
Electronic Notes in Theoretical Computer Science 5 (1996) to appearSolving Binary CSP Using ComputationalSystemsCarlos CastroINRIA Lorraine & CRIN615 rue du jardin botanique, BP 101,54602 Villers-lès-Nancy Cedex, Francee-mail: Carlos.Castro@loria.frAbstractIn this paper we formalise CSP solving as an inference process. Based on the no-tion of Computational Systems we associate actions with rewriting rules and controlwith strategies that establish the order of application of the inferences. The maincontribution of this work is to lead the way to the design of a formalism allowingto better understand constraint solving and to apply in the domain of CSP theknowledge already developed in Automated Deduction.Keywords: Constraint Satisfaction Problems, Computational Systems, RewritingLogic.1 IntroductionIn the last twenty years many work has been done on solving Constraint Sat-isfaction Problems, CSP. The solvers used by constraint solving systems canbe seen as encapsulated in black boxes. In this work we formalise CSP solv-ing as an inference process. We are interested in description of constraintsolving using rule-based algorithms because of the explicit distinction madein this approach between deduction rules and control. We associate actionswith rewriting rules and control with strategies which establish the order ofapplication of the inferences. Our �rst goal is to improve our understanding ofthe algorithms developed for solving CSP once they are expressed as rewrit-ing rules coordinated by strategies. Extending the domain of application ofRewriting Logic to CSP is another motivation for this work. This leads theway to the design of a formalism allowing to apply the knowledge alreadydeveloped in the domain of Automated Deduction. To verify our approach wehave implemented a prototype which is currently executable in ELAN [13], asystem implementing computational systems.This paper is organised as follows. Section 2 contains some de�nitions andnotations. Section 3 gives a brief overview of CSP solving. Section 4 presentsc
 1996 Elsevier Science B. V.

C. Castroin details the computational system we have developed. Finally, Section 5concludes the paper.2 Basic De�nitions and NotationIn this section we formalise CSP. The basic concepts and de�nitions that weuse are based on [10,11,24].De�nition 2.1 [CSP]An elementary constraint c? is an atomic formula built on a signature� = (F ;P), where F is a set of ranked function symbols and P a set ofranked predicate symbols, and a denumerable set X of variable symbols. El-ementary constraints can be combined with usual �rst-order connectives andquanti�ers. We denote the set of constraints built from � and X by C(�;X).Given a structure D = (D; I), where D is the carrier and I is the inter-pretation function, a h�;X ;Di-CSP is any set C = fc?1; : : : ; c?ng such thatc?i 2 C(�;X) 8i = 1; : : : ; n.We denote a set of constraints C either by C = fc?1; : : : ; c?ng or by C =(c?1^: : :^c?n). We also denote by Var(c?) the set of free variables in a constraintc?; these are in fact the variables that the constraint constrains. The arity ofa constraint is de�ned as the number of free variables which are involved inthe constraint:arity(c?) = Card(Var(c?)):In this way we work with a ranked set of constraints C = Sn�0Cn, whereCn is the set of all constraints of arity n.De�nition 2.2 [Interpretation]Let D = (D; I) be a �-structure and X a set of variables symbols.� A variable assignment wrt I is a function which assign to each variable inX an element in D. We will denote a variable assignment wrt I by �, andthe set of all such functions by �XD .� A term assignment wrt I is de�ned as follows:� Each variable assignment is given according to �.� Each constant assignment is given according to I.� If t1D; : : : ; tnD are the term assignment of t1; : : : ; tn and fD is the interpre-tation of the n-ary function symbol f , then fD(t1D; : : : ; tnD) 2 D is theterm assignment of f(t1; : : : ; tn). We will denote a term assignment wrt Iand � by �(tD).� A formula in D can be given a truth value, true (T) or false (F), as follows:� If the formula is an atom p(t1; : : : ; tn), then the truth value is obtained bycalculating the value of pD(t1D; : : : ; tnD), where pD is the mapping assignedto p by I and t1D; : : : ; tnD are the term assignments of t1; : : : ; tn wrt I.� If the formula has the form (:A); (A^B); (A_B); (A! B), or (A$ B),then the truth value of the formula is given by the following table:2

C. CastroA B :A A ^B A _B A! B A$ BT T F T T T TT F F F T F FF T T F T T FF F T F F T T� If the formula has the form 9xA, then the truth value of the formula istrue if there exists d 2 D such that A has truth value true wrt I and �jx7!d,where �jx7!d is � except that x is assigned by d; otherwise, its truth valueis false.� If the formula has the form 8xA, then the truth value of the formula istrue if, for all d 2 D, we have that A has truth value true wrt I and �jx7!d;otherwise, its truth value is false.We denote by �(AD) the interpretation of a formula A wrt I and �.De�nition 2.3 [Satis�ability]Let � be a signature and D be a �-structure:� Given a formula A and an assignment �, we say that D satis�es A with � if�(AD) = T:This is also denoted byD j= �(A):� A formula A is satis�able in D if there is some assignment � such that�(AD) = T:� A is satis�able if there is some D in which A is satis�able.De�nition 2.4 [Solution of CSP]A solution of c? is a mapping from X to D that associates to each variablex 2 X an element in D such that c? is satis�able in D. The solution set of c?is given by:SolD(c?) = f� 2 �XD j�(c?) = Tg:A solution of C is a mapping such that all constraints c? 2 C are satis�ablein D. The solution set of C is given by:SolD(C) = f� 2 �XD j�(c?i) = T 8i = 1; : : : ; ng:Finally, in order to carry out the constraint solving process we introducethe following de�nition:De�nition 2.5 [Membership constraints]Given a variable x 2 X and a non-empty set Dx � D, the membershipconstraint of x is the relation given byx 2? Dx:A h�;X ;Di-CSP C 0 with membership constraints is a h�;X ;Di-CSP C whereC 0 = C S fx 2?Dxgx2X 3

