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Preface 

Purpose with this Lab 

In this lab you will learn how to use a tool like MathScript (which has a similar syntax as MATLAB) to 

solve control and simulation problems. 

In this assignment you will define and simulate dynamic systems using: 

 Block Diagrams 

 Transfer functions 

 State-space models 

 Time delay and Pade’ approximations 

 

For additional information and resources: 

http://home.hit.no/~hansha/?lab=mathscript 

 

Note! For all the tasks in this document you should use the Script Window (Not the Command 

Window). When you use the Script Window you can save  the code as an .m file. In the Script 

Window we can enter several commands in a sequence and save them as a file. You execute these 

script files by clicking the green arrow  in the toolbar. This way you can easily save each task as 

an separate .m file (e.g., task1.m, task2.m, etc.). 

 

http://home.hit.no/~hansha/?lab=mathscript
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MathScript 

MathScript is a high-level, text- based programming language. MathScript includes more than 800 

built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like 

you do in MATLAB. 

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in 

order to use MathScript. 

 

 

What is LabVIEW? 

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and 

development environment for a visual programming language from National Instruments. The 

graphical language is named "G". 

What is MATLAB? 

MATLAB is a tool for technical computing, computation and visualization in an integrated 

environment. MATLAB is an abbreviation for MATrix LABoratory, so it is well suited for matrix 

manipulation and problem solving related to Linear Algebra. 

MATLAB offers lots of additional Toolboxes for different areas such as Control Design, Image 

Processing, Digital Signal Processing, etc. 

What is MathScript? 

http://home.hit.no/~hansha/documents/software/LabVIEW.htm
http://home.hit.no/~hansha/documents/software/MATLAB.htm
http://home.hit.no/~hansha/documents/software/LabVIEW%20MathScript%20RT%20Module.htm
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MathScript is a high-level, text- based programming language. MathScript includes more than 800 

built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like 

you do in MATLAB. 

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in 

order to use MathScript. If you want to integrate MathScript functions (built-in or custom-made 

m-files) as part of a LabVIEW application and combine graphical and textual programming, you can 

work with the MathScript Node. 

In addition to the MathScript built-in functions, different add-on modules and toolkits installs 

additional functions. The LabVIEW Control Design and Simulation Module and LabVIEW Digital 

Filter Design Toolkit install lots of additional functions.  

You can more information about MathScript here: http://www.ni.com/labview/mathscript.htm 

 

How do you start using MathScript?  

You need to install LabVIEW and the LabVIEW MathScript RT Module. When necessary software is 

installed, start MathScript by open LabVIEW: 

 

In the Getting Started window, select Tools -> MathScript Window...: 

http://home.hit.no/~hansha/documents/software/LabVIEW%20Control%20Design%20and%20Simulation%20Module.htm
http://www.ni.com/labview/mathscript.htm
http://home.hit.no/~hansha/documents/software/LabVIEW.htm
http://home.hit.no/~hansha/documents/software/LabVIEW%20MathScript%20RT%20Module.htm
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1 Control Design in 

MathScript 

In this task you will learn how to use MathScript for Control Design and Simulation. We will learn to 

create transfer functions and state-space models and simulate such systems. We will also learn how 

to implement systems with time-delay using Pade’ approximations. 

 Note! Using LabVIEW MathScript for Control Design purposes you need to install the 

“Control Design and Simulation Module” in addition to the “MathScript RT Module” itself. 

 

Type “help cdt” in the Command Window in the MathScript environment and the LabVIEW Help 

window appears: 

 

Use the Help window and read about some of the functions available for control design and 

simulation. 

http://home.hit.no/~hansha/documents/software/LabVIEW%20Control%20Design%20and%20Simulation%20Module.htm
http://home.hit.no/~hansha/documents/software/LabVIEW%20MathScript%20RT%20Module.htm
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2 Transfer Functions 

2.1 Introduction 

Transfer functions are a model form based on the Laplace transform. Transfer functions are very 

useful in analysis and design of linear dynamic systems. 

A general Transfer function is on the form: 

 ( )  
 ( )

 ( )
 

Where   is the output and   is the input. 

MathScript has several functions for creating transfer functions: 

Function Description Example 

tf Creates system model in transfer function form. You also can 
use this function to state-space models to transfer function 
form. 

