
US006510479B1

(12) United States Patent
Ha0

US 6,510,479 B1
Jan. 21, 2003

(10) Patent N0.:
(45) Date of Patent:

(54) TRANSMIT PRE-ARBITRATION SCHEME
FOR A CAN DEVICE AND A CAN DEVICE
THAT IMPLEMENTS THIS SCHEME

(75) Inventor: Hong Bin Hao, San Jose, CA (US)

(73) Assignee: Koninklijke Philips Electronics N.V.,
Eindhoven (NL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
USC 154(b) by 255 days.

(21) Appl. No.: 09/630,642
(22) Filed: Aug. 1, 2000

Related US. Application Data
(60) Provisional application No. 60/154,022, ?led on Sep. 15,

1999.

(51) Int. Cl.7 G06F 13/14

(52) US. Cl. 710/240; 710/116; 710/305

(58) Field of Search 709/229; 713/502;

370/300; 700/1, 23; 710/240, 116, 305

(56) References Cited

U.S. PATENT DOCUMENTS

Primary Examiner—Sumati LefkoWitZ
Assistant Examiner—Christopher E. Lee

(57) ABSTRACT

In a CAN device, e.g., a CAN microcontroller, that supports
a plurality of message objects, a method that includes
concurrently staging tWo or more transmit messages asso
ciated With respective ones of tWo or more enabled transmit
message objects for attempted transmission over a CAN bus
coupled to the CAN device, and performing a pre-arbitration
process to determine Which of the tWo or more concurrently
staged transmit messages has priority. The message deter
mined to have priority is deemed a Winning message and the
message object associated With the Winning message is
deemed a Winning message object. In a presently preferred
embodiment, the pre-arbitration process is a selected one of
at least tWo pre-arbitration schemes, including a ?rst pre
arbitration scheme Whereby priority is determined according
to a CAN bus arbitration priority scheme established by the
governing CAN protocol, and a second pre-arbitration
scheme Whereby priority is determined by selecting the
transmit message associated With the highest-numbered (or,
alternatively, lowest-numbered) message object as the Win
ning message. In the event that more than one of the tWo or
more concurrently staged transmit messages are determined

5,179,708 A 1/1993 Gyllstfom et a1~ ~~~~~~~~ ~~ 395/725 to have the same priority, the transmit message associated
* '

5,323,385 A 6/1994 Jurewlcz et a1‘ " 370/300 With the highest-numbered message object is designated as
5’506’966 A 4/1996 Ban """""" " 395/250 the Winnin messa e The method further includes attem t
6,304,908 B1 * 10/2001 Kalajan .. 709/229 _ g _ g '_ _ p
6,357,014 B1 * 3/2002 Correia 713/502 mg 1? trénsmlt the W1_nn1ng message Over the CAN bus~ If

FOREIGN PATENT DOCUMENTS the Wmmng message is not granted access to the CAN bus,
the pre-arbitration priority determination process is

EP 0378195 A2 7/1990 G06F/5/06 repeated.
WO WO8806317 8/1988 G06F/9/46

* cited by examiner 35 Claims, 7 Drawing Sheets

20
f

l- _ _ ' _ _ ' _ ' - ' T - ' _ - - - - _ - _ ‘ _ _ _ ' _ _ _ _ ' - _ - - T - _ - - _ - - _ - _ _ - - - - --'

E 34 :

5 CORE DATA Bus 2 > XA CPU CORE 22 E M M : PROGRAM BUS :

[24x 32K BYTES SF“ Bus 5
: ROM/EPHOM x43 41 :
l DAT H l
: 26M 1024 BYTES 2 BUS :
l DATA RAM f r‘ H"
: ‘V 27 4+ UARTU I‘

EXTERNAL I I XRAM x28 51
ADDRESS/ 36 4+ SP| ‘T__
DATABUS MEMORY ‘ MMR BUS (T’
‘7"’. INTERFACE ‘r- _________ V :53

: . : 38 0 TIMERO ,
s2 : <1; DMA I ~ TIMER1 <1—

i ; ENGINE 1 ' A54

5 H E I : TIMERZ <:—
E 30 40 die MMRS =3 = 0 <»—j
| | I |
1 I I l |

RX—l——I-> I WATCHDOG I
1 I 205 CAN/DLL ‘' ‘ ">1

Tx<-l-_-____-42_‘1_f CORE ‘IL ' TIM'EH j
i — _________ n" \‘77 55 E

<~:——--> PORTS 0-3 = = ;

‘z _________ -fitf. ____________________ _.N _ _ 5

U.S. Patent Jan. 21, 2003 Sheet 3 0f 7 US 6,510,479 B1

MMRs
MMR name I R/W? I Reset I_Aeeess lAddressDtfset [Description

Message Object Registers (n = 0 - 31)
MnMIDH RAN x....x00b Word only DU0n4n3n2n1ng00DDh(n0h) MessagenMatch ID High
MnMlDL RAN xxxxh Word only DDDn4n3n2n1ng00i0h(n2h) MessagenMatohlDLow
MnMSKH R/W x....x000b Word only DDDn4n3ngn1ng0i0DhM4h) MessagenMask High
MnMSKL R/W xxxxh Word only 0D0n4n3n2n1ngDt1Db (n6h) Message n Mask Low
MnCTL R/W O0000xxxh Byte/Word 000n4n3n2n1ngl0UUh(n8h) MessagenControi
MTiBLH R/W XXXXh Word only UUUR4R3R2H1 not 01 0b (nAh) Message n Butter Location
MnBSZ R/W DDDDDxxxh Byte/Word 000n4n3n2n1n0ii0DhlnCh) MessagenButter Size
MnFCR R/W Otixxxxxxh Byte/Word DDDrungngnrngiiiDhMEh) MessagenFragmentation Count

CIC Registers
MCPLL R/C ODDOh Byte/Word 224h Message Complete Low
MCPLH R/C 0000h Byte/Word 226h Message Complete High
CANINTFLG R/C 0000h Byte/Word 228h CAN Interrupt Flag Register
MClR R0 000Oh Byte/Word 229h Message Complete Into Reg.
MEIR RO DODOh Byte/Word 22Ah Message Error into Register
FESTR R/C DODDh Byte/Word 22Ch Frame Error Status Register
FEENR R/W DDOOh Byte/Word 22Eh Frame Error Enable Register

SCP/SPI Registers
SPiCFG R/W DDDDh Byte/Word 26Dh SCP/SPl Con?guration
SPI DATA R/W 00h Byte/Word 262h SCP/SPI Data
SPICS R/W 00h Byte/Word 263h SCP/SPI Control and Status

008 Registers
CANCMR W 0th Byte/Word 2Tl1h CAN Command Register
CANSTR R/D 00h Byte/Word 27th CAN Status Register
CANBTR R/W 00h Byte/Word 2T2h CAN Bus Timing Reg. (low)
- R/W 00h Byte/Word 2T3h CAN Bus Timing Reg. (high)
TXERC R/W* 00h Byte/Word 274h Tx Error Counter
RXERC R/W* 00h Byte/Word 275h Rx Error Counter
EWLR R/W 96h Byte/Word 276h Error Warning Limit Register
ECCR R0 0000h Byte/Word 2T8h Error Code Capture Register
ALCR R0 0000h Byte/Word 27Ah Arbitration Lost Capture Reg.
RTXDTM W0 DDDDh Byte/Word 27Ch RTX Data Test Mode
GCTL R/W Ulitidh Byte/Word 27Eh Global Control Byte

MIF Registers
XRAMB R/W FEh Byte/Word 290h XRAM Base Address
MBXSR R/W FEh Byte/Word 29th Msg. Butt/XRAM Beg. Reg.
MlFBTRL R/W EFh Byte/Word 292h MIF Bus Timing Reg. Low
MIFBTRH R/W EFh ?ne/Word 293h MIF Bus Timim Reg High

Legend: R/W = Read it Write, R0 = Read Only, WD = Wri
CAN Reset mode, x = undefined atter reset.

teOnly, R/C=Read&Clear, W*=Writah|eoniy during 4

U.S. Patent Jan. 21, 2003 Sheet 4 0f 7 US 6,510,479 B1

Data Memory Segment 0
OOFFFFh _|_|_|_u_l_u

0tt—Chip

4K Bytes MMR Space

HTITHT MMR Base Address

Off-Chip

512 BytesT XRAM
I‘I'I'ITI'FI' XRAM Base Address

Ott-Chip
0003FFh _J_I_L_L.LI_LJ

Ott-Chip Data Memory
(Scratch Pad)

ITI'I'ITIT OOOOOOh

MMR Space
Offset FFFh ——>

Ottset tFFh —->
512 Bytes Object Registers

|———— <—— O?set OOOh

U.S. Patent Jan. 21, 2003 Sheet 5 0f 7 US 6,510,479 B1

Segment xy in Data
Memory Space

xyFFFFh __________I

object HT Object n Message Buffer 323 316 315 30

XRAM

512 Bytes a23 a16 at5 a8 a7 at)
t— <— MBXSRtYzU] XRAMB[7:1]0 000

I xyOOOOh

Segment xy in Data
Memory Space

xyFFFFh __________l

2123 2116 605 a0
<—— MBXSR[7:0] MnBLR

Obiect HT Object n Message Butter
XRAM Butter size |

512 Bytes XRAM a23 a16 a15 a8 a7 at]

[_____<_ MBXSRUzO] XRAMB[7:1]0" 00h

l xy0000h

U.S. Patent Jan. 21,2003 Sheet 6 of7

Object n Match ID Field (MnMlDH and MnMlDL)

