
September 2015 DocID027104 Rev 3 1/97

PM0237
Programming manual

BlueNRG, BlueNRG-MS stacks programming guidelines

Introduction

The main purpose of this document is to provide a developer with some reference
programming guidelines about how to develop a Bluetooth low energy (BLE) host
applications using BlueNRG, BlueNRG-MS stacks APIs.

The document describes the BlueNRG, BlueNRG-MS stacks architecture, APIs interface
and callbacks allowing to get access to the Bluetooth low energy functions provided by the
BlueNRG, BlueNRG-MS network coprocessors.

This programming manual also provides some fundamental concepts about the Bluetooth
low energy (BLE) technology in order to associate the BlueNRG, BlueNRG-MS APIs,
parameters, and related events with the BLE protocol stack features. It is assumed that the
user already has a basic knowledge about the BLE technology and its main features.

For more information related to the full set related to the BlueNRG, BlueNRG-MS devices
and the Bluetooth specification v4.0 and v4.1, refer to Section 5: References at the end of
this document.

The BlueNRG is a very low power Bluetooth low energy (BLE) single-mode network
processor, compliant with Bluetooth specification v4.0 and supporting master or slave role.

The BlueNRG-MS is a very low power Bluetooth low energy (BLE) single-mode network
processor, compliant with Bluetooth specification v4.1 and supporting both master and slave
roles.

The manual is structured as follows:

• Fundamentals of Bluetooth low energy (BLE) technology

• BlueNRG, BlueNRG-MS stacks architecture and application command interface (ACI)
overview

• How to design an application using the BlueNRG, BlueNRG-MS stacks ACI APIs

Note: The document content is valid for both BlueNRG and BlueNRG-MS devices. Any specific
difference is highlighted whenever it is needed.

www.st.com

http://www.st.com

Contents PM0237

2/97 DocID027104 Rev 3

Contents

1 Bluetooth low energy technology . 7

1.1 BLE stack architecture . 8

1.2 Physical layer . 9

1.3 Link Layer (LL) .11

1.3.1 BLE packets . 12

1.3.2 Advertising state . 15

1.3.3 Scanning state . 16

1.3.4 Connection state . 17

1.4 Host controller interface (HCI) . 18

1.5 Logical link control and adaptation layer protocol (L2CAP) 18

1.6 Attribute Protocol (ATT) . 18

1.7 Security Manager (SM) . 20

1.8 Generic attribute profile (GATT) . 22

1.8.1 Characteristic attribute type . 22

1.8.2 Characteristic descriptors type . 24

1.8.3 Service attribute type . 24

1.8.4 GATT procedures . 25

1.9 Generic access profile (GAP) . 26

1.10 BLE profiles and applications . 31

1.10.1 Proximity profile example . 32

2 BlueNRG, BlueNRG-MS stacks architecture and ACI 34

2.1 ACI interface . 35

2.2 ACI Interface resources . 36

2.3 Other platforms resources files . 38

2.3.1 Platforms configuration . 38

2.4 How to port the ACI SPI interface framework to a selected microcontroller .
40

3 Design an application using BlueNRG, BlueNRG-MS ACI APIs 41

3.1 Initialization phase and main application loop . 42

3.1.1 BLE addresses . 47

3.1.2 Set tx power level . 49

DocID027104 Rev 3 3/97

PM0237 Contents

97

3.2 BlueNRG, BlueNRG-MS events and events Callback 50

3.3 Services and characteristic configuration . 54

3.4 Create a connection: discoverable and connectable APIs 56

3.4.1 Set discoverable mode & use direct connection establishment procedure
58

3.4.2 Set discoverable mode & use general discovery procedure (active scan)
60

3.5 Security (pairing and bonding) . 65

3.6 Service and characteristic discovery . 69

3.6.1 Service discovery procedures and related GATT events 71

3.6.2 Characteristics discovery procedures and related GATT events 75

3.7 Characteristic notification/indications, write, read 78

3.8 Basic/typical error conditions description . 82

3.9 BlueNRG-MS simultaneously Master, Slave scenario 82

4 BlueNRG multiple connections timing strategy 86

4.1 Basic concepts about Bluetooth Low Energy timing 86

4.1.1 Advertising timing . 86

4.1.2 Scanning timing . 87

4.1.3 Connection Timing . 87

4.2 BlueNRG timing and slot allocation concepts . 87

4.2.1 Setting the timing for the first Master connection 88

4.2.2 Setting the timing for further Master connections 89

4.2.3 Timing for Advertising Events . 90

4.2.4 Timing for scanning . 91

4.2.5 Slave timing . 91

4.3 BlueNRG multiple Master & Slave connections guidelines 91

5 References . 93

Appendix A List of acronyms and abbreviations . 94

6 Revision history . 96

List of figures PM0237

4/97 DocID027104 Rev 3

List of figures

Figure 1. Bluetooth low energy technology enabled coin cell battery devices 7
Figure 2. Bluetooth low energy stack architecture . 9
Figure 3. Link Layer state machine . 11
Figure 4. Packet structure . 12
Figure 5. Advertising packet with AD type flags. 15
Figure 6. Example of characteristic definition . 23
Figure 7. Client and server profiles . 32
Figure 8. BlueNRG, BlueNRG-MS stacks architecture and interface to the external host. 34
Figure 9. MAC address storage . 48
Figure 10. BlueNRG-MS simultaneous Master & Slave scenario . 83
Figure 11. Advertising timings . 86
Figure 12. Example of allocation of three connection slots . 88
Figure 13. Example of timing allocation for three successive connections . 90

DocID027104 Rev 3 5/97

PM0237 List of tables

97

List of tables

Table 1. BLE RF channel types and frequencies . 10
Table 2. Advertising data header file content . 12
Table 3. Advertising packet types. 13
Table 4. Advertising event type and allowable responses . 14
Table 5. Data packet header content . 14
Table 6. Packet length field and valid values . 14
Table 7. Connection request timings intervals . 17
Table 8. Attribute example . 19
Table 9. Attributes protocol messages . 19
Table 10. Combination of Input/Output capabilities on a BLE device. 20
Table 11. Methods used for calculating the Temporary Key (TK). 21
Table 12. Characteristic declaration . 23
Table 13. Characteristic value . 24
Table 14. Service declaration . 24
Table 15. Include declaration . 25
Table 16. Discovery procedures and related response events. 25
Table 17. Client-initiated procedures and related response events . 25
Table 18. Server-initiated procedures and related response events . 26
Table 19. GAP roles . 26
Table 20. GAP broadcaster mode . 27
Table 21. GAP discoverable modes . 27
Table 24. GAP observer procedure . 28
Table 22. GAP connectable modes . 28
Table 23. GAP bondable modes. 28
Table 26. GAP connection procedures. 29
Table 25. GAP discovery procedures . 29
Table 27. GAP bonding procedures . 30
Table 28. ACI Interface. 35
Table 29. ACI Interface resources files. 37
Table 30. SW framework platforms drivers. 38
Table 31. User application defines for BLE devices role . 41
Table 32. BlueNRG GATT, GAP default services . 44
Table 33. BlueNRG GATT, GAP default characteristics. 44
Table 34. BlueNRG-MS GATT, GAP default services . 45
Table 35. BlueNRG-MS GATT, GAP default characteristics . 45
Table 36. GAP_Init() role parameter values . 46
Table 37. ACI: main events, sub-events . 50
Table 38. ACI: GAP modes APIs . 56
Table 39. ACI: discovery procedures APIs . 57
Table 40. ACI: connection procedures APIs . 57
Table 41. ADV_IND event . 64
Table 42. ADV_IND advertising data . 64
Table 43. SCAN_RSP event. 64
Table 44. Scan response data . 64
Table 45. BlueNRG sensor profile demo services & characteristics handles 69
Table 46. BlueNRG-MS sensor profile demo services & characteristics handles 69
Table 47. ACI: service discovery procedures APIs. 71
Table 48. First evt_att_read_by_group_resp event data . 73

List of tables PM0237

6/97 DocID027104 Rev 3

Table 49. Second evt_att_read_by_group_resp event data. 73
Table 50. Third evt_att_read_by_group_resp event data. 74
Table 51. BlueNRG ACI: characteristics discovery procedures APIs . 75
Table 52. First evt_att_read_by_type_resp event data . 77
Table 53. Second evt_att_read_by_type_resp event data . 78
Table 54. Characteristics update, read, write APIs . 78
Table 55. Timings parameters of the slotting algorithm . 87
Table 56. References table. 93
Table 57. List of acronyms . 94
Table 58. Document revision history . 96

DocID027104 Rev 3 7/97

PM0237 Bluetooth low energy technology

97

1 Bluetooth low energy technology

Bluetooth low energy (BLE) wireless technology has been developed by the Bluetooth
Special Interest Group (SIG) in order to achieve a very low power standard operating with a
coin cell battery for several years.

Classic Bluetooth technology was developed as a wireless standard allowing to replace
cables connecting portable and/or fixed electronic devices, but it cannot achieve an extreme
level of battery life because of its fast hopping, connection-oriented behavior, and relatively
complex connection procedures.

Bluetooth low energy devices consume only a fraction of the power of standard Bluetooth
products and enable devices with coin cell batteries to be wirelessly connected to standard
Bluetooth enabled devices.

Figure 1. Bluetooth low energy technology enabled coin cell battery devices

Bluetooth low energy technology is used on a broad range of sensor applications
transmitting small amounts of data.

• Automotive

• Sport and fitness

• Healthcare

• Entertainment

• Home automation

• Security and proximity

Bluetooth low energy technology PM0237

8/97 DocID027104 Rev 3

1.1 BLE stack architecture

Bluetooth low energy technology has been formally adopted by the Bluetooth Core
Specification version 4.0 (on Section 5: References). This version of the Bluetooth standard
supports two systems of wireless technology:

• Basic rate

• Bluetooth low energy

Bluetooth low energy technology operates in the unlicensed industrial, scientific and
medical (ISM) band at 2.4 to 2.485 GHz, which is available and unlicensed in most
countries. It uses a spread spectrum, frequency hopping, full-duplex signal. Key features of
Bluetooth low energy technology are:

• robustness

• performance

• reliability

• interoperability

• low data rate

• low-power

In particular, Bluetooth low energy technology has been created for the purpose of
transmitting very small packets of data at a time, while consuming significantly less power
than Basic Rate/Enhanced Data Rate/High Speed (BR/EDR/HS) devices.

The Bluetooth low energy technology is designed for addressing two alternative
implementations:

• Smart device

• Smart Ready device

Smart devices support only support the BLE standard. It is used for applications in which
low power consumption and coin cell battery is the key point (as sensors).

Smart Ready devices support both BR/EDR/HS and BLE standards (typically a mobile or a
laptop device).

The Bluetooth low energy stack consists of two components:

• Controller

• Host

The Controller includes the Physical Layer and the Link Layer.

The Host includes the Logical Link Control and Adaptation Protocol (L2CAP), the Security
Manager (SM), the Attribute protocol (ATT), Generic Attribute Profile (GATT) and the
Generic Access Profile (GAP). The interface between the two components is called Host
Controller Interface (HCI).

DocID027104 Rev 3 9/97

PM0237 Bluetooth low energy technology

97

In addition, Bluetooth specification v4.1 have been released with new supported features:

• Multiple roles simultaneously support

• Support simultaneous advertising and scanning

• Support being Slave of up to two Masters simultaneously

• Privacy V1.1

• Low Duty Cycle Directed Advertising

• Connection parameters request procedure

• LE Ping

• 32 bits UUIDs

• L2CAP Connection Oriented Channels

For more information about these new features refer to the related specification document.

Figure 2. Bluetooth low energy stack architecture

1.2 Physical layer

The physical layer is a 1 Mbps adaptive frequency-hopping Gaussian Frequency Shift
Keying (GFSK) radio. It operates in the license free 2.4 GHz ISM band at 2400-2483.5 MHz.
Many other standards use this band: IEEE 802.11, IEEE 802.15.

The BLE system uses 40 RF channels (0-39), with 2 MHz spacing. These RF channels
have frequencies centered at:

Bluetooth low energy technology PM0237

10/97 DocID027104 Rev 3

2402 + k * 2 MHz, where k = 0..39;

There are two channels types:

1. Advertising channels that use three fixed RF channels (37, 38 and 39) for:

a) Advertising channel packets

b) Packets used for discoverability/connectability

c) Used for broadcasting/scanning

2. Data physical channel uses the other 37 RF channels for bidirectional communication
between connected devices.

BLE is an Adaptive Frequency Hopping (AFH) technology that can use only a subset of all
the available frequencies in order to avoid the frequencies used by other no-adaptive
technologies. This allows to move from a bad channel to a known good channel by using a
specific frequency hopping algorithm which determines the next good channel to be used.

Table 1. BLE RF channel types and frequencies

Channel index RF center frequency Channel type

37 2402 MHz Advertising channel

0 2404 MHz Data channel

1 2406 MHz Data channel

…. …. Data channel

10 2424 MHz Data channel

38 2426 MHz Advertising channel

11 2428 MHz Data channel

12 2430 MHz Data channel

…. …. Data channel

36 2478 MHz Data channel

39 2480 MHz Advertising channel

DocID027104 Rev 3 11/97

PM0237 Bluetooth low energy technology

97

1.3 Link Layer (LL)

The link layer (LL) defines how two devices can use a radio for transmitting information
between each other.

The link layer defines a state machine with five states:

Figure 3. Link Layer state machine

• Standby: the device does not transmit or receive packets

• Advertising: the device broadcasts advertisements in advertising channels (it is called
an advertiser device)

• Scanning: device looks for advertisers devices (it is called a scanner device).

• Initiating: the device initiates connection to advertiser device

• Connection: the initiator device is in Master Role: it communicates with the device in
the Slave role and it defines timings of transmissions

• Advertiser device is in Slave Role: it communicates with a single device in Master Role

Bluetooth low energy technology PM0237

12/97 DocID027104 Rev 3

1.3.1 BLE packets

A packet is a labeled data that is transmitted by one device and received by one or more
other devices.

The BLE data packet structure is described below.

Figure 4. Packet structure

• Preamble: RF synchronization sequence

• Access address: 32 bits, advertising or data access addresses (it is used to identify the
communication packets on physical layer channel)

• Header: its content depends on the packet type (advertising or data packet)

a) Advertiser packet header:

Table 2. Advertising data header file content

Advertising packet type Reserved Tx address type Rx address type

 (4 bits) (2 bits) (1 bit) (1 bit)

DocID027104 Rev 3 13/97

PM0237 Bluetooth low energy technology

97

b) Advertising packet type:

Table 3. Advertising packet types

Packet type Description Notes

ADV_IND
Connectable undirected
advertising

Used by an advertiser when it
wants another device to connect
to it. Device can be scanned by
a scanning device, or go into a
connection as a slave device on
connection request reception.

ADV_DIRECT_IND
Connectable directed
advertising

Used by an advertiser when it
wants a particular device to
connect to it. The
ADV_DIRECT_IND packet
contains only advertiser’s
address and initiator address.

ADV_NONCONN_IND
Non-connectable undirected
advertising

Used by an advertiser when it
wants to provide some
information to all the devices,
but it does not want other
devices to ask it for more
information or to connect to it.

Device simply sends advertising
packets on related channels, but
it does not want to be
connectable or scannable by
any other device.

ADV_SCAN_IND
Scannable undirected
advertising

Used by an advertiser which
wants to allow a scanner to
require more information from it.
The device cannot connect, but
it is discoverable for advertising
data and scan response data.

SCAN_REQ Scan request
Used by a device in scanning
state to request addition
information to the advertiser.

SCAN_RSP Scan response
Used by an advertiser device to
provide additional information to
a scan device.

CONNECT_REQ Connection request
Sent by an initiating device to a
device in
connectable/discoverable mode.

Bluetooth low energy technology PM0237

14/97 DocID027104 Rev 3

The advertising event type determines the allowable responses:

Data packet header:

The next sequence number (NESN) bit is used for performing packet acknowledgments. It
informs the receiver device of the next sequence number that the transmitting device is
expecting it to send. Packet is retransmitted until the NESN is different from the sequence
number (SN) value in the sent packet.

More data bit is used to signal to a device that the transmitting device has more data ready
to be sent during the current connection event.

For a detailed description of advertising and data header contents & types refer to the
Bluetooth specification v4.0 [Vol 2], on Section 5: References.
• Length: number of bytes on data field

• Data or payload: it is the actual transmitted data (advertising data, scan response data,
connection establishment data, or application data sent during the connection).

• CRC (24 bits): it is used to protect data against bit errors. It is calculated over the
header, length and data fields.

Table 4. Advertising event type and allowable responses

Advertising event type
Allowable response

SCAN_REQ CONNECT_REQ

ADV_IND YES YES

ADV_DIRECT_IND NO YES

ADV_NONCONN_IND NO NO

ADV_SCAN_IND YES NO

Table 5. Data packet header content

Link layer
identifier

Next sequence

number
Sequence
number

More data Reserved

(2 bits) (1 bit) (1 bit) (1 bit) (3 bits)

Table 6. Packet length field and valid values

Length field bits

Advertising packet 6 bits, with valid values from 0 to 37 bytes

Data packet 5 bits, with valid values from 0 to 31 bytes

DocID027104 Rev 3 15/97

PM0237 Bluetooth low energy technology

97

1.3.2 Advertising state

Advertising states allow Link Layer to transmit advertising packets and also to respond with
scan responses to scan requests coming from devices which are actively scanning.

An advertiser device can be moved to a standby state by stopping the advertising.

Each time a device advertises, it sends the same packet on each of the three advertising
channels. This three packets sequence is called an advertising event. The time between two
advertising events is referred to as the advertising interval, which can go from 20
milliseconds to every 10.28 seconds.

Following is an example of advertising packet that lists the Service UUID that the device
implements (General Discoverable flag, tx power = 4dbm, Service data = temperature
service and 16 bits service UUIDs).

Figure 5. Advertising packet with AD type flags

The Flags AD type byte contains the following flag bits:

• Limited Discoverable Mode (bit 0);

• General Discoverable Mode (bit 1);

• BR/EDR Not Supported (bit 2, It is 1 on BLE);

• Simultaneous LE and BR/EDR to Same Device Capable (Controller) (bit 3);

• Simultaneous LE and BR/EDR to Same Device Capable (Host) (bit 4)

The Flags AD type shall be included in the advertising data if any of the bits are non-zero (it
is not included in scan response).

The following advertising parameters can be set before enabling advertising:

• Advertising interval;

• Advertising address type;

• Advertising device address;

• Advertising channel map: which of the three advertising channels should be used;

• Advertising filter policy:

– Process scan/connection requests from devices in the white list

– Process all scan/connection requests (default advertiser filter policy)

– Process connection requests from all devices but only scan requests in the white
list

– Process scan requests from all devices but only connection requests in the white
list

Bluetooth low energy technology PM0237

16/97 DocID027104 Rev 3

A white list is a list of stored device addresses used by the device controller for filtering
devices. The white list content cannot be modified while it is being used. If the device is in
advertising state and is using a white list to filter the devices (scan requests or connection
requests), it has to disable advertising mode for changing its white list.

