
eProsima RPC over DDS

User Manual
Version 1.0.2

eProsima © 2014

1

eProsima
Proyectos y Sistemas de Mantenimiento SL
Ronda del poniente 16 – Bajo K
28760 Tres Cantos Madrid
Tel: + 34 91 804 34 48
info@eProsima.com – www.eProsima.com

Trademarks

eProsima is a trademark of Proyectos y Sistemas de Mantenimiento SL. All other
trademarks used in this document are the property of their respective owners.

License

eProsima RPC over DDS is licensed under the terms described in the RPCDDS_LICENSE
file included in this distribution.

Technical Support

 Phone: +34 91 804 34 48

 Email: support@eProsima.com

2

mailto:info@eProsima.com
mailto:support@eProsima.com
http://www.eProsima.com/

Table of Contents
1 Introduction .. 5

1.1 Client/Server communications over DDS ... 5

1.2 A quick example ... 6

1.3 Main Features .. 7

2 Building an application ... 8

2.1 Defining a set of remote procedures .. 9

2.1.1 IDL Syntax and mapping to C++ ... 10

2.1.2 Example ... 16

2.2 Generating specific remote procedure call support code 16

2.2.1 RPCDDSGEN Command Syntax: .. 16

2.2.2 Server side ... 17

2.2.3 Client side .. 17

2.3 Server implementation .. 17

2.3.1 API ... 18

2.3.2 Exceptions ... 18

2.3.3 Example ... 18

2.4 Client implementation ... 19

2.4.1 API ... 19

2.4.2 Exceptions ... 20

2.4.3 Example ... 20

3 Advanced concepts ... 21

3.1 Network transports .. 21

3.1.1 UDP Transport ... 21

3.1.2 TCP Transport .. 23

3.2 Asynchronous calls ... 25

3.2.1 Calling a Remote procedure asynchronously .. 25

3.2.2 Reply Call-back object ... 26

3.3 One-way calls .. 27

3.4 Threading Server strategies .. 27

3.4.1 Single thread strategy .. 27

3.4.2 Thread Pool strategy ... 28

3.4.3 Thread per request strategy .. 28

4 WAN communication .. 29

5 HelloWorld example ... 30

3

5.1 Writing the IDL file .. 30

5.2 Generating specific code ... 30

5.3 Client implementation ... 31

5.4 Server implementation .. 31

5.5 Build and execute ... 32

4

1 Introduction
eProsima RPC over DDS is a high performance remote procedure call (RPC) framework.
It combines a software stack with a code generation engine to build efficient services
for several platforms and programming languages.

eProsima RPC over DDS uses the Data Distribution Service (DDS) standard from the
Object Management Group (OMG) as the communication engine.

1.1 Client/Server communications over DDS
There are three main communication patterns used in distributed systems:

 Publish-Subscribe
 Request-Reply
 Point to Point

One example of Request-Reply pattern is the Remote Procedure Call (RPC). RPC allows
an application to call a subroutine or procedure in another address space (commonly in
another computer on a shared network).

The framework generates the Request-Reply code from the procedure definition using
an Interface Definition Language (IDL), allowing the developer to focus in the
application logic without bothering about the networking details.

5

1.2 A quick example
You write a .IDL file like this:

interface Example
{
 void exampleMethod();
};

Then you process the file with the rpcddsgen compiler to generate C++ code.
Afterwards, you use that code to invoke remote procedures with the client proxy:

UDPProxyTransport *transport = new UDPProxyTransport(”ExampleService”);
ExampleProtocol *protocol = new ExampleProtocol();
ExampleProxy *proxy = new ExampleProxy(*transport, *protocol);
...
proxy->exampleMethod();

or to implement a server using the generated skeleton:

UDPServerTransport *transport = new UDPServerTransport(”ExampleService”);
ExampleProtocol *protocol = new ExampleProtocol();
SingleThreadStrategy *single = new SingleThreadStrategy();
ExampleServerImpl servant;
ExampleServer *server =

new ExampleServer(*single, *transport, *protocol, servant);
...
server->serve();

See section 5.1 (Writing the IDL file) for a complete step by step example.

6

1.3 Main Features

 Synchronous, asynchronous and one-way invocations.
o The synchronous invocation is the most common one. It blocks the

client’s thread until the reply is received from the server.
o In the asynchronous invocation the request does not block the client’s

thread. Instead, the developer provides a callback object that is invoked
when the reply is received.

o The one-way invocation is a fire-and-forget invocation where the client
does not care about the result of the procedure. It does not wait for any
reply from the server.

 Different threading strategies for the server. These strategies define how the
server acts when a new request is received. The currently supported strategies
are:

o Single-thread strategy: Uses only one thread for every incoming
request.

o Thread-pool strategy: Uses a fixed amount of threads to process the
incoming requests.

o Thread-per-request strategy: Creates a new thread for processing each
new incoming request.

 Several communications transports:
o Reliable and high performance UDP transport
o NAT and firewall friendly TCP transport
o Shared Memory transport.

 Automatic Discovery: The framework uses the underlying DDS discovery
protocol to discover the different clients, servers and services.