US 6,510,479 B1

Mid28~Mid18 Mid17—Mid10 Mid9-Mid2 Mldl MidO MIDE

Object n Mask Field (MnMSKH and MnMSKL)
MSk28 — MSk18 Msk17 — MSklO MSk9 — MSk2 Mskl MskO

Screener ID Field (assembled from incoming bit-stream)
CAN |D.28 — CAN lD.18 Data Byte 1 [7:0] Data Byte 2 [7:0] x x IDE

FIG. 9

Object n Match ID Field (MnMlDH and MnMIDL)
Mid28-Mid18 Mid17—Mid10 Mid9-Mid2 Midi MidO MIDE

Object n Mask Field (MnMSKH and MnMSKL)
Msk28 — Mskl8 MSk17 — MsklO MSk9 — MSk2 MSk1 MSkO

Screener ID Field (assembled from incoming bit-stream)
CAN ID.28 — CAN |D.0 IDE

FIG. 10

U.S. Patent Jan. 21, 2003 Sheet 7 0f 7 US 6,510,479 B1

Been ttt‘étét‘é'tN‘éF
Data Byte 2 ADDRESS
Data Byte 3

Data Byte DLC

Data Byte 2 (next)

Data Byte 3 (next)

FIG. 11

DIRECTION OF
Frame'mo INCREASING
Data Byte 1 ADDRESS
Data Byte 2

Data Byte DLC

Framelnto (next)
Data Byte 1 (next)

Data Byte 2 (next)

FIG. 12

US 6,510,479 B1
1

TRANSMIT PRE-ARBITRATION SCHEME
FOR A CAN DEVICE AND A CAN DEVICE
THAT IMPLEMENTS THIS SCHEME

This application claims the full bene?t and priority of
US. Provisional Application Ser. No. 60/154,022, ?led on
Sep. 15, 1999, the disclosure of Which is fully incorporated
herein for all purposes.

BACKGROUND OF THE INVENTION

The present invention relates generally to the ?eld of data
communications, and more particularly, to the ?eld of serial
communications bus controllers and microcontrollers that
incorporate the same.

CAN (Control Area Network) is an industry-standard,
tWo-Wire serial communications bus that is Widely used in
automotive and industrial control applications, as Well as in
medical devices, avionics, office automation equipment,
consumer appliances, and many other products and appli
cations. CAN controllers are currently available either as
stand-alone devices adapted to interface With a microcon
troller or as circuitry integrated into or modules embedded
in a microcontroller chip. Since 1986, CAN users (softWare
programmers) have developed numerous high-level CAN
Application Layers (CALs) Which eXtend the capabilities of
the CAN While employing the CAN physical layer and the
CAN frame format, and adhering to the CAN speci?cation.
CALs have heretofore been implemented primarily in
softWare, With very little hardWare CAL support.
Consequently, CALs have heretofore required a great deal of
host CPU intervention, thereby increasing the processing
overhead and diminishing the performance of the host CPU.

Thus, there is a need in the art for a CAN hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU
to the CAN hardWare, thereby enabling a great savings in
host CPU processing resources and a commensurate
improvement in host CPU performance. One of the most
demanding and CPU resource-intensive CAL functions is
message management, Which entails the handling, storage,
and processing of incoming CAL/CAN messages received
over the CAN serial communications bus and/or outgoing
CAL/CAN messages transmitted over the CAN serial com
munications bus. CAL protocols, such as DeviceNet,
CANopen, and OSEK, deliver long messages distributed
over many CAN frames, Which methodology is sometimes
referred to as “fragmented” or “segmented” messaging. The
process of assembling such fragmented, multi-frame mes
sages has heretofore required a great deal of host CPU
intervention. In particular, CAL softWare running on the host
CPU actively monitors and manages the buffering and
processing of the message data, in order to facilitate the
assembly of the message fragments or segments into com
plete messages.

Based on the above and foregoing, it can be appreciated
that there presently eXists a need in the art for a hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU,
thereby enabling a great savings in host CPU processing
resources and a commensurate improvement in host CPU
performance.

The assignee of the present invention has recently devel
oped a neW microcontroller product, designated “XA-C3”,
that ful?lls this need in the art. The XA-C3 is the neWest
member of the Philips XA (extended Architecture) family
of high performance 16-bit single-chip microcontrollers. It

5

15

25

35

45

55

65

2
is believed that the XA-C3 is the ?rst chip that features
hardWare CAL support.
The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B micro

controller that incorporates a number of different inventions,
including the present invention. These inventions include
novel techniques and hardWare for ?ltering, buffering,
handling, and processing CAL/CAN messages, including
the automatic assembly of multi-frame fragmented mes
sages With minimal CPU intervention, as Well as for man
aging the storage and retrieval of the message data, and the
memory resources utiliZed therefor.

The present invention relates to a CAN microcontroller
that supports a plurality (e.g., 32) of message objects, each
one of Which is assigned a respective message buffer Within
an on-chip and/or off-chip portion of the overall data
memory space of the CAN microcontroller. The location and
siZe of each of the message buffers can be recon?gured by
the user (programmer) by simple programming of memory
mapped registers provided for this purpose. The message
buffers are used to store incoming (receive) messages and to
stage outgoing (transmit) messages. With the XA-C3 micro
controller that constitutes a presently preferred implemen
tation of the present invention, Direct Memory Access
(DMA) is employed to enable the XA-C3 CAN module to
directly access any of the 32 message buffers Without
interrupting the processor core. This message storage
scheme provides a great deal of ?exibility to the user, as the
user is free to use as much or as little message storage area

as an application requires, and is also free to position the
message buffers Wherever it is most convenient.

This message storage scheme is a key element of the
unique “message management” capabilities of the XA-C3
CAN microcontroller, as this scheme enables the XA-C3
CAN/CAL module to concurrently assemble many (up to
32) incoming, fragmented messages of varying lengths, and,
at the same time, stage multiple outgoing messages for
transmission. Since incoming message assembly is handled
entirely in hardWare, the processor is free to perform other
tasks, typically until a complete message is received and
ready for processing.

SUMMARY OF THE INVENTION

The present invention encompasses, in one of its aspects,
a method implemented in a CAN device, e.g., a CAN
microcontroller, that supports a plurality of message objects,
that includes concurrently staging tWo or more transmit
messages associated With respective ones of tWo or more
enabled transmit message objects for attempted transmission
over a CAN bus coupled to the CAN device, and performing
a pre-arbitration process to determine Which of the tWo or
more concurrently staged transmit messages has priority.
The message determined to have priority is deemed a
Winning message and the message object associated With the
Winning message is deemed a Winning message object.

In a presently preferred embodiment, the pre-arbitration
process is a selected one of at least tWo pre-arbitration
schemes, including a ?rst pre-arbitration scheme Whereby
priority is determined according to a CAN bus arbitration
priority scheme established by the governing CAN protocol,
and a second pre-arbitration scheme Whereby priority is
determined by selecting the transmit message associated
With the highest-numbered (or, alternatively, loWest
numbered) message object as the Winning message. In the
event that more than one of the tWo or more concurrently
staged transmit messages are determined to have the same
priority, the transmit message associated With the highest

US 6,510,479 B1
3

numbered message object is designated as the Winning
message. The method further includes attempting to transmit
the Winning message over the CAN bus. If the Winning
message is not granted access to the CAN bus, the pre
arbitration priority determination process is repeated.

In another of its aspects, the present invention encom
passes a CAN device, e.g., a CAN microcontroller, that
implements the above-described method of the present
invention. In a presently preferred embodiment, the CAN
microcontroller includes a plurality of message buffers asso
ciated With respective ones of the message objects, a pro
cessor core for running CAN applications, a CAN/CAL
module for processing transmit and receive messages, at
least one object-speci?c control register associated With
each message object, at least one global control register, and
a DMA engine that enables the CAN/CAL module to
directly access the message buffers Without interrupting the
processor core.

The at least one object-speci?c control register associated
With each message object is programmable for the purpose
of enabling or disabling the associated message object as a
transmit or receive message object, thereby providing a user
With the capability to concurrently stage tWo or more
transmit messages for attempted transmission over a CAN
bus coupled to the CAN microcontroller, according to a
governing CAN protocol.

The CAN /CAL module includes a transmit pre-arbitration
engine that determines Which of the tWo or more transmit
messages concurrently staged for attempted transmission
over the CAN bus has priority. Preferably, each of the
message buffers has a siZe and a location that are program
mable. In this regard, the CAN microcontroller preferably
further includes a plurality of individual message object
registers associated With each of the message objects that
contain ?elds of command/control information that facilitate
con?guration and setup of the associated message object,
including at least one buffer siZe register that contains a
message buffer siZe ?eld that enables the siZe of the message
buffer associated With the associated message object to be
programmed, and at least one buffer location register that
contains a message buffer location ?eld that enables the
location of the message buffer associated With the associated
message object to be programmed.

Preferably, the CAN/CAL module further includes a
transmit engine that invokes the DMA engine to retrieve the
Winning message from the message buffer associated With
the Winning message object, and then attempts to transmit
the Winning message over the CAN bus according to the
CAN bus arbitration priority scheme established by the
governing CAN protocol. If the Winning message is not
granted access to the CAN bus according to the CAN bus
arbitration priority scheme, the transmit pre-arbitration
engine is reset to repeat the pre-arbitration priority determi
nation process. The global control register is programmable
for the purpose of permitting a user to select one of the at
least tWo pre-arbitration schemes.