1.3.3 Scanning state

There are two types of scanning:

• Passive scanning: it allows to receive advertisement data from an advertiser device

• Active scanning: when an advertisement packet is received, device can send back a
Scan Request packet, in order to get a Scan Response from the advertiser. This allows
the scanner device to get additional information from the advertiser device.

The following scan parameters can be set:

• Scanning type (passive or active)

• Scan interval: how often the controller should scan

• Scan window: for each scanning interval, it defines how long the device scans

• Scan filter policy: it can accept all the advertising packets (default policy) or only the
ones on the white list.

Once the scan parameters are set, it is possible to enable the device scanning. The
controller of the scanner devices sends to upper layers any received advertising packets
within an Advertising Report event. This event includes the advertiser address, advertiser
data, and the received signal strength indication (RSSI) of this advertising packet. The RSSI
can be used with the transmit power level information included within the advertising
packets to determine the path-loss of the signal and identify how far the device is:

Path loss = Tx power – RSSI.

DocID027104 Rev 3 17/97

PM0237 Bluetooth low energy technology

97

1.3.4 Connection state

When data to be transmitted are more complex than the ones allowed by advertising data or
a bidirectional reliable communication between two devices is needed, the connection is
established.

When an initiator device receives an advertising packet from an advertising device to which
it wants to connect, it can send a connect request packet to the advertiser device. This
packet includes all the required information needed for establishing and handling the
connection between the two devices:

• Access address used in the connection in order to identify communications on a
physical link

• CRC initialization value

• Transmit window size (timing window for first data packet)

• Transmit window offset (offset of transmit window start)

• Connection interval (time between two connection events)

• Slave latency (number of times slave can ignore connection events before it is forced to
listen)

• Supervision timeout (max time between two correctly received packets before link is
considered lost)

• Channel map: 37 bits (1= good; 0 = bad)

• Frequency-hop value (random number between 5 and 16).

• Sleep clock accuracy range (used to determine the uncertainty window of the slave
device at connection event).

For a detailed description of the connection request packet refer to Bluetooth Specification
V4.0 [Vol 6], Section 2.3.3.

The allowed timing ranges are summarized in Table 7:

The transmit window starts after the end of the connection request packet plus the transmit
window offset plus a mandatory delay of 1.25 ms. When the transmit window starts, the
slave device enters in receiver mode and wait for a packet from the master device. If no
packet is received within this time, the slave leaves receiver mode, and it tries one
connection interval again later. When a connection is established, a master has to transmit a
packet to the slave on every connection event for allowing slave to send packets to the
master. Optionally, a slave device can skip a given number of connection events (slave
latency).

Table 7. Connection request timings intervals

Parameter Min Max Note

Transmit window size 1.25 milliseconds 10 milliseconds

Transmit window Offset 0 Connection interval
Multiples of 1.25
milliseconds

Connection interval 7.5 milliseconds 4 seconds
Multiples of 1.25
milliseconds

Supervision Timeout 100 milliseconds 32 seconds
Multiples of 10
milliseconds

Bluetooth low energy technology PM0237

18/97 DocID027104 Rev 3

A connection event is the time between the start of the last connection event and the
beginning of the next connection event.

A BLE slave device can only be connected to one BLE master device, but a BLE master
device can be connected to several BLE slave devices. On the Bluetooth SIG, there is no
limit on the number of slaves a master can connect to (this is limited by the specific used
BLE technology or stack).

1.4 Host controller interface (HCI)

The Host Controller Interface (HCI) layer provides a mean of communication between the
host and controller either through software API or by a hardware interface such as SPI,
UART or USB. It comes from standard Bluetooth specification, with new additional
commands for low energy-specific functions.

1.5 Logical link control and adaptation layer protocol (L2CAP)

The Logical Link Control and Adaptation Layer Protocol (L2CAP), supports higher level
protocol multiplexing, packet segmentation and reassembly operation, and the conveying of
quality of service information.

1.6 Attribute Protocol (ATT)

The Attribute Protocol (ATT) allows a device to expose certain pieces of data, known as
attributes, to another device. The device exposing attributes is referred to as the Server and
the peer device using them is called the Client.

An attribute is a data with the following components;

• Attribute handle: it is a 16 bits value which identifies an attribute on a Server, allowing
the Client to reference the attribute in read or write requests;

• Attribute type: it is defined by a Universally Unique Identifier (UUID) which determines
what the value means. Standard 16 bits attribute UUIDs are defined by Bluetooth SIG;

• Attribute value: a (0 ~ 512) octets in length;

• Attribute permissions: they are defined by each higher layer that uses the attribute.
They specify the security level required for read and/or write access, as well as
notification and/or indication. The permissions are not discoverable using the attribute
protocol. There are different permissions types:

– Access permissions: they determine which types of requests can be performed on
an attribute (readable, writable, readable and writable)

– Authentication permissions: they determine if attributes require authentication or
not. If an authentication error is raised, client can try to authenticate it by using the
Security Manager and send back the request.

– Authorization permissions (no authorization, authorization): this is a property of a
server which can authorize a client to access or not to a set of attributes (client
cannot resolve an authorization error).

DocID027104 Rev 3 19/97

PM0237 Bluetooth low energy technology

97

Attribute example

• “Temperature UUID” is defined by “Temperature characteristic” specification and it is a
signed 16-bit integer.

A collection of attributes is called a database that is always contained in an attribute server.

Attribute protocol defines a set of methods protocol for discovering, reading and writing
attributes on a peer device. It implements the peer-to-peer Client-Server protocol between
an attribute server and an attribute client as follows:

• Server role

– Contains all attributes (attribute database)

– Receives requests, executes, responds commands

– Can indicate, notify an attribute value when data change

• Client role

– Talk with server

– Sends requests, wait for response (it can access (read), update (write) the data)

– Can confirm indications

Attributes exposed by a Server can be discovered, read, and written by the Client, and they
can be indicated and notified by the Server as described in Table 9:

Table 8. Attribute example

Attribute handle Attribute type Attribute value Attribute permissions

0x0008 “Temperature UUID” “Temperature Value”
“Read Only, No
authorization, No
authentication”

Table 9. Attributes protocol messages

Protocol Data Unit
(PDU message)

Sent by Description

Request Client
Client requests something from server (it
always causes a response)

Response Server
Server sends response to a request from a
client

Command Client
Client commands something to server (no
response)

Notification Server
Server notifies client of new value (no
confirmation)

Indication Server
Server indicates to client new value (it always
causes a confirmation)

Confirmation Client Confirmation to an indication

Bluetooth low energy technology PM0237

20/97 DocID027104 Rev 3

1.7 Security Manager (SM)

The Bluetooth low energy link layer supports encryption and authentication by using the
Cipher Block Chaining-Message Authentication Code (CCM) algorithm and a 128-bit AES
block cipher. When encryption and authentication are used in a connection, a 4-byte
Message Integrity Check (MIC) is appended to the payload of the data channel PDU.
Encryption is applied to both the PDU payload and MIC fields.

When two devices want to encrypt the communication during the connection, the Security
Manager uses the pairing procedure. This procedure allows to authenticate two devices and
creates a common link key that can be used as a basis for a trusted relationship or a (single)
secure connection.

Pairing procedure is a three-phase process.

Phase 1: pairing feature exchange

• The two connected devices communicates their input/output capabilities by using the
Pairing request message. This message also contains a bit stating if out-of-band data
is available and the authentication requirements.

• There are three input capabilities:

a) no input;

b) the ability to select yes/no;

c) the ability to input a number by using the keyboard.

• There are two output capabilities:

– No output;

– Numeric output: ability to display a six-digit number

The information exchanged in Phase 1 is used to select which STK generation method is
used in Phase 2.

Phase 2: short term key (STK) generation:

• The pairing devices first define a Temporary Key (TK), by using one of the following
methods.

a) The out-of-band (OOB) method which uses out of band communication (example:
NFC) for the TK agreement (it is selected if the out-of-band bit is set);

b) Passkey Entry method: user passes six numeric digits as the TK between the
devices;

c) Just Works: this method is not authenticated, and it does not provide any
protection against man-in-the-middle (MITM) attacks.

Table 10. Combination of Input/Output capabilities on a BLE device

No output Display

No input No Input No output Display Only

Yes/No No Input No output Display Yes/No

Keyboard Keyboard only Keyboard Display

DocID027104 Rev 3 21/97

PM0237 Bluetooth low energy technology

97

The selection between PassKey and Just Works method is done based on the following
table:

Phase 3: transport specific key distribution

• Once the Phase 2 is completed, up to three 128-bit keys can be distributed by
messages encrypted with the STK key:

a) Long-term key (LTK): it is used to generate the 128-bit key used for Link Layer
encryption and authentication;

b) Connection signature resolving key (CSRK): it is used for the data signing
performed at the ATT layer;

c) Identity resolving key (IRK): it is used to generate a private address on the basis of
a device public address.

When the established encryption keys are stored in order to be used for future
authentication, the devices are bonded.

Another security mechanism supported from BLE is the use of private addresses. A private
address is generated by encrypting the public address of the device. This private address
can be resolved by a trusted device that has been provided with the corresponding
encryption key.This allows the device to use a private address for a more secure
communication and to change it frequently (only devices with the related IRK are able to
recognize it).

It is also possible to transmit authenticated data over an unencrypted Link Layer connection
by using the CSRK key: a 12-byte signature is placed after the data payload at the ATT
layer.

The signature algorithm also uses a counter which allows to provide protection against
replay attacks (an external device which can simply capture some packets and send them
later as they are without any understanding of packet content: the receiver device simply
checks the packet counter and discards it since its frame counter is less than the latest
received good packet).

Table 11. Methods used for calculating the Temporary Key (TK)

Display only
Display
Yes/No

Keyboard
only

No Input No
Output

Keyboard
display

Display
Only

Just Works Just Works Passkey Entry Just Works Passkey Entry

Display
Yes/No

Just Works Just Works Passkey Entry Just Works Passkey Entry

Keyboard
Only

Passkey Entry Passkey Entry Passkey Entry Just Works Passkey Entry

No Input No
Output

Just Works Just Works Just Works Just Works Just Works

Keyboard
Display

Passkey Entry Passkey Entry Passkey Entry Just Works Passkey Entry

Bluetooth low energy technology PM0237

22/97 DocID027104 Rev 3

1.8 Generic attribute profile (GATT)

The Generic Attribute Profile (GATT) defines a framework for using the ATT protocol, and it
is used for services, characteristics, descriptors discovery, characteristics reading, writing,
indication and notification.

On GATT context, when two devices are connected, there are two devices roles:

• GATT client: it is the device which accesses data on the remote GATT server via read,
write, notify, or indicate operations.

• GATT server: it is the device which stores data locally and provides data access
methods to a remote GATT client.

It is possible for a device to be a GATT server and a GATT client at the same time.

The GATT role of a device is logically separated from the master, slave role. The master,
slave roles define how the BLE radio connection is managed, and the GATT client/server
roles are determined by the data storage and flow of data.

As consequence, it is not required that a slave (peripheral) device has to be the GATT
server and that a master (central) device has to be the GATT client.

Attributes, as transported by the ATT, are encapsulated within the following fundamental
types:

1. Characteristics (with related descriptors)

2. Services (primary, secondary and include)

1.8.1 Characteristic attribute type

A characteristic is an attribute type which contains a single value and any number of
descriptors describing the characteristic value that may make it understandable by the user.

A characteristic exposes the type of data that the value represents, if the value can be read
or written, how to configure the value to be indicated or notified, and it says what a value
means.

A characteristic has the following components:

1. Characteristic declaration

2. Characteristic value

3. Characteristic descriptor(s)

DocID027104 Rev 3 23/97

PM0237 Bluetooth low energy technology

97

Figure 6. Example of characteristic definition

A characteristic declaration is an attribute defined as follows:

Table 12. Characteristic declaration

Attribute
handle

Attribute type Attribute value
Attribute

permissions

0xNNNN

0x2803
(UUID for

characteristic
attribute type)

Characteristic value properties (read,
broadcast, write, write without response,
notify, indicate, …). Determine how
characteristic value can be used or how
characteristic descriptor can be accessed

Read only,
No authentication,
No authorizationCharacteristic value attribute handle

Characteristic value UUID (16 or 128 bits)

Bluetooth low energy technology PM0237

24/97 DocID027104 Rev 3

A characteristic declaration contains the value of the characteristic. This value is the first
attribute after the characteristic declaration:

1.8.2 Characteristic descriptors type

Characteristic descriptors are used to describe the characteristic value for adding a specific
“meaning” to the characteristic and making it understandable by the user. The following
characteristic descriptors are available:

1. Characteristic extended properties: it allows to add extended properties to the
characteristic

2. Characteristic user description: it enables the device to associate a text string to the
characteristic;

3. Client characteristic configuration: it is mandatory if the characteristic can be notified or
indicated. Client application must write this characteristic descriptor for enabling
characteristic notification or indication (provided that the characteristic property allows
notification or indication);

4. Server characteristic configuration: optional descriptor

5. Characteristic presentation format: it allows to define the characteristic value
presentation format through some fields as format, exponent, unit namespace,
description in order to correctly display the related value (example temperature
measurement value in oC format);

6. Characteristic aggregation format: It allows to aggregate several characteristic
presentation formats.

For a detailed description of the characteristic descriptors, refer to the Bluetooth
specification v4.0.

1.8.3 Service attribute type

A service is a collection of characteristics which operate together to provide a global service
to an applicative profile. For example, the Health Thermometer service includes
characteristics for a temperature measurement value, and a time interval between
measurements. A service or primary service can refer other services that are called
secondary services.

A service is defined as follows:

Table 13. Characteristic value

Attribute handle Attribute type Attribute value Attribute permissions

0xNNNN
0xuuuu – 16 bits or 128

bits for characteristic
UUID

Characteristic value
Higher layer profile or

implementation specific

Table 14. Service declaration

Attribute handle Attribute type Attribute value Attribute permissions

0xNNNN

0x2800 – UUID for
“Primary Service” or
0x2801 – UUID for

“Secondary Service”

0xuuuu – 16 bits or 128
bits for Service UUID

Read only,

No authentication,

No authorization

DocID027104 Rev 3 25/97

PM0237 Bluetooth low energy technology

97

A service shall contain a service declaration and may contain definitions and characteristic
definitions. A service includes declaration follows the service declaration and any other
attributes of the server.

“Include service attribute handle” is the attribute handle of the included secondary service
and “end group handle” is the handle of the last attribute within the included secondary
service.

1.8.4 GATT procedures

The Generic Attribute Profile (GATT) defines a standard set of procedures allowing to
discover services, characteristics, related descriptors and how to use them.

The following procedures are available:

• Discovery procedures (Table 16)

• Client-initiated procedures (Table 17)

• Server-initiated procedures (Table 18)

Table 15. Include declaration

Attribute
handle

Attribute type Attribute value
Attribute

permissions

0xNNNN
0x2802 (UUID

for include
attribute type)

Include service
attribute
handle

End group
handle

Service
UUID

Read only,

No authentication,
No authorization

Table 16. Discovery procedures and related response events

Procedure Response events

Discovery all primary services Read by group response

Discovery primary service by service UUID Find by type value response

Find included services Read by type response event

Discovery all characteristics of a service Read by type response

Discovery characteristics by UUID Read by type response

Discovery all characteristics descriptors Find information response

Table 17. Client-initiated procedures and related response events

Procedure Response events

Read characteristic value Read response event.

Read characteristic value by UUID Read response event.

Read long characteristic value Read blob response events

Read multiple characteristic values Read response event.

Write characteristic value without response No event is generated

Signed write without response No event is generated

Write characteristic value Write response event.

Bluetooth low energy technology PM0237

26/97 DocID027104 Rev 3

For a detailed description about the GATT procedures and related responses events refer to
the Bluetooth specification v4.0 on Section 5: References.

1.9 Generic access profile (GAP)

The Bluetooth system defines a base profile implemented by all Bluetooth devices called
Generic Access Profile (GAP). This generic profile defines the basic requirements of a
Bluetooth device.

The four GAP profiles roles are described in the table below:

Write long characteristic value
Prepare write response

Execute write response

Reliable write
Prepare write response

Execute write response

Table 18. Server-initiated procedures and related response events

Procedure Response events

Notifications No event is generated

Indications Confirmation event

Table 17. Client-initiated procedures and related response events (continued)

Procedure Response events

Table 19. GAP roles(1)

1. M = Mandatory; O = Optional

Role Description Transmitter Receiver Typical example

Broadcaster Sends advertising events M O
Temperature sensor which
sends temperature values

Observer Receives advertising events O M
Temperature display which
just receives and display
temperature values

Peripheral

Always a slave.

It is on connectable
advertising mode.

Supports all LL control
procedures Encryption is
optional.

M M Watch

Central

Always a master.

It never advertises.

It supports active or passive
scan. It supports all LL
control procedures
Encryption is optional

M M Mobile phone

DocID027104 Rev 3 27/97

PM0237 Bluetooth low energy technology

97

On GAP context, two fundamental concepts are defined:

• GAP modes: it configures a device to act in a specific way for a long time. There are
four GAP modes types: broadcast, discoverable, connectable and bendable type.

• GAP procedures: it configures a device to perform a single action for a specific, limited
time. There are four GAP procedures types: observer, discovery, connection, bonding
procedures.

Different types of discoverable and connectable modes can be uses at the same time. The
following GAP modes are defined:

Table 20. GAP broadcaster mode

Mode Description Notes GAP role

Broadcast mode

Device only broadcasts
data using the link layer
advertising channels and
packets (it does not set any
bit on Flags AD type).

Broadcasts data can be
detected by a device using
the observation procedure

Broadcaster

Table 21. GAP discoverable modes

Mode Description Notes GAP role

Non-discoverable
mode

It cannot set the limited and
general discoverable bits on
Flags AD type.

It cannot be discovered by a
device performing a general
or limited discovery
procedure

Peripheral

Limited
discoverable mode

It sets the limited
discoverable bit on Flags AD
type.

It is allowed for about 30 sec.
It is used by devices with
which user has recently
interacted. For example,
when a user presses a button
on the device.

Peripheral

General
discoverable mode

It sets the general
discoverable bit on Flags AD
type.

It is used when a device
wants to be discoverable.
There is no limit on the
discoverability time.

Peripheral

Bluetooth low energy technology PM0237

28/97 DocID027104 Rev 3

The following GAP procedures are defined in Table 24:

Table 22. GAP connectable modes

Mode Description Notes GAP role

Non-connectable
mode

It can only use
ADV_NONCONN_IND or
ADV_SCAN_IND
advertising packets

It cannot use a connectable
advertising packet when it
advertise

Peripheral

Direct connectable
mode

It uses ADV_DIRECT
advertising packet

It is used from a Peripheral
device that wants to connect
quickly to a Central device. It
can be used only for 1.28
seconds, and it requires both
peripheral and central devices
addresses

Peripheral

Undirected
connectable mode

It uses the ADV_IND
advertising packet.