 Complete Publish/Subscribe Frameworks: Users can integrate RPC over DDS
Publish/Subscribe code in their applications.

 High performance: The framework uses a fast serialization mechanism that
increases the performance.

7

2 Building an application
eProsima RPC over DDS allows the developer to easily implement a distributed
application using remote procedure invocations.

In client/server paradigm, a server offers a set of remote procedures that the client can
remotely call. How the client calls these procedures should be transparent. The proxy
object represents the remote server, and this object offers the remote procedures
implemented by the server.

In the same way, how the server obtains a request from the network and how it sends
the reply should also be transparent. The developer just writes the behavior of the
remote procedures using the generated skeleton.

Steps to build an application:
 Define a set of remote procedures, using an Interface Definition Language.
 Using the provided IDL compiler, generate the specific remote procedure call

support code (a Client Proxy and a Server Skeleton)
 Implement the server, filling the server skeleton with the behavior of the

procedures.
 Implement the client, using the client proxy to invoke the remote procedures.

This section will describe the basic concepts of these four steps that a developer has to
follow to implement a distributed application. The advanced concepts are described in
section 3 (Advanced concepts).

8

2.1 Defining a set of remote procedures
An Interface Definition Language (IDL) is used to define the remote procedures the
server will offer. Data Types used as parameter types in these remote procedures are
also defined in the IDL file. The IDL structure is based in OMG IDL and it is described in
the following schema:

IDL File

eProsima RPC over DDS includes a Java application named rpcddsgen. This application
parses the IDL file and generates C++ code for the defined set of remote procedures.
rpcddsgen application will be described in the section 2.2 (Generating specific remote
procedure call support code).

9

Procedure definitions

Interface definition

Data Type definitions

2.1.1 IDL Syntax and mapping to C++

2.1.1.1 Simple types
eProsima RPC over DDS supports a variety of simple types that the developer can use
as parameters, returned values and members of complex types. The following tables
show the supported simple types, how they are defined in the IDL file and what the
rpcddsgen generates in C++ language.

TABLE 1: SPECIFYING SIMPLE TYPES IN IDL FOR C++ USING DDS TYPES
IDL Type Sample in IDL File Sample Output Generated by

rpcddsgen
char char char_member DDS_Char char_member
wchar wchar wchar_member DDS_Wchar wchar_member
octet octet octet_member DDS_Octet octet_member
short short short_member DDS_Short short_member
unsigned short unsigned short ushort_member DDS_UnsignedShort

ushort_member
long long long_member DDS_Long long_member
unsigned long unsigned long ulong_member DDS_UnsignedLong

ulong_member
long long long long llong_member DDS_LongLong llong_member
unsigned long
long

unsigned long long
ullong_member

DDS_UnsignedLongLong
ullong_member

float float float_member DDS_Float float_member

double double double_member DDS_Double double_member
boolean boolean boolean_member DDS_Boolean boolean_member
bounded string string<20> string_member char* string_member

/* maximum length = (20) */
unbounded
string

string string_member char* string_member
/* maximum length = (255) */

2.1.1.2 Complex types
Complex types can be created combining simple types. These complex types can be
used as parameters or returned values. The following table shows the supported
complex types, how they are defined in the IDL file and what rpcddsgen generates in C++
language.

TABLE 2: SPECIFYING COMPLEX TYPES IN IDL FOR C++ USING DDS TYPES
IDL Type Sample in IDL File Sample Output Generated by

rpcddsgen
enum enum PrimitiveEnum {

 ENUM1,
 ENUM2,
 ENUM3
};
enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
};

typedef enum PrimitiveEnum {
 ENUM1,
 ENUM2,
 ENUM3
} PrimitiveEnum;
typedef enum PrimitiveEnum {
 ENUM1 = 10,
 ENUM2 = 20,
 ENUM3 = 30
} PrimitiveEnum;

struct struct PrimitiveStruct {
 char char_member;
};

typedef struct PrimitiveStruct
{
 DDS_Char char_member;

10

} PrimitiveStruct;
union union PrimitiveUnion

switch(long) {
 case 1:
 short short_member;
 default:
 long long_member;
};

typedef struct PrimitiveUnion {
 DDS_Long _d;
 struct {
 short short_member;
 long long_member;
 } _u;
} PrimitiveUnion;

typedef typedef short TypedefShort; typedef DDS_Short TypedefShort;
array
(See note
below)

struct OneDArrayStruct {
 short short_array[2];
};
struct TwoDArrayStruct {
 short short_array[1][2];
};

typedef struct OneDArrayStruct
{
 DDS_Short short_array[2];
} OneDArrayStruct;
typedef struct TwoDArrayStruct
{
 DDS_Short short_array[1]
[2];
} TwoDArrayStruct;

bounded
sequence
(See note
below)

struct SequenceStruct {
 sequence<short,4>
 short_sequence;
};

typedef struct SequenceStruct {
 DDSShortSeq short_sequence;
} SequenceStruct;

unbounded
sequence
(See note
below)

struct SequenceStruct {
 sequence<short>
 short_sequence;
};

typedef struct SequenceStruct {
 DDSShortSeq short_sequence;
} SequenceStruct;

Note: These complex types cannot be used directly as procedure’s parameter. In these cases, a typedef
has to be used to redefine them.