C. CastroWe use these membership constraints to make explicit the domain reduc-tion process during the constraint solving. In practice, the sets Dx have tobe set up to D at the beginning of the constraint solving process, and dur-ing the processing of the constraint network they will be eventually reduced.In the standard literature of constraint solving the term domain reduction isgenerally used to make reference to constraint propagation. Since domainsare �xed once the interpretation is chosen, the membership constraints allowsto propagate the information in a clear and explicit way. From a theoreticalpoint of view, a membership constraint does not di�er from a constraint inthe set C; its solution set is de�ned in the same way.3 Constraint SolvingIn this work we consider CSPs in which the carrier of the structure is a �niteset and the constraints are only unary or binary. This class of CSP is knownas Binary Finite Constraint Satisfaction Problems or simply Binary CSP [17].For the graphical representation of this kind of CSP general graphs have beenused, that is why CSP are also known as networks of constraints [21]. Weassociate a graph G to a CSP in the following way. G has a node for eachvariable x 2 X . For each variable x 2 Var(c?) such that c? 2 C1, G has aloop, an edge which goes from the node associated to x to itself. For eachpair of variables x; y 2 Var(c?) such that c? 2 C2, G has two opposite directedarcs between the nodes associated to x and y. The constraint associated toarc (x; y) is similar to the constraint associated to arc (y; x) except that itsarguments are interchanged. This representation is based on the fact that the�rst algorithms to process CSP analyse the values of only one variable whenthey check a constraint.Example 3.1 Let � = (f3g; f�; 6=g), where arity(3) = 0; arity(�) = arity(6=) = 2;X = fx1; x2; x3g, D = (f1; 2; 3; 4; 5g � N; f�D; 6=Dg), and 3D;�Dand 6=D are interpreted as usual in the natural numbers. Considering theh�;X ;Di-CSP C = fx1 �? 3; x1 6=? x2; x1 6=? x3; x2 6=? x3g. If we join themembership constraints x1 2? Dx1 ; x2 2? Dx2 and x3 2? Dx3 and these setsDxi are set up to Dx1 = Dx2 = Dx3 = f1; 2; 3; 4; 5g, the graph which representsthis CSP is showed in the Figure 1.For a given CSP we denote by n the number of variables, by e the numberof binary constraints and by a the size of the carrier (a = Card(D):) Weuse node(G) and arc(G) to denote the set of nodes and arcs of graph G,respectively.Typical tasks de�ned in connection with CSP are to determine whether asolution exists, and to �nd one or all the solutions. In this section we presentthree categories of techniques used in processing CSP: Searching Techniques,Problem Reduction Techniques, and Hybrid Techniques. Kumar's work [14]is an excellent survey on this topic. 4

C. Castro
x3x2 x1 x1 6=? x3x1 6=? x2x2 6=? x3x2 6=? x1 x3 6=? x1x3 6=? x2

x1 �? 3x1 2? f1; 2; 3; 4; 5g
x2 2? f1; 2; 3; 4; 5g x3 2? f1; 2; 3; 4; 5gFig. 1. Graph representation for a Binary CSP3.1 Searching Techniques in CSPSearching consists of techniques for systematic exploration of the space of allsolutions. The simplest force brute algorithm generate-and-test, also calledtrial-and-error search, is based on the idea of testing every possible combina-tion of values to obtain a solution of a CSP. This generate-and-test algorithmis correct but it faces an obvious combinatorial explosion. Intending to avoidthat poor performance the basic algorithm commonly used for solving CSPsis the simple backtracking search algorithm, also called standard backtrackingor depth-�rst search with chronological backtracking, which is a general searchstrategy that has been widely used in problem solving. Although backtrackingis much better than generate and test, one almost always can observe patho-logical behaviour. Bobrow and Raphael have called this class of behaviourthrashing [4]. Thrashing can be de�ned as the repeated exploration of sub-trees of the backtrack search tree that di�er only in inessential features, suchas the assignments to variables irrelevant to the failure of the subtrees. Thetime complexity of backtracking is O(ane), i.e., the time taken to �nd a so-lution tends to be exponential in the number of variables [18]. In order toimprove the e�ciency of this technique, the notion of problem reduction hasbeen developed.3.2 Problem Reduction in CSPThe time complexity analysis of backtracking algorithm shows that search ef-�ciency could be improved if the possible values that the variables can take isreduced as much as possible [18]. Problem reduction techniques transform aCSP to an equivalent problem by reducing the values that the variables cantake. The notion of equivalent problems makes reference to problems whichhave identical set of solution. Consistency concepts have been de�ned in orderto identify in the search space classes of combinations of values which could5

