
Master’s Thesis

Marcel Gehrke

Bidirectional Predicate Propagation in
Frama-C and its Application to Warning

Removal

September 7, 2014

supervised by:
Prof. Dr. S. Schupp
Prof. Dr. F. Mayer-Lindenberg
Dipl.-Ing. S. Mattsen

Hamburg University of Technology (TUHH)
Technische Universität Hamburg-Harburg
Institute for Software Systems
21073 Hamburg

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich die vorliegende Masterarbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die
Arbeit wurde in dieser oder ähnlicher Form noch keiner Prüfungskommission vorgelegt.

Hamburg, 7. September 2014

Marcel Gehrke

iii

Contents

Contents

1 Introduction 1

2 Introduction to Data Flow Analyses 5
2.1 Control Flow Graph . 5
2.2 Forward Data Flow Analysis . 6

2.2.1 If Then Else Block . 9
2.2.2 While Loops . 12
2.2.3 Formal Definition of Forward Data Flow Analysis 15
2.2.4 Definition of our Forward Analysis 16

2.3 Backward Data Flow Analysis . 18
2.3.1 Formal Definition . 19

2.4 Worklist Algorithm . 21
2.4.1 Calculation using the Worklist Algorithm 24

3 Data Flow Analyses for Bidirectional Predicate Propagation 27
3.1 Forward Data Flow Analysis to Track Predicates 27

3.1.1 Example . 27
3.1.2 Formal Definition . 30

3.2 Warning Removal . 33
3.3 Backward Data Flow Analysis to Track Predicates 33

3.3.1 Example . 35
3.3.2 Definition . 36
3.3.3 Drawbacks . 38

3.4 Warning Insertion . 40
3.5 Correctness . 41

3.5.1 Must Analysis . 41
3.5.2 Correctness of the Backward Analysis 42
3.5.3 Correctness of the Forward Analysis 44

4 Plug-In to Remove Redundant Warnings 45
4.1 Frama-C . 45
4.2 Plug-In . 46

4.2.1 Warning Collection Module . 46
4.2.2 Forward Analysis Module . 46
4.2.3 Warning Removal Module . 47
4.2.4 Backward Analysis Module . 47
4.2.5 Warning Insertion Module . 48
4.2.6 Combination of the Modules . 49

4.3 Problem with C Pointers . 49
4.4 Restrictions in the Plug-In . 50

v

Contents

4.5 Improvements to the Plug-In . 50
4.5.1 Path Sensitivity . 50
4.5.2 Predicate Implication . 52
4.5.3 Splitting up Predicates . 54
4.5.4 Transfer of Warnings . 54

5 Evaluation 57
5.1 Testing of the Implementation . 57
5.2 Evaluation with the Value Analysis . 58

5.2.1 Warning Removal Feature of the Value Analysis 59
5.2.2 Bidirectional Predicate Propagation in Combination with the Value

Analysis . 60
5.3 Benchmark . 62

5.3.1 IARPA STONESOUP Phase 1 - Null Pointer Dereference for
C Version 1.0 Test Suite from NIST 63

5.3.2 IARPA STONESOUP Phase 1 - Memory Corruption for C
Version 1.0 Test Suite from NIST 65

5.3.3 Insights of the Benchmark . 67

6 Related Work 69

7 Future Work & Conclusion 71

Bibliography 73

Appendix 75

vi

List of Figures

List of Figures

2.1 CFG of the Straightforward Example from Chapter 1 5
2.2 CFG with Warnings . 6
2.3 Step 1 . 7
2.4 Step 2 . 7
2.5 Step 3 . 7
2.6 Step 4 . 8
2.7 Step 5 . 8
2.8 Final Result . 8
2.9 CFG of If Then Else Example with Warnings 9
2.10 Branching of If Example . 10
2.11 Branch Results of If Example . 10
2.12 Combination of If Example . 11
2.13 Result of If Example . 11
2.14 CFG of While Loop Example with Warnings 12
2.15 First Steps of While Loop Example . 13
2.16 First Iteration of While Loop Example . 13
2.17 Second Iteration of While Loop Example 14
2.18 Result of While Loop Example . 14
2.19 General Forward Data Flow Equations . 15
2.20 Data Flow Equations of our Example Forward Analysis 16
2.21 Initial . 19
2.22 Intermediate . 19
2.23 Result . 19
2.24 General Backward Data Flow Equations 19
2.25 Data Flow Equations of our Example Backward Analysis 20
2.26 Lattice . 22
2.27 Worklist Algorithm [14] . 23
2.28 Lattice of While Loop Example from Subsection 2.2.2 24

3.1 CFG of the Example with Different Kinds of Warnings 28
3.2 Application of the Forward Data Flow Analysis to the Example with

Different Kinds of Warnings . 29
3.3 Final Result of the Example with Different Kinds of Warnings 29
3.4 Data Flow Equations of our Forward Analysis 31
3.5 Algorithm to Select Warnings We can Remove 33
3.6 CFG of Backwards Analysis Example . 34
3.7 CFG with Complete Flow Data . 34
3.8 CFG with Removed Warnings . 34
3.9 Backwards Analysis Applied to CFG from Figure 3.6 35
3.10 CFG with Inserted Warnings . 35

vii

List of Figures

3.11 Forwards Analysis Applied to the Result of the Backwards Analysis Ap-
plied to CFG from Figure 3.6 . 36

3.12 CFG with Removed Warnings . 36
3.13 Data Flow Equations of our Backward Analysis 37
3.14 Backwards Analysis Applied to the CFG of If Then Else Example from

Subsection 2.2.1 . 38
3.15 If Then Else Example from Subsection 2.2.1 with Inserted Warning . . . 38
3.16 Example with a Drawback when Applying the Backward Analysis 39
3.17 Drawback Example with Inserted Warning 39
3.18 Algorithm to Select Warnings We Insert 40
3.19 Example of Must Analysis without Reassignment 41
3.20 Example of Must Analysis with Reassignment 41
3.21 Example of May Analysis without Reassignment 42
3.22 Example of May Analysis with Reassignment 42
3.23 Example of Computing Difference Sets for all Predecessors in Insertion

Algorithm . 43
3.24 Example from Figure 3.23 with Inserted Warnings 43

4.1 CFG with Predicates from Path Sensitivity Included in Flow Data 51
4.2 CFG with Removed Warnings . 51
4.3 CFG of the Code from Listing 4.4 . 55
4.4 CFG of the Code from Listing 4.4 . 55

5.1 A Test Case for the Confluence Operator 57
5.2 Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis)

using only the Forward Analysis . 64
5.3 Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis)

using the Forward Analysis with -path, -sat, and -sub 64
5.4 Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis)

using the Backward Analysis without any Additional Options 67

1 Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis)
using only the Forward Analysis of the IARPA STONESOUP Phase
1 - Memory Corruption for C Version 1.0 Test Suite from NIST 76

2 Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis)
using the Forward Analysis with -path, -sat, and -sub of the IARPA
STONESOUP Phase 1 - Memory Corruption for C Version 1.0 Test
Suite from NIST . 77

viii

List of Tables

List of Tables

2.1 Warning Removal of the If Then Else Example 12
2.2 Result of Applying the Data Flow Equations to the If Then Else Example 18
2.3 Result of Applying the Backward Data Flow Equations to the Straight-

forward Example from Chapter 1 . 20
2.4 Applying the Worklist Algorithm to the While Loop Example from Sub-

section 2.2.2 . 25
2.5 Result of Applying the Worklist Algorithm to the While Loop Example

from Subsection 2.2.2 . 26

3.1 Result of Applying the Data Flow Equations to Different Kinds of Warn-
ings Example from Subsection 3.1.1 . 32

3.2 Result of Applying the Backward Data Flow Equations to the Example
from Section 3.3 . 37

5.1 Benchmark of the IARPA STONESOUP Phase 1 - Null Pointer
Dereference for C Version 1.0 Test Suite from NIST without the Backward
Analysis . 63

5.2 Benchmark of the IARPA STONESOUP Phase 1 - Null Pointer
Dereference for C Version 1.0 Test Suite from NIST with the Backward
Analysis . 65

5.3 Benchmark of the IARPA STONESOUP Phase 1 - Memory Cor-
ruption for C Version 1.0 Test Suite from NIST without the Backward
Analysis . 65

5.4 Benchmark of the IARPA STONESOUP Phase 1 - Memory Corrup-
tion for C Version 1.0 Test Suite from NIST with the Backward Analysis . 66

1 Predicates of Frama-C . 75

ix

Listings

Listings

1.1 C Code with Possible Run-Time Errors 1
1.2 C Code Annotated by Frama-C with Possible Run-Time Warnings 2
1.3 C Code Annotated by Frama-C with Needed Run-Time Warnings 2

2.1 If Then Else Example . 9
2.2 While Loop Example . 12

3.1 Example with Different Kinds of Warnings 28
3.2 Backward Analysis Example . 34

4.1 Annotated C Code with Different Restrictions 52
4.2 Annotated C Code with Different Restrictions 52
4.3 Annotated C Code with Different Restrictions 53
4.4 Annotated C Code with Restriction Transfer 54

5.1 -remove-redundant-alarms Applied to If Then Else Example 59
5.2 Example Containing Two Division-By-Zero Warnings 60
5.3 Example with one Redundant Warning . 61
5.4 Example with Array-Index-Out-Of-Bound Warning 62

1 Excerpt of C Code from ./TC C 785 v934/src/desaturate.c of the IARPA
STONESOUP Phase 1 - Memory Corruption for C Version 1.0 Test
Suite from NIST . 78

x

1 Introduction

Frama-C is a framework to statically analyse C code. The framework can be used
to verify a program written in C. During the verification, the framework tries to find
possible faults in a program. In case the framework cannot prove that a certain fault
will not occur, it throws a warning and annotates the C code. These faults can be
run-time errors. Examples of run-time errors are division-by-zero, array-index-out-of-
bound, signed-overflow, unsigned-overflow, or memory access errors. In C code, there
can be a lot of such run-time errors. Therefore, Frama-C can throw many warnings. To
determine that the code works correctly, the reviewer has to go through all the warnings
and determine if the corresponding fault can occur. Going through many warnings,
however, can be really cumbersome and tiresome. Thus, we want to reduce the number
of warnings displayed.

Let us first have a look at a case in which we can remove a warning without losing
information. Listing 1.1 shows a straightforward C function that contains possible run-
time errors.

1 void main (int x , int y) {
2 int h = 1/x ;
3 h = 1/x ;
4 x = y ;
5 h = 1/x ;
6 }

Listing 1.1: C Code with Possible Run-Time Errors

First of all, we have a look at the function and determine all the possible run-time
errors. The function has two variables as input, i.e., x and y. These two variables
can have any value of the int range, which includes 0. Therefore, when the program
calculates the first statement h = 1/x in line 2, it could be a division-by-zero error.
Unfortunately, a division-by-zero results in an undefined behaviour. Frama-C throws
a run-time warning due to the undefined behaviour. The same holds for the second
statement in line 3. Here, we could also have a division-by-zero error if x has the value
zero. In the next line, x is reassigned to y. However, y can also have all values from the
int range. Hence, the fourth statement, which is in line 5, could be another division-
by-zero error if y and therefore x have the value zero. After we know where a fault can
occur in this program, we can compare it against the possible bugs Frama-C finds in the
function.

The value analysis [11, 6] is a plug-in of Frama-C with the aim to verify C code.
Further, the value analysis throws warnings for possible bugs and annotates the C code
with the warnings. Listing 1.2 depicts how the value analysis annotates the C code with
the possible faults it can find. Frama-C inserts the annotations as a C comment. The
annotations are an assertion and they tell us what kind of fault can occur as well as
what has to hold for the fault to not occur. Going through the annotations, we see that

1

1 Introduction

it warns in statement 1,2, and 4 about a division-by-zero error. That is exactly the same
result that we obtained by going through the code by hand.

1 void main (int x , int y) {
2 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
3 int h = 1/x ;
4 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
5 h = 1/x ;
6 x = y ;
7 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
8 h = 1/x ;
9 }

Listing 1.2: C Code Annotated by Frama-C with Possible Run-Time Warnings

Having the warnings, we can now have a look if we need all three warnings or if
fewer are sufficient. Frama-C annotated the first statement with /*@ assert Value:
division by zero: x 6= 0; */. The annotation tells us that the first statement could induce
a division-by-zero error. For the fault to not occur, x 6= 0 has to hold. Further, the
annotation shows us that it was annotated by the value analysis and that the analysis
asserts that after the first statement x 6= 0 holds. The first statement h = 1/x is
annotated with the same annotation, namely that there could be a division-by-zero
error unless x 6= 0 holds.

Between the first and second statement we did not reassign the variable x. Therefore,
x evaluates to the same value in both statements 1 and 2. In case x evaluates to zero,
two faults will occur, first in statement 1 and then in statement 2. However, if x could
be zero, we would need to ensure that x 6= 0 holds, due to either of the warnings
corresponding to the first and second statement. The other case is that x 6= 0 holds and
then both warnings are false positives. A warning is a false positive if the corresponding
fault cannot occur. Here, one warning would be sufficient. In case x could be zero, either
of the warnings warn about the possible fault. Otherwise, if x 6= 0 holds, neither of the
warnings is needed. Hence, having just the annotation attached to the first statement
would be sufficient. The annotation attached to the second statement could be removed.