>num=[1]; 

>den=[1, 1, 1]; 

>H = tf(num, den) 

Sys_order1 Constructs the components of a first-order system model based 
on a gain, time constant, and delay that you specify. You can use 
this function to create either a state-space model or a transfer 
function model, depending on the output parameters you 
specify. 

>K = 1; 

>tau = 1; 

>H = sys_order1(K, tau) 

Sys_order2 Constructs the components of a second-order system model 
based on a damping ratio and natural frequency you specify. You 
can use this function to create either a state-space model or a 
transfer function model, depending on the output parameters 
you specify. 

>dr = 0.5 

>wn = 20 

>[num, den] = sys_order2(wn, dr) 

>SysTF = tf(num, den) 

pid Constructs a proportional-integral-derivative (PID) controller 
model in either parallel, series, or academic form. Refer to the 
LabVIEW Control Design User Manual for information about 
these three forms.  

>Kc = 0.5; 

>Ti = 0.25; 

>SysOutTF = pid(Kc, Ti, 

'academic'); 

A general transfer function can be written on the following general form: 

 ( )  
         ( )

           ( )
 
   

       
             

   
       

             
 

The Numerators of transfer function models describe the locations of the zeros of the system, while 

the Denominators of transfer function models describe the locations of the poles of the system. 

In MathScript we can define such a transfer function using the built-in tf function as follows: 

num=[bm, bm_1, bm_2, … , b1, b0]; 

den=[an, an_1, an_2, … , a1, a0]; 
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H = tf(num, den) 

Example: 

1. Given the following transfer function: 

 ( )  
        

    
 

MathScript Code: 

num=[2, 3, 4]; 

den=[5, 9]; 

H = tf(num, den) 

 

2. Given the following transfer function: 

 ( )  
        

     
 

MathScript Code: 

num=[4, 0, 0, 3, 4]; 

den=[5, 0, 9]; 

H = tf(num, den) 

Note! If some of the orders are missing, we just put in zeros. The transfer function above can be 

rewritten as: 

 ( )  
                  

         
 

 

3. Given the following transfer function: 

 ( )  
        

      
 

We need to rewrite the transfer function to get it in correct orders: 

 ( )  
        

      
 

MathScript Code: 

num=[2, 3, 7]; 

den=[6, 5, 0]; 

H = tf(num, den) 
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[End of Example] 

Below we will learn more about 2 important special cases of this general form, namely the 1.order 

transfer function and the 2.order transfer function. 

2.2 First order Transfer Functions 

A first order transfer function is given on the form: 

 ( )  
 

    
 

Where 

  is the Gain 

  is the Time constant 

Example: 

Given the following transfer function: 

 ( )  
 

   
 

In MathScript we will use the following code: 

num=[1]; 

den=[1, 1]; 

H = tf(num, den) 

We divide the transfer function in numerator and denominator, and then we use the built-in tf 

function. 

We enter the code shown above in the Script window as shown below: 
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We can also use the sys_order1 function: 

K = 1; 

T = 1; 

H = sys_order1(K, T) 

[End of Example] 

Step Response: 

The step response for a 1.order transfer function is as follows (a step   at    ): 

 

The time constant T is defined as the time where the response reaches 63% of the steady state value. 

Task 1: Transfer function 

→ Use the tf function in MathScript to define the transfer function below:  

 ( )  
 

    
 

Set     and    . 

→ Define the same function using the sys_order1 function. 

→ Find also the step response for the system using the built-in step function. 

Note! In this task and the subsequent tasks, you should use the Script Window (Not the Command 

Window). When you use the Script Window you can save the code as an .m file. In the Script Window 

we can enter several commands in a sequence and save them as a file. 
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[End of Task] 

2.3 Second order Transfer Functions 

A second order transfer function is given on the form: 

 ( )  
 

(
 
  
)
 
   

 
  
  

 

Where 

  is the gain 

  zeta is the relative damping factor 

  [rad/s] is the undamped resonance frequency. 

 Theory: 2.order Systems 

Example: 

Given the following system: 

 ( )  
         

           
 
       

    
 

MathScript Code: 

num=[1 2 3]; 

den=[4 1]; 

H=tf(num,den) 

This gives the following output in MathScript: 

 

[End of Example] 

http://home.hit.no/~hansha/documents/control/theory/second_order_systems.pdf
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Step Response: 

For a 2.order system we have the following step responses depending on  : 

 

Task 2:  2.order 

→ Define the transfer function below using the tf and the sys_order2 functions (2 different methods 

that should give the same results).  