BRIEF DESCRIPTION OF THE DRAWINGS

These and various other aspects, features, and advantages
of the present invention Will be readily understood With
reference to the folloWing detailed description of the inven
tion read in conjunction With the accompanying draWings, in
Which:

FIG. 1 is a diagram illustrating the format of a Standard
CAN Frame and the format of an Extended CAN Frame;

FIG. 2 is a diagram illustrating the interleaving of CAN
Data Frames of different, unrelated messages;

10

15

25

35

45

55

65

4
FIG. 3 is a high-level, functional block diagram of the

XA-C3 microcontroller;
FIG. 4 is a table listing all of the Memory Mapped

Registers (MMRs) provided by the XA-C3 microcontroller;
FIG. 5 is a diagram illustrating the mapping of the overall

data memory space of the XA-C3 microcontroller;
FIG. 6 is a diagram illustrating the MMR space contained

Within the overall data memory space of the XA-C3 micro
controller;

FIG. 7 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, With an object n message buffer mapped
into off-chip data memory;

FIG. 8 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, With an object n message buffer mapped
into the on-chip XRAM;

FIG. 9 is a diagram illustrating the Screener ID Field for
a Standard CAN Frame;

FIG. 10 is a diagram illustrating the Screener ID Field for
an Extended CAN Frame;

FIG. 11 is a diagram illustrating the message storage
format for fragmented CAL messages; and,

FIG. 12 is a diagram illustrating the message storage
format for fragmented CAN messages.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention is described beloW in the context of
a particular implementation thereof, i.e., in the context of the
XA-C3 microcontroller manufactured by Philips Semicon
ductors. Of course, it should be clearly understood that the
present invention is not limited to this particular
implementation, as any one or more of the various aspects
and features of the present invention disclosed herein can be
utiliZed either individually or any combination thereof, and
in any desired application, e.g., in a stand-alone CAN
controller device or as part of any other microcontroller or
system.
The folloWing terms used herein in the context of describ

ing the preferred embodiment of the present invention (i.e.,
the XA-C3 microcontroller) are de?ned as folloWs:
Standard CAN Frame: The format of a Standard CAN Frame

is depicted in FIG. 1.
Extended CAN Frame: The format of an Extended CAN
Frame is also depicted in FIG. 1.

Acceptance Filtering: The process a CAN device imple
ments in order to determine if a CAN frame should be
accepted or ignored and, if accepted, to store that frame in
a pre-assigned Message Object.

Message Object: A Receive RAM buffer of pre-speci?ed
siZe (up to 256 bytes for CAL messages) and associated
With a particular Acceptance Filter or, a Transmit RAM
buffer Which the User preloads With all necessary data to
transmit a complete CAN Data Frame. A Message Object
can be considered to be a communication channel over

Which a complete message, or a succession of messages,
can be transmitted.

CAN Arbitration ID: An 11-bit (Standard CAN 2.0 Frame)
or 29-bit (Extended CAN 2.0B Frame) identi?er ?eld
placed in the CAN Frame Header. This ID ?eld is used to
arbitrate Frame access to the CAN bus. Also used in
Acceptance Filtering for CAN Frame reception and
Transmit Pre-Arbitration.

Screener ID: A 30-bit ?eld extracted from the incoming
message Which is then used in Acceptance Filtering. The

US 6,510,479 B1
5

Screener ID includes the CAN Arbitration ID and the IDE
bit, and can include up to 2 Data Bytes. These 30 extracted
bits are the information quali?ed by Acceptance Filtering.

Match ID: A 30-bit ?eld pre-speci?ed by the user to Which
the incoming Screener ID is compared. Individual Match
IDs for each of 32 Message Objects are programmed by
the user into designated Memory Mapped Registers
(MMRs).

Mask: A 29-bit ?eld pre-speci?ed by the user Which can
override (Mask) a Match ID comparison at any particular
bit (or, combination of bits) in an Acceptance Filter.
Individual Masks, one for each Message Object, are
programmed by the user in designated MMRs. Individual
Mask patterns assure that single Receive Objects can
Screen for multiple acknoWledged CAL/ CAN Frames and
thus minimiZe the number of Receive Objects that must
be dedicated to such loWer priority Frames. This ability to
Mask individual Message Objects is an important neW
CAL feature.

CAL: CAN Application layer. A generic term for any
high-level protocol Which extends the capabilities of CAN
While employing the CAN physical layer and the CAN
frame format, and Which adheres to the CAN speci?ca
tion. Among other things, CALs permit transmission of
Messages Which exceed the 8 byte data limit inherent to
CAN Frames. This is accomplished by dividing each
message into multiple packets, With each packet being
transmitted as a single CAN Frame consisting of a maxi
mum of 8 data bytes. Such messages are commonly
referred to as “segmented” or “fragmented” messages.
The individual CAN Frames constituting a complete
fragmented message are not typically transmitted in a
contiguous fashion, but rather, the individual CAN
Frames of different, unrelated messages are interleaved on
the CAN bus, as is illustrated in FIG. 2

Fragmented Message: A lengthy message (in excess of 8
bytes) divided into data packets and transmitted using a
sequence of individual CAN Frames. The speci?c Ways
that sequences of CAN Frames construct these lengthy
messages is de?ned Within the context of a speci?c CAL.
The XA-C3 microcontroller automatically re-assembles
these packets into the original, lengthy message in hard
Ware and reports (via an interrupt) When the completed
(re-assembled) message is available as an associated
Receive Message Object.

Message Buffer: A block of locations in XA Data memory
Where incoming (received) messages are stored or Where
outgoing (transmit) messages are staged.

MMR: Memory Mapped Register. An on-chip command/
control/status register Whose address is mapped into XA
Data memory space and is accessed as Data memory by
the XAprocessor. With the XA-C3 microcontroller, a set
of eight dedicated MMRs are associated With each Mes
sage Object. Additionally, there are several MMRs Whose
bits control global parameters that apply to all Message
Objects.
With reference noW to FIG. 3, there can be seen a

high-level block diagram of the XA-C3 microcontroller 20.
The XA-C3 microcontroller 20 includes the folloWing func
tional blocks that are fabricated on a single integrated circuit
(IC) chip packaged in a 44-pin PLCC or a 44-pin LQFP
package:

an XA CPU Core 22, that is currently implemented as a
16-bit fully static CPU With 24-bit program and data
address range, that is upWardly compatible With the
80C51 architecture, and that has an operating fre
quency of up to 30 MHZ;

10

15

20

25

30

35

40

45

50

55

60

65

6
a program or code memory 24 that is currently imple
mented as a 32K ROM/EPROM, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal Program bus 25. A map of the code memory
space is depicted in FIG. 4;

a Data RAM 26 (internal or scratch pad data memory) that
is currently implemented as a 1024 Byte portion of the
overall XA-C3 data memory space, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal DATA bus 27;

an on-chip message buffer RAM or XRAM 28 that is
currently implemented as a 512 Byte portion of the
overall XA-C3 data memory space Which may contain
part or all of the CAN/CAL (Transmit & Receive
Object) message buffers;

a Memory Interface (MIF) unit 30 that provides interfaces
to generic memory devices such as SRAM, DRAM,
?ash, ROM, and EPROM memory devices via an
external address/data bus 32, via an internal Core Data
bus 34, and via an internal MMR bus 36;

a DMA engine 38 that provides 32 CAL DMA Channels;
a plurality of on-chip Memory Mapped Registers
(MMRs) 40 that are mapped to the overall XA-C3 data
memory space—a 4K Byte portion of the overall
XA-C3 data memory space is reserved for MMRs.
These MMRs include 32 (Message) Object or Address
Pointers and 32 ID Screeners or Match IDs, corre
sponding to the 32 CAL Message Objects. A complete
listing of all MMRs is provided in the Table depicted in
FIG. 5;

a 2.0 B CAN/DLL Core 42 that is the CAN Controller
Core from the Philips SJA1000 CAN (2.0A/B) Data
Link Layer (CDLL) device (hereinafter referred to as
the “CAN Core Block” (CCB)); and,

an array of standard microcontroller peripherals that are
bi-directionally coupled to the XA CPU Core 22 via a
§pecial Function Register (SFR) bus 43. These stan
dard microcontroller peripherals include Universal
Asynchronous Receiver Transmitter (UART) 49, an
SPI serial interface (port) 51, three standard timers/
counters With toggle output capability, namely, Timer 0
& Timer 1 included in Timer block 53, and Timer 2
included in Timer block 54, a Watchdog Timer 55, and
four 8-bit I/O ports, namely, Ports 0—3 included in
block 61, each of Which has 4 programmable output
con?gurations.

The DMA engine 38, the MMRs 40, and the CCB 42 can
collectively be considered to constitute a CAN / CAL module
77, and Will be referred to as such at various times through
out the folloWing description. Further, the particular logic
elements Within the CAN/CAL module 77 that perform
“message management” and “message handling” functions
Will sometimes be referred to as the “message management
engine” and the “message handler”, respectively, at various
times throughout the folloWing description. Other nomen
clature Will be de?ned as it introduced throughout the
folloWing description.
As previously mentioned, the XA-C3 microcontroller 20

automatically implements, in hardWare, many message man
agement and other functions that Were previously only
implemented in softWare running on the host CPU (or not
implemented at all), including transparent, automatic
re-assembly of up to 32 concurrent, interleaved, multi
frame, fragmented CAL messages. For each application that
is installed to run on the host CPU (i.e., the XA CPU Core
22), the user (softWare programmer) must set-up the hard

US 6,510,479 B1
7

Ware for performing these functions by programming certain
ones of the MMRs.and SFRs in the manner set forth in the
XA-C3 Functional Speci?cation and XA-C3 CAN Transport
Layer Controller User Manual. The register programming
procedures that are most relevant to an understanding of the
present invention are described beloW, folloWed by a
description of the various message management and other
functions that are automatically performed by the CAL/
CAN module 77 during operation of the XA-C3 microcon
troller 20 after it has been properly set-up by the user.
FolloWing these sections, a more detailed description of the
particular invention to Which this application is directed is
provided.