Another way to see that only the first annotation is sufficient is to have a closer look
at the annotation again. In the annotation we assert x 6= 0. Hence, reaching the second
statement the assertion still has to hold because we did not reassign the variable x.
Thus, x 6= 0 holds in the second statement and we do not need the annotation in the
second statement.

In the third statement, the variable x is reassigned. After the reassignment, we cannot
be certain that x 6= 0 still holds. Thus, the annotation corresponding to the fourth
statement is needed, because x could be zero after the reassignment. In conclusion we
can remove one annotation. Listing 1.3 displays the C code with the annotation that
a reviewer needs to have a look at. The first annotation covers the possible faults of
the first and second statement and the other annotation covers the possible fault of the
fourth statement.

2

1 void main (int x , int y) {
2 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
3 int h = 1/x ;
4 h = 1/x ;
5 x = y ;
6 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
7 h=1/x ;
8 }

Listing 1.3: C Code Annotated by Frama-C with Needed Run-Time Warnings

In the example, we are able to reduce the number of warnings needed from three to
two. Here, the additional warning does not increase the review time a lot. However, in
a larger C project with thousands of lines of code, the additional warnings increase the
review time. Thus, we want to review as few warnings as possible. Further, the analysis
of the program can take quite some time. In that case, one wants to run the analysis
as few times as possible while fixing bugs. Knowing only the important warnings is of
great help then.

In this thesis, we present a way to automatically reduce the overall number of warnings
without losing information. To that end, we apply a data flow analysis. Using a data
flow analysis, we can track the annotated warnings and remove not needed warnings after
the analysis. T. Muske, A. Baid and T. Sanas present the main idea of using a data flow
analysis to remove warnings in their paper “Review Efforts Reduction by Partitioning
of Static Analysis Warnings” [20]. Unlike them, we do not track expressions in the data
flow analysis but use the predicates that Frama-C generates in the annotations. In our
example, the predicate of the Frama-C warnings is x 6= 0. Besides other papers, we will
discuss their paper and why we are using the annotations and not expressions in the
related work Chapter 6.

Using a data flow analysis on predicates does not only help with removing warnings
but it also provides an insight into what predicates have to hold at a certain point at
a program. These predicates allow us to make statements about possible valuations of
the variables. Therefore, applying our bidirectional predicate propagation, which we
discuss in depth in Chapter 3, we get a better insight into the possible valuations of
variables. One possible use of that information is to remove warnings. Further, we show
improvements that we can apply due to the fact that we track predicates as well as
the plug-in in Chapter 4. Lastly, we still have to evaluate our analysis. In Chapter 5,
we show that our implementation works and demonstrate using little example where
it can reduce the review efforts. However, to really evaluate our analysis, we present
benchmarking results using over 300 C programs. We give example data flow analyses
and explain the concept of data flow analyses in the next chapter.

3

2 Introduction to Data Flow Analyses

In this chapter, we introduce the concept of data flow analyses. The aim of a data flow
analysis is to gain information about the possible states of the program at certain points
in that program before executing it. One information of interest could be at which points
a variable cannot be zero, ruling out a division-by-zero error. However, before we define
such a data flow analysis, we need to know how the data can travel the code. To that
end, we have a look at what control flow graphs (CFG) are.

2.1 Control Flow Graph

To know how data can traverse through the program, we use a control flow graph to see
what paths the data can take.

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

Figure 2.1: CFG of the Straightforward Example from Chapter 1

In Figure 2.1, we see the CFG corresponding to the code of Listing 1.1. A CFG is
a directed graph. Each block of the CFG corresponds to one statement of the code.
Further, each block is labeled with a number to identify it and distinguish different
blocks. The edges show how the program can be traversed and thereby how statements
are connected to each other. In the C language, there are constructs like if then else

and while loops. These constructs have two possible successors for one block, leading to
branching in the CFG. However, in this example we do not have any branches. Therefore,
in our example every block, except for the exit block, has one successor. We can now
use the CFG to see how certain data can flow through the program.

5

2 Introduction to Data Flow Analyses

2.2 Forward Data Flow Analysis

Picking up the example from the introduction, let us say we are interested in a data flow
analysis that tells us that after a certain statement, a variable cannot be zero for the
program to run error-free. For that analysis, we need to track variables that cannot be
zero after a statement.

To track the variable, we add it to our flow data, which is a set containing all the
variables that cannot be zero. These flow data are attached to the edges. The flow
data are calculated in each block and the result of that calculation is passed on using
the outgoing edges. To calculate the flow data, we need to check if Frama-C threw a
division-by-zero warning. In case there is a warning, we need to add the corresponding
variable to the flow data.

However, we also have to remove variables from the flow data. We want to know
if a variable cannot be zero. In case a variable is reassigned, we remove that variable
from the flow data if it was in the flow data. After a reassignment, the variable is again
allowed to be zero and we remove that variable. The variable is allowed to be zero until
we see a division-by-zero warning with that variable again. We go through the CFG from
the entry block to the possible exit blocks of the function. Such a data flow analysis is
called forward data flow analysis.

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

Figure 2.2: CFG with Warnings

For our analysis, we do not only need the CFG of the program but also the statements
that threw a division-by-zero warning and the affected variable. Figure 2.2 displays the
combination of the CFG and the attachment of warnings to statements. In the figure, we
have the CFG and on the right side of the blocks, coloured in orange, the division-by-zero
warnings of Frama-C that correspond to that block.

6

2.2 Forward Data Flow Analysis

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

Figure 2.3: Step 1

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

{x}

Figure 2.4: Step 2

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

Figure 2.5: Step 3

Now, we can apply our analysis to the program. At the start of the analysis, there is
no possibility that we already saw a warning. Therefore, the edge that enters the entry
block is annotated with the empty set of flow data. In Figure 2.3, the first step with the
initial information is displayed.

The second step is shown in Figure 2.4. In the second step, we encounter a block for
the first time. For that block, we have to calculate the flow data. We want to add a
variable to the flow data if it is the subject of a division-by-zero warning. Further, we
remove variables if they are reassigned. In the first block, we encounter the statement
h = 1/x. To the right of the block, we see that we have a division-by-zero warning
concerning the variable x. Hence, we insert the variable x to our flow data.

Now, we still have to remove the variables that got reassigned in the statement. The
variable h is reassigned in that statement. Thus, we have to remove it from our flow
data. However, the variable is not in our flow data and removing an element that is
not in the set does not chance anything. So, our calculation result is the new flow data
containing the variable x. We pass that flow data on to the next blocks, by attaching
it to the outgoing edges. Here, we only have one outgoing edge with only one successor
block.

We enter the second statement with the knowledge that x cannot be zero since the
variable is in the flow data. In the third step, we calculate the flow data using the
information we gain from the second statement in combination with the entering flow
data. In the second block, we again have the statement h = 1/x. To the right of
the statement we see that we have a division-by-zero warning concerning the variable
x. Thus, we add the variable to our flow data. The flow data already contains x so its
addition does not change the flow data. In the statement, we reassign h again. Therefore,
we have to remove it from our flow data leaving us with the set containing x. We pass

7

2 Introduction to Data Flow Analyses

that information on to the next block as displayed in the Figure 2.5.

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

{}

Figure 2.6: Step 4

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

{}

{x}

Figure 2.7: Step 5

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

{}

{x}

Figure 2.8: Final Result

The third block has the statement x = y. There is no division-by-zero warning at-
tached to it. Therefore, we do not add any variables to the flow data. Here, we reassign
the variable x. x is in our flow data since it got passed to the third block by the second
block. Reassigning x means that we have to remove it from our flow data, resulting in
the empty set as flow data at the end of the third block. Figure 2.6 shows us that we
pass the empty flow data from the third to the fourth block.

The fourth and last block contains the statement h = 1/x. Further, the empty flow
data is passed to it from the third block. To the statement belongs a corresponding
division-by-zero warning. We add x to our flow data and remove h from it. Thus, we
leave the block and the function with the flow data containing x, which can be seen in
Figure 2.7.

Now, we can make use of the information we gained by applying the data flow analysis.
Whenever we enter a block and have a non-empty flow data, we know that the variables
in the flow data cannot be zero in the following block. We enter the first block with an
empty flow data. Therefore, we did not gain any additional information there.

For the second block, we have x in our flow data. So, we know that x cannot be
zero. The statement has a division-by-zero warning attached to it stating that if x is
zero, a fault will occur. However, we gained the information that x cannot be zero in
an error-free execution. Hence, we can say that the warning’s fault cannot occur and
remove the warning. In Figure 2.8, we changed the colour of the warning to green to
indicate that the warning can be ignored. The third statement has no warning attached
to it so there is nothing for us to do. We enter the fourth statement with an empty
flow data. Having empty flow data, we did not gain any additional information about

8

2.2 Forward Data Flow Analysis

this statement and we cannot make any further statements about whether the warning’s
fault can occur. Using the data flow analysis, we come to the same conclusion as in the
introduction, i.e., that the second warning is not needed and can be removed.

In the examples so far, we had a straightforward CFG without any branches. However,
in a normal C program, there normally are a number of branches. Therefore, let us have
a look at how our data flow analysis works with an if then else block and a while

loop.

2.2.1 If Then Else Block

In Listing 2.1, we see a little C function with the Frama-C annotations. The interesting
part of the C function is that it contains an if then else block. In the function,
four division-by-zero warnings appear. The expression 1/x is calculated and assigned
to h. At this point, the value analysis of Frama-C warns about a division-by-zero fault.
Afterwards, we have the then branch. In that branch, we calculate h = 1/x and h =

1/y. In the else branch, we only calculate the statement h = 1/x.

1 void main (int x , int y) {
2 int h ;
3 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x 6=
0 ; ∗/

4 h = 1/x ;
5 i f (x != 0) {
6 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x
6= 0 ; ∗/

7 h = 1/x ;
8 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : y
6= 0 ; ∗/

9 h = 1/y ;
10 }
11 else
12 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x
6= 0 ; ∗/

13 h = 1/x ;
14 }

Listing 2.1: If Then Else Example

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

Figure 2.9: CFG of If Then Else Exam-
ple with Warnings

In Figure 2.9, the graphical representation of the code from Listing 2.1 is depicted in
the form of a CFG. In addition to the CFG, we again have the division-by-zero warnings
that Frama-C threw analysing the piece of code. The second block of the CFG depicts

9

2 Introduction to Data Flow Analyses

the condition for the if then else start. To the left of the decision block, we have
the then branch and to the right the else branch. The sixth block combines the two
branches again.

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{x} {x}

{}

Figure 2.10: Branching of If Example

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{x} {x}

{x}

{x, y}

{x}

{}

Figure 2.11: Branch Results of If Example

Let us now apply our data flow analysis to the CFG from Figure 2.9 to check whether
a variable cannot be zero. The beginning is the same as in the straightforward example
from Chapter 1. We enter the function with an empty set as flow data. The first block
has a division-by-zero warning attached to it. Thus, we can generate new information
and add it to our flow data. The warning contains the variable x, which we now insert
into our flow data. Further, we have to remove the reassigned variable h from our flow
data, which has no result.

Now, we have to pass the flow data on to the next block. The next block is the
condition of the if then else, which has no warnings corresponding to it. Here, we do
not do anything and only pass on the flow data to the successors of the second block.
As we can see in Figure 2.10, we take the flow data of the incoming edge and attach it
to the outgoing edges to the third and fifth block.

In Figure 2.11, the next steps are depicted. We calculate the flow data for each branch
individually. To that end, we look at the third block in the then branch. The third block
consists of the statement h = 1/x. For that statement, we have an attached warning.
Our analysis yields that we now generate the subject variable of the warning and add
it to our flow data. Adding x to the flow data does not result in any changes as x is
already contained in the set. Additionally we again have to remove the variable h, which
does not change the flow data either.

The next block is the fourth. In that block, we add the variable y to our flow data

10

2.2 Forward Data Flow Analysis

and remove h. Therefore, we attach the flow data containing x and y to the outgoing
edge of the fourth block. Having x and y in our flow data simply means that x cannot
be zero and that y cannot be zero. The set actually is a conjunction of the elements in
it.

We take a look at the else branch. Here, we only have the fifth block. In that block
we calculate h = 1/x. Hence, we have to add the variable x to our flow data and remove
h, leaving the flow data unchanged.

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{x} {x}

{x}

{x, y}

{x}

{}

{x}

Figure 2.12: Combination of If Example

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{x} {x}

{x}

{x, y}

{x}

{}

{x}

Figure 2.13: Result of If Example

The only task that is left to do in our analysis is to combine the branches again. We
have two incoming edges to the sixth block. One branch has the flow data containing
x and y attached to it, while the other has the flow data containing x attached to it.
In our analysis, we want to know whether a variable cannot be zero. In both branches
the variable x cannot be zero. Therefore, x also cannot be zero after we combined the
branches. However, y cannot be zero only in one branch. So depending on the path
taken, y can either be not zero or y is allowed to be zero. Thus, y is not in the flow data
anymore after the combination since we cannot be certain that the variable cannot be
zero. Figure 2.12 shows the flow data after the combination. Let us define that in our
analysis, a variable has to be in the flow data of each branch to survive the combination.
This behaviour corresponds to an intersection of the flow data while we combine them.