It is used from a device that
wants to be connectable.
Since ADV_IND advertising
packet can include the Flags
AD type, a device can be in
discoverable and undirected
connectable mode at the
same time.

Connectable mode is
terminated when the device
moves to connection mode or
when it moves to non-
connectable mode.

Peripheral

Table 23. GAP bondable modes

Mode Description Notes GAP role

Non-bondable
mode

It does not allow a bond to
be created with a peer
device

No keys are stored from the
device

Peripheral

Bondable mode
Device accepts bonding
request from a Central
device.

Peripheral

Table 24. GAP observer procedure

Procedure Description Notes Role

Observation
procedure

It allows a device to look for
broadcaster devices data

Observer

DocID027104 Rev 3 29/97

PM0237 Bluetooth low energy technology

97

Table 25. GAP discovery procedures

Procedure Description Notes Role

Limited
discoverable

procedure

It is used for discovery
peripheral devices in limited
discovery mode

Device filtering is applied
based on Flags AD type
information

Central

General
discoverable

procedure

It is used for discovery
peripheral devices in
general ad limited discovery
mode

Device filtering is applied
based on Flags AD type
information

Central

Name discovery
procedure

It is the procedure for
retrieving the “Bluetooth
Device Name” from
connectable devices

Central

Table 26. GAP connection procedures

Procedure Description Notes Role

Auto connection
establishment

procedure

Allows the connection with
one or more devices in the
directed connectable mode
or the undirected
connectable mode

It uses white lists Central

General
connection

establishment
procedure

Allows a connection with a
set of known peer devices in
the directed connectable
mode or the undirected
connectable mode.

It supports private addresses
by using the direct connection
establishment procedure when
it detects a device with a
private address during the
passive scan.

Central

Selective
connection

establishment
procedure

Establish a connection with
the Host selected
connection configuration
parameters with a set of
devices in the White List.

It uses white lists and it scans
by this white list.

Central

Direct connection
establishment

procedure

Establish a connection with
a specific device using a
set of connection interval
parameters.

General and selective
procedures uses it.

Central

Connection
parameter update

procedure

Updates the connection
parameters used during the
connection.

Central

Terminate
procedure

Terminates a GAP
procedure

Central

Bluetooth low energy technology PM0237

30/97 DocID027104 Rev 3

For a detailed description of the GAP procedures, refer to the Bluetooth specification v4.0.

Table 27. GAP bonding procedures

Procedure Description Notes Role

Bonding procedure
Starts the pairing process
with the bonding bit set on
the pairing request.

Central

DocID027104 Rev 3 31/97

PM0237 Bluetooth low energy technology

97

1.10 BLE profiles and applications

A service collects a set of characteristics and exposes the behavior of these characteristics
(what the device does, but not how a device uses them). A service does not define
characteristic use cases. Use cases determine which services are required (how to use
services on a device). This is done through a profile which defines which services are
required for a specific use case:

• Profile clients implement use cases

• Profile servers implement services

A profile may implement single or multiple services (available and specified at
http://developer.bluetooth.org).

Standard profiles or proprietary profiles can be used. When using a non-standard profile, a
128 bit UUID is required and must be generated randomly.

Currently, any standard Bluetooth SIG profile (services, and characteristics) uses 16-bit
UUIDs. Services & characteristics specification & UUID assignation can be downloaded
from the following SIG web pages:

• https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

• https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Bluetooth low energy technology PM0237

32/97 DocID027104 Rev 3

Figure 7. Client and server profiles

1.10.1 Proximity profile example

This section simply describes the Proximity Profile in terms its target, how it works and
required services:

Target

• When is a device close, very far, far away:

– cause an alert

DocID027104 Rev 3 33/97

PM0237 Bluetooth low energy technology

97

How it works

• if a device disconnects

• cause an alert

• alert on link loss: ≪Link Loss≫ service

– if a device is too far away

– cause an alert on path loss: ≪Immediate Alert≫ & ≪Tx Power≫ service

• ≪Link Loss≫ service

– ≪Alert Level≫ characteristic

– Behavior: on link loss, cause alert as enumerated

• ≪Immediate Alert≫ service

– ≪Alert Level≫ characteristic

– Behavior: when written, cause alert as enumerated

• ≪Tx Power≫ service

– ≪Tx Power≫ characteristic

– Behavior: when read, reports current Tx Power for connection

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

34/97 DocID027104 Rev 3

2 BlueNRG, BlueNRG-MS stacks architecture and ACI

The BlueNRG, BlueNRG-MS devices are network coprocessors which provide high-level
interface to control its Bluetooth low energy functionalities. This interface is called ACI
(application command interface).

Figure 8. BlueNRG, BlueNRG-MS stacks architecture and interface to the external
host

BlueNRG and BlueNRG-MS devices embed, respectively, the Bluetooth Smart protocol
stack v4.0 and v4.1 and, as a consequence, no BLE library is required on the external
microcontroller, except for profiles and all the functions needed to communicate with the
BlueNRG or BlueNRG-MS device SPI interface. The SPI interface communication protocol
allows the external microcontroller to send ACI commands to control the BlueNRG or
BlueNRG-MS device and to receive the ACI events generate from the BlueNRG or
BlueNRG-MS device network coprocessor.

DocID027104 Rev 3 35/97

PM0237 BlueNRG, BlueNRG-MS stacks architecture and ACI

97

2.1 ACI interface

The ACI commands utilize and extend the standard HCI data format defined within the
Bluetooth specification v4.0 and v4.1.

The ACI interface supports the following commands:
• Standard HCI commands for controller as defined by Bluetooth specification (v4.0 and

v4.1)

• Vendor Specific (VS) HCI commands for controller

• Vendor Specific (VS) ACI commands for host (L2CAP,ATT, SM, GATT, GAP)

The reference ACI interface framework is provided within the BlueNRG, BlueNRG-MS kits
software package targeting the BlueNRG, BlueNRG-MS kits based on STM32L1 external
microcontroller (refer to Section 5: References).

The ACI interface framework contains the code that is used to send ACI commands to the
BlueNRG and BlueNRG-MS network processors. It also provides definitions of device
events. This framework allows to format each ACI command in the proper way and send the
command incline with the defined ACI SPI communication protocol.

The ACI SPI communication protocol is described on the user manuals UM1755 “BlueNRG
Bluetooth LE stack application command interface (ACI)” and UM1865 “BlueNRG-MS
Bluetooth LE stack application command interface (ACI)", available on ST BlueNRG web
pages. These user manuals also provide a complete description of all related devices ACI
command formats, name parameters, return values and generated events.

The ACI framework interface is defined by the following header files:

Table 28. ACI Interface

File Description Location Notes

hci.h
HCI library functions prototypes and
error code definition.

Middlewares\S
T\STM32_Blu
eNRG\Simple
BlueNRG_HCI
\includes

To be included on the
user main application

hci_const.h
It contains constants and functions for
HCI layer. See Bluetooth Core v 4.0, Vol.
2, Part E.

“”

bluenrg_gatt_s
erver.h

Header file for GATT server definition “”
To be included on the
user main application

sm.h
Header file for BlueNRG security
manager

“”
To be included on the
user main application

bluenrg_gap.h Header file for BlueNRG GAP layer “”
To be included on the
user main application

bluenrg_aci.h
Header file that contains commands and
events for BlueNRG FW stack

“”
To be included on the
user main application

bluenrg_aci_c
onst.h

Header file with ACI definitions for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

bluenrg_hal_a
ci.h

Header file with HCI commands for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

36/97 DocID027104 Rev 3

2.2 ACI Interface resources

In order to communicate with BlueNRG or BlueNRG-MS network processor through the ACI
interface framework, the external microcontroller requires only the following main resources:

1. SPI interface

2. Platform-dependent code to write/read to/from SPI

3. A timer to handle SPI timeouts

The BlueNRG, BlueNRG-MS SPI interface is handled through the functions defined on files
SDK_EVAL_SPI_Driver.[ch] and hal.[ch]. These APIs allows the external microcontroller to
get access to BlueNRG or BlueNRG-MS device. The BlueNRG, BlueNRG-MS devices use
the SPI IRQ pin to notify the external microcontroller (SPI master) when it has data to be
read: this is handled through the HCI_Isr() placed within the SPI_IRQ_IRQHandler() handler
on file stm32l1xx_it.c (Standard library framework) and within the
HAL_GPIO_EXTI_Callback() on file bluenrg_interface.c (Cube library framework). The SPI
IRQ handler is associated to the proper EXTI irq handler, based on the selected platform
GPIO line for the BlueNRG, BlueNRG-MS SPI interrupt line.

The BlueNRG, BlueNRG-MS kits platforms are targeting the STM32L1xx microcontroller
and the related libraries are used in order to get access to the device peripheral. Two
frameworks are available:

1. STM32L1xx standard libraries which are provided within the
platform\STM32L1XX\Libraries\STM32L1xx_StdPeriph_Driver folder;

2. STM32L1xx Cube libraries which are provided within the
Drivers\STM32L1xx_HAL_Driver folder

bluenrg_l2cap
_aci.h

Header file with L2CAP commands for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

bluenrg_gatt_a
ci.h

Header file with GATT commands for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

bluenrg_gap_a
ci.h

Header file with GAP commands for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

bluenrg_updat
er_aci.h

Header file with updater commands for
BlueNRG FW stack

“”
It is included by
bluenrg_aci.h

Table 28. ACI Interface (continued)

File Description Location Notes

DocID027104 Rev 3 37/97

PM0237 BlueNRG, BlueNRG-MS stacks architecture and ACI

97

When using another external microcontroller these files should be ported/adapted for
addressing the ACI SPI communication.

In order to proper setup the ACI SPI interface, user is only requested to perform the
following steps at initialization time, on main() function:

1. Init SPI interface by calling the following API:
SdkEvalSpiInit(SPI_MODE_EXTI);

2. Reset the BlueNRG module by calling the following API:
BlueNRG_RST();

The user is also requested to place HCI_Isr() within the SPI_IRQ_IRQHandler() handler on
file stm32l1xx_it.c on Standard library framework and within the
HAL_GPIO_EXTI_Callback() on file bluenrg_interface.c on Cube library framework. This
allows BlueNRG, BlueNRG-MS device to use the SPI IRQ pin to notify the external
microcontroller (SPI master) when it has data to be read.

Table 29. ACI Interface resources files

File Description Location Notes

SDK_EVAL_SPI_Driver.[ch
]

Main APIs
handling SPI
communicatio
n with
BlueNRG,
BlueNRG-MS
device

platform\STM32L1XX\Libraries\SDK_Eval_STM

32L\src on STM32L1 standard library
framework;

Drivers\BSP\STM32L1xx_BlueNRG

on STM32L1 Cube library framework.

These APIs are
mapped to the
specific
microcontroller low
level drivers
handling the SPI
peripheral

hal.[ch]

Other APIs
handling
communicatio
n with
BlueNRG,
BlueNRG-MS
device

platform\STM32L1XX (only on STM32L1
standard library framework)

clock.[ch]
SPI timer
APIs

platform\STM32L1XX on STM32L1 standard
library framework;

It is defined within the specific user application
folder on STM32L1 Cube library framework.

It provides the low
level APIs handling
the SPI timeouts

stm32l1xx_it.c (Standard
library), stm32xx_it.c
(Cube Library)

Main Interrupt
Service
Routines

It is defined within the specific user application
folder

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

38/97 DocID027104 Rev 3

2.3 Other platforms resources files

The SW framework provides other files handling some platform-dependent resources as I/O
communication channel (USB or UART), buttons, LEDs, EEPROM).

These files should be ported/adapted to address another external microcontroller.

2.3.1 Platforms configuration

In order to easily support the BlueNRG, BlueNRG-MS kits platforms, the BlueNRG SW
framework is designed for recognizing such platforms at runtime. User is only requested to
call the SdkEvalIdentification() API at initialization time on main() function.

BlueNRG, BlueNRG-MS kits platforms can be also supported at compile time, by adding,
respectively, only one of the following define on EWARM workspace preprocessor options:

USER_DEFINED_PLATFORM=STEVAL_IDB002V1 (it is valid for both BlueNRG, BlueNRG-MS
development platforms).

USER_DEFINED_PLATFORM=STEVAL_IDB003V1 (it is valid for both BlueNRG, BlueNRG-MS
USB dongles).

Table 30. SW framework platforms drivers

File Description Location Notes

SDK_EVAL_Io.[ch]

Main APIs
handling I/O
communicatio
n (USB virtual
COM or
UART)

platform\STM32L1XX\Libraries\SDK_Eval_STM
32L on STM32L1 standard library framework;

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1
on STM32L1 Cube library framework.

These APIs are
mapped to the
specific
microcontroller
drivers handling
USB virtual COM or
UART.

SDK_EVAL_Buttons.[ch]
APIs handling
platform
buttons

platform\STM32L1XX\Libraries\SDK_Eval_STM
32L on STM32L1 standard library framework;

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1

on STM32L1 Cube library framework.

These APIs are
mapped to the
specific
microcontroller
drivers handling
GPIOs

SDK_EVAL_Leds.[ch]
APIs handling
platform LEDs

platform\STM32L1XX\Libraries\SDK_Eval_STM
32L on STM32L1 standard library framework;

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1

on STM32L1 Cube library framework.

These APIs are
mapped to the
specific
microcontroller
drivers handling
GPIOs.

SDK_EVAL_Eeprom.[ch]
APIs handling
EEPROM

platform\STM32L1XX\Libraries\SDK_Eval_STM
32L on STM32L1 standard library framework;

Drivers\BSP\STM32L1xx_STEVAL_IDB00xV1

on STM32L1 Cube library framework.

On BlueNRG,
BlueNRG-MS kits,
an external
EEPROM is
provided for storing
platform
manufacturing tests
results.

DocID027104 Rev 3 39/97

PM0237 BlueNRG, BlueNRG-MS stacks architecture and ACI

97

The following define values allow to select, at compile time, the specific platforms header
files provided within the platform\STM32L1XX\Libraries\SDK_Eval_STM32L\inc folder
(STM32L1xx standard library case):

#if USER_DEFINED_PLATFORM == STEVAL_IDB002V1

#include "USER_Platform_Configuration_STEVAL_IDB002V1.h"

#elif USER_DEFINED_PLATFORM == STEVAL_IDB003V1

#include "USER_Platform_Configuration_STEVAL_IDB003V1.h"

#endif

A user platform can be simply supported, at compile time, by following these steps:

1. Create a file "USER_Platform_Configuration.h" with specific user platform
configuration:
USER_Platform_Configuration_STEVAL_IDB002V1.h or
USER_Platform_Configuration_STEVAL_IDB003V1.h can be used as reference on
STM32L1xx standard library case (to be extended based on available user platform
resources).

2. Place the "USER_Platform_Configuration.h" on the
STM32L\platform\STM32L1XX\Libraries\SDK_Eval_STM32L\inc folder (STM32L1xx
standard library case).

3. On the selected EWARM workspace preprocessor options, add this define:
USER_DEFINED_PLATFORM=USER_EVAL_PLATFORM.

If no user platform is defined at compile time, through the related preprocessor option,
USER_DEFINED_PLATFORM is automatically set to STEVAL_IDB00xV1. This allows to
include the file USER_Platform_Configuration_auto.h which contains the BlueNRG,
BlueNRG-MS kits platforms define values used during the runtime auto configuration
procedure performed from SdkEvalIdentification() function. This header file must not be
modified by user.

Note: Similar approach can be followed on STM32L1xx Cube context, by referring, as example, to
the files USER_Platform_Configuration_bluenrg.h on Drivers\BSP\STM32L1xx_BlueNRG
folder and USER_Platform_Configuration.h on Drivers\BSP\STM32L1xx_Nucleo folder
(these files are used for addressing the STM32L NUCLEO-L152RE + X-NUCLEO_IDB04A1
BlueNRG platform).

BlueNRG, BlueNRG-MS stacks architecture and ACI PM0237

40/97 DocID027104 Rev 3

2.4 How to port the ACI SPI interface framework to a selected
microcontroller

BlueNRG, BlueNRG-MS devices are network coprocessors providing the Bluetooth low
energy features. In order to get access to its functionality, an external microcontroller can be
used by implementing the ACI SPI interface framework previously described. BlueNRG,
BlueNRG-MS development kits software package provides a reference framework targeting
this ACI SPI interface. This framework can be ported to another external microcontroller by
following these steps:

1. Define a specific "USER_Platform_Configuration.h" with specific user platform SPI
configuration (refer to Section 2.3.1: Platforms configuration).

2. On the selected user application preprocessor options, add this define:
USER_DEFINED_PLATFORM=USER_EVAL_PLATFORM

3. Replace the STM32L1xx libraries on folder
platform\STM32L1XX\Libraries\STM32L1xx_StdPeriph_Driver folder with the specific
microcontroller low level drivers (STM32L1xx standard library case)

4. Replace the CMSIS Cortex-M3 files and the startup file (file startup_stm32l1xx_md.s)
accordingly to the selected microcontroller

5. Readapt/port accordingly to the selected microcontroller the file system_stm32l1xx.c
handling the system clock configuration for STM32L1xx

6. Adapt/port the files described in the section in order to refer to the selected external
microcontroller low level drivers.

Readapt/port accordingly to the selected microcontroller the stm32l1xx_it.c (STD library),
stm32xx_it.c (Cube Library) files (make sure that HCI_Isr() is called within the SPI irq API
handling the external IRQ interrupt on the IRQ line).

Once the ACI SPI interface framework has been ported to the selected microcontroller, user
can verify that SPI access from external microcontroller is working by performing the basic
test described in the section “SPI Interface” of the application note AN4494 “Bringing up the
BlueNRG, BlueNRG-MS”, available on ST BlueNRG and BlueNRG-MS web pages.

Note: Similar approach can be followed on STM32L1xx Cube context, by referring to the specific
files on Drivers folder (CMSIS and STM32L1xx_HAL_Driver).

DocID027104 Rev 3 41/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3 Design an application using BlueNRG, BlueNRG-MS
ACI APIs

This section provides information and code examples about how to design and implement a
Bluetooth low energy application on the selected microcontroller.

User implementing a BLE host application on the selected MCU has to go through some
basic and common steps:

1. Initialization phase and main application Loop

2. BlueNRG, BlueNRG-MS events and events Callback setup

3. Services and characteristic configuration (on GATT server)

4. Create a connection: discoverable, connectable modes & procedures.

5. Security (pairing & bonding)

6. Service and characteristic discovery

7. Characteristic notification/indications, write, read

8. Basic/typical error conditions description

The STM32L1xx microcontroller is the reference external microcontroller used for the
programming guidelines described on the following sections, since the available BlueNRG,
BlueNRG-MS kits platforms are based on such microcontroller.

Note: On the following sections, some user application “Defines” are used to simply identify the
devices Bluetooth low energy role (central, peripheral, client and server).

Further on each provided pseudo codes any reference to BlueNRG device is also valid for
the BlueNRG-MS device. Any specific difference is highlighted whenever it is needed by
using #ifdef BLUENRG_MS.

