRG and BlueNRG-MS devices. Any specific
difference is highlighted whenever it is needed.

September 2015 DocIlD027104 Rev 3 1/97

www.st.com

http://www.st.com

Contents PM0237

Contents
1 Bluetooth low energy technology it 7
1.1 BLE stack architecture 8
1.2 Physical layer e 9
1.3 Link Layer (LL)o 11
1.3.1 BLE packets o 12
1.3.2 Advertisingstate 15
1.3.3 Scanningstate 16
1.3.4 Connectionstate 17
14 Host controller interface (HCI) 18
1.5 Logical link control and adaptation layer protocol (L2CAP) 18
1.6 Attribute Protocol (ATT) ... ettt 18
1.7 Security Manager (SM) 20
1.8 Generic attribute profile (GATT) e 22
1.8.1 Characteristic attribute type 22
1.8.2 Characteristic descriptorstype 24
1.8.3 Service attribute type 24
1.8.4 GATT procedures e e 25
1.9 Generic access profile (GAP) 26
1.10 BLE profiles and applications 31
1.10.1 Proximity profileexample 32
2 BlueNRG, BlueNRG-MS stacks architectureand ACI 34
2.1 AClinterface 35
2.2 ACIl Interface resources it e 36
2.3 Other platforms resourcesfiles 38
2.31 Platforms configuration 38
2.4 How to port the ACI SPI interface framework to a selected microcontroller .
40
3 Design an application using BlueNRG, BlueNRG-MS ACI APIs 41
3.1 Initialization phase and main applicationloop 42
3.1.1 BLE addresses 47
3.1.2 Settxpowerlevel 49

2/97 DoclD027104 Rev 3 ‘Yl

PM0237 Contents

3.2 BlueNRG, BlueNRG-MS events and events Callback 50
3.3 Services and characteristic configuration 54
3.4 Create a connection: discoverable and connectable APIs 56

3.41 S8et discoverable mode & use direct connection establishment procedure

5

3.4.2 ggt discoverable mode & use general discovery procedure (active scan)
3.5 Security (pairingand bonding) 65
3.6 Service and characteristic discovery 69
3.6.1 Service discovery procedures and related GATT events 71
3.6.2 Characteristics discovery procedures and related GATT events 75
3.7 Characteristic notification/indications, write,read 78
3.8 Basic/typical error conditions description 82
3.9 BlueNRG-MS simultaneously Master, Slave scenario 82
4 BlueNRG multiple connections timing strategy 86
4.1 Basic concepts about Bluetooth Low Energy timing 86
411 Advertising timing 86
41.2 Scanning timing e 87
4.1.3 Connection TIMINGo e 87
4.2 BlueNRG timing and slot allocation concepts 87
421 Setting the timing for the first Master connection 88
422 Setting the timing for further Master connections 89
4.2.3 Timing for Advertising Events 90
424 Timing forscanning 91
4.2.5 Slave timing 91
4.3 BlueNRG multiple Master & Slave connections guidelines 91
5 Referencesc. i e e 93
Appendix A List of acronyms and abbreviations 94
6 Revision history i it 96

3

DoclD027104 Rev 3 3/97

List of figures PM0237

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

4/97

Bluetooth low energy technology enabled coin cell battery devices. 7
Bluetooth low energy stack architecture. 9
Link Layer state machine 11
Packet structure e 12
Advertising packet with AD type flags. 15
Example of characteristic definition 23
Clientand server profiles 32
BlueNRG, BlueNRG-MS stacks architecture and interface to the external host. 34
MAC address storage. 48
BlueNRG-MS simultaneous Master & Slave scenario 83
Advertising timings 86
Example of allocation of three connectionslots 88
Example of timing allocation for three successive connections 90

3

DoclD027104 Rev 3

PM0237

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 24.
Table 22.
Table 23.
Table 26.
Table 25.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

S74

BLE RF channel types and frequencies 10
Advertising data header filecontent 12
Advertising packet types. 13
Advertising event type and allowableresponses L, 14
Data packet headercontent 14
Packet length fieldand valid values 14
Connection request timingsintervals 17
Attribute example 19
Attributes protocol messages e 19
Combination of Input/Output capabilities ona BLE device. 20
Methods used for calculating the Temporary Key (TK). 21
Characteristicdeclaration e 23
Characteristicvalue e 24
Service declaration e 24
Include declaration e 25
Discovery procedures and related responseevents. 25
Client-initiated procedures and related responseevents 25
Server-initiated procedures and related responseevents 26
GAP F0IES . . o 26
GAP broadcastermode e 27
GAP discoverable Modes e 27
GAP 0bSEIVEr ProCEAUNEt e 28
GAP connectable modes e 28
GAP bondable modes. e 28
GAP connection proCeduUres.ttt 29
GAP diSCOVEINY ProCeAUIESottt e e e e e 29
GAP bonding procedureso e 30
ACTINterface. 35
ACl Interface resources files. 37
SW framework platforms drivers. 38
User application defines for BLE devicesrole 41
BlueNRG GATT, GAP default services i 44
BlueNRG GATT, GAP default characteristics. 44
BlueNRG-MS GATT, GAP defaultservices i, 45
BlueNRG-MS GATT, GAP default characteristics 45
GAP_Init() role parametervalues 46
ACIl: main events, SUb-eVeNtS. 50
ACL GAP modes APIs 56
ACI: discovery procedures APIs. e 57
ACI: connection procedures APIS. e 57
ADV_IND eVeNt 64
ADV_IND advertisingdata 64
SCAN RSP eVeNt. . . e 64
Scanresponse data 64
BlueNRG sensor profile demo services & characteristicshandles. 69
BlueNRG-MS sensor profile demo services & characteristics handles 69
ACI: service discovery procedures APIs. e 71
Firstevt_att read_by group respeventdata 73

DoclD027104 Rev 3 5/97

List of tables PM0237

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.

6/97

Second evt_att read_by group respeventdata......... L. 73
Third evt_att_ read_by group_respeventdata......... 74
BlueNRG ACI: characteristics discovery procedures APIs. 75
First evt_att read by type respeventdata 77
Second evt_att read_by type respeventdata......... 78
Characteristics update, read, write APIs 78
Timings parameters of the slotting algorithm 87
References table. e 93
List of @Cronyms 94
Document revision history 96

3

DoclD027104 Rev 3

PM0237 Bluetooth low energy technology

1 Bluetooth low energy technology

Bluetooth low energy (BLE) wireless technology has been developed by the Bluetooth
Special Interest Group (SIG) in order to achieve a very low power standard operating with a
coin cell battery for several years.

Classic Bluetooth technology was developed as a wireless standard allowing to replace
cables connecting portable and/or fixed electronic devices, but it cannot achieve an extreme
level of battery life because of its fast hopping, connection-oriented behavior, and relatively
complex connection procedures.

Bluetooth low energy devices consume only a fraction of the power of standard Bluetooth
products and enable devices with coin cell batteries to be wirelessly connected to standard
Bluetooth enabled devices.

Figure 1. Bluetooth low energy technology enabled coin cell battery devices

GAMSEC201411251047

Bluetooth low energy technology is used on a broad range of sensor applications
transmitting small amounts of data.

e Automotive

e Sport and fitness

e Healthcare

e Entertainment

e Home automation

e Security and proximity

3

DoclD027104 Rev 3 7/97

Bluetooth low energy technology PM0237

1.1

8/97

BLE stack architecture

Bluetooth low energy technology has been formally adopted by the Bluetooth Core
Specification version 4.0 (on Section 5: References). This version of the Bluetooth standard
supports two systems of wireless technology:

e Basicrate

e Bluetooth low energy

Bluetooth low energy technology operates in the unlicensed industrial, scientific and
medical (ISM) band at 2.4 to 2.485 GHz, which is available and unlicensed in most

countries. It uses a spread spectrum, frequency hopping, full-duplex signal. Key features of
Bluetooth low energy technology are:

e robustness

e performance

e reliability

e interoperability

e low data rate

e low-power

In particular, Bluetooth low energy technology has been created for the purpose of

transmitting very small packets of data at a time, while consuming significantly less power
than Basic Rate/Enhanced Data Rate/High Speed (BR/EDR/HS) devices.

The Bluetooth low energy technology is designed for addressing two alternative
implementations:

e Smart device

e Smart Ready device

Smart devices support only support the BLE standard. It is used for applications in which
low power consumption and coin cell battery is the key point (as sensors).

Smart Ready devices support both BR/EDR/HS and BLE standards (typically a mobile or a
laptop device).

The Bluetooth low energy stack consists of two components:

e Controller

e Host

The Controller includes the Physical Layer and the Link Layer.

The Host includes the Logical Link Control and Adaptation Protocol (L2CAP), the Security
Manager (SM), the Attribute protocol (ATT), Generic Attribute Profile (GATT) and the
Generic Access Profile (GAP). The interface between the two components is called Host
Controller Interface (HCI).

3

DoclD027104 Rev 3

PM0237

Bluetooth low energy technology

1.2

3

In addition, Bluetooth specification v4.1 have been released with new supported features:

Multiple roles simultaneously support

Support simultaneous advertising and scanning

Support being Slave of up to two Masters simultaneously
Privacy V1.1

Low Duty Cycle Directed Advertising

Connection parameters request procedure

LE Ping

32 bits UUIDs

L2CAP Connection Oriented Channels

For more information about these new features refer to the related specification document.

Figure 2. Bluetooth low energy stack architecture

Host Controller Interface
Link layer

PHY layer

GAMSEC201411251124

Physical layer

The physical layer is a 1 Mbps adaptive frequency-hopping Gaussian Frequency Shift
Keying (GFSK) radio. It operates in the license free 2.4 GHz ISM band at 2400-2483.5 MHz.
Many other standards use this band: IEEE 802.11, IEEE 802.15.

The BLE system uses 40 RF channels (0-39), with 2 MHz spacing. These RF channels
have frequencies centered at:

DoclD027104 Rev 3 9/97

Bluetooth low energy technology PM0237

2402 + k * 2 MHz, where k = 0..39;

There are two channels types:

1. Advertising channels that use three fixed RF channels (37, 38 and 39) for:
a) Advertising channel packets
b) Packets used for discoverability/connectability
c) Used for broadcasting/scanning

2. Data physical channel uses the other 37 RF channels for bidirectional communication
between connected devices.

Table 1. BLE RF channel types and frequencies

Channel index RF center frequency Channel type
37 2402 MHz Advertising channel
0 2404 MHz Data channel
1 2406 MHz Data channel

Data channel

10 2424 MHz Data channel
38 2426 MHz Advertising channel
1 2428 MHz Data channel
12 2430 MHz Data channel

Data channel
36 2478 MHz Data channel
39 2480 MHz Advertising channel

BLE is an Adaptive Frequency Hopping (AFH) technology that can use only a subset of all
the available frequencies in order to avoid the frequencies used by other no-adaptive
technologies. This allows to move from a bad channel to a known good channel by using a
specific frequency hopping algorithm which determines the next good channel to be used.

3

10/97 DocID027104 Rev 3

PM0237 Bluetooth low energy technology

1.3 Link Layer (LL)

The link layer (LL) defines how two devices can use a radio for transmitting information
between each other.

The link layer defines a state machine with five states:

Figure 3. Link Layer state machine

Scanning
Advertising Standby Initiating
Connection
GAMSEC201411251131

e Standby: the device does not transmit or receive packets

e Advertising: the device broadcasts advertisements in advertising channels (it is called
an advertiser device)

e Scanning: device looks for advertisers devices (it is called a scanner device).
e |Initiating: the device initiates connection to advertiser device

e Connection: the initiator device is in Master Role: it communicates with the device in
the Slave role and it defines timings of transmissions

e Advertiser device is in Slave Role: it communicates with a single device in Master Role

3

DocID027104 Rev 3 11/97

Bluetooth low energy technology

PM0237

1.3.1 BLE packets

A packet is a labeled data that is transmitted by one device and received by one or more

other devices.

The BLE data packet structure is described below.

Figure 4. Packet structure

Bits

8 32 8 8 0 to 296 (37 bytes) 24
3 1r
B| AccessAddress | B 3 Data CRC
3 o g
o = | Ef
[+

GAMSEC201411251133

e Preamble: RF synchronization sequence

communication packets on physical layer channel)
e Header: its content depends on the packet type (advertising or data packet)

a) Advertiser packet header:

Table 2. Advertising data header file content

Access address: 32 bits, advertising or data access addresses (it is used to identify the

Advertising packet type

Reserved

Tx address type

Rx address type

(4 bits)

(2 bits)

(1 bit)

(1 bit)

12/97

DoclD027104 Rev 3

3

PM0237

Bluetooth low energy technology

3

b) Advertising packet type:

Table 3. Advertising packet types

Packet type Description Notes
Used by an advertiser when it
wants another device to connect
ADV_IND Connectable undirected to it. Device can be scanned by

advertising

a scanning device, or go into a
connection as a slave device on
connection request reception.

ADV_DIRECT_IND

Connectable directed
advertising

Used by an advertiser when it
wants a particular device to
connect to it. The
ADV_DIRECT_IND packet
contains only advertiser’s
address and initiator address.

ADV_NONCONN_IND

Non-connectable undirected
advertising

Used by an advertiser when it
wants to provide some
information to all the devices,
but it does not want other
devices to ask it for more
information or to connect to it.

Device simply sends advertising
packets on related channels, but
it does not want to be
connectable or scannable by
any other device.

ADV_SCAN_IND

Scannable undirected
advertising

Used by an advertiser which
wants to allow a scanner to
require more information from it.
The device cannot connect, but
it is discoverable for advertising
data and scan response data.

Used by a device in scanning

SCAN_REQ Scan request state to request addition
information to the advertiser.
Used by an advertiser device to

SCAN_RSP Scan response provide additional information to

a scan device.

CONNECT_REQ

Connection request

Sent by an initiating device to a
device in
connectable/discoverable mode.

DoclD027104 Rev 3

13/97

Bluetooth low energy technology PM0237

The advertising event type determines the allowable responses:

Table 4. Advertising event type and allowable responses

Allowable response
Advertising event type
SCAN_REQ CONNECT_REQ
ADV_IND YES YES
ADV_DIRECT_IND NO YES
ADV_NONCONN_IND NO NO
ADV_SCAN_IND YES NO

Data packet header:
Table 5. Data packet header content

Link layer Next sequence Sequence More data Reserved
identifier number number

(2 bits) (1 bit) (1 bit) (1 bit) (3 bits)

The next sequence number (NESN) bit is used for performing packet acknowledgments. It
informs the receiver device of the next sequence number that the transmitting device is
expecting it to send. Packet is retransmitted until the NESN is different from the sequence
number (SN) value in the sent packet.

More data bit is used to signal to a device that the transmitting device has more data ready
to be sent during the current connection event.

For a detailed description of advertising and data header contents & types refer to the
Bluetooth specification v4.0 [Vol 2], on Section 5: References.

e Length: number of bytes on data field

Table 6. Packet length field and valid values
Length field bits

Advertising packet 6 bits, with valid values from 0 to 37 bytes

Data packet 5 bits, with valid values from 0 to 31 bytes

e Data or payload: it is the actual transmitted data (advertising data, scan response data,
connection establishment data, or application data sent during the connection).

e CRC (24 bits): it is used to protect data against bit errors. It is calculated over the
header, length and data fields.

3

14/97 DocID027104 Rev 3

PM0237

Bluetooth low energy technology

1.3.2

3

Advertising state

Advertising states allow Link Layer to transmit advertising packets and also to respond with
scan responses to scan requests coming from devices which are actively scanning.

An advertiser device can be moved to a standby state by stopping the advertising.

Each time a device advertises, it sends the same packet on each of the three advertising
channels. This three packets sequence is called an advertising event. The time between two
advertising events is referred to as the advertising interval, which can go from 20
milliseconds to every 10.28 seconds.

Following is an example of advertising packet that lists the Service UUID that the device
implements (General Discoverable flag, tx power = 4dbm, Service data = temperature
service and 16 bits service UUIDs).

Figure 5. Advertising packet with AD type flags

Preamble Advertising Advertising Payload Advertising Flags-LE TX Power Service Data | 16 bit service CRC
Access Header Length Address General Level =4 dBm | “Temperature” | UUIDs =
Address Discoverable =20.5°C “Temperature
Flag service”

GAMSEC201411251139

The Flags AD type byte contains the following flag bits:
e Limited Discoverable Mode (bit 0);
e General Discoverable Mode (bit 1);
e BR/EDR Not Supported (bit 2, It is 1 on BLE);
e Simultaneous LE and BR/EDR to Same Device Capable (Controller) (bit 3);
e Simultaneous LE and BR/EDR to Same Device Capable (Host) (bit 4)
The Flags AD type shall be included in the advertising data if any of the bits are non-zero (it
is not included in scan response).
The following advertising parameters can be set before enabling advertising:
e Advertising interval;
e Advertising address type;
e Advertising device address;
e Advertising channel map: which of the three advertising channels should be used;
e Aduvertising filter policy:
— Process scan/connection requests from devices in the white list
— Process all scan/connection requests (default advertiser filter policy)
— Process connection requests from all devices but only scan requests in the white
list
— Process scan requests from all devices but only connection requests in the white
list

DocID027104 Rev 3 15/97

Bluetooth low energy technology PM0237

1.3.3

16/97

A white list is a list of stored device addresses used by the device controller for filtering
devices. The white list content cannot be modified while it is being used. If the device is in
advertising state and is using a white list to filter the devices (scan requests or connection
requests), it has to disable advertising mode for changing its white list.

Scanning state

There are two types of scanning:
e Passive scanning: it allows to receive advertisement data from an advertiser device

e Active scanning: when an advertisement packet is received, device can send back a
Scan Request packet, in order to get a Scan Response from the advertiser. This allows
the scanner device to get additional information from the advertiser device.

The following scan parameters can be set:

e Scanning type (passive or active)

e Scan interval: how often the controller should scan

e Scan window: for each scanning interval, it defines how long the device scans

e Scanfilter policy: it can accept all the advertising packets (default policy) or only the
ones on the white list.

Once the scan parameters are set, it is possible to enable the device scanning. The
controller of the scanner devices sends to upper layers any received advertising packets
within an Advertising Report event. This event includes the advertiser address, advertiser
data, and the received signal strength indication (RSSI) of this advertising packet. The RSSI
can be used with the transmit power level information included within the advertising
packets to determine the path-loss of the signal and identify how far the device is:

Path loss = Tx power — RSSI.

3

DoclD027104 Rev 3

PM0237

Bluetooth low energy technology

1.3.4

3

Connection state

When data to be transmitted are more complex than the ones allowed by advertising data or
a bidirectional reliable communication between two devices is needed, the connection is
established.

When an initiator device receives an advertising packet from an advertising device to which
it wants to connect, it can send a connect request packet to the advertiser device. This
packet includes all the required information needed for establishing and handling the
connection between the two devices:

e Access address used in the connection in order to identify communications on a
physical link

¢ CRC initialization value

e Transmit window size (timing window for first data packet)

e Transmit window offset (offset of transmit window start)

e Connection interval (time between two connection events)

e Slave latency (number of times slave can ignore connection events before it is forced to
listen)

e Supervision timeout (max time between two correctly received packets before link is
considered lost)

e Channel map: 37 bits (1= good; 0 = bad)
e Frequency-hop value (random number between 5 and 16).

e Sleep clock accuracy range (used to determine the uncertainty window of the slave
device at connection event).