After the application of the analysis, we can again go through the gained information
and look for information that allows us to remove a warning. In Figure 2.13, the result
of the step is shown. To leverage the gained information, we go through each block that
has a corresponding warning and check if the variable mentioned in the warning is in
the flow data of the incoming edge to that block. Table 2.1 shows the flow data of the

11

2 Introduction to Data Flow Analyses

incoming edges to the blocks as well as the variables that are subject of a warning in
the block. Every time we have a variable in the set of the incoming edge as well as in
the warnings set, we can remove the corresponding warning.

Block 1 2 3 4 5 6

Incoming edge ∅ {x} {x} {x} {x} {x}
Warning {x} ∅ {x} {y} {x} ∅
Warning to be removed X X

Table 2.1: Warning Removal of the If Then Else Example

2.2.2 While Loops

Now that we know how we combine branches in our analysis, we have a look at loops,
namely while loops. Until now, the calculation of the flow data was straightforward.
We started at the entry point of the function and worked our way down to the exit
points visiting every block only once. With loops we might need to go through blocks
multiple times since we have to calculate the information in the loops, until we reach a
fixed point. We will see how we reach a fixed point in the following example.

1 void f 1 (int x) {
2 int b , y ;
3 b = 1 ;
4 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x 6=
0 ; ∗/

5 y = 1 / x ;
6 while (b < 10) {
7 x = 1 ;
8 b ++;
9 }

10 /∗@ a s s e r t Value :
d i v i s i o n b y z e r o : x 6=

0 ; ∗/
11 y = 1 / x ;
12 }

Listing 2.2: While Loop Example

b = 1 1

y = 1/x 2

b < 10 3 x = 1 4 b++ 5

y = 1/x 6

{x 6= 0}

{x 6= 0}

Figure 2.14: CFG of While Loop Example
with Warnings

Listing 2.2 contains a function written in C, with a while loop. Further, the code is
annotated by Frama-C’s value analysis with division-by-zero warnings. In the function,
we first set b to 1. Afterwards, we execute the statement y = 1/x. Next, we have a

12

2.2 Forward Data Flow Analysis

loop, which we execute until b is greater or equal to 10. In the loop, we set x to 1 and
increase b. Lastly, we calculate y = 1/x after the loop.

In Figure 2.14, we see the graphic representation of the code as well as the correspond-
ing annotations. The interesting part of the CFG is the while loop. The third block
contains the condition of the while loop. To the right of the third block, we have the
code from inside the loop. Below the third block, we have the case that we leave the
while loop and go on with the next statement.

b = 1 1

y = 1/x 2

b < 10 3 x = 1 4 b++ 5

y = 1/x 6

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

{x}

{}

Figure 2.15: First Steps of While Loop
Example

b = 1 1

y = 1/x 2

b < 10 3 x = 1 4 b++ 5

y = 1/x 6

{x 6= 0}

{x 6= 0}

{}

{x}

{x}

{x}

{}

{}

{}

Figure 2.16: First Iteration of While Loop
Example

Let us now apply our data flow analysis to the CFG of Figure 2.14 to find out whether
a variable cannot be zero. In Figure 2.15, the first steps are depicted. We start with the
empty set as flow data. In the first block, we set b to 1. There is no warning attached
to that statement. Without a warning, we do not add any new information to the flow
data. Further, we have to remove b from the flow data since it is reassigned. Removing
it does not change the flow data and we still have the empty set.

The statement of the second block has an attached warning. The warning states that
if x is not equal to zero, then a division-by-zero fault will occur. Therefore, we generate
the information that x cannot be zero after this block and insert x to our flow data. In
that block, we reassign y, which we therefore have to remove from the flow data. After
the second block, the flow data contains the variable x. The third block only contains
the condition of the while loop. We do not use this condition to calculate new flow
data. Therefore, we simply pass on the incoming flow data to the successor blocks four
and six.

In Figure 2.16, the first iteration of the loop is depicted. In the fourth block, x is
reassigned. Hence, we have to remove x from the flow data, leaving us with an empty

13

2 Introduction to Data Flow Analyses

set. In the next block, we increase b. There is no warning attached to it, so we do not
generate any new flow data. Since we reassign b while we increase it, we have to remove
it from the flow data. Next, we pass the flow data on to the third block. The third
block has now two incoming edges with corresponding flow data. Thus, we combine
these information as we did in Subsection 2.2.1.

We intersect the flow data from the two incoming edges,i.e, {} and {x}, yielding that
no variable is in the flow data. We now have to propagate the updated flow data.
Therefore, we change the flow data of the edges from the third to the fourth and to the
sixth block to the empty set. However, now the flow data that we used to calculate the
information inside the loop changed. Thus, we have to enter it again until we reach a
fix point where the information does not change anymore between iterations.

b = 1 1

y = 1/x 2

b < 10 3 x = 1 4 b++ 5

y = 1/x 6

{x 6= 0}

{x 6= 0}

{}

{x}

{}

{}

{}

{}

{}

{x}

Figure 2.17: Second Iteration of While

Loop Example

b = 1 1

y = 1/x 2

b < 10 3 x = 1 4 b++ 5

y = 1/x 6

{x 6= 0}

{x 6= 0}

{}

{x}

{}

{}

{}

{}

{}

{x}

Figure 2.18: Result of While Loop
Example

In Figure 2.17, we see the second and final iteration of the loop as well as the last steps
of applying the data flow analysis. In the fourth block, we again remove x from the flow
data. However, this time x is not in the flow data of the incoming edge. Therefore,
removing x from the flow data has no effect. Next, we have to remove b due to the
statement in the fifth block.

Now, we reach the third block for the third time. The flow data coming from the
block 2 still contains x. The edge coming from block 5 carries the empty set. Combining
these flow data yields the empty flow data. Passing on the information to the successors
does not change the information. Thus, we reached a fixed point and we can go on with
the blocks after the while loop. The sixth and last block has a corresponding warning.
Due to the warning, we generate the fact that x cannot be zero after the block and add
x to the flow data. Removing the reassigned y does not change the flow data.

14

2.2 Forward Data Flow Analysis

After we applied the data flow analysis, we can again check if there are warnings that
can be removed. In this example, we have two warnings. The incoming flow data to
blocks with a corresponding warning are empty. Hence, we cannot remove any warning.
By looking at the CFG, we can see why we cannot remove any warning. We have one
warning before and one after the while loop. Unfortunately, we reassign x in the loop.
Therefore, we cannot say that on all paths that reach the second warning x cannot be
zero. Due to that reason, we cannot remove any of the warnings.

Now that we have an intuition of how a forward data flow analysis works, let us define
it formally.

2.2.3 Formal Definition of Forward Data Flow Analysis

We can formulate the way we calculate the next flow data as mathematical equations.
These data flow equations can be calculated for each block of the CFG. Further, we have
to iteratively calculate them until we reach a fixed point. Kildall was the first to develop
this approach in his paper “A Unified Approach to Global Program Optimization”[18].
The basic idea is that we solve for each block n of the CFG the following equations:

Inn = confluencep∈predn(Outp)

Outn = transfern(Inn)

Figure 2.19: General Forward Data Flow Equations

The first equation from Figure 2.19 states that what goes into a block is defined by
the combination of the predecessors. In our data flow analysis so far, we combined the
predecessors by taking the intersection of the flow data. If we wanted to know if on at
least one path reaching this point in the program, a variable cannot be zero, then we
would take the union.

With the intersection, a piece of information has to be true on every path to survive
the combination. For the union, a piece of information has to be true on at least one
path to survive the combination. Further, if the confluence operation is the intersection,
then the analysis is called a must analysis. For a must analysis a piece of information
must be true reaching this point in the program. To ensure that the information is
indeed true, it must be true on all incoming paths. Only then the information is in the
flow data. Otherwise, if the confluence operator is the union it is called a may analysis.
For a may analysis a property may only be true at this point in the program. For a may
analysis it is sufficient if one path reaching a certain point in the program yields that
this information holds. In that case the information is in the flow data. The confluence
operator is not restricted to the intersection and union but can also be another operator.
However, intersection and union are the most commonly used confluence operators.

The second equation deals with what we propagate on from the block. In the so-
called transfer function, we define the calculations we do in a block. The calculations we

15

2 Introduction to Data Flow Analyses

perform define the information of interest for our analysis. The transfer function for our
analysis would have to state that we add a variable to the flow data if it is the subject of
a division-by-zero warning. Further, the transfer function for our analysis removes any
variable that are reassigned.

2.2.4 Definition of our Forward Analysis

Let us now formally define our data flow analysis:

Inn =


∅ n is the entry block⋂
p∈predecessors(n)

Outp otherwise

Outn = Transfern(Inn)

Transfern(Inn) = (Inn ∪Genn) \Killn

Genn = {e | e is contained in a division-by-zero warning in block n}

Killn =

{
{e} e is reassigned in n

∅ no variable is reassigned in n

Figure 2.20: Data Flow Equations of our Example Forward Analysis

The first equation from Figure 2.20 defines the flow data at the entry of a block. As
we always start with empty flow data, we assign the empty flow data to the entry block.
Otherwise, if we are somewhere in the CFG, we take the intersection of the predecessor
blocks. Since our confluence operator is the intersection, we have a must analysis and
ensure that we know that a certain variable cannot be zero.

The second equation calls the transfer function. The third equation defines the trans-
fer function, i.e., the calculation inside a block resulting in the flow data at the exit of
the blocks. In the equation, we define that we take the information we had entering the
block and might add a certain piece of information as well as remove some again. What
we add is defined in the gen set. The fourth equation defines the gen set. A variable is
in the gen set in case we have a division-by-zero warning attached to the block we are
currently working on and that variable caused the warning.

The fifth and last equation defines the variables we remove from the flow data. We
add a variable to our kill set in case it is reassigned in the current block. If no variable
is reassigned, then our kill set is empty. In short, the expression (Inn +Genn)−Killn
means we take what we had and add to it the variables we generated. From that set,
we remove all the variables that got reassigned.

16

2.2 Forward Data Flow Analysis

Let us now have a look at two example calculations of the expression (Inn +Genn)−
Killn. The first example example is that we have the statement x = 1/x and our in
set is the empty set. That statement has a division-by-zero warning. Therefore, x is in
our gen set. Adding the set containing x to the empty set results in the singleton set
containing x. The kill set consists of the variable x. Removing the kill set from the
combination of in and gen results again in the empty set. Hence, in case we generate
and kill the same variable in a block, it will not be in the flow data at the exit of the
block.

Another example is that we have the statement h = 1/x and our in is the set contain-
ing h. Here, the gen set contains x. Adding the gen set to the in set results in the set
containing h and x. The kill set is {h}. Removing h leaves us with the set containing x.
Thus, the flow data at the exit of the block contains only x.

Example Calculation

Now, we apply the data flow equations to the example of Subsection 2.2.1.

First of all, we have to determine the flow data that flow into the first block. Here
the first equation is of help. It defines that in case we are dealing with the entry block,
our incoming flow data for the first block is the empty set. After we know the flow data
entering the block, we can apply the transfer function.

For the transfer function, we have to calculate the gen and kill set. The first block
has an attached division-by-zero warning. Therefore, our gen set will not be empty. The
warning states that if x is zero, a run time error will occur. Thus, we add x to our gen
set so that we know that after this block x cannot be zero anymore.

In the first block, we reassign h. Since we reassign h in this block, we have to add it
to our kill set. Having the in, gen, and kill set, we can calculate the transfer function.
Inserting them, we get Out1 = (∅+ {x})− {h}, which is the set containing x.

Moving on to the second block, we start by calculating the in set. To calculate the in
set, we have to apply our confluence operator to the predecessors of the second block.
However, the second block only has one predecessor. Therefore, we have In2 = Out1,
which is {x}. The gen set of the second block is empty because there is no warning
attached. Further, we do not reassign any variable leaving the kill set empty as well.
Applying the transfer function we get Out2 = In2 meaning we simply pass on the flow
data.

The third block has only the second block as predecessor, so we get that In3 = Out2.
Further, we have a warning attached about x, making up our gen set. The kill set
contains h since we reassign it. So we have Out3 = ({x}+ {x})− {h} = {x}.

Applying the first equation from our data flow equations to the fourth block we get
that In4 = Out3. The gen set for this block consists of y and the kill set of h, leaving
us with Out4 = ({x}+ {y})− {h} = {x, y}.

Going on with the fifth block in the other branch. The fifth block is equal to the third
block. So, all the calculations we did there apply here in the same way.

The last block has one interesting aspect. Until now, the application of the confluence
operator had no effect. In the last block, we apply our confluence operator to two

17

2 Introduction to Data Flow Analyses

predecessors. The application has an effect this time and changes the flow data. The
fourth and fifth block are predecessors of the sixth block. Hence, we have that In6 =
Out4 ∩Out5 = {x, y} ∩ {x} = {x}. In the sixth block, we do not reassign anything nor
do we have a division-by-zero warning leaving us with Out6 = In6. In Table 2.2, all the
sets calculated are depicted.