Table 31. User application defines for BLE devices role

Define Description

GAP_CENTRAL GAP central role

GAP_PERIPHERAL GAP peripheral role

GATT_CLIENT GATT client role

GATT_SERVER GATT server role

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

42/97 DocID027104 Rev 3

3.1 Initialization phase and main application loop

The following main steps are required for properly configure the selected external
microcontroller and the SPI communication with a BlueNRG or BlueNRG-MS device.

1. Initialize the STM32L device (clock configuration, GPIOs, ...)

2. Configure selected BlueNRG platform

3. Initialize the serial communication channel used for I/O communication (debug and
utility information)

4. Initialize list heads of ready and free hci data packet queues

5. Init SPI interface for allowing external microcontroller to get access to the BlueNRG
features properly

6. Reset the BlueNRG, BlueNRG-MS network coprocessor

7. Configure BlueNRG, BlueNRG-MS public address (if public address is used)

8. Init BLE NRG GATT layer

9. Init BLE NRG GAP layer depending on the selected device role

10. Set the proper security I/O capability and authentication requirement (if BLE NRG
security is used)

11. Define the required Services & Characteristics if the device is a GATT server

12. Add a while(1) loop calling the HCI_Process() API and a specific user application
function where user actions/events are processed (advertising, connections, services
and characteristics discovery, notification and related events).

The following pseudocode example illustrates the required initialization steps:

int main(void)

{

 int ret;

/* Device Initialization */

Init_Device();

/* Identify BlueNRG, BlueNRG-MS platform */

SdkEvalIdentification();

/* Configure I/O communication channel:

 It requires the void IO_Receive_Data(uint8_t * rx_data, uint16_t
data_size)function where user received data should be processed */

 SdkEval_IO_Config(processInputData);

 /* Initialize list heads of ready and free hci data packet queues */

 HCI_Init();

 /* Init SPI interface */

 SdkEvalSpiInit(SPI_MODE_EXTI);

 /* Reset the BlueNRG network coprocessor */

 BlueNRG_RST();

 /* Configure BlueNRG address as public (its public address is used) */

 {

 uint8_t bdaddr[] = {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};

 ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,
CONFIG_DATA_PUBADDR_LEN,bdaddr);

 if(ret)PRINTF("Setting BD_ADDR failed.\n");

DocID027104 Rev 3 43/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

 }

 /* Init BlueNRG GATT layer */

 ret = aci_gatt_init();

 if(ret) PRINTF("GATT_Init failed.\n");

 /* Init BlueNRG GAP layer as peripheral or central */

 {

 uint16_t service_handle, dev_name_char_handle, appearance_char_handle;

#if GAP_PERIPHERAL

uint8_t role = GAP_PERIPHERAL_ROLE;

#else

uint8_t role = GAP_CENTRAL_ROLE;

#endif

#if BLUENRG_MS

ret = aci_gap_init(role, 0, 0x07, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

#else

ret = aci_gap_init(role, &service_handle, &dev_name_char_handle,
&appearance_char_handle);

#endif

if(ret) PRINTF("GAP_Init failed.\n");

 }

 /**** If security is used, set the I/O capability and authentication
requirement: refer to Section*/

……

 #if GATT_SERVER

 /* User application function where service and characteristics are
defined: refer to Section Services & Characteristics Configuration Section
*/

 ret = Add_Server_Services_Characteristics();

 if(ret == BLE_STATUS_SUCCESS)

 PRINTF("Services & Characteristics added successfully.\n");

 else

 PRINTF("Error while adding Services & Characteristics.\n");

#endif

 /* Main Application Loop */

 while(1)

 {

 /* Process any pending HCI events read */

 HCI_Process()

 /* User specific application function where user actions and events are
processed (advertising, connections, services and characteristics
discovery, notification)

 */

 User_Process();

 }

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

44/97 DocID027104 Rev 3

} /* end main() */

Note: 1. Init_Device() initializes the STM32L1xx microcontroller according to the selected
framework (Standard or Cube library).

2. User_Process() is just an application dependent function. On the following sections,
some reference specific actions/events are described based on the most common BLE
functionalities. User developer can adapt/modify/replace them.

3. When performing the GATT_Init() & GAP_Init() APIs, BlueNRG and BlueNRG-MS stacks
always add two standard services: Attribute Profile Service (0x1801) with Service Changed
Characteristic and GAP Service (0x1800) with Device Name and Appearance
characteristics.

4. The last attribute handle reserved for the standard GAP service is 0x000F on BlueNRG
stack and 0x000B on BlueNRG-MS stack.

Table 32. BlueNRG GATT, GAP default services

Default services Start handle End handle Service UUID

Attribute profile service 0x0001 0x0004 0x1801

Generic access profile (GAP)
service

0x0005 0x000F 0x1800

Table 33. BlueNRG GATT, GAP default characteristics

Default
Services

Characteristic
Attribute
handle

Char property
Char
value

handle

Char
UUID

Char value length
(bytes)

Attribute
profile
service

Service
changed

0x0002 Indicate 0x0003 0x2A05 4

Generic
access
profile
(GAP)
service

Device name 0x0006

Read|Write without
response| Write|

Authenticated Signed
Writes

0x0007 0x2A00 7

Appearance 0x0008

Read|Write without
Response| Write|

Authenticated Signed
Writes

0x0009 0x2A01 2

DocID027104 Rev 3 45/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

Peripheral
Preferred

Connection
Parameters

0x000A
Read|Write without
Response| Write

0x000B 0x2A04 8

Reconnection
Address

0x000C
Read|Write without
Response| Write

0x000D 0x2A03 6

Peripheral
Preferred

Connection
Parameters

0x000E Read|Write 0x000F 0x2A04 8

Table 34. BlueNRG-MS GATT, GAP default services

Default services Start handle End handle Service UUID

Attribute profile
service

0x0001 0x0004 0x1801

Generic access profile
(GAP) service

0x0005 0x000B 0x1800

Table 33. BlueNRG GATT, GAP default characteristics (continued)

Default
Services

Characteristic
Attribute
handle

Char property
Char
value

handle

Char
UUID

Char value length
(bytes)

Table 35. BlueNRG-MS GATT, GAP default characteristics

Default
Services

Characteristic
Attribute
handle

Char property
Char
value

handle

Char
UUID

Char value length
(bytes)

Attribute
Profile
Service

Service
Changed

0x0002 Indicate 0x0003 0x2A05 4

Generic
Access
Profile
(GAP)

Service

Device Name 0x0006

Read|Write without
Response| Write|

Authenticated Signed
Writes

0x0007 0x2A00 7

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

46/97 DocID027104 Rev 3

4. The GAP_Init() role parameter values are as follows:

Further, on BlueNRG-MS stack, two new parameters are available on GAP_Init() API:

– enable_Privacy: 0x00 for disabling privacy; 0x01 for enabling privacy;

– device_name_char_len: it allows to indicate the length of the device name
characteristic.

For a complete description of this API and related parameters refer to the UM1755
and UM1865 User Manuals, on the Section 5: References.

Appearance 0x0008

Read|Write without
Response| Write|

Authenticated Signed
Writes

0x0009 0x2A01 2

Peripheral
Preferred

Connection
Parameters

0x000A
Read|Write without
Response| Write

0x000B 0x2A04 8

Table 35. BlueNRG-MS GATT, GAP default characteristics

Default
Services

Characteristic
Attribute
handle

Char property
Char
value

handle

Char
UUID

Char value length
(bytes)

Table 36. GAP_Init() role parameter values

Device Role parameter values Note

BlueNRG
0x01:Peripheral

0x03: Central
Broadcaster, Observer are not
supported on BlueNRG device

BlueNRG-MS

0x01:Peripheral

0x02: Broadcaster

0x04: Central

0x08: Observer

The role parameter can be a
bitwise OR of any of the
supported values (multiple roles
simultaneously support)

DocID027104 Rev 3 47/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3.1.1 BLE addresses

The following device addresses are supported from BlueNRG and BlueNRG-MS devices:

• Public address

• Random address

• Private address

Public MAC addresses (6 bytes- 48 bits address) uniquely identifies a BLE device, and they
are defined by Institute of Electrical and Electronics Engineers (IEEE).

The first 3 bytes of the public address identify the company that issued the identifier and are
known as the Organizationally Unique Identifier (OUI). An Organizationally Unique Identifier
(OUI) is a 24-bit number that is purchased from the IEEE. This identifier uniquely identifies a
company and it allows to reserve a block of possible public addresses (up to 2^24 coming
from the remaining 3 bytes of the public address) for the exclusive use of a company with a
specific OUI.

An organization/company can request a new set of 6 bytes addresses when at least the
95% of previously allocated block of addresses have been used (up to 2^24 possible
addresses are available with a specific OUI).

BlueNRG and BlueNRG-MS devices don't have a valid preassigned MAC address since the
MAC address is specific to manufacturers. The public address must be set by the external
processor.

The ACI command to set the MAC address is ACI_HAL_WRITE_CONFIG_DATA (opcode
0xFC0C) with command parameters as follow:

• Offset: 0x00 (0x00 identify the BTLE public address, i.e. MAC address)

• Length: 0x06 (Length of the MAC address)

• Value: 0xaabbccddeeff (48 bit array for MAC address)

The command ACI_HAL_WRITE_CONFIG_DATA should be sent to BlueNRG and
BlueNRG-MS devices by the uC before starting BLE operations (after each power-up or
reset of BlueNRG).

The following pseudocode example illustrates how to set a public address:
uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};

ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD

DR_LEN, bdaddr);

if(ret)PRINTF("Setting address failed.\n")}

MAC address needs to be stored somewhere in the non-volatile memory associated to the
product during product manufacturing.

A user can write its application assuming that the MAC address is placed at a known Flash
location of the microcontroller. During manufacturing, the microcontroller can be
programmed with the customer Flash image via JTAG.

A second step could involve generating the unique MAC address (i.e. reading it from a
database) and storing of the MAC address in the known location in a free 48 bits area of the
Flash.

When the microcontroller’s application needs to access the MAC address simply refers to
the known Flash memory location.

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

48/97 DocID027104 Rev 3

Figure 9. MAC address storage

Alternatively, the MAC address can be stored in a free area of the BlueNRG and BlueNRG-
MS devices Information register (IFR) region, but this does not offer any advantage, since:

• Programming of the MAC in the IFR requires several SPI transaction as follows:

– Make the device entering Updater mode (1 SPI transaction)

– Program the device IFR with MAC address (1 SPI transaction)

– Make the device leaving Updater mode (1 SPI transaction)

• Access to the MAC address during device initialization (at each power-up or reset)
requires several SPI transaction as follows:

– Make the device entering Updater mode (1 SPI transaction)

– Read MAC address from the device IFR (1 SPI transaction)

– Make the device leaving Updater mode (1 SPI transaction)

BLE standard can also use "random" addresses which are defined by users, and they do not
follow the public addresses rules. The random addresses are handled autonomously by the
device, are set at each reset but they can also be overwritten by the external processor
using the hci_le_set_random_address()API.

Private addresses are used when privacy is enabled and according to the Bluetooth low
energy specification. For more information about private addresses, refer to Section 1.7:
Security Manager (SM).

DocID027104 Rev 3 49/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3.1.2 Set tx power level

During the initialization phase user can also select the transmitting power level using the
following API:

aci_hal_set_tx_power_level(high or standard, power level)

Follow a pseudocode example for setting the radio transmit power in high power and -2
dBm output power:

ret = aci_hal_set_tx_power_level(1,4);

For a complete description of this API and related parameters refer to the UM1755 and
UM1865 user manuals, on the Section 5: References.

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

50/97 DocID027104 Rev 3

3.2 BlueNRG, BlueNRG-MS events and events Callback

Whenever there is an ACI event to be processed, the ACI framework notifies this event to
the user application through the HCI_Event_CB() callback. The HCI_Event_CB() callback
is called within the HCI_Process() on file hci.c.

As a consequence, user application is requested to:

1. Define the void HCI_Event_CB(void *pckt) function within his main application
(pckt is a pointer to the received ACI packet)

2. Based on its own application scenario, the user has to identify the required device
events to be detected and handled and the application specific actions to be done as
consequence of such events.

When implementing a BLE application, the most common and widely used device events
are the ones related to the discovery, connection, terminate procedures, services and
characteristics discovery procedures, attribute modified events on a GATT server and
attribute notification/ indication events on a GATT client.

Table 37. ACI: main events, sub-events

Event/sub-event Description Main event Where

EVT_DISCONN_COMPLETE A connection is terminated NA
GAP

central/
peripheral

EVT_LE_CONN_COMPLETE
Indicates to both of the Hosts
forming the connection that a new
connection has been established

EVT_LE_META_
EVENT

GAP
central/

peripheral

EVT_BLUE_GATT_ATTRIBUTE_MODIFIED

Generated by the GATT server
when a client modifies any
attribute on the server, if event is
enabled.

EVT_VENDOR
GATT
server

EVT_BLUE_GATT_NOTIFICATION
Generated by the GATT client
when a server notifies any
attribute on the client

EVT_VENDOR
GATT
client

EVT_BLUE_GATT_INDICATION
Generated by the GATT client
when a server indicates any
attribute on the client

EVT_VENDOR
GATT
client

EVT_BLUE_GAP_PASS_KEY_REQUEST

Generated by the Security
manager to the application when a
passkey is required for pairing.
When this event is received, the
application has to respond with
the aci_gap_pass_key_response
() API

EVT_VENDOR
GAP

central/
peripheral

EVT_BLUE_GAP_PAIRING_CMPLT

Generated when the pairing
process has completed
successfully or a pairing
procedure timeout has occurred
or the pairing has failed

EVT_VENDOR
GAP

central/
peripheral

DocID027104 Rev 3 51/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

For a detailed description about the BLE events, and related formats refer to the user
manual UM1755 and on Table 38: ACI: GAP modes APIs in the current document.

The following pseudocode provides an example of HCI_Event_CB() callback handling
some of the described device events (EVT_DISCONN_COMPLETE, EVT_LE_CONN_COMPLETE,
EVT_BLUE_GATT_ATTRIBUTE_MODIFIED, EVT_BLUE_GATT_NOTIFICATION):

void HCI_Event_CB(void *pckt)

{

hci_uart_pckt *hci_pckt = pckt;

hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

if(hci_pckt->type != HCI_EVENT_PKT return;

EVT_BLUE_GAP_BOND_LOST

Event generated when a pairing
request is issued, in response to a
slave security request from a
master which has previously
bonded with the slave. When this
event is received, the upper layer
has to issue the command
aci_gap_allow_rebond() to allow
the slave to continue the pairing
process with the master

EVT_VENDOR
GAP

peripheral

EVT_BLUE_ATT_READ_BY_GROUP_RESP

The Read-by-group type response
is sent in reply to a received
Read-by-group type request and
contains the handles and values
of the attributes that have been
read

EVT_VENDOR
GATT
client

EVT_BLUE_ATT_READ_BY_TYPE_RESP

The Read-by-type response is
sent in reply to a received Read
By Type

Request and contains the handles
and values of the attributes that
have been read.

EVT_VENDOR
GATT
client

EVT_BLUE_GAP_DEVICE_FOUND

(only for BlueNRG device)

Event given by the GAP layer to
the upper layers when a device is
discovered during scanning as a
consequence of one of the GAP
procedures started by the upper
layers.

EVT_VENDOR
GAP

central

EVT_BLUE_GATT_PROCEDURE_COMPLETE
A GATT procedure has been
completed

EVT_VENDOR
GATT
client

EVT_LE_ADVERTISING_REPORT (only for
BlueNRG-MS device)

Event given by the GAP layer to

the upper layers when a device is

discovered during scanning as a

consequence of one of the GAP

procedures started by the upper

layers.

EVT_LE_META_
EVENT

GAP
central

Table 37. ACI: main events, sub-events (continued)

Event/sub-event Description Main event Where

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

52/97 DocID027104 Rev 3

switch(event_pckt->evt){

case EVT_DISCONN_COMPLETE: /* BlueNRG disconnection event */

{

/* Add user code for handling BLE disconnect event based on
application scenarios

*/

.........

}

break;

case EVT_LE_META_EVENT:

{

/* Get the meta event data */

evt_le_meta_event *evt = (void *)event_pckt->data;

/* Analyze the specific sub event */

switch(evt->subevent){

case EVT_LE_CONN_COMPLETE:/* BlueNRG connection event */

{

/* connection complete event: get the related data */

evt_le_connection_complete *cc = (void *)evt->data;

/* Connection parameters:

cc->status: connection status (0x00: Connection successfully
completed);

cc->handle: connection handle to be used for the communication during
the connection;

cc->role: BLE device role (0x01: master; 0x02: slave);

cc->peer_bdaddr_type: connected device address type (0x00: public;
0x01: random);

cc->peer_bdaddr: connected device address;

cc->interval: connection interval;

cc->latency: connection latency;

cc->supervision_timeout: connection supervision timeout;

cc->master_clock_accuracy: master clock accuracy;

*/

/* Add user code for handling connection event based on application
scenarios */

conn_handle = cc->handle;

.....

} /* EVT_LE_CONN_COMPLETE */

break;

} /* switch(evt->subevent) */

} /* EVT_LE_META_EVENT */

break;

case EVT_VENDOR:

{

/* Get the vendor event data */

evt_blue_aci *blue_evt = (void*)event_pckt->data;

DocID027104 Rev 3 53/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

switch(blue_evt->ecode){

#if GATT_SERVER

case EVT_BLUE_GATT_ATTRIBUTE_MODIFIED:

{

/* Get attribute modification event data */

evt_gatt_attr_modified *evt = (evt_gatt_attr_modified*)blue_evt-
>data;

evt->conn_handle: the connection handle which modified the attribute;

evt->attr_handle: handle of the attribute that was modified;

evt->data_length: the length of the data;

evt->att_data: pointer to the new value (length is data_length).

/* Add user code for handling attribute modification event based on
application scenarios */

....

}/* EVT_BLUE_GATT_ATTRIBUTE_MODIFIED */

break;

#endif /* GATT_SERVER */

#if GATT_CLIENT

case EVT_BLUE_GATT_NOTIFICATION:

{

/* Get attribute notification event data */

evt_gatt_attr_notification *evt =
(evt_gatt_attr_notification*)blue_evt->data;

evt->conn_handle: the connection handle which notified the attribute;

evt->event_data_length: length of attribute value + handle (2 bytes);

evt->attr_handle: attribute handle;

evt->attr_value: pointer to attribute value (length is
event_data_length – 2).

/* Add user code for handling attribute notification event based on
application scenarios */

.....

}/* EVT_BLUE_GATT_NOTIFICATION */

break;

break;

#endif /* GATT_CLIENT */

}/* switch(blue_evt->ecode) */

}/* EVT_VENDOR */

break;

}/* switch(evt->subevent)*/

}/* end HCI_Event_CB() */

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

54/97 DocID027104 Rev 3

3.3 Services and characteristic configuration

In order to add a service and related characteristics, a user application has to define the
specific profile to be addressed:

1. Standard profile defined by Bluetooth SIG organization. The user must follow the profile
specification and services, characteristic specification documents in order to implement
them by using the related defined Profile, Services & Characteristics 16 bits UUID
(refer to Bluetooth SIG web page: https://www.bluetooth.org/en-
us/specification/adopted-specifications).