C. Castronot appear together in any set of values satisfying the set of constraints. Mack-worth [17] proposes that these combinations can be eliminated by algorithmswhich can be viewed as removing inconsistencies in a constraint network rep-resentation of the problem and he establishes three levels of consistency: node,arc and path-consistency. These names come from the fact that general graphshave been used to represent this kind of CSP. It is important to realize thatthe varying forms of consistency algorithms can be seen as approximation al-gorithms, in that they impose necessary but not always su�cient conditionsfor the existence of a solution on a CSP.We now give the standard de�nitions of node and arc-consistency for abinary network of constraints and we present basic algorithms to achieve them.3.2.1 Node-ConsistencyDe�nition 3.2 [Node consistency]Given a variable x 2 X and a unary constraint c?(x) 2 C, the nodeassociated to x is consistent if8� 2 �XD : � 2 SolD(x 2? Dx)) � 2 SolD(c?(x)):A network of constraints is node-consistent if all its nodes are consistent.Figure 2 presents the algorithm NC-1 which is based on Mackworth [17].We assume that before applying this algorithm, there is an initialisation stepthat set up to D the set Dx associated to variable x in the membership con-straint x 2? Dx. The time complexity of NC-1 is O(an) [18], so node consis-tency is always established in time linear in the number of variables by thealgorithm NC-1. procedure NC-1;1 begin2 for each x 2 X do3 for each � 2 SolD(x 2? Dx) do4 if �(c?(x)) = F then5 Dx Dxn�(x);6 end_if7 end_do8 end_do9 endFig. 2. Algorithm NC-1 for node-consistency3.2.2 Arc-ConsistencyDe�nition 3.3 [Arc consistency]Given the variables xi; xj 2 X and the constraints c?i (xi); c?j(xj); c?k(xi; xj) 2C, the arc associated to c?k(xi; xj) is consistent if8� 2 �XD 9�0 2 �XD : � 2 SolD(xi 2? Dxi ^ c?i (xi))6

C. Castro) �0 2 SolD(xj 2? Dxj ^ c?j(xj) ^ c?k(�(xi); xj)):A network of constraints is arc-consistent if all its arcs are consistent.The �rst three algorithms developed to achieve arc-consistency are basedon the following basic operation �rst proposed by Fikes [8]: Given two vari-ables xi and xj, both of which are node-consistent, and the constraint c?(xi; xj),if � 2 SolD(xi 2? Dxi) and there is no �0 2 SolD(xj 2? Dxj ^ c?(�(xi); xj))then �(xi) has to be deleted from Dxi. When that has been done for each� 2 SolD(xi 2? Dxi) then arc (xi; xj) is consistent (but that no means thatarc (xj; xi) is consistent.) This idea is embodied in the function REVISE ofFigure 3. The time complexity of REVISE is O(a2), quadratic in the size ofthe variable's domain [18].function REVISE((xi; xj)): boolean1 begin2 RETURN F ;3 for each � 2 SolD(xi 2? Dxi) do4 if SolD(xj 2? Dxj ^ c?(�(xi); xj)) = ; then5 Dxi Dxin�(xi);6 RETURN T ;7 end_if8 end_do9 end Fig. 3. Function REVISEAt least one time we have to apply function REVISE to each arc in thegraph, but it is obvious that further applications of REVISE to the arcs(xj; xk), 8xk 2 X , could eliminate values inDxj which are necessary for achiev-ing arc-consistency in the arc (xi; xj), so reviewing only once each arc will notbe enough. The �rst three algorithms developed to achieve arc-consistencyuse the same basic action REVISE but they di�er in the strategy they applyREVISE.Algorithm AC-1AC-1 reviews, applying REVISE, each arc in an iteration. If at least oneset Dx is changed all arcs will be reviewed. This process is repeated until nochanges ocurr in all sets. Figure 4 presents the simplest algorithm to achievearc-consistency, where Q is the set of binary constraints to be reviewed.The worst case complexity of AC-1 is O(a3ne) [18]. The obvious ine�-ciency in AC-1 is that a successful revision of an arc on a particular iterationcauses all the arcs to be revised on the next iteration whereas in fact only asmall fraction of them could possibly be a�ected.7

C. Castroprocedure AC-1;1 begin2 Q f(xi; xj) j (xi; xj) 2 arcs(G); xi 6= xjg;3 repeat4 change false ;5 for each (xi; xj) 2 Q do6 change change or REVISE((xi; xj));7 end_do8 until :change9 endFig. 4. Algorithm AC-1 for arc-consistencyAlgorithm AC-3AC-1 can be evidently improved if after the �rst iteration we only reviewthe arcs which could be a�ected by the removal of values. This idea was �rstimplemented by Waltz' �ltering algorithm [26] and captured later by Mack-worth's algorithm AC-2 [17]. The algorithm AC-3 proposed by Mackworth[17] also uses this idea. Figure 5 presents AC-3. If we assume that the con-straint graph is connected (e � n � 1) and time complexity of REVISE isO(a2), time complexity of AC-3 is O(a3e), so arc-consistency can be veri�edin linear time in the number of constraints [18].procedure AC-3;1 begin2 Q f(xi; xj) j (xi; xj) 2 arcs(G); xi 6= xjg;3 while Q 6= ; do4 select and delete any arc (xi; xj) 2 Q;5 if REVISE((xi; xj)) then6 Q Q [f(xk; xi) j (xk; xi) 2 arcs(G); xk 6= xi; xk 6= xjg;7 end_if8 end_do9 end Fig. 5. Algorithm AC-3 for arc-consistencyIn [20] Mohr and Henderson propose the algorithm AC-4 whose worst-casetime complexity is O(ea2) and they prove its optimality in terms of time. AC-4 drawbacks are its average time complexity, which is too near the worst-casetime complexity, and even more so, its space complexity which is O(ea2). Inproblems with many solutions, where constraints are large and arc-consistencyremoves few values, AC-3 runs often faster than AC-4 despite its non-optimaltime complexity [25]. Moreover, in problems with a large number of valuesin variable domains and with weak constraints, AC-3 is often used insteadof AC-4 because of its space complexity. Two algorithms AC-5 have beendeveloped, one by Deville and Van Hentenryck [7] and another by Perlin [23].8