Block 1 2 3 4 5 6

In ∅ {x} {x} {x} {x} {x}
Warning {x} ∅ {x} {y} {x} ∅
Gen {x} ∅ {x} {y} {x} ∅
Kill {h} ∅ {h} {h} {h} ∅
Out {x} {x} {x} {x, y} {x} {x}
Warning to be removed X X

Table 2.2: Result of Applying the Data Flow Equations to the If Then Else Example

Having the set representation, we can easily select warnings that we can remove. For
every block, we compare the in set and the warning set. In case a variable is in both
sets, we can remove the warning in that block with that variable. Using the data flow
equations, we come to exactly the same result as we did in Subsection 2.2.1, namely that
we can remove the warning attached to the third and fifth block.

2.3 Backward Data Flow Analysis

So far we only looked into a forward data flow analysis. However, there are also backward
data flow analyses. Further, our bidirectional predicate propagation consists of a forward
and a backward analysis. Basically, there only is one difference between forward and
backward data flow analyses. In a forward analysis, we start at the entry point of the
function and check every successor until we reach the exit points. In a backward analysis,
we start at the exit points of the function and check every predecessor until we reach
the entry point.

Let us apply our analysis to the CFG of Figure 2.2 as a backward analysis. Now our
starting point for the analysis is the fourth block. Initially, our flow data is empty, which
can be seen in Figure 2.21. Entering the fourth block, we have to calculate our transfer
function. We add x to our flow data and remove h from it. We pass on our flow data
containing x to the third block, as shown in Figure 2.22.

Figure 2.23 shows the remaining steps. In the third block, we reassign x. Therefore,
we remove x from the flow data, leaving us with empty flow data, which we pass on to
the second block.

In the second block, we add x to our flow data and pass it on to the first block. There,
we add x and remove h, which does not change the flow data, leaving us with the flow
data containing only x.

18

2.3 Backward Data Flow Analysis

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{}

Figure 2.21: Initial

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{}

Figure 2.22: Intermediate

h = 1/x 1

h = 1/x 2

x = y 3

h = 1/x 4

{x 6= 0}

{x 6= 0}

{x 6= 0}

{x}

{x}

{}

{x}

{}

Figure 2.23: Result

The result of applying the analysis backwards tells us which variable cannot be zero
already. Using the forward analysis, we only know from which point onwards a variable
cannot be zero. However, the variable valuation is not changed by a warning about it.
Applying the backwards analysis, we push that point as far as possible upwards to the
last assignment of that variable. Thereby, we get an understanding since when a variable
actually cannot be zero.

2.3.1 Formal Definition

Let us now have a look at the data flow equations for our analysis as a backward analysis.
Figure 2.24 depicts the general backward data flow equations. The main difference to
the forward equations is that in and out are exchanged. Further, we look at successors
and not the predecessors of the blocks.

Outn = Confluencep∈succn(Inp)

Inn = Transfern(Outn)

Figure 2.24: General Backward Data Flow Equations

In a backward analysis, we start at the exit points of the function. Thus, we have to
assign the initial information to the exit blocks. We do that in the first case of the out
equation in Figure 2.25. The second case of the out equation defines how we combine
branches. We take all the successors of the current block and apply the confluence
operator to them. In our must analysis the confluence operator is the set intersection.

19

2 Introduction to Data Flow Analyses

Inn = (Outn ∪Genn) \Killn

Outn =


∅ n is a exit block⋂
p∈successors(n)

Inp otherwise

Genn = {e | e is contained in a division-by-zero warning in block n}

Killn =

{
{e} e is reassigned in n

∅ no variable is reassigned in n

Figure 2.25: Data Flow Equations of our Example Backward Analysis

Unlike the forwards analysis in the backwards analysis the transfer function defines
the in set and uses the out set. Further, we still use the gen and kill set as we do in
the forward analysis. In the next subsection, we see how we apply the equations from
Figure 2.25.

Example Calculation

Let us apply the equations to the CFG of Figure 2.2. Table 2.3 shows the result of the
application.

Block 4 3 2 1

Out ∅ {x} ∅ {x}
Warning {x} ∅ {x} {x}
Gen {x} ∅ {x} {x}
Kill {h} ∅ {h} {h}
In {x} ∅ {x} {x}

Table 2.3: Result of Applying the Backward Data Flow Equations to the Straightforward
Example from Chapter 1

The fourth block is the exit point of our function. Hence, we set Out4 to the empty
set. Next, we have to compute the transfer function for the fourth block. The gen set
for that block consists of x and the kill set of h. Therefore, In4 is the set containing x.

In the next block, we reassign x, which leads to the removal of x from the flow data
leaving us with an empty set. In the next two blocks, we add x to the flow data. Thus,
the in set of both consists of the variable x. The result of applying the equation is
exactly the same as what can be seen in Figure 2.23. Having the data flow equations
for forward and backward analysis, we still need a way to automatically compute them.

20

2.4 Worklist Algorithm

The worklist algorithm [14] is one method to automatically compute the result of a data
flow analysis.

2.4 Worklist Algorithm

So far we presented a formal definition for both forward and backward data flow analysis.
In this section, we present a way to automatically calculate the data flow equations until
we reach a fixed point. The method to automatically apply the equations is called
worklist algorithm.

We have to provide the worklist algorithm with a so-called instance of a monotone
framework. An instance of a framework is a combination of the data flow equations and
the CFG we used for the computation. In the following, we use label, which refers to
the label of the CFG blocks. An instance consists of a six-tuple (L,F , F, E, ι, f.):

• L is the complete lattice of the framework, our property space.

• F is the space of monotone transfer functions of the framework.

• F is the finite flow, the set of edges from the CFG.

• E is the finite set of extremal labels, either the entry block or exit blocks.

• ι is an extremal value from L for the extremal labels.

• f. is a mapping from labels to transfer functions in F .

A lattice is a partially ordered set where any two elements always have a supremum
(join) and an infimum (meet). Let us take the source code shown in Listing 2.1. The
source code has three variables, namely x, y, and h. In our case, we only add the variables
to our flow data since we only looked at division-by-zero warnings.

Figure 2.26 shows how the lattice with these variables looks like. The lattice is actually
a complete lattice. For a complete lattice, also all subsets have a join and a meet.
Specifically, this lattice is the power set of the variables in the program ordered by an
is-superset-of relation. Thereby, we have in the lattice all possible combinations that
could be in the flow data. A lattice built from a power set is always a complete lattice.
So let us have a look at the lattice.

First of all, we have our top element, which is the empty set. In case our flow data
would always be the empty set, we would not remove any warning. Therefore, it is safe
and sound to always use the empty set. However, just using the empty set makes us
imprecise. The next levels of the lattice depict all combinations of the three variables.
On the first level we have them individually. On the second level, we have two of them
combined and on the last, all three of them together. So by taking the join of any two
elements of the lattice, we get the result of the combination in our analysis.

The space of functions, F , guarantees that we have a function L → L. That means
that after we apply the transfer function, we are still inside the lattice. F looks like this
for our analyses: {f : L → L | ∃lk, lg : f(l) = (l − lk) + lg}. An element of this space

21

2 Introduction to Data Flow Analyses

{}

{x}{h} {y}

{h, x} {h, y} {x, y}

{h, x, y}

Figure 2.26: Lattice

is a function that stays in the lattice and there exists for label l a gen and kill set, lg
and lk, so that we can compute the transfer function. The gen and kill set have to be
constant for every block. The definitions of our gen and kill set are independent of the
in set. Thus, the sets are constant for every block.

The flow, F , is basically our CFG. We use it to define how we can transverse the
blocks. Further, we define if we have a forward or backward analysis by either giving
the flow from the function entry to the exits for a forward analysis or reversing it for a
backward analysis.

The extremal labels are the set containing the starting points for the analysis. Thus,
the extremal labels are the entry point of the function for a forward analysis and the
exit points of the function for a backward analysis. The extremal value, ι, is the data
value that should be assigned to the extremal labels. Normally, the top symbol of the
lattice is used for this. In our analysis, this is the empty set, which we assigned to the
first block in the forward analysis. f., is the specific mapping from the current block to
the corresponding transfer function which we have to apply in that block.

Now that we know what an instance of a monotone framework is, we can have a
look at the worklist algorithm. The worklist algorithm computes the maximal fixed
point (MFP) for a monotone framework. The MFP is a fixed point, which is always
computable. We are interested in this decidable fixed point since otherwise our analysis
might not terminate [14].

The worklist algorithm is depicted in Figure 2.27. In the first step of the worklist
algorithm, we initialise the worklist with an empty list and add the edges, F , to the
worklist. For that, we go through the flow set and add every edge (l, l′) to the worklist.
After we added all edges to the worklist, we assign the initial value to the extremal
labels. In our forward analysis, we set the in set of our entry point to the empty set.
Further, we set all the blocks that are not extremal labels to the bottom symbol of the

22

2.4 Worklist Algorithm

lattice. In the lattice of Figure 2.26 the bottom symbol is the set containing h, x and
y.

In the second step all the work is done. As long as the worklist is not empty we take
the first element, an edge, from that list. Now we take that edge and split it up in the
source l and the destination l′. Afterwards, we check if we generate new information.
We do this by checking if fl(Analysis[l]) 6v Analysis[l′] holds. In our analysis, v is the
superset relation. Further, fl(Analysis[l]) is the transfer function for the block l.

Step1 Initialisation (of W and Analysis)

W := nil;

for all (l, l′) in F do W := cons((l, l′),W);

for all l in F or E do

if l ∈ E then Analysis[l] := ι else Analysis[l] = ⊥L

Step2 Iteration (updating W and Analysis)

while W 6= nil do;

l := fst(head(W)); l′ = snd(head(W));W := tail(W);

if fl(Analysis[l]) 6v Analysis[l′] then

Analysis[l′] := Analysis[l′] t fl(Analysis[l])
for all l′′ with (l′, l′′) in F do W := cons((l′, l′′),W);

Step3 Presenting the result

for all l in F or E do

MFPentry(l) := Analysis[l];

MFPexit(l) := fl(Analysis[l]);

Figure 2.27: Worklist Algorithm [14]

In case we generate new information, we propagate it on. The new information is
propagated via the assignment Analysis[l′] := Analysis[l′]tfl(Analysis[l]). The symbol
t is the confluence operator of our analysis. So, we calculate the new information for
block l′, by applying the confluence operator to the information of the entry of block l′

and the information from the exit of block l. After we updated the information of l′, we
add all the edges from l′ to its successors to the worklist. We do this to ensure that the
newly generated information is passed on. To summarise, the worklist is a list of pairs
(l, l′) that tells us that the analysis returned new information for block l.

We iterate through the second step until our worklist is empty. When the list is empty,
we still have to present the result. We go through all the blocks and assign the flow data
to the entry and exit of each block.

23

2 Introduction to Data Flow Analyses

2.4.1 Calculation using the Worklist Algorithm

To apply the worklist algorithm to our while loop example, we need to define the instance
of the monotone framework for the example. Figure 2.28 shows the complete lattice, L, of
the example. The set of flow, F , contains the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 3), (3, 6).
Further, the set of extremal labels, E, consists of the label 1. Our ι is the top element
from L, which is the empty set. The transfer function is defined in Table 2.20.

{}

{x}{b} {y}

{b, x} {b, y} {x, y}

{b, x, y}

Figure 2.28: Lattice of While Loop Example from Subsection 2.2.2

Let us now apply the worklist algorithm. Table 2.4 depicts the steps of the application
of the worklist algorithm.

• Initialisation & Iteration 1: The extremal block, 1, is initialised with the empty
set. We assign the bottom element of the lattice, which is the set {b, x, y}, to all
the other blocks. Further, we see the first element of the worklist, the edge from
the first to the second block. Having that edge, we can apply the steps from the
second step of the worklist algorithm. To apply the steps, we first have to check
if f1(Analysis[1]) 6v Analysis[2] holds. f1(Analysis[1]) is the transfer function
applied to the first block with the information that the analysis calculated for the
first block.

Here, Analysis[1] is the empty set. Therefore, we apply the transfer function with
the empty in set. Applying the transfer function to the first block returns the
empty set. In the initialisation step, we assigned Analysis[2] to the set {b, x, y}.
Now we have to check if ∅ 6⊇ {b, x, y} holds, which is the same as checking ∅ ⊂
{b, x, y}. The check, ∅ ⊂ {b, x, y}, holds.

Therefore, we set Analysis[2] to Analysis[2] t f1(Analysis[1]). Our confluence
operator t is the intersection, which yields Analysis[2] := {b, x, y} ∩ ∅ = ∅.