Set-up/Programming Procedures

As an initial matter, the user must map the overall XA-C3
data memory space, as illustrated in FIG. 5. In particular,
subject to certain constraints, the user must specify the
starting or base address of the XRAM 28 and the starting or
base address of the MMRs 40. The base address of the
MMRs 40 can be speci?ed by appropriately programming
Special Function Registers (SFRs) MRBL and MRBH. The
base address of the XRAM 28 can be speci?ed by appro
priately programming the MMRs designated MBXSR and
XRAMB (see FIG. 4).

The user can place the 4 KByte space reserved for MMRs
40 anyWhere Within the entire 16 Mbyte data memory space
supported by the XA architecture, other than at the very
bottom of the memory space (i.e., the ?rst 1 KByte portion,
starting address of 000000h), Where it Would con?ict With
the on-chip Data RAM 26 that serves as the internal or
scratch-pad memory. The 4 KBytes of MMR space Will
alWays start at a 4K boundary. The reset values for MRBH
and MRBL are OFh and FOh, respectively. Therefore, after a
reset, the MMR space is mapped to the uppermost 4K Bytes
of Data Segment OFh, but access to the MMRs 40 is
disabled. The ?rst 512 Bytes (offset 000h—1FFh) of MMR
space are the Message Object Registers (eight per Message
Object) for objects n=0—31, as is shoWn in FIG. 6.

The base address of the XRAM 28 is determined by the
contents of the MMRs designated MBXSR and XRAMB, as
is shoWn in FIGS. 7 and 8. As previously mentioned; the 512
Byte XRAM 28 is Where some (or all) of the 32 (RX/T X)
message buffers (corresponding to Message Objects
n=0—31) reside. The message buffers can be eXtended off
chip to a maXimum of 8 KBytes. This off-chip expansion
capability can accommodate up to thirty-tWo, 256-Byte
message buffers. Since the uppermost 8 bits of all message
buffer addresses are formed by the contents of the MBXSR
register, the XRAM 28 and all 32 message buffers must
reside in the same 64K Byte data memory segment. Since
the XA-C3 microcontroller 20 only provides address lines
A0—A19 for accessing eXternal memory, all eXternal
memory addresses must be Within the loWest 1 MByte of
address space. Therefore, if there is eXternal memory in the
system into Which any of the 32 message buffers Will be
mapped, then all 32 message buffers and the XRAM 28 must
also be mapped entirely into that same 64K Byte segment,
Which must be beloW the 1 MByte address limit.

After the memory space has been mapped, the user can
set-up or de?ne up to 32 separate Message Objects, each of
Which can be either a Transmit (TX) or a Receive (RX)
Message Object. A RX Message Object can be associated
either With a unique CAN ID, or With a set of CAN IDs
Which share certain ID bit ?elds. As previously mentioned,
each Message Object has its oWn reserved block of data

10

15

25

35

45

55

65

8
memory space (up to 256 Bytes), Which is referred to as that
Message Object’s message buffer. As Will be seen, both the
siZe and the base address of each Message Object’s message
buffer is programmable.
As previously mentioned, each Message Object is asso

ciated With a set of eight MMRs 40 dedicated to that
Message Object. Some of these registers function differently
for TX Message Objects than they do for RX Message
Objects. These eight MMRs 40 are designated “Message
Object Registers” (see FIG. 4).
The names of these eight MMRs 40 are:

1. MnMIDH Message n Match ID High
2. MnMIDL Message n Match ID LoW
3. MnMSKH Message n Mask High
4. MnMSKL Message n Mask LoW
5. MnCTL Message n Control
6. MnBLR Message n Buffer Location Register
7. MnBSZ Message n Buffer Size
8. MnFCR Message n Fragment Count Register

Where n ranges from 0 to 31 (i.e., corresponding to 32
independent Message Objects).

In general, the user de?nes or sets up a Message Object
by con?guring (programming) some or all of the eight
MMRs dedicated to that Message Object, as Will be
described beloW. Additionally, as Will be described beloW,
the user must con?gure (program) the global GCTL register,
Whose bits control global parameters that apply to all
Message Objects.

In particular, the user can specify the Match ID value for
each Message Object to be compared against the Screener
IDs extracted from incoming CAN Frames for Acceptance
Filtering. The Match ID value for each Message Object n is
speci?ed in the MnMIDH and MnMIDL registers associated
With that Message Object n. The user can mask any Screener
ID bits Which are not intended to be used in Acceptance
Filtering, on an object-by-object basis, by Writing a logic ‘1’
in the desired (to-be-masked) bit position(s) in the appro
priate MnMSKH and/or MNMSKL registers associated With
each particular Message Object n. The user is responsible,
on set-up, for assigning a unique message buffer location for
each Message Object n. In particular, the user can specify the
least signi?cant 16 bits of the base address of the message
buffer for each particular Message Object n by programming
the MnBLR register associated With that Message Object n.
The upper 8 bits of the 24-bit address, for all Message
Objects, are speci?ed by the contents of the MBXSR
register, as previously discussed, so that the message buffers
for all Message Objects reside Within the same 64 KByte
memory segment. The user is also responsible, on set-up, for
specifying the siZe of the message buffer for each Message
Object n. In particular, the user can specify the siZe of the
message buffer for each particular Message Object n by
programming the MnBSZ register associated With that Mes
sage Object n. The top location of the message buffer for
each Message Object.n is determined by the siZe of that
message buffer as speci?ed in the corresponding MnBSZ
register.
The user can con?gure (program) the MnCTL register

associated With each particular Message Object n in order to
enable or disable that Message Object n, in order to de?ne
or designate that Message Object n as a TX or RX Message
Object; in order to enable or disable automatic hardWare
assembly of fragmented RX messages (i.e., automatic frag
mented message handling) for that Message Object n; in
order to enable or disable automatic generation of a

US 6,510,479 B1

Message-Complete Interrupt for that Message Object n; and,
in order to enable or not enable that Message Object n for
Remote Transmit Request (RTR) handling. In CAN open and
OSEK systems, the user must also initialize the MnFCR
register associated With each Message Object n.
As previously mentioned, on set-up, the user must con

?gure (program) the global GCTL register, Whose bits
control global parameters that apply to all Message Objects.
In particular, the user can con?gure (program) the GCTL
register in order to specify the high-level CAL protocol (if
any) being used (e.g., DeviceNet, CANopen, or OSEK); in
order to enable or disable automatic:acknoWledgment of
CANopen Frames (CANopen auto-acknoWledge); and, in
order to specify Which of tWo transmit (TX) pre-arbitration
schemes/policies is to be utiliZed (i.e., either TX pre
arbitration based on CAN ID, With the object number being
used as a secondary tie-breaker, or TX pre-arbitration based
on object number only).

Receive Message Objects and the Receive Process

During reception (i.e., When an incoming CAN Frame is
being received by the XA-C3 microcontroller 20), the CAN /
CAL module 77 Will store the incoming CAN Frame in a
temporary (13-Byte) buffer, and determine Whether a
complete, error-free CAN frame has been successfully
received. If it is determined that a complete, error-free CAN
Frame has been successfully received, then the CAN/CAL
module 77 Will initiate Acceptance Filtering in order to
determine Whether to accept and store that CAN Frame, or
to ignore/discard that CAN Frame.

Acceptance Filtering

In general, because the XA-C3 microcontroller 20 pro
vides the user With the ability to program separate Match ID
and Mask ?elds for each of the 32 independent Message
Objects, on an object-by-object basis, as described
previously, the Acceptance Filtering process performed by
the XA-C3 microcontroller 20 can be characteriZed as a
“match and mask” technique. The basic objective of this
Acceptance Filtering process is to determine Whether a
Screener ID ?eld of the received CAN Frame (eXcluding the
“don’t care” bits masked by the Mask ?eld for each Message
Object) matches the Match ID of any enabled one of the 32
Message Objects that has been designated a Receive Mes
sage Object. If there is a match betWeen the received CAN
Frame and more than one Message Object, then the received
CAN Frame Will be deemed to have matched the Message
Object With the loWest object number

Acceptance Filtering is performed as folloWs by the
XA-C3 microcontroller 20:
(1) A Screener ID ?eld is eXtracted from the incoming

(received) CAN Frame. In this regard, the Screener ID
?eld that is assembled from the incoming bit stream is
different for Standard and EXtended CAN Frames. In
particular, as is illustrated in FIG. 9, the Screener ID ?eld
for a Standard CAN Frame is 28 bits, consisting of 11
CAN ID bits eXtracted from the header of the received
CAN Frame+2><8 (16) bits from the ?rst and second data
bytes (Data Byte I and Data Byte 2) of the received CAN
Frame+the IDE bit. Thus, the user is required to set the
Msk1 and Msk0 bits in the Mask Field (MnMSKL
register) for Standard CAN Frame Message Objects, i.e.,
to “don’t care”. In addition, in many applications based on
Standard CAN Frames, either Data Byte 1, Data Byte 2,
or both do not participate in Acceptance Filtering. In those
applications, the user must also mask out the unused Data

10

15

25

35

45

55

65

10
Byte(s). The IDE bit is not maskable. As is illustrated in
FIG. 10, the Screener ID ?eld for an EXtended CAN
Frame is 30 bits, consisting of 29 CAN ID bits eXtracted
from the header of the incoming CAN Frame+the IDE bit.
Again, the IDE bit is not maskable.

