A VLA ATV A 2L A A e AR T YL A A A YY) VY S et

Solving Binary CSP Using Computational
Systems

Carlos Castro

INRIA Lorraine & CRIN
615 rue du jardin botanique, BP 101,
54602 Villers-les-Nancy Cedex, France
e-mail: Carlos.Castro@loria.fr

Abstract

In this paper we formalise CSP solving as an inference process. Based on the no-
tion of Computational Systems we associate actions with rewriting rules and control
with strategies that establish the order of application of the inferences. The main
contribution of this work is to lead the way to the design of a formalism allowing
to better understand constraint solving and to apply in the domain of CSP the
knowledge already developed in Automated Deduction.

Keywords: Constraint Satisfaction Problems, Computational Systems, Rewriting
Logic.

1 Introduction

In the last twenty years many work has been done on solving Constraint Sat-
isfaction Problems, CSP. The solvers used by constraint solving systems can
be seen as encapsulated in black boxes. In this work we formalise CSP solv-
ing as an inference process. We are interested in description of constraint
solving using rule-based algorithms because of the explicit distinction made
in this approach between deduction rules and control. We associate actions
with rewriting rules and control with strategies which establish the order of
application of the inferences. Our first goal is to improve our understanding of
the algorithms developed for solving CSP once they are expressed as rewrit-
ing rules coordinated by strategies. Extending the domain of application of
Rewriting Logic to CSP is another motivation for this work. This leads the
way to the design of a formalism allowing to apply the knowledge already
developed in the domain of Automated Deduction. To verify our approach we
have implemented a prototype which is currently executable in ELAN [13], a
system implementing computational systems.

This paper is organised as follows. Section 2 contains some definitions and
notations. Section 3 gives a brief overview of CSP solving. Section 4 presents

(© 1996 Elsevier Science B. V.

A L AVAS

in details the computational system we have developed. Finally, Section 5
concludes the paper.

2 Basic Definitions and Notation

In this section we formalise CSP. The basic concepts and definitions that we
use are based on [10,11,24].

Definition 2.1 [CSP]

An elementary constraint ¢’ is an atomic formula built on a signature
Y = (F,P), where F is a set of ranked function symbols and P a set of
ranked predicate symbols, and a denumerable set X' of variable symbols. El-
ementary constraints can be combined with usual first-order connectives and
quantifiers. We denote the set of constraints built from ¥ and X by C(¥, X).
Given a structure D = (D, [), where D is the carrier and [is the inter-
pretation function, a (X, X, D)-CSP is any set C = {c!,....c’} such that
el X)Vi=1,...,n.

We denote a set of constraints C either by ¢ = {cl,...,c’} or by C =
(cIA...AC'). We also denote by Var(c') the set of free variables in a constraint
¢’; these are in fact the variables that the constraint constrains. The arity of
a constraint is defined as the number of free variables which are involved in
the constraint:

arity(c’) = Card(Var(c")).

In this way we work with a ranked set of constraints (' = U,»,C', where
('), is the set of all constraints of arity n.

Definition 2.2 [Interpretation|
Let D = (D, I) be a Y-structure and X" a set of variables symbols.

o A variable assignment wrt I is a function which assign to each variable in
X an element in D. We will denote a variable assignment wrt [by «, and
the set of all such functions by az.

o A term assignment wrt [is defined as follows:

- Each variable assignment is given according to a.

- Each constant assignment is given according to [.

- Iftyp,...,t,p are the term assignment of ¢1,...,¢, and fp is the interpre-
tation of the n-ary function symbol f, then fp(tip,...,t,p) € D is the
term assignment of f(¢1,...,%,). We will denote a term assignment wrt /
and o by a(tp).

o A formula in D can be given a truth value, true (T) or false (F), as follows:
- If the formula is an atom p(1,...,t,), then the truth value is obtained by
calculating the value of pp(t1p, ..., t.p), where pp is the mapping assigned

to p by I and typ,...,t,p are the term assignments of ¢y,...,¢, wrt [.

- If the formula has the form (=A), (AAB),(AV B),(A — B),or (A < B),
then the truth value of the formula is given by the following table:

2

L LA

A|B|-A|AANB|AVB|A—-B| A& B
T|T| F T T T T
T F| F F T F F
F|T| T F T T F
F|F| T F F T T

- If the formula has the form dx A, then the truth value of the formula is
true if there exists d € D such that A has truth value true wrt I and a4,
where a4 is o except that x is assigned by d; otherwise, its truth value
is false.

- If the formula has the form Vz A, then the truth value of the formula is
true if, for all d € D, we have that A has truth value true wrt I and a|s4;
otherwise, its truth value is false.

We denote by a(Ap) the interpretation of a formula A wrt [and «.

Definition 2.3 [Satisfiability|
Let X be a signature and D be a Y-structure:
o Given a formula A and an assignment «, we say that D satisfies A with o if
a(Ap) =T.
This is also denoted by
D E a(A).
o A formula A is satisfiable in D if there is some assignment « such that
a(Ap) =T.
o A is satisfiable if there is some D in which A is satisfiable.
Definition 2.4 [Solution of CSP]
A solution of ¢’ is a mapping from X to D that associates to each variable
x € X an element in D such that ¢’ is satisfiable in D. The solution set of ¢’
is given by:
Solp(c') = {a € apla(c’) = T}.
A solution of C'is a mapping such that all constraints ¢’ € C are satisfiable
in D. The solution set of C' is given by:
Solp(C) = {a € apla(c)) =T Vi=1,...,n}.
Finally, in order to carry out the constraint solving process we introduce
the following definition:

Definition 2.5 [Membership constraints]
Given a variable z € X and a non-empty set D, C D, the membership
constraint of x is the relation given by
e’ D,.