11

2.1.1.3 Parameter definition
There are three reserved words that are used in the procedure’s parameter definitions.
It is mandatory to use one of them in each procedure’s parameter definition. The
following table shows these reserved words and their meaning:

Reserved word Meaning
in The parameter is an input parameter.
inout The parameter acts as an input and output parameter.
output The parameter is an output parameter.

Suppose the type T is defined as the type of the parameter. If the parameter uses the
reserved word in and the type T is a simple type or an enumeration, then the type is
mapped in C++ as T. In the case the type T is a complex type, the type is mapped in C++
as const T&. If the parameter uses the reserved word inout or out, then the type is
mapped in C++ as T&.
As it was commented in section 2.1.1.2 (Complex types), array and sequence types
cannot be directly defined as parameter types. To do so, they have to be previously
redefined using a typedef. This redefinition can be used as a parameter.

2.1.1.4 Function definition
A procedure’s definition is composed of two or more elements:

 The type of the returned value. void type is allowed.
 The name of the procedure.
 A list of parameters. This list could be empty.

An example of how a procedure should be defined is shown below:
long funcName(in short param1, inout long param2);

rpcddsgen application maps the functions following these rules:
 The type of the C++ returned value is the same as the one defined in the IDL

file, using the tables described in sections 2.1.1.1 (Simple types) and 2.1.1.2
(Complex types) for the mapping.

 The name of the C++ function is the same as the name of the defined function
in the IDL file.

 The order of the parameters in the C++ function is the same as the order in the
IDL file. The parameters are mapped in C++ as it was described in section
2.1.1.3 (Parameter definition).

Following these rules, the previous example would generate one of the following C++
functions, depending on the chosen types:

DDS_Long funcName(DDS_Short param1, DDS_Long& param2);

12

2.1.1.5 Exception definition
IDL functions can raise user-defined exceptions to indicate the occurrence of an error.
An exception is a structure that may contain several fields. An example of how to
define an exception is shown below:
exception ExceptionExample
{
 long count;
 string msg;
};

This example would generate one of the following C++ exceptions, depending on the
chosen types:

class ExceptionExample: public eprosima::rpc::exception::UserException
{
public:
 /** Constructors **/
 ExceptionExample();
 ExceptionExample(const ExceptionExample &ex);
 ExceptionExample(ExceptionExample&& ex);
 ExceptionExample& operator=(const ExceptionExample &ex);
 ExceptionExample& operator=(ExceptionExample&& ex);
 virtual ~ExceptionExample() throw();
 virtual void raise() const;

 /** Exception members **/
 DDS_Long count;
 char* msg;
};

To specify that an operation can raise one or more user-defined exceptions, first define
the exception and then add an IDL raises clause to the operation definition, like this
example does:

exception Exception1
{
 long count;
};

exception Exception2
{
 string msg;
};

void exceptionFunction()
 raises(Exception1, Exception2);

2.1.1.6 Interface definition
The remote procedures that the server will offer have to be defined in an IDL interface.
An example of how an interface should be defined is shown:

interface InterfaceExample

13

{
 // Set of remote procedures.
};

The IDL interface will be mapped in three classes:
 InterfaceExampleProxy: A local server’s proxy that offers the remote procedures

to the client application. Client application must create an object of this class
and call the remote procedures.

 InterfaceExampleServerImpl: This class contains the remote procedures
definitions. These definitions must be implemented by the developer. eProsima
RPC over DDS creates one object of this class. It is used by the server.

 InterfaceExampleServer: The server implementation. This class executes a server
instance.

eProsima RPC over DDS supports interface inheritance, like the following example
shows:

interface ParentInterface
{
 void function1();
};

interface ChildInterface : ParentInterface
{
 void function2();
};

In this example, the IDL interface ChildInterface has two functions: function1 and
function2.

2.1.1.7 Module definition
To group related definitions, such as complex types, exceptions, functions and
interfaces, a developer can use modules:

module ModuleExample
{
 // Set of definitions
};

A module will be mapped into a C++ namespace, and every definition inside it will be
defined within the generated namespace in C++.

2.1.1.8 Limitations
rpcddsgen application has some limitations concerning IDL syntax:

 Two procedures cannot have the same name.

14

 Complex types (array and sequences) used in procedure definitions must be
previously named using typedef keyword, as CORBA IDL 2.0 specification
enforces.

 Using DDS types, a function cannot have an array as returned type.

15

2.1.2 Example
This example will be used as a base to other examples in the following sections. IDL
syntax described in the previous subsection is shown through an example:

// file Bank.idl

enum ReturnCode
{
 SYSTEM_ERROR,
 ACCOUNT_NOT_FOUND,
 AUTHORIZATION_ERROR,
 NOT_MONEY_ENOUGH,
 OPERATION_SUCCESS
};

struct Account
{

string AccountNumber;
string Username;
string Password;

}; // @top level false

interface Bank
{

ReturnCode deposit(in Account ac, in long money);
};

2.2 Generating specific remote procedure call support code
Once the API is defined in a IDL file, we need to generate code for a client proxy and a
server skeleton. eProsima RPC over DDS provides the rpcddsgen tool for this purpose: it
parses the IDL file and generates the corresponding supporting code.