 ( )  
 

(
 
  
)
 
   

 
  
  

 

Set           

→ Plot the step response (use the step function in MathScript) for different values of  . Select   as 

follows: 
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→ Explain the results. 

Do you get the same results using tf() and sys_order2()? 

[End of Task] 

Task 3: Step Response 

Given the following system: 

 ( )  
   

      
 

→ Plot the time response for the transfer function using the step function. Let the time-interval be 

from 0 to 10 seconds, e.g., define the time vector like this: 

t=[0:0.01:10] 

and use  

step(H,t) 

→ Find poles and zeros for the system. Plot these into the complex plane. Tip! Use the built-in 

functions poles, zero and pzgraph. 

→ Discuss the results 

[End of Task] 

2.4 Block Diagrams 

MathScript have built-in functions for manipulating block diagrams and transfer functions. 

Serial: 

 

MathScript: 

… 

H = series(h1,h2) 
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Parallel: 

 

MathScript: 

… 

H = parallel(h1,h2) 

 

Feedback: 

 

MathScript: 

… 

H = feedback(h1,h2) 

Task 4:  Transfer functions and Block Diagrams 

Use the series, parallel and feedback functions in MathScript on the block diagrams below: 

→ Find the transfer function  ( )  
 ( )

 ( )
 from the following block diagram: 
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→ Find the transfer function  ( )  
 ( )

 ( )
 from the following block diagram: 

 

→ Find the transfer function  ( )  
 ( )

 ( )
 from the following block diagram: 

 

→ Find the step response for these systems. 

[End of Task] 

2.5 PID 

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm 

used in industry. 

The PID controller calculates the controller action,  ( ): 

 ( )           
  

  
∫          ̇
 

 

 

Task 5:  PI Controller  

→ Create a transfer function for a PI controller using both the built-in pid function and the tf function 

in MathScript. 

Do you get the same results? 
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Tip! When using the tf function you need to find the transfer function for a PI controller using 

Laplace on the equation: 

 ( )          
  

  
∫    
 

 

 

Given the following system: 

 

Where     is the PI controller,    is the process and    is a low-pass filter. 

→ Use the step function in MathScript in order to plot the step response of the system. 

Try with different values for    and    in order to get a good result. 

[End of Task] 

2.6 Analysis of Standard Functions 

Here we will take a closer look at the following standard functions: 

 1. Order system 

 2. Order system 

Task 6:  1.order system 

1.order system: 

The transfer function for a 1. order system is as follows: 

 ( )  
 

    
 

→ Find the pole(s) 

→ Plot the Step response. Use the step function in MathScript. 
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 Step response 1: Use different values for  , e.g.,          . Set     

 Step response 2: Use different values for  , e.g.,                . Set     

Discuss the result 

 

→ (optional) Find the mathematical expression for the step response ( ( )). Use “Pen & Paper” for 

this Assignment. 

 ( )   ( ) ( ) 

Where  

 ( )  
 

 
 

Tip! Use inverse Laplace and find the corresponding transformation pair in order to find  ( )).  

Use the mathematical expression you found for the step response ( ( )) and Simulate it in 

MathScript using, e.g., For Loop. Compare the result with the result from the step function.  

 

→ Create a simple sketch of step response where you mark K, U and T (    ) 

Discuss the result 

[End of Task] 

Task 7:  2.order system 

2.order system: 

The transfer function for a 2. order system is as follows: 

 ( )  
   

 

           
 
 

 

(
 
  
)
 
   

 
  
  

 

Where 

   is the gain 

   zeta is the relative damping factor 

   [rad/s] is the undamped resonance frequency. 

 

→ Find the pole(s) 
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→ Plot the Step response: Use different values for  , e.g.,          . Set      and    . 

Use the step function in MathScript. 

Discuss the results 

[End of Task] 

Task 8:  2.order system – special case 

Special case: When     and the poles are real and distinct we have: 

 ( )  
 

(     )(     )
 

 

We see that this system can be considered as two 1.order systems in series. 

 ( )    ( )  ( )  
 

(     )
 

 

(     )
 

 

(     )(     )
 

→ Find the pole(s) 

 

→ Plot the Step response. Set    . Set              ,                 ,    

            ,                 ,                ,              . Use the step 

function in MathScript. 