A (X, X, D)-CSP C" with membership constraintsis a (X, X', D)-CSP C where
C'=CU{z €7D} cn

A L AVAS

We use these membership constraints to make explicit the domain reduc-
tion process during the constraint solving. In practice, the sets D, have to
be set up to D at the beginning of the constraint solving process, and dur-
ing the processing of the constraint network they will be eventually reduced.
In the standard literature of constraint solving the term domain reduction is
generally used to make reference to constraint propagation. Since domains
are fixed once the interpretation is chosen, the membership constraints allows
to propagate the information in a clear and explicit way. From a theoretical
point of view, a membership constraint does not differ from a constraint in
the set C'; its solution set is defined in the same way.

3 Constraint Solving

In this work we consider CSPs in which the carrier of the structure is a finite
set and the constraints are only unary or binary. This class of CSP is known
as Binary Finite Constraint Satisfaction Problems or simply Binary CSP [17].
For the graphical representation of this kind of CSP general graphs have been
used, that is why CSP are also known as networks of constraints [21]. We
associate a graph G to a CSP in the following way. G has a node for each
variable * € X. For each variable * € Var(c’) such that ¢’ € C, G has a
loop, an edge which goes from the node associated to z to itself. For each
pair of variables z,y € Var(c’) such that ¢’ € Cy, GG has two opposite directed
arcs between the nodes associated to x and y. The constraint associated to
arc (x,y) is similar to the constraint associated to arc (y,) except that its
arguments are interchanged. This representation is based on the fact that the
first algorithms to process CSP analyse the values of only one variable when
they check a constraint.

Example 3.1 Let ¥ = ({3}, {<, #}), where arity(3) = 0, arity(<) = arity(#
) = 2,X = {x,29,23}, D = ({1,2,3,4,5} C I, {<p,#p}), and 3p,<p
and #p are interpreted as usual in the natural numbers. Considering the
(3, X, D)-CSP C = {x; <" 3,2y #7 29,21 £ 23,79 £ 23}. If we join the
membership constraints z; €7 Dy, 2o e’ D, and z3 e’ D, and these sets
D, areset upto D, = D,, = D,, = {1,2,3,4,5}, the graph which represents
this CSP is showed in the Figure 1.

For a given CSP we denote by n the number of variables, by e the number
of binary constraints and by a the size of the carrier (¢ = Card(D).) We
use node(() and arce((G) to denote the set of nodes and arcs of graph G,
respectively.

Typical tasks defined in connection with CSP are to determine whether a
solution exists, and to find one or all the solutions. In this section we present
three categories of techniques used in processing CSP: Searching Techniques,
Problem Reduction Techniques, and Hybrid Techniques. Kumar’s work [14]
is an excellent survey on this topic.

A L AVAS

z1 €°{1,2,3,4,5}; <'3

T2 7£? T3

T3 7£ To

2 € {1,2,3,4,5} s €°{1,2,3,4,5}

Fig. 1. Graph representation for a Binary CSP

3.1 Searching Techniques in CSP

Searching consists of techniques for systematic exploration of the space of all
solutions. The simplest force brute algorithm generate-and-test, also called
trial-and-error search, is based on the idea of testing every possible combina-
tion of values to obtain a solution of a CSP. This generate-and-test algorithm
is correct but it faces an obvious combinatorial explosion. Intending to avoid
that poor performance the basic algorithm commonly used for solving CSPs
is the simple backtracking search algorithm, also called standard backtracking
or depth-first search with chronological backtracking, which is a general search
strategy that has been widely used in problem solving. Although backtracking
is much better than generate and test, one almost always can observe patho-
logical behaviour. Bobrow and Raphael have called this class of behaviour
thrashing [4]. Thrashing can be defined as the repeated exploration of sub-
trees of the backtrack search tree that differ only in inessential features, such
as the assignments to variables irrelevant to the failure of the subtrees. The
time complexity of backtracking is O(a"¢), i.e., the time taken to find a so-
lution tends to be exponential in the number of variables [18]. In order to
improve the efficiency of this technique, the notion of problem reduction has
been developed.

3.2 Problem Reduction in CSP

The time complexity analysis of backtracking algorithm shows that search ef-
ficiency could be improved if the possible values that the variables can take is
reduced as much as possible [18]. Problem reduction techniques transform a
CSP to an equivalent problem by reducing the values that the variables can
take. The notion of equivalent problems makes reference to problems which
have identical set of solution. Consistency concepts have been defined in order
to identify in the search space classes of combinations of values which could

5

A L AVAS

not appear together in any set of values satisfying the set of constraints. Mack-
worth [17] proposes that these combinations can be eliminated by algorithms
which can be viewed as removing inconsistencies in a constraint network rep-
resentation of the problem and he establishes three levels of consistency: node,
arc and path-consistency. These names come from the fact that general graphs
have been used to represent this kind of CSP. It is important to realize that
the varying forms of consistency algorithms can be seen as approzimation al-
gorithms, in that they impose necessary but not always sufficient conditions
for the existence of a solution on a CSP.