2.2.1 RPCDDSGEN Command Syntax:
The general syntax is:
rpcddsgen [options] <IDL file> <IDL file> ...

Options:
Option Description
-help Shows help information.
-version Shows the current version of eProsima RPC over DDS
-ppPath <directory> Location of the C/C++ preprocessor.
-ppDisable Disables the C/C++ preprocessor. Useful when macros or

includes are not used.
-replace Replaces existing generated files.
-example <platform> Creates a solution for a specific platform. This solution

will be used by the developer to compile both client and
server.
Possible values: i86Win32VS2010, x64Win64VS2010,
i86Linux2.6gcc4.4.5, x64Linux2.6gcc4.4.5

-d <path> Sets an output directory for generated files
-t <temp dir> Sets a specific directory as a temporary directory
-transport <transport> Select the DDS transport that generated code will use.

Possible values: rti, rtps. Default: rti
-topicGeneration Defines how DDS topics are generated.

16

<option> Possible values: byInterface, byOperation. Default:
byInterface

The rpcddsgen application generates several files. They will be described in this section.
Their names are generated using the IDL file name. The <IDLName> tag has to be
substituted by the file name.

2.2.2 Server side
rpcddsgen generates C++ header and source files with the declarations and the
definitions of the remote procedures. These files are the skeletons of the servants that
implement the defined interfaces. The developer can use each definition in the source
files to implement the behavior of the remote procedures. These files are
<IDLName>ServerImpl.h and <IDLName>ServerImpl.cxx. rpcddsgen also generates a C++ source
file with an example of a server application and a server instance. This file is
<IDLName>ServerExample.cxx.

2.2.3 Client side
rpcddsgen generates a C++ source file with an example of a client application and how
this client application can call a remote procedure from the server. This file is
<IDLName>ClientExample.cxx.

2.3 Server implementation
After the execution of rpcddsgen, two files named <IDLName>ServerImpl.cxx and
<IDLName>ServerImpl.h will be generated. These files are the skeleton of the interfaces
offered by the server. All the remote procedures are defined in these files, and the
behaviour of each one has to be implemented by the developer. For the remote
procedure deposit seen in our Example, the possible generated definitions are:

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ DDS_Long
money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 return returnedValue;
}

Keep in mind a few things when this servant is implemented.
 in parameters can be used by the developer, but their allocated memory cannot

be freed, either any of their members.
 inout parameters can be modified by the developer, but before allocate

memory in their members, old allocated memory has to be freed.
 out parameters are not initialized. The developer has to initialize them.

The code generated by rpcddsgen also contains the server classes. These classes are
implemented in the files <IDLName>Server.h and <IDLName>Server.cxx. They offer the
resources implemented by the servants.

When an object of the class <IDLName>Server is created, proxies can establish a
connection with it. How this connection is created and how the proxies find the server

17

depends on the selected network transport. These transports are described in section
3.1 (Network transports).

2.3.1 API
Using the suggested IDL example, the API created for this class is:

class BankServer: public eprosima::rpc::server::Server
{
public:
 BankServer(
 eprosima::rpc::strategy::ServerStrategy &strategy,
 eprosima::rpc::transport::ServerTransport &transport,
 eprosima::rpc::protocol::BankProtocol &protocol,
 account_accountNumberResourceServerImpl &servant
);

 virtual ~BankServer();
 ...
};

The server provides a constructor with four parameters. The strategy parameter
expects a server’s strategy that defines how the server has to manage incoming
requests. Server strategies are described in the section 3.4.1 (Single thread strategy).

The second parameter expects the network transport to connect with client proxies.
The third parameter is the protocol. It's generated by rpcddsgen and it's the class that
deserializes received data and gives it to the user implementation. Finally, the fourth
parameter is the server skeleton implemented by the user, for example by filling the
empty example given.

2.3.2 Exceptions
In the server side, developers can inform about an error in the execution of the remote
procedures. The exception eprosima::rpc::exception::ServerInternalException can be
thrown in the developer’s code. This exception will be delivered to the proxy and will
be thrown in the client side. Examples of how this exception can be thrown are shown
below:

ReturnCode BankServerImpl::deposit(/*in*/const Account& ac, /*in*/ DDS_Long
money)
{
 ReturnCode returnedValue = SYSTEM_ERROR;

 throw eprosima::rpc::exception::ServerInternalException(“Error in deposit
procedure”);

 return returnedValue;
}

2.3.3 Example
Using the suggested IDL Example, the developer can create a server in the following
way:

18

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
UDPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new UDPServerTransport("MyBankName");
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

2.4 Client implementation
The code generated by rpcddsgen contains classes that act like proxies of the remote
servers. These classes are implemented in the files <IDLName>Proxy.h and
<IDLName>Proxy.cxx. The proxies offer the resources from the servers, so the developer
can directly invoke its remote procedures.