24

2.4 Worklist Algorithm

W := ((2, 3), (3, 4), (4, 5), (5, 3), (3, 6)),⊥ := {b, x, y}
Iteration W 1 2 3 4 5 6

Init & 1 ((1, 2),W) ∅ ⊥ ⊥ ⊥ ⊥ ⊥
2 ((2, 3),W) ∅ ∅ ⊥ ⊥ ⊥ ⊥
3 ((3, 4), (3, 6),W) ∅ ∅ {x} ⊥ ⊥ ⊥
4 ((4, 5), (3, 6),W) ∅ ∅ {x} {x} ⊥ ⊥
5 ((5, 3), (3, 6),W) ∅ ∅ {x} {x} ∅ ⊥
6 ((3, 4), (3, 6),W) ∅ ∅ ∅ {x} ∅ ⊥
7 ((5, 3), (3, 6),W) ∅ ∅ ∅ ∅ ∅ ⊥
8 ((3, 6),W) ∅ ∅ ∅ ∅ ∅ ⊥
9 ((3, 4), (4, 5), (5, 3)(3, 6)) ∅ ∅ ∅ ∅ ∅ ∅
10 ((4, 5), (5, 3)(3, 6)) ∅ ∅ ∅ ∅ ∅ ∅
11 ((5, 3)(3, 6)) ∅ ∅ ∅ ∅ ∅ ∅
12 ((3, 6)) ∅ ∅ ∅ ∅ ∅ ∅
13 ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 2.4: Applying the Worklist Algorithm to the While Loop Example from Subsec-
tion 2.2.2

Each step in Table 2.4 shows the values at the entry point of the blocks at the very
beginning of each iteration of the algorithm. Thus, the update of Analysis[2] is
not already shown in this step but appears only in the next step. The only thing
left to do is to add the edge (2, 3) to the worklist.

• Iteration 2: Now we inspect the edge (2, 3). First of all, the check f2(Analysis[2]) 6v
Analysis[3], which is {x} ⊂ {b, x, y}, evaluates to true. Afterwards, we assign
{x} ∩ {b, x, y} = {x} to Analysis[3]. Lastly, we add the edges (3, 4) and (3, 6) to
the worklist.

• Iteration 3: The first element in the worklist is the edge (3, 4). Our check {x} ⊂
{b, x, y} holds. Now, we set Analysis[4] to {x} ∩ {b, x, y} = {x} and add the edge
(4, 5) to the worklist.

• Iteration 4: For the edge (4, 5), the check is ∅ ⊂ {b, x, y}. Therefore, we set
Analysis[5] to ∅ ∩ {b, x, y} = ∅ and add the edge (5, 3) to the worklist.

• Iteration 5: Taking the first element of the worklist, we get the edge (5, 3). The
check ∅ ⊂ {x} holds. Now, we update the entry information of the third block with
the empty set. Further, we add the edge (3, 4) to the worklist. Even though the
algorithm tells us to, we do not add the edge (3, 6) to the worklist in this example
calculation as it is the second element in the worklist. We actually only need to
ensure that the edge is inside the worklist so that we propagate the information
onwards. Since the worklist is a set, we do not have to add elements that are
already in the worklist.

25

2 Introduction to Data Flow Analyses

• Iteration 6: Now, we have to inspect the edge (3, 4) for a second time. The check
∅ ⊂ {x} still holds. Therefore, we actually have new information to propagate
onwards. Thus, we set Analysis[4] to the empty set and add the edge (4, 5).

• Iteration 7: Examining the edge (4, 5) for the second time around the check
f4(Analysis[4]) 6v Analysis[5] fails for the first time. f4(Analysis[4]) 6v Analysis[5]
evaluates to ∅ ⊂ ∅, which does not hold. Therefore, we do not reassign Analysis[3]
nor do we add any new edge to the worklist.

• Iteration 8: The first edge in the worklist is the edge (3, 6). For that edge, the
evaluation of ∅ ⊂ {b, x, y} holds. The next action we have to take is to reassign
Analysis[6]. We reassign Analysis[6] to the empty set. The sixth block has no
successors. Hence, we cannot add any edge to the worklist.

• Iteration 9-12: In these four steps the check fl(Analysis[l]) 6v Analysis[l′] fails.
So, we do not do anything in these steps.

• Iteration 13 & Presenting the result: In the last step our worklist is empty, which
is the end of the second step of the worklist algorithm. We go on to the last step of
presenting the result. In the last column of the table, the information at the entry
points for each block is depicted. For the information at the exit of these blocks,
we would have to apply the transfer function. Applying them we get that every
block but the second and the sixth has the empty set as the exit. The second and
the sixth block have the set containing x as information as can be seen in Table 2.5.
Figure 2.18 depicts the same information graphically.

1 2 3 4 5 6

in ∅ ∅ ∅ ∅ ∅ ∅
out ∅ {x} ∅ ∅ ∅ {x}

Table 2.5: Result of Applying the Worklist Algorithm to the While Loop Example from
Subsection 2.2.2

So far, we presented how a data flow analysis works. Further, we have the means
to automatically calculate the result of a data flow analysis. However, until now we
only looked at a data flow analysis that tracks division-by-zero warnings. In the next
chapter, we introduce our bidirectional predicate propagation. Using that predicate
propagation, we are able to handle all run-time warnings. Further, we will also make
use of a backwards analysis to be able to remove even more warnings. How we use the
backward analysis and other aspects are discussed in depth in the next chapter.

26

3 Data Flow Analyses for Bidirectional
Predicate Propagation

The goal of our bidirectional predicate propagation is to select as many safely removable
warnings as possible. In this chapter, we present how we can use a predicate-based data
flow analysis to achieve the goal. The data flow analysis from Chapter 2 is already close
to the one we present in this chapter. However, the analysis from Chapter 2 only covers
division-by-zero warnings. In this chapter, we present an analysis that is able to cover
all run-time warnings. In the next section, we introduce the forward data flow analysis
from our bidirectional predicate propagation.

3.1 Forward Data Flow Analysis to Track Predicates

Using the forward data flow analysis from our bidirectional predicate propagation, we
want to gain knowledge about warnings that we can remove safely. Therefore, we want
to make use of the annotations from Frama-C. More precisely, we are interested in the
annotated assertions about warnings. In the last chapter, we restricted the warnings
to be division-by-zero warnings. In our bidirectional predicate propagation, we do not
want such a restriction. Therefore, we have to change the forward data flow analysis
from the previous chapter in a way that it can handle all asserted warnings.

In Chapter 2, we could simply add the subject of the warning to the flow data. Without
the division-by-zero warning restriction, we have to add the whole predicate to the flow
data. Otherwise, having an unsigned-overflow warning about x and a division-by-zero
warning about x, we would add x for each warning to the flow data in both cases making
it impossible to distinguish them. Adding simply the variable that is the subject of
the warning could lead to a case where we remove the division-by-zero warning because
we had an unsigned-overflow warning before. By adding the complete predicate such
a mix-up cannot occur. However, now we cannot simply remove a reassigned variable
from the flow data. We have to remove all predicates that contain a reassigned variable.

Let us have a look at an example calculation to see how the analysis has to change.

3.1.1 Example

In this subsection, we take a look at a function with different kinds of warnings. In
Listing 3.1, a C function is depicted. The C function has statements with different kinds
of warnings. We pass the variable x to the function. In the first statement, we define an
array with five elements. In the following, we assign two times the xth element of that
array to h. The assignments can have an array-index-out-of-bound error in case x is not
in the range [0, 4]. Therefore, Frama-C throws two index-bound warnings. Further, we
reassign x at some point as well as divide once by x and another time by a[x]. The
divisions result in two division-by-zero warnings.

27

3 Data Flow Analyses for Bidirectional Predicate Propagation

1 void main (int x , int y)
2 {
3 int h ;
4 const int a [] = {0 , 1 , 2 ,

3 , 4} ;
5 /∗@ a s s e r t r t e :

index bound : 0 ≤ x ;
∗/

6 /∗@ a s s e r t r t e :
index bound : x < 5 ; ∗/

7 h = a [x] ;
8 /∗@ a s s e r t r t e :

d i v i s i o n b y z e r o : y 6=
0 ; ∗/

9 h = 1 / y ;
10 /∗@ a s s e r t r t e :

d i v i s i o n b y z e r o : a [x]
6= 0 ; ∗/

11 /∗@ a s s e r t r t e :
index bound : 0 ≤ x ;
∗/

12 /∗@ a s s e r t r t e :
index bound : x < 5 ; ∗/

13 h = 1/a [x] ;
14 x = y ;
15 /∗@ a s s e r t r t e :

d i v i s i o n b y z e r o : y 6=
0 ; ∗/

16 h = 1 / y ;
17 return ;
18 }
Listing 3.1: Example with Different Kinds

of Warnings

a[] = 0, 1, 2, 3, 4 1

h = a[x] 2

h = 1/y 3

h = 1/a[x] 4

x = y 5

h = 1/y 6

{0 ≤ x,
x < 5}

{y 6= 0}

{a[x] 6= 0,
0 ≤ x,
x < 5}

{y 6= 0}

Figure 3.1: CFG of the Example with Dif-
ferent Kinds of Warnings

Figure 3.1 shows the CFG of the code in Listing 3.1. In addition to the CFG, we also
have the predicates that are asserted in the warnings corresponding to the statements in
Figure 3.1. In this example, we have multiple warnings attached to one statement for the
first time. The fourth statement, for example, has three warnings attached to it, two of
them are array-index-out-of-bounds warnings. One states that x has to be greater than
or equal to zero. The other warning states that x has to be smaller than five. Otherwise,
an array-index-out-of-bounds error occurs. In addition to these warnings, we also have
a division-by-zero warning stating that a[x] 6= 0 has to hold.

28

3.1 Forward Data Flow Analysis to Track Predicates

a[] = 0, 1, 2, 3, 4 1

h = a[x] 2

h = 1/y 3

h = 1/a[x] 4

x = y 5

h = 1/y 6

{0 ≤ x,
x < 5}

{y 6= 0}

{a[x] 6= 0,
0 ≤ x,
x < 5}

{y 6= 0}

{}

{0 ≤ x, x < 5}

{0 ≤ x, x < 5, y 6= 0}

{0 ≤ x, x < 5, y 6= 0, a[x] 6= 0}

{y 6= 0}

{}

{y 6= 0}

Figure 3.2: Application of the Forward
Data Flow Analysis to the Ex-
ample with Different Kinds of
Warnings

a[] = 0, 1, 2, 3, 4 1

h = a[x] 2

h = 1/y 3

h = 1/a[x] 4

x = y 5

h = 1/y 6

{0 ≤ x,
x < 5}

{y 6= 0}

{0 ≤ x,
x < 5}

{y 6= 0}

{a[x] 6= 0}

{}

{0 ≤ x, x < 5}

{0 ≤ x, x < 5, y 6= 0}

{0 ≤ x, x < 5, y 6= 0, a[x] 6= 0}

{y 6= 0}

{}

{y 6= 0}

Figure 3.3: Final Result of the Exam-
ple with Different Kinds of
Warnings

Figure 3.2 shows the flow data we gain by applying the analysis to the example. Let
us have a look at how these flow data are calculated:

• Initialisation: We start with the empty flow data.

• Block 1: We have no warnings corresponding to the first block. Therefore, we
cannot add any predicates to our flow data. We leave the block with the empty
flow data.

• Block 2: We have two warnings corresponding to this block. The two warnings
contain the predicates 0 ≤ x and x < 5, which we add to our flow data. Further,
we reassign h. h is not the subject of any predicates. Thus, we do not remove any
predicates from the flow data. Exiting the second block, we have the predicates
0 ≤ x and x < 5 in the flow data.

29

3 Data Flow Analyses for Bidirectional Predicate Propagation

• Block 3: We add the predicate y 6= 0 to our flow data. Since we reassign h we do
not remove any predicates from the flow data. Leaving the third block, our flow
data set is {0 ≤ x, x < 5, y 6= 0}.

• Block 4: In this block, we generate the predicates 0 ≤ x, x < 5, and a[x] 6= 0 and
kill nothing. Hence, we add the predicate a[x] 6= 0 to our flow data in this block.

• Block 5: Here, we remove all predicates that contain the variable x. The predicates
0 ≤ x, x < 5, and a[x] 6= 0 contain the variable x. After we remove these predicates
from the flow data, only the predicate y 6= 0 is left in it.

• Block 6: In the last block, we add the predicate y 6= 0 to the flow data and remove
nothing, which does not change the flow data.

After the application of the data flow analysis, we can check if we can remove any
warnings. Therefore, we go through the result of the application and check if the predi-
cates of the warnings are already in the incoming flow data.

• Block 1: The first block has no warnings that we could remove.

• Block 2: Even though we have two warnings for the second block, the incoming
flow data is empty. Thus, we cannot remove any warnings in this block either.

• Block 3: The incoming edge to the third block has two predicates in its flow data.
Now, we have to check if we have a warning with these predicates in the block.
Unfortunately, we do not have any warning with either 0 ≤ x or x < 5 as predicate.
So, we cannot remove any warnings in this block.

• Block 4: We have three warnings with the predicates a[x] 6= 0, 0 ≤ x, and x < 5 for
the fourth block. Two of these predicates are also in the incoming flow data, namely
0 ≤ x and x < 5. Therefore, we can remove the warnings with the predicates 0 ≤ x
and x < 5.

• Block 5: We have no warnings corresponding to this block that we could remove.