We now give the standard definitions of node and arc-consistency for a
binary network of constraints and we present basic algorithms to achieve them.

3.2.1 Node-Consistency

Definition 3.2 [Node consistency]
Given a variable z € X and a unary constraint ¢’(z) € C, the node
associated to x is consistent if

Va € ap ta € Solp(x € D,) = a € Solp(c’(x)).

A network of constraints is node-constistent if all its nodes are consistent.

Figure 2 presents the algorithm NC-1 which is based on Mackworth [17].
We assume that before applying this algorithm, there is an initialisation step
that set up to D the set D, associated to variable x in the membership con-
straint @ € D,. The time complexity of NC-1 is O(an) [18], so node consis-
tency is always established in time linear in the number of variables by the

algorithm NC-1.

procedure NC-1;

1 begin

2 for each z € X do

3 for each a € Solp(x €' D,) do
4 if a(c’(z)) = F then

5 D, < D \a(z);

6 end if

7 end do

8 end do

9 end

Fig. 2. Algorithm NC-1 for node-consistency

3.2.2 Arc-Consistency

Definition 3.3 [Arc consistency]
Given the variables z;, #; € X and the constraints ¢ (z;), c;(:zjj), ci(zi ;) €
C, the arc associated to cf(x;, ;) is consistent if

Va € ap 3a’ € ap i a € Solp(x; € Dy, Acl(x))

6

A L AVAS

= o € Solp(z; e’ Dy, A c;(x]) A c?k(oz(xi),xj)).

A network of constraints is arc-consistent if all its arcs are consistent.

The first three algorithms developed to achieve arc-consistency are based
on the following basic operation first proposed by Fikes [8]: Given two vari-
ables z; and z;, both of which are node-consistent, and the constraint ¢’(z;, z;),
if a € Solp(x; €' D,,) and there is no o’ € Solp(x; €° Dy, A Ha(z;), z;))
then a(x;) has to be deleted from D,,. When that has been done for each
a € Solp(z; €' D,,) then arc (x;,z;) is consistent (but that no means that
arc (xj,x;) is consistent.) This idea is embodied in the function REVISE of
Figure 3. The time complexity of REVISE is O(a?), quadratic in the size of
the variable’s domain [18].

function REVISE((z;,z;)): boolean

1 begin

2 RETURN « F ;

3 for each o € Solp(z; € D,,) do

4 if Solp(x; €° Dy, A c(a(z;),z;)) = () then
5 Dy Dl’i\a(xi);

6 RETURN « T ;

7 end if

8 end do

9

end

Fig. 3. Function REVISE

At least one time we have to apply function REVISE to each arc in the
graph, but it is obvious that further applications of REVISE to the arcs
(2;,21), Yoy, € &, could eliminate values in D, which are necessary for achiev-
ing arc-consistency in the arc (z;, x;), so reviewing only once each arc will not
be enough. The first three algorithms developed to achieve arc-consistency
use the same basic action REVISE but they differ in the strategy they apply
REVISE.

Algorithm AC-1

AC-1 reviews, applying REVISE, each arc in an iteration. If at least one
set D, is changed all arcs will be reviewed. This process is repeated until no
changes ocurr in all sets. Figure 4 presents the simplest algorithm to achieve
arc-consistency, where @) is the set of binary constraints to be reviewed.

The worst case complexity of AC-1 is O(a’ne) [18]. The obvious ineffi-
ciency in AC-1 is that a successful revision of an arc on a particular iteration
causes all the arcs to be revised on the next iteration whereas in fact only a
small fraction of them could possibly be affected.

7

A L AVAS

procedure AC-1;

1 begin

2 Q< A{(wiz) | (5, 7)) € ares(G), @ # x5
3 repeat

4 change + false ;

5 for each (2;,2;) € @ do

6 change < change or REVISE((z;,x;));
7 end do

8 until —change

9 end

Fig. 4. Algorithm AC-1 for arc-consistency
Algorithm AC-3

AC-1 can be evidently improved if after the first iteration we only review
the arcs which could be affected by the removal of values. This idea was first
implemented by Waltz’ filtering algorithm [26] and captured later by Mack-
worth’s algorithm AC-2 [17]. The algorithm AC-3 proposed by Mackworth
[17] also uses this idea. Figure 5 presents AC-3. If we assume that the con-
straint graph is connected (e > n — 1) and time complexity of REVISE is
O(a?), time complexity of AC-3 is O(a”¢), so arc-consistency can be verified
in linear time in the number of constraints [18].

procedure AC-3;

1 begin

2 Q< A{(wi2)) | (25, 7)) € ares(G), @ # x5

3 while Q #0do

4 select and delete any arc (@;, ;) € Q;

5 if REVISE((2:,2;)) then

6 Q = QU{(zp 20) | (wh, wi) € ares(G),wp # wiywr # x5}
7 end if

8 end do

9 end

Fig. 5. Algorithm AC-3 for arc-consistency

In [20] Mohr and Henderson propose the algorithm AC-4 whose worst-case
time complexity is O(ea?) and they prove its optimality in terms of time. AC-
4 drawbacks are its average time complexity, which is too near the worst-case
time complexity, and even more so, its space complexity which is O(ea?). In
problems with many solutions, where constraints are large and arc-consistency
removes few values, AC-3 runs often faster than AC-4 despite its non-optimal
time complexity [25]. Moreover, in problems with a large number of values
in variable domains and with weak constraints, AC-3 is often used instead
of AC-4 because of its space complexity. Two algorithms AC-5 have been
developed, one by Deville and Van Hentenryck [7] and another by Perlin [23].