2.4.1 API
Using the suggested IDL Example, the API of this class is:

class BankProxy : public eprosima::rpc::proxy::Proxy
{
 public:

 BankProxy(eprosima::rpc::transport::ProxyTransport &transport,
 eprosima::rpc::protocol::BankProtocol &protocol);

 virtual ~BankProxy();

 ReturnCode deposit(/*in*/ const Account& ac, /*in*/ DDS_Long money);

 void deposit_async(Bank_depositCallbackHandler &obj, /*in*/ const
Account& ac, /*in*/ DDS_Long money);

};

The proxy provides a constructor. It expects the network transport as the first
parameter. The second parameter is the protocol. Again, it is generated by rpcddsgen
and its duty is to serialize and deserialize protocol data.

The proxy provides the remote procedures to the developer. Using the suggested IDL,
our proxy will provide the remote procedure deposit. The function deposit_async is the

19

asynchronous version of the remote procedure. Asynchronous calls are described in
the section 3.2 (Asynchronous calls).

2.4.2 Exceptions
While a remote procedure call is executed, an error can occur. In these cases,
exceptions are used to report errors. Following exceptions can be thrown when a
remote procedure is called:

Exception Description
eprosima::rpc::exception::Cli
entInternalException

This exception is thrown when there is a problem in
the client side.

eprosima::rpc::exception::Ser
verTimeoutException

This exception is thrown when the maximum time was
exceeded waiting the server’s reply.

eprosima::rpc::exception::Ser
verInternalException

This exception is thrown when there is a problem in
the server side.

eprosima::rpc::exception::Ser
verNotFoundException

This exception is thrown when the proxy cannot find
any server.

All exceptions have the same base class: eprosima::rpc::exception::Exception.

2.4.3 Example
Using the suggested IDL example, the developer can access to the deposit remote
procedure the following way:

BankProtocol *protocol = NULL;
UDPProxyTransport *transport = NULL;
BankProxy *proxy = NULL;

try {
 protocol = new BankProtocol();
 transport = new UDPProxyTransport("MyBankName");
 proxy = new BankProxy(*transport, *protocol);
}
catch(eprosima::rpc::exception::InitializeException &ex) {
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money;
ReturnCode depositRetValue;

try {
 depositRetValue = proxy->deposit(ac, money);
}
catch(eprosima::rpc::exception::Exception &ex) {
 std::cout << ex.what() << std::endl;
}

20

3 Advanced concepts

3.1 Network transports
eProsima RPC over DDS provides two network transports implemented using RTI DDS
middleware. These transports define how a connection is established between a proxy
and a server. The transports are:

 High performance and reliable UDP transport: The recommended option in LAN
 TCP transport, designed to use DDS in WAN scenarios.

3.1.1 UDP Transport
The purpose of this transport is to create a connection between a proxy and a server
located in the same local network. This transport is implemented by two classes. One is
used by proxies and the other is used by servers.

UDPProxyTransport
UDPProxyTransport class implements a UDP transport that should be used by proxies.

class UDPProxyTransport: public ProxyTransport

{

 public:

 UDPProxyTransport(std::string remoteServiceName, std::string instanceName,
int domainId = 0, long timeout = 10000L);

 UDPProxyTransport(const char *to_connect, std::string remoteServiceName,
std::string instanceName, int domainId = 0, long timeout = 10000L);

 virtual ~UDPProxyTransport();

};

This class has two constructors. The first one sets the UDP transport to use DDS
discovery mechanism. This discovery mechanism allows the proxy to find any server in
the local network. There are three potential scenarios:

 In the local network there is not any server using the provided service name. In
this case, the proxy will not create any connection until a server announces to
the network. If a client tries to invoke a remote procedure before this happen, it
will raise a ServerNotFoundException.

 In the local network there is only one server using the provided service name.
When a proxy is created, it will find the server and will create a connection
channel with it. When the client application uses the proxy to call a remote
procedure, this server will execute this procedure and return the reply from the
server.

 In the local network there are several servers using the same service’s name.
This scenario could occur when the user wants to have redundant servers to
avoid failures in the system. When a proxy is created, it will find all servers and
will create a connection channel with each one. When the client application
uses the proxy to call a remotely procedure, all servers will execute the
procedure but the client will receive only one reply from one server.

21

The second constructor expects the IP address of the remote server in the to_connect
parameter and then the proxy will connect with the server located in that IP address.
Both constructors allow to configure the DDS domain identifier with the domainId
parameter and the maximum time for remote procedure calls before the proxy returns
a timeout exception with the timeout parameter.

Using the suggested IDL example, the developer could create a proxy that connects
with a specific server in a local network:

BankProtocol *protocol = NULL;
UDPProxyTransport *transport = NULL;
BankProxy *proxy = NULL;

try
{
 protocol = new BankProtocol();
 transport = new UDPProxyTransport("192.168.1.12", "MyBankName", "”);
 proxy = new BankProxy(*transport, *protocol);
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money;
ReturnCode depositRetValue;

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eprosima::rpc::exception::Exception &ex)
{
 std::cout << ex.what() << std::endl;
}

UDPServerTransport
UDPServerTransport class implements a UDP transport to be used by servers.

class UDPServerTransport: public ServerTransport

{

 public:

 UDPServerTransport(std:: string serviceName, std::string instanceName, int
domainId = 0);

 virtual ~UDPServerTransport();

};

This class has one constructor. This constructor sets the UDP transport to use DDS
discovery mechanism. DDS discovery mechanism allows the server to discover any
proxy in the local network.