(2) The assembled Screener ID ?eld of the received CAN
Frame is then sequentially compared to the corresponding
Match ID values speci?ed in the MnMIDH and MnMIDL
registers for all currently enabled Receive Message
Objects. Of course, any bits in the Screener ID ?eld that
are masked by a particular Message Object are not
included in the comparison. That is, if there is a ‘1’ in a
bit position of the Mask ?eld speci?ed in the MnMSKH
and MnMSKL registers for a particular Message Object,
then the corresponding bit position in the Match ID ?eld
for that particular Message Object becomes a “don’t
care”, i.e., alWays yields a match With the corresponding
bit of the Screener ID of the received CAN Frame.

(3) If the above comparison process yields a match With
more than one Message Object, then the received CAN
Frame Will be deemed to have matched the Message
Object having the loWest object number

Message Storage

Each incoming (received) CAN Frame that passes Accep
tance Filtering, Will be automatically stored, via the DMA
engine 38, into the message buffer for the Receive Message
Object that particular CAN Frame Was found to have
matched. In an eXemplary implementation, the message
buffers for all Message Objects are contained in the XRAM
28.

Message Assembly
In general, the DMA engine 38 Will transfer each accepted

CAN Frame from the 13-byte pre-buffer to the appropriate
message buffer (e.g., in the XRAM 28), one Word at a time,
starting from the address pointed to by the contents of the
MBXSR and MnBLR registers. Every time the DMA engine
38 transfers a byte or a Word, it has to request the bus. In this
regard, the MIF unit 30 arbitrates betWeen accesses from the
XA CPU Core 22 and from the DMA engine 38. In general,
bus arbitration is done on an “alternate” policy. After a DMA
bus access, the XA CPU Core 22 Will be granted bus access,
if requested. After an XA CPU bus access, the DMA engine
38 Will be granted bus access, if requested. (HoWever, a
burst access by the XA CPU Core 22 cannot be interrupted
by a DMA bus access).

Once bus access is granted by the MIF unit 30, the DMA
engine 38 Will Write data from the 13-byte pre-buffer to the
appropriate message buffer location. The DMA engine 38
Will keep requesting the bus, Writing message data sequen
tially to the appropriate message buffer location until the
Whole accepted CAN Frame is transferred. After the DMA
engine 38 has successfully transferred an accepted CAN
Frame to the appropriate message buffer location, the con
tents of the message buffer Will depend upon Whether the
message that the CAN Frame belongs to is a non-fragmented
(single frame) message or a fragmented message. Each case
is described beloW:

Non-Fragmented Message Assembly
For Message Objects that have been set up With automatic

fragmented message handling disabled (not enabled—i.e.,
the FRAG bit in the MnCTL register for that Message
Object is set to ‘0’), the complete CAN ID of the accepted
CAN Frame (Which is either 11 or 29 bits, depending on

US 6,510,479 B1
11

Whether the accepted CAN Frame is a Standard or Extended
CAN Frame) is Written into the MnMIDH and MnMIDL
registers associated With the Message Object that has been
deemed to constitute a match, once the DMA engine 38 has
successfully transferred the accepted CAN Frame to the
message buffer associated With that Message Object. This
Will permit the user application to see the eXact CAN ID
Which resulted in the match, even if a portion of the CAN ID
Was masked for Acceptance Filtering. As a result of this
mechanism, the contents of the MnMIDH and MnMIDL
registers can change every time an incoming CAN Frame is
accepted. Since the incoming CAN Frame must pass
through the Acceptance Filter before it can be accepted, only
the bits that are masked out Will change. Therefore, the
criteria for match and mask Acceptance Filtering Will not
change as a result of the contents of the MnMIDH and
MnMIDL registers being changed in response to an accepted
incoming CAN Frame being transferred to the appropriate
message buffer.

Fragmented Message Assembly

For Message Objects that have been set up With automatic
fagmented message handling enabled (i.e., With the FRAG
bit in the MnCTL register for that Message Object set to ‘1’),
masking of the 11/29 bit CAN ID ?eld is disalloWed. As
such, the CAN ID of the accepted CAN Frame is knoWn
unambiguously, and is contained in the MnMIDH and
MnMIDL registers associated With the Message Object that
has been deemed to constitute a match. Therefore, there is no
need to Write the CAN ID of the accepted CAN Frame into
the MnMIDH and MnMIDL registers associated With the
Message Object that has been deemed to constitute a match.

As subsequent CAN Frames of a fragmented message are
received, the neW data bytes are appended to the end of the
previously received and stored data bytes. This process
continues until a complete multi-frame message has been
received and stored in the appropriate message buffer.

Under CAL protocols DeviceNet, CANopen, and OSEK,
if a Message Object is an enabled Receive Message Object,
and its associated MnCTL register has its FRAG bit set to ‘1’
(i.e., automatic fragmented message assembly is enabled for
that particular Receive Message Object), then the ?rst data
byte (Data Byte 1) of each received CAN Frame that
matches that particular Receive Message Object Will be used
to encode fragmentation information only, and thus, Will not
be stored in the message buffer for that particular Receive
Message Object. Thus, message storage for such “FRAG
enabled” Receive Message Objects Will start With the second
data byte (Data Byte 2) and proceed in the previously
described manner until a complete multi-frame message has
been received and stored in the appropriate message buffer.
This message storage format is illustrated in FIG. 11. The
message handler hardWare Will use the fragmentation infor
mation contained in Data Byte 1 of each CAN Frame to
facilitate this process.

Under the CAN protocol, if a Message Object is an
enabled Receive Message Object, and its associated MnCTL
register has its FRAG bit set to ‘1’ (i.e., automatic frag
mented message assembly is enabled for that particular
Receive Message Object), then the CAN Frames that match
that particular Receive Message Object Will be stored
sequentially in the message buffer for that particular Receive
Message Object using the format shoWn in FIG. 12.
When Writing message data into a message buffer asso

ciated With a Message Object n, the DMA engine 38 Will
generate addresses automatically starting from the base

10

15

25

35

45

55

65

12
address of that message buffer (as speci?ed in the MnBLR
register associated With that Message Object n). Since the
siZe of that message buffer is speci?ed in the MNBSZ
register associated With that Message Object n, the DMA
engine 38 can determine When it has reached the top location
of that message buffer. If the DMA engine 38 determines
that it has reached the top location of that message buffer,
and that the message being Written into that message buffer
has not been completely transferred yet, the DMA engine 38
Will Wrap around by generating addresses starting from the
base address of that message buffer again. Some time before
this happens, a Warning interrupt Will be generated so that
the user application can take the necessary action to prevent
data loss.
The message handler Will keep track of the current

address location of the message buffer being Written to by
the DMA engine 38, and the number of bytes of each CAL
message as it is being assembled in the designated message
buffer. After an “End of Message” for a CAL message is
decoded, the message handler Will ?nish moving the com
plete CAL message and the Byte Count into the designated
message buffer via the DMA engine 38, and then generate an
interrupt to the XA CPU Core 22 indicating that a complete
message has been received.

Since Data Byte 1 of each CAN Frame contains the
fragmentation information, it Will never be stored in the
designated message buffer for that CAN Frame. Thus, up to
seven data bytes of each CAN Frame Will be stored. After
the entire message has been stored, the designated message
buffer Will contain all of the actual informational data bytes
received (exclusive of fragmentation information bytes) plus
the Byte Count at location 00 Which Will contain the total
number of informational data bytes stored.

It is noted that there are several speci?c user set-up/
programming procedures that must be folloWed When invok
ing automatic hardWare assembly of fragmented OSEK and
CANopen messages. These and other particulars can be
found in the XA-C3 CAN Transport Layer Controller User
Manual that is part of the parent Provisional Application
Serial No. 60/154,022, the disclosure of Which has been
fully incorporated herein for all purposes.

Transmit Message Objects and the Transmit
Process

In order to transmit a message, the XA application pro
gram must ?rst assemble the complete message and store it
in the designated message buffer for the appropriate Trans
mit Message Object n. The message header (CAN ID and
Frame Information) must be Written into the MnMIDH,
MnMIDL, and MnMSKH registers associated With that
Transmit Message Object n. After these steps are completed,
the XA application is ready to transmit the message. To
initiate a transmission, the object enable bit (OBJ EN bit) of
the MnCTL register associated With that Transmit Message
Object n must be set, eXcept When transmitting an Auto
AcknoWledge Frame in CANopen. This Will alloW this
ready-to-transmit message to participate in the pre
arbitration process. In this connection, if more than one
message is ready to be transmitted (i.e., if more than one
Transmit Message Object is enabled), a TX Pre-Arbitration
process Will be performed to determine Which enabled
Transmit Message Object Will be selected for transmission.
There are tWo TX Pre-Arbitration policies Which the user can
choose betWeen by setting or clearing the PreiArb bit in the
GCTL register.

After a TX Message Complete interrupt is generated in
response to a determination being made by the message

US 6,510,479 B1
13

handler that a completed message has been successfully
transmitted, the TX Pre-Arbitration process is “reset”, and
begins again. Also, if the “Winning” Transmit Message
Object subsequently loses arbitration on the CAN bus, the
TX Pre-Arbitration process gets reset and begins again. If
there is only one Transmit Message Object Whose OBJiEN
bit is set, it Will be selected regardless of the TX Pre
Arbitration policy selected.