8

A L AVAS

They permit exploitation of specific constraint structures, but reduce to AC-
3 or AC-4 in the general case. Bessiére [1| proposed the algorithm AC-6
which keeps the optimal worst-case time complexity of AC-4 while working
out the drawback of space complexity, AC-6 has an O(ea) space complexity.
However, the main limitation of AC-6 is its theoretical complexity when used
in a search procedure. In [2] Bessiére proposes an improved version of AC-6,
AC-6+, which uses constraint bidirectionality (a constraint is bidirectional if
the combination of values a for a variable x; and b for a variable z; is allowed
by the constraint between z; and z; if and only if b for z; and a for z; is
allowed by the constraint between x; and z;.) This algorithm was improved
later by Bessiére and Régin with their AC-6++ algorithm [3]; by coincidence
in the same workshop Freuder presented his AC-7 algorithm [9]. As our aim
in this work is to introduce a new framework to model CSP, we use here only
AC-1 and AC-3 algorithms because we need a very simple data structures to
implement them.

In general, the complexity analysis of consistency algorithms shows that
they can be thought of as a low-order polynomial algorithms for exactly solving
a relaxed version of a CSP whose solution set contains the set of solutions to
the CSP. The more effort one puts into finding the approximation the smaller
the discrepancy between the approximating solution set and the exact solution
set.

3.3 Hybrid Techniques

As backtracking suffers from thrashing and consistency algorithms can only
eliminate local inconsistencies, hybrid techniques have been developed. In this
way we obtain a complete algorithm that can solve all problems and where
thrashing has been reduced. Hybrid techniques integrate constraint propaga-
tion algorithms into backtracking in the following way: whenever a variable
is instantiated, a new CSP is created; a constraint propagation algorithm can
be applied to remove local inconsistencies of these new CSPs [27]. Embed-
ding consistency techniques inside backtracking algorithms is called Hybrid
Techniques. A lot of research has been done on algorithms that essentially
fit the previous format. In particular, Nadel [22] empirically compares the
performance of the following algorithms: Generate and Test, Simple Back-
tracking, Forward Checking, Partial Lookahead, Full Lookahead, and Really
Full Lookahead. These algorithms primarily differ in the degrees of arc consis-
tency performed at the nodes of the search tree. These experiments indicate
that it is better to apply constraint propagation only in a limited form.

4 A Computational System for Solving Binary CSP

The idea of solving constraint systems using computational systems was firstly
proposed by Kirchner, Kirchner and Vittek in [12] where they define the con-
cept of computational systems and describe how a constraint solver for sym-
bolic constraints can be viewed as a computational system aimed at comput-

9

A L AVAS

ing solved forms for a class of considered formulas called constraints. They
point out some advantages of describing constraint solving processes as com-
putational systems over constraint solving systems where solvers are encapsu-
lated in black boxes, such as reaching solved forms more efficiently with smart
choices of rules, easier termination proofs and possibly partly automated, de-
scription of constraint handling in a very abstract way, and easy combination
of constraint solving with other computational systems. In this section we
briefly present computational systems and then describe in details our system
for solving Binary CSP.

4.1 Computational Systems

Following [12], a computational system is given by a signature providing the
syntax, a set of conditional rewriting rules describing the deduction mecha-
nism, and a strategy to guide application of rewriting rules. Formally, this
is the combination of a rewrite theory in rewriting logic [19], together with a
notion of strategy to efficiently compute with given rewriting rules. Computa-
tion is exactly application of rewriting rules on a term and strategies describe
the intented set of computations, or equivalently in rewriting logic, a subset
of proofs terms.

4.2 Solved Forms

Term rewriting repeatedly transforms a term into an equivalent one, using a
set of rewriting rules, until a normal form is eventually obtained. The solved
form we use is defined with the notion of basic form.

Definition 4.1 |Basic form]
A basic form for a CSP P is any Conjunction of formula of the form

/\(J}ZE D) /\/\ (x; =’ vj) A /\ l’k) A /\ :z:l,xm

el J€J keK l,meM

equivalent to P such that

Vi, i0 € 1,01 # 12 = x4 # 249
Viel, Dy #0

Vi, g2 € g1 # J2 = x5 F 4y
VielVjeJ o #x;

Vee K iel Jjeday=a;, V 2 =z
VieM el dyed =2, V o=z

The constraints in the first, second, third and fourth conjunction are called
membership, equality, unary and binary constraints, respectively. For each
variable we have associated a membership constraint or an equality constraint,
the set associated to each variable in the membership constraints must not be
empty, and for each variable appearing in the unary or binary constraints
there must be associated a membership constraint or an equality constraint.