For a detailed description of the connection request packet refer to Bluetooth Specification
V4.0 [Vol 6], Section 2.3.3.

The allowed timing ranges are summarized in Table 7:

Table 7. Connection request timings intervals

Parameter Min Max Note

Transmit window size 1.25 milliseconds 10 milliseconds

Transmit window Offset | 0 Connection interval M.ulltlples S
milliseconds

Connection interval 7.5 milliseconds 4 seconds M.U|.t'ples of 1.25
milliseconds

Supervision Timeout 100 milliseconds 32 seconds M.ulltlples of 10
milliseconds

The transmit window starts after the end of the connection request packet plus the transmit
window offset plus a mandatory delay of 1.25 ms. When the transmit window starts, the
slave device enters in receiver mode and wait for a packet from the master device. If no
packet is received within this time, the slave leaves receiver mode, and it tries one
connection interval again later. When a connection is established, a master has to transmit a
packet to the slave on every connection event for allowing slave to send packets to the
master. Optionally, a slave device can skip a given number of connection events (slave
latency).

DocID027104 Rev 3 17/97

Bluetooth low energy technology PM0237

A connection event is the time between the start of the last connection event and the
beginning of the next connection event.

A BLE slave device can only be connected to one BLE master device, but a BLE master
device can be connected to several BLE slave devices. On the Bluetooth SIG, there is no
limit on the number of slaves a master can connect to (this is limited by the specific used
BLE technology or stack).

1.4 Host controller interface (HCI)

The Host Controller Interface (HCI) layer provides a mean of communication between the
host and controller either through software API or by a hardware interface such as SPI,
UART or USB. It comes from standard Bluetooth specification, with new additional
commands for low energy-specific functions.

1.5 Logical link control and adaptation layer protocol (L2CAP)

The Logical Link Control and Adaptation Layer Protocol (L2CAP), supports higher level
protocol multiplexing, packet segmentation and reassembly operation, and the conveying of
quality of service information.

1.6 Attribute Protocol (ATT)

The Attribute Protocol (ATT) allows a device to expose certain pieces of data, known as
attributes, to another device. The device exposing attributes is referred to as the Server and
the peer device using them is called the Client.

An attribute is a data with the following components;

e Attribute handle: it is a 16 bits value which identifies an attribute on a Server, allowing
the Client to reference the attribute in read or write requests;

e Attribute type: it is defined by a Universally Unique Identifier (UUID) which determines
what the value means. Standard 16 bits attribute UUIDs are defined by Bluetooth SIG;

e Attribute value: a (0 ~ 512) octets in length;

e Attribute permissions: they are defined by each higher layer that uses the attribute.
They specify the security level required for read and/or write access, as well as
notification and/or indication. The permissions are not discoverable using the attribute
protocol. There are different permissions types:

— Access permissions: they determine which types of requests can be performed on
an attribute (readable, writable, readable and writable)

— Authentication permissions: they determine if attributes require authentication or
not. If an authentication error is raised, client can try to authenticate it by using the
Security Manager and send back the request.

— Authorization permissions (no authorization, authorization): this is a property of a
server which can authorize a client to access or not to a set of attributes (client
cannot resolve an authorization error).

3

18/97 DocID027104 Rev 3

PM0237

Bluetooth low energy technology

3

Attribute example
Table 8. Attribute example

Attribute handle Attribute type Attribute value Attribute permissions
“Read Only, No
0x0008 “Temperature UUID” “Temperature Value” authorization, No
authentication”

e “Temperature UUID” is defined by “Temperature characteristic” specification and it is a
signed 16-bit integer.

A collection of attributes is called a database that is always contained in an attribute server.

Attribute protocol defines a set of methods protocol for discovering, reading and writing
attributes on a peer device. It implements the peer-to-peer Client-Server protocol between
an attribute server and an attribute client as follows:

e Serverrole
— Contains all attributes (attribute database)
— Receives requests, executes, responds commands
— Canindicate, notify an attribute value when data change
e Clientrole
— Talk with server
— Sends requests, wait for response (it can access (read), update (write) the data)
— Can confirm indications

Attributes exposed by a Server can be discovered, read, and written by the Client, and they
can be indicated and notified by the Server as described in Table 9:

Table 9. Attributes protocol messages

Protocol Data Unit —n
(PDU message) Sent by Description
Request Client Client requests something from server (it
always causes a response)
Server sends response to a request from a
Response Server .
client
Command Client Client commands something to server (no
response)
Notification Server Ser\{er nqtlfles client of new value (no
confirmation)
C Server indicates to client new value (it always
Indication Server) .
causes a confirmation)
Confirmation Client Confirmation to an indication
DoclD027104 Rev 3 19/97

Bluetooth low energy technology PM0237

1.7

20/97

Security Manager (SM)

The Bluetooth low energy link layer supports encryption and authentication by using the
Cipher Block Chaining-Message Authentication Code (CCM) algorithm and a 128-bit AES
block cipher. When encryption and authentication are used in a connection, a 4-byte
Message Integrity Check (MIC) is appended to the payload of the data channel PDU.
Encryption is applied to both the PDU payload and MIC fields.

When two devices want to encrypt the communication during the connection, the Security
Manager uses the pairing procedure. This procedure allows to authenticate two devices and
creates a common link key that can be used as a basis for a trusted relationship or a (single)
secure connection.

Pairing procedure is a three-phase process.

Phase 1: pairing feature exchange

e The two connected devices communicates their input/output capabilities by using the
Pairing request message. This message also contains a bit stating if out-of-band data
is available and the authentication requirements.

e There are three input capabilities:

a) noinput;

b) the ability to select yes/no;

c) the ability to input a number by using the keyboard.
e There are two output capabilities:

— No output;

— Numeric output: ability to display a six-digit number

Table 10. Combination of Input/Output capabilities on a BLE device

No output Display
No input No Input No output Display Only
Yes/No No Input No output Display Yes/No
Keyboard Keyboard only Keyboard Display

The information exchanged in Phase 1 is used to select which STK generation method is
used in Phase 2.

Phase 2: short term key (STK) generation:
e The pairing devices first define a Temporary Key (TK), by using one of the following
methods.
a) The out-of-band (OOB) method which uses out of band communication (example:
NFC) for the TK agreement (it is selected if the out-of-band bit is set);
b) Passkey Entry method: user passes six numeric digits as the TK between the
devices;
c) Just Works: this method is not authenticated, and it does not provide any
protection against man-in-the-middle (MITM) attacks.

3

DoclD027104 Rev 3

PM0237

Bluetooth low energy technology

The selection between PassKey and Just Works method is done based on the following
table:
Table 11. Methods used for calculating the Temporary Key (TK)

. Display Keyboard No Input No Keyboard
Display only Yes/No only Output display
Dgr;:ll;y Just Works Just Works Passkey Entry | Just Works Passkey Entry
Display Just Works Just Works Passkey Entry | Just Works | Passkey Entry
Yes/No
Keyboard
Only Passkey Entry Passkey Entry | Passkey Entry | Just Works | Passkey Entry
NoIlnputNo
Just Works Just Works Just Works Just Works Just Works
Output
Keyboard
Display Passkey Entry Passkey Entry | Passkey Entry | Just Works | Passkey Entry

3

Phase 3: transport specific key distribution

e Once the Phase 2 is completed, up to three 128-bit keys can be distributed by
messages encrypted with the STK key:

a) Long-term key (LTK): it is used to generate the 128-bit key used for Link Layer
encryption and authentication;

b) Connection signature resolving key (CSRK): it is used for the data signing
performed at the ATT layer;

c) Identity resolving key (IRK): it is used to generate a private address on the basis of
a device public address.

When the established encryption keys are stored in order to be used for future
authentication, the devices are bonded.

Another security mechanism supported from BLE is the use of private addresses. A private
address is generated by encrypting the public address of the device. This private address
can be resolved by a trusted device that has been provided with the corresponding
encryption key.This allows the device to use a private address for a more secure
communication and to change it frequently (only devices with the related IRK are able to
recognize it).

It is also possible to transmit authenticated data over an unencrypted Link Layer connection
by using the CSRK key: a 12-byte signature is placed after the data payload at the ATT
layer.

The signature algorithm also uses a counter which allows to provide protection against
replay attacks (an external device which can simply capture some packets and send them
later as they are without any understanding of packet content: the receiver device simply
checks the packet counter and discards it since its frame counter is less than the latest
received good packet).

DocID027104 Rev 3 21/97

Bluetooth low energy technology PM0237

1.8

1.8.1

22/97

Generic attribute profile (GATT)

The Generic Attribute Profile (GATT) defines a framework for using the ATT protocol, and it
is used for services, characteristics, descriptors discovery, characteristics reading, writing,
indication and notification.

On GATT context, when two devices are connected, there are two devices roles:

e GATT client: it is the device which accesses data on the remote GATT server via read,
write, notify, or indicate operations.

e GATT server: it is the device which stores data locally and provides data access
methods to a remote GATT client.
It is possible for a device to be a GATT server and a GATT client at the same time.

The GATT role of a device is logically separated from the master, slave role. The master,
slave roles define how the BLE radio connection is managed, and the GATT client/server
roles are determined by the data storage and flow of data.

As consequence, it is not required that a slave (peripheral) device has to be the GATT
server and that a master (central) device has to be the GATT client.

Attributes, as transported by the ATT, are encapsulated within the following fundamental
types:

1. Characteristics (with related descriptors)

2. Services (primary, secondary and include)

Characteristic attribute type

A characteristic is an attribute type which contains a single value and any number of
descriptors describing the characteristic value that may make it understandable by the user.

A characteristic exposes the type of data that the value represents, if the value can be read
or written, how to configure the value to be indicated or notified, and it says what a value
means.

A characteristic has the following components:

1. Characteristic declaration

2. Characteristic value

3. Characteristic descriptor(s)

3

DoclD027104 Rev 3

PM0237

Bluetooth low energy technology

3

Figure 6. Example of characteristic definition

Characteristic Definition

Characteristic Declaration

Characteristic Value Declaration

Descriptor Declaration

Descriptor Declaration

GAMSEC201411251245

A characteristic declaration is an attribute defined as follows:

Table 12. Characteristic declaration

Attribute Attribute type Attribute value Attr.lblfte
handle permissions
Characteristic value properties (read,
broadcast, write, write without response,
notify, indicate, ...). Determine how
0x2803 characteristic value can be used or how Read only,
OxNNNN (LUID f.or' characteristic descriptor can be accessed No authentication
characteristic i : No authorization’
attribute type) | Characteristic value attribute handle

Characteristic value UUID (16 or 128 bits)

DoclD027104 Rev 3

23/97

Bluetooth low energy technology

PM0237

A characteristic declaration contains the value of the characteristic. This value is the first
attribute after the characteristic declaration:

Table 13. Characteristic value

Attribute handle

Attribute type

Attribute value

Attribute permissions

OxNNNN

Oxuuuu — 16 bits or 128
bits for characteristic
uuibD

Characteristic value

Higher layer profile or
implementation specific

1.8.2

Characteristic descriptors type

Characteristic descriptors are used to describe the characteristic value for adding a specific
“meaning” to the characteristic and making it understandable by the user. The following
characteristic descriptors are available:

1. Characteristic extended properties: it allows to add extended properties to the

characteristic

2. Characteristic user description: it enables the device to associate a text string to the

characteristic;

3. Client characteristic configuration: it is mandatory if the characteristic can be notified or
indicated. Client application must write this characteristic descriptor for enabling
characteristic notification or indication (provided that the characteristic property allows
notification or indication);

4. Server characteristic configuration: optional descriptor

5. Characteristic presentation format: it allows to define the characteristic value
presentation format through some fields as format, exponent, unit namespace,
description in order to correctly display the related value (example temperature
measurement value in °C format);

6. Characteristic aggregation format: It allows to aggregate several characteristic
presentation formats.

For a detailed description of the characteristic descriptors, refer to the Bluetooth

specification v4.0.

1.8.3

Service attribute type

A service is a collection of characteristics which operate together to provide a global service
to an applicative profile. For example, the Health Thermometer service includes
characteristics for a temperature measurement value, and a time interval between
measurements. A service or primary service can refer other services that are called

secondary services.

A service is defined as follows:
Table 14. Service declaration

Attribute handle

Attribute type

Attribute value

Attribute permissions

OxNNNN

0x2800 — UUID for
“Primary Service” or
0x2801 — UUID for
“Secondary Service”

Oxuuuu — 16 bits or 128
bits for Service UUID

Read only,
No authentication,
No authorization

24/97

DoclD027104 Rev 3

S74

PM0237 Bluetooth low energy technology
A service shall contain a service declaration and may contain definitions and characteristic
definitions. A service includes declaration follows the service declaration and any other
attributes of the server.

Table 15. Include declaration
Attribute Attribute type Attribute value Att':'bu.te
handle permissions
0x2802 (UUID | Include service End arou Service Read only,
OXNNNN for include attribute har?dle P UUID No authentication,
attribute type) handle No authorization
“Include service attribute handle” is the attribute handle of the included secondary service
and “end group handle” is the handle of the last attribute within the included secondary
service.
1.8.4 GATT procedures

3

The Generic Attribute Profile (GATT) defines a standard set of procedures allowing to
discover services, characteristics, related descriptors and how to use them.

The following procedures are available:
e Discovery procedures (Table 16)

e Client-initiated procedures (Table 17)

e Server-initiated procedures (Table 18)

Table 16. Discovery procedures and related response events

Procedure

Response events

Discovery all primary services

Read by group response

Discovery primary service by service UUID

Find by type value response

Find included services

Read by type response event

Discovery all characteristics of a service

Read by type response

Discovery characteristics by UUID

Read by type response

Discovery all characteristics descriptors

Find information response

Table 17. Client-initiated procedures and related response events

Procedure

Response events

Read characteristic value

Read response event.

Read characteristic value by UUID

Read response event.

Read long characteristic value

Read blob response events

Read multiple characteristic values

Read response event.

Write characteristic value without response

No event is generated

Signed write without response

No event is generated

Write characteristic value

Write response event.

DoclD027104 Rev 3

25/97

Bluetooth low energy technology

PM0237

1.9

26/97

Table 17. Client-initiated procedures and related response events (continued)

Procedure

Response events

Write long characteristic value

Prepare write response
Execute write response

Reliable write

Prepare write response
Execute write response

Table 18. Server-initiated procedures and related response events

Procedure Response events
Notifications No event is generated
Indications Confirmation event

For a detailed description about the GATT procedures and related responses events refer to
the Bluetooth specification v4.0 on Section 5: References.

Generic access profile (GAP)

The Bluetooth system defines a base profile implemented by all Bluetooth devices called
Generic Access Profile (GAP). This generic profile defines the basic requirements of a
Bluetooth device.

The four GAP profiles roles are described in the table below:

Table 19. GAP roles(

scan. It supports all LL
control procedures
Encryption is optional

Role Description Transmitter | Receiver Typical example
Broadcaster |Sends advertising events M (0] Temperature sensor which
sends temperature values
Temperature display which
Observer Receives advertising events (0] M just receives and display
temperature values
Always a slave.
It is on connectable
Peripheral advertising mode. M M Watch
Supports all LL control
procedures Encryption is
optional.
Always a master.
It never advertises.
Central It supports active or passive M M Mobile phone

1. M = Mandatory; O = Optional

DoclD027104 Rev 3

3

PM0237

Bluetooth low energy technology

3

On GAP context, two fundamental concepts are defined:

e GAP modes: it configures a device to act in a specific way for a long time. There are
four GAP modes types: broadcast, discoverable, connectable and bendable type.

e GAP procedures: it configures a device to perform a single action for a specific, limited
time. There are four GAP procedures types: observer, discovery, connection, bonding

procedures.

Different types of discoverable and connectable modes can be uses at the same time. The
following GAP modes are defined:

Table 20. GAP broadcaster mode

Mode Description Notes GAP role
Device only broadcasts
data using the link layer Broadcasts data can be
Broadcast mode |advertising channels and detected by a device using Broadcaster
packets (it does not set any |the observation procedure
bit on Flags AD type).
Table 21. GAP discoverable modes
Mode Description Notes GAP role
. It cannot set the limited and It cqnnot be dlgcovered by a
Non-discoverable) . device performing a general .
general discoverable bits on L . Peripheral
mode or limited discovery
Flags AD type.
procedure
It is allowed for about 30 sec.
o It sets the limited It is used by devices with
Limited . : which user has recently .
. discoverable bit on Flags AD |. Peripheral
discoverable mode tvoe interacted. For example,
ype. when a user presses a button
on the device.
It is used when a device
It sets the general .
General . : wants to be discoverable. .
. discoverable bit on Flags AD . o Peripheral
discoverable mode There is no limit on the
type. . I
discoverability time.
DoclD027104 Rev 3 27/97

Bluetooth low energy technology

PM0237

28/97

Table 22. GAP connectable modes

Mode Description Notes GAP role
It can only use It cannot use a connectable
Non-connectable | ADV_NONCONN_IND or advertising packet when it Peripheral
mode ADV_SCAN_IND ISIng p P
— . = advertise
advertising packets
It is used from a Peripheral
device that wants to connect
Direct connectable | It uses ADV_DIRECT quickly to a Central device. It .
- can be used only for 1.28 Peripheral
mode advertising packet . .
seconds, and it requires both
peripheral and central devices
addresses
It is used from a device that
wants to be connectable.
Since ADV_IND advertising
packet can include the Flags
AD type, a device can be in
) discoverable and undirected
Uncilrglcted d Itduser? the ADVk—ItND connectable mode at the Peripheral
connectable mode |advertising packet. same time.
Connectable mode is
terminated when the device
moves to connection mode or
when it moves to non-
connectable mode.
Table 23. GAP bondable modes
Mode Description Notes GAP role
Non-bondable It does not al!ow a bond to No keys are stored from the .
be created with a peer . Peripheral
mode : device
device
Device accepts bonding
Bondable mode |request from a Central Peripheral
device.
The following GAP procedures are defined in Table 24:
Table 24. GAP observer procedure
Procedure Description Notes Role
Observation It allows a device to look for
; Observer
procedure broadcaster devices data

DoclD027104 Rev 3

3

PM0237

Bluetooth low energy technology

3

Table 25. GAP discovery procedures

Procedure Description Notes Role
Limited It is used for discovery Device filtering is applied
discoverable peripheral devices in limited | based on Flags AD type Central
procedure discovery mode information
General It 'S used for d|§cov§w Device filtering is applied
. peripheral devices in
discoverable o . based on Flags AD type Central
general ad limited discovery |. .
procedure information
mode
It is the procedure for
Name discovery |retrieving the “Bluetooth
. » Central
procedure Device Name” from
connectable devices
Table 26. GAP connection procedures
Procedure Description Notes Role
Allows the connection with
Auto connection | one or more devices in the
establishment directed connectable mode | It uses white lists Central
procedure or the undirected
connectable mode
Allows a connection with a It supp orts prl\(ate addressgs
General . . | by using the direct connection
. set of known peer devices in .
connection . establishment procedure when
. the directed connectable) . : Central
establishment . it detects a device with a
mode or the undirected . .
procedure private address during the
connectable mode. .
passive scan.
. Establish a connection with
Selective
. the Host selected o .
connection) i . It uses white lists and it scans
. connection configuration . o Central
establishment . by this white list.
rocedure parameters with a set of
P devices in the White List.
. . Establish a connection with
Direct connection e . . .
) a specific device using a General and selective
establishment L . Central
set of connection interval procedures uses it.
procedure
parameters.
Connection Updates the connection
parameter update |parameters used during the Central
procedure connection.
Terminate Terminates a GAP
Central
procedure procedure
DoclD027104 Rev 3 29/97

Bluetooth low energy technology PM0237
Table 27. GAP bonding procedures
Procedure Description Notes Role
Starts the pairing process
Bonding procedure | with the bonding bit set on Central

30/97

the pairing request.