Tip! Use the conv or the series together with the tf function in order to define the system. 

Compare and discuss the results. 

→ (optional) Find the mathematical expression for the step response ( ( )). Use “Pen & Paper” for 

this Assignment. 

 ( )   ( ) ( ) 

Where  

 ( )  
 

 
 

Tip! Use inverse Laplace and find the corresponding transformation pair in order to find  ( )).  

→ Use the mathematical expression you found for the step response ( ( )) and Simulate it in 

MathScript using, e.g., For Loop. Compare the result with the result from the step function.  

Discuss the results 



21  Transfer Functions  

MathScript - Part II: Dynamic Systems 

 

[End of Task] 
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3 State-space Models 

3.1 Introduction 

A state-space model is a structured form or representation of a set of differential equations. 

State-space models are very useful in Control theory and design. The differential equations are 

converted in matrices and vectors, which is the basic elements in MathScript. 

A general linear State-space model is on the form: 

 ̇        

        

MathScript has several functions for creating state-space models: 

Function Description Example 

ss Constructs a model in state-space form. You also can use this 
function to convert transfer function models to state-space 
form. 

>A = [1 2; 3 4] 

>B = [0; 1] 

>C = B' 

>ssmodel = ss(A, B, C) 

Sys_order1 Constructs the components of a first-order system model based 
on a gain, time constant, and delay that you specify. You can use 
this function to create either a state-space model or a transfer 
function model, depending on the output parameters you 
specify. 

>K = 1; 

>T = 1; 

>H = sys_order1(K, T) 

Sys_order2 Constructs the components of a second-order system model 
based on a damping ratio and natural frequency you specify. You 
can use this function to create either a state-space model or a 
transfer function model, depending on the output parameters 
you specify. 

>dr = 0.5 

>wn = 20 

>[A, B, C, D] = sys_order2(wn, dr) 

>ssmodel = ss(A, B, C, D) 

Example: 

Given the following state-space model: 

[
 ̇ 
 ̇ 
]  *

  
  

+ *
  
  
+  *

 
 
+   

  [  ] *
  
  
+ 

The MathScript code for implementing the model is: 

% Creates a state-space model 

A = [1 2; 3 4]; 

B = [0; 1]; 

C = [1, 0]; 
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D = [0]; 

model = ss(A, B, C, D) 

[End of Example] 

 Theory: State-Space Models 

3.2 Tasks 

Task 9: State-space model 

Given a mass-spring-damper system: 

 

Where c=damping constant, m=mass, k=spring constant, F=u=force 

The state-space model for the system is: 

[
 ̇ 
 ̇ 
]  [

  

 
 

 
 
 

 

] *
  
  
+  [

 
 

 
]  

  [  ] *
  
  
+ 

→ Define the state-space model above using the ss function in MathScript.  

Step Response: 

→ Apply a step in u and use the step function in MathScript to simulate the result. 

Start with    ,    ,    , then explore with other values. 

 

http://home.hit.no/~hansha/documents/control/theory/state_space_%20model.pdf
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Conversion: 

→ Convert the state-space model defined in the previous task to a transfer function using MathScript 

code. 

[End of Task] 

Task 10: Equations 

→ Implement the following equations as a state-space model in MathScript: 

 ̇     

  ̇                   

              

→ Find the transfer function(s) from the state-space model using MathScript code. 

→ Plot the Step Response for the system 

Discuss the results. 

[End of Task] 

Task 11: Block Diagram 

→ Find the state-space model from the block diagram below and implement it in MathScript. 

 

Note!      ̇  and      ̇ . 
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Set 

     

     

And    ,     

→ Simulate the system using the step function in MathScript. 

[End of Task] 

 



26 

 

4 Time-delay and 

Pade’-approximations 

4.1 Introduction 

Time-delays are very common in control systems. The Transfer function of a time-delay is: 

 ( )       

In some situations it is necessary to substitute      with an approximation, e.g., the 

Padé-approximation: 

     
         

        
 

         
       

 
 

 Theory: Pade-approximation of a time-delay 

 

A 1.order transfer function with time-delay may be written as: 

 ( )  
 

    
     

Step Response: 

A step response for a 1.order system with time delay have the following characteristics: 

http://home.hit.no/~hansha/documents/control/theory/pade_approximation.pdf
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MathScript has a built-in function called pade for creating transfer functions for time-delays: 

Function Description Example 

pade Incorporates time delays into a system model using the Pade 
approximation method, which converts all residuals. You must 
specify the delay using the set function. You also can use this 
function to calculate coefficients of numerator and denominator 
polynomial functions with a specified delay. 