10

A L AVAS

Variables which are only involved in equality constraints are called solved
variables and the others non-solved variables.

A CSP P in basic form can be associated with a basic assignment obtained
by assigning each variable in the equality constraints to the associated value v
and each variable x in the membership constraints to any value in the set D,.
In this way we can define several forms depending on the level of consistency
we are imposing on the constraint set. So, a CSP P in unary solved form is a
system in basic form whose set of constraints is node consistent, and a CSP
P in binary solved form is a system in basic form whose set of constraints is
arc consistent.

Definition 4.2 [Solved form]

A solved form for a CSP P is a conjunction of formulas in basic form
equivalent to P and such that all basic assignments satisfy all constraints. A
basic assignment of a CSP P in solved form is called solution.

4.3 Rewriting Rules

Figure 6 presents ConstraintSolving, a set of rewriting rules for constraint
solving in CSP. Some ideas expressed in this set of rules are based on Comon,
Dincbas, Jouannaud, and Kirchner’s work where they present transformation
rules for solving general constraints over finite domains [6].

As we explained in section 3.2.2 the first three algorithms to achieve arc-
consistency only differ in the strategy they apply a basic action: REVISE.
But, following the main idea of Lee and Leung’s Constraint Assimilation Al-
gorithm [15], we can also see the algorithm NC-1 presented in section 3.2.1 as
a procedure to coordinate the application of a domain restriction operation?
which removes inconsistent values from the set D, of the membership con-
straints. So, we could create only one rewriting rule to implement node and
arc-consistency but for clarity reasons we avoid merging both techniques and
create the rules Node-Consistency and Arc-Consistency.

Before applying the algorithm NC-1 we start with the membership con-
straint * €’ D, and the unary constraint ¢’(z). After applying NC-1 we
obtain a modified membership constraint z € D’ where D', is D, without
the values that satisfy = € D, but do not satisfy ¢’(z). This membership
constraint capture all constraint information coming from the original two,
their solution sets are the same:

Solp(x €' D) = Solp(x €' D, A c'(2)).

This is an inference step where a new constraint can be deduced and the
original two be deleted. This key idea is captured by Node-Consistency,
where RD(z €' D,,c'(x)) stands for the set D! = {v € D, | ¢'(v)}. It is
important to note that there is not condition to use this rule because also in
case that ¢’(x) does not constrain any value already constrained by = €° D,

! This is the name used by Lee and Leung to denote a general operation REVISE which
removes inconsistent values of all variables involved in a n-ary constraint p(zy, ..., %,).

11

A L AVAS

[Node — Consistency] = €’ D, A c'(z) A C
= 2 " RD(z € D,,c'(z)) A C
[Arc — Consistency] =; €’ D,, A z; e’ Dy, A (s, ;) N C
= x; €' RD(x; € Dy, xj €' Dy, ¢ (wiyxj)) A
v; € Dy, A Maga) A C
if RD(z; €’ Dy, x; e’ Dx],c?(xi,xj)) # Dy,
[Instantiation] €' D, N C
= z="a(z) A C
if {a} = Solp(z € D,)
[Elimination] z="v A C
= z="v A Cl{zm—v}
if z € Var(C)

[Falsity] ze'd N C
= F
[Generate] "D, N C

= z="alz) A C or 2z D\ax) A C
if o ¢ Solp(z €’ D,)

Fig. 6. ConstraintSolving: Rewriting rules for solving Binary CSP

we will not modify the original membership constraint but we can eliminate
the constraint ¢’(z).

The inference step carried out by arc-consistency algorithms can be seen
as an initial state with constraints z; € D,,, z; €’ D,,, and c(x;,z;) and a
final state where x; €’ D, has been eliminated and a new constraint x; e’ D;i
has been created, where D). corresponds to D, without the elements which
are not compatible with values in D, wrt ¢(zy,x;). This is expressed by the
inference rule Arc-Consistency, where RD(x; € D, x; € Dy, c' (2, 2;))
stands for the set D, = {v € D,, | (3w € D,;) ¢'(v,w)}. In this case we
require that RD(x; €' Dy, x; € D,,,c'(xi,%;)) # Dy, to really go on.

The rewriting rule Instantiation corresponds to the variable instantia-
tion. If there is only one assignment o which satisfies €° D, then the
membership constraint is deleted and a new constraint = =" a(z) is added.
This rule makes explicit the dual meaning of an assignment. Algorithmic
languages require two different operators for equality and assignment. In a
constraint language, equality is used only as a relational operator, equivalent
to the corresponding operator in conventional languages. The constraint solv-
ing mechanism "assigns" values to variables by finding values for the variables
that make the equality relationships true [16].

12

A L AVAS

Elimination express the fact that once a variable has been instantiated we
can propagate its value through all constraints where the variable is involved
in. In this way we can reduce the arity of these constraints; unary constraints
will become ground formulas whose truth value have to be verified and binary
constraints will become unary constraints which are more easily tested. Once
we apply Elimination the variable involved in this rule will become a solved
variable. It is important to note the strong relation between Instantiation
and Elimination. Semantically the constraints z €7 {v} is equivalent to z ="
v, but for efficiency reasons the use of Elimination allows the simplification of
the constraint system avoiding further resolution of the membership constraint
and the constraints where the variable in involved in. Advantages of this
approach have been pointed out since the early works on mathematical formula
manipulation where the concept of simplification was introduced. Caviness
[5] mentions that simplified expressions usually require less memory, their
processing is faster and simpler, and their functional equivalence are easier
to identify. However, it is necessary to point out that with this choice we
lose some information, particularly in case of incremental constraint solving,
because we do not know any more where the variable was involved in.