• Block 6: We have one warning corresponding to the last block. The predicate of
that warning is in the incoming flow data. Since our check holds, we can remove
the warning.

In this example, we could remove three out of seven warnings as depicted in Figure 3.3.
However, we still need to define the analysis formally. We do that in the next subsection.

3.1.2 Formal Definition

To formally define the forward analysis, we first need to have a look at how the lattice
for such an analysis could look like. In the second chapter, we went through the program
and looked for all the variables in it. From the variables, we took the power set and

30

3.1 Forward Data Flow Analysis to Track Predicates

constructed the lattice with the is-superset-of relation. If we do the same here, we would
have to generate all possible predicates for the variables. Therefore, we would have to
generate predicates like x > 0, x > 1, x > 2, x > 3, x > 4, and so on for all variables.
That would make the lattice infinite. Having a lattice of infinite height, it can be the
case that we have to apply our confluence operator infinite times before we reach a fixed
point.

However, we already know all possibles predicates that we can encounter before we
apply the analysis, as a Frama-C plug-in has to annotate the C code with the warnings.
Going through the code and collecting all predicates of theses warnings provides us with
all predicates that we can encounter. If we now take the power set of these predicates
with the is-superset-of relation, we get a finite lattice, which we can use. Knowing
exactly what predicates we can encounter beforehand has another advantage. We can
implement the analysis as a bit-vector analysis. The interesting part of a bit-vector
analysis is that the gen and kill set have to be constant for every block. In our analyses
the gen and kill set are independent from the in sets. Since we have all the predicates
we can encounter, we can use these by looking at the statements to define the gen and
kill sets before we actually start the analysis. Due to the fact that the gen and kill sets
are constant, the application of the transfer function is considered to be fast since it is
idempotent, which means that f(f(x)) v f(x) t x holds [14].

Inn =


∅ n is the entry block⋂
p∈predecessors(n)

Outp otherwise

Outn = (Inn ∪Genn) \Killn

Genn = {p | p is the predicate in a warning in n}

Killn =

{
killInfo(e) e is reassigned in block n

∅ no variable is reassigned in n

killInfo(e) = {p ∈ Predicates∗ | e is a variable in the predicate p}

Figure 3.4: Data Flow Equations of our Forward Analysis

In such a bit-vector analysis, we have a vector with all the predicates we can encounter
with a 1 for a predicate that is in the flow data and a 0 if it is not included. Having
a bit-vector analysis, we can also take the bitwise and as the confluence operator for
a must analysis. For a may analysis the confluence operator would be the bitwise or.
Further, every bit-vector analysis is an instance of a monotone framework. Therefore,

31

3 Data Flow Analyses for Bidirectional Predicate Propagation

we can use the worklist algorithm from Section 2.4 to calculate the result.
Figure 3.4 shows the data flow equations for the forward analysis. The first equation, in

which we define the information at the entry of a block, is the same as in Subsection 2.2.4.
The transfer function is the same. However, the definition for the gen and kill sets are
changed. The gen set has one small, but important change. In Subsection 2.2.4, we
took the variables that are the subjects of division-by-zero warnings for the given block.
Here, we take the predicates of all warnings corresponding to the given block.

In the equation for the kill set, we first check if we reassign any variable. If we do
not reassign any variable, we return the empty set. Otherwise, we pass the reassigned
variable on to the killInfo equation. In that equation, we check if that variable is
contained in any predicate from our analysis. The set Predicates∗ consists of all the
predicates that we can encounter for the given program. Therefore, our kill set contains
all the predicates that we can encounter which contain the reassigned variable. Having
the formal definition, we can apply it.

Application of the Data Flow Equations

Let us apply the data flow equations to the CFG from Figure 3.1. The set Predicates∗
is {0 ≤ x, x < 5, y 6= 0, a[x] 6= 0}. Table 3.1 shows the result of the application of the
data flow equations.

Block 1 2 3 4 5 6

In ∅ ∅ {0 ≤ x,
x < 5}

{0 ≤ x, x < 5,
y 6= 0}

{0 ≤ x, x < 5,
y 6= 0, a[x] 6= 0}

{y 6= 0}

Warning ∅ {0 ≤ x, x < 5} {y 6= 0} {0 ≤ x, x < 5,
a[x] 6= 0}

∅ {y 6= 0}

Gen ∅ {0 ≤ x, x < 5} {y 6= 0} {0 ≤ x, x < 5,
a[x] 6= 0}

∅ {y 6= 0}

Kill {a[x] 6= 0} ∅ ∅ ∅ {0 ≤ x, x < 5,
a[x] 6= 0}

∅

Out ∅ {0 ≤ x, x < 5} {0 ≤ x,
x < 5,
y 6= 0}

{0 ≤ x, x < 5,
y 6= 0, a[x] 6= 0}

{y 6= 0} {y 6= 0}

Warnings to
be removed

∅ ∅ ∅ {0 6= x, x < 5} ∅ {y 6= 0}

Table 3.1: Result of Applying the Data Flow Equations to Different Kinds of Warnings
Example from Subsection 3.1.1

• Block 1: The equation for the in set defines that the set is empty. Further, the gen
set is empty. The kill set contains all the predicates from Predicates∗ containing
the variable a, which is a[x] 6= 0. Thus, the out set is empty.

• Block 2: The in set is defined by the out set from the first block. The gen set
contains 0 ≤ x and x < 5. The reassigned variable h is not contained in any of the
predicates of the Predicates∗ set. Therefore, our kill set is empty.

32

3.2 Warning Removal

• Block 3: All the remaining blocks have also only one predecessors, which out set
defines the current in set. Here, the gen set contains the predicate y 6= 0 and the
kill set is empty. Therefore, the out set is {0 ≤ x, x < 5, y 6= 0}.

• Block 4: Here, we generate the predicates 0 ≤ x, x < 5, and a[x] 6= 0, and kill
nothing.

• Block 5: In this block, we do not generate any predicates but remove all the
predicates that contain the variable x. Hence, our kill set is {0 ≤ x, x < 5, a[x] 6=
0}, which results in the out set containing only y 6= 0

• Block 6: Now, we generate y 6= 0 and kill nothing, which does not change the flow
data.

Having the formal definition for the forward analysis, we still need to define how we
can use the result of the application of the data flow analysis to remove warnings.

3.2 Warning Removal

Figure 3.5 shows the algorithm to select warnings that we can remove.

for all Blocks do
for all p : Predicates from the warnings of the current block do

if p is implied by the flow data from the in set of the current block then
Remove warning with predicate p in current block

end if
end for

end for

Figure 3.5: Algorithm to Select Warnings We can Remove

We go through all the blocks of the CFG. For each block, we go through all predicates
of the warnings in the current block. For each predicate, we check if it is implied by
some predicates from the in set of the current block. If it is implied, we remove the
warning that corresponds to the predicate. Otherwise, we do not do anything with that
predicate and go on with the remaining predicates of the current block. After we went
through all blocks and predicates, we know all the warnings we can remove.

From our bidirectional predicate propagation, we presented so far the forward analysis.
However, the analysis is bidirectional. Therefore, we present the backward analysis of
our bidirectional predicate propagation in the next section.

3.3 Backward Data Flow Analysis to Track Predicates

The goal of our bidirectional predicate propagation is to remove as many warnings as
possible. However, how can a backward analysis help us to remove even more warnings?

33

3 Data Flow Analyses for Bidirectional Predicate Propagation

To answer that question, let us first have a look at a little example. Listing 3.2 depicts
the C code of that example with all its warnings. The example basically just consists
of an if then else block. In both the then as well as the else block, we have a
division-by-zero warning. We can see the CFG of that example in Figure 3.6.

1 void main (int x , int y) {
2 int h ;
3 i f (x != 0)
4 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x
6= 0 ; ∗/

5 h = 1/x ;
6 else
7 /∗@ a s s e r t Value :

d i v i s i o n b y z e r o : x
6= 0 ; ∗/

8 h = 1/x ;
9 }
Listing 3.2: Backward Analysis Example

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

Figure 3.6: CFG of Backwards Analysis
Example

Figure 3.7 shows the result of the forward analysis applied to the CFG from Figure 3.6.
The blocks 2 and 3 have a corresponding warning, so we generate the predicate x 6= 0 in
these blocks. After these blocks, we combine the branches again. The predicate x 6= 0 is
in both branches. Therefore, the predicate is still in the flow data after the combination.
However, we do not have any warnings with the predicate x 6= 0 after the combination.
Thus, we cannot remove any warnings as depicted in Figure 3.8.

As mentioned before, a backward analysis can be used to propagate a predicate as far
as possible upwards in the CFG. That can help us here. We only assert that x 6= 0 has to
hold when we see the warning. However, x has to be not zero since the last reassignment.
Further, the last reassignment is before the if condition. Hence, we could propagate
the predicate and thereby the warning upwards in the CFG and place it before the if

condition. Doing so, we would be able to remove more warnings.

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{} {}

{x 6= 0} {x 6= 0}

{}

{x 6= 0}

Figure 3.7: CFG with Complete Flow Data

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{} {}

{x 6= 0} {x 6= 0}

{}

{x 6= 0}

Figure 3.8: CFG with Removed Warnings

34

3.3 Backward Data Flow Analysis to Track Predicates

3.3.1 Example

Now, we apply the backwards analysis of our bidirectional predicate propagation to the
CFG of Figure 3.6. Figure 3.9 shows the result of applying the backwards analysis to
the CFG.

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0} {x 6= 0}

{} {}

{x 6= 0}

{}

Figure 3.9: Backwards Analysis Applied to
CFG from Figure 3.6

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0}

{x 6= 0} {x 6= 0}

{} {}

{x 6= 0}

{}

Figure 3.10: CFG with Inserted Warnings

The CFG only has one exit block, the fourth block.

• Block 4: We assign our initial value, the empty set, to the exit of the fourth block.
In the fourth block, we do not have any corresponding warning nor do we reassign
any variables. So, we simply pass the information from the exit to the entry of the
fourth block.

• Block 3: In the third block, we generate the predicate x 6= 0. Further, we reassign h

but h is not in any of the predicate from our Predicates∗ set. Hence, we only add
the predicate x 6= 0 and do not remove anything resulting in the in set containing
only x 6= 0.

• Block 2: The second block is the very same as the third block. Therefore, the in
set is {x 6= 0}.

• Block 1: The out set is defined by the combination of the in sets from the second
and third block. Taking the intersection of {x 6= 0} and {x 6= 0} returns {x 6= 0}
for the out set. In the block itself, we do not reassign anything nor do we have a
corresponding warning, resulting in the in set being the out set.

Next, we can use the result of the backward analysis to insert a new warning. The result
of the analysis shows that the predicate x 6= 0 has to hold even before the if condition.
Therefore, we can insert a new warning before the if condition.

35

3 Data Flow Analyses for Bidirectional Predicate Propagation

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0} {x 6= 0}

{}

{x 6= 0}

Figure 3.11: Forwards Analysis Applied to
the Result of the Backwards
Analysis Applied to CFG from
Figure 3.6

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0} {x 6= 0}

{}

{x 6= 0}

Figure 3.12: CFG with Removed Warnings

After we inserted the warning we can apply our forward analysis to the CFG with
the inserted warning from Figure 3.10. The main difference compared to the earlier
application of the forward analysis is that we have a warning corresponding to the if

condition. This warning results in the difference that the incoming edge to the second
and third block has the predicate x 6= 0 attached to it. The rest stays the same.

Next, we can go on and try to remove warnings. With the additional warning inserted,
we are able to remove two warnings as depicted in Figure 3.12. Now, we have the
predicate x 6= 0 already in our flow data reaching the second and third block. Therefore,
we can remove the corresponding warning. By adding one warning, we are able to remove
two warnings.

The example shows how we can improve our result by applying the backwards analysis
first and then the forward analysis. Since we can improve our result by first applying
the backwards analysis, we apply a bidirectional predicate propagation. Unfortunately,
the backwards analysis has also some drawbacks, which we discuss later in this section.

3.3.2 Definition

Figure 3.13 shows the formal definition of the backward analysis from our bidirectional
predicate propagation. The equations are nearly the same as the ones from the forward
analysis in Figure 3.4. Basically, we simply exchange the in and out set and take the
successors instead of the predecessors. Further, we have possibly more than one exit
point to which we assign the initial value.

Let us now apply the data flow equations to the example from this section. Table 3.2
shows the result of the application.

• Block 4: We set the out set to the initial value, the empty set. Since the gen and
kill set are empty, we define the out set to be the in set.

36

3.3 Backward Data Flow Analysis to Track Predicates

Outn =


∅ n is a exit block⋂
p∈successors(n)

Inp otherwise

Inn = (Outn ∪Genn) \Killn

Genn = {p | p is the predicate in a warning in n}

Killn =

{
killInfo(e) e is reassigned in block n

∅ no variable is reassigned in n

killInfo(e) = {p ∈ Predicates∗ | e is a variable in the predicate p}

Figure 3.13: Data Flow Equations of our Backward Analysis

• Block 3: The out set is defined by the in set from the fourth block. The gen set
contains the predicate x 6= 0 and the kill set is empty. Therefore, we set the in set
to (∅ ∪ x 6= 0) \ ∅ = x 6= 0.