2. Proprietary, non-standard profile. The user must define its own services and
characteristics. In this case, 128-bits UIDS are required and must be generated by
profile implementers (refer to UUID generator web page:
http://www.famkruithof.net/uuid/uuidgen)

A service can be added using the following command:

- aci_gatt_add_serv (Service_UUID_Type, Service_UUID_16, Service_Type,
Max_Attributes_Records, &ServHandle);

This command returns the pointer to the Service Handle (ServHandle), which is used to
identify the service within the user application. A characteristic can be added to this service
using this command:

- aci_gatt_add_char (ServHandle, Char_UUID_Type, Char_UUID_16,
Char_Value_Length, Char_Properties, Security_Permissions, GATT_Evt_Mask,
Enc_Key_Size, Is_Variable, &CharHandle);

This command returns the pointer to the Characteristic Handle (Char_Handle), which is
used to identify the characteristic within the user application.

For a detailed description of the aci_gatt_add_serv() and aci_gatt_add_char() functions
parameters refer to the user manuals UM1755 and UM1865.

The following pseudocode example illustrates the steps to be followed for adding a service
and two associated characteristic on a proprietary, non-standard profile.

tBleStatus Add_Server_Services_Characteristics(void)

{

tBleStatus ret;

/*

The following 128bits UUIDs have been generated from the random UUID
generator:

D973F2E0-B19E-11E2-9E96-0800200C9A66 --> Service 128bits UUID

D973F2E1-B19E-11E2-9E96-0800200C9A66 --> Characteristic_1 128bits UUID

D973F2E2-B19E-11E2-9E96-0800200C9A66 --> Characteristic_2 128bits UUID

*/

/* Service 128bits UUID */

const uint8_t service_uuid[16] =
{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe0,0xf2,0x7
3,0xd9};

/* Characteristic_1 128bits UUID */

const uint8_t charUuid_1[16] =
{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe1,0xf2,0x7
3,0xd9};

/* Characteristic_2 128bits UUID */

DocID027104 Rev 3 55/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

const uint8_t charUuid_2[16] =
{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe2,0xf2,0x7
3,0xd9};

/* Add the service with service_uuid 128bits UUID to the GATT server
database. The service handle ServHandle is returned

*/

ret = aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&ServHandle);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

/* Add the characteristic with charUuid_1 128bits UUID to the service
ServHandle.

This characteristic has 20 as Maximum length of the characteristic value,
Notify properties(CHAR_PROP_NOTIFY), no security
permissions(ATTR_PERMISSION_NONE), no GATT event mask (0), 16 as key
encryption size, and variable-length characteristic (1).

The characteristic handle (CharHandle_1) is returned.

*/

ret = aci_gatt_add_char(ServHandle, UUID_TYPE_128, charUuid_1, 20,
CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0,16, 1, &CharHandle_1);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

/* Add the characteristic with charUuid_2 128bits UUID to the service
ServHandle.This characteristic has 20 as Maximum length of the
characteristic value, Read, Write and write without response properties, no
security permissions(ATTR_PERMISSION_NONE), notify application when
attribute is written (GATT_NOTIFY_ATTRIBUTE_WRITE) as GATT event mask , 16
as key encryption size, and variable-length characteristic (1). The
characteristic handle (CharHandle_2) is returned.

*/

ret = aci_gatt_add_char(ServHandle, UUID_TYPE_128, charUuid_2, 20,
CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP, ATTR_PERMISSION_NONE,
GATT_NOTIFY_ATTRIBUTE_WRITE,16, 1, &CharHandle_2);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

return ret ;

}/* end Add_Server_Services_Characteristics() */

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

56/97 DocID027104 Rev 3

3.4 Create a connection: discoverable and connectable APIs

In order to establish a connection between a BlueNRG GAP central (master) device and a
BlueNRG GAP peripheral (slave) device, the GAP discoverable/connectable modes and
procedures can be used as described in Table 38: ACI: GAP modes APIs, Table 39: ACI:
discovery procedures APIs, Table 40: ACI: connection procedures APIs and by following the
related ACI APIs described in the user manuals UM1755 and UM1865, Section 5:
References.

GAP peripheral discoverable and connectable modes APIs

Different types of discoverable and connectable modes can be used as described by the
following APIs:

Table 38. ACI: GAP modes APIs

API
Supported advertising

event types
Description

aci_gap_set_discoverable()

0x00: connectable
undirected advertising
(default)

Sets the device in general
discoverable mode.

The device is discoverable until
the host issues the

aci_gap_set_non_discover
able()API.

0x02: scannable undirected
advertising

0x03: non-connectable
undirected advertising

aci_gap_set_limited_discoverable(
)

0x00: connectable
undirected advertising
(default);

Sets the device in limited
discoverable mode. The device
is discoverable for a maximum
period of TGAP

(lim_adv_timeout) = 180
seconds. The advertising can be
disabled at any time by calling
aci_gap_set_non_discover
able() API

0x02: scannable undirected
advertising;

0x03: non-connectable
undirected advertising.

aci_gap_set_non_discoverable() NA

Sets the device in non-
discoverable mode. This
command disables the LL
advertising and sets the device in
standby state.

aci_gap_set_direct_connectable() NA

Sets the device in direct
connectable mode. The device is
directed connectable mode only
for 1.28 seconds. If no
connection is established within
this duration, the device enters
non-discoverable mode and
advertising has to be

enabled again explicitly.

DocID027104 Rev 3 57/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

aci_gap_set_non_connectable()

0x02: scannable undirected
advertising Puts the device into non-

connectable mode.0x03: non-connectable
undirected advertising

aci_gap_set_undirect_connectable
()

NA
Puts the device into undirected
connectable mode.

Table 39. ACI: discovery procedures APIs

ACI API Description

aci_gap_start_limited_discovery_proc()

Starts the limited discovery procedure. The
controller is commanded to start active
scanning. When this procedure is started, only
the devices in limited discoverable mode are
returned to the upper layers.

aci_gap_start_general_discovery_proc()
Starts the general discovery procedure. The
controller is commanded to start active
scanning.

Table 40. ACI: connection procedures APIs

ACI API Description

aci_gap_start_auto_conn_establishment()

Starts the auto connection establishment
procedure. The devices specified are added to
the white list of the controller and a
LE_Create_Connection call is made to the
controller by GAP with the initiator filter policy
set to “use whitelist to determine which
advertiser to connect to”.

aci_gap_create_connection()

Starts the direct connection establishment
procedure. A LE_Create_Connection call will
be made to the controller by GAP with the
initiator filter policy set to “ignore whitelist and
process connectable advertising packets only
for the specified device”.

aci_gap_start_general_conn_establishment()

Starts a general connection establishment
procedure. The host enables scanning in the

controller with the scanner filter policy set to
“accept all advertising packets” and from the

scanning results, all the devices are sent to the
upper layer using the event

EVT_BLUE_GAP_DEVICE_FOUND on
BlueNRG device and
EVT_LE_ADVERTISING_REPORT on
BlueNRG-MS device.

Table 38. ACI: GAP modes APIs (continued)

API
Supported advertising

event types
Description

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

58/97 DocID027104 Rev 3

3.4.1 Set discoverable mode & use direct connection establishment
procedure

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to direct connect to it through a direct connection establishment procedure.
/* GAP Peripheral: general discoverable mode (and no scan response is sent)

*/

Note: Note: It is assumed that the device public address has been set during the initialization
phase as follows:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};

ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD
DR_LEN, bdaddr);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

*/

void GAP_Peripheral_Make_Discoverable(void)

{

tBleStatus ret;

const char local_name[]=

{AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G','_','T','e','s','

t'};

/* disable scan response: passive scan */

hci_le_set_scan_resp_data(0,NULL);

/* Put the GAP peripheral in general discoverable mode:

Advertising_Event_Type: ADV_IND (undirected scannable and connectable);

Adv_Interval_Min: 0;

Adv_Interval_Max: 0;

Address_Type: PUBLIC_ADDR (public address: 0x00);

aci_gap_start_selective_conn_establishment()

It starts a selective connection establishment
procedure. The GAP adds the specified device

addresses into white list and enables scanning
in the controller with the scanner filter policy set
to “accept packets only from devices in
whitelist”. All the devices found are sent to the
upper layer by the event
EVT_BLUE_GAP_DEVICE_FOUND on
BlueNRG device and
EVT_LE_ADVERTISING_REPORT on
BlueNRG-MS device.

aci_gap_terminate_gap_procedure() Terminate the specified GAP procedure.

Table 40. ACI: connection procedures APIs (continued)

ACI API Description

DocID027104 Rev 3 59/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

Adv_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);

Local_Name_Length: 13

Local_Name: BlueNRG_Test;

Service_Uuid_Length: 0 (no service to be advertised);

Service_Uuid_List: NULL;

Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);

Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).

*/

ret = aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR,

 NO_WHITE_LIST_USE,

 sizeof(local_name),

 local_name,

 0, NULL, 0, 0);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

} /* end GAP_Peripheral_Make_Discoverable() */

/* GAP Central: direct connection establishment procedure to connect to the

GAP Peripheral in discoverable mode */

void GAP_Central_Make_Connection(void)

{

tBleStatus ret;

tBDAddr GAP_Peripheral_address = {0xaa, 0x00, 0x00, 0xE1, 0x80,

0x02};

/* Start the direct connection establishment procedure to the GAP

peripheral device in general discoverable mode using the following

connection parameters:

Scan_Interval: 0x4000;

Scan_Window: 0x4000;

Peer_Address_Type: PUBLIC_ADDR (GAP peripheral address type: public

address);

Peer_Address: {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};

Own_Address_Type: PUBLIC_ADDR (device address type);

Conn_Interval_Min: 40 (Minimum value for the connection event

interval);

Conn_Interval_Max: 40 (Maximum value for the connection event

interval);

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

60/97 DocID027104 Rev 3

Conn_Latency: 0 (Slave latency for the connection in a number of

connection events);

Supervision_Timeout: 60 (Supervision timeout for the LE Link);

Conn_Len_Min: 2000 (Minimum length of connection needed for the LE

connection);

Conn_Len_Max: 2000 (Maximum length of connection needed for the LE

connection).

*/

ret = aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR,

GAP_Peripheral_address, PUBLIC_ADDR, 40, 40, 0, 60, 2000 , 2000);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

} /* end GAP_Peripheral_Make_Discoverable() */

Note: 1. If ret = BLE_STATUS_SUCCESS is returned, on termination of the GAP procedure, a
EVT_LE_CONN_COMPLETE event is returned, on the HCI_Event_CB() event callback, to
indicate that a connection has been established with the GAP_Peripheral_address (same
event is returned on the GAP peripheral device).

2. The connection procedure can be explicitly terminated by issuing the command
aci_gap_terminate_gap_procedure().

3. The last two parameters Conn_Len_Min and Conn_Len_Max of the
aci_gap_create_connection() are the length of the connection event needed for the
BLE connection. These parameters allows user to specify the amount of time the master
has to allocate for a single slave so they must be wisely choosen.

In particular, when a master connects to more slaves, the connection interval for each slave
must be equal or a multiple of the other connection intervals and user must not overdo the
connection event length for each slave.

3.4.2 Set discoverable mode & use general discovery procedure (active
scan)

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to start a general discovery procedure in order to discover devices within its radio
range.

/* GAP Peripheral: general discoverable mode (scan responses are sent):

Note: It is assumed that the device public address has been set during the initialization phase as
follows:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};

ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,

CONFIG_DATA_PUBADDR_LEN,

bdaddr);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

*/

void GAP_Peripheral_Make_Discoverable(void)

{

DocID027104 Rev 3 61/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

tBleStatus ret;

const char local_name[] =

{AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G' };

 /* As scan response data, a proprietary 128bits Service UUID is used.

This 128bits data cannot be inserted within the advertising packet
(ADV_IND) due its length constraints (31 bytes).

*/

/*

AD Type description:

0x11: length

0x06: 128 bits Service UUID type

0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x20,0x0c,0x9a
,0x66: 128 bits Service UUID

*/

uint8_t ServiceUUID_Scan[18]=
{0x11,0x06,0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x2
0,0x0c,0x9a,0x66};

/* Enable scan response to be sent when GAP peripheral receives

 scan requests from GAP Central performing general

 discovery procedure(active scan) */

hci_le_set_scan_resp_data(18 , ServiceUUID_Scan);

/* Put the GAP peripheral in general discoverable mode:

Advertising_Event_Type: ADV_IND (undirected scannable and connectable);

Adv_Interval_Min: 0;

Adv_Interval_Max: 0;

Address_Type: PUBLIC_ADDR (public address: 0x00);

Adv_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);

Local_Name_Length: 8

Local_Name: BlueNRG;

Service_Uuid_Length: 0 (no service to be advertised);

Service_Uuid_List: NULL;

Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);

Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).

*/

ret = aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR,
NO_WHITE_LIST_USE,sizeof(local_name), local_name, 0, NULL, 0, 0);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

} /* end GAP_Peripheral_Make_Discoverable() */

/* GAP Central: start general discovery procedure to discover the GAP
peripheral device in discoverable mode */

void GAP_Central_General_Discovery_Procedure(void)

{

tBleStatus ret;

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

62/97 DocID027104 Rev 3

/* Start the general discovery procedure (active scan) using the
following parameters:

Scan_Interval: 0x4000;

Scan_Window: 0x4000;

Own_address_type: 0x00 (public device address);

filterDuplicates: 0x00 (duplicate filtering disabled);

ret = aci_gap_start_general_discovery_proc(0x4000, 0x4000,0x00,0x00);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

}

The responses of the procedure are given through the EVT_BLUE_GAP_DEVICE_FOUND
(BlueNRG) and EVT_LE_ADVERTISING_REPORT (BlueNRG-MS) events raised on
HCI_Event_CB() callback (EVT_VENDOR as main event) . The end of the procedure is
indicated by EVT_BLUE_GAP_PROCEDURE_COMPLETE event on the HCI_Event_CB() callback
(EVT_VENDOR as main event):

void HCI_Event_CB(void *pckt)

{

hci_uart_pckt *hci_pckt = pckt;

hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

if(hci_pckt->type != HCI_EVENT_PKT return;

switch(event_pckt->evt){

case EVT_VENDOR:

{

/* Get the vendor event data */

evt_blue_aci *blue_evt = (void*)event_pckt->data;

switch(blue_evt->ecode){

case EVT_BLUE_GAP_DEVICE_FOUND:

{

evt_gap_device_found *pr = (void*)blue_evt->data;

/* evt_gap_device_found parameters:

pr->evt_type: event type (advertising packets types);

pr->bdaddr_type: type of the peer address (PUBLIC_ADDR,RANDOM_ADDR);

pr->bdaddr: address of the peer device found during scanning;

pr->length: length of advertising or scan response data;

pr->data_RSSI[]: length advertising or scan response data + RSSI.

RSSI is last octect (signed integer).

*/

/* Add user code for decoding the evt_gap_device_found event data based on
the specific pr->evt_type (ADV_IND, SCAN_RSP, ..)*/

………

}/* EVT_BLUE_GAP_DEVICE_FOUND */

break;

case EVT_BLUE_GAP_PROCEDURE_COMPLETE:

{

/* When the general discovery procedure is terminated

DocID027104 Rev 3 63/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

EVT_BLUE_GAP_PROCEDURE_COMPLETE event is returned with the procedure
code set to GAP_GENERAL_DISCOVERY_PROC (0x02).

*/

evt_gap_procedure_complete *pr = (void*)blue_evt->data;

/* evt_gap_procedure_complete parameters:

pr->procedure_code: terminated procedure code;

pr->status: BLE_STATUS_SUCCESS, BLE_STATUS_FAILED or ERR_AUTH_FAILURE;

pr->data[VARIABLE_SIZE]: procedure specific data, if applicable

*/

/* If needed, add user code for handling the event data */

.....

}/* EVT_BLUE_GAP_PROCEDURE_COMPLETE */

break;

}/* switch(blue_evt->ecode) */

}/* EVT_VENDOR */

break;

case EVT_LE_META_EVENT:

{

 evt_le_meta_event *evt = (void *)event_pckt->data;

 switch(evt->subevent)

 {

 case EVT_LE_ADVERTISING_REPORT: /* BlueNRG-MS stack */

 {

 le_advertising_info *pr = (void *)(evt->data+1); /* evt->data[0] is

number of reports (On BlueNRG-MS is always 1) */

/* le_advertising_info parameters:
pr->evt_type: event type (advertising packets types);
pr->bdaddr_type: type of the peer address (PUBLIC_ADDR,RANDOM_ADDR);
pr->bdaddr: address of the peer device found during scanning;
pr->length: length of advertising or scan response data;
pr->data_RSSI[]: length advertising or scan response data + RSSI.
RSSI is last octect (signed integer).

*/
/* Add user code for decoding the le_advertising_info event data based

on the specific pr->evt_type (ADV_IND, SCAN_RSP, ..)*/
 ...
 }/* EVT_LE_ADVERTISING_REPORT */
 break;

 }/* end switch() */
}/* EVT_LE_META_EVENT */

break;
 }/* switch(event_pckt->evt)*/

}/* end HCI_Event_CB() */

In particular, in this specific context, the following events are raised on the GAP Central
HCI_Event_CB(), as a consequence of the GAP peripheral device in discoverable mode
with scan response enabled:

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

64/97 DocID027104 Rev 3

1. EVT_BLUE_GAP_DEVICE_FOUND(BlueNRG)/EVT_LE_ADVERTISING_REPORT(BlueNRG-
MS) with advertising packet type (evt_type = ADV_IND)

2. EVT_BLUE_GAP_DEVICE_FOUND(BlueNRG device)/EVT_LE_ADVERTISING_REPORT
(BlueNRG-MS) with scan response packet type (evt_type = SCAN_RSP)

The advertising data can be interpreted as follows (refer to Bluetooth specification version
4.0 [Vol 3] and 4.1 [Vol 2] on Section 5: References):

The scan response data can interpreted as follows (refer to Bluetooth specification version
4.0 [Vol 3] and 4.1 [Vol 2]):

Table 41. ADV_IND event

Event type Address type Address Advertising data RSSI

0x00
(ADV_IND)

0x00 (public
address)

0x0280E1003
412

0x02,0x01,0x06,0x08,0x08,0x42,0x6
C,0x75,0x65,0x4E,0x52,0x47,0x02,0x

0A,0x08
0xDA

Table 42. ADV_IND advertising data

Flags AD type field Local name field Tx power level

0x02: length of the field

0x01: AD type Flags

0x06: 0x110 (Bit 2: BR/EDR
Not Supported; Bit 1: general

discoverable mode)

0x08: length of the field

0x08: Shortened local name
type

0x42,0x6C,0x75,0x65,0x4E0x
52,0x47: BlueNRG

0x02: Length of the field

0x0A: Tx Power type

0x08: power value

Table 43. SCAN_RSP event

Event type Address type Address Scan response data RSSI

0x04
(SCAN_RS

P)

0x00 (public
address)

0x0280E1003
412

0x12,0x66,0x9A,0x0C,0x20,0x00,0x0
8,0xA7,0xBA,0xE3,0x11,0x06,0x85,0

xC0,0xF7,0x97,0x8A,0x06,0x11
0xDA

Table 44. Scan response data

Scan response data

0x12: data length

0x11: length of service UUID advertising data;

0x06: 128 bits service UUID type;

0x66,0x9A,0x0C,0x20,0x00,0x08,0xA7,0xBA,0xE3,0x11,0x06,0x85,0xC0,0xF7,0x97,0x8A:

128 bits service UUID

DocID027104 Rev 3 65/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3.5 Security (pairing and bonding)

This section describes the main functions to be used in order to establish a pairing between
two devices (authenticate the devices identity, encrypt the link and distribute the keys to be
used on coming next reconnections).