22

Using the suggested IDL example, the developer could create a server with this code:

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
UDPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new UDPServerTransport("MyBankName", "”);
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

3.1.2 TCP Transport
The purpose of this transport is to create a connection between a proxy and a server in
a WAN. This transport is implemented by two classes. One is used by proxies and the
other is used by servers.

TCPProxyTransport
TCPProxyTransport class implements a TCP transport to be used by proxies:

class TCPProxyTransport: public ProxyTransport

{

 public:

 TCPProxyTransport(const char *to_connect, std::string remoteServiceName,
std::string instanceName, int domainId = 0, long timeout = 10000L);

 virtual ~TCPProxyTransport();

};

This class has one constructor. The parameter to_connect expects the public IP address
and port of the remote server. For more information see section 4 ().

Using the suggested IDL example, the developer could create a proxy to connect with a
server located in the public IP address 80.130.6.123 and port 7600.

BankProtocol *protocol = NULL;
TCPProxyTransport *transport = NULL;
BankProxy *proxy = NULL;

try
{

23

 protocol = new BankProtocol();
 transport = new TCPProxyTransport("80.130.6.123:7600", "MyBankName", "”);
 proxy = new BankProxy(*transport, *protocol);
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

Account ac;
DDS_Long money;
ReturnCode depositRetValue;

try
{
 depositRetValue = proxy->deposit(ac, money);
}
catch(eprosima::rpc::exception::Exception &ex)
{
 std::cout << ex.what() << std::endl;
}

TCPServerTransport
TCPServerTransport class implements a TCP transport that should be used by servers.

class TCPServerTransport : public ServerTransport

{

 public:

 TCPServerTransport(const char *public_address, const char
*server_bind_port, std::string serviceName, std::string instanceName, int
domainId);

 virtual ~TCPServerTransport();

};

This class has one constructor with four parameters. The parameter public_address
expects the public IP address and port where a proxy could find the server. The
parameter server_bind_port has to contain the local port that the server will open to
make the connection. The third parameter is the DDS service name and the fourth one
is the DDS domain identifier. For more information about configuring a WAN server,
please read section 4 ().

Using the suggested IDL example, the developer could create a server that will be
found in public IP address 80.130.6.123 and port 7600. This server will open the port
7400 in its machine.

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
TCPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

24

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new TCPServerTransport("80.130.6.123:7600", “7400", "MyBankName",
"”, 0);
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

3.2 Asynchronous calls
eProsima RPC over DDS supports asynchronous calls: a client application can call a
remote procedure and that call does not block the thread execution.

3.2.1 Calling a Remote procedure asynchronously
rpcddsgen generates one asynchronous call for each remote procedure. These methods
are named <RemoteProcedureName>_async. They receive as parameters the object that will
be called when request arrives and the input parameters of the remote procedure.
Using the IDL example, rpcddsgen will generate next asynchronous method in the proxy:

void deposit_async(Bank_depositCallbackHandler &obj, /*in*/ const Account& ac,
/*in*/ DDS_Long money);

The asynchronous version of the remote procedures can also generate exceptions. The
exceptions that could be thrown are:

Exception Description
eprosima::rpc::exception::Cl
ientException

This exception is thrown when there is a
problem in the client side.

eprosima::rpc::exception::Se
rverNotFoundException

This exception is thrown when the proxy
cannot find any server.

Example:

class Bank_depositHandler: public depositCallbackHandler
{
 void deposit(/*out*/ ReturnCode deposit_ret)
 {
 // Client desired behaviour when the reply arrives
 }

 virtual void on_exception(const eprosima::rpc::exception::Exception &ex)
 {
 // Client desired behaviour on exception
 }
}

void main()

25

{
 UDPProxyTransport *transport = NULL;
 BankProtocol *protocol = NULL;
 BankProxy *proxy = NULL;

 try
 {
 transport = new UDPProxyTransport("MyBankName");
 protocol = new BankProtocol();
 proxy = new BankProxy(*transport, *protocol);
 }
 catch(eprosima::rpc::exception::InitializeException &ex)
 {
 std::cout << ex.what() << std::endl;
 }

 Account ac;
 DDS_Long money = 0;
 Bank_depositHandler deposit_handler;

 try
 {
 proxy->deposit_async(deposit_handler, ac, money);
 }
 catch(eprosima::rpc::exception::Exception &ex)
 {
 std::cout << ex.what() << std::endl;
 }
}

3.2.2 Reply Call-back object
The client is notified of the reply through an object that the developer passes as a
parameter to the asynchronous call. rpcddsgen generates one abstract class for each
remote procedure the user will use in asynchronous calls. These classes are named
<InterfaceName>_<RemoteProcedureName>CallbackHandler. Two abstract methods are created
inside these classes. One is called when the reply arrives. This function has as
parameter the return value of the remote procedure. The other function is called in
case of exception. The user should create a class that inherits from
<InterfaceName>_<RemoteProcedureName>CallbackHandler class and then implement both
methods. Using the IDL example, rpcddsgen will generate this class:
class Bank_depositCallbackHandler
{
public:
 virtual void deposit(/*out*/ ReturnCode deposit_ret) = 0;
 virtual void error(const eprosima::rpc::exception::Exception &ex) = 0;
};

The function that is called in case of exception could receive these exceptions:
Error code Description
eprosima::rpc::exception::Cl
ientInternalException

An exception occurs in the client side.

eprosima::rpc::exception::Se
rverTimeoutException

The maximum time was exceeded waiting the server’s
reply.

eprosima::rpc::exception::Se
rverInternalException

An exception occurs in the server side.