C. CastroThey permit exploitation of speci�c constraint structures, but reduce to AC-3 or AC-4 in the general case. Bessière [1] proposed the algorithm AC-6which keeps the optimal worst-case time complexity of AC-4 while workingout the drawback of space complexity, AC-6 has an O(ea) space complexity.However, the main limitation of AC-6 is its theoretical complexity when usedin a search procedure. In [2] Bessière proposes an improved version of AC-6,AC-6+, which uses constraint bidirectionality (a constraint is bidirectional ifthe combination of values a for a variable xi and b for a variable xj is allowedby the constraint between xi and xj if and only if b for xj and a for xi isallowed by the constraint between xj and xi.) This algorithm was improvedlater by Bessière and Régin with their AC-6++ algorithm [3]; by coincidencein the same workshop Freuder presented his AC-7 algorithm [9]. As our aimin this work is to introduce a new framework to model CSP, we use here onlyAC-1 and AC-3 algorithms because we need a very simple data structures toimplement them.In general, the complexity analysis of consistency algorithms shows thatthey can be thought of as a low-order polynomial algorithms for exactly solvinga relaxed version of a CSP whose solution set contains the set of solutions tothe CSP. The more e�ort one puts into �nding the approximation the smallerthe discrepancy between the approximating solution set and the exact solutionset.3.3 Hybrid TechniquesAs backtracking su�ers from thrashing and consistency algorithms can onlyeliminate local inconsistencies, hybrid techniques have been developed. In thisway we obtain a complete algorithm that can solve all problems and wherethrashing has been reduced. Hybrid techniques integrate constraint propaga-tion algorithms into backtracking in the following way: whenever a variableis instantiated, a new CSP is created; a constraint propagation algorithm canbe applied to remove local inconsistencies of these new CSPs [27]. Embed-ding consistency techniques inside backtracking algorithms is called HybridTechniques. A lot of research has been done on algorithms that essentially�t the previous format. In particular, Nadel [22] empirically compares theperformance of the following algorithms: Generate and Test, Simple Back-tracking, Forward Checking, Partial Lookahead, Full Lookahead, and ReallyFull Lookahead. These algorithms primarily di�er in the degrees of arc consis-tency performed at the nodes of the search tree. These experiments indicatethat it is better to apply constraint propagation only in a limited form.4 A Computational System for Solving Binary CSPThe idea of solving constraint systems using computational systems was �rstlyproposed by Kirchner, Kirchner and Vittek in [12] where they de�ne the con-cept of computational systems and describe how a constraint solver for sym-bolic constraints can be viewed as a computational system aimed at comput-9

C. Castroing solved forms for a class of considered formulas called constraints. Theypoint out some advantages of describing constraint solving processes as com-putational systems over constraint solving systems where solvers are encapsu-lated in black boxes, such as reaching solved forms more e�ciently with smartchoices of rules, easier termination proofs and possibly partly automated, de-scription of constraint handling in a very abstract way, and easy combinationof constraint solving with other computational systems. In this section webrie�y present computational systems and then describe in details our systemfor solving Binary CSP.4.1 Computational SystemsFollowing [12], a computational system is given by a signature providing thesyntax, a set of conditional rewriting rules describing the deduction mecha-nism, and a strategy to guide application of rewriting rules. Formally, thisis the combination of a rewrite theory in rewriting logic [19], together with anotion of strategy to e�ciently compute with given rewriting rules. Computa-tion is exactly application of rewriting rules on a term and strategies describethe intented set of computations, or equivalently in rewriting logic, a subsetof proofs terms.4.2 Solved FormsTerm rewriting repeatedly transforms a term into an equivalent one, using aset of rewriting rules, until a normal form is eventually obtained. The solvedform we use is de�ned with the notion of basic form.De�nition 4.1 [Basic form]A basic form for a CSP P is any conjunction of formula of the formî2I(xi 2? Dxi) ^ ĵ2J(xj =? vj) ^ k̂2K(c?(xk)) ^ ^l;m2M(c?(xl; xm))equivalent to P such that� 8i1; i2 2 I; i1 6= i2) xi1 6= xi2� 8i 2 I;Dxi 6= ;� 8j1; j2 2 J; j1 6= j2) xj1 6= xj2� 8i 2 I 8j 2 J xi 6= xj� 8k 2 K 9i 2 I 9j 2 J; xk = xi _ xk = xj� 8l 2M 9i 2 I 9j 2 J; xl = xi _ xl = xjThe constraints in the �rst, second, third and fourth conjunction are calledmembership, equality, unary and binary constraints, respectively. For eachvariable we have associated a membership constraint or an equality constraint,the set associated to each variable in the membership constraints must not beempty, and for each variable appearing in the unary or binary constraintsthere must be associated a membership constraint or an equality constraint.10