Once an enabled Transmit Message Object has been
selected for transmission, the DMA engine 38 Will begin
retrieving the transmit message data from the message buffer
associated With that Transmit Message Object, and Will
begin transferring the retrieved transmit message data to the
CCB 42 for transmission. The same DMA engine and
address pointer logic is used for message retrieval of trans
mit messages as is used for message storage of receive
messages, as described previously. Further, message buffer
location and siZe information is speci?ed in the same Way,
as described previously. In short, When a transmit message
is retrieved, it Will be Written by the DMA engine 38 to the
CCB 42 sequentially. During this process, the DMA engine
38 Will keep requesting the bus; When bus access is granted,
the DMA engine 38 Will sequentially read the transmit
message data from the location in the message buffer cur
rently pointed to by the address pointer logic; and, the DMA
engine 38 Will sequentially Write the retrieved transmit
message data to the CCB 42. It is noted that When preparing
a message for transmission, the user application must not
include the CAN ID and Frame Information ?elds in the
transmit message data Written into the designated message
buffer, since the Transmit (TX) logic Will retrieve this
information directly from the appropriate MnMIDH,
MNMIDL, and MnMSKH registers.

The XA-C3 microcontroller 20 does not handle the trans
mission of fragmented messages in hardWare. It is the user’s
responsibility to Write each CAN Frame of a fragmented
message to the appropriate message buffer, enable the asso
ciated Transmit Message Object for transmission, and Wait
for a completion before Writing the neXt CAN Frame of that
fragmented message to the appropriate message buffer. The
user application must therefore transmit multiple CAN
Frames one at a time until the Whole multi-frame, frag
mented transmit message is successfully transmitted.
HoWever, by using multiple Transmit Message Objects
Whose object numbers increase sequentially, and Whose
CAN IDs have been con?gured identically, several CAN
Frames of a fragmented transmit message can be queued up
and enabled, and then transmitted in order.

To avoid data corruption When transmitting messages,
there are three possible approaches:
1 . If the TX Message Complete interrupt is enabled for the

transmit message, the user application Would Write the
neXt transmit message to the designated transmit message
buffer upon receipt of the TX Message Complete interrupt.
Once the interrupt ?ag is set, it is knoWn for certain that
the pending transmit message has already been transmit
ted.

2. Wait until the OBJiEN bit of the MnCTL register of the
associated Transmit Message Object clears before Writing
to the associated transmit message buffer. This can be
accomplished by polling the OBJiEN bit of the MnCTL
register of the associated Transmit Message Object.

3. Clear the OBJiEN bit of the MnCTL register of the
associated Transmit Message Object While that Transmit
Message Object is still in TX Pre-Arbitration.
In the ?rst tWo cases above, the pending transmit message

Will be transmitted completely before the neXt transmit

10

15

20

25

30

35

40

45

55

60

65

14
message gets transmitted. For the third case above, the
transmit message Will not be transmitted. Instead, a transmit
message With neW content Will enter TX Pre-Arbitration.

There is an additional mechanism that prevents corruption
of a message that is being transmitted. In particular, if a
transmission is ongoing for a Transmit Message Object, the
user Will be prevented from clearing the OBJiEN bit in the
MnCTL register associated With that particular Transmit
Message Object.

CAN / CAL Related Interrupts

The CAN/CAL module 77 of the XA-C3 microcontroller
20 is presently con?gured to generate; the folloWing ?ve
different Event interrupts to the XA CPU Core 22:
1. RX Message Complete
2. TX Message Complete
3. RX Buffer Full
4. Message Error
5. Frame Error

For single-frame messages, the “Message Complete” con
dition occurs at the end of the single frame. For multi-frame
(fragmented) messages, the “Message Complete” condition
occurs after the last frame is received and stored. Since the
XA-C3 microcontroller 20 hardWare does not recogniZe or
handle fragmentation for transmit messages, the TX Message
Complete condition Will alWays be generated at the end of
each successfully transmitted frame.
As previously mentioned, there is a control bit associated

With each Message Object indicating Whether a Message
Complete condition should generate an interrupt, or just set
a “Message Complete Status Flag” (for polling) Without
generating an interrupt. This is the INTiEN bit in the
MnCTL register associated With each Message Object n.

There are tWo 16-bit MMRs 40, MCPLH and MCPLL,
Which contain the Message Complete Status Flags for all 32
Message Objects. When a Message Complete (TX or RX)
condition is detected for a particular Message Object, the
corresponding bit in the MCPLH or MCPLL register Will be
set. This Will occur regardless of Whether the INTiEN bit
is set for that particular Message Object (in its associated
MnCTL register), or Whether Message Complete Status
Flags have already been set for any other Message Objects.

In addition to these 32 Message Complete Status Flags,
there is a TX Message Complete Interrupt Flag and an RX
Message Complete Interrupt Flag, corresponding to bits [1]
and [0], respectively, of an MMR 40 designated
CANINTFLG, Which Will generate the actual Event inter
rupt: requests to the XA CPU Core 22. When an End-of
Message condition occurs, at the same moment that the
Message Complete Status Flag is set, the appropriate TX or
RX Message Complete Interrupt ?ip-?op Will be set pro
vided that INTiEN=1 for the associated Message Object,
and provided that the interrupt is not already set and pend
mg.

Further details regarding the generation of interrupts and
the associated registers can be found in the XA-C3 Func
tional Speci?cation and in the XA-C3 CAN Transport Layer
Controller User Manual, both of Which are part of the parent
Provisional Application Serial No. 60/154,022, the disclo
sure of Which has been fully incorporated herein for all
purposes.

Message Buffers

As Was previously described in detail hereinabove, the
XA-C3 microcontroller 20 supports up to 32 separate and
independent Message Objects, each of Which is set-up or

US 6,510,479 B1
15

de?ned by virtue of the user (programmer) con?guring
(programming) some or all of the eight MMRs 40 dedicated
to that Message Object. In the XA-C3 microcontroller 20,
each of the 32 Message Objects is assigned its oWn block of
address space in data memory, Which serves as its message
buffer for data storage. The siZe and location of each
message buffer is programmable, and thus, recon?gurable
“on the ?y” by the user/programmer. The message buffers
can be positioned in any desired location Within the overall
data memory space addressable by the XA-C3 microcon
troller 20, Which is presently con?gured to be a 16 Mbyte
overall memory space. These message buffers can be located
in the XRAM 28 and/or in any off-chip portion of the overall
data memory space.

The location of the message buffer associated With each
Message Object n is established by programming the MMR
40 designated MnBLR associated With that Message Object,
i.e., by programming the Message n Buffer Location Reg
ister. The siZe of the message buffer associated With each
Message Object is established by programming the MMR 40
designated MnBSZ associated With that Message Object,
i.e., by programming the Message n Buffer SiZe Register. In
the XA-C3 microcontroller 20, alloWable buffer siZes are 2,
4, 8, 16, 32, 64, 128, or 256 bytes. Users can select the siZe
of each message buffer based on the anticipated length of the
incoming message, or they can conserve memory by delib
erately specifying smaller buffers at the expense of increased
processor intervention to handle more frequent buffer-full
conditions. In the XA-C3 microcontroller 20, Direct
Memory Access (DMA) (i.e., the DMA engine 38) is used
to enable the XA-C3 CAN/CAL module 77 to directly
access the 32 message buffers Without interrupting the
XA-C3 processor (CPU) core 22.

The XA-C3 CAN/CAL module 77 uses the values pro
grammed into the buffer siZe registers MnBSZ to reserve the
designated number of bytes of storage for each Message
Object n. For Receive Message Objects, this ?eld is also
used by logic in the XA-C3 CAN/CAL module 77 to
calculate the total number of bytes that have actually been
stored in the message buffers, and to identify When a
buffer-full condition is reached. Each time a byte of data is
stored in a message buffer associated With a Message Object
n, the XA-C3 CAN/CAL module 77 concurrently accesses
the MnBSZ and MNBLR registers associated With that
Message Object. Logic incorporated Within the XA-C3
CAN/CAL module 77 decodes the buffer siZe for that
Message Object and compares the decoded buffer siZe to the
address pointer to determine current byte count and avail
able space left in that Message Object’s message buffer.

The present implementation of the XA-C3 microcontrol
ler 20 requires that all of the 32 message buffers reside
Within the same 64 Kbyte memory segment (or “page”). The
user may position the message buffers Within any of the 256
pages in the overall XA-C3 data memory space (i.e., 256x64
Kbytes=16 Mbytes). Programming the locations of the mes
sage buffers is accomplished in tWo steps.

The ?rst step is to program the page number in Which all
of the message buffers reside into the MMR 40 designated
as the MBXSR register, Which is one of the CCB Registers
depicted in FIG. 4. As Was previously described, the con
tents of this register are subsequently used as the eight MSBs
of address for all DMA accesses to any of the message
buffers. This register also establishes the memory page in
Which the XRAM 28 resides.