• Block 2: We do the very same calculations as we did in the third block. Therefore,
the same result as in the third block hold for the second block.

• Block 1: The out set is defined by the combination of the successors {x 6= 0}∩{x 6=
0}, which is x 6= 0. The gen and kill sets are empty, leaving us with the in set
being equal to the out set.

Block 4 3 2 1

Out ∅ ∅ ∅ x 6= 0
Warning ∅ x 6= 0 x 6= 0 ∅
Gen ∅ x 6= 0 x 6= 0 ∅
Kill ∅ ∅ ∅ ∅
In ∅ x 6= 0 x 6= 0 x 6= 0

Table 3.2: Result of Applying the Backward Data Flow Equations to the Example from
Section 3.3

Knowing how the backward analysis can help us, we still need to have a look at an
example where the backward analysis does not help us with our goal to reduce the overall
number of warnings.

37

3 Data Flow Analyses for Bidirectional Predicate Propagation

3.3.3 Drawbacks

Let us have a look at the if then else example from Subsection 2.2.1.

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x 6= 0}

{y 6= 0, x 6= 0} {x 6= 0}

{y 6= 0}

{}

{}

{x 6= 0}

{}

Figure 3.14: Backwards Analysis Applied
to the CFG of If Then

Else Example from Subsec-
tion 2.2.1

h = 1/x 1

x 6= 0 2

h = 1/x 3

h = 1/y 4

h = 1/x 5

6

{x 6= 0}
{y 6= 0}

{y 6= 0}

{x 6= 0}

{x 6= 0}

{x 6= 0}

{y 6= 0, x 6= 0} {x 6= 0}

{y 6= 0}

{}

{}

{x 6= 0}

{}

Figure 3.15: If Then Else Example from
Subsection 2.2.1 with Inserted
Warning

Figure 3.15 shows the result of the application of the backwards analysis to the ex-
ample. The interesting part is that we generate the predicate y 6= 0 in the fourth block.
In the second block, we combine the flow data from the third and fifth block. In the
combination, the predicate y 6= 0 gets removed. Hence, y 6= 0 still has to hold in the
third block but does not have to hold in the second block anymore. Further, in the third
block there is no corresponding warning with the predicate y 6= 0. Due to these facts,
we can insert a corresponding warning with the predicate y 6= 0 to the third block.

Inserting the warning, we unfortunately only propagated the warning one statement
upwards. Even though we could propagate it a bit upwards and thereby closer to the last
assignment of the variable, this propagation is not of big help. However, the propagation
also does not increase the overall number of warnings. Applying the forward analysis, we
would remove the warning corresponding to the fourth statement again, which otherwise
we could not. Thus, we inserted one warning to be able to remove a warning.

The if then else example shows that the backward analysis is not always helpful
but did not really have a drawback since it did not increase the number of warnings.
Figure 3.16 shows the application of the backwards analysis to an example with draw-
backs.

38

3.3 Backward Data Flow Analysis to Track Predicates

x 6= 0 1

x = 1 2 x = 1 4

h = 1 3 h = 1 5

6

h = a[x] 7 {0 ≤ x,
x < 5}

{}

{} {}

{0 ≤ x, x < 5} {0 ≤ x, x < 5}

{0 ≤ x, x < 5}{0 ≤ x, x < 5}

{0 ≤ x, x < 5}

{}

Figure 3.16: Example with a Drawback
when Applying the Backward
Analysis

x 6= 0 1

x = 1 2 x = 1 4

h = 1 3 h = 1 5

6

h = a[x] 7 {0 ≤ x,
x < 5}

{0 ≤ x,
x < 5}

{0 ≤ x,
x < 5}

{}

{} {}

{0 ≤ x, x < 5} {0 ≤ x, x < 5}

{0 ≤ x, x < 5}{0 ≤ x, x < 5}

{0 ≤ x, x < 5}

{}

Figure 3.17: Drawback Example with In-
serted Warning

In the seventh block, we have a corresponding warning with the predicates 0 ≤ x
and x < 5 that we add to our flow data. We propagate the flow data upwards in both
branches of the if then else construct. In each branch, we encounter a block where
we reassign x. By reassigning x, we remove the predicates from the flow data.

The result of the backward analysis states that the predicates 0 ≤ x and x < 5 still
hold at the third and fifth block. However, the predicates do not hold anymore at the
second and fourth block. Therefore, we add corresponding warnings with the predicates
to the third and fifth block as shown in Figure 3.17. So, we pushed the warning from
the seventh block to the reassignments in the second and fourth block.

Even though we achieved our goal to push the warning to the last assignment, we
pushed the warning into two branches. Hence, we had to add two warning based on
one original warning. Applying the forward analysis this time, we can only remove the
warning in the seventh block. Thus, by inserting two warnings, we are able to remove one
warning. However, our goal is to reduce the number of warnings with our bidirectional
predicate propagation. In this case, we increased the number of warnings by one.

To summarise, the backward analysis can be of great help to remove even more warn-
ings, since the warnings get pushed closer to the assignment. Having the variable closer
to the assignment might make it easier to determine if the predicate actually holds.
However, by pushing the warning into branches it can be the case that we end up with
more warnings than we originally started with.

39

3 Data Flow Analyses for Bidirectional Predicate Propagation

3.4 Warning Insertion

In this section, we present an algorithm to select when we insert a new warning after we
applied the backward analysis. In Figure 3.18, the algorithm for the warning selection
is depicted.

for all Blocks do
n := label of the current block
for all p : Predicate of the in set from block n do

if p is not an element of at least one in set from block n’s predecessors then
if p is not a warning in block n already then

Attach warning with predicate p to block n
end if

end if
end for

end for

Figure 3.18: Algorithm to Select Warnings We Insert

To select warnings to insert, we have to go through all the blocks from the CFG. We
start with the exit blocks from the CFG to insert warnings. However, it does not matter
with what block we start as long as we check all the blocks.

For the block we check, we take the in set from the result of the backward analysis.
Next, we go through all the predicates from the in set. Having the predicate in the in
set means that the predicate holds for this block. In case the predicate still holds in
the current block but not anymore in the predecessor statement, we pushed it as far
as possible upwards. Having it pushed as far as possible upwards, we attach a warning
with the predicate to the current block.

In other words, we take the in set of the current block l′ and compute the set difference
from the in set from block l′ with the in sets of block l′’s predecessors. Taking the set
difference is the same as going through all the predicates of the first set and checking
if they are not included in the second set. Further, in case block l′ has more than
one predecessor, we take the set difference to each of them individually. Having the
difference between the sets, we know what predicates still hold in the current block but
not anymore in a predecessor block.

Next, we check if we already have a warning with a predicate from the calculated
difference set. In case there is already a warning with that predicate, we do not have to
insert it. Otherwise, we insert a new warning with the predicate. We do that for every
predicate from each difference set. Applying this algorithm to every block once, we get
for every block the warnings that we can add since we cannot push the corresponding
predicate any further.

Having the equations for the bidirectional predicate propagation and algorithms to
use the information to remove as many warnings as possible, we still need to discuss the
correctness. In the next section, we argue that the analyses and the algorithms applied
afterwards produce a sound result, assuming that we were sound in the beginning.

40

3.5 Correctness

3.5 Correctness

In this section, we have a look at the correctness of our bidirectional predicate prop-
agation. Our propagation consists of two must analyses. To start, we have a look at
examples showing what it means for a predicate to be in the flow data having a must
analysis. Afterwards, we discuss for both the backward and the forward analysis under
which circumstances a predicate is allowed to be in the flow data. Lastly, we still have
to check that we use the result of the analyses correctly.

3.5.1 Must Analysis

Having a CFG without any branches, the result would be the same independent of having
a must or a may analysis. Therefore, we have a look at a few CFGs with branches in
the following to see why our analyses need to be must analyses.

h = 1/x 1

x 6= 0 2

h = 1 3 h = 1 4

5

{x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0}

{}

{x 6= 0}

Figure 3.19: Example of Must Analysis
without Reassignment

h = 1/x 1

x 6= 0 2

x = 1 3 h = 1 4

5

{x 6= 0}

{x 6= 0} {x 6= 0}

{} {x 6= 0}

{x 6= 0}

{}

{}

Figure 3.20: Example of Must Analysis
with Reassignment

Figure 3.19 has one warning before the branching in the CFG. In neither of the
branches, we reassign the variable of the warning. The predicate remains in both
branches until we reach the combination. For a must analysis, a property has to hold
on every path before the combination to still hold after the combination. Therefore, the
predicate x 6= 0 still is in the flow data after we combine the branches. That means
that we definitely had a warning that asserted x 6= 0 on every path reaching this point,
without x being reassigned in between. Thus, the predicate still has to hold.

Figure 3.20 shows a CFG very similar to the one in Figure 3.19. The only difference is
that we reassign x in one of the branches. Thereby, when we reach the point of combining
the branches again, the predicate x 6= 0 is not in the flow data of both branches anymore.
In one branch, we have empty flow data. In the other, we have the flow data with the
predicate x 6= 0 in it. Combining these flow data with a must analysis results in taking

41

3 Data Flow Analyses for Bidirectional Predicate Propagation

the set intersection of the two flow data. Taking the intersection, we end up with an
empty flow data after the combination. Hence, we did not encounter a warning asserting
x 6= 0 on every path without x being reassigned.

h = 1/x 1

x 6= 0 2

h = 1 3 h = 1 4

5

{x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0} {x 6= 0}

{x 6= 0}

{}

{x 6= 0}

Figure 3.21: Example of May Analysis
without Reassignment

h = 1/x 1

x 6= 0 2

x = 1 3 h = 1 4

5

{x 6= 0}

{x 6= 0} {x 6= 0}

{} {x 6= 0}

{x 6= 0}

{}

{x 6= 0}

Figure 3.22: Example of May Analysis
with Reassignment

Figure 3.21 shows the very same CFG with the very same flow data as Figure 3.19
does. However, in Figure 3.21 we applied our analysis as a may analysis. Taking the
union of the sets {x 6= 0} and {x 6= 0} returns {x 6= 0}, which we also got by taking
the intersection. Thus, for this example it does not make a difference whether we have
a may or must analysis.

Figure 3.22 shows the same CFG as Figure 3.20 does. The only difference is that we
apply a may analysis. Thereby, the predicate x 6= 0 is still in the flow data after the fifth
statement. Taking the union of ∅ and {x 6= 0} we get {x 6= 0} as the result. Thereby,
the predicate is in the flow data even though it did not hold on every path reaching
this point. Having a may analysis, we cannot be certain that a predicate has to hold
reaching this point no matter what path we take. The predicate only holds for certain
paths we take. For other paths it would be wrong to assume that the predicate holds.

Having a must analysis, we can be certain that if a predicate is in the flow data
that it has to hold. The predicate has to hold since we encountered a warning with
that predicate on every path reaching this point without reassigning any variable of the
predicate between this point and encountering the warnings. Having two must analyses
helps us to prove their correctness. However, we still have to have a look at both the
forward and backward analysis as well as what we do with the result of the analyses.

3.5.2 Correctness of the Backward Analysis

Our backward analysis is sound exactly when the following holds: If a predicate has
to be in the flow data, then the predicate has to hold already for a run-time error free

42

3.5 Correctness

execution. In the analysis, we only add a predicate to our flow data if we encounter a
corresponding warning. Further, if we reassign a variable, we remove all the predicates
that we can encounter in the program that contain the reassigned variable. Having a
must analysis, we can be certain that if a predicate is in the flow data it has to hold on
every path for the warning’s fault to not occur. Thus, the result of the analysis is sound
since predicates are only in the flow data if they certainly prevent an error to occur.

The goal of our backwards analysis is to get to know since when a predicate has to
hold. Even more, the result of the analysis tells us correctly what predicates have to
hold for every block. So every time we encounter a predicate in the flow data, we are
certain that the restriction already has to hold in this block.

Next, we have to use the result soundly. To use the result soundly means that we
are only allowed to add a warning when we are certain that the restriction holds for the
block. The easiest way to use the result in a sound way is to simply add a warning for
every predicate in the flow data for every block. However, that would not be precise
and not help reducing the number of warnings. Nonetheless, we could do it in such an
imprecise fashion since the forward analysis would remove nearly all of them again.

The algorithm from Figure 3.18 aims at only adding warnings that will not be removed
by the forward analysis again. In the algorithm, we only add a warning to a block if we
have a corresponding predicate in the flow data. Hence, the result after applying the
backward analysis and the insertion of the warnings is sound. Next, we have to check
that we only insert warnings that will not be removed by the forward analysis instantly
but insert a warning every time when we pushed the predicate as far as possible upwards.