The rule Falsity express the obvious fact of unsatisfiability. If we arrive
to D, = 0 in a membership constraint = €’ D, the CSP is unsatisfiable.

The rule Generate express the simple fact of branching. Starting with the
original constraint set we generate two subsets. In one of them we assume an
instantiation for any variable involved in the membership constraints; in the
other subset we eliminate that value from the set involved in the membership
constraint associated to that variable. In this way the solution for the original
problem will be in the union of the solutions for the subproblems.

Lemma 4.3 The set of rules ConstraintSolving is correct and complete.

Proof: Correctness of rule Node-Consistency is reduced to prove that
Solp(x €' RD(z €' D,,c'(z))) C Solp(a(x € D, A c'(z))). By definition
RD(z €' D,,c'(z)) = D!, where D!, = {v € D, | ¢’(v)}, so evidently all
solution of z €" RD(x €' D,,c'(x)) is solution of = € D, A ¢'(x). To prove
completeness we can follow the same idea. Correctness and completness of
rule Arc-Consistency can be proved using the same schema as for Node-
Consistency. The prove for rules Instantiation, Elimination, and Falsity
is evident. The right hand side of rule Generate is equivalent to (z =’
a(z)Vz € D, \a(zr)) A C. This expresion is equivalent to x € D, A C,
the left hand side of the rule, so rule Generate is correct and complete.

Theorem 4.4 Starting with a CSP P and applying repeatedly the rules in
ConstraintSolving until no rule applies anymore results in ¥ iff P has no
solution or else it results in a solved form of P.

Proof: Termination of the set of rules is clear since the application of
all rules, except one, strictly reduce the size of the set of constraints. The
only exception is rule Instantiation that does not reduce the set. This rule
eliminates a membership constraint and creates an equality constraint. As

13

A L AVAS

membership constraint are only created at the beginning of the constraint
solving, one for each variable, this rule is applied at most n times.

When we start constraint solving we have the system C'A 2 €° D,; Va €
X. Rule Node-Consistency eliminates unary constraints from C. Arc-
Consistency only modifies the sets D,. Rule Instantiation eliminates
membership constraints and creates at most one equality constraint per vari-
able. Rule Eliminate eventually deletes unary constraints and transforms
binary constraints into unary constraints. Generate modifies a domain D,.,
or deletes a membership constraint and creates an equality constraint. So, if
the problem is satisfiable the application of these rules gives a solved form. If
the problem is unsatisfiable, i.e., some domain becomes empty, rule Falsity
will detect that.

4.4 Strategies

As we have mention there are several heuristics to search for a solution in CSP,
starting from the brute force generate and test algorithm until elaborated ver-
sions of backtracking. The expressive power of computational systems allows
to express these different heuristics through the notion of strategy. In this
way, for example, a unary solved form can be obtained by applying [Node-
Consistency | Falsity|*, a binary solved form can be obtained by applying
[Arc-Consistency | Falsity|*, and a solved form can be obtained using the
strategy [[Generate; Elimination| | Falsity|* which implements exhaustive
searching 2 .

We can integrate constraint propagation and searching in order to get a
solved form more efficiently than the force brute approach. Let us define the
following strategies for applying rules from ConstraintSolving;:

* NodeC :: Node-Consistency [[Instantiation; Elimination||Falsity|*
o ArcC :: Arc-Consistency [[Instantiation; Elimination]||Falsity|*

» ConsSoll :: [NodeC | ArcC|* [[Generate; Elimination||Falsity|*

» ConsSol2 :: [[NodeC | ArcCJ|* Generate; Elimination|*

The strategy ConsSoll implements a preprocessing which verifies node
and arc consistency and then carries out an exhaustive search in the reduced
problem. The strategy ConsSol2 implements an heuristic which, once node
and arc consistency have been verified, carries out an enumeration step, then
verifies again node and arc consistency and so on. ConsSol2 is a particular
version of Forward Checking an heuristic widely used in CSP.

4.5 Implementation

We have implemented a prototype of our system which is currently executable
in the system ELAN [13], an interpretor of computational systems?®. To verify

2 The symbol * means applying a given rule zero or N times over the constraint system.
3ELAN is available via anonymous ftp at ftp.loria.fr in the di-
rectory /pub/loria/protheo/softwares/Elan. Further information can be obtained at

14

A L AVAS

our approach we have implemented constraint solving using two versions of
arc consistency: AC-1 and AC-3*. The benchmarks which we have carried
out are consistent with the well known theoretical and experimental results in
terms of constraint checking, where AC-3 is obviously better than AC-1. Using
the non determinism of ELAN we have easily implemented Forward Checking,
the most popular hybrid technique. In Appendix A we present an overview
of our implementation. All details about this prototype can be obtained at
http://www.loria.fr/"castro/PROJECTS/csp.html.