The second step is to program the base address (16 bits)
for each individual message buffer into the MnBLR asso

15

25

35

45

55

65

16
ciated With that message buffer. These 16-bit address values
initially speci?ed by the user/programmer constitute the
base addresses of the 32 respective message buffers Within
the 64 Kbyte memory page speci?ed in the MBXSR register
for all message buffers. It should be noted that the message
buffers can be placed apart from one another, as there is no
requirement that the message buffer space be continuous
(i.e., that the message buffers reside in physically contiguous
locations Within the data memory space). Further, it should
also be noted that some or all of the message buffers can be
placed in off-chip memory, and others in the on-chip XRAM
28. In the XA-C3 microcontroller 20, it is required that each
message buffer start at a binary boundary for its siZe (i.e., the
8 LSBs must be Zero for a 256-byte message buffer, the 7
LSBs must be Zero for a 128-byte message buffer, etc.).
DMA access to each of the message buffers is achieved by

using the 8 bits stored in the MBXSR,register as the 8 MSBs
of the address of that message buffer, and the 16 bits stored
in the MnBLR register for that message buffer as the 16
LSBs of the address of that message buffer. The base address
initially programmed by the user into the MnBLR register
for that message buffer is the address of the ?rst (bottom)
location of that message buffer. When the ?rst frame of a
neW receive message arrives, the CAN/CAL module 77
hardWare Writes a semaphore code into this bottom location
before beginning to store actual data bytes, starting at the
neXt location in that message buffer. At the end of the neW
receive message (or When a buffer-full condition is
detected), the CAN/CAL module 77 hardWare computes the
total number of bytes actually stored in that message buffer,
and Writes this value into the bottom location of that
message buffer. The processor (i.e., the XA CPU Core 22)
can then read this value and determine precisely hoW many
additional bytes must be read and processed.
Each time a neW byte of data must be Written to (for

receive messages) or retrieve from (for transmit messages)
a message buffer, the DMA engine 38 reads the MnBLR
register for that message buffer in order to retrieve the
current address pointer for the associated Message Object.
The DMA engine 38 concatenates the 8 MSBs stored in the
global Message Buffer Segment Register.(i.e., the MBXSR
register) and the 16 LSBs stored in the MnBLR register for
that message buffer to form a complete 24-bit message
buffer address. The DMA engine 38 then passes this address
to the Memory Interface (MIF) unit 30, along With a ?ag
indicating that the DMA engine 38 requires access to the
memory. As soon as the current set of XA-C3 processor
memory accesses are completed, the MIF unit 30 Will
initiate a memory read or Write to the address provided by
the DMA engine 38, and then permit the DMA engine 38 to
perform the required data transfer to/from the desired mes
sage buffer. DMA accesses are typically done tWo bytes at
a time (i.e., as a 16-bit operation). HoWever, 8-bit operations
are employed When there is only a single byte to be
transferred.
As soon as the requested DMA operation is completed,

the DMA engine 38 increments the 16-bit address value
stored in the MNBLR register associated With that message
buffer (by one or tWo, depending upon Whether a one byte
or tWo byte access Was performed), and Writes this value
back into the MnBLR register for that message buffer. Thus,
the MnBLR registers, along With the associated increment
logic Within the DMA engine 38, effectively function as a set
of 32 binary “counters”. Thus, at any given time, each
MnBLR register contains the address Which Will be used for
the neXt data access to the message buffer associated With
the Message Object n. In this manner, the MnBLR register

US 6,510,479 B1
17

for each message buffer serves as an address-pointer. These
address-pointer ?elds are also readable at any time by the
processor under software control.

The above-described approach to message storage also
provides an extremely quick and ef?cient means of freeing
up a message buffer When a message completes or When a
message buffer is ?ll. The softWare can respond to a
message-complete interrupt or a buffer-full interrupt by
simply repositioning the message-buffer space for that par
ticular Message Object to someWhere else in the message
buffer memory space. This is accomplished by performing a
single Write operation to modify the buffer base-address
speci?ed in the appropriate MnBLR register (i.e., “address
pointer”). This is essentially the eXtent of a very short
interrupt handling routine. These interrupts must be handled
quickly because the message buffer must be freed-up for
subsequent message reception. Interrupt response is particu
larly critical if many completed messages are stacked up and
need to be dealt With at once. Once this buffer repositioning
is accomplished, the hardWare is immediately ready to
receive a neW message over that Message Object “channel”
(or, the continuation of the current message, in the case of a
buffer-full interrupt). The memory space that Was previously
designated as the message buffer for that Message Object n
still contains the previously-received message data, but this
space noW becomes just part of the long-term data memory
space. The message information stored in this long-term data
memory space can then be processed by the softWare at its
leisure.

This same buffer repositioning technique can be
employed for Transmit Messages to facilitate fragmentation.
Unlike the receive case, the XA-C3 CAN/CAL Module 77
does not automatically assemble fragmented outgoing mes
sages. It is incumbent upon the softWare to “load” a neW
message frame each time the previous frame is transmitted.
Using the XA-C3 microcontroller 20 message storage
scheme, hoWever, the softWare can construct an entire
fragmented message prior to enabling transmission. As each
frame is transmitted, the processor (XA CPU Core 22) only
needs to reposition the buffer (again, using a single Write
operation) to point to the location of the neXt frame. This is
much faster than competing devices, Which require the
processor to move up to 13 bytes of data from memory to a
dedicated transmit buffer.

It Will be appreciated that With the above-described mes
sage buffer scheme of the present invention, each message
buffer can be regarded as a separate FIFO having an inde
pendently programmable buffer length, Which provides a
revolutionary approach to storing sequential messages of
varying lengths Without any CPU intervention.

The Present Invention

As Was described in detail hereinabove, the XA CAN/
CAL module 77 provides the user (programmer) With the
unique ability to enable multiple (up to 32) ones of the
Message Objects as Transmit Message Objects, thereby
enabling multiple (up to 32) messages to be staged for
transmit at once. In accordance With the present invention,
the XA CAN/CAL module 77 includes logic (“transmit
pre-arbitration engine”) for automatically determining
Which of multiple pending Transmit Message Objects has
the highest priority prior to an attempt to transmit any of the
messages over the CAN bus. The scheme employed for
making this determination is termed a “transmit pre
arbitration scheme”. As Was described previously, the
XA-C3 microcontroller 20 provides the user (programmer)

15

25

35

45

55

65

18
With the ability to select betWeen tWo different transmit
pre-arbitration schemes or policies by setting or clearing the
PreiArb bit in the GCTL register.

It Will be appreciated that once priority is determined, the
DMA engine 38 Will then retrieve the message stored in the
message buffer associated With the Transmit Message Object
that has been determined to have the highest priority accord
ing to the selected transmit pre-arbitration scheme (i.e., the
“Winning” Transmit Message Object), and Will then transfer
the retrieved transmit message data to the CCB 42 for
transmission over the CAN bus. Obviously, each transmit
message (frame) selected for transmission over the CAN bus
must compete With all other transmitting devices on the
netWork for access to the CAN bus at any given time. It Will
be appreciated that access onto the CAN bus is governed by
the arbitration process inherent in the governing CAN
protocol, and thus, need not be described herein. As Was also
previously described, if the Winning Transmit Message
Object loses arbitration on the CAN bus, the transmit
pre-arbitration process is gets reset and starts over. This
ensures that the XA CAN/CAL module 77 transmit pre
arbitration is alWays based on up-to-date information. Thus,
if the softWare (e.g., CAN application) running on the XA
CPU Core 22 enables neW messages for transmission, or
disables a previously pending transmit message, the transmit
pre-arbitration engine Will detect this change prior to initi
ating a neW transmitzcycle.

It Will be appreciated that the XA CAN/CAL module 77
has the unique capability of alloWing transmit pre-arbitration
of pending transmit messages and input acceptance ?ltering
of receive messages to be handled concurrently using the
same logic module and the same state-machine Within the
CAN/CAL module 77. This capability improves system
performance and minimiZes the required die area.

The tWo different transmit pre-arbitration schemes or
policies that are supported as options by the XA CAN/CAL
module 77 are as folloWs. The ?rst optional scheme per
forms transmit pre-arbitration based upon the same priority
scheme that is used to determine access to the actual CAN
bus. More particularly, in accordance With this ?rst optional
scheme, priority is determined by examining the bit pattern
in the CAN arbitration ?eld contained in the header portion
of each of the multiple transmit messages that are pending
(staged) for transmission, and then selecting the transmit
message having the highest assigned priority as de?ned by
the governing CAN protocol. It Will be appreciated that the
CAN arbitration ID is an 11 or 29 bit ?eld contained in the
header portion of each transmit message. In the event that
tWo or more pending transmit messages share the identical
CAN arbitration ID, the Message Object number (1 to 32) is
used as a secondary “tie-breaker”, e.g., the “co-Winner”
transmit message associated With the enabled Transmit
Message Object having the loWest (or highest) object num
ber Will be deemed the “Winner”. By using this ?rst optional
scheme, the user can ensure that the XA CAN/CAL module
77 Will attempt to transmit the message Which has the
highest likelihood of ultimately Winning access onto the
CAN bus self. The second optional scheme performs trans
mit pre-arbitration based upon the Message Object number
alone. This option provides the user or softWare With a
mechanism for overriding the inherent priority encoded into
the messages themselves, Which effectively dictates the
order in Which transmit messages Will attempt to gain access
to the CAN bus.

Although the persent invention has been described in
detail hereinabove in the conteXt of a speci?c perferred
embodiment/implementation, it should be clearly under

US 6,510,479 B1
19

stood that many variation, modi?cation, and/or alternative
embodiments/implementations of the basic inventive con
cepts taught herein Which may appear to those skilled in the
pertinent art Will still fall Within the spirit and scope of the
present invention, as de?ned in the appended claims.
What is claimed is:
1. A CAN device that supports a plurality of message

objects, comprising:
at least one object-speci?c control register associated With

each message object, Wherein the at least one object
speci?c control register associated With each message
object is programmable for the purpose of enabling or
disabling the associated message object as a transmit or
receive message object, thereby providing a user With
the capability to concurrently stage tWo or more trans
mit messages for attempted transmission over a CAN
bus coupled to the CAN device, according to a gov
erning CAN protocol; and,

a CAN/CAL module that processes both receive and
transmit messages, the CAN/CAL module including a
transmit pre-arbitration engine that determines Which
of tWo or more transmit messages concurrently staged
for attempted transmission over the CAN bus has
priority, Wherein the message determined to have pri
ority comprises a Winning message and the message
object associated With the Winning message comprises
a Winning message object.

2. The CAN device as set forth in claim 1, further
comprising a plurality of message buffers associated With
respective ones of the message objects for storage of trans
mit or receive messages associated With the respective ones
of the message objects.

3. The CAN device as set forth in claim 2, Wherein each
of the message buffers has a siZe and a location that are
programmable.