For a detailed description of the GAP procedures, refer to the Bluetooth specification v4.0.

DoclD027104 Rev 3

3

PM0237 Bluetooth low energy technology

1.10 BLE profiles and applications

A service collects a set of characteristics and exposes the behavior of these characteristics
(what the device does, but not how a device uses them). A service does not define
characteristic use cases. Use cases determine which services are required (how to use
services on a device). This is done through a profile which defines which services are
required for a specific use case:

e Profile clients implement use cases

e Profile servers implement services

A profile may implement single or multiple services (available and specified at
http://developer.bluetooth.org).

Standard profiles or proprietary profiles can be used. When using a non-standard profile, a
128 bit UUID is required and must be generated randomly.

Currently, any standard Bluetooth SIG profile (services, and characteristics) uses 16-bit
UUIDs. Services & characteristics specification & UUID assignation can be downloaded
from the following SIG web pages:

e https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
e https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

3

DocID027104 Rev 3 31/97

Bluetooth low energy technology

PM0237

1.10.1

32/97

Figure 7. Client and server profiles

Client

Use case1

Use case 2

+ Use case 1 uses Service AandB
+ Use case 2 uses Service B

Server

Service A

Char.

Service B

Char.

GAMSEC201411251354

Proximity profile example

This section simply describes the Proximity Profile in terms its target, how it works and

required services:

Target

e When is a device close, very far, far away:

— cause an alert

DoclD027104 Rev 3

3

PM0237

Bluetooth low energy technology

3

How it works

if a device disconnects

cause an alert

alert on link loss: «Link Loss> service

— ifa device is too far away

— cause an alert on path loss: «Immediate Alert>» & «Tx Power> service
«Link Loss> service

— KAlert Level>» characteristic

— Behavior: on link loss, cause alert as enumerated
<Immediate Alert> service

— KAlert Level>» characteristic

— Behavior: when written, cause alert as enumerated

«Tx Power> service

— «Tx Power>» characteristic

— Behavior: when read, reports current Tx Power for connection

DoclD027104 Rev 3

33/97

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

2 BlueNRG, BlueNRG-MS stacks architecture and ACI

The BlueNRG, BlueNRG-MS devices are network coprocessors which provide high-level
interface to control its Bluetooth low energy functionalities. This interface is called ACI
(application command interface).

Figure 8. BlueNRG, BlueNRG-MS stacks architecture and interface to the external
host

Application

EXTERNAL MCU
J

Application Command Interface (ACI)

Power

Mem
Management SNy

BlueNRG

BLE Controller

(*) Standard or proprietary

GAMSEC201411261359

BlueNRG and BlueNRG-MS devices embed, respectively, the Bluetooth Smart protocol
stack v4.0 and v4.1 and, as a consequence, no BLE library is required on the external
microcontroller, except for profiles and all the functions needed to communicate with the
BlueNRG or BlueNRG-MS device SPI interface. The SPI interface communication protocol
allows the external microcontroller to send ACl commands to control the BlueNRG or
BlueNRG-MS device and to receive the ACI events generate from the BlueNRG or
BlueNRG-MS device network coprocessor.

34/97 DoclD027104 Rev 3 ‘Yl

PMO0237

BlueNRG, BlueNRG-MS stacks architecture and ACI

2.1

3

ACI interface

The ACI commands utilize and extend the standard HCI data format defined within the
Bluetooth specification v4.0 and v4.1.

The ACI interface supports the following commands:

e Standard HCI commands for controller as defined by Bluetooth specification (v4.0 and
v4.1)

e Vendor Specific (VS) HCI commands for controller
e Vendor Specific (VS) ACl commands for host (L2CAP,ATT, SM, GATT, GAP)

The reference ACI interface framework is provided within the BlueNRG, BlueNRG-MS kits
software package targeting the BlueNRG, BlueNRG-MS kits based on STM32L1 external
microcontroller (refer to Section 5: References).

The ACI interface framework contains the code that is used to send ACl commands to the
BlueNRG and BlueNRG-MS network processors. It also provides definitions of device
events. This framework allows to format each ACI command in the proper way and send the
command incline with the defined ACI SPI communication protocol.

The ACI SPI communication protocol is described on the user manuals UM1755 “BlueNRG
Bluetooth LE stack application command interface (ACI)” and UM1865 “BlueNRG-MS
Bluetooth LE stack application command interface (ACI)", available on ST BlueNRG web
pages. These user manuals also provide a complete description of all related devices ACI
command formats, name parameters, return values and generated events.

The ACI framework interface is defined by the following header files:

Table 28. ACI Interface

File Description Location Notes
Middlewares\S
. HClI library functions prototypes and T\STMB?—BIU To be included on the
hei.h error code definition eNRG\Simple ser main application
' BlueNRG_HCI | ! PP
\includes
It contains constants and functions for
hci_const.h HCI layer. See Bluetooth Core v 4.0, Vol.
2, Part E.
bluenrg_gatt_s Header file for GATT server definition To be mgluded on .the
erver.h user main application
smh Header file for BlueNRG security To be included on the
’ manager user main application
bluenrg_gap.h | Header file for BlueNRG GAP layer Tobe |n9luded on T[he
user main application
bluenra aci.h Header file that contains commands and | .., To be included on the
9_act. events for BlueNRG FW stack user main application
bluenrg_aci_c |Header file with ACI definitions for Itis included by
onst.h BlueNRG FW stack bluenrg_aci.h
bluenrg_hal_a |Header file with HCI commands for It is included by
ci.h BlueNRG FW stack bluenrg_aci.h
DoclD027104 Rev 3 35/97

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

2.2

36/97

Table 28. ACI Interface (continued)

File Description Location Notes
bluenrg_l2cap |Header file with L2ZCAP commands for |., It is included by
_aci.h BlueNRG FW stack bluenrg_aci.h
bluenrg_gatt_a | Header file with GATT commands for It is included by
ci.h BlueNRG FW stack bluenrg_aci.h
bluenrg_gap_a | Header file with GAP commands for It is included by
ci.h BlueNRG FW stack bluenrg_aci.h
bluenrg_updat | Header file with updater commands for |., It is included by
er_aci.h BlueNRG FW stack bluenrg_aci.h

ACI Interface resources

In order to communicate with BlueNRG or BlueNRG-MS network processor through the ACI
interface framework, the external microcontroller requires only the following main resources:

1. SPlinterface
2. Platform-dependent code to write/read to/from SPI
3. Atimer to handle SPI timeouts

The BlueNRG, BlueNRG-MS SPI interface is handled through the functions defined on files
SDK_EVAL_SPI_Driver.[ch] and hal.[ch]. These APIs allows the external microcontroller to
get access to BlueNRG or BlueNRG-MS device. The BlueNRG, BlueNRG-MS devices use
the SPI IRQ pin to notify the external microcontroller (SPI master) when it has data to be
read: this is handled through the HCI_lIsr() placed within the SPI_IRQ_IRQHandler() handler
on file stm32l1xx_it.c (Standard library framework) and within the
HAL_GPIO_EXTI_Callback() on file bluenrg_interface.c (Cube library framework). The SPI
IRQ handler is associated to the proper EXTI irq handler, based on the selected platform
GPIO line for the BlueNRG, BlueNRG-MS SPI interrupt line.

The BlueNRG, BlueNRG-MS kits platforms are targeting the STM32L 1xx microcontroller

and the related libraries are used in order to get access to the device peripheral. Two

frameworks are available:

1. STMB32L1xx standard libraries which are provided within the
platform\STM32L1XX\Libraries\STM32L1xx_StdPeriph_Driver folder;

2. STM32L1xx Cube libraries which are provided within the
Drivers\STM32L1xx_HAL_Driver folder

3

DoclD027104 Rev 3

PM0237 BlueNRG, BlueNRG-MS stacks architecture and ACI

Table 29. ACI Interface resources files

File Description Location Notes
Main APIs These APIs are
handling SPI platform\STM32L1XX\Libraries\SDK_Eval_STM mapped to the
. communicatio | 32L\src on STM32L1 standard library specific
]SDK_EVAL_SPI_Drlver.[ch n with framework; microcontroller low
BlueNRG, Drivers\BSP\STM32L 1xx_BlueNRG level drivers
BlueNRG-MS | 5n STM32L1 Cube library framework. handling the SPI
device peripheral
Other APIs
handling
communicatio | - ttorm\STM32L1XX (only on STM32L1
hal.[ch] n with standard library framework)
BlueNRG, y
BlueNRG-MS
device
platform\STM32L1XX on STM32L1 standard
SPI timer library framework; It provides the low
clock.[ch] APls It is defined within the specific user application |level APIs handling
folder on STM32L1 Cube library framework. the SPI timeouts

stm3211xx_it.c (Standard Main Interrupt
library), stm32xx_it.c Service
(Cube Library) Routines

It is defined within the specific user application
folder

When using another external microcontroller these files should be ported/adapted for
addressing the ACI SPI communication.

In order to proper setup the ACI SPI interface, user is only requested to perform the
following steps at initialization time, on main() function:

1. Init SPI interface by calling the following API:
SdkEvalSpilInit (SPI_MODE_EXTI) ;

2. Reset the BlueNRG module by calling the following API:
BlueNRG RST() ;

The user is also requested to place HCI_Isr() within the SPI_IRQ_IRQHandler() handler on
file stm32I1xx_it.c on Standard library framework and within the
HAL_GPIO_EXTI_Callback() on file bluenrg_interface.c on Cube library framework. This
allows BlueNRG, BlueNRG-MS device to use the SPI IRQ pin to notify the external
microcontroller (SPI master) when it has data to be read.

3

DocID027104 Rev 3 37/97

BlueNRG, BlueNRG-MS stacks architecture and ACI

PM0237

2.3

Other platforms resources files

The SW framework provides other files handling some platform-dependent resources as 1/0
communication channel (USB or UART), buttons, LEDs, EEPROM).

Table 30. SW framework platforms drivers

File Description Location Notes
Main API These APls are
ain AFls platform\STM32L1XX\Libraries\SDK_Eval_STM | mapped to the
handllng.I/Ot. 32L on STM32L1 standard library framework; | specific
SDK_EVAL _lo.[ch] COMMUNICANO | iy iy ers\BSP\STM32L 1xx_STEVAL_IDB0OXV1 | microcontroller
n (USB virtual . . .
on STM32L1 Cube library framework. drivers handling
COM or .
UART) USB virtual COM or
UART.
These APls are
. platform\STM32L1XX\Libraries\SDK_Eval_STM | mapped to the
SDK EVAL Butt . AIPI; handling | 32| on STM32L1 standard library framework; specific
_EVAL_Buttons. [ch] Elitgr:;“ Drivers\BSP\STM32L1xx_STEVAL_IDB0OxV1 | microcontroller
on STM32L1 Cube library framework. drivers handling
GPIOs
These APls are
platform\STM32L1XX\Libraries\SDK_Eval_STM | mapped to the
APIs handling |32L on STM32L1 standard library framework; specific

SDK_EVAL_Leds.[ch]

platform LEDs

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1
on STM32L1 Cube library framework.

microcontroller
drivers handling
GPIOs.

SDK_EVAL_Eeprom.[ch]

APIs handling
EEPROM

platform\STM32L1XX\Libraries\SDK_Eval_STM
32L on STM32L1 standard library framework;

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1
on STM32L1 Cube library framework.

On BlueNRG,
BlueNRG-MS Kkits,
an external
EEPROM is
provided for storing
platform
manufacturing tests
results.

These files should be ported/adapted to address another external microcontroller.

2.3.1

Platforms configuration

In order to easily support the BlueNRG, BlueNRG-MS kits platforms, the BlueNRG SW
framework is designed for recognizing such platforms at runtime. User is only requested to
call the SdkEvalldentification() API at initialization time on main() function.

BlueNRG, BlueNRG-MS kits platforms can be also supported at compile time, by adding,
respectively, only one of the following define on EWARM workspace preprocessor options:

USER_DEFINED PLATFORM=STEVAL IDB002V1 (itis valid for both BlueNRG, BlueNRG-MS
development platforms).

USER_DEFINED PLATFORM=STEVAL IDB003V1 (it is valid for both BlueNRG, BlueNRG-MS
USB dongles).

38/97

DoclD027104 Rev 3

S74

PMO0237

BlueNRG, BlueNRG-MS stacks architecture and ACI

Note:

3

The following define values allow to select, at compile time, the specific platforms header
files provided within the platform\STM32L1XX\Libraries\SDK_Eval_STM32L\inc folder
(STM32L1xx standard library case):

#if USER DEFINED PLATFORM == STEVAL IDB002V1

#include "USER_Platform Configuration STEVAL_ IDB002V1.h"
#elif USER DEFINED PLATFORM == STEVAL IDB0O03V1

#include "USER Platform Configuration STEVAL IDB0O03V1.h"
#endif

A user platform can be simply supported, at compile time, by following these steps:

1. Create afile "USER_Platform Configuration.h" with specific user platform
configuration:
USER_Platform Configuration_ STEVAL_IDB002V1.h Or
USER_Platform Configuration STEVAL IDB003V1.h can be used as reference on
STM32L1xx standard library case (to be extended based on available user platform
resources).

2. Place the "USER_Platform Configuration.h" on the
STM32L\platform\STM32L1XX\Libraries\SDK_Eval_STM32L\inc folder (STM32L1xx
standard library case).

3. On the selected EWARM workspace preprocessor options, add this define:
USER_DEFINED_ PLATFORM=USER EVAL PLATFORM.

If no user platform is defined at compile time, through the related preprocessor option,
USER_DEFINED_PLATFORM is automatically set to STEVAL_IDB00xV1. This allows to
include the file USER_Platform_Configuration_auto.h which contains the BlueNRG,
BlueNRG-MS kits platforms define values used during the runtime auto configuration
procedure performed from SdkEvalldentification() function. This header file must not be
modified by user.

Similar approach can be followed on STM32L 1xx Cube context, by referring, as example, to
the files USER_Platform_Configuration_bluenrg.h on Drivers\BSP\STM32L 1xx_BlueNRG
folder and USER_Platform_Configuration.h on Drivers\BSP\STM32L 1xx_Nucleo folder
(these files are used for addressing the STM32L NUCLEO-L152RE + X-NUCLEQ_IDB04A1
BlueNRG platform).

DocID027104 Rev 3 39/97

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

24

Note:

40/97

How to port the ACI SPI interface framework to a selected
microcontroller

BlueNRG, BlueNRG-MS devices are network coprocessors providing the Bluetooth low
energy features. In order to get access to its functionality, an external microcontroller can be
used by implementing the ACI SPI interface framework previously described. BlueNRG,
BlueNRG-MS development kits software package provides a reference framework targeting
this ACI SPI interface. This framework can be ported to another external microcontroller by
following these steps:

1. Define a specific "USER_Platform_Configuration.h" with specific user platform SPI
configuration (refer to Section 2.3.1: Platforms configuration).

2. On the selected user application preprocessor options, add this define:
USER_DEFINED PLATFORM=USER_EVAL PLATFORM

3. Replace the STM32L1xx libraries on folder
platform\STM32L1XX\Libraries\STM32L1xx_StdPeriph_Driver folder with the specific
microcontroller low level drivers (STM32L1xx standard library case)

4. Replace the CMSIS Cortex-M3 files and the startup file (file startup_stm3211xx_md.s)
accordingly to the selected microcontroller

5. Readapt/port accordingly to the selected microcontroller the file system_stm32l1xx.c
handling the system clock configuration for STM32L1xx

6. Adapt/port the files described in the section in order to refer to the selected external
microcontroller low level drivers.

Readapt/port accordingly to the selected microcontroller the stm3211xx_it.c (STD library),
stm32xx_it.c (Cube Library) files (make sure that HCI_Isr() is called within the SPI irq API
handling the external IRQ interrupt on the IRQ line).

Once the ACI SPI interface framework has been ported to the selected microcontroller, user
can verify that SPI access from external microcontroller is working by performing the basic

test described in the section “SPI Interface” of the application note AN4494 “Bringing up the

BlueNRG, BlueNRG-MS”, available on ST BlueNRG and BlueNRG-MS web pages.

Similar approach can be followed on STM32L 1xx Cube context, by referring to the specific
files on Drivers folder (CMSIS and STM32L1xx_HAL_Driver).

3

DoclD027104 Rev 3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

3 Design an application using BlueNRG, BlueNRG-MS
ACI APIs

This section provides information and code examples about how to design and implement a
Bluetooth low energy application on the selected microcontroller.

User implementing a BLE host application on the selected MCU has to go through some
basic and common steps:

1. Initialization phase and main application Loop

BlueNRG, BlueNRG-MS events and events Callback setup

Services and characteristic configuration (on GATT server)

Create a connection: discoverable, connectable modes & procedures.

Security (pairing & bonding)

Service and characteristic discovery

Characteristic notification/indications, write, read

Basic/typical error conditions description

© Nk Wb

The STM32L1xx microcontroller is the reference external microcontroller used for the
programming guidelines described on the following sections, since the available BlueNRG,
BlueNRG-MS kits platforms are based on such microcontroller.

Note: On the following sections, some user application “Defines” are used to simply identify the
devices Bluetooth low energy role (central, peripheral, client and server).

Further on each provided pseudo codes any reference to BlueNRG device is also valid for
the BlueNRG-MS device. Any specific difference is highlighted whenever it is needed by
using #ifdef BLUENRG_MS.

Table 31. User application defines for BLE devices role

Define Description
GAP_CENTRAL GAP central role
GAP_PERIPHERAL GAP peripheral role
GATT_CLIENT GATT client role
GATT_SERVER GATT server role
m DocID027104 Rev 3 41/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

3.1

42/97

Initialization phase and main application loop

The following main steps are required for properly configure the selected external
microcontroller and the SPI communication with a BlueNRG or BlueNRG-MS device.