When using the security features, some low level parameters (root keys) must be set,
before raising any other ACI commands:

• DIV root key used to derive CSRK

• Encryption root (ER) key used to derive LTK and CSRK

• Identity root (IR) key used to derive IRK and CSRK

The external microcontroller (MCU) has the responsibilities to provide these parameters as
follows:

1. It has to randomly generate the three root key values (if not already generated) and
store them in a non-volatile-memory. The three root keys have to be generated only
one time, in order to univocally establish the specific BlueNRG, BlueNRG-MS device
security settings.

2. Each time the MCU starts, it has to read the root keys from the non-volatile-memory
and set them during the initialization phase of the BlueNRG, BlueNRG-MS device.

Following is a simple pseudo code showing how to set the read randomly generated
security root keys on BlueNRG, BlueNRG-MS devices:
uint8_t DIV[2];

uint8_t ER[16];

uint8_t IR[16];

/* Reset BlueNRG, BlueNRG-MS device */

BlueNRG_RST();

/* Microcontroller specific implementation:

1) MCU has to randomly generate DIV, ER and IR and store them in

a non volatile memory.

2) When MCU starts it has to read DIV, ER and IR values from the

non volatile memory.

*/

………

/* Configure read root key DIV on BlueNRG, BlueNRG-MS device */

ret = aci_hal_write_config_data(CONFIG_DATA_DIV_OFFSET,

CONFIG_DATA_DIV_LEN,(uint8_t *) DIV);

/* Configure read root key ER on BlueNRG, BlueNRG-MS device */

ret = aci_hal_write_config_data(CONFIG_DATA_ER_OFFSET,

CONFIG_DATA_ER_LEN,(uint8_t *) ER);

/* Configure read root key IR on BlueNRG, BlueNRG-MS device */

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

66/97 DocID027104 Rev 3

ret = aci_hal_write_config_data(CONFIG_DATA_IR_OFFSET,

CONFIG_DATA_IR_LEN,(uint8_t *) IR);

To successfully pair with a device, IO capabilities have to be correctly configured, depending
on the IO capabilily available on the selected device.
aci_gap_set_io_capability(io_capability) should be used with one of the following
io_capability value:

0x00: Display Only

0x01: Display yes/no

0x02: Keyboard Only

0x03: No Input, no output

0x04: Keyboard display

PassKey Entry example with 2 BlueNRG devices: Device_1, Device_2

The following pseudocode example illustrates only the specific steps to be followed for
pairing two devices by using the PassKey entry method.

As described in Section Table 11.: Methods used for calculating the Temporary Key (TK),
Device_1, Device_2 have to set the IO capability in order to select PassKey entry as a
security method.

On this particular example, "Display Only" on Device_1 and "KeyBoard Only" on Device_2
are selected, as follows:

/* Device_1: */

tBleStatus ret;

ret = aci_gap_set_io_capability(IO_CAP_DISPLAY_ONLY)

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

/* Device_2 */

tBleStatus ret;

ret = aci_gap_set_io_capability(IO_CAP_KEYBOARD_ONLY)

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

Once the IO capability are defined, the aci_gap_set_auth_requirement () should be used
for setting all the security authentication requirements the device needs (MITM mode
(authenticated link or not), OOB data present or not, use fixed pin or not, enabling bonding
or not).

The following pseudocode example illustrates only the specific steps to be followed for
setting the authentication requirements for a device with: “MITM protection , No OOB data,
don’t use fixed pin”: this configuration is used to authenticate the link and to use a not fixed
pin during the pairing process with PassKey Method.

ret = aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,

 OOB_AUTH_DATA_ABSENT, /* no OOB data is
present */

 NULL, /* no OOB data */

7, /* Min. encryption key size */

16, /* Max encryption key size */

DONOT_USE_FIXED_PIN_FOR_PAIRING,/* no fixed
pin */

0, /* fixed pin not used */

DocID027104 Rev 3 67/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

BONDING /* bonding is enabled */);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

Once the security IO capability and authentication requirements are defined, an application
can initiate a pairing procedure as follow:

1. by using aci_gap_slave_security_request() on a GAP Peripheral (slave) device
(it sends a slave security request to the master):

tBleStatus ret;

ret = aci_gap_slave_security_request(conn_handle,

 BONDING,

 MITM_PROTECTION_REQUIRED

);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

or

2. by using the aci_gap_send_pairing_request() on a GAP Central (master) device.

Since the DONOT_USE_FIXED_PIN_FOR_PAIRING (no fixed pin) has been set, once the
paring procedure is initiated by one of the 2 devices, BlueNRG, BlueNRG-MS will generate
the EVT_BLUE_GAP_PASS_KEY_REQUEST event (with related connection handle) for asking to
the host application to provide the password to be used for establishing the encryption key.
BlueNRG, BlueNRG-MS application has to provide the correct password by using the
aci_gap_pass_key_response(conn_handle,passkey)API.

The following pseudocode example illustrates only the specific steps to be followed for
providing the pass key (for example a random pin) to be used for the pairing process, when
the EVT_BLUE_GAP_PASS_KEY_REQUEST event is generated on Device_1 (“Display Only”
capability) :
tBleStatus ret;

/* Generate a random pin with an user specific function */

pin = generate_random_pin();

ret = aci_gap_slave_security_request(conn_handle,
 BONDING,

 MITM_PROTECTION_REQUIRED
);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

Since the Device_1, I/O capability is set as “Display Only”, it should display the generated
pin in the device display. Since Device_2 , I/O capability is set as “Keyboard Only”, the user
can provide the pin displayed on Device_1 to the Device_2 though the same
aci_gap_pass_key_response() API, by a keyboard.

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

68/97 DocID027104 Rev 3

Alternatively, if the user wants to set the authentication requirements with a fixed pin
0x123456 (no pass key event is required), the following pseudocode can be used:
tBleStatus ret;

ret = aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,

 OOB_AUTH_DATA_ABSENT,NULL,

7,

16,

USE_FIXED_PIN_FOR_PAIRING,

0x123456,/* Fixed pin */

BONDING

);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

NOTEs:

1. When the pairing procedure is started by calling the described APIs
(aci_gap_slave_security_request() or aci_gap_send_pairing_request()) and
the value ret = BLE_STATUS_SUCCESS is returned, on termination of the procedure, a
EVT_BLUE_GAP_PAIRING_CMPLT event is returned on the HCI_Event_CB() event
callback to indicate the pairing status:

• 0x00: Pairing success;

• 0x01: Pairing Timeout;

• 0x02: Pairing Failed.

The pairing status is given from the status field of the evt_gap_pairing_cmplt data
associated to the EVT_BLUE_GAP_PAIRING_CMPLT event.

2. When 2 devices get paired, the link is automatically encrypted during the first
connection. If bonding is also enabled (keys are stored for a future time), when the 2
devices get connected again, the link can be simply encrypted (without no need to
perform again the pairing procedure). Host applications can simply use the same APIs
which will not perform the paring process but will just encrypt the link:

• aci_gap_slave_security_request() on the GAP Peripheral (slave) device

or

• aci_gap_send_pairing_request() on the GAP Central (master) device.

3. If a slave has already bonded with a master, it can send a slave security request to the
master to encrypt the link. When receiving the slave security request, the master may
encrypt the link, initiate the pairing procedure, or reject the request. Typically, the
master only encrypts the link, without performing the pairing procedure. Instead, if the
master starts the pairing procedure, it means that for some reasons, the master lost its
bond information, so it has to start the pairing procedure again. As a consequence, the
slave device receives the EVT_BLUE_GAP_BOND_LOST event to inform the host
application that it is not bonded anymore with the master it was previously bonded.
Then, the slave application can decide to allow the security manager to complete the
pairing procedure and re-bond with the master by calling the command
aci_gap_allow_rebond(), or just close the connection and inform the user about the
security issue.

4. Alternatively, the out-of-band method can be selected by using the
aci_gap_set_auth_requirement() with OOB_Enable field enabled and the OOB data

DocID027104 Rev 3 69/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

specified in OOB_Data. This implies that both devices are using this method and they
are setting the same OOB data defined through an out of band communication
(example: NFC).

3.6 Service and characteristic discovery

This section describes the main functions allowing a BlueNRG, BlueNRG-MS GAP central
device to discover the GAP peripheral services & characteristics, once the two devices are
connected.

The sensor profile demo services & characteristics with related handles are used as
reference services and characteristics on the following pseudocode examples. Further, it is
assumed that a GAP central device is connected to a GAP peripheral device running the
Sensor Demo profile application. The GAP central device use the service and discovery
procedures to find the GAP Peripheral sensor profile demo service and characteristics.

Table 45. BlueNRG sensor profile demo services & characteristics handles

Service Characteristic
Service/characteristic

handle
Characteristic
value handle

Characteristic
client

descriptor
configuration

handle

Characteristic
format handle

Acceleration
service

NA 0x0010 NA NA NA

Free Fall
characteristic

0x0011 0x0012 0x0013 NA

Acceleration
characteristic

0x0014 0x0015 0x0016 NA

Environmental
service

NA 0x0017 NA NA NA

Temperature
characteristic

0x0018 0x0019 NA 0x001A

Table 46. BlueNRG-MS sensor profile demo services & characteristics handles

Service Characteristic
Service /

characteristic

handle

Characteristic

value handle

Characteristic

client

descriptor

configuration

handle

Characteristic

format handle

Acceleration
service

NA 0x000C NA NA NA

Free Fall

characteristic
0x000D 0x000E 0x000F NA

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

70/97 DocID027104 Rev 3

Note: The different attribute value handles are due to the last attribute handle reserved
for the standard GAP service (0x000F on BlueNRG stack and 0x000B on
BlueNRG-MS stack).

For detailed information about the sensor profile demo, refer to the user manual UM1686
and the sensor demo source code available within the development kit software package
(see References). On the following example, the BlueNRG GAP peripheral sensor profile
demo environmental service is defining only the temperature characteristic (no expansion
board with pressure and humidity sensors is used).

Acceleration

characteristic
0x0010 0x0011 0x0012 NA

Environmenta
l service

NA 0x0013 NA NA NA

Temperature
Characteristic

0x0014 0xx0015 NA 0x0016

Table 46. BlueNRG-MS sensor profile demo services & characteristics handles (continued)

Service Characteristic
Service /

characteristic

handle

Characteristic

value handle

Characteristic

client

descriptor

configuration

handle

Characteristic

format handle

DocID027104 Rev 3 71/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3.6.1 Service discovery procedures and related GATT events

Following is a list of the service discovery APIs with related description.

The following pseudocode example illustrates the aci_gatt_disc_all_prim_services()
API:
/* GAP Central starts a discovery all services procedure: conn_handle is the

connection handle returned on HCI_Event_CB() event callback,

EVT_LE_CONN_COMPLETE event */

if (aci_gatt_disc_all_prim_services(conn_handle) != BLE_STATUS_SUCCESS)

{

 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

}

The responses of the procedure are given through the
EVT_BLUE_ATT_READ_BY_GROUP_RESP event raised on HCI_Event_CB() callback
(EVT_VENDOR as main event) . The end of the procedure is indicated by
EVT_BLUE_GATT_PROCEDURE_COMPLETE event on the HCI_Event_CB() callback
(EVT_VENDOR as main event):
void HCI_Event_CB(void *pckt)

{

 hci_uart_pckt *hci_pckt = pckt;

 hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

 if(hci_pckt->type != HCI_EVENT_PKT return;

 switch(event_pckt->evt){

 case EVT_VENDOR:

 {

Table 47. ACI: service discovery procedures APIs

Discovery Service API Description

aci_gatt_disc_all_prim_services()

This API starts the GATT client procedure to
discover all primary services on the GATT server.
It is used when a GATT client connects to a
device and it wants to find all the primary services
provided on the device to determine what it can
do.

aci_gatt_disc_ prim_services_by_service_uuid()

This API starts the GATT client procedure to
discover a primary service on the GATT server
by using its UUID. It is used when a GATT client
connects to a device and it wants to find a
specific service without the need to get any other
services.

aci_gatt_find_included_services()

This API starts the procedure to find all included
services. It is used when a GATT client wants to
discover secondary services once the primary
services have been discovered.

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

72/97 DocID027104 Rev 3

 /* Get the vendor event data */

 evt_blue_aci *blue_evt = (void*)event_pckt->data;

 switch(blue_evt->ecode){

 case EVT_BLUE_ATT_READ_BY_GROUP_RESP:

{

 evt_att_read_by_group_resp *pr = (void*)blue_evt->data;

 /* evt_att_read_by_group_resp parameters:

 pr->conn_handle: connection handle;

 pr->event_data_length: total length of the event data;

 pr->attribute_data_length: length of each specific data within the

 attribute_data_list[];

 pr->attribute_data_list[]: event data.

*/

 /* Add user code for decoding the pr->attribute_data_list[] and getting
the services handle, end group handle and service uuid */

..........

}/* EVT_BLUE_ATT_READ_BY_GROUP_RESP */

break;

case EVT_BLUE_GATT_PROCEDURE_COMPLETE:

{

 evt_gatt_procedure_complete *pr = (void*)blue_evt->data;

 /* evt_gatt_procedure_complete parameters:

 pr->conn_handle: connection handle;

 pr->attribute_data_length: length of the event data;

 pr->data[]: event data.

*/

 /* If needed, add user code for using the event data */

}/* EVT_BLUE_GATT_PROCEDURE_COMPLETE */

 break;

}/* switch(blue_evt->ecode) */

}/* EVT_VENDOR */

break;

 }/* switch(evt->subevent)*/

}/* end HCI_Event_CB() */

In the context of the Sensor Profile Demo, the GAP Central application should get three
EVT_BLUE_ATT_READ_BY_GROUP_RESP events, with following
evt_att_read_by_group_resp data:

First evt_att_read_by_group_resp event data

pr->conn_handle : 0x0801 (connection handle);

pr->event_data_length: 0x0D (length of the event data);

pr->handle_value_pair_length: 0x06 length of each discovered service

data: service handle, end group handle, service uuid);

DocID027104 Rev 3 73/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

pr-> attribute_data_list: 0x0C bytes as follows:

Second evt_att_read_by_group_resp event data:
pr->conn_handle : 0x0801 (connection handle);

pr->event_data_length: 0x15 (length of the event data);

pr->attribute_data_length: 0x14 length of each discovered service

data: service handle, end group handle, service uuid);

pr-> attribute_data_list content: 0x14 bytes as follows

Third evt_att_read_by_group_resp event data:
pr->conn_handle : 0x0801 (connection handle);

pr->event_data_length: 0x15 (length of the event data);

pr->attribute_data_length: 0x14 length of each discovered service

data: service handle, end group handle, service uuid);

pr-> attribute_data_list: 0x14 bytes as follows

Table 48. First evt_att_read_by_group_resp event data

Service Handle End Group Handle Service UUID Note

0x0001 0x0004 0x1801

Attribute profile service

(GATT_Init() adds it).

Standard 16 bits service
UUID.

0x0005
0x000F (BlueNRG),

0x000B (BlueNRG-MS)
0x1800

GAP profile service

(GAP_Init() adds it).

Standard 16 bits service
UUID.

Table 49. Second evt_att_read_by_group_resp event data

Service Handle
End Group

Handle
Service UUID Note

0x0010
(BlueNRG),

0x000C
(BlueNRG-MS)

0x0016
(BlueNRG),

0x0012
(BlueNRG-MS)

0x02366E80CF3A11E19AB40002A5D5
C51B

Acceleration
service

128 bits service
proprietary UUID

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

74/97 DocID027104 Rev 3

In the context of the Sensor Profile Demo, when the discovery all primary service procedure
completes, the EVT_BLUE_GATT_PROCEDURE_COMPLETE is generated on GAP Central
application, with following evt_gatt_procedure_complete data:

pr->conn_handle : 0x0801 (connection handle);

pr-> data_length: 0x01 (length of the event data);

pr->data[]: 0x00 (event data).

Table 50. Third evt_att_read_by_group_resp event data

Service handle
End group

handle
Service UUID Note

0x0017
(BlueNRG),

0x0013
(BlueNRG-MS)

0x001A
(BlueNRG),

0x0016
(BlueNRG-MS)

0x42821A40E47711E282D00002A5D5
C51B

Environmental
service

128bits service
proprietary UUID

DocID027104 Rev 3 75/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

3.6.2 Characteristics discovery procedures and related GATT events

Following is a list of the characteristic discovery APIs with associated description.

In the context of the BlueNRG sensor profile demo, follow a simple pseudocode illustrating
how a GAP Central application can discover all the characteristics of the Acceleration
service (refer to Section Table 49.: Second evt_att_read_by_group_resp event data):

uint16_t service_handle;

uint16_t end_group_handle;

#ifdef BLUENRG_MS

service_handle = 0x000C;

end_group_handle = 0x0012;

#else /*

service_handle_value = 0x0010;

charac_handle_value = 0x0016;

#endif

/* BlueNRG GAP Central starts a discovery all the characteristics of a
service procedure: conn_handle is the connection handle returned on
HCI_Event_CB() event callback, EVT_LE_CONN_COMPLETE event */

if (aci_gatt_disc_all_charac_of_serv(conn_handle,

service_handle,/* Service handle */

end_group_handle/* End group handle */

);) != BLE_STATUS_SUCCESS)

{

 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

}

The responses of the procedure are given through the EVT_BLUE_ATT_READ_BY_TYPE_RESP
event raised on HCI_Event_CB() callback (EVT_VENDOR as main event) . The end of the
procedure is indicated by EVT_BLUE_GATT_PROCEDURE_COMPLETE event on the
HCI_Event_CB() callback (EVT_VENDOR as main event):
void HCI_Event_CB(void *pckt)

Table 51. BlueNRG ACI: characteristics discovery procedures APIs

Discovery service API Description

aci_gatt_disc_all_charac_of_serv()
This API starts the GATT procedure to discover
all the characteristics of a given service.

aci_gatt_discovery_characteristic_by_uuid()
This API starts the GATT the procedure to
discover all the characteristics specified by a
UUID.

aci_gatt_disc_all_charac_descriptors()
This API starts the procedure to discover all
characteristic descriptors on the GATT server.