5 Conclusion

We have implemented a prototype of a computational system for solving Bi-
nary CSP. We have verified how computational systems are an easy and nat-
ural way to describe and manipulate Binary CSP. The main contributions of
this work can be seen from two points of view. First, we have formalised
algorithms to solve Binary CSP in a way which makes explicit difference be-
tween actions and control that until now were embeded in black boxes like
algorithms. Second, we have extended the domain of application of Rewrit-
ing Logic. The distinction between actions and control allows us to better
understand the algorithms for constraint solving which we have used. As our
aim in this work was only to apply the expressive power of computational
systems to better understand constraint propagation in CSP we did not care
about efficiency in searching for a solution, so as future work we are inter-
ested in efficiency considerations related to our implementation. As a near
future work we are interested in the analysis of the data structures which will
allow us to implement more efficient versions of arc-consistency algorithms.
We hope that powerful strategy languages will allow us to evaluate existing
hybrid techniques for constraint solving and design new ones.

Acknowledgement
[am grateful to Dr. Claude Kirchner for his theoretical support and Peter

Borovansky and Pierre-Etienne Moreau for their help concerning the imple-
mentation.

References

[1] C. Bessiére. Arc-consistency and arc-consistency again. Artificial Intelligence,
65:179-190, 1994.

http://www.loria.fr/equipe/protheo.html/PROJECTS/ELAN/elan.html

*The rewriting system presented in this work allows the direct implementation of AC-1.
Implementing AC-3 only required to add a rewriting rule to check the constraints which
could be affected by the constraint propagation. For simplicity reasons we do not include
it here.

15

A L AVAS

[2] C. Bessiére. A fast algorithm to establish arc-consistency in constraint networks.
Technical Report TR-94-003, LIRMM Université de Montpellier II, January
1994.

[3] C. Bessiére and J.-C. Régin. An arc-consistency algorithm optimal in the
number of constraint checks. In Proceedings of the Workshop on Constraint
Processing, ECAI’9, Amsterdam, The Netherlands, pages 9-16, 1994.

[4] D. G. Bobrow and B. Raphael. New Programming Languages for Artificial
Intelligence Research. Computing Surveys, 6(3):153-174, September 1974.

[5] B. F. Caviness. On Canonical Forms and Simplification. Journal of the ACM,
17(2):385-396, April 1970.

[6] H. Comon, M. Dincbas, J.-P. Jouannaud, and C. Kirchner. A Methodological
View of Constraint Solving. Working paper, 1996.

[7] Y. Deville and P. V. Hentenryck. An efficient arc consistency algorithm for
a class of csp problems. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 325-330, 1991.

[8] R. E. Fikes. REF-ARF: A System for Solving Problems Stated as Procedures.
Artificral Intelligence, 1:27-120, 1970.

[9] E. C. Freuder. Using metalevel constraint knowledge to reduce constraint
checking. In Proceedings of the Workshop on Constraint Processing, FCAI’9/,
Amsterdam, The Netherlands, pages 27-33, 1994.

[10] J. H. Gallier. Logic for Computer Sciences, Foundations of Automatic Theorem
Proving. Harper and Row, 1986.

[11] H. Kirchner. On the Use of Constraints in Automated Deduction. In
A. Podelski, editor, Constraint Programmang: Basics and Trends, volume 910 of
Lecture Notes in Computer Science, pages 128-146. Springer-Verlag, 1995.

[12] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic
programming languages using computational systems. In P. V. Hentenryck and

V. Saraswat, editors, Principles and Practice of Constraint Programmang. The
Newport Papers, pages 131-158. The MIT press, 1995.

[13] C. Kirchner, H. Kirchner, and M. Vittek. ELAN, User Manual. INRIA Loraine
& CRIN, Campus scientifique, 615, rue du Jardin Botanique, BP-101, 54602
Villers-lés-Nancy Cedex, France, November 1995.

[14] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey.
Artificial Intelligence Magazine, 13(1):32-44, Spring 1992.

[15] J. H. M. Lee and H. F. Leung. Incremental Querying in the Concurrent
CLP Language IFD-Constraint Pandora. In K. M. George, J. H. Carroll,
D. Oppenheim, and J. Hightower, editors, Proceedings of the 11th Anual
Symposium on Applied Computing, SAC’96, Philadelphia, Pennsylvania, USA,
pages 387-392, February 1996.

[16] W. Leler. Constraint Programmaing Languages, Theiwr Specification and
Generation. Addison-Wesley Publishing Company, 1988.

16

A L AVAS

[17] A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

[18] A. K. Mackworth and E. C. Freuder. The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems.
Artificral Intelligence, 25:65-74, 1985.

[19] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

[20] R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Artificial
Intelligence, 28:225-233, 1986.

[21] U. Montanari. Networks of constraints: Fundamental properties and
applications to picture processing. Information Sciences, 7:95-132, 1974.

[22] B. Nadel. Tree Search and Arc Consistency in Constraint-Satisfaction
Algorithms. In L. Kanal and V. Kumar, editors, Search in Artificial Intelligence,
pages 287-342. Springer-Verlag, 1988.

[23] M. Perlin. Arc consistency for factorable relations. Artificial Intelligence,
53:329-342, 1992.

[24] P. van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
press, 1989.