1. Initialize the STM32L device (clock configuration, GPIOs, ...)
2. Configure selected BlueNRG platform

3. Initialize the serial communication channel used for I/O communication (debug and
utility information)

Initialize list heads of ready and free hci data packet queues

Init SPI interface for allowing external microcontroller to get access to the BlueNRG
features properly

Reset the BlueNRG, BlueNRG-MS network coprocessor

Configure BlueNRG, BlueNRG-MS public address (if public address is used)
Init BLE NRG GATT layer

Init BLE NRG GAP layer depending on the selected device role

0. Set the proper security 1/0 capability and authentication requirement (if BLE NRG
security is used)

11. Define the required Services & Characteristics if the device is a GATT server

12. Add a while(1) loop calling the HCI_Process() API and a specific user application
function where user actions/events are processed (advertising, connections, services
and characteristics discovery, notification and related events).

o &

= © ®NOo

The following pseudocode example illustrates the required initialization steps:
int main(void)
{
int ret;
/* Device Initialization */
Init Device() ;
/* Identify BlueNRG, BlueNRG-MS platform */
SdkEvalIdentification() ;
/* Configure I/0 communication channel:

It requires the void IO _Receive Data(uint8 t * rx data, uintlé_t
data size) function where user received data should be processed */

SdkEval IO Config(processInputData) ;
/* Initialize list heads of ready and free hci data packet queues */
HCI Init();
/* Init SPI interface */
SdkEvalSpiInit (SPI_MODE EXTI) ;
/* Reset the BlueNRG network coprocessor */
BlueNRG_RST() ;
/* Configure BlueNRG address as public (its public address is used) */
{
uint8 t bdaddr[] = {0xaa, 0x00, 0x00, OxEl, 0x80, 0x02};

ret = aci hal write config data (CONFIG DATA PUBADDR OFFSET,
CONFIG_DATA PUBADDR LEN,bdaddr) ;

if (ret) PRINTF ("Setting BD ADDR failed.\n");

3

DoclD027104 Rev 3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

}

/* Init BlueNRG GATT layer */
ret = aci gatt init();
if (ret) PRINTF ("GATT Init failed.\n");
/* Init BlueNRG GAP layer as peripheral or central */
{
uintl6_t service handle, dev_name char handle, appearance char handle;
#if GAP PERIPHERAL
uint8 t role = GAP_ PERIPHERAL ROLE;

#else

uint8 t role = GAP CENTRAL ROLE;
#endif
#if BLUENRG_MS

ret = aci gap init(role, 0, 0x07, &service handle,
&dev_name_char_handle, &appearance_char handle) ;

#else

ret = aci gap init(role, &service handle, &dev_name char handle,
&appearance char handle) ;
#endif

if (ret) PRINTF("GAP Init failed.\n");

}

/**** If gecurity is used, set the I/0 capability and authentication
requirement: refer to Section*/

#if GATT SERVER
/* User application function where service and characteristics are
defined: refer to Section Services & Characteristics Configuration Section
*/
ret = Add_Server Services_ Characteristics() ;
if (ret == BLE_STATUS_ SUCCESS)
PRINTF ("Services & Characteristics added successfully.\n");
else
PRINTF ("Error while adding Services & Characteristics.\n");
#endif

/* Main Application Loop */

while (1)
/* Process any pending HCI events read */
HCI Process|()

/* User specific application function where user actions and events are
processed (advertising, connections, services and characteristics
discovery, notification)

*/

User Process|() ;

3

DocID027104 Rev 3 43/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

} /* end main() */

Note: 1. Init_Device() initializes the STM32L1xx microcontroller according to the selected
framework (Standard or Cube library).
2. User_Process() is just an application dependent function. On the following sections,
some reference specific actions/events are described based on the most common BLE
functionalities. User developer can adapt/modify/replace them.
3. When performing the GATT_Init() & GAP_Init() APIs, BlueNRG and BlueNRG-MS stacks
always add two standard services: Attribute Profile Service (0x1801) with Service Changed
Characteristic and GAP Service (0x1800) with Device Name and Appearance
characteristics.
4. The last attribute handle reserved for the standard GAP service is 0x000F on BlueNRG
stack and 0x000B on BlueNRG-MS stack.
Table 32. BlueNRG GATT, GAP default services
Default services Start handle End handle Service UUID
Attribute profile service 0x0001 0x0004 0x1801
Generic access profile (GAP) 0x0005 OX000F 0x1800
service
Table 33. BlueNRG GATT, GAP default characteristics
. Char
Default Characteristic Attribute Char propert value Char Char value length
Services handle property A\ uuID (bytes)
andle
Attribute
profile
service
Service 0x0002 Indicate 0x0003 | 0x2A05 4
changed
Generic
access
profile
(GAP)
service
Read|Write without
. response| Write|
Device name 0x0006 Authenticated Signed 0x0007 | 0x2A00 7
Writes
Read|Write without
Response| Write|
Appearance 0x0008 Authenticated Signed 0x0009 | Ox2A01 2
Writes

44/97

3

DoclD027104 Rev 3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

Table 33. BlueNRG GATT, GAP default characteristics (continued)

Default . Attribute Char Char Char value length
. Characteristic Char property value
Services handle uuiD (bytes)
handle
Peripheral
Preferrgd OX000A Read|Write Wlthout 0x000B | Ox2A04 8
Connection Response| Write
Parameters
Reconnection Read|Write without
Address 0x000C Response| Write 0x000D | 0x2A03 6
Peripheral
Preferred 0x000E Read|Write 0x000F | 0x2A04 8
Connection
Parameters

Table 34. BlueNRG-MS GATT, GAP default services

Default services Start handle End handle Service UUID
Attribute profile 0x0001 0x0004 0x1801
service
Generic access profile
(GAP) service 0x0005 0x000B 0x1800
Table 35. BlueNRG-MS GATT, GAP default characteristics

Default Attribute Char Char Char value length

Services Characteristic handle Char property value UUID (bytes)
handle

Attribute

Profile

Service

Service 0x0002 Indicate 0x0003 | 0x2A05 4
Changed

Generic

Access

Profile

(GAP)

Service

Read|Write without
. Response| Write|
Device Name 0x0006 Authenticated Signed 0x0007 | Ox2A00 7
Writes

‘Yl DoclD027104 Rev 3 45/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

Table 35. BlueNRG-MS GATT, GAP default characteristics

Default Characteristic Attribute Char propert \?;;3; Char Char value length
Services handle property hande | UUID (bytes)

Read|Write without
Response| Write|

Appearance 0x0008 Authenticated Signed 0x0009 | 0x2A01 2
Writes
Peripheral
Preferrgd 0X000A Read|Write wﬂhput O0X000B | 0x2A04 8
Connection Response| Write
Parameters

4. The GAP_Init() role parameter values are as follows:

Table 36. GAP_Init() role parameter values

Device Role parameter values Note
BILeNRG 0x01:Peripheral Broadcaster, Observer are not
0x03: Central supported on BlueNRG device
0x01:Peripheral The role parameter can be a
0x02: Broadcaster bitwise OR of any of the
BlueNRG-MS 0x04: Central supported values (multiple roles
0x08: Observer simultaneously support)

Further, on BlueNRG-MS stack, two new parameters are available on GAP_lInit() API:
— enable_Privacy: 0x00 for disabling privacy; 0x01 for enabling privacy;
— device_name_char_len: it allows to indicate the length of the device name
characteristic.

For a complete description of this APl and related parameters refer to the UM1755
and UM1865 User Manuals, on the Section 5: References.

3

46/97 DocID027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3.1.1

3

BLE addresses

The following device addresses are supported from BlueNRG and BlueNRG-MS devices:
e Public address

e Random address

e Private address

Public MAC addresses (6 bytes- 48 bits address) uniquely identifies a BLE device, and they
are defined by Institute of Electrical and Electronics Engineers (IEEE).

The first 3 bytes of the public address identify the company that issued the identifier and are
known as the Organizationally Unique Identifier (OUI). An Organizationally Unique Identifier
(OUI) is a 24-bit number that is purchased from the IEEE. This identifier uniquely identifies a
company and it allows to reserve a block of possible public addresses (up to 2424 coming
from the remaining 3 bytes of the public address) for the exclusive use of a company with a
specific OUI.

An organization/company can request a new set of 6 bytes addresses when at least the
95% of previously allocated block of addresses have been used (up to 2424 possible
addresses are available with a specific OUI).

BlueNRG and BlueNRG-MS devices don't have a valid preassigned MAC address since the
MAC address is specific to manufacturers. The public address must be set by the external
processor.

The ACI command to set the MAC address is ACTI_HAL WRITE CONFIG DATA (opcode
0xFCOC) with command parameters as follow:

e Offset: 0x00 (0x00 identify the BTLE public address, i.e. MAC address)
e Length: 0x06 (Length of the MAC address)
e Value: Oxaabbccddeeff (48 bit array for MAC address)

The command ACI_HAL_WRITE_CONFIG_DATA should be sent to BlueNRG and
BlueNRG-MS devices by the uC before starting BLE operations (after each power-up or
reset of BlueNRG).

The following pseudocode example illustrates how to set a public address:

uint8 t bdaddr[] = {0x12, 0x34, 0x00, OxEl, 0x80, 0x02};

ret=aci_hal write config data (CONFIG DATA PUBADDR OFFSET,CONFIG DATA PUBAD
DR_LEN, bdaddr) ;

if (ret)PRINTF ("Setting address failed.\n")}

MAC address needs to be stored somewhere in the non-volatile memory associated to the
product during product manufacturing.

A user can write its application assuming that the MAC address is placed at a known Flash
location of the microcontroller. During manufacturing, the microcontroller can be
programmed with the customer Flash image via JTAG.

A second step could involve generating the unique MAC address (i.e. reading it from a
database) and storing of the MAC address in the known location in a free 48 bits area of the
Flash.

When the microcontroller’s application needs to access the MAC address simply refers to
the known Flash memory location.

DocID027104 Rev 3 47/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

48/97

Figure 9. MAC address storage

uC memory map

This value change
for each device

MAC address g

Application
code

The application
code is the same
for all devices

Alternatively, the MAC address can be stored in a free area of the BlueNRG and BlueNRG-
MS devices Information register (IFR) region, but this does not offer any advantage, since:

e Programming of the MAC in the IFR requires several SPI transaction as follows:
— Make the device entering Updater mode (1 SPI transaction)
— Program the device IFR with MAC address (1 SPI transaction)
— Make the device leaving Updater mode (1 SPI transaction)
e Access to the MAC address during device initialization (at each power-up or reset)
requires several SPI transaction as follows:
— Make the device entering Updater mode (1 SPI transaction)
— Read MAC address from the device IFR (1 SPI transaction)
— Make the device leaving Updater mode (1 SPI transaction)

BLE standard can also use "random" addresses which are defined by users, and they do not
follow the public addresses rules. The random addresses are handled autonomously by the
device, are set at each reset but they can also be overwritten by the external processor
using the hci_le set random address () AP

Private addresses are used when privacy is enabled and according to the Bluetooth low
energy specification. For more information about private addresses, refer to Section 1.7:
Security Manager (SM).

DoclD027104 Rev 3 ‘Yl

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3.1.2

3

Set tx power level

During the initialization phase user can also select the transmitting power level using the
following API:

aci_hal_set_tx_power_level(high or standard, power level)

Follow a pseudocode example for setting the radio transmit power in high power and -2
dBm output power:

ret = aci_hal set tx power level(l,4);

For a complete description of this API and related parameters refer to the UM1755 and
UM1865 user manuals, on the Section 5: References.

DocID027104 Rev 3 49/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs

PM0237

3.2 BlueNRG, BlueNRG-MS events and events Callback

Whenever there is an ACI event to be processed, the ACI framework notifies this event to
the user application through the HCI_Event_cB () callback. The #HCI_Event_cB() callback
is called within the HCI Process () on file hci.c.

As a consequence, user application is requested to:

1. Define the void HCI Event CB(void *pckt) function within his main application
(pckt is a pointer to the received ACI packet)

2. Based on its own application scenario, the user has to identify the required device
events to be detected and handled and the application specific actions to be done as
consequence of such events.

When implementing a BLE application, the most common and widely used device events
are the ones related to the discovery, connection, terminate procedures, services and
characteristics discovery procedures, attribute modified events on a GATT server and
attribute notification/ indication events on a GATT client.

Table 37. ACI: main events, sub-events

or the pairing has failed

Event/sub-event Description Main event Where
GAP
EVT_DISCONN_COMPLETE A connection is terminated NA central/
peripheral
Indicates to both of the Hosts GAP
. . EVT _LE META
EVT LE CONN COMPLETE forming the connection that a new — = — central/
- - - . . EVENT .
connection has been established peripheral
Generated by the GATT server
when a client modifies any GATT
EVT BLUE GATT ATTRIBUTE MODIFIED - : . EVT_VENDOR
— — = — attribute on the server, if event is - server
enabled.
Generated by the GATT client GATT
EVT BLUE GATT NOTIFICATION when a server notifies any EVT VENDOR :
- — — - . - client
attribute on the client
Generated by the GATT client GATT
EVT BLUE GATT INDICATION when a server indicates any EVT VENDOR :
- — - - . - client
attribute on the client
Generated by the Security
manager to the application when a
passkey is required for pairing. GAP
EVT_BLUE GAP_PASS KEY REQUEST When this event is received, the | EVT VENDOR central/
application has to respond with peripheral
the aci_gap_pass_key_response
() API
Generated when the pairing
process has completed GAP
EVT_BLUE GAP_PAIRING CMPLT successfully or a pairing EVT_VENDOR central/
procedure timeout has occurred peripheral

50/97

DoclD027104 Rev 3

3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

Table 37. ACI: main events, sub-events (continued)

Event/sub-event

Description

Main event

Where

EVT BLUE GAP BOND LOST

Event generated when a pairing
request is issued, in response to a
slave security request from a
master which has previously
bonded with the slave. When this
event is received, the upper layer
has to issue the command
aci_gap_allow_rebond() to allow
the slave to continue the pairing
process with the master

EVT_VENDOR

GAP
peripheral

EVT BLUE ATT READ BY GROUP_RESP

The Read-by-group type response
is sent in reply to a received
Read-by-group type request and
contains the handles and values
of the attributes that have been
read

EVT_VENDOR

GATT
client

EVT BLUE ATT READ BY TYPE RESP

The Read-by-type response is
sent in reply to a received Read
By Type

Request and contains the handles
and values of the attributes that
have been read.

EVT_VENDOR

GATT
client

EVT_BLUE_GAP_DEVICE_FOUND

(only for BlueNRG device)

Event given by the GAP layer to
the upper layers when a device is
discovered during scanning as a
consequence of one of the GAP
procedures started by the upper
layers.

EVT_VENDOR

GAP
central

EVT BLUE GATT PROCEDURE COMPLETE

A GATT procedure has been
completed

EVT_ VENDOR

GATT
client

EVT_LE ADVERTISING_REPORT (only for
BlueNRG-MS device)

Event given by the GAP layer to
the upper layers when a device is
discovered during scanning as a
consequence of one of the GAP
procedures started by the upper
layers.

EVT LE META
EVENT

GAP
central

For a detailed description about the BLE events, and related formats refer to the user
manual UM1755 and on Table 38: ACI: GAP modes APlIs in the current document.

The following pseudocode provides an example of HcI _Event CB () callback handling
some of the described device events (EVT DISCONN COMPLETE, EVT LE CONN_ COMPLETE,
EVT_BLUE_GATT ATTRIBUTE MODIFIED, EVT BLUE GATT NOTIFICATION):

void HCI Event CB(void *pckt)

{

hci uvart pckt *hci pckt = pckt;

hci event pckt *event pckt = (hci event pckt*)hci pckt->data;
if (hci pckt->type != HCI_EVENT PKT return;

3

DoclD027104 Rev 3

51/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

52/97

switch(event pckt-sevt) {
case EVT DISCONN COMPLETE: /* BlueNRG disconnection event */

{

/* Add user code for handling BLE disconnect event based on
application scenarios

*/

break;
case EVT LE META EVENT:
{
/* Get the meta event data */
evt le meta event *evt = (void *)event pckt->data;
/* Analyze the specific sub event */
switch (evt->subevent) {
case EVT LE CONN_COMPLETE:/* BlueNRG connection event */
{
/* connection complete event: get the related data */
evt le connection complete *cc = (void *)evt->data;
/* Connection parameters:

cc->status: connection status (0x00: Connection successfully
completed) ;

cc->handle: connection handle to be used for the communication during
the connection;

cc->role: BLE device role (0x01l: master; 0x02: slave);

cc->peer bdaddr type: connected device address type (0x00: public;
0x01: random) ;

cc->peer_bdaddr: connected device address;
cc->interval: connection interval;
cc->latency: connection latency;
cc->supervision timeout: connection supervision timeout;
cc->master clock accuracy: master clock accuracy;
*/ a a
/* Add user code for handling connection event based on application
scenarios */
conn_handle = cc->handle;
} /* EVT _LE_CONN_COMPLETE */
break;
} /* switch(evt->subevent) */
} /* EVT _LE_META EVENT */
break;
case EVT_ VENDOR:
{
/* Get the vendor event data */

evt _blue aci *blue evt = (void*)event pckt->data;

3

DoclD027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

switch(blue evt-secode) {
#if GATT SERVER
case EVT BLUE GATT_ ATTRIBUTE MODIFIED:
{
/* Get attribute modification event data */

evt gatt attr modified *evt = (evt gatt attr modified*)blue evt-
>data;

evt->conn_handle: the connection handle which modified the attribute;
evt->attr_handle: handle of the attribute that was modified;
evt->data length: the length of the data;

evt->att data: pointer to the new value (length is data length).

/* Add user code for handling attribute modification event based on
application scenarios */

}/* EVT BLUE_GATT ATTRIBUTE MODIFIED */
break;
#endif /* GATT_ SERVER */
#if GATT CLIENT
case EVT BLUE GATT NOTIFICATION:

/* Get attribute notification event data */

evt_gatt_attr_notification *evt =
(evt_gatt attr notification*)blue evt->data;

evt->conn _handle: the connection handle which notified the attribute;
evt->event data length: length of attribute value + handle (2 bytes);
evt->attr_handle: attribute handle;

evt->attr value: pointer to attribute value (length is
event _data length - 2).

/* Add user code for handling attribute notification event based on
application scenarios */

}/* EVT_BLUE_GATT NOTIFICATION */
break;
break;
#endif /* GATT CLIENT */
}/* switch(blue evt-secode) */
}/* EVT VENDOR */
break;
}/* switch(evt->subevent)*/

}/* end HCI Event CB() */

DocID027104 Rev 3 53/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

3.3

54/97

Services and characteristic configuration

In order to add a service and related characteristics, a user application has to define the

specific profile to be addressed:

1. Standard profile defined by Bluetooth SIG organization. The user must follow the profile
specification and services, characteristic specification documents in order to implement
them by using the related defined Profile, Services & Characteristics 16 bits UUID
(refer to Bluetooth SIG web page: https://www.bluetooth.org/en-
us/specification/adopted-specifications).

2. Proprietary, non-standard profile. The user must define its own services and
characteristics. In this case, 128-bits UIDS are required and must be generated by
profile implementers (refer to UUID generator web page:
http://www.famkruithof.net/uuid/uuidgen)

A service can be added using the following command:
- aci gatt add serv (Service UUID Type, Service UUID 16, Service Type,
Max Attributes_Records, &ServHandle) ;

This command returns the pointer to the Service Handle (ServHandle), which is used to
identify the service within the user application. A characteristic can be added to this service
using this command:

- aci gatt add char (ServHandle, Char UUID Type, Char UUID 16,
Char Value Length, Char Properties, Security Permissions, GATT Evt Mask,
Enc Key Size, Is Variable, &CharHandle) ;

This command returns the pointer to the Characteristic Handle (char Handle), which is
used to identify the characteristic within the user application.

For a detailed description of the aci_gatt_add_serv() and aci_gatt_add_char() functions
parameters refer to the user manuals UM1755 and UM1865.