C. CastroVariables which are only involved in equality constraints are called solvedvariables and the others non-solved variables.A CSP P in basic form can be associated with a basic assignment obtainedby assigning each variable in the equality constraints to the associated value vand each variable x in the membership constraints to any value in the set Dx.In this way we can de�ne several forms depending on the level of consistencywe are imposing on the constraint set. So, a CSP P in unary solved form is asystem in basic form whose set of constraints is node consistent, and a CSPP in binary solved form is a system in basic form whose set of constraints isarc consistent.De�nition 4.2 [Solved form]A solved form for a CSP P is a conjunction of formulas in basic formequivalent to P and such that all basic assignments satisfy all constraints. Abasic assignment of a CSP P in solved form is called solution.4.3 Rewriting RulesFigure 6 presents ConstraintSolving, a set of rewriting rules for constraintsolving in CSP. Some ideas expressed in this set of rules are based on Comon,Dincbas, Jouannaud, and Kirchner's work where they present transformationrules for solving general constraints over �nite domains [6].As we explained in section 3.2.2 the �rst three algorithms to achieve arc-consistency only di�er in the strategy they apply a basic action: REVISE.But, following the main idea of Lee and Leung's Constraint Assimilation Al-gorithm [15], we can also see the algorithm NC-1 presented in section 3.2.1 asa procedure to coordinate the application of a domain restriction operation 1which removes inconsistent values from the set Dx of the membership con-straints. So, we could create only one rewriting rule to implement node andarc-consistency but for clarity reasons we avoid merging both techniques andcreate the rules Node-Consistency and Arc-Consistency.Before applying the algorithm NC-1 we start with the membership con-straint x 2? Dx and the unary constraint c?(x). After applying NC-1 weobtain a modi�ed membership constraint x 2? D0x, where D0x is Dx withoutthe values that satisfy x 2? Dx but do not satisfy c?(x). This membershipconstraint capture all constraint information coming from the original two,their solution sets are the same:SolD(x 2? D0x) = SolD(x 2? Dx ^ c?(x)):This is an inference step where a new constraint can be deduced and theoriginal two be deleted. This key idea is captured by Node-Consistency,where RD(x 2? Dx; c?(x)) stands for the set D0x = fv 2 Dx j c?(v)g. It isimportant to note that there is not condition to use this rule because also incase that c?(x) does not constrain any value already constrained by x 2? Dx1This is the name used by Lee and Leung to denote a general operation REVISE whichremoves inconsistent values of all variables involved in a n-ary constraint p(x1; : : : ; xn):11

C. Castro[Node�Consistency] x 2? Dx ^ c?(x) ^ C) x 2? RD(x 2? Dx; c?(x)) ^ C[Arc�Consistency] xi 2? Dxi ^ xj 2? Dxj ^ c?(xi; xj) ^ C) xi 2? RD(xi 2? Dxi ; xj 2? Dxj ; c?(xi; xj)) ^xj 2? Dxj ^ c?(xi; xj) ^ Cif RD(xi 2? Dxi ; xj 2? Dxj ; c?(xi; xj)) 6= Dxi[Instantiation] x 2? Dx ^ C) x =? �(x) ^ Cif f�g = SolD(x 2? Dx)[Elimination] x =? v ^ C) x =? v ^ Cfx 7! vgif x 2 Var(C)[Falsity] x 2? ; ^ C) F[Generate] x 2? Dx ^ C) x =? �(x) ^ C or x 2? Dxn�(x) ^ Cif � 2 SolD(x 2? Dx)Fig. 6. ConstraintSolving: Rewriting rules for solving Binary CSPwe will not modify the original membership constraint but we can eliminatethe constraint c?(x).The inference step carried out by arc-consistency algorithms can be seenas an initial state with constraints xi 2? Dxi , xj 2? Dxj , and c?(xi; xj) and a�nal state where xi 2? Dxi has been eliminated and a new constraint xi 2? D0xihas been created, where D0xi corresponds to Dxi without the elements whichare not compatible with values in Dxj wrt c(xi; xj). This is expressed by theinference rule Arc-Consistency, where RD(xi 2? Dxi ; xj 2? Dxj ; c?(xi; xj))stands for the set D0xi = fv 2 Dxi j (9w 2 Dxj) c?(v;w)g. In this case werequire that RD(xi 2? Dxi; xj 2? Dxj ; c?(xi; xj)) 6= Dxi to really go on.The rewriting rule Instantiation corresponds to the variable instantia-tion. If there is only one assignment � which satis�es x 2? Dx then themembership constraint is deleted and a new constraint x =? �(x) is added.This rule makes explicit the dual meaning of an assignment. Algorithmiclanguages require two di�erent operators for equality and assignment. In aconstraint language, equality is used only as a relational operator, equivalentto the corresponding operator in conventional languages. The constraint solv-ing mechanism "assigns" values to variables by �nding values for the variablesthat make the equality relationships true [16].12