>[num, den] = pade(delay, order) 

>[A, B, C, D] = pade(delay, order) 

Sys_order1  >K=4; T=3; delay=5; 

>H = sys_order1(K, T, delay) 

set  >H = set(H1, 'inputdelay', delay); 

series  >H = series(H1,H2); 

MathScript has a built-in function called pade for creating transfer functions for time-delays. 

Example: 

This example shows how to use the pade function in MathScript. 

Given the following system: 

 ( )       

We want to create a Pade’ approximation with order 3: 

delay = 2 

order = 3 

[num, den] = pade(delay, order); 

 

H = tf(num,den) 

This gives the following transfer function: 

-1,000s^3+6,000s^2-15,000s+15,000 

--------------------------------- 

1,000s^3+6,000s^2+15,000s+15,000 
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We can also plot the step response: 

step(H) 

This gives the following plot: 

 

We can also try with other orders in the approximation: 

3.order approximation: 5.order approximation: 10.order approximation: 

   

To get the “exact” step response for a time delay, let’s try to use the sys_order1 function: 

… 

K=1; 

T=0; 

delay = 2 

 

H2 = sys_order1(K,T,delay) 

 

step(H2) 

The step response becomes: 
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→ As you can see, with a higher order in the approximation, we get closer to the “exact” result. But a 

drawback, the approximation gets very complex. 

A higher order results in a more accurate approximation of the delay but also increases the order of 

the resulting model. A large order can make the model too complex to be useful. 

[End of Example] 

 

Example: 

Given a 1.order transfer function with time-delay: 

 ( )  
 

    
     

Where             , i.e.: 

 ( )  
 

    
     

We want to find the step response for this system. 

Method 1: 

We use the sys_order1 function in order to get the exact solution: 

K=1; 

T=4; 

delay=2; 

 

H = sys_order1(K,T,delay) 

step(H) 



30  Time-delay and Pade’-approximations  

MathScript - Part II: Dynamic Systems 

 

The Step response becomes: 

 

Method 2: 

Let’s try with a 5.order Pade’ approximation: 

% Define Transfer function without delay: 

num = [K]; 

den = [T, 1]; 

H1 = tf(num, den); 

 

% Define the delay: 

order = 5; 

H2 = pade(delay, order) 

 

% Put them together: 

H = series(H1, H2) 

 

The Step Response for the sytem: 

step(H) 

The step response becomes: 
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Method 3: 

We can also implement the same function using the tf function in combination with the set function, 

like this: 

… 

 

s = tf('s');  

H1 = tf(K/(T*s+1));  

 

H2 = set(H1,'inputdelay',delay); 

 

step(H2) 

This gives the exact solution as shown in method 1. 

[End of Example] 

4.2 Tasks 

Task 12: Pade’ 

→ Create a pade’-approximation for the time-delay: 

 ( )       
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Set the time-delay     and find the pade’-approximation for different orders, e.g., 1, 2, 3, 4, 10. 

Use the pade function in MathScript. 

→ Use the step function to plot the responses for different orders. 

Discuss the results. 

[End of Task] 

Task 13: Pade’ approximation 

Note! In this task we shall note use the built-in pade function, but create our own approximation 

using the definition itself: 

     
         

        
 

         
       

 
 

where: 

 

→ Set up the mathematical expressions, i.e, find the transfer functions for a 1.order and 2.order 

Pade’-approximation (Pen & Paper). 

→ Define the transfer function for a 1.order and 2.order pade’-approximation using the tf function in 

MathScript. Set the time-delay    . 

→ Use the step function to plot the responses. 

Do you get the same results using the pade function? Discuss the results. 

[End of Task] 

Task 14: Transfer function with Time delay 

Define the following transfer function in MathScript: 

 ( )  
 

    
     

And plot the step response. 

Try both the sys_order1 and the pade functions to see if you get the same results. Use e.g., a 5.order 

approximation. 