The following pseudocode example illustrates the steps to be followed for adding a service
and two associated characteristic on a proprietary, non-standard profile.

tBleStatus Add Server Services Characteristics(void)
tBleStatus ret;
/*
The following 128bits UUIDs have been generated from the random UUID
generator:
D973F2E0-B19E-11E2-9E96-0800200C9A66 --> Service 128bits UUID
D973F2E1-B19E-11E2-9E96-0800200C9A66 --> Characteristic 1 128bits UUID
D973F2E2-B19E-11E2-9E96-0800200C9A66 --> Characteristic 2 128bits UUID
*/
/* Service 128bits UUID */

const uint8 t service uuid[1l6] =
{Ox66,0x9a,OxOc,Ox20,0xO0,0x08,0x96,0x9e,Oxe2,0xll,Ox9e,0xb1,0xe0,0xf2,0x7
3,0xdo};

/* Characteristic 1 128bits UUID */

const uint8_ t charUuid 1[16] =
{Ox66,0x9a,OxOc,OX20,0xO0,0x08,0x96,0x9e,0xe2,0xll,Ox9e,0xb1,0xel,0xf2,0x7
3,0xd9};

/* Characteristic_2 128bits UUID */

DoclD027104 Rev 3 ‘Yl

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

const uint8_ t charUuid 2[16] =
{Ox66,0x9a,OxOc,Ox20,0xO0,0x08,0x96,0x9e,0xe2,0xll,Ox9e,0xb1,0xe2,0xf2,0x7
3,0xdo};

/* Add the service with service uuid 128bits UUID to the GATT server
database. The service handle ServHandle is returned

*/

ret = aci gatt add serv(UUID TYPE 128, service uuid, PRIMARY SERVICE, 7,
&ServHandle) ;

if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }

/* Add the characteristic with charUuid 1 128bits UUID to the service
ServHandle.

This characteristic has 20 as Maximum length of the characteristic value,
Notify properties (CHAR PROP NOTIFY), no security

permissions (ATTR_PERMISSION NONE), no GATT event mask (0), 16 as key
encryption size, and variable-length characteristic (1).

The characteristic handle (CharHandle 1) is returned.

*/

ret = aci_gatt_add_char (ServHandle, UUID_ TYPE_128, charUuid 1, 20,
CHAR PROP NOTIFY, ATTR PERMISSION NONE, 0,16, 1, &CharHandle 1);

if (ret != BLE_STATUS_SUCCESS) PRINTF ("Failure.\n")}

/* Add the characteristic with charUuid 2 128bits UUID to the service
ServHandle.This characteristic has 20 as Maximum length of the
characteristic value, Read, Write and write without response properties, no
security permissions (ATTR PERMISSION NONE), notify application when
attribute is written (GATT NOTIFY ATTRIBUTE WRITE) as GATT event mask , 16
as key encryption size, and variable-length characteristic (1). The
characteristic handle (CharHandle 2) is returned.

*/
ret = aci gatt add char(ServHandle, UUID TYPE 128, charUuid 2, 20,

CHAR PROP_WRITE|CHAR PROP WRITE WITHOUT RESP, ATTR PERMISSION NONE,
GATT NOTIFY ATTRIBUTE WRITE,16, 1, &CharHandle 2);

if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }
return ret ;
}/* end Add_Server Services Characteristics() */
Kys DoclD027104 Rev 3 55197

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

3.4 Create a connection: discoverable and connectable APIs

In order to establish a connection between a BlueNRG GAP central (master) device and a
BlueNRG GAP peripheral (slave) device, the GAP discoverable/connectable modes and
procedures can be used as described in Table 38: ACI: GAP modes APIs, Table 39: ACI:
discovery procedures APIs, Table 40: ACI: connection procedures APIs and by following the
related ACI APIs described in the user manuals UM1755 and UM1865, Section 5:
References.

GAP peripheral discoverable and connectable modes APIs

Different types of discoverable and connectable modes can be used as described by the
following APls:

56/97

Table 38. ACl: GAP modes APIs

API

Supported advertising
event types

Description

aci_gap_set_discoverable()

0x00: connectable
undirected advertising
(default)

0x02: scannable undirected
advertising

0x03: non-connectable
undirected advertising

Sets the device in general
discoverable mode.

The device is discoverable until
the host issues the

aci gap set non discover
able () API

aci_gap_set_limited_discoverable(

)

0x00: connectable
undirected advertising
(default);

0x02: scannable undirected
advertising;

0x03: non-connectable
undirected advertising.

Sets the device in limited
discoverable mode. The device
is discoverable for a maximum
period of TGAP
(lim_adv_timeout) = 180
seconds. The advertising can be
disabled at any time by calling
aci _gap set non discover
able () API

aci_gap_set_non_discoverable()

NA

Sets the device in non-
discoverable mode. This
command disables the LL
advertising and sets the device in
standby state.

aci_gap_set_direct_connectable()

NA

Sets the device in direct
connectable mode. The device is
directed connectable mode only
for 1.28 seconds. If no
connection is established within
this duration, the device enters
non-discoverable mode and
advertising has to be

enabled again explicitly.

DoclD027104 Rev 3

3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

Table 38. ACI: GAP modes APIs (continued)

API Supported advertising Description
event types
0x02: scannable undirected
. advertising Puts the device into non-

aci_gap_set_non_connectable() |

0x03: non-connectable connectable mode.

undirected advertising
aci_gap_set_undirect_connectable NA Puts the device into undirected
0 connectable mode.

Table 39. ACI: discovery procedures APIs
ACI API Description

Starts the limited discovery procedure. The
controller is commanded to start active
aci_gap_start_limited_discovery_proc() scanning. When this procedure is started, only
the devices in limited discoverable mode are
returned to the upper layers.

Starts the general discovery procedure. The
aci_gap_start_general_discovery_proc() controller is commanded to start active
scanning.

Table 40. ACI: connection procedures APIs
ACI API Description

Starts the auto connection establishment
procedure. The devices specified are added to
the white list of the controller and a
aci_gap_start_auto_conn_establishment() LE_Create_Connection call is made to the
controller by GAP with the initiator filter policy
set to “use whitelist to determine which
advertiser to connect to”.

Starts the direct connection establishment
procedure. A LE_Create_Connection call will
be made to the controller by GAP with the
initiator filter policy set to “ignore whitelist and
process connectable advertising packets only
for the specified device”.

aci_gap_create_connection()

Starts a general connection establishment
procedure. The host enables scanning in the

controller with the scanner filter policy set to
“accept all advertising packets” and from the

scanning results, all the devices are sent to the
upper layer using the event
EVT_BLUE_GAP_DEVICE_FOUND on
BlueNRG device and
EVT_LE_ADVERTISING_REPORT on
BlueNRG-MS device.

aci_gap_start_general_conn_establishment()

3

DocID027104 Rev 3 57/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

3.4.1

Note:

58/97

Table 40. ACI: connection procedures APls (continued)
ACI API Description

It starts a selective connection establishment
procedure. The GAP adds the specified device
addresses into white list and enables scanning
in the controller with the scanner filter policy set
to “accept packets only from devices in
aci_gap_start_selective_conn_establishment() whitelist”. All the devices found are sent to the
upper layer by the event
EVT_BLUE_GAP_DEVICE_FOUND on
BlueNRG device and
EVT_LE_ADVERTISING_REPORT on
BlueNRG-MS device.

aci_gap_terminate_gap_procedure() Terminate the specified GAP procedure.

Set discoverable mode & use direct connection establishment
procedure

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to direct connect to it through a direct connection establishment procedure.

/* GAP Peripheral: general discoverable mode (and no scan response is sent)

*/

Note: It is assumed that the device public address has been set during the initialization
phase as follows:

uint8 t bdaddr([] = {0x12, 0x34, 0x00, OxEl, 0x80, 0x02};

ret=aci hal write config data (CONFIG DATA PUBADDR OFFSET, CONFIG DATA PUBAD
DR_LEN, bdaddr) ;

if (ret != BLE STATUS SUCCESS) PRINTF(”Failure.\n")}
*/

void GAP_Peripheral_Make_Discoverable (void)
{
tBleStatus ret;

const char local namel[]=
{AD_TYPE_COMPLETE_LOCAL_NAME,'B','1','u','e','N','R','G',' Y,'T, e, st
t'};

/* disable scan response: passive scan */

hci_le set scan resp data(0,NULL) ;

/* Put the GAP peripheral in general discoverable mode:
Advertising Event Type: ADV_IND (undirected scannable and connectable) ;
Adv_Interval Min: 0;

Adv_Interval Max: 0;

Address Type: PUBLIC ADDR (public address: 0x00);

3

DoclD027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

Adv_Filter_Policy: NO_WHITE LIST_USE (no whit list is used);
Local Name Length: 13
Local Name: BlueNRG Test;
Service Uuid Length: 0 (no service to be advertised) ;
Service Uuid List: NULL;
Slave Conn Interval Min: 0 (Slave connection internal minimum value) ;
Slave Conn_Interval Max: 0 (Slave connection internal maximum value).
*/

ret = aci_gap_ set discoverable(ADV_IND, 0, 0, PUBLIC_ADDR,

NO_WHITE_LIST USE,
sizeof (local name),
local name,
0, NULL, 0, 0);
if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }
} /* end GAP Peripheral Make Discoverable() */

/* GAP Central: direct connection establishment procedure to connect to the
GAP Peripheral in discoverable mode */

void GAP Central Make Connection(void)
tBleStatus ret;

tBDAddr GAP_Peripheral address = {Oxaa, 0x00, 0x00, OxEl, 0x80,
0x02};

/* Start the direct connection establishment procedure to the GAP
peripheral device in general discoverable mode using the following
connection parameters:

Scan_Interval: 0x4000;
Scan_Window: 0x4000;

Peer Address Type: PUBLIC ADDR (GAP peripheral address type: public
address) ;

Peer Address: {Oxaa, 0x00, 0x00, OxEl, 0x80, 0x02};
Own_Address_Type: PUBLIC_ADDR (device address type) ;

Conn_Interval Min: 40 (Minimum value for the connection event
interval) ;

Conn_Interval_Max: 40 (Maximum value for the connection event
interval) ;

DocID027104 Rev 3 59/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

Note:

3.4.2

Note:

60/97

Conn_Latency: 0 (Slave latency for the connection in a number of
connection events) ;

Supervision Timeout: 60 (Supervision timeout for the LE Link);

Conn_Len Min: 2000 (Minimum length of connection needed for the LE
connection) ;

Conn_Len Max: 2000 (Maximum length of connection needed for the LE
connection) .

*/

ret = aci_gap create connection(0x4000, 0x4000, PUBLIC_ADDR,
GAP_Peripheral address, PUBLIC ADDR, 40, 40, 0, 60, 2000 , 2000);
if (ret != BLE_ STATUS SUCCESS) PRINTF(”Failure.\n")}

} /* end GAP Peripheral Make Discoverable() */

1. If ret = BLE STATUS SUCCESS is returned, on termination of the GAP procedure, a

EVT LE _CONN_COMPLETE event is returned, on the HCI Event CB() event callback, to
indicate that a connection has been established with the GAP_pPeripheral address (Same
event is returned on the GAP peripheral device).

2. The connection procedure can be explicitly terminated by issuing the command
aci gap terminate gap procedure ().

3. The last two parameters Conn_Len_Min and Conn_Len_Max of the

aci_gap create connection() are the length of the connection event needed for the
BLE connection. These parameters allows user to specify the amount of time the master
has to allocate for a single slave so they must be wisely choosen.

In particular, when a master connects to more slaves, the connection interval for each slave
must be equal or a multiple of the other connection intervals and user must not overdo the
connection event length for each slave.

Set discoverable mode & use general discovery procedure (active
scan)

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to start a general discovery procedure in order to discover devices within its radio
range.

/* GAP Peripheral: general discoverable mode (scan responses are sent) :
It is assumed that the device public address has been set during the initialization phase as
follows:
uint8 t bdaddr[] = {0x12, 0x34, 0x00, OxEl, 0x80, 0x02};
ret = aci hal write config data (CONFIG DATA PUBADDR OFFSET,
CONFIG_DATA PUBADDR LEN,
bdaddr) ;
if (ret != BLE_STATUS SUCCESS) PRINTF("Failure.\n")}
*/
void GAP_Peripheral Make Discoverable(void)

{

3

DoclD027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

tBleStatus ret;

const char local name([] =
{AD_TYPE_COMPLETE_LOCAL_NAME,'B','1','u','e','N','R','G' };

/* As scan response data, a proprietary 128bits Service UUID is used.

This 128bits data cannot be inserted within the advertising packet
(ADV_IND) due its length constraints (31 bytes).

*/

/*

AD Type description:

0x11: length

0x06: 128 bits Service UUID type

0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11, 0xe3,0xba, 0xa7,0x08,0x00,0x20,0x0c, 0x9%a
,0x66: 128 bits Service UUID

*/

uint8_t ServiceUUID_Scan[18]=
{Oxll,OxOG,Ox8a,Ox97,0xf7,0XC0,0x85,0x06,0xll,Oxe3,0xba,Oxa7,0xO8,0xO0,0x2
0,0x0c, 0x9a, 0x66} ;

/* Enable scan response to be sent when GAP peripheral receives
scan requests from GAP Central performing general
discovery procedure (active scan) */

hci_le set _scan resp data(18 , ServiceUUID Scan) ;

/* Put the GAP peripheral in general discoverable mode:
Advertising Event_ Type: ADV_IND (undirected scannable and connectable) ;
Adv_Interval Min: 0;

Adv_Interval Max: 0;

Address_Type: PUBLIC ADDR (public address: 0x00);

Adv_Filter Policy: NO_WHITE LIST USE (no whit list is used);

Local_ Name_ Length: 8

Local_Name: BlueNRG;

Service Uuid Length: 0 (no service to be advertised) ;
Service Uuid List: NULL;

Slave_Conn_Interval Min: 0 (Slave connection internal minimum value) ;
Slave Conn Interval Max: 0 (Slave connection internal maximum value).

*/ - a a

ret = aci_gap_ set discoverable (ADV_IND, 0, 0, PUBLIC_ADDR,

NO WHITE LIST USE,sizeof (local name), local name, 0, NULL, 0, 0);

if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }
} /* end GAP Peripheral Make Discoverable() */

/* GAP Central: start general discovery procedure to discover the GAP
peripheral device in discoverable mode */

void GAP Central General Discovery Procedure (void)

{

tBleStatus ret;

DocID027104 Rev 3 61/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

62/97

/* Start the general discovery procedure (active scan) using the
following parameters:

Scan_Interval: 0x4000;
Scan Window: 0x4000;
Own_address _type: 0x00 (public device address) ;

filterDuplicates: 0x00 (duplicate filtering disabled) ;

ret = aci_gap_start general discovery proc(0x4000, 0x4000,0x00,0x00) ;
if (ret != BLE STATUS_ SUCCESS) PRINTF ("Failure.\n")}
}
The responses of the procedure are given through the EVT BLUE GAP DEVICE FOUND
(BlueNRG) and EVT _LE_ADVERTISING REPORT (BlueNRG-MS) events raised on
HCI_Event CB() callback (Evr_vENDOR as main event). The end of the procedure is

indicated by EVT_BLUE GAP PROCEDURE COMPLETE event on the HCI_Event_CB() callback
(EVT_VENDOR as main event):

void HCI Event CB(void *pckt)
{
hci uvart pckt *hci pckt = pckt;
hci event pckt *event pckt = (hci event pckt*)hci pckt->data;
if (hci pckt->type != HCI_ EVENT PKT return;
switch(event pckt-s>evt) {
case EVT_ VENDOR:
{
/* Get the vendor event data */
evt_blue aci *blue evt = (void*)event pckt->data;
switch(blue evt-secode) {
case EVT BLUE GAP_DEVICE FOUND:
{
evt _gap device found *pr = (void*)blue evt->data;
/* evt _gap device found parameters:
pr->evt_type: event type (advertising packets types);
pr->bdaddr type: type of the peer address (PUBLIC ADDR,RANDOM ADDR) ;
pr->bdaddr: address of the peer device found during scanning;
pr->length: length of advertising or scan response data;
pr->data RSSI[]: 1length advertising or scan response data + RSSI.

RSSI is last octect (signed integer).

*/
/* Add user code for decoding the evt gap device found event data based on
the specific pr->evt_type (ADV_IND, SCAN RSP, ..)*/

}/* EVT BLUE GAP DEVICE FOUND */
break;
case EVT BLUE GAP_PROCEDURE COMPLETE:

{

/* When the general discovery procedure is terminated

3

DoclD027104 Rev 3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

EVT_BLUE_GAP_PROCEDURE_COMPLETE event is returned with the procedure
code set to GAP_GENERAL DISCOVERY_ PROC (0x02).

*/
evt _gap procedure complete *pr = (void*)blue evt->data;
/* evt gap procedure complete parameters:
pr->procedure_code: terminated procedure code;
pr->status: BLE STATUS SUCCESS, BLE_STATUS FAILED or ERR_AUTH FAILURE;
pr->data[VARIABLE SIZE]: procedure specific data,
*/

/* If needed, add user code for handling the event data */

if applicable

}/* EVT BLUE_GAP PROCEDURE COMPLETE */
break;
}/* switch(blue evt->ecode) */
}/* EVT_VENDOR */

break;

case EVT_LE_META EVENT:

evt_le_meta_event *evt = (void *)event_pckt->data;

switch (evt->subevent)

{
case EVT LE ADVERTISING REPORT: /* BlueNRG-MS stack */

{

le_advertising_info *pr = (void *) (evt->data+l); /* evt->datal0] is

number of reports (On BlueNRG-MS is always 1) */
/* le_advertising info parameters:
pr->evt_type: event type (advertising packets types);
pr->bdaddr type: type of the peer address (PUBLIC ADDR,RANDOM ADDR) ;
pr->bdaddr: address of the peer device found during scanning;
pr->length: length of advertising or scan response data;

pr->data RSSI[]: length advertising or scan response data + RSSI.
RSSI is last octect (signed integer).

*/
/* Add user code for decoding the le advertising info event data based
on the specific pr-sevt type (ADV_IND, SCAN RSP, ..)*/

}/* EVT LE ADVERTISING REPORT */
break;

}/* end switch() */
}/* EVT _LE META EVENT */
break;

}* switch(event_pckt->evt)*/
}* end HCI_Event_CB() */

In particular, in this specific context, the following events are raised on the GAP Central

HCI Event CB(), as a consequence of the GAP peripheral device in discoverable mode
with scan response enabled:

3

DocID027104 Rev 3 63/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

EVT BLUE GAP DEVICE FOUND (BlueNRG) /EVT LE ADVERTISING REPORT (BlueNRG-
MS) with advertising packet type (evt_type = ADV_IND)

EVT BLUE_GAP DEVICE_ FOUND (BlueNRG device) /EVT LE ADVERTISING REPORT
(BlueNRG-MS) with scan response packet type (evt_type

= SCAN_RSP)
Table 41. ADV_IND event
Eventtype | Addresstype Address Advertising data RSSI
. 0x02,0x01,0x06,0x08,0x08,0x42,0x6
0x00 0x00 (public | 0x0280E1003 | . 75 165 Ox4E 0x52,0x47,0x02,0x| OXDA
(ADV_IND) address) 412 0A 0x08

The advertising data can be interpreted as follows (refer to Bluetooth specification version
4.0 [Vol 3] and 4.1 [Vol 2] on Section 5: References):

Table 42. ADV_IND advertising data

Flags AD type field Local name field Tx power level
0x02: length of the field 0x08: length of the field
0x01: AD type Flags 0x08: Shortened local name 0x02: Length of the field
0x06: 0x110 (Bit 2: BR/IEDR type O0x0A: Tx Power type
Not Supported; Bit 1: general | 0x42,0x6C,0x75,0x65,0x4E0x 0x08: power value
discoverable mode) 52,0x47: BlueNRG

Table 43. SCAN_RSP event

Eventtype | Addresstype Address Scan response data RSSI
0x04 . 0x12,0x66,0x9A,0x0C,0x20,0x00,0x0
(SCAN_RS 0’;%%52::)"0 0"023251003 8,0xA7,0xBA,0xE3,0x11,0x06,0x85,0 0xDA
P) xC0,0xF7,0x97,0x8A,0x06,0x11

The scan response data can interpreted as follows (refer to Bluetooth specification version
4.0 [Vol 3] and 4.1 [Vol 2]):

Table 44. Scan response data

Scan response data

0x12: data length
0x11: length of service UUID advertising data;
0x06: 128 bits service UUID type;

0x66,0x9A,0x0C,0x20,0x00,0x08,0xA7,0xBA,0xE3,0x11,0x06,0x85,0xC0,0xF7,0x97,0x8A:
128 bits service UUID

64/97 DocID027104 Rev 3

3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3.5

3

Security (pairing and bonding)

This section describes the main functions to be used in order to establish a pairing between
two devices (authenticate the devices identity, encrypt the link and distribute the keys to be
used on coming next reconnections).