26

3.3 One-way calls
Sometimes a remote procedure doesn’t need the reply from the server. For these
cases, eProsima RPC over DDS supports one-way calls.

A developer can define a remote procedure as one-way, and when the client
application calls the remote procedure, the thread does not wait for any reply.

To create a one-way call, the remote procedure has to be defined in the IDL file with
the following rules:

 The oneway reserved word must be used before the method definition.
 The returned value of the method must be the void type.
 The method cannot have any inout or out parameter.

An example of how a one-way procedure has to be defined using IDL is shown below:
interface Bank
{

oneway void deposit(in Account ac, in long money);
};

3.4 Threading Server strategies
eProsima RPC over DDS library provides several threading strategies for the server. This
subsection describes these strategies.

3.4.1 Single thread strategy
This is the simplest strategy. The server only uses one thread for doing the request
management. In this case, the server only executes one request at a given time. The
thread used by the server to handle the request is the DDS reception thread. To use
Single Thread Strategy, create the server providing the constructor with a
SingleThreadStrategy object.

SingleThreadStrategy *single = NULL;
BankProtocol *protocol = NULL;
UDPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 single = new SingleThreadStrategy();
 transport = new UDPServerTransport("MyBankName");
 protocol = new BankProtocol();
 server = new BankServer(*single, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

27

3.4.2 Thread Pool strategy
In this case, the server manages a thread pool that will be used to process the
incoming requests. Every time a request arrives, the server assigns it to a free thread in
the thread pool.

To use the Thread Pool Strategy, create the server providing the constructor with a
ThreadPoolStrategy object.

unsigned int threadPoolSize = 5;
ThreadPoolStrategy *pool = NULL;
BankProtocol *protocol = NULL;
UDPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 pool = new ThreadPoolStrategy(threadPoolSize);
 transport = new UDPServerTransport("MyBankName");
 protocol = new BankProtocol();
 server = new BankServer(*pool, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

3.4.3 Thread per request strategy
In this case, the server will create a new thread for each new incoming request.

To use the Thread per request Strategy, create the server providing a
ThreadPerRequestStrategy object in the constructor method.

ThreadPerRequestStrategy *perRequest = NULL;
BankProtocol *protocol = NULL;
UDPServerTransport *transport = NULL;
BankServer *server = NULL;
BankServerImplExample servant;

try
{
 perRequest = new ThreadPerRequestStrategy();
 transport = new UDPServerTransport("MyBankName");
 protocol = new BankProtocol();
 server = new BankServer(*perRequest, *transport, *protocol, servant);
 server->serve();
}
catch(eprosima::rpc::exception::InitializeException &ex)
{
 std::cout << ex.what() << std::endl;
}

28

4 WAN communication
eProsima RPC over DDS supports WAN networks through its TPC transport. A WAN
server is accessible at its public IP address and any WAN proxy can connect to it.
Usually a public server is behind a NAT with port forwarding. In this section, it is
explained how to configure the network in this scenario.

The server is located in a local network that has access to the WAN through NAT. The
private server IP is 192.168.1.32. The public IP of the NAT router is 80.99.25.12, and the
router has a NAT rule to bind the incoming requests to the TCP port 7600 to the private
IP 192.168.1.32, at the port 7400. Therefore, when using eProsima RPC over DDS, the
server can be created with the public_address parameter of the TCP transport as
“80.99.25.12:7600” and the server_bind_port parameter as “7400”.
The WAN proxy can connect with this server if the public IP address and port are
known. The proxy must be created passing the public address “80.99.25.12:7600” as the
to_connect parameter.

29

5 HelloWorld example
In this section an example is shown step by step. This example has one remote
procedure. A client can invoke this procedure by passing a string with a name as
parameter. The server returns a new string that appends the name to a greeting
sentence.

5.1 Writing the IDL file
Write a simple interface named HelloWorld that has a hello method. Store this IDL
definition in a file named HelloWorld.idl
// HelloWorld.idl

interface HelloWorld
{

string hello(in string name);
};

5.2 Generating specific code
Open a command prompt and go to the directory containing HelloWorld.idl file. If you
are running this example in Windows, type in and execute the following line:

rpcddsgen -example x64Win64VS2010 HelloWorld.idl

If you are running it in Linux, execute this one:

rpcddsgen -example x64Linux2.6gcc4.4.5 HelloWorld.idl

Note that if you are running this example in a 32-bit operating system you have to use
-example i86Win32VS2010 or -example i86Linux2.6gcc4.4.5 instead.