C. CastroElimination express the fact that once a variable has been instantiated wecan propagate its value through all constraints where the variable is involvedin. In this way we can reduce the arity of these constraints; unary constraintswill become ground formulas whose truth value have to be veri�ed and binaryconstraints will become unary constraints which are more easily tested. Oncewe apply Elimination the variable involved in this rule will become a solvedvariable. It is important to note the strong relation between Instantiationand Elimination. Semantically the constraints x 2? fvg is equivalent to x =?v, but for e�ciency reasons the use of Elimination allows the simpli�cation ofthe constraint system avoiding further resolution of the membership constraintand the constraints where the variable in involved in. Advantages of thisapproach have been pointed out since the early works on mathematical formulamanipulation where the concept of simpli�cation was introduced. Caviness[5] mentions that simpli�ed expressions usually require less memory, theirprocessing is faster and simpler, and their functional equivalence are easierto identify. However, it is necessary to point out that with this choice welose some information, particularly in case of incremental constraint solving,because we do not know any more where the variable was involved in.The rule Falsity express the obvious fact of unsatis�ability. If we arriveto Dx = ; in a membership constraint x 2? Dx the CSP is unsatis�able.The ruleGenerate express the simple fact of branching. Starting with theoriginal constraint set we generate two subsets. In one of them we assume aninstantiation for any variable involved in the membership constraints; in theother subset we eliminate that value from the set involved in the membershipconstraint associated to that variable. In this way the solution for the originalproblem will be in the union of the solutions for the subproblems.Lemma 4.3 The set of rules ConstraintSolving is correct and complete.Proof: Correctness of rule Node-Consistency is reduced to prove thatSolD(x 2? RD(x 2? Dx; c?(x))) � SolD(�(x 2? Dx ^ c?(x))). By de�nitionRD(x 2? Dx; c?(x)) = D0x where D0x = fv 2 Dx j c?(v)g, so evidently allsolution of x 2? RD(x 2? Dx; c?(x)) is solution of x 2? Dx ^ c?(x). To provecompleteness we can follow the same idea. Correctness and completness ofrule Arc-Consistency can be proved using the same schema as for Node-Consistency. The prove for rules Instantiation, Elimination, and Falsityis evident. The right hand side of rule Generate is equivalent to (x =?�(x) _ x 2? Dxn�(x)) ^ C. This expresion is equivalent to x 2? Dx ^ C,the left hand side of the rule, so rule Generate is correct and complete.Theorem 4.4 Starting with a CSP P and applying repeatedly the rules inConstraintSolving until no rule applies anymore results in F i� P has nosolution or else it results in a solved form of P .Proof: Termination of the set of rules is clear since the application ofall rules, except one, strictly reduce the size of the set of constraints. Theonly exception is rule Instantiation that does not reduce the set. This ruleeliminates a membership constraint and creates an equality constraint. As13

C. Castromembership constraint are only created at the beginning of the constraintsolving, one for each variable, this rule is applied at most n times.When we start constraint solving we have the system C ^ x 2? Dx; 8x 2X . Rule Node-Consistency eliminates unary constraints from C. Arc-Consistency only modi�es the sets Dx. Rule Instantiation eliminatesmembership constraints and creates at most one equality constraint per vari-able. Rule Eliminate eventually deletes unary constraints and transformsbinary constraints into unary constraints. Generate modi�es a domain Dx,or deletes a membership constraint and creates an equality constraint. So, ifthe problem is satis�able the application of these rules gives a solved form. Ifthe problem is unsatis�able, i.e., some domain becomes empty, rule Falsitywill detect that.4.4 StrategiesAs we have mention there are several heuristics to search for a solution in CSP,starting from the brute force generate and test algorithm until elaborated ver-sions of backtracking. The expressive power of computational systems allowsto express these di�erent heuristics through the notion of strategy. In thisway, for example, a unary solved form can be obtained by applying [Node-Consistency j Falsity]�, a binary solved form can be obtained by applying[Arc-Consistency j Falsity]�, and a solved form can be obtained using thestrategy [[Generate; Elimination] j Falsity]� which implements exhaustivesearching 2 .We can integrate constraint propagation and searching in order to get asolved form more e�ciently than the force brute approach. Let us de�ne thefollowing strategies for applying rules from ConstraintSolving:� NodeC :: Node-Consistency [[Instantiation; Elimination]jFalsity]�� ArcC :: Arc-Consistency [[Instantiation; Elimination]jFalsity]�� ConsSol1 :: [NodeC j ArcC]� [[Generate; Elimination]jFalsity]�� ConsSol2 :: [[NodeC j ArcC]� Generate; Elimination]�The strategy ConsSol1 implements a preprocessing which veri�es nodeand arc consistency and then carries out an exhaustive search in the reducedproblem. The strategy ConsSol2 implements an heuristic which, once nodeand arc consistency have been veri�ed, carries out an enumeration step, thenveri�es again node and arc consistency and so on. ConsSol2 is a particularversion of Forward Checking an heuristic widely used in CSP.4.5 ImplementationWe have implemented a prototype of our system which is currently executablein the system ELAN [13], an interpretor of computational systems 3 . To verify2The symbol � means applying a given rule zero or N times over the constraint system.3 ELAN is available via anonymous ftp at ftp.loria.fr in the di-rectory /pub/loria/protheo/softwares/Elan. Further information can be obtained at14