When using the security features, some low level parameters (root keys) must be set,
before raising any other ACI commands:

e DIV root key used to derive CSRK
e Encryption root (ER) key used to derive LTK and CSRK
e Identity root (IR) key used to derive IRK and CSRK

The external microcontroller (MCU) has the responsibilities to provide these parameters as
follows:

1. It has to randomly generate the three root key values (if not already generated) and
store them in a non-volatile-memory. The three root keys have to be generated only
one time, in order to univocally establish the specific BlueNRG, BlueNRG-MS device
security settings.

2. Each time the MCU starts, it has to read the root keys from the non-volatile-memory
and set them during the initialization phase of the BlueNRG, BlueNRG-MS device.

Following is a simple pseudo code showing how to set the read randomly generated
security root keys on BlueNRG, BlueNRG-MS devices:

uint8 t DIVI[2];
uint8 t ERI[16];
uint8 t IR[16];

/* Reset BlueNRG, BlueNRG-MS device */
BlueNRG RST () ;

/* Microcontroller specific implementation:
1) MCU has to randomly generate DIV, ER and IR and store them in
a non volatile memory.
2) When MCU starts it has to read DIV, ER and IR values from the
non volatile memory.

/* Configure read root key DIV on BlueNRG, BlueNRG-MS device */
ret = aci _hal write config data (CONFIG DATA DIV OFFSET,
CONFIG DATA DIV LEN, (uint8 t *) DIV);

/* Configure read root key ER on BlueNRG, BlueNRG-MS device */
ret = aci_hal write config data (CONFIG DATA ER OFFSET,

CONFIG DATA ER LEN, (uint8 t *) ER);

/* Configure read root key IR on BlueNRG, BlueNRG-MS device */

DocID027104 Rev 3 65/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

66/97

ret = aci_hal write config data (CONFIG DATA IR OFFSET,
CONFIG DATA IR LEN, (uint8 t *) IR);

To successfully pair with a device, 10 capabilities have to be correctly configured, depending
on the 10 capabilily available on the selected device.

aci gap set io capability(io capability) should be used with one of the following
io capability value:

0x00: Display Only

0x01: Display yes/no

0x02: Keyboard Only

0x03: No Input, no output

0x04: Keyboard display

PassKey Entry example with 2 BlueNRG devices: Device_1, Device_2

The following pseudocode example illustrates only the specific steps to be followed for
pairing two devices by using the PassKey entry method.

As described in Section Table 11.: Methods used for calculating the Temporary Key (TK),
Device_1, Device_2 have to set the IO capability in order to select PassKey entry as a
security method.

On this particular example, "Display Only" on Device_1 and "KeyBoard Only" on Device 2
are selected, as follows:
/* Device 1: */
tBleStatus ret;
ret = aci_gap_set_io_capability(IO_CAP_DISPLAY_ ONLY)
if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n")}

/* Device 2 */

tBleStatus ret;

ret = aci gap set io capability (IO _CAP KEYBOARD ONLY)
if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }

Once the 10 capability are defined, the aci_gap_set_auth_requirement () should be used
for setting all the security authentication requirements the device needs (MITM mode
(authenticated link or not), OOB data present or not, use fixed pin or not, enabling bonding
or not).

The following pseudocode example illustrates only the specific steps to be followed for
setting the authentication requirements for a device with: “MITM protection , No OOB data,
don’t use fixed pin”: this configuration is used to authenticate the link and to use a not fixed
pin during the pairing process with PassKey Method.

ret = aci_gap_set_auth requirement (MITM_PROTECTION_REQUIRED,

OOB_AUTH_DATA ABSENT, /* no OOB data is
present */

NULL, /* no OOB data */

7, /* Min. encryption key size */

16, /* Max encryption key size */
DONOT USE FIXED PIN FOR PAIRING,/* no fixed
pin */
0, /* fixed pin not used */

DoclD027104 Rev 3 ‘Yl

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

BONDING /* bonding is enabled */);
if (ret != BLE_STATUS SUCCESS) PRINTF("Failure.\n")}

Once the security IO capability and authentication requirements are defined, an application
can initiate a pairing procedure as follow:
1. byusing aci_gap_slave security request () on a GAP Peripheral (slave) device
(it sends a slave security request to the master):
tBleStatus ret;
ret = aci gap slave security request (conn handle,
BONDING,
MITM PROTECTION REQUIRED
)i
if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n")}

or
2. byusingthe aci_gap send pairing request () on a GAP Central (master) device.

Since the DoNOT USE_FIXED PIN FOR PAIRING (no fixed pin) has been set, once the
paring procedure is initiated by one of the 2 devices, BlueNRG, BlueNRG-MS will generate
the EVT_BLUE GAP PASS_KEY REQUEST event (with related connection handle) for asking to
the host application to provide the password to be used for establishing the encryption key.
BlueNRG, BlueNRG-MS application has to provide the correct password by using the

aci _gap pass_key response (conn_handle,passkey)API.

The following pseudocode example illustrates only the specific steps to be followed for
providing the pass key (for example a random pin) to be used for the pairing process, when
the EVT _BLUE_GAP PASS KEY REQUEST event is generated on Device_1 (“Display Only”
capability) :

tBleStatus ret;

/* Generate a random pin with an user specific function */
pin = generate random pin() ;

ret = aci gap slave security request (conn handle,
BONDING,
MITM PROTECTION_ REQUIRED
)i

if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }

Since the Device 1, I/O capability is set as “Display Only”, it should display the generated
pin in the device display. Since Device 2, I/0 capability is set as “Keyboard Only”, the user
can provide the pin displayed on Device_1 to the Device_2 though the same
aci_gap_pass_key response() API, by a keyboard.

DocID027104 Rev 3 67/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

68/97

Alternatively, if the user wants to set the authentication requirements with a fixed pin
0x123456 (no pass key event is required), the following pseudocode can be used:
tBleStatus ret;

ret = aci_gap_set auth requirement (MITM_PROTECTION REQUIRED,
OOB_AUTH_DATA ABSENT, NULL,
7,
16,
USE_FIXED PIN FOR PAIRING,
0x123456,/* Fixed pin */
BONDING
) ;

if (ret != BLE_STATUS SUCCESS) PRINTF("Failure.\n") }

NOTEs:

1.

When the pairing procedure is started by calling the described APIs

(aci_gap_slave security request () or aci_gap send pairing request ())and
the value ret = BLE STATUS SUCCESS is returned, on termination of the procedure, a
EVT_BLUE_GAP_PAIRING_CMPLT event is returned on the HCI Event CB() event
callback to indicate the pairing status:

0x00: Pairing success;
0x01: Pairing Timeout;
0x02: Pairing Failed.

The pairing status is given from the status field of the evt _gap pairing cmplt data
associated to the EVT BLUE GAP PAIRING CMPLT event.

2.

or

When 2 devices get paired, the link is automatically encrypted during the first
connection. If bonding is also enabled (keys are stored for a future time), when the 2
devices get connected again, the link can be simply encrypted (without no need to
perform again the pairing procedure). Host applications can simply use the same APls
which will not perform the paring process but will just encrypt the link:

aci gap slave security request () onthe GAP Peripheral (slave) device

aci gap send pairing request () onthe GAP Central (master) device.

If a slave has already bonded with a master, it can send a slave security request to the
master to encrypt the link. When receiving the slave security request, the master may
encrypt the link, initiate the pairing procedure, or reject the request. Typically, the
master only encrypts the link, without performing the pairing procedure. Instead, if the
master starts the pairing procedure, it means that for some reasons, the master lost its
bond information, so it has to start the pairing procedure again. As a consequence, the
slave device receives the EVT BLUE GAP BOND_ LOST event to inform the host
application that it is not bonded anymore with the master it was previously bonded.
Then, the slave application can decide to allow the security manager to complete the
pairing procedure and re-bond with the master by calling the command

aci gap allow rebond (), orjust close the connection and inform the user about the
security issue.

Alternatively, the out-of-band method can be selected by using the
aci_gap_set_auth_requirement() with OOB_Enable field enabled and the OOB data

DoclD027104 Rev 3 ‘Yl

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

specified in OOB_Data. This implies that both devices are using this method and they
are setting the same OOB data defined through an out of band communication
(example: NFC).

3.6 Service and characteristic discovery
This section describes the main functions allowing a BlueNRG, BlueNRG-MS GAP central
device to discover the GAP peripheral services & characteristics, once the two devices are
connected.
The sensor profile demo services & characteristics with related handles are used as
reference services and characteristics on the following pseudocode examples. Further, it is
assumed that a GAP central device is connected to a GAP peripheral device running the
Sensor Demo profile application. The GAP central device use the service and discovery
procedures to find the GAP Peripheral sensor profile demo service and characteristics.
Table 45. BlueNRG sensor profile demo services & characteristics handles
Characteristic
. . Service/characteristic | Characteristic clle.nt Characteristic
Service Characteristic descriptor
handle value handle . . format handle
configuration
handle
Acceleration
. NA 0x0010 NA NA NA
service
Free Fall 0x0011 0x0012 0x0013 NA
characteristic
Acceleration 0x0014 0x0015 0x0016 NA
characteristic
Environmental NA 0x0017 NA NA NA
service
Temperature 0x0018 0x0019 NA 0x001A
characteristic

Table 46. BlueNRG-MS sensor profile demo services & characteristics handles

Characteristic
Service / L client L
e Characteristic Characteristic
Service Characteristic | characteristic descriptor
value handle . . format handle
handle configuration
handle
Acceleration
service NA 0x000C NA NA NA
Free Fall
ree rall 0x000D 0X000E 0X000F NA
characteristic

3

DoclD027104 Rev 3

69/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs

PM0237

Table 46. BlueNRG-MS sensor profile demo services & characteristics handles (continued)

Service

Characteristic

Service /
characteristic

Characteristic
value handle

Characteristic
client
descriptor

Characteristic
format handle

handle configuration
handle
Acceleration
" 0x0010 0x0011 0x0012 NA
characteristic
Environmenta NA 0x0013 NA NA NA
| service
Temperature 0x0014 0xx0015 NA 0x0016
Characteristic
Note: The different attribute value handles are due to the last attribute handle reserved

for the standard GAP service (0x000F on BlueNRG stack and 0x000B on
BlueNRG-MS stack).

For detailed information about the sensor profile demo, refer to the user manual UM1686
and the sensor demo source code available within the development kit software package
(see References). On the following example, the BlueNRG GAP peripheral sensor profile
demo environmental service is defining only the temperature characteristic (no expansion

board with pressure and humidity sensors is used).

70/97

DoclD027104 Rev 3

3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

3.6.1 Service discovery procedures and related GATT events

Following is a list of the service discovery APIs with related description.

Table 47. ACI: service discovery procedures APIs

Discovery Service API Description

This API starts the GATT client procedure to
discover all primary services on the GATT server.
It is used when a GATT client connects to a
device and it wants to find all the primary services
provided on the device to determine what it can
do.

aci_gatt_disc_all_prim_services()

This API starts the GATT client procedure to
discover a primary service on the GATT server
by using its UUID. Itis used when a GATT client
connects to a device and it wants to find a
specific service without the need to get any other
services.

aci_gatt_disc_ prim_services_by_service_uuid()

This API starts the procedure to find all included
services. It is used when a GATT client wants to
discover secondary services once the primary
services have been discovered.

aci_gatt_find_included_services()

The following pseudocode example illustrates the aci_gatt disc_all prim services|()
API:

/* GAP Central starts a discovery all services procedure: conn handle is the
connection handle returned on HCI Event CB() event callback,
EVT_LE_CONN_ COMPLETE event */

if (aci _gatt disc_all prim services(conn handle) != BLE STATUS SUCCESS)

{

if (ret != BLE_ STATUS SUCCESS) PRINTF(”Failure.\n")}

}

The responses of the procedure are given through the

EVT BLUE_ATT READ BY GROUP RESP eventraised on HCI Event CB() callback
(EvT_VENDOR as main event) . The end of the procedure is indicated by

EVT BLUE_GATT PROCEDURE_ COMPLETE event on the HCI Event CB() callback
(EVT_VENDOR as main event):

void HCI_Event_CB(void *pckt)

{
hci uvart pckt *hci pckt = pckt;
hci event pckt *event pckt = (hci event pckt*)hci pckt->data;
if (hci_pckt->type != HCI_EVENT PKT return;
switch (event pckt-s>evt) {
case EVT VENDOR:

{

3

DocID027104 Rev 3 71/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

72/97

/* Get the vendor event data */
evt _blue aci *blue evt = (void*)event pckt->data;
switch (blue evt-s>ecode) {
case EVT BLUE ATT_ READ BY GROUP_RESP:
{
evt_att read by group resp *pr = (void*)blue evt->data;
/* evt_att _read by group resp parameters:
pr->conn_handle: connection handle;
pr->event data length: total length of the event data;
pr->attribute data length: length of each specific data within the
attribute data list[];
pr->attribute data list[]: event data.
*/
/* Add user code for decoding the pr-s>attribute data list[] and getting
the services handle, end group handle and service uuid */
}/* EVT BLUE ATT READ BY GROUP RESP */

break;

case EVT BLUE GATT_ PROCEDURE_COMPLETE:

{
evt gatt procedure complete *pr = (void*)blue evt->data;
/* evt _gatt procedure complete parameters:
pr->conn_handle: connection handle;
pr->attribute data length: length of the event data;
pr->datal] : event data.

*/

/* If needed, add user code for using the event data */

}/* EVT_BLUE_GATT PROCEDURE_COMPLETE */

break;

}/* switch(blue evt->ecode) */

}/* EVT VENDOR */

break;

}/* switch (evt->subevent)*/

}/* end HCI Event CB() */

In the context of the Sensor Profile Demo, the GAP Central application should get three
EVT BLUE_ATT READ BY GROUP_RESP events, with following
evt_att read by group_ resp data:

First evt_att read by group resp eventdata
pr->conn _handle : 0x0801 (connection handle) ;
pr->event data length: 0x0D (length of the event data);

pr->handle value pair length: 0x06 length of each discovered service

data: service handle, end group handle, service uuid);

S74

DoclD027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

pr-> attribute data_list: 0x0C bytes as follows:

Table 48. First evt_att_read_by_group_resp event data

Service Handle End Group Handle Service UUID Note

Attribute profile service
(GATT _Init() adds it).
Standard 16 bits service
uuID.

0x0001 0x0004 0x1801

GAP profile service

0X000F (BlueNRG), (GAP_Init() adds it).

0x0005 0x1800
0x000B (BlueNRG-MS) Standard 16 bits service
uuID.
Second evt_att read by group resp event data:
pr->conn_handle : 0x0801 (connection handle) ;

pr->event_data_length: 0x15 (length of the event data);

pr->attribute data length: 0x14 length of each discovered service
data: service handle, end group handle, service uuid) ;

pr-> attribute data_list content: 0x14 bytes as follows

Table 49. Second evt_att_read_by_group_resp event data

Service Handle End Group Service UUID Note
Handle
0x0010 0x0016 Acceleration
(BlueNRG), (BlueNRG), 0x02366E80CF3A11E19AB40002A5D5 | service
0x000C 0x0012 C51B 128 bits service
(BlueNRG-MS) (BlueNRG-MS) proprietary UUID

Third evt_att read by group resp event data:

pr->conn_handle : 0x0801 (connection handle) ;
pr->event data length: 0x15 (length of the event data);

pr->attribute_data_length: 0x14 length of each discovered service
data: service handle, end group handle, service uuid) ;

pr-> attribute data list: 0x14 bytes as follows

DocID027104 Rev 3 73/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237
Table 50. Third evt_att_read_by_group_resp event data
Service handle End group Service UUID Note
handle
0x0017 0x001A Environmental
(BlueNRG), (BlueNRG), 0x42821A40E47711E282D00002A5D5 | service

0x0013 0x0016 C51B 128bits service

(BlueNRG-MS) | (BlueNRG-MS) proprietary UUID

In the context of the Sensor Profile Demo, when the discovery all primary service procedure
completes, the EVT BLUE_GATT PROCEDURE COMPLETE is generated on GAP Central
application, with following evt_gatt procedure complete data:

pr->conn_handle : 0x0801 (connection handle) ;

pr-> data length: 0x01 (length of the event data);

pr->datal[]: 0x00 (event data).

3

74/97 DocID027104 Rev 3

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

3.6.2 Characteristics discovery procedures and related GATT events

Following is a list of the characteristic discovery APls with associated description.

Table 51. BlueNRG ACI: characteristics discovery procedures APIs

Discovery service API Description

This API starts the GATT procedure to discover
all the characteristics of a given service.

This API starts the GATT the procedure to
aci_gatt_discovery_characteristic_by_uuid() discover all the characteristics specified by a
uuID.