4. The CAN device as set forth in claim 2, further
comprising a plurality of individual message object registers
associated With each of the message objects that contain
?elds of command/control information that facilitate con
?guration and setup of the associated message object, the
plurality of individual message object registers associated
With each message object including:

at least one buffer siZe register that contains a message
buffer siZe ?eld that enables the siZe of the message
buffer associated With the associated message object to
be programmed; and,

at least one buffer location register that contains a mes
sage buffer location ?eld that enables the location of the
message buffer associated With the associated message
object to be programmed.

5. The CAN device as set forth in claim 2, further
comprising a DMA engine that enables the CAN/CAL
module to directly access the message buffers.

6. The CAN device as set forth in claim 5, Wherein the
DMA engine is contained Within the CAN/CAL module.

7. The CAN device as set forth in claim 1, Wherein:

the CAN/CAL module further includes a transmit engine
that attempts to transmit the Winning message over the
CAN bus according to a CAN bus arbitration priority
scheme established by the governing CAN protocol;
and,

the transmit pre-arbitration engine determines priority
betWeen the tWo or more transmit messages concur

rently staged for attempted transmission over the CAN
bus according to the CAN bus arbitration priority
scheme established by the governing CAN protocol.

20

25

35

45

55

65

20
8. The CAN device as set forth in claim 7, Wherein the

CAN bus arbitration priority scheme comprises examining a
CAN arbitration ?eld contained in a header portion of each
of the tWo or more transmit messages concurrently staged
for attempted transmission over the CAN bus, and then
selecting the transmit message having a highest assigned
priority according to the governing CAN protocol as the
Winning message.

9. The CAN device as set forth in claim 1, Wherein:

the message objects are uniquely numbered; and,
in the event that more than one of the tWo or more transmit

messages concurrently staged for attempted transmis
sion over the CAN bus are determined to have the same
priority, the transmit pre-arbitration engine designates
the transmit message associated With the loWest
numbered message object as the Winning message.

10. The CAN device as set forth in claim 1, Wherein:

the message objects are uniquely numbered; and,
in the event that more than one of the tWo or more transmit

messages concurrently staged for attempted transmis
sion over the CAN bus are determined to have the same
priority, the transmit pre-arbitration engine designates
the transmit message associated With the highest
numbered message object as the Winning message.

11. The CAN device as set forth in claim 8, Wherein:

the message objects are uniquely numbered; and,
in the event that more than one of the tWo or more transmit

messages concurrently staged for attempted transmis
sion over the CAN bus are determined to have the same
assigned priority, the transmit pre-arbitration engine
designates the transmit message associated With the
lowest-numbered message object as the Winning mes
sage.

12. The CAN device as set forth in claim 8, Wherein:

the message objects are uniquely numbered; and,
in the event that more than one of the tWo or more transmit

messages concurrently staged for attempted transmis
sion over the CAN bus are determined to have the same
assigned priority, the transmit pre-arbitration engine
designates the transmit message associated With the
highest-numbered message object as the Winning mes
sage.

13. The CAN device as set forth in claim 1, Wherein:

the message objects are uniquely numbered; and,
the transmit pre-arbitration engine determines priority

betWeen the tWo or more transmit messages concur

rently staged for attempted transmission over the CAN
bus by selecting the transmit message associated With
the loWest-numbered message object as the Winning
message.

14. The CAN device as set forth in claim 1, Wherein:

the message objects are uniquely numbered; and,
the transmit pre-arbitration engine determines priority

betWeen the tWo or more transmit messages concur

rently staged for attempted transmission over the CAN
bus by selecting the transmit message associated With
the highest-numbered message object as the Winning
message.

15. The CAN device as set forth in claim 1, Wherein the
transmit pre-arbitration engine determines priority betWeen
the tWo or more transmit messages concurrently staged for
attempted transmission over the CAN bus according to a
selected one of at least tWo pre-arbitration schemes.

16. The CAN device as set forth in claim 15, Wherein the
tWo or more pre-arbitration schemes include:

US 6,510,479 B1
21

a ?rst pre-arbitration scheme whereby the transmit pre
arbitration engine determines priority betWeen the tWo
or more transmit messages concurrently staged for
attempted transmission over the CAN bus according to
a CAN bus arbitration priority scheme established by
the governing CAN protocol; and,

a second pre-arbitration scheme Whereby the transmit
pre-arbitration engine determines priority betWeen the
tWo or more transmit messages concurrently staged for
attempted transmission over the CAN bus by selecting
the transmit message associated With a highest
numbered message object as the Winning message,
Wherein the message objects are uniquely numbered.

17. The CAN device as set forth in claim 15, Wherein the
tWo or more pre-arbitration schemes include:

a ?rst pre-arbitration scheme Whereby the transmit pre
arbitration engine determines priority betWeen the tWo
or more transmit messages concurrently staged for
attempted transmission over the CAN bus according to
a CAN bus arbitration priority scheme established by
the governing CAN protocol; and,

a ?rst pre-arbitration scheme Whereby the transmit pre
arbitration engine determines priority betWeen the tWo
or more transmit messages concurrently staged for
attempted transmission over the CAN bus by selecting
the transmit message associated With a loWest
numbered message object as the Winning message,
Wherein the message objects are uniquely numbered.

18. The CAN device as set forth in claim 1, Wherein:
the CAN/CAL module further includes a transmit engine

that attempts to transmit the Winning message over the
CAN bus according to a CAN bus arbitration priority
scheme established by the governing CAN protocol;
and,

if the Winning message is not granted access to the CAN
bus according to the CAN bus arbitration priority
scheme, the transmit pre-arbitration engine is reset to
repeat the pre-arbitration priority determination pro
cess.

19. The CAN device as set forth in claim 5, Wherein the
CAN/CAL module further includes a transmit engine that
invokes the DMA engine to retrieve the Winning message
from the message buffer associated With the Winning mes
sage object, and then attempts to transmit the Winning
message over the CAN bus according to a CAN bus arbi
tration priority scheme established by the governing CAN
protocol.

20. The CAN device as set forth in claim 19, Wherein, if
the Winning message is not granted access to the CAN bus
according to the CAN bus arbitration priority scheme, the
transmit pre-arbitration engine is reset to repeat the pre
arbitration priority determination process.

21. The CAN device as set forth in claim 15, further
comprising a global control register that is programmable
for the purpose of permitting a user to select one of the at
least tWo pre-arbitration schemes.

22. The CAN device as set forth in claim 2, Wherein the
CAN device comprises a CAN microcontroller.

23. The CAN device as set forth in claim 22, further
comprising a processor core that runs CAN applications.

24. The CAN device as set forth in claim 23, further
comprising a DMA engine that enables the CAN/CAL

15

35

45

55

65

22
module to directly access the message buffers Without

interrupting the processor core.
25. The CAN device as set forth in claim 1, Wherein the

CAN/CAL module performs transmit pre-arbitration of
pending transmit messages and input acceptance ?ltering of
receive messages concurrently.

26. In a CAN device that supports a plurality of message
objects, a method comprising:

enabling tWo or more message objects as transmit mes

sage objects;

concurrently staging tWo or more transmit messages asso

ciated With respective ones of the tWo or more enabled

transmit message objects for attempted transmission
over a CAN bus coupled to the CAN device; and,

performing a pre-arbitration process to determine Which
of the tWo or more concurrently staged transmit mes

sages has priority, Wherein the message determined to
have priority comprises a Winning message and the
message object associated With the Winning message
comprises a Winning message object.

27. The method as set forth in claim 26, Wherein the

pre-arbitration process is a selected one of at least tWo

pre-arbitration schemes.
28. The method as set forth in claim 27, Wherein the tWo

or more pre-arbitration schemes include:

a ?rst pre-arbitration scheme Whereby priority is deter
mined according to a CAN bus arbitration priority
scheme established by the governing CAN protocol;
and,

a second pre-arbitration scheme Whereby priority is deter
mined by selecting the transmit message associated
With a highest-numbered message object as the Winning
message, Wherein the message objects are uniquely
numbered.

29. The method as set forth in claim 27, Wherein the tWo

or more pre-arbitration schemes include:

a ?rst pre-arbitration scheme Whereby priority is deter
mined according to a CAN bus arbitration priority
scheme established by the governing CAN protocol;
and,

a second pre-arbitration scheme Whereby priority is deter
mined by selecting the transmit message associated
With a loWest-numbered message object as the Winning
message, Wherein the message objects are uniquely
numbered.

30. The method as set forth in claim 26, Wherein priority
is determined according to a CAN bus arbitration priority
scheme established by the governing CAN protocol.

31. The method as set forth in claim 26, Wherein priority
is determined by selecting the transmit message associated
With a loWest-numbered message object as the Winning
message, Wherein the message objects are uniquely num
bered.

32. The method as set forth in claim 26, Wherein priority
is determined by selecting the transmit message associated
With a highest-numbered message object as the Winning
message, Wherein the message objects are uniquely num
bered.

US 6,510,479 B1
23 24

33. The method as set forth in claim 26, wherein: message associated With the 1oWest-numbered message
the message objects are uniquely numbered; and, object as the Winning message.
in the event that more than one of the tWo or more 35. The method as set forth in claim 26, further compris

concurrently staged transmit messages are determined ing;
to have the same priority, designating the transmit 5 . . . attem tin to transmit the Winnin messa eover the CAN
message associated With the highest-numbered mes- p g g g

. . . bus; and,
sage ob]ect as the Winning message.

34_ The method as Set forth in Claim 26, wherein: if the Winning message is not granted access to the CAN
the message objects are uniquely numbered; and, bus, repeating the pre-arbitration priority determination
in the event that more than one of the tWo or more Process

concurrently staged transmit messages are determined 10
to have the same priority, designating the transmit * * * * *