This command generates the client stub and the server skeletons, as well as some
project files designed to build your HelloWorld example.

In Windows, a Visual Studio 2010 solution will be generated, named rpcsolution-
<target>.sln, being <target> the chosen example platform. This solution is composed
by five projects:

- HelloWorld, with the common classes of the client and the server, like the
defined types and the specific communication protocol

- HelloWorldServer, with the server code

- HelloWorldClient, with the client code.

- HelloWorldServerExample, with a usage example of the server, and the
implementation skeleton of the RPCs.

- HelloWorldClientExample, with a usage example of the client

In Linux, on the other hand, it generates a makefile with all the required information to
compile the solution.

30

5.3 Client implementation
Edit the file named HelloWorldClientExample.cxx. In this file, the code for invoking the
hello RPC using the generated proxy is generated. You have to add two more
statements: one to set a value to the remote procedure parameter and another to
print the returned value. This is shown in the following example:

int main(int argc, char **argv)
{
 HelloWorldProtocol *protocol = NULL;
 UDPProxyTransport *transport = NULL;
 HelloWorldProxy *proxy = NULL;

 // Creation of the proxy for interface "HelloWorld".
 try
 {
 protocol = new HelloWorldProtocol();
 transport = new UDPProxyTransport("HelloWorldService");
 proxy = new HelloWorldProxy(*transport, *protocol);
 }
 catch(InitializeException &ex)
 {
 std::cout << ex.what() << std::endl;
 return -1;
 }

 // Create and initialize parameters.
 char* name = "Richard";

 // Create and initialize return value.
 char* hello_ret = NULL;

 // Call to remote procedure "hello".
 try
 {
 hello_ret = proxy->hello(name);
 }
 catch(SystemException &ex)
 {
 std::cout << ex.what() << std::endl;
 }

 std::cout << hello_ret << std::endl;

 delete proxy;
 delete transport;
 delete protocol;

 return 0;
}

5.4 Server implementation
rpcddsgen creates the server skeleton in the file HelloWorldServerImplExample.cxx. The
remote procedure is defined in this file and it has to be implemented.

In this example, the procedure returns a new string with a greeting sentence. Open the
file and copy this code:

31

#include "HelloWorldServerImpl.h"

char* HelloWorldServerImpl::hello(/*in*/ const char* name)
{
 std::string hello_ret;

 // Create the greeting sentence.
 hello_ret = “Hello “ + name + “!”;

 return DDS_String_dup(hello_ret.c_str());
}

5.5 Build and execute
To build your code using Visual Studio 2010, make sure you are in the Debug (or
Release) profile, and then build it (F7). Now go to <example_dir>\bin\x64Win64VS2010
directory and execute HelloWorldServerExample.exe. You will get the message:
INFO<eprosima::rpc::server::Server::server>: Server is running

Then launch HelloWorldClientExample.exe. You will see the result of the remote
procedure call:
Hello Richard!

This example was created statically. To create a set of DLLs containing the protocol and
the structures, select the Debug DLL (or Release DLL) profile and build it (F7). Now, to
get your DLL and LIB files, go to <example_dir>\objs\x64Win64VS2010 directory. You can
now run the same application dynamically using the .exe files generated in
<example_dir>\bin\x64Win64VS2010, but first you have to make sure your .dll location
directory is appended to the PATH environment variable.

To build your code in Linux use this command:

make -f makefile_x64Linux2.6gcc4.4.5

No go to <example_dir>\bin\x64Linux2.6gcc4.4.5 directory and execute the binaries as it
has been described for Windows.

32

	1 Introduction
	1.1 Client/Server communications over DDS
	1.2 A quick example
	1.3 Main Features

	2 Building an application
	2.1 Defining a set of remote procedures
	2.1.1 IDL Syntax and mapping to C++
	2.1.1.1 Simple types
	2.1.1.2 Complex types
	2.1.1.3 Parameter definition
	2.1.1.4 Function definition
	2.1.1.5 Exception definition
	2.1.1.6 Interface definition
	2.1.1.7 Module definition
	2.1.1.8 Limitations

	2.1.2 Example

	2.2 Generating specific remote procedure call support code
	2.2.1 RPCDDSGEN Command Syntax:
	2.2.2 Server side
	2.2.3 Client side

	2.3 Server implementation
	2.3.1 API
	2.3.2 Exceptions
	2.3.3 Example

	2.4 Client implementation
	2.4.1 API
	2.4.2 Exceptions
	2.4.3 Example

	3 Advanced concepts
	3.1 Network transports
	3.1.1 UDP Transport
	3.1.2 TCP Transport

	3.2 Asynchronous calls
	3.2.1 Calling a Remote procedure asynchronously
	3.2.2 Reply Call-back object

	3.3 One-way calls
	3.4 Threading Server strategies
	3.4.1 Single thread strategy
	3.4.2 Thread Pool strategy
	3.4.3 Thread per request strategy

	4 WAN communication
	5 HelloWorld example
	5.1 Writing the IDL file
	5.2 Generating specific code
	5.3 Client implementation
	5.4 Server implementation
	5.5 Build and execute