[End of Task]
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5 Stability Analysis 

5.1 Introduction 

A dynamic system has one of the following stability properties: 

 Asymptotically stable system 

 Marginally stable system 

 Unstable system 

Below we see the behavior of these 3 different systems after an impulse: 

Asymptotically stable system: 

 

   
   

 ( )    

Marginally stable system: 

 

     
   

 ( )    

Unstable system: 

 

   
   

 ( )    
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5.2 Poles 

The poles is important when analysis the stability of a system. The figure below gives an overview of 

the poles impact on the stability of a system: 

 

Thus, we have the following: 

Asymptotically stable system: 

 

Each of the poles of the transfer function lies strictly in the left 

half plane (has strictly negative real part). 

 

Marginally stable system: 

 

One or more poles lies on the imaginary axis (have real 

part equal to zero), and all these poles are distinct. 

Besides, no poles lie in the right half plane. 
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Unstable system:  

 

At least one pole lies in the right half plane (has real part 

greater than zero).  

 

 

Or: There are multiple poles on the imaginary axis. 

5.3 Tasks 

Task 15: Stability Analysis 

Given the following transfer functions: 

 ( )  
 

   
 

 ( )  
 

 
 

 ( )  
 

  
 

 ( )  
 

   
 

→ Find the poles for the different transfer functions above using MathScript. Plot the poles in the 

imaginary plane. What are the stability properties of these systems (Asymptotically stable system, 

Marginally stable system or Unstable system)? Discuss the results.  

Tip! Use the built-in functions poles and pzgraph. 
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→ Plot the impulse responses of these systems. Discuss the results. 

Tip! Use the built-in function impulse, which is similar to the step function we have used before. 

[End of Task] 

Task 16: Mass-spring-damper system 

Given a mass-spring-damper system: 

 

Where c=damping constant, m=mass, k=spring constant, F=u=force 

The state-space model for the system is: 

[
 ̇ 
 ̇ 
]  [

  

 
 

 
 
 

 

] *
  
  
+  [

 
 

 
]  

  [  ] *
  
  
+ 

Case 1: Set              
 
Case 1: Set              

 

→ Investigate the stability properties of the system (Impulse response and poles). 

[End of Task] 

5.4 Feedback Systems 

Here are some important transfer functions to determine the stability of a feedback system. Below 

we see a typical feedback system. 
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Loop Transfer function: 

The Loop transfer function  ( ) (Norwegian: “Sløyfetransferfunksjonen”) is defined as follows: 

 ( )    ( )  ( )  ( )  

Where 

  ( ) is the Controller transfer function 

  ( ) is the Process transfer function 

  ( ) is the Measurement (sensor) transfer function 

Note! Another notation for   is    

 

Tracking transfer function: 

The Tracking transfer function  ( ) (Norwegian: “Følgeforholdet”) is defined as follows: 

 ( )  
 ( )

 ( )
 

      

        
 

 ( )

   ( )
    ( )  

The Tracking Property (Norwegian: “følgeegenskaper”) is good if the tracking function T has value 

equal to or close to 1: 

| |    

Sensitivity transfer function: 

The Sensitivity transfer function  ( ) (Norwegian: “Sensitivitetsfunksjonen/avviksforholdet”) is 

defined as follows: 
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 ( )  
 ( )

 ( )
 

 

   ( )
    ( )  

The Compensation Property is good if the sensitivity function S has a small value close to zero: 

| |       | |    

Note! 

 ( )    ( )  
 ( )

   ( )
 

 

   ( )
   

 

Task 17: Stability Analysis of Feedback Systems 

Given the following feedback system: 

 

The transfer function for the process (including the measurement/sensor) is: 

   ( )  
 

(   ) 
 

The transfer function for the controller is: 

  ( )     

→ Find  ( ),  ( ) and  ( ) for the system. 

→ Plot the step response  ( ) and plot the poles in the imaginary plane for  ( ). 

Is the system stable or unstable? 

Start with     , than explore with different values. 

[End of Task] 
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6 Additional Tasks 

Task 18: Integrator 

Integrator: 

The transfer function for an Integrator is as follows: 

 ( )  
 

 
 

→Find the pole(s) 

→ Plot the Step response: Use different values for K, eg., K=0.2, 1, 5. Use the step function in 

MathScript. 

→ Discuss the result 

→ Find the mathematical expression for the step response ( ( )). Use “Pen & Paper” for this 

Assignment. 