[25] R. J. Wallace. Why AC-3 is almost always better than AC-4 for establishing
arc concsistency in CSPs. In Proceedings IJCAI-93, pages 239-245, 1993.

[26] D. Waltz. Understanding lines drawings of scenes with shadows. In P. H.
Winston, editor, The Psychology of Computer Vision, pages 19-91. McGraw-
Hill, 1975.

[27] M. Zahn and W. Hower. Backtracking along with constraint processing and
their time complexities. Journal of Fzperimental and Theoretical Artificial
Intelligence, 8:63-74, 1996.

A Implementation

In ELAN, a logic can be expressed by its syntax and its inference rules. The
syntax of the logic can be described using mixfix operators. The inference
rules of the logic are described by conditional rewrite rules. The language
provides three levels of programmation:

o First the design of a logic is done by the so-called super-user. In our case
that is a description in a generic way of the constraint solving process.

* The logic can be used by the programmer in order to write a specification.

* Finally, the end-user can evaluate queries valid in the specification, following
the semantics described by the logic.

In our implementation the top level of the logic description is given by the
super-user in the module presented in figure A.1.

17

A L AVAS

LPL Solver CSP_ Int description
specification description
part Variables of sort list|identifier|
part Values of sort list|int]
end
query of sort list[formule]
result of sort csp
modules Solver_ CSP[Variables,int, Values/
start with (Solved_ Form) CreateCSP(query)
end of LPL description

Fig. A.1. Logic description

This module specifies that the programmer has to provide a specification
module which has to include two parts: Variables and Values. As an example
we can consider the specification module presented in figure A.2.

specification My wariables and_wvalues
Variables

X1 X2
Values

12345

end of specification

Fig. A.2. End-user specification

The sorts list, identifier and int are built-in, and the query sort and result
sort are defined by the super-user. Sort list|formule| defines the data structure
of the query, in this case, a list of constraints. The sort ¢sp is a data structure
consisting of three list; the first one records the membership constraints, the
second one records the equality constraints, and the third one records the
unary and binary constraints. Once the programmer has defined the logic,
and has provided a query term, ELAN will process in the following way. The
symbol CreateCSP will apply on the query term, then using the strategy
Solved_ Form, included in the module Solver CSP, ELAN will iterate until no
rule applies anymore. CreateCSP uses the constructors Create LMC, to create
the list of membership constraints, and CreateC, to create the list of unary
and binary constraints from the list of de formula L given by the end-user® .

The strategy Solved_ Form control the application of the rules as is showed
in the figure A.3. This strategy implements local consistency with exhaustive
search. If we eliminate the sub-strategy dont know choose(Generate) we
obtain a particular version of AC-1 algorithm.

Finally, in figure A.4 we present rule Node-Consistency. This rule applies
the strategy Strategqy Node-Consistency, presented in figura A.5, on a csp

% Creation of the list of unary and binary constraints is not only a copy of the list L,
because for each binary constraint ¢’ (z;, z;) we have to create its inverse ¢’ (z;, z;).

18

A L AVAS

strategy Solved_ Form
repeat
dont care choose (
dont care choose (Node-Consistency)

dont care choose (Arc-Consistency)

dont care choose (Instantiation)

dont care choose (Elimination)

dont care choose (Falsity)

dont know choose (Generate)

)

endrepeat
end of strategy

Fig. A.3. Strategy Solved Form

with at least one element in the list of unary and binary constraints. Strat-
egy Strateqy Node-Consistency uses rule GetUnaryConstraint to get the first
unary constraint in the list of unary and binary constraints. If there exists a
unary constraint the strategy will apply rule Node-Consistency 1, if the vari-
able involved in the unary constraint is in the list of membership constraints,
or rule Node-Consistency 2, if the variable is in the list of equality constraints.
In the set ConstraintSolving we use only one rule to verify node consistency,
but we have implemented two versions sligtly differents. This is an implemen-
tation choice, as we have a list for the membership constraints and another
one for the equality constraints, it is easy to profite this information. The
same explanation is valid for arc consistency, where we have created four rules
to implement the general version presented in the set ConstraintSolving.

19

A L AVAS

rules for csp

declare
T var
v Type;

D : list| Typel;
¢ : formule;
C,lme,lec : list[formule];
P : esp;
bodies
[Node-Consistency] CSP(lme,lec,c.C)=> P
where P:= (Strategy Node-Consistency)CSP(lme,lec,c.C)
end
[Node-Consistency 1] CSP(x in? D.lmc,lec,c.C)
=> CSP(x in? Revise DeWRTe(x,D,c).lmc,lec,C)
end
[Node-Consistency 2] CSP(lmec,x =7 v.lec,c.C) =>
CSP(lmc,x =7 v.lec,C)
if SatisfyUnaryConstraint(z,v,c)

end

Fig. A.4. Rules to implement Node Consistency

strategy Strategy Node-Consistency

dont care choose (GetUnaryConstraint)

dont care choose (
dont care choose (GetVarOfUnaryConstraintinLMC)
dont care choose (Node-Consistency 1)
I
dont care choose (GetVarOfUnaryConstraintinLEC)
dont care choose (Node-Consistency_2)

)

end of strategy

Fig. A.5. Strategies to implement Node Consistency

20