This API starts the procedure to discover all
characteristic descriptors on the GATT server.

aci_gatt_disc_all_charac_of_serv()

aci_gatt_disc_all_charac_descriptors()

In the context of the BlueNRG sensor profile demo, follow a simple pseudocode illustrating
how a GAP Central application can discover all the characteristics of the Acceleration
service (refer to Section Table 49.: Second evt_att_read_by group_resp event data):

uintlé_t service handle;

uintl6é_t end group handle;
#ifdef BLUENRG MS

service handle = 0x000C;

end group handle = 0x0012;

#else /*

service handle value = 0x0010;
charac _handle value = 0x0016;
#endif

/* BlueNRG GAP Central starts a discovery all the characteristics of a
service procedure: conn handle is the connection handle returned on
HCI_Event CB() event callback, EVT _LE CONN_ COMPLETE event */

if (aci_gatt disc_all charac of serv(conn handle,
service handle, /* Service handle */
end _group handle/* End group handle */
) ;) != BLE_STATUS_SUCCESS)

if (ret != BLE_STATUS SUCCESS) PRINTF ("Failure.\n") }

}

The responses of the procedure are given through the EVT BLUE ATT READ BY TYPE RESP
event raised on HCI Event CB() callback (EvT VENDOR as main event) . The end of the
procedure is indicated by EVT BLUE GATT PROCEDURE COMPLETE event on the

HCI Event CB() callback (EvT VENDOR as main event):

void HCI_ Event CB(void *pckt)

3

DocID027104 Rev 3 75/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

hci uvart pckt *hci pckt = pckt;
hci event pckt *event pckt = (hci event pckt*)hci pckt->data;
if (hci pckt->type != HCI_EVENT PKT return;
switch(event pckt-s>evt) {
case EVT_VENDOR:
{
/* Get the vendor event data */
evt_blue aci *blue_evt = (void*)event pckt->data;
switch(blue evt-secode) {
case EVT BLUE ATT READ BY TYPE RESP:
{
evt _att read by type resp *pr = (void*)blue evt->data;
/* evt_att read by type resp parameters:
pr->conn_handle: connection handle;
pr->event data length: total length of the event data;

pr->handle value pair length: length of each specific data
within the handle value pair([];

pr->handle value pair[]: event data.
*/

/* Add user code for decoding the pr-shandle value pair[] and get
the characteristic handle, properties, characteristic value handle,

characteristic UUID */
}/* EVT BLUE_ATT READ BY TYPE RESP */
break;
case EVT_ BLUE GATT_ PROCEDURE_COMPLETE:
evt_gatt_procedure_ complete *pr = (void*)blue evt->data;
/* evt_gatt procedure complete parameters:
pr->conn_handle: connection handle;

pr->data length: length of the event data;

3

76/97 DocID027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

pr->datall:

*/

/* If needed,

event data.

}/* EVT_BLUE_GATT PROCEDURE_COMPLETE */

break;

}/* switch(blue evt->ecode) */

}/* EVT VENDOR */

break;

}/* switch(evt->subevent)*/

}/* end HCI_Event CB() */

add user code for using the event data */

In the context of the BlueNRG Senor Profile Demo, the GAP Central application should get
two EVT BLUE ATT READ BY TYPE RESP events with following
evt_att read by type resp data:

First evt _att read by type resp eventdata

pr->conn_handle

pr->event_data_length:

pr->handle_value_pair_ length:
characteristic data:
characteristic value handle,

pr->handle value pair:

0x0801

characteristic handle,

(connection handle) ;

0x1l6

characteristic UUID;

0x15 bytes as follows:

Table 52. First evt_att_read_by_type_resp event data

(length of the event data);

properties,

0x15 length of each discovered

Characteristic

Characteristic

Characteristic

handle properties value handle Characteristic UUID Note
Free Fall
0x0011 0x0012 characteristic
(BlueNRG), 0x10 (notify) (BlueNRG), |O0xE23E78A0CF4A11E18FFCO0002A5D5 | 128 bits
0x000D 0x000E C51B characteristic
(BlueNRG-MS) (BlueNRG-MS) proprietary
uuID

Second evt att read by type resp event data

3

pr->conn_handle :

0x080

pr->event data length:

1 (connection handle) ;

0x16 (length of the event data);

DoclD027104 Rev 3

77/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs

PM0237

pr->handle_value_pair_length:

0x15 length of each discovered

characteristic data: characteristic handle, properties, characteristic

value handle,

pr->handle value pair:

characteristic UUID;

0x15 bytes as follows:

Table 53. Second evt_att_read_by_type_resp event data

Characteristic Charactel_'lstlc Characteristic Characteristic UUID Note
handle properties value handle
Acceleration
0x0014 0x0015 characteristic
(BlueNRG), 0x12 (notify and | (BlueNRG), 0x340A1B80CF4B11E1AC360002A5D | 128bits
0x0010 read) 0x0011 5C51B characteristic
(BlueNRG-MS) (BlueNRG-MS) proprietary
uuiD

In the context of the Sensor Profile Demo, when the discovery all characteristics of a
service procedure completes, the EVT BLUE GATT PROCEDURE_COMPLETE iS generated on
GAP Central application, with following evt gatt procedure complete data:

0x0801
0x01 (length of the event data);

pr->conn handle : (connection handle) ;

pr-> data length:

pr->datal[]: 0x00 (event data).

Similar steps can be followed in order to discover all the characteristics of the environment
service (refer to Table 45: BlueNRG sensor profile demo services & characteristics handles)
and Table 46: BlueNRG-MS sensor profile demo services & characteristics handles).

3.7 Characteristic notification/indications, write, read
This section describes the main functions for getting access to BLE device characteristics.
Table 54. Characteristics update, read, write APls
Discovery service API Description Where
If notifications (or indications) are enabled
aci_gatt_update_char_value() on the characteristic, this API sends a GATT server
notification (or indication) to the client.
aci_gatt_read_charac_val() It starts the procedure to read the attribute GATT dlient
value.
It starts the procedure to write the attribute
. . value (when the procedure is completed, a .
aci_gatt_write_charac_value() EVT BLUE_GATT PROCEDURE _COMP GATT client
LETE event is generated).
It starts the procedure to write a
aci_gatt_write_without_response() characteristic value without waiting for any | GATT client
response from the server.
78/97 DoclD027104 Rev 3 Kys

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

Table 54. Characteristics update, read, write APls

Discovery service API Description Where

It start the procedure to write a GATT client

aci_gatt_write_charac_descriptor() characteristic descriptor.

It confirms an indication. This command
has to be sent when the application
aci_gatt_confirm_indication() receives the event GATT client
EVT_BLUE_GATT_INDICATION on the
reception of a characteristic indication.

In the context of the sensor profile demo, follow a simple pseudo code the GAP Central
application should use in order to configure the free fall and the acceleration characteristics
client descriptors configuration for notification:

tBleStatus ret;

uintlé t handle value;

#ifdef BLUENRG MS

handle value = 0x000F;

#else /*

handle value = 0x0013;
#endif

/* Enable the free fall characteristic client descriptor configuration for
ret = aci gatt write charac descriptor (conn handle,

handle value /* handle for free fall
client descriptor
configuration */
0x02, /* attribute value
length */
0x0001, /* attribute value:
1 for notification */
)i
if (ret != BLE_STATUS SUCCESS) PRINTF("Failure.\n") }
#ifdef BLUENRG MS

handle value = 0x0012;

#telse /*

handle value = 0x0016;

DocID027104 Rev 3 79/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

#endif
/* Enable the acceleration characteristic client descriptor configuration
for notification */
ret = aci gatt write charac descriptor (conn handle,
handle value /* handle for acceleration
client descriptor
configuration */
0x02, /* attribute wvalue
length */
0x0001, /* attribute value:
1 for notification */
) ;if (ret != BLE STATUS_SUCCESS) PRINTF ("Failure.\n")}
Once the characteristics notification have been enabled from the GAP Central, the GAP
peripheral can notify a new value for the free fall and acceleration characteristics as follows:
tBleStatus ret;
uint8_t val = 0x01;

uintl6é t service handle value;

uintlé6_t charac_handle_ value;
#ifdef BLUENRG MS

service_handle_value = 0x000C;

charac_handle value = 0x000D;
#else /*

service handle value = 0x0010;
charac _handle value = 0x0011;
#endif

/* GAP peripheral notifies free fall characteristic to GAP centralx/

ret = aci_gatt_update_char value (service handle value , /* acceleration
service handle */

charac_handle value, /* free fall characteristic
handle */
0, /* characteristic
value offset */

0x01,/* characteristic value

length*/
&val, /* characteristic value */);
ret = (accServHandle, freeFallCharHandle, 0, 1, &val);
if (ret != BLE STATUS SUCCESS) PRINTF(”Failure.\n")}

tBleStatus ret;

80/97 DocID027104 Rev 3

3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

uint8_t buff[6];
#ifdef BLUENRG_MS

charac_handle_value = 0x0010;
ftelse /*
charac_handle value = 0x0014;

#endif

/* Set the mems acceleration values on three axis x,y,z on buff array */

/* GAP peripheral notifies acceleration characteristic to GAP central*/
ret = aci_gatt update char value (service handle value , /* acceleration
service handle */
charac_handle value, /* acceleration
characteristic
handle */
0 , /* characteristic
value offset */
0x06, /* characteristic
value length */
buff, /* characteristic
value */
) ;
ret = (accServHandle, freeFallCharHandle, 0, 1, &val);
if (ret != BLE STATUS SUCCESS) PRINTF(”Failure.\n")}

On GAP Central, HCI Event CB() callback (EvT_VENDOR as main event), the

EVT BLUE_GATT NOTIFICATION is raised on reception of the characteristic notification
(acceleration or free fall) from the GAP Peripheral device. Follow a pseudo code of the
HCI Event CB() callback:

void HCI_Event_ CB(void *pckt)
{
hci uvart pckt *hci pckt = pckt;
hci_event pckt *event pckt = (hci_event pckt*)hci pckt->data;
if (hci pckt->type != HCI_ EVENT PKT return;
switch (event pckt-sevt) {
case EVT_ VENDOR:
{
/* Get the vendor event data */
evt_blue aci *blue_evt = (void*)event pckt->data;
switch (blue evt->ecode)

{

case EVT BLUE GATT NOTIFICATION:

{

DocID027104 Rev 3 81/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

3.8

3.9

82/97

evt_gatt_attr notification *evt = (evt_gatt attr notification*)blue evt-
>data;

/*
evt gatt attr notification data:
evt->conn_handle: connection handle;
evt->event_data_length: length of attribute value + handle (2 bytes);
evt->attr handle: handle of the notified characteristic;
evt->attr value[]: characteristic value.
Add user code for handling the received notification based on the

application scenario.

break;
}/* switch(blue evt-secode)*/
}/* switch (evt->subevent) */

}/* end HCI Event CB() */

Basic/typical error conditions description

On BlueNRG, BlueNRG-MS ACI framework, the tBlestatus type is defined in order to
return the BlueNRG, BlueNRG-MS stack error conditions. The status and error codes are
defined within the header file “ble_status.h”.

When a stack APl is called, it is recommended to get the API return status and to monitor it
in order to track potential error conditions.

BLE_STATUS SUCCESS (0x00) is returned when the APl is successfully executed. For a
detailed list of error conditions associated to each ACI API refer to the UM1755 and
UM1865 user manuals, on Section 5: References.

BlueNRG-MS simultaneously Master, Slave scenario

BlueNRG-MS device stack supports multiple roles simultaneously. This allows the same
device to act as Master on one or more connections (up to eight connections are supported
on Stack Mode 3), and to act as a Slave on another connection.

The following pseudo code describes how a BlueNRG-MS device can be initialized for
supporting Central and Peripheral roles simultaneously:
uint8 t role = GAP PERIPHERAL ROLE | GAP CENTRAL ROLE;

ret = aci_gap init(role, 0, 0x07, &service handle,
&dev_name char handle, &appearance char handle) ;

A simultaneous Master and Slave test scenario can be easily targeted as follows:

3

DoclD027104 Rev 3

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

3

Figure 10. BlueNRG-MS simultaneous Master & Slave scenario

Master (1)

Master&Slave is a GAP peripheral

- Master&Slave) 8

Master&Slave ' Master&Slave
is a GAP central is a GAP central

Slave_A ©®) Slave_B ©3

(1) BlueNRG-MS GAP central
(2) BlueNRG-MS GAP central (mode 3) & peripheral
(3) BlueNRG-MS GAP peripheral

1. One BlueNRG-MS device (called Master&Slave) is configured as Central & Peripheral
by setting role as GAP PERIPHERAL ROLE | GAP CENTRAL ROLE oOn
GAP_Init () APIL Furtheritis configured with stack mode 3 for being able to connect
to more than one Peripheral device. Let’s also assume that this device define a service
with a characteristic.

2. Two BlueNRG-MS devices (called Slave_A, Slave_B) are configured as Peripheral by
setting role as GAP_ PERIPHERAL ROLE on GAP_Init () APl Both Slave_A and
Slave_B define the same service and characteristic as Master&Slave device.

3. One BlueNRG-MS device (called Master) is configured as Central by setting role as
GAP CENTRAL ROLE on GAP Init () APL

4. Both Slave_A and Slave_B devices enter in discovery mode as follows:

ret =aci gap set discoverable (Advertising Type= 0x00,
Advertising Interval Min=0x20,
Advertising Interval Max=0x100,
Local Name Length=0x05,
Local Name=[0x08,0x74,0x65,0x73,0x74],
Slave_Conn_Interval_Min = 0x0006,

Slave Conn Interval Max = 0x0008)

5. Master&Slave device performs a discovery procedure in order to discover the
peripheral devices Slave_A and Slave_ B:

ret = aci_gap_start gen disc_proc (LE_Scan Interval=0x10,

LE Scan Window=0x10)

DocID027104 Rev 3 83/97

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

The two devices are discovered thorugh the EVT_LE_ADVERTISING_REPORT events.

6. Once the two devices are discovered, Master&Slave device starts two connections
procedures (as Central) for connecting, respectively, to Slave_A and Slave_B devices:

/* Connect to Slave_A: Slave A addreess type and address have been found
during the discovery procedure within the EVT_LE ADVERTISING REPORT event
*/
ret= aci_gap create connection(LE_Scan Interval=0x0010,
LE Scan Window=0x0010,
Peer Address Type= ”“Slave A address type”,
Peer_Address= ”"Slave_A address”,
Conn_Interval Min=0xé6c,
Conn_Interval Max=0x6c,
Conn_Latency=0x00,
Supervision Timeout=0xc80,
Minimum CE Length=0x000c,
Maximum_CE_Length=0x000c)

/* Connect to Slave B: Slave B addreess type and address have been found
during the discovery procedure within the EVT LE ADVERTISING REPORT event

*/

ret= aci gap create connection(LE Scan Interval=0x0010,
LE_Scan_Window=0x0010,
Peer Address Type= ”"Slave B address type”,
Peer Address= ”Slave B address”,
Conn_Interval_Min=0x6c,
Conn_Interval Max=0x6c,
Conn_Latency=0x00,
Supervision Timeout=0xc80,
Minimum CE Length=0x000c,
Maximum CE Length=0x000c)

7. Once connected, Master&Slave device enables the characteristics notification, on
both of them, using the aci gatt write charac descriptor () API. Slave_A
and Slave_B devices start the characterisitic notification by using the
aci gatt upd char val() APL

8. At this stage, Master&Slave device enters in discovery mode (acting as Peripheral):

/* Put Master&Slave device in Discoverable Mode with Name = 'Test' =
[0x08,0x74,0x65,0x73,0x74*/
ret = aci gap set discoverable (Advertising Type= 0x00,
Advertising Interval_ Min=0x20,
Advertising Interval Max=0x100,
Local Name Length=0x05,
Local Name=[0x08,0x74,0x65,0x73,0x74],

Slave Conn Interval Min = 0x0006,

84/97 DoclD027104 Rev 3 ‘Yl

PM0237

Design an application using BlueNRG, BlueNRG-MS ACI APIs

Note:

3

Slave_Conn_Interval Max = 0x0008)

Since Master&Slave device is also acting as a Central device, it receives the
EVT _BLUE_GATT_NOTIFICATION event related to the characteristics values notified
from, respectively, Slave_A and Slave_B devices.

9. Once Master&Slave device enters in discovery mode, it also waits for connection
request coming from the other BlueNRG-MS device (called Master) configured as
GAP Central. Master device starts discovery procedure for discovering the
Master&Slave device:

ret = aci_gap_start gen disc_proc (LE_Scan Interval=0x10,

LE_Scan_ Window=0x10)

Master&Slave device is discovered thorugh the EVT_LE_ADVERTISING_REPORT event.

10. Once the Master&Slave device is discovered, Master device starts a connection
procedure for connecting to it :

/* Master device connects to Master&Slave device: Master&Slave addreess
type and address have been found during the discovery procedure within the
EVT_LE ADVERTISING REPORT event */

ret= aci gap create connection(LE Scan Interval=0x0010,
LE Scan Window=0x0010,
Peer Address Type= "Master&Slave address
type”
Peer Address= "Master&Slave address”
Conn_Interval Min=0xéc,
Conn_Interval Max=0x6c,
Conn_Latency=0x00,
Supervision Timeout=0xc80,
Minimum CE Length=0x000c,
Maximum CE Length=0x000c)

11. Once connected, Master device enables the characteristic notification on
Master&Slave device using the aci gatt write charac descriptor () APL

12. At this stage, Master&Slave device receives the characteristics notifications from
both Slave_A, Slave_B devices, since itis a GAP Central and, as GAP Peripheral, itis
also able to notify these characteristics values to the Master device.

A set of test scripts allowing to exercise the described BlueNRG-MS simultaneously Master,
Slave scenario are provided within the BlueNRG DK SW package (see Reference Section).
These scripts can be run using the BlueNRG GUI and they can be taken as reference for
implementing a firmware application using the BlueNRG-MS simultaneously master and
slave feature.

DocID027104 Rev 3 85/97

BlueNRG multiple connections timing strategy PM0237

4

4.1

411

86/97

BlueNRG multiple connections timing strategy

This section provides an overview of the connection timing management strategy of
BlueNRG when multiple Master and Slave connections are active.

Basic concepts about Bluetooth Low Energy timing

This section describes the basic concepts related to the Bluetooth Low Energy timing
management related to the advertising, scanning and connections operations.

Advertising timing
The timing of the advertising state is characterized by 3 timing parameters, linked by this

formula:
T_advEvent = advinterval + advDelay

where:
e T_advEvent: time between the start of two consecutive advertising events;

if the advertising event type is either a scannable undirected event type or a non-
connectable undirected type, the advinterval shall not be less than 100 ms;

if the advertising event type is a connectable undirected event type or connectable
directed event type used in a low duty cycle mode, the advinterval can be 20 ms or
greater.

e advDelay: pseudo-random value with a range of 0 ms to 10 ms generated by the Link
Layer for each advertising event.

Figure 11. Advertising timings

Advertising Advertising Advertising
Event Event Event

T _advEvent o T_advEvent

advinterval advinterval 4
A advDelay advDeFaQ'
Advertising
State
entered

3

DoclD027104 Rev 3

PM0237

BlueNRG multiple connections timing strategy

4.1.2

41.3

4.2

3

Scanning timing

The timing of the scanning state is characterized by 2 timing parameters:

. scaninterval: defined as the interval between the start of two consecutive scan
windows;

e scanWindow: time during which Link Layer listens on an advertising channel index.
The scanWindow and scaninterval parameters shall be less than or equal to 10.24 s.

The scanWindow shall be less than or equal to the scaninterval.

Connection Timing

The timing of connection events is determined by 2 parameters:

e connection event interval (conninterval): time interval between the start of two
consecutive connection events, which shall never overlap; the point in time where a
connection event starts is named an anchor point.

At the anchor point, a master shall start to transmit a Data Channel PDU to the slave, which
in turn listens to the packet sent by its master at the anchor point.

The master shall ensure that a connection event closes at least T_IFS=150 us (Inter Frame
Spacing time, i.e. time interval between consecutive packets on same channel index) before
the anchor point of next connection event.

The connlnterval shall be a multiple of 1.25 ms in the range of 7.5 ms to 4.0 s.

e slave latency (connSlavelLatency): allows a slave to use a reduced number of
connection events. This parameter defines the number of consecutive connection
events that the slave device is not required to listen for the master.

When the Host wants to create a connection, it provides the Controller with the maximum
and minimum values of the connection interval (Conn_Interval_Min, Conn_Interval _Max)
and connection length (Minimum_CE_Length, Maximum_CE_Length) thus giving the
Controller some flexibility in choosing the actual parameters in order to fulfill additional
timing constraints e.g. in the case of multiple connections.