C. Castroour approach we have implemented constraint solving using two versions ofarc consistency: AC-1 and AC-3 4 . The benchmarks which we have carriedout are consistent with the well known theoretical and experimental results interms of constraint checking, where AC-3 is obviously better than AC-1. Usingthe non determinism of ELAN we have easily implemented Forward Checking,the most popular hybrid technique. In Appendix A we present an overviewof our implementation. All details about this prototype can be obtained athttp://www.loria.fr/�castro/PROJECTS/csp.html.5 ConclusionWe have implemented a prototype of a computational system for solving Bi-nary CSP. We have veri�ed how computational systems are an easy and nat-ural way to describe and manipulate Binary CSP. The main contributions ofthis work can be seen from two points of view. First, we have formalisedalgorithms to solve Binary CSP in a way which makes explicit di�erence be-tween actions and control that until now were embeded in black boxes likealgorithms. Second, we have extended the domain of application of Rewrit-ing Logic. The distinction between actions and control allows us to betterunderstand the algorithms for constraint solving which we have used. As ouraim in this work was only to apply the expressive power of computationalsystems to better understand constraint propagation in CSP we did not careabout e�ciency in searching for a solution, so as future work we are inter-ested in e�ciency considerations related to our implementation. As a nearfuture work we are interested in the analysis of the data structures which willallow us to implement more e�cient versions of arc-consistency algorithms.We hope that powerful strategy languages will allow us to evaluate existinghybrid techniques for constraint solving and design new ones.AcknowledgementI am grateful to Dr. Claude Kirchner for his theoretical support and PeterBorovanský and Pierre-Etienne Moreau for their help concerning the imple-mentation.References[1] C. Bessière. Arc-consistency and arc-consistency again. Arti�cial Intelligence,65:179�190, 1994.http://www.loria.fr/equipe/protheo.html/PROJECTS/ELAN/elan.html4The rewriting system presented in this work allows the direct implementation of AC-1.Implementing AC-3 only required to add a rewriting rule to check the constraints whichcould be a�ected by the constraint propagation. For simplicity reasons we do not includeit here. 15

C. Castro[2] C. Bessière. A fast algorithm to establish arc-consistency in constraint networks.Technical Report TR-94-003, LIRMM Université de Montpellier II, January1994.[3] C. Bessière and J.-C. Régin. An arc-consistency algorithm optimal in thenumber of constraint checks. In Proceedings of the Workshop on ConstraintProcessing, ECAI'94, Amsterdam, The Netherlands, pages 9�16, 1994.[4] D. G. Bobrow and B. Raphael. New Programming Languages for Arti�cialIntelligence Research. Computing Surveys, 6(3):153�174, September 1974.[5] B. F. Caviness. On Canonical Forms and Simpli�cation. Journal of the ACM,17(2):385�396, April 1970.[6] H. Comon, M. Dincbas, J.-P. Jouannaud, and C. Kirchner. A MethodologicalView of Constraint Solving. Working paper, 1996.[7] Y. Deville and P. V. Hentenryck. An e�cient arc consistency algorithm fora class of csp problems. In Proceedings of the Twelfth International JointConference on Arti�cial Intelligence, pages 325�330, 1991.[8] R. E. Fikes. REF-ARF: A System for Solving Problems Stated as Procedures.Arti�cial Intelligence, 1:27�120, 1970.[9] E. C. Freuder. Using metalevel constraint knowledge to reduce constraintchecking. In Proceedings of the Workshop on Constraint Processing, ECAI'94,Amsterdam, The Netherlands, pages 27�33, 1994.[10] J. H. Gallier. Logic for Computer Sciences, Foundations of Automatic TheoremProving. Harper and Row, 1986.[11] H. Kirchner. On the Use of Constraints in Automated Deduction. InA. Podelski, editor, Constraint Programming: Basics and Trends, volume 910 ofLecture Notes in Computer Science, pages 128�146. Springer-Verlag, 1995.[12] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logicprogramming languages using computational systems. In P. V. Hentenryck andV. Saraswat, editors, Principles and Practice of Constraint Programming. TheNewport Papers, pages 131�158. The MIT press, 1995.[13] C. Kirchner, H. Kirchner, and M. Vittek. ELAN, User Manual. INRIA Loraine& CRIN, Campus scienti�que, 615, rue du Jardin Botanique, BP-101, 54602Villers-lès-Nancy Cedex, France, November 1995.[14] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey.Arti�cial Intelligence Magazine, 13(1):32�44, Spring 1992.[15] J. H. M. Lee and H. F. Leung. Incremental Querying in the ConcurrentCLP Language IFD-Constraint Pandora. In K. M. George, J. H. Carroll,D. Oppenheim, and J. Hightower, editors, Proceedings of the 11th AnualSymposium on Applied Computing, SAC'96, Philadelphia, Pennsylvania, USA,pages 387�392, February 1996.[16] W. Leler. Constraint Programming Languages, Their Speci�cation andGeneration. Addison-Wesley Publishing Company, 1988.16