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

76/97 DocID027104 Rev 3

{

 hci_uart_pckt *hci_pckt = pckt;

 hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

 if(hci_pckt->type != HCI_EVENT_PKT return;

 switch(event_pckt->evt){

 case EVT_VENDOR:

 {

 /* Get the vendor event data */

 evt_blue_aci *blue_evt = (void*)event_pckt->data;

 switch(blue_evt->ecode){

 case EVT_BLUE_ATT_READ_BY_TYPE_RESP:

{

 evt_att_read_by_type_resp *pr = (void*)blue_evt->data;

 /* evt_att_read_by_type_resp parameters:

 pr->conn_handle: connection handle;

 pr->event_data_length: total length of the event data;

 pr->handle_value_pair_length: length of each specific data

within the handle_value_pair[];

 pr->handle_value_pair[]: event data.

 */

 /* Add user code for decoding the pr->handle_value_pair[] and get

the characteristic handle, properties, characteristic value handle,

characteristic UUID */

 ………

 }/* EVT_BLUE_ATT_READ_BY_TYPE_RESP */

 break;

 case EVT_BLUE_GATT_PROCEDURE_COMPLETE:

{

 evt_gatt_procedure_complete *pr = (void*)blue_evt->data;

 /* evt_gatt_procedure_complete parameters:

 pr->conn_handle: connection handle;

 pr->data_length: length of the event data;

DocID027104 Rev 3 77/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

 pr->data[]: event data.

 */

 /* If needed, add user code for using the event data */

 ………

 }/* EVT_BLUE_GATT_PROCEDURE_COMPLETE */

 break;

 }/* switch(blue_evt->ecode) */

 }/* EVT_VENDOR */

 break;

 }/* switch(evt->subevent)*/

}/* end HCI_Event_CB() */

In the context of the BlueNRG Senor Profile Demo, the GAP Central application should get
two EVT_BLUE_ATT_READ_BY_TYPE_RESP events with following
evt_att_read_by_type_resp data:

First evt_att_read_by_type_resp event data
pr->conn_handle : 0x0801 (connection handle);

pr->event_data_length: 0x16 (length of the event data);

pr->handle_value_pair_length: 0x15 length of each discovered

characteristic data: characteristic handle, properties,

characteristic value handle, characteristic UUID;

pr->handle_value_pair: 0x15 bytes as follows:

Second evt_att_read_by_type_resp event data

pr->conn_handle : 0x0801 (connection handle);

pr->event_data_length: 0x16 (length of the event data);

Table 52. First evt_att_read_by_type_resp event data

Characteristic
handle

Characteristic
properties

Characteristic
value handle

Characteristic UUID Note

0x0011
(BlueNRG),

0x000D
(BlueNRG-MS)

0x10 (notify)

0x0012
(BlueNRG),

0x000E
(BlueNRG-MS)

0xE23E78A0CF4A11E18FFC0002A5D5
C51B

Free Fall
characteristic

128 bits
characteristic
proprietary
UUID

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

78/97 DocID027104 Rev 3

pr->handle_value_pair_length: 0x15 length of each discovered
characteristic data: characteristic handle, properties, characteristic
value handle, characteristic UUID;

pr->handle_value_pair: 0x15 bytes as follows:

In the context of the Sensor Profile Demo, when the discovery all characteristics of a
service procedure completes, the EVT_BLUE_GATT_PROCEDURE_COMPLETE is generated on
GAP Central application, with following evt_gatt_procedure_complete data:

pr->conn_handle : 0x0801 (connection handle);

pr-> data_length: 0x01 (length of the event data);

pr->data[]: 0x00 (event data).

Similar steps can be followed in order to discover all the characteristics of the environment
service (refer to Table 45: BlueNRG sensor profile demo services & characteristics handles)
and Table 46: BlueNRG-MS sensor profile demo services & characteristics handles).

3.7 Characteristic notification/indications, write, read

This section describes the main functions for getting access to BLE device characteristics.

Table 53. Second evt_att_read_by_type_resp event data

Characteristic
handle

Characteristic
properties

Characteristic
value handle

Characteristic UUID Note

0x0014
(BlueNRG),
0x0010
(BlueNRG-MS)

0x12 (notify and
read)

0x0015
(BlueNRG),
0x0011
(BlueNRG-MS)

0x340A1B80CF4B11E1AC360002A5D
5C51B

Acceleration
characteristic

128bits
characteristic
proprietary
UUID

Table 54. Characteristics update, read, write APIs

Discovery service API Description Where

aci_gatt_update_char_value()
If notifications (or indications) are enabled
on the characteristic, this API sends a
notification (or indication) to the client.

GATT server

aci_gatt_read_charac_val()
It starts the procedure to read the attribute
value. GATT client

aci_gatt_write_charac_value()

It starts the procedure to write the attribute
value (when the procedure is completed, a
EVT_BLUE_GATT_PROCEDURE_COMP
LETE event is generated).

GATT client

aci_gatt_write_without_response()
It starts the procedure to write a
characteristic value without waiting for any
response from the server.

GATT client

DocID027104 Rev 3 79/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

In the context of the sensor profile demo, follow a simple pseudo code the GAP Central
application should use in order to configure the free fall and the acceleration characteristics
client descriptors configuration for notification:

tBleStatus ret;

uint16_t handle_value;

#ifdef BLUENRG_MS

handle_value = 0x000F;

#else /*

handle_value = 0x0013;

#endif

/* Enable the free fall characteristic client descriptor configuration for
ret = aci_gatt_write_charac_descriptor(conn_handle,

handle_value /* handle for free fall

client descriptor

configuration */

0x02, /* attribute value

length */

0x0001, /* attribute value:

1 for notification */

);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

#ifdef BLUENRG_MS

handle_value = 0x0012;

#else /*

handle_value = 0x0016;

aci_gatt_write_charac_descriptor()
It start the procedure to write a
characteristic descriptor. GATT client

aci_gatt_confirm_indication()

It confirms an indication. This command
has to be sent when the application
receives the event
EVT_BLUE_GATT_INDICATION on the
reception of a characteristic indication.

GATT client

Table 54. Characteristics update, read, write APIs

Discovery service API Description Where

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

80/97 DocID027104 Rev 3

#endif

/* Enable the acceleration characteristic client descriptor configuration

for notification */

ret = aci_gatt_write_charac_descriptor (conn_handle,

handle_value /* handle for acceleration

 client descriptor

 configuration */

0x02, /* attribute value

 length */

0x0001, /* attribute value:

 1 for notification */

);if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

Once the characteristics notification have been enabled from the GAP Central, the GAP
peripheral can notify a new value for the free fall and acceleration characteristics as follows:

tBleStatus ret;

uint8_t val = 0x01;

uint16_t service_handle_value;

uint16_t charac_handle_value;

#ifdef BLUENRG_MS

service_handle_value = 0x000C;

charac_handle_value = 0x000D;

#else /*

service_handle_value = 0x0010;

charac_handle_value = 0x0011;

#endif

/* GAP peripheral notifies free fall characteristic to GAP central*/

ret = aci_gatt_update_char_value (service_handle_value , /* acceleration
service handle */

charac_handle_value, /* free fall characteristic

handle */

0, /* characteristic

 value offset */

0x01,/* characteristic value

 length*/

 &val, /* characteristic value */);

ret = (accServHandle, freeFallCharHandle, 0, 1, &val);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

tBleStatus ret;

DocID027104 Rev 3 81/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

uint8_t buff[6];

#ifdef BLUENRG_MS

charac_handle_value = 0x0010;

#else /*

charac_handle_value = 0x0014;

#endif

/* Set the mems acceleration values on three axis x,y,z on buff array */

....

/* GAP peripheral notifies acceleration characteristic to GAP central*/

ret = aci_gatt_update_char_value (service_handle_value , /* acceleration

service handle */

charac_handle_value, /* acceleration

characteristic

handle */

0 , /* characteristic

value offset */

0x06, /* characteristic

value length */

buff, /* characteristic

 value */

);

ret = (accServHandle, freeFallCharHandle, 0, 1, &val);

if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n")}

On GAP Central, HCI_Event_CB() callback (EVT_VENDOR as main event), the
EVT_BLUE_GATT_NOTIFICATION is raised on reception of the characteristic notification
(acceleration or free fall) from the GAP Peripheral device. Follow a pseudo code of the
HCI_Event_CB() callback:

void HCI_Event_CB(void *pckt)

{

 hci_uart_pckt *hci_pckt = pckt;

 hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

 if(hci_pckt->type != HCI_EVENT_PKT return;

 switch(event_pckt->evt){

 case EVT_VENDOR:

 {

 /* Get the vendor event data */

 evt_blue_aci *blue_evt = (void*)event_pckt->data;

 switch(blue_evt->ecode)

 {

 case EVT_BLUE_GATT_NOTIFICATION:

 {

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

82/97 DocID027104 Rev 3

evt_gatt_attr_notification *evt = (evt_gatt_attr_notification*)blue_evt-
>data;

 /*

evt_gatt_attr_notification data:

evt->conn_handle: connection handle;

evt->event_data_length: length of attribute value + handle (2 bytes);

evt->attr_handle: handle of the notified characteristic;

evt->attr_value[]: characteristic value.

 Add user code for handling the received notification based on the

 application scenario.

 */

}

break;

}/* switch(blue_evt->ecode)*/

}/* switch(evt->subevent)*/

}/* end HCI_Event_CB() */

3.8 Basic/typical error conditions description

On BlueNRG, BlueNRG-MS ACI framework, the tBleStatus type is defined in order to
return the BlueNRG, BlueNRG-MS stack error conditions. The status and error codes are
defined within the header file “ble_status.h”.

When a stack API is called, it is recommended to get the API return status and to monitor it
in order to track potential error conditions.

BLE_STATUS_SUCCESS (0x00) is returned when the API is successfully executed. For a
detailed list of error conditions associated to each ACI API refer to the UM1755 and
UM1865 user manuals, on Section 5: References.

3.9 BlueNRG-MS simultaneously Master, Slave scenario

BlueNRG-MS device stack supports multiple roles simultaneously. This allows the same
device to act as Master on one or more connections (up to eight connections are supported
on Stack Mode 3), and to act as a Slave on another connection.

The following pseudo code describes how a BlueNRG-MS device can be initialized for
supporting Central and Peripheral roles simultaneously:
uint8_t role = GAP_PERIPHERAL_ROLE | GAP_CENTRAL_ROLE;

ret = aci_gap_init(role, 0, 0x07, &service_handle,

&dev_name_char_handle, &appearance_char_handle);

A simultaneous Master and Slave test scenario can be easily targeted as follows:

DocID027104 Rev 3 83/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

Figure 10. BlueNRG-MS simultaneous Master & Slave scenario

1. One BlueNRG-MS device (called Master&Slave) is configured as Central & Peripheral
by setting role as GAP_PERIPHERAL_ROLE | GAP_CENTRAL_ROLE on
GAP_Init() API. Further it is configured with stack mode 3 for being able to connect
to more than one Peripheral device. Let’s also assume that this device define a service
with a characteristic.

2. Two BlueNRG-MS devices (called Slave_A, Slave_B) are configured as Peripheral by
setting role as GAP_PERIPHERAL_ROLE on GAP_Init() API. Both Slave_A and
Slave_B define the same service and characteristic as Master&Slave device.

3. One BlueNRG-MS device (called Master) is configured as Central by setting role as
GAP_CENTRAL_ROLE on GAP_Init() API.

4. Both Slave_A and Slave_B devices enter in discovery mode as follows:

 ret =aci_gap_set_discoverable(Advertising_Type= 0x00,

 Advertising_Interval_Min=0x20,

 Advertising_Interval_Max=0x100,

 Local_Name_Length=0x05,

 Local_Name=[0x08,0x74,0x65,0x73,0x74],

 Slave_Conn_Interval_Min = 0x0006,

 Slave_Conn_Interval_Max = 0x0008)

5. Master&Slave device performs a discovery procedure in order to discover the
peripheral devices Slave_A and Slave_B:

ret = aci_gap_start_gen_disc_proc (LE_Scan_Interval=0x10,

 LE_Scan_Window=0x10)

Design an application using BlueNRG, BlueNRG-MS ACI APIs PM0237

84/97 DocID027104 Rev 3

The two devices are discovered thorugh the EVT_LE_ADVERTISING_REPORT events.

6. Once the two devices are discovered, Master&Slave device starts two connections
procedures (as Central) for connecting, respectively, to Slave_A and Slave_B devices:

/* Connect to Slave_A: Slave_A addreess type and address have been found
during the discovery procedure within the EVT_LE_ADVERTISING_REPORT event
*/

ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

LE_Scan_Window=0x0010,

Peer_Address_Type= ”Slave_A address type”,

 Peer_Address= ”Slave_A address”,

Conn_Interval_Min=0x6c,

Conn_Interval_Max=0x6c,

Conn_Latency=0x00,

Supervision_Timeout=0xc80,

Minimum_CE_Length=0x000c,

Maximum_CE_Length=0x000c)

/* Connect to Slave_B: Slave_B addreess type and address have been found
during the discovery procedure within the EVT_LE_ADVERTISING_REPORT event
*/

 ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

LE_Scan_Window=0x0010,

Peer_Address_Type= ”Slave_B address type”,

 Peer_Address= ”Slave_B address”,

Conn_Interval_Min=0x6c,

Conn_Interval_Max=0x6c,

Conn_Latency=0x00,

Supervision_Timeout=0xc80,

Minimum_CE_Length=0x000c,

Maximum_CE_Length=0x000c)

7. Once connected, Master&Slave device enables the characteristics notification, on
both of them, using the aci_gatt_write_charac_descriptor() API. Slave_A
and Slave_B devices start the characterisitic notification by using the
aci_gatt_upd_char_val() API.

8. At this stage, Master&Slave device enters in discovery mode (acting as Peripheral):

/* Put Master&Slave device in Discoverable Mode with Name = 'Test' =

 [0x08,0x74,0x65,0x73,0x74*/

ret = aci_gap_set_discoverable(Advertising_Type= 0x00,

Advertising_Interval_Min=0x20,

Advertising_Interval_Max=0x100,

Local_Name_Length=0x05,

Local_Name=[0x08,0x74,0x65,0x73,0x74],

Slave_Conn_Interval_Min = 0x0006,

DocID027104 Rev 3 85/97

PM0237 Design an application using BlueNRG, BlueNRG-MS ACI APIs

97

Slave_Conn_Interval_Max = 0x0008)

Since Master&Slave device is also acting as a Central device, it receives the
EVT_BLUE_GATT_NOTIFICATION event related to the characteristics values notified
from, respectively, Slave_A and Slave_B devices.

9. Once Master&Slave device enters in discovery mode, it also waits for connection
request coming from the other BlueNRG-MS device (called Master) configured as
GAP Central. Master device starts discovery procedure for discovering the
Master&Slave device:

ret = aci_gap_start_gen_disc_proc (LE_Scan_Interval=0x10,

 LE_Scan_Window=0x10)

Master&Slave device is discovered thorugh the EVT_LE_ADVERTISING_REPORT event.

10. Once the Master&Slave device is discovered, Master device starts a connection
procedure for connecting to it :

/* Master device connects to Master&Slave device: Master&Slave addreess
type and address have been found during the discovery procedure within the
EVT_LE_ADVERTISING_REPORT event */

ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

LE_Scan_Window=0x0010,

Peer_Address_Type= ”Master&Slave address
type”

 Peer_Address= ”Master&Slave address”

Conn_Interval_Min=0x6c,

Conn_Interval_Max=0x6c,

Conn_Latency=0x00,

Supervision_Timeout=0xc80,

Minimum_CE_Length=0x000c,

Maximum_CE_Length=0x000c)

11. Once connected, Master device enables the characteristic notification on
Master&Slave device using the aci_gatt_write_charac_descriptor() API.

12. At this stage, Master&Slave device receives the characteristics notifications from
both Slave_A, Slave_B devices , since it is a GAP Central and, as GAP Peripheral, it is
also able to notify these characteristics values to the Master device.

Note: A set of test scripts allowing to exercise the described BlueNRG-MS simultaneously Master,
Slave scenario are provided within the BlueNRG DK SW package (see Reference Section).
These scripts can be run using the BlueNRG GUI and they can be taken as reference for
implementing a firmware application using the BlueNRG-MS simultaneously master and
slave feature.

BlueNRG multiple connections timing strategy PM0237

86/97 DocID027104 Rev 3

4 BlueNRG multiple connections timing strategy

This section provides an overview of the connection timing management strategy of
BlueNRG when multiple Master and Slave connections are active.

4.1 Basic concepts about Bluetooth Low Energy timing

This section describes the basic concepts related to the Bluetooth Low Energy timing
management related to the advertising, scanning and connections operations.

4.1.1 Advertising timing

The timing of the advertising state is characterized by 3 timing parameters, linked by this
formula:

T_advEvent = advInterval + advDelay

where:

• T_advEvent: time between the start of two consecutive advertising events;

if the advertising event type is either a scannable undirected event type or a non-
connectable undirected type, the advInterval shall not be less than 100 ms;

if the advertising event type is a connectable undirected event type or connectable
directed event type used in a low duty cycle mode, the advInterval can be 20 ms or
greater.

• advDelay: pseudo-random value with a range of 0 ms to 10 ms generated by the Link
Layer for each advertising event.

Figure 11. Advertising timings

DocID027104 Rev 3 87/97

PM0237 BlueNRG multiple connections timing strategy

97

4.1.2 Scanning timing

The timing of the scanning state is characterized by 2 timing parameters:

• scanInterval: defined as the interval between the start of two consecutive scan
windows;

• scanWindow: time during which Link Layer listens on an advertising channel index.

The scanWindow and scanInterval parameters shall be less than or equal to 10.24 s.

The scanWindow shall be less than or equal to the scanInterval.

4.1.3 Connection Timing

The timing of connection events is determined by 2 parameters:

• connection event interval (connInterval): time interval between the start of two
consecutive connection events, which shall never overlap; the point in time where a
connection event starts is named an anchor point.

At the anchor point, a master shall start to transmit a Data Channel PDU to the slave, which
in turn listens to the packet sent by its master at the anchor point.

The master shall ensure that a connection event closes at least T_IFS=150 µs (Inter Frame
Spacing time, i.e. time interval between consecutive packets on same channel index) before
the anchor point of next connection event.

The connInterval shall be a multiple of 1.25 ms in the range of 7.5 ms to 4.0 s.

• slave latency (connSlaveLatency): allows a slave to use a reduced number of
connection events. This parameter defines the number of consecutive connection
events that the slave device is not required to listen for the master.

When the Host wants to create a connection, it provides the Controller with the maximum
and minimum values of the connection interval (Conn_Interval_Min, Conn_Interval_Max)
and connection length (Minimum_CE_Length, Maximum_CE_Length) thus giving the
Controller some flexibility in choosing the actual parameters in order to fulfill additional
timing constraints e.g. in the case of multiple connections.

4.2 BlueNRG timing and slot allocation concepts

The BlueNRG adopts a time slotting mechanism in order to be able to allocate simultaneous
Master and Slave connections. The basic parameters controlling the slotting mechanism
are:

Table 55. Timings parameters of the slotting algorithm

Parameter Description

Anchor Period
Recurring time interval inside which up to 8 connection slots can be allocated.