BlueNRG timing and slot allocation concepts

The BlueNRG adopts a time slotting mechanism in order to be able to allocate simultaneous
Master and Slave connections. The basic parameters controlling the slotting mechanism
are:

Table 55. Timings parameters of the slotting algorithm

Parameter Description

Recurring time interval inside which up to 8 connection slots can be allocated.

Anchor Period | Among these 8 slots, only 1 at a time may be a scanning or advertising slot (they
are mutually exclusive)

Time interval inside which a full event (i.e. Advertising or Scanning, and
Slot Duration | Connection) takes place; the slot duration is the time duration assigned to the
connection slot and is linked to the maximum duration of a connection event.

DocID027104 Rev 3 87197

BlueNRG multiple connections timing strategy PM0237

Table 55. Timings parameters of the slotting algorithm

Parameter Description

Time value corresponding to the delay between the beginning of an anchor period

Slot Offset and the beginning of the Connection Slot.

Number representing the actual utilization rate of a certain connection slot in
successive anchor periods.

Slot Latency | (For instance, a slot latency equal to ‘1’ means that a certain connection slot is
actually used in each anchor period; a slot latency equal to n means that a certain
connection slot is actually used only once every n anchor periods)

Such timing allocation concept allows for a clean time handling of multiple connections but
at the same time imposes some constraints to the actual connection parameters that the
controller can accept. An example of the time base parameters and connection slots
allocation is shown in Figure 12.

Figure 12. Example of allocation of three connection slots

Slot #1 has offset 0 with respect to the anchor period, Slot #2 has slot latency = 2, all slots
are spaced by 1.25 ms guard time.

421 Setting the timing for the first Master connection

The time base mechanism above described, is actually started when the first Master
connection is created. The parameters of such first connection determine the initial value for
the anchor period and influence the timing settings that can be accepted for any further
Master connection simultaneous with the first one.

In particular:

e The initial anchor period is chosen equal to the mean value between the maximum and
minimum connection period requested by the Host.

e The first connection slot is placed at the beginning of the anchor period.
e The duration of the first connection slot is set equal to the maximum of the requested
connection length.

Clearly, the relative duration of such first connection slot compared to the anchor period
limits the possibility to allocate further connection slots for further Master connections.

3

88/97 DocID027104 Rev 3

PM0237

BlueNRG multiple connections timing strategy

4.2.2

3

Setting the timing for further Master connections

Once that the time base has been configured and started as described above, then the slot
allocation algorithm will try, within certain limits, to dynamically reconfigure the time base to
allocate further host requests.

In particular, the following three cases are considered:

1.

The current anchor period falls within the Conn_Interval_Min and Conn_Interval _Max
range specified for the new connection. In this case no change is applied to the time
base and the connection interval for the new connection is set equal to the current
anchor period.

The current anchor period in smaller than the Conn_Interval _Min required for the new
connection. In this case the algorithm searches for an integer number m such that:

Conn_Interval_Min < Anchor_Period - m< Conn_Interval_Max

If such value is found then the current anchor period is maintained and the connection
interval for the new connection is set equal to Anchor_Period « m with slot latency equal
to m.

The current anchor period in larger than the Conn_Interval _Max required for the new
connection. In this case the algorithm searches for an integer number & such that:

Conn_lInterval_Min <

w < Conn_lInterval_Max

If such value is found then the current anchor period is reduced to:
Anchor Period
k
The connection interval for the new connection is set equal to:

Anchor Period
k

and the slot latency for the existing connections is multiplied by a factor k. Note that in
this case the following conditions must also be satisfied:
Anchor_Period/k must be a multiple of 1.25 ms

Anchor_Period/k must be large enough to contain all the connection slots already
allocated to the previous connections

Once that a suitable anchor period has been found according to the criteria listed above,
then a time interval for the actual connection slot is allocated therein. In general, if enough
space can be found in the anchor period, the algorithm will allocate the maximum requested
connection event length otherwise will reduce it to the actual free space.

When several successive connections are created, the relative connection slots are
normally placed in sequence with a small guard interval between (1.5 ms); when a
connection is closed this generally results in an unused gap between two connection slots. If
a new connection is created afterwards, then the algorithm will first try to fit the new
connection slot inside one of the existing gaps; if no gap is wide enough, then the
connection slot will just be placed after the last one.

Figure 13 shows an example of how the time base parameters are managed when
successive connections are created.

DocID027104 Rev 3 89/97

BlueNRG multiple connections timing strategy PM0237

Figure 13. Example of timing allocation for three successive connections

A) First connection

ConnIntMin = 100 ms Anchor Period = 200 ms, Connection Interval #1 = 200 ms
ConnintMax = 300 ms ‘ Slot #1 offset =0ms

CE_len_min=10 ms Slot #1 len =20ms

CE_len_max=20 ms Slot #1 latency =1

U
! Anchor Period !

B) Second connection

ConnIntMin = 250 ms Anchor Period = 200 ms, Connection Interval = 400 ms
ConnIntMax = 500 ms Slot #2 offset =21.5ms

CE_len_min=10 ms ‘ Slot #2 len =50 ms

CE_len_max= 50 ms Slot #2 latency = 2
Anchor Period ! !
t
C) Third connection
ConnIntMin = 50 ms Anchor Period = 100 ms, Connection Interval = 100 ms

ConnintMax = 150 ms ‘ Slot #3 offset =73 ms
CE_len_min=10 ms Slot #3 len =25.5ms
CE_len_max= 100 ms Slot #1 latency = 2, Slot #2 latency = 4, Slot #3 latency = 1

] BB B BpEER @

™~ 1 1 T

<=
Anchor Period

423 Timing for Advertising Events

The periodicity of the advertising events, controlled by advinterval, is computed based on
the following parameters specified by the Slave through the Host in the
HCI_LE_Set_Advertising_parameters command:

e Advertising_Interval_Min, Advertising_Interval _Max;
e Advertising_Type;

if Advertising_Type is set to High Duty Cycle Directed Advertising, then Advertising Interval
is set to 3.75ms regardless of the values of Advertising_Interval_Min and
Advertising_Interval_Max; in this case, a Timeout is also set to 1.28 s, that is the maximum
duration of the Advertising event for this case;

In all other cases the Advertising Interval is chosen equal to the mean value between
(Advertising_Interval_Min + 5 ms) and (Advertising_Interval_Max + 5ms). The Advertising
hasn’t a maximum duration as in the previous case, but it's stopped only if a Connection is
established, or upon explicit request by Host.

The length of each advertising event is set by default by the SW to be equal to 14.6ms (i.e.
the maximum allowed advertising event length) and it cannot be reduced.

Advertising slots are allocated within the same time base of the master slots (i.e. scanning
and connection slots). For this reason, the Advertising Enable command to be accepted by
the SW when at least one master slot is active, the Advertising Interval has to be an integer
multiple of the actual Anchor Period.

90/97 DoclD027104 Rev 3 ‘Yl

PM0237

BlueNRG multiple connections timing strategy

4.2.4

4.2.5

4.3

3

Timing for scanning

Scanning timing is requested by the Master through the following parameters specified by
the Host in the HCI_LE_Set Scan_parameters command:

— LE_Scan_lInterval: used to compute the periodicity of the scan slots.

— LE Scan_Window: used to compute the length of the scan slots to be allocated
into the master time base.

Scanning slots are allocated within the same time base of the other active master slots (i.e.
connection slots) and of the advertising slot (if there is one active).

In order the Scanning Enable command to be accepted by the SW, the LE_Scan_Interval
has to be an integer multiple of the actual anchor period.

Every time the LE_Scan_Interval is greater than the actual anchor period, the SW
automatically tries to subsample the LE_Scan_Interval and to reduce the allocated scan slot
length (up to ¥ of the LE_Scan_Window) in order to keep the same duty cycle required by
the Host, given that Scanning parameters are just recommendations as stated by BT official
specifications (v.4.1, Vol.2, Part E, §7.8.10).

Slave timing

The Slave timing is defined by the Master when the connection is created so the connection
slots for Slave links are managed asynchronously with respect to the time base mechanism
described above. The Slave assumes that the Master may use a connection event length as
long as the connection interval.

The scheduling algorithm adopts a round-robin arbitration strategy any time a collision
condition is predicted between a Slave and a Master slot. In addition to this, the scheduler
may also impose a dynamic limit to the Slave connection slot duration to preserve both
Master and Slave connections.

In particular:

e Ifthe end of a Master connection slot overlaps the beginning of a Slave connection slot
then Master and Slave connections are alternatively preserved/canceled

e If the end of a Slave connection slot overlaps the beginning of a Master connection slot
then the Slave Connection slot length is hard limited to avoid such overlap. If the
resulting time interval is too small to allow for at least a two packets exchange then
round robin arbitration is used.

BlueNRG multiple Master & Slave connections guidelines

The following guidelines should be followed for properly handling multiple master and slave
connections using BlueNRG & BlueNRG-MS devices:

1. Avoid over-allocating connection event length: choose Minimum_CE_Length and
Maximum_CE_Length as small as possible to strictly satisfy the application needs.
Doing so will help the allocation algorithm to allocate several connections within the

DocID027104 Rev 3 91/97

BlueNRG multiple connections timing strategy PM0237

anchor period and to reduce the anchor period, if needed, to allocate connections with
a small connection interval.

2. For the first Master connection:

a) If possible, create the connection with the shortest connection interval as the first
one. Doing so will help allocating further connections with connection interval
multiple of the initial anchor period.

b) If possible, choose Conn_Interval Min = Conn_Interval Max as multiple of 10
ms. Doing so will help allocating further connections with connection interval
submultiple by a factor 2, 4 and 8 (or more) of the initial anchor period being still a
multiple of 1.25 ms.

3. For additional Master connections:

a) Choose Scaninterval equal to the connection interval of one of the existing Master
connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

c) Choose Conn_Interval_Min and Conn_Interval_Max such that the interval
contains either:

— amultiple of the shortest allocated connection interval
— asubmultiple of the shortest allocated connection interval being also a multiple of
1,25 ms

d) Choose Maximum_CE_Length = Minimum_CE_Length such that the sum of the
allocated master slots (including Advertising, if active) plus Minimum_CE_Length
is lower than the shortest allocated connection interval

4. Every time you start Advertising:
a) If Direct Advertising, choose Advertising_Interval_Min = Advertising_Interval_Max
= integer multiple of the shortest allocated connection interval

b) If not Direct Advertising, choose Advertising Interval _Min =
Advertising_Interval_Max such that (Advertising_Interval_Min + 5ms) is an integer
multiple of the shortest allocated connection interval

5. Every time you start Scanning:
a) Choose Scaninterval equal to the connection interval of one of the existing Master
connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

6. Keep in mind that the process of creating multiple connections, then closing some of
them and creating new ones again, over time, tends to decrease the overall efficiency
of the slot allocation algorithm. In case of difficulties in allocating new connections, the
time base can be reset to the original state closing all existing connections.

3

92/97 DocID027104 Rev 3

PM0237

References

5

3

References

Table 56. References table

Name

Title

AN4494

Bringing up the BlueNRG application note

BlueNRG datasheet

Bluetooth® low energy wireless network processor

BlueNRG-MS datasheet

Bluetooth® low energy wireless network processor

BlueNRG DK SW package

BlueNRG SW package for BlueNRG and BlueNRG-MS kits

Bluetooth specification V4.0

Specification of the Bluetooth system v4.0

Bluetooth specification V4.1

Specification of the Bluetooth system v4.1

BlueNRG Bluetooth LE stack application command interface

UM1755 (ACI) user manual
BlueNRG-MS Bluetooth LE stack application command
UM1865 .
interface (ACI) user manual
UM1686 BlueNRG development kits user manual
UM1870 BlueNRG-MS development kits user manual

DocID027104 Rev 3 93/97

List of acronyms and abbreviations

PM0237

Appendix A

94/97

This appendix lists the standard acronyms and abbreviations used throughout the

List of acronyms and abbreviations

document.
Table 57. List of acronyms
Term Meaning
ACI Application command interface
ATT Attribute protocol
BLE Bluetooth low energy
BR Basic rate
CRC Cyclic redundancy check
CSRK Connection signature resolving Key
EDR Enhanced data rate
EXTI External interrupt
GAP Generic access profile
GATT Generic attribute profile
GFSK Gaussian frequency Shift keying
HCI Host controller interface
IFR Information register
IRK Identity resolving key
ISM Industrial, scientific and medical
LE Low energy
L2CAP Logical link control adaptation layer protocol
LTK Long-term key
MCU Microcontroller unit
MITM Man-in-the-middle
NA Not applicable
NESN Next sequence number
OoO0B Out-of-band
PDU Protocol data unit
RF Radio frequency
RSSI Received signal strength indicator
SIG Special interest group
SM Security manager
SN Sequence number
uSB Universal serial bus

DoclD027104 Rev 3

3

PM0237

List of acronyms and abbreviations

3

Table 57. List of acronyms (continued)

Term

Meaning

uuiD

Universally unique identifier

WPAN

Wireless personal area networks

DoclD027104 Rev 3

95/97

Revision history

PM0237

6

96/97

Revision history

Table 58. Document revision history

Date Revision Changes
23-Jan-2015 1 Initial release.
The document has been adapted to refer to both BlueNRG and
21-Apr-2015 2 BlueNRG-MS devices.
Added reference to STM32L Cube library framework on
02-Sep-2015 3 Chapter 2: BlueNRG, BlueNRG-MS stacks architecture and ACI

Added: Chapter 4: BlueNRG multiple connections timing strategy.

3

DoclD027104 Rev 3

PM0237

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

DocID027104 Rev 3 97/97

	1 Bluetooth low energy technology
	Figure 1. Bluetooth low energy technology enabled coin cell battery devices
	1.1 BLE stack architecture
	Figure 2. Bluetooth low energy stack architecture

	1.2 Physical layer
	Table 1. BLE RF channel types and frequencies

	1.3 Link Layer (LL)
	Figure 3. Link Layer state machine
	1.3.1 BLE packets
	Figure 4. Packet structure
	Table 2. Advertising data header file content
	Table 3. Advertising packet types
	Table 4. Advertising event type and allowable responses
	Table 5. Data packet header content
	Table 6. Packet length field and valid values

	1.3.2 Advertising state
	Figure 5. Advertising packet with AD type flags

	1.3.3 Scanning state
	1.3.4 Connection state
	Table 7. Connection request timings intervals

	1.4 Host controller interface (HCI)
	1.5 Logical link control and adaptation layer protocol (L2CAP)
	1.6 Attribute Protocol (ATT)
	Table 8. Attribute example
	Table 9. Attributes protocol messages

	1.7 Security Manager (SM)
	Table 10. Combination of Input/Output capabilities on a BLE device
	Table 11. Methods used for calculating the Temporary Key (TK)

	1.8 Generic attribute profile (GATT)
	1.8.1 Characteristic attribute type
	Figure 6. Example of characteristic definition
	Table 12. Characteristic declaration
	Table 13. Characteristic value

	1.8.2 Characteristic descriptors type
	1.8.3 Service attribute type
	Table 14. Service declaration
	Table 15. Include declaration

	1.8.4 GATT procedures
	Table 16. Discovery procedures and related response events
	Table 17. Client-initiated procedures and related response events
	Table 18. Server-initiated procedures and related response events

	1.9 Generic access profile (GAP)
	Table 19. GAP roles
	Table 20. GAP broadcaster mode
	Table 21. GAP discoverable modes
	Table 22. GAP connectable modes
	Table 23. GAP bondable modes
	Table 24. GAP observer procedure
	Table 25. GAP discovery procedures
	Table 26. GAP connection procedures
	Table 27. GAP bonding procedures

	1.10 BLE profiles and applications
	Figure 7. Client and server profiles
	1.10.1 Proximity profile example

	2 BlueNRG, BlueNRG-MS stacks architecture and ACI
	Figure 8. BlueNRG, BlueNRG-MS stacks architecture and interface to the external host
	2.1 ACI interface
	Table 28. ACI Interface

	2.2 ACI Interface resources
	Table 29. ACI Interface resources files

	2.3 Other platforms resources files
	Table 30. SW framework platforms drivers
	2.3.1 Platforms configuration

	2.4 How to port the ACI SPI interface framework to a selected microcontroller

	3 Design an application using BlueNRG, BlueNRG-MS ACI APIs
	Table 31. User application defines for BLE devices role
	3.1 Initialization phase and main application loop
	Table 32. BlueNRG GATT, GAP default services
	Table 33. BlueNRG GATT, GAP default characteristics
	Table 34. BlueNRG-MS GATT, GAP default services
	Table 35. BlueNRG-MS GATT, GAP default characteristics
	Table 36. GAP_Init() role parameter values
	3.1.1 BLE addresses
	Figure 9. MAC address storage

	3.1.2 Set tx power level

	3.2 BlueNRG, BlueNRG-MS events and events Callback
	Table 37. ACI: main events, sub-events

	3.3 Services and characteristic configuration
	3.4 Create a connection: discoverable and connectable APIs
	Table 38. ACI: GAP modes APIs
	Table 39. ACI: discovery procedures APIs
	Table 40. ACI: connection procedures APIs
	3.4.1 Set discoverable mode & use direct connection establishment procedure
	3.4.2 Set discoverable mode & use general discovery procedure (active scan)
	Table 41. ADV_IND event
	Table 42. ADV_IND advertising data
	Table 43. SCAN_RSP event
	Table 44. Scan response data

	3.5 Security (pairing and bonding)
	3.6 Service and characteristic discovery
	Table 45. BlueNRG sensor profile demo services & characteristics handles
	Table 46. BlueNRG-MS sensor profile demo services & characteristics handles
	3.6.1 Service discovery procedures and related GATT events
	Table 47. ACI: service discovery procedures APIs
	Table 48. First evt_att_read_by_group_resp event data
	Table 49. Second evt_att_read_by_group_resp event data
	Table 50. Third evt_att_read_by_group_resp event data

	3.6.2 Characteristics discovery procedures and related GATT events
	Table 51. BlueNRG ACI: characteristics discovery procedures APIs
	Table 52. First evt_att_read_by_type_resp event data
	Table 53. Second evt_att_read_by_type_resp event data

	3.7 Characteristic notification/indications, write, read
	Table 54. Characteristics update, read, write APIs

	3.8 Basic/typical error conditions description
	3.9 BlueNRG-MS simultaneously Master, Slave scenario
	Figure 10. BlueNRG-MS simultaneous Master & Slave scenario

	4 BlueNRG multiple connections timing strategy
	4.1 Basic concepts about Bluetooth Low Energy timing
	4.1.1 Advertising timing
	Figure 11. Advertising timings

	4.1.2 Scanning timing
	4.1.3 Connection Timing

	4.2 BlueNRG timing and slot allocation concepts
	Table 55. Timings parameters of the slotting algorithm
	Figure 12. Example of allocation of three connection slots
	4.2.1 Setting the timing for the first Master connection
	4.2.2 Setting the timing for further Master connections
	Figure 13. Example of timing allocation for three successive connections

	4.2.3 Timing for Advertising Events
	4.2.4 Timing for scanning
	4.2.5 Slave timing

	4.3 BlueNRG multiple Master & Slave connections guidelines

	5 References
	Table 56. References table

	Appendix A List of acronyms and abbreviations
	Table 57. List of acronyms

	6 Revision history
	Table 58. Document revision history