C. Castro[17] A. K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelligence,8:99�118, 1977.[18] A. K. Mackworth and E. C. Freuder. The Complexity of Some PolynomialNetwork Consistency Algorithms for Constraint Satisfaction Problems.Arti�cial Intelligence, 25:65�74, 1985.[19] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency.Theoretical Computer Science, 96(1):73�155, 1992.[20] R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Arti�cialIntelligence, 28:225�233, 1986.[21] U. Montanari. Networks of constraints: Fundamental properties andapplications to picture processing. Information Sciences, 7:95�132, 1974.[22] B. Nadel. Tree Search and Arc Consistency in Constraint-SatisfactionAlgorithms. In L. Kanal and V. Kumar, editors, Search in Arti�cial Intelligence,pages 287�342. Springer-Verlag, 1988.[23] M. Perlin. Arc consistency for factorable relations. Arti�cial Intelligence,53:329�342, 1992.[24] P. van Hentenryck. Constraint Satisfaction in Logic Programming. The MITpress, 1989.[25] R. J. Wallace. Why AC-3 is almost always better than AC-4 for establishingarc concsistency in CSPs. In Proceedings IJCAI-93, pages 239�245, 1993.[26] D. Waltz. Understanding lines drawings of scenes with shadows. In P. H.Winston, editor, The Psychology of Computer Vision, pages 19�91. McGraw-Hill, 1975.[27] M. Zahn and W. Hower. Backtracking along with constraint processing andtheir time complexities. Journal of Experimental and Theoretical Arti�cialIntelligence, 8:63�74, 1996.A ImplementationIn ELAN, a logic can be expressed by its syntax and its inference rules. Thesyntax of the logic can be described using mix�x operators. The inferencerules of the logic are described by conditional rewrite rules. The languageprovides three levels of programmation:� First the design of a logic is done by the so-called super-user. In our casethat is a description in a generic way of the constraint solving process.� The logic can be used by the programmer in order to write a speci�cation.� Finally, the end-user can evaluate queries valid in the speci�cation, followingthe semantics described by the logic.In our implementation the top level of the logic description is given by thesuper-user in the module presented in �gure A.1.17

C. CastroLPL Solver_CSP_Int descriptionspeci�cation descriptionpart Variables of sort list[identi�er]part Values of sort list[int]end query of sort list[formule]result of sort cspmodules Solver_CSP[Variables,int,Values]start with (Solved_Form) CreateCSP(query)end of LPL descriptionFig. A.1. Logic descriptionThis module speci�es that the programmer has to provide a speci�cationmodule which has to include two parts: Variables and Values. As an examplewe can consider the speci�cation module presented in �gure A.2.speci�cation My_variables_and_valuesVariablesX1 X2Values1 2 3 4 5end of speci�cationFig. A.2. End-user speci�cationThe sorts list, identi�er and int are built-in, and the query sort and resultsort are de�ned by the super-user. Sort list[formule] de�nes the data structureof the query, in this case, a list of constraints. The sort csp is a data structureconsisting of three list; the �rst one records the membership constraints, thesecond one records the equality constraints, and the third one records theunary and binary constraints. Once the programmer has de�ned the logic,and has provided a query term, ELAN will process in the following way. Thesymbol CreateCSP will apply on the query term, then using the strategySolved_Form, included in the module Solver_CSP, ELAN will iterate until norule applies anymore. CreateCSP uses the constructors CreateLMC, to createthe list of membership constraints, and CreateC, to create the list of unaryand binary constraints from the list of de formula L given by the end-user 5 .The strategy Solved_Form control the application of the rules as is showedin the �gure A.3. This strategy implements local consistency with exhaustivesearch. If we eliminate the sub-strategy dont know choose(Generate) weobtain a particular version of AC-1 algorithm.Finally, in �gure A.4 we present rule Node-Consistency. This rule appliesthe strategy Strategy_Node-Consistency, presented in �gura A.5, on a csp5Creation of the list of unary and binary constraints is not only a copy of the list L,because for each binary constraint c?(xi; xj) we have to create its inverse c?(xj ; xi).18

C. Castrostrategy Solved_Formrepeatdont care choose (dont care choose (Node-Consistency)kdont care choose (Arc-Consistency)kdont care choose (Instantiation)kdont care choose (Elimination)kdont care choose (Falsity)kdont know choose (Generate))endrepeatend of strategyFig. A.3. Strategy Solved_Formwith at least one element in the list of unary and binary constraints. Strat-egy Strategy_Node-Consistency uses rule GetUnaryConstraint to get the �rstunary constraint in the list of unary and binary constraints. If there exists aunary constraint the strategy will apply rule Node-Consistency_1, if the vari-able involved in the unary constraint is in the list of membership constraints,or rule Node-Consistency_2, if the variable is in the list of equality constraints.In the setConstraintSolving we use only one rule to verify node consistency,but we have implemented two versions sligtly di�erents. This is an implemen-tation choice, as we have a list for the membership constraints and anotherone for the equality constraints, it is easy to pro�te this information. Thesame explanation is valid for arc consistency, where we have created four rulesto implement the general version presented in the set ConstraintSolving.
19

C. Castrorules for cspdeclarex : var;v : Type;D : list[Type];c : formule;C,lmc,lec : list[formule];P : csp;bodies[Node-Consistency] CSP(lmc,lec,c.C) => Pwhere P:= (Strategy_Node-Consistency)CSP(lmc,lec,c.C)end[Node-Consistency_1] CSP(x in? D.lmc,lec,c.C)=> CSP(x in? ReviseDxWRTc(x,D,c).lmc,lec,C)end[Node-Consistency_2] CSP(lmc,x =? v.lec,c.C) =>CSP(lmc,x =? v.lec,C)if SatisfyUnaryConstraint(x,v,c)...end Fig. A.4. Rules to implement Node Consistencystrategy Strategy_Node-Consistencydont care choose (GetUnaryConstraint)dont care choose (dont care choose (GetVarOfUnaryConstraintInLMC)dont care choose (Node-Consistency_1)kdont care choose (GetVarOfUnaryConstraintInLEC)dont care choose (Node-Consistency_2))end of strategyFig. A.5. Strategies to implement Node Consistency20