 ( )   ( ) ( ) 

Where  

 ( )  
 

 
 

Tip! Use inverse Laplace and find the corresponding transformation pair in order to find  ( )).  

Use the mathematical expression you found for the step response ( ( )) and Simulate it in 

MathScript using, e.g., For Loop. Compare the result with the result from the step function.  

[End of Task] 
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Appendix A – MathScript 

Functions 

Here are some descriptions for the most used MathScript functions used in this Lab Work. 

Function Description Example 

plot Generates a plot. plot(y) plots the columns of y against the 
indexes of the columns. 

>X = [0:0.01:1]; 

>Y = X.*X; 

>plot(X, Y) 

tf Creates system model in transfer function form. You also can 
use this function to state-space models to transfer function 
form. 

>num=[1]; 

>den=[1, 1, 1]; 

>H = tf(num, den) 

poles Returns the locations of the closed-loop poles of a system 
model. 

>num=[1] 

>den=[1,1] 

>H=tf(num,den) 

>poles(H) 

tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] = 

tfinfo(SysInTF) 

step Creates a step response plot of the system model. You also can 
use this function to return the step response of the model 
outputs. If the model is in state-space form, you also can use this 
function to return the step response of the model states. This 
function assumes the initial model states are zero. If you do not 
specify an output, this function creates a plot. 

>num=[1,1]; 

>den=[1,-1,3]; 

>H=tf(num,den); 

>t=[0:0.01:10]; 

>step(H,t); 

lsim Creates the linear simulation plot of a system model. This 
function calculates the output of a system model when a set of 
inputs excite the model, using discrete simulation. If you do not 
specify an output, this function creates a plot. 

>t = [0:0.1:10] 

>u = sin(0.1*pi*t)' 

>lsim(SysIn, u, t) 

sys_order1 Constructs the components of a first-order system model based 
on a gain, time constant, and delay that you specify. You can use 
this function to create either a state-space model or a transfer 
function model, depending on the output parameters you 
specify. 

>K = 1; 

>tau = 1; 

>H = sys_order1(K, tau) 

sys_order2 Constructs the components of a second-order system model 
based on a damping ratio and natural frequency you specify. You 
can use this function to create either a state-space model or a 
transfer function model, depending on the output parameters 
you specify. 

>dr = 0.5 

>wn = 20 

>[num, den] = sys_order2(wn, dr) 

>SysTF = tf(num, den) 

>[A, B, C, D] = sys_order2(wn, dr) 

>SysSS = ss(A, B, C, D) 

damp Returns the damping ratios and natural frequencies of the poles 
of a system model. 

>[dr, wn, p] = damp(SysIn) 

pid Constructs a proportional-integral-derivative (PID) controller 
model in either parallel, series, or academic form. Refer to the 
LabVIEW Control Design User Manual for information about 
these three forms.  

>Kc = 0.5; 

>Ti = 0.25; 

>SysOutTF = pid(Kc, Ti, 

'academic'); 

conv Computes the convolution of two vectors or matrices. >C1 = [1, 2, 3]; 

>C2 = [3, 4]; 

>C = conv(C1, C2) 

series Connects two system models in series to produce a model 
SysSer with input and output connections you specify 

>Hseries = series(H1,H2) 

feedback Connects two system models together to produce a closed-loop 
model using negative or positive feedback connections 

>SysClosed = feedback(SysIn_1, 

SysIn_2) 

ss Constructs a model in state-space form. You also can use this 
function to convert transfer function models to state-space 
form. 

>A = eye(2) 

>B = [0; 1] 

>C = B' 

>SysOutSS = ss(A, B, C) 
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ssinfo Returns information about a state-space system model. >A = [1, 1; -1, 2] 

>B = [1, 2]' 

>C = [2, 1] 

>D = 0 

>SysInSS = ss(A, B, C, D) 

>[A, B, C, D, Ts] = ssinfo(SysInSS) 

pade Incorporates time delays into a system model using the Pade 
approximation method, which converts all residuals. You must 
specify the delay using the set function. You also can use this 
function to calculate coefficients of numerator and denominator 
polynomial functions with a specified delay. 

>[num, den] = pade(delay, order) 

>[A, B, C, D] = pade(delay, order) 

For more details about these functions, type “help cdt” to get an overview of all the functions used 

for Control Design and Simulation. For detailed help about one specific function, type “help 

<function_name>”. 
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