Among these 8 slots, only 1 at a time may be a scanning or advertising slot (they
are mutually exclusive)

Slot Duration
Time interval inside which a full event (i.e. Advertising or Scanning, and
Connection) takes place; the slot duration is the time duration assigned to the
connection slot and is linked to the maximum duration of a connection event.

BlueNRG multiple connections timing strategy PM0237

88/97 DocID027104 Rev 3

Such timing allocation concept allows for a clean time handling of multiple connections but
at the same time imposes some constraints to the actual connection parameters that the
controller can accept. An example of the time base parameters and connection slots
allocation is shown in Figure 12.

Figure 12. Example of allocation of three connection slots

Slot #1 has offset 0 with respect to the anchor period, Slot #2 has slot latency = 2, all slots
are spaced by 1.25 ms guard time.

4.2.1 Setting the timing for the first Master connection

The time base mechanism above described, is actually started when the first Master
connection is created. The parameters of such first connection determine the initial value for
the anchor period and influence the timing settings that can be accepted for any further
Master connection simultaneous with the first one.

In particular:

• The initial anchor period is chosen equal to the mean value between the maximum and
minimum connection period requested by the Host.

• The first connection slot is placed at the beginning of the anchor period.

• The duration of the first connection slot is set equal to the maximum of the requested
connection length.

Clearly, the relative duration of such first connection slot compared to the anchor period
limits the possibility to allocate further connection slots for further Master connections.

Slot Offset
Time value corresponding to the delay between the beginning of an anchor period
and the beginning of the Connection Slot.

Slot Latency

Number representing the actual utilization rate of a certain connection slot in
successive anchor periods.

(For instance, a slot latency equal to ‘1’ means that a certain connection slot is
actually used in each anchor period; a slot latency equal to n means that a certain
connection slot is actually used only once every n anchor periods)

Table 55. Timings parameters of the slotting algorithm

Parameter Description

DocID027104 Rev 3 89/97

PM0237 BlueNRG multiple connections timing strategy

97

4.2.2 Setting the timing for further Master connections

Once that the time base has been configured and started as described above, then the slot
allocation algorithm will try, within certain limits, to dynamically reconfigure the time base to
allocate further host requests.

In particular, the following three cases are considered:

1. The current anchor period falls within the Conn_Interval_Min and Conn_Interval_Max
range specified for the new connection. In this case no change is applied to the time
base and the connection interval for the new connection is set equal to the current
anchor period.

2. The current anchor period in smaller than the Conn_Interval_Min required for the new
connection. In this case the algorithm searches for an integer number m such that:

If such value is found then the current anchor period is maintained and the connection
interval for the new connection is set equal to Anchor_Period • m with slot latency equal
to m.

3. The current anchor period in larger than the Conn_Interval_Max required for the new
connection. In this case the algorithm searches for an integer number k such that:

If such value is found then the current anchor period is reduced to:

The connection interval for the new connection is set equal to:

and the slot latency for the existing connections is multiplied by a factor k. Note that in
this case the following conditions must also be satisfied:

• Anchor_Period/k must be a multiple of 1.25 ms

• Anchor_Period/k must be large enough to contain all the connection slots already
allocated to the previous connections

Once that a suitable anchor period has been found according to the criteria listed above,
then a time interval for the actual connection slot is allocated therein. In general, if enough
space can be found in the anchor period, the algorithm will allocate the maximum requested
connection event length otherwise will reduce it to the actual free space.

When several successive connections are created, the relative connection slots are
normally placed in sequence with a small guard interval between (1.5 ms); when a
connection is closed this generally results in an unused gap between two connection slots. If
a new connection is created afterwards, then the algorithm will first try to fit the new
connection slot inside one of the existing gaps; if no gap is wide enough, then the
connection slot will just be placed after the last one.

Figure 13 shows an example of how the time base parameters are managed when
successive connections are created.

Conn_Interval_Min Anchor_Period≤ m Conn_Interval_Max≤⋅

Conn_Interval_Min
Anchor_Period

k
--- Conn_Interval_Max≤ ≤

Anchor_Period
k

Anchor_Period
k

BlueNRG multiple connections timing strategy PM0237

90/97 DocID027104 Rev 3

Figure 13. Example of timing allocation for three successive connections

4.2.3 Timing for Advertising Events

The periodicity of the advertising events, controlled by advInterval, is computed based on
the following parameters specified by the Slave through the Host in the
HCI_LE_Set_Advertising_parameters command:

• Advertising_Interval_Min, Advertising_Interval_Max;

• Advertising_Type;

if Advertising_Type is set to High Duty Cycle Directed Advertising, then Advertising Interval
is set to 3.75ms regardless of the values of Advertising_Interval_Min and
Advertising_Interval_Max; in this case, a Timeout is also set to 1.28 s, that is the maximum
duration of the Advertising event for this case;

In all other cases the Advertising Interval is chosen equal to the mean value between
(Advertising_Interval_Min + 5 ms) and (Advertising_Interval_Max + 5ms). The Advertising
hasn’t a maximum duration as in the previous case, but it’s stopped only if a Connection is
established, or upon explicit request by Host.

The length of each advertising event is set by default by the SW to be equal to 14.6ms (i.e.
the maximum allowed advertising event length) and it cannot be reduced.

Advertising slots are allocated within the same time base of the master slots (i.e. scanning
and connection slots). For this reason, the Advertising Enable command to be accepted by
the SW when at least one master slot is active, the Advertising Interval has to be an integer
multiple of the actual Anchor Period.

B) Second connection
ConnIntMin = 250 ms Anchor Period = 200 ms, Connection Interval = 400 ms
ConnIntMax = 500 ms Slot #2 offset = 21.5 ms
CE_len_min = 10 ms Slot #2 len = 50 ms
CE_len_max = 50 ms Slot #2 latency = 2

S
2

S
1

S
2

Anchor Period

t

S
1

S
1

S
1

Anchor Period

t

S
1

S
1

S
1

S
2

Anchor Period

S
3

t

S
1

S
3

S
1

S
2

S
3

A) First connection
ConnIntMin = 100 ms Anchor Period = 200 ms, Connection Interval #1 = 200 ms
ConnIntMax = 300 ms Slot #1 offset = 0 ms
CE_len_min = 10 ms Slot #1 len = 20 ms
CE_len_max = 20 ms Slot #1 latency = 1

C) Third connection
ConnIntMin = 50 ms Anchor Period = 100 ms, Connection Interval = 100 ms
ConnIntMax = 150 ms Slot #3 offset = 73 ms
CE_len_min = 10 ms Slot #3 len = 25.5 ms
CE_len_max = 100 ms Slot #1 latency = 2, Slot #2 latency = 4, Slot #3 latency = 1

S
3

S
3

S
3

DocID027104 Rev 3 91/97

PM0237 BlueNRG multiple connections timing strategy

97

4.2.4 Timing for scanning

Scanning timing is requested by the Master through the following parameters specified by
the Host in the HCI_LE_Set_Scan_parameters command:

– LE_Scan_Interval: used to compute the periodicity of the scan slots.

– LE_Scan_Window: used to compute the length of the scan slots to be allocated
into the master time base.

Scanning slots are allocated within the same time base of the other active master slots (i.e.
connection slots) and of the advertising slot (if there is one active).

In order the Scanning Enable command to be accepted by the SW, the LE_Scan_Interval
has to be an integer multiple of the actual anchor period.

Every time the LE_Scan_Interval is greater than the actual anchor period, the SW
automatically tries to subsample the LE_Scan_Interval and to reduce the allocated scan slot
length (up to ¼ of the LE_Scan_Window) in order to keep the same duty cycle required by
the Host, given that Scanning parameters are just recommendations as stated by BT official
specifications (v.4.1, Vol.2, Part E, §7.8.10).

4.2.5 Slave timing

The Slave timing is defined by the Master when the connection is created so the connection
slots for Slave links are managed asynchronously with respect to the time base mechanism
described above. The Slave assumes that the Master may use a connection event length as
long as the connection interval.

The scheduling algorithm adopts a round-robin arbitration strategy any time a collision
condition is predicted between a Slave and a Master slot. In addition to this, the scheduler
may also impose a dynamic limit to the Slave connection slot duration to preserve both
Master and Slave connections.

In particular:

• If the end of a Master connection slot overlaps the beginning of a Slave connection slot
then Master and Slave connections are alternatively preserved/canceled

• If the end of a Slave connection slot overlaps the beginning of a Master connection slot
then the Slave Connection slot length is hard limited to avoid such overlap. If the
resulting time interval is too small to allow for at least a two packets exchange then
round robin arbitration is used.

4.3 BlueNRG multiple Master & Slave connections guidelines

The following guidelines should be followed for properly handling multiple master and slave
connections using BlueNRG & BlueNRG-MS devices:

1. Avoid over-allocating connection event length: choose Minimum_CE_Length and
Maximum_CE_Length as small as possible to strictly satisfy the application needs.
Doing so will help the allocation algorithm to allocate several connections within the

BlueNRG multiple connections timing strategy PM0237

92/97 DocID027104 Rev 3

anchor period and to reduce the anchor period, if needed, to allocate connections with
a small connection interval.

2. For the first Master connection:

a) If possible, create the connection with the shortest connection interval as the first
one. Doing so will help allocating further connections with connection interval
multiple of the initial anchor period.

b) If possible, choose Conn_Interval_Min = Conn_Interval_Max as multiple of 10
ms. Doing so will help allocating further connections with connection interval
submultiple by a factor 2, 4 and 8 (or more) of the initial anchor period being still a
multiple of 1.25 ms.

3. For additional Master connections:

a) Choose ScanInterval equal to the connection interval of one of the existing Master
connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

c) Choose Conn_Interval_Min and Conn_Interval_Max such that the interval
contains either:

– a multiple of the shortest allocated connection interval

– a submultiple of the shortest allocated connection interval being also a multiple of
1,25 ms

d) Choose Maximum_CE_Length = Minimum_CE_Length such that the sum of the
allocated master slots (including Advertising, if active) plus Minimum_CE_Length
is lower than the shortest allocated connection interval

4. Every time you start Advertising:

a) If Direct Advertising, choose Advertising_Interval_Min = Advertising_Interval_Max
= integer multiple of the shortest allocated connection interval

b) If not Direct Advertising, choose Advertising_Interval_Min =
Advertising_Interval_Max such that (Advertising_Interval_Min + 5ms) is an integer
multiple of the shortest allocated connection interval

5. Every time you start Scanning:

a) Choose ScanInterval equal to the connection interval of one of the existing Master
connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

6. Keep in mind that the process of creating multiple connections, then closing some of
them and creating new ones again, over time, tends to decrease the overall efficiency
of the slot allocation algorithm. In case of difficulties in allocating new connections, the
time base can be reset to the original state closing all existing connections.

DocID027104 Rev 3 93/97

PM0237 References

97

5 References

Table 56. References table

Name Title

AN4494 Bringing up the BlueNRG application note

BlueNRG datasheet Bluetooth® low energy wireless network processor

BlueNRG-MS datasheet Bluetooth® low energy wireless network processor

BlueNRG DK SW package BlueNRG SW package for BlueNRG and BlueNRG-MS kits

Bluetooth specification V4.0 Specification of the Bluetooth system v4.0

Bluetooth specification V4.1 Specification of the Bluetooth system v4.1

UM1755
BlueNRG Bluetooth LE stack application command interface
(ACI) user manual

UM1865
BlueNRG-MS Bluetooth LE stack application command

interface (ACI) user manual

UM1686 BlueNRG development kits user manual

UM1870 BlueNRG-MS development kits user manual

List of acronyms and abbreviations PM0237

94/97 DocID027104 Rev 3

Appendix A List of acronyms and abbreviations

This appendix lists the standard acronyms and abbreviations used throughout the
document.

Table 57. List of acronyms

Term Meaning

ACI Application command interface

ATT Attribute protocol

BLE Bluetooth low energy

BR Basic rate

CRC Cyclic redundancy check

CSRK Connection signature resolving Key

EDR Enhanced data rate

EXTI External interrupt

GAP Generic access profile

GATT Generic attribute profile

GFSK Gaussian frequency Shift keying

HCI Host controller interface

IFR Information register

IRK Identity resolving key

ISM Industrial, scientific and medical

LE Low energy

L2CAP Logical link control adaptation layer protocol

LTK Long-term key

MCU Microcontroller unit

MITM Man-in-the-middle

NA Not applicable

NESN Next sequence number

OOB Out-of-band

PDU Protocol data unit

RF Radio frequency

RSSI Received signal strength indicator

SIG Special interest group

SM Security manager

SN Sequence number

USB Universal serial bus

DocID027104 Rev 3 95/97

PM0237 List of acronyms and abbreviations

97

UUID Universally unique identifier

WPAN Wireless personal area networks

Table 57. List of acronyms (continued)

Term Meaning

Revision history PM0237

96/97 DocID027104 Rev 3

6 Revision history

Table 58. Document revision history

Date Revision Changes

23-Jan-2015 1 Initial release.

21-Apr-2015 2
The document has been adapted to refer to both BlueNRG and
BlueNRG-MS devices.

02-Sep-2015 3
Added reference to STM32L Cube library framework on
Chapter 2: BlueNRG, BlueNRG-MS stacks architecture and ACI
Added: Chapter 4: BlueNRG multiple connections timing strategy.

DocID027104 Rev 3 97/97

PM0237

97

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 Bluetooth low energy technology
	Figure 1. Bluetooth low energy technology enabled coin cell battery devices
	1.1 BLE stack architecture
	Figure 2. Bluetooth low energy stack architecture

	1.2 Physical layer
	Table 1. BLE RF channel types and frequencies

	1.3 Link Layer (LL)
	Figure 3. Link Layer state machine
	1.3.1 BLE packets
	Figure 4. Packet structure
	Table 2. Advertising data header file content
	Table 3. Advertising packet types
	Table 4. Advertising event type and allowable responses
	Table 5. Data packet header content
	Table 6. Packet length field and valid values

	1.3.2 Advertising state
	Figure 5. Advertising packet with AD type flags

	1.3.3 Scanning state
	1.3.4 Connection state
	Table 7. Connection request timings intervals

	1.4 Host controller interface (HCI)
	1.5 Logical link control and adaptation layer protocol (L2CAP)
	1.6 Attribute Protocol (ATT)
	Table 8. Attribute example
	Table 9. Attributes protocol messages

	1.7 Security Manager (SM)
	Table 10. Combination of Input/Output capabilities on a BLE device
	Table 11. Methods used for calculating the Temporary Key (TK)

	1.8 Generic attribute profile (GATT)
	1.8.1 Characteristic attribute type
	Figure 6. Example of characteristic definition
	Table 12. Characteristic declaration
	Table 13. Characteristic value

	1.8.2 Characteristic descriptors type
	1.8.3 Service attribute type
	Table 14. Service declaration
	Table 15. Include declaration

	1.8.4 GATT procedures
	Table 16. Discovery procedures and related response events
	Table 17. Client-initiated procedures and related response events
	Table 18. Server-initiated procedures and related response events

	1.9 Generic access profile (GAP)
	Table 19. GAP roles
	Table 20. GAP broadcaster mode
	Table 21. GAP discoverable modes
	Table 22. GAP connectable modes
	Table 23. GAP bondable modes
	Table 24. GAP observer procedure
	Table 25. GAP discovery procedures
	Table 26. GAP connection procedures
	Table 27. GAP bonding procedures

	1.10 BLE profiles and applications
	Figure 7. Client and server profiles
	1.10.1 Proximity profile example

	2 BlueNRG, BlueNRG-MS stacks architecture and ACI
	Figure 8. BlueNRG, BlueNRG-MS stacks architecture and interface to the external host
	2.1 ACI interface
	Table 28. ACI Interface

	2.2 ACI Interface resources
	Table 29. ACI Interface resources files

	2.3 Other platforms resources files
	Table 30. SW framework platforms drivers
	2.3.1 Platforms configuration

	2.4 How to port the ACI SPI interface framework to a selected microcontroller

	3 Design an application using BlueNRG, BlueNRG-MS ACI APIs
	Table 31. User application defines for BLE devices role
	3.1 Initialization phase and main application loop
	Table 32. BlueNRG GATT, GAP default services
	Table 33. BlueNRG GATT, GAP default characteristics
	Table 34. BlueNRG-MS GATT, GAP default services
	Table 35. BlueNRG-MS GATT, GAP default characteristics
	Table 36. GAP_Init() role parameter values
	3.1.1 BLE addresses
	Figure 9. MAC address storage

	3.1.2 Set tx power level

	3.2 BlueNRG, BlueNRG-MS events and events Callback
	Table 37. ACI: main events, sub-events

	3.3 Services and characteristic configuration
	3.4 Create a connection: discoverable and connectable APIs
	Table 38. ACI: GAP modes APIs
	Table 39. ACI: discovery procedures APIs
	Table 40. ACI: connection procedures APIs
	3.4.1 Set discoverable mode & use direct connection establishment procedure
	3.4.2 Set discoverable mode & use general discovery procedure (active scan)
	Table 41. ADV_IND event
	Table 42. ADV_IND advertising data
	Table 43. SCAN_RSP event
	Table 44. Scan response data

	3.5 Security (pairing and bonding)
	3.6 Service and characteristic discovery
	Table 45. BlueNRG sensor profile demo services & characteristics handles
	Table 46. BlueNRG-MS sensor profile demo services & characteristics handles
	3.6.1 Service discovery procedures and related GATT events
	Table 47. ACI: service discovery procedures APIs
	Table 48. First evt_att_read_by_group_resp event data
	Table 49. Second evt_att_read_by_group_resp event data
	Table 50. Third evt_att_read_by_group_resp event data

	3.6.2 Characteristics discovery procedures and related GATT events
	Table 51. BlueNRG ACI: characteristics discovery procedures APIs
	Table 52. First evt_att_read_by_type_resp event data
	Table 53. Second evt_att_read_by_type_resp event data

	3.7 Characteristic notification/indications, write, read
	Table 54. Characteristics update, read, write APIs

	3.8 Basic/typical error conditions description
	3.9 BlueNRG-MS simultaneously Master, Slave scenario
	Figure 10. BlueNRG-MS simultaneous Master & Slave scenario

	4 BlueNRG multiple connections timing strategy
	4.1 Basic concepts about Bluetooth Low Energy timing
	4.1.1 Advertising timing
	Figure 11. Advertising timings

	4.1.2 Scanning timing
	4.1.3 Connection Timing

	4.2 BlueNRG timing and slot allocation concepts
	Table 55. Timings parameters of the slotting algorithm
	Figure 12. Example of allocation of three connection slots
	4.2.1 Setting the timing for the first Master connection
	4.2.2 Setting the timing for further Master connections
	Figure 13. Example of timing allocation for three successive connections

	4.2.3 Timing for Advertising Events
	4.2.4 Timing for scanning
	4.2.5 Slave timing

	4.3 BlueNRG multiple Master & Slave connections guidelines

	5 References
	Table 56. References table

	Appendix A List of acronyms and abbreviations
	Table 57. List of acronyms

	6 Revision history
	Table 58. Document revision history