In the algorithm, we take the set difference of the in set from the current block with
the in sets from its predecessors individually. Each difference shows us which predicates
still hold in the current block but not in the predecessor. Therefore, we pushed the
predicate the furthest and can insert it.

h = 1 2x = 1 1

3

{x 6= 0} {x 6= 0}

{} {x 6= 0}

{x 6= 0}

Figure 3.23: Example of Computing Differ-
ence Sets for all Predecessors
in Insertion Algorithm

h = 1 2x = 1 1

3

{x 6= 0}

{x 6= 0}

{x 6= 0} {x 6= 0}

{} {x 6= 0}

{x 6= 0}

Figure 3.24: Example from Figure 3.23
with Inserted Warnings

Figure 3.23 depicts a part of a CFG. We use the example to show why we take the
difference sets individually. In the example, we push the predicate x 6= 0 upwards.
Reaching two branches, we push the flow data into both branches. In one branch, we

43

3 Data Flow Analyses for Bidirectional Predicate Propagation

instantly reassign x. Therefore, the in sets of the predecessors of the third block contain
the empty set for the first block and {x 6= 0} for the second block.

Taking the difference individually, we get for the one difference that x 6= 0 is still true
in the third block but not anymore in the first. The other difference set is empty. Thus,
we attach a warning to the third block. In the other branch, we did not encounter an
assignment yet and push the predicate further upwards as can be seen in Figure 3.24.

In case we did not take them individually but take the union of the predecessor sets,
we would not attach a warning to the third block. However, we also cannot push it any
further along the branch with the first block. Without the warning corresponding to the
third block, we would not know that in the forward analysis, the predicate x 6= 0 holds
after the combination in the third block. Further, we could not remove the warning
whose predicate we inserted into the flow data and propagated upwards, even though we
apply the backwards analysis before the forward analysis. To not lose any information
that we calculated, we take the set difference individually. Therefore, applying our
algorithm to insert warnings is sound since we only add warnings when we are certain
the restriction has to hold. Further, we are more precise than just adding warnings
everywhere our flow data allows it.

3.5.3 Correctness of the Forward Analysis

Our forward analysis is sound exactly when the following holds: If a predicate has to
be in the flow data, then the predicate has to hold for a run-time error free execution.
As for the backward analysis, we have a must analysis and we only insert a predicate
when we have a corresponding warning. Further, if we reassign any variable, we remove
all the predicates containing the variable that can be encountered in the program. Since
the result of our forward analysis only contains predicates in the flow data that certainly
prevent a run-time error to occur, the result of the analysis is sound.

The result of the forward analysis tells us in which blocks a predicate has to hold. In
case a predicate is in the in set of a block, then the restriction has to hold in the block.
Figure 3.5 shows the algorithm we apply to use the result of the forward analysis. The
algorithm states that we remove a warning of a block iff the predicate of the warning
is in the in set for that block. We can remove the warning since the restriction of the
predicate has to hold for a run-time error free execution. By applying the algorithm,
we only remove warnings that are covered by others. A warning is covered by another,
in case the restriction of the warning was already inserted in the flow data by another
warning and still holds. In case a predicate is in the flow data, we know that the
restriction has to hold for a run-time error free execution. Therefore, we only remove
warning which are safely removable.

The result of the forward analysis actually shows how the valuations of variables are
restricted for each block for an error free execution. Thus, we cannot only use it to
remove warnings but also to get a better knowledge about the possible valuations of
variables. Knowing the theory behind the bidirectional predicate propagation and that
its application is correct, we still have to have a look at the implementation. In the next
chapter, we take a look at Frama-C and the plug-in developed for it.

44

4 Plug-In to Remove Redundant Warnings

We start by having a look at the Frama-C framework and the benefits it provides to
us implementing our bidirectional predicate propagation. Afterwards, we present the
plug-in and all the implemented features.

4.1 Frama-C

Frama-C is an open-source, platform-independent framework to statically analyse C
code. The whole framework is written in OCaml. OCaml is a functional programming
language. It has influenced languages such as F# and Scala.

The framework consists of different plug-ins. Each plug-in has a different goal when
analysing the C code. The analyses are performed statically. An analysis is performed
statically by going through the code without actually executing the corresponding pro-
gram. The plug-ins can be used in combination to analyse C code [10]. To combine
different plug-ins, and thereby, analyses, we need a way for them to communicate. For
that, we need the representation the plug-ins actually work with. Frama-C works not
directly on the C code but transforms it into an internal representation (IR), namely
the C intermediate language (CIL) [21].

During the execution of the analysis, the plug-in annotates the IR with what it con-
cludes analysing the code. In our examples so far, that corresponds to the annotated
warnings. Each of these annotations have a unique id to distinguish them. The plug-
ins can see in the IR what other plug-ins annotated and work with that information.
Thereby, one can call different plug-ins in combination. Further, Frama-C provides the
means to register new plug-ins. A newly written plug-in can then be combined with
already existing plug-ins.

In the listings so far, we saw two different plug-ins that annotated the code. The
code in Listing 3.1 is annotated by the rte [16] plug-in. The rte plug-in is a plug-
in to go through the code and annotate all possible run-time-errors. Listing 2.1 was
annotated by Frama-C’s value analysis, which is probably one of the most widely used
plug-ins. The value analysis plug-in is a correct static analyser [7]. Correct means that
if anytime during run time a fault can occur, it warns about it. The value analysis can
be used to verify C code against provided specifications. In case one does not provide
any specifications, the value analysis only annotates run-time errors. Unlike the rte

plug-in, the value analysis does not only annotate run-time errors but also tries to prove
if the assertion of the run-time error holds. In case it comes to the conclusion that a
certain run-time error cannot occur, it also does not warn about it and thereby, does
not annotate the code.

We use the annotations about run-time errors for our bidirectional predicate propaga-
tion. Having these annotations is only one reason why we picked Frama-C to implement
our analysis in. The framework also facilitates implementing a data flow analysis. To
that end, the framework provides a data flow analysis module [17]. The module includes

45

4 Plug-In to Remove Redundant Warnings

a submodule for a forward analysis and another one for a backward analysis. Using
that module is of great help implementing data flow analyses. The module includes a
worklist algorithm to compute the result of the analysis. Therefore, we only need to
provide the definitions for the transfer function and confluence operator. We use the
Frama-C version Fluorine-20130601 on both Linux and Mac.

In the next section, we have a look at how we can use the provided module to imple-
ment our bidirectional predicate propagation.

4.2 Plug-In

The plug-in that implements our bidirectional predicate propagation is split up into five
modules. For every task in our analysis, we have one module. The first module provides
the means to go through the CIL and collect all the annotations containing a warning
with an assertion. The other four modules deal with the forward and backward analysis
as well as the warning removal and insertion.

4.2.1 Warning Collection Module

Frama-C provides different means to collect annotations from the IR CIL. To that end,
we use the in-place visitor module. With the in-place visitor, we can go through
the complete CIL code of the program at hand. Going through the CIL code, we have
a look at all the annotations. In case an annotation is a warning with an asserted
predicate, we collect that warning. Thereby, we collect all the annotations that are of
interest for our analysis. While we collect the annotations, we also save the predicate
of the annotation and the statement that the annotation corresponds to. Having all the
warnings collected, we can start the forward analysis by passing these warnings to it.

4.2.2 Forward Analysis Module

In the module for our forward analysis, we implement the data flow equations from
Figure 3.4. To that end, we use the Forwards Dataflow Analysis module from the
Dataflow module of Frama-C. Using the module has one big advantage, we only have to
define a few functions, which correspond to the data flow equations. After we implement
these functions, Frama-C does the rest for us and computes the result of applying the
equations until a fixed point is reached.

In the Forwards Dataflow Analysis module, there are three functions of particular
interest since in these three functions, most of the work is done. The first function is
called combinePredecessors. As the function’s name already suggests, in here we define
how we combine predecessors. We use our confluence operator, namely the intersection,
to combine predecessors. Besides the confluence operator, we also define if we calculated
new information. In case the intersection returns the same result as in the iteration
before, we state that we gained no new knowledge. Otherwise, we return the result set
of the intersection. No new knowledge means the edges to the successors are not added

46

4.2 Plug-In

to the work list. In case we gained new knowledge, the edges to the successors are added
to the work list. This function is crucial for the analysis to reach a fixed point.

The second important function is called doInstr. In a statement, an instruction as-
signs a variable with an expression like x + y. The expression could also be a function
call. For each instruction, we check if the enclosing statement has corresponding annota-
tions. We go through the warnings we retrieved before the forward analysis and collect
all the warnings that correspond to the current statement. For these warnings, we add
the predicates to the flow data. Further, we have a look at the variable on the left-hand
side of the assignment. Since that variable is reassigned, we remove all predicates that
contain the variable from the flow data as defined in the data flow equation. In case the
instruction is a function call, we call the forward analysis on that function.

The last function we have a look at is called doStmt. In Frama-C, we can have
annotations attached to every statement and not only to assignments. Therefore, we
have a look at all the statements that are not instructions and add to the flow data the
predicates, which correspond to warnings of these statements. The doInstr and doStmt

functions combined make up our transfer function.

Having implemented all the needed functions, we can start the analysis. The result of
the application of the analysis returns a mapping from statements to flow data. In the
flow data, we have all the predicates that have to hold. Thus, by applying the forward
analysis, we know for every statement what restrictions for which variables have to hold
to be certain that the execution is error-free. The next module, which removes warnings,
makes use of these restrictions.

4.2.3 Warning Removal Module

For the module to remove warnings, we need to implement the algorithm from Figure 3.5.
From the warning collection module, we get a list with all the warnings, its predicates,
and the statement that they correspond to. From the forward analysis, we get a mapping
stating what predicates have to hold in what statements. Therefore, we have all the
information we need to apply the algorithm.

In the module, we go through the result of the forward analysis, which includes every
statement of the function. For every statement, we retrieve the warnings that correspond
to the statement from the list containing all warnings. In case the predicate from the
warning is in the flow data of that statement, we remove the warning with that predicate.
By applying the module, we remove all the warnings that are covered by others and,
therefore, not needed anymore.

Having the modules to retrieve warnings from the IR, to apply the forward analysis,
and to remove warnings, we still need to have a look at the backward analysis and the
warning insertion.

4.2.4 Backward Analysis Module

In the module for our backward analysis, we implement the data flow equations from
Figure 2.25. The backward analysis uses, as the forward analysis does, the retrieved

47

4 Plug-In to Remove Redundant Warnings

warnings from the warning collection module. As for the forward analysis, Frama-C also
offers a module for backward analyses. To use that module, we again have to implement
a few functions.

For the backward analysis, we have four functions of interest. The difference to the
forward analysis is that the functionality of the combinePredecessors function is split
up into two functions, combineStmtStartData and combineSuccessors. The functions
doInstr and doStmt still make up the transfer function and the implementation is the
same as described for the forward analysis.

The function we take a closer look at first is combineStmtStartData. The function
determines if we reached a fixed point and also applies the confluence operator. The
function combines the flow data calculated for the statement in the last iteration with
the newly generated flow data using the confluence operator. In case the intersection
of the old flow data with the new returns the old flow data, we reached a fixed point.
Otherwise, we return the intersection, which means that we have not yet reached a fixed
point. For the function to work, we have to go through all the statements and assign
it with the bottom element from our lattice before we start the analysis. When we
calculate flow data for the first time for a statement, we assign it to the statement using
the intersection. Taking the intersection of the bottom element with x returns x.

The second function, combineSuccessors, only applies the confluence operator. In
case a block has two successors it takes the intersection of the flow data of these succes-
sors.

After we specified all the functions needed for the backwards analysis, we can tun
the analysis. The output is again a list containing mappings from statements to flow
data that have to hold as the result. Our application of that result is the insertion of
warnings.

4.2.5 Warning Insertion Module

For the module to insert warnings, we implement the algorithm from Figure 3.18. We
need the result of the backward analysis as well as the retrieved warnings as inputs. Go-
ing through the result of the backward analysis, we take the flow data of each statement
and compare it with the flow data of each predecessor individually. We compare the flow
data by taking the set difference. The result of the set difference tells us which warnings
we have to add in this statement.

Next, we check if we already have a warning in that statement with the predicate we
want to add. To check if we already have a warning, we use the warnings we retrieved.
In case there already is a warning with that predicate, we do not add it another time.
Otherwise, we add a warning with the predicate. Going through every statement, we
add all warnings needed to annotate the information we gained when we applied the
backward analysis by inserting a new annotation in the IR.

Having all the modules of which our plug-in consists, we still need to define the order
in which they are called.

48

4.3 Problem with C Pointers

4.2.6 Combination of the Modules

To apply our bidirectional predicate propagation, using the -remove-annots argument
to Frama-C, we first retrieve all the warnings of the IR using the warning collection
module. Having all the warnings from the IR, we start the backward analysis. In case
the backward analysis reached a fixed point for a function, the warning insertion module
is called. For the forward analysis, we cannot simply use the warnings we retrieved
earlier. The warning insertion module possibly inserted new warnings. Therefore, we
again retrieve all the warnings from the IR. We pass these warnings to the forward
analysis. The forward analysis in turn calls the warning removal module every time
it reaches a fixed point for a function. Thereby, we get our bidirectional predicate
propagation.

We showed earlier that by applying the backward analysis, we sometimes end up
with overall more warnings than we started with. Thus, it might be the case that one
does not want to perform the backward analysis. To give the user the choice between
the bidirectional predicate propagation and the forward analysis, the user can call our
plug-in with the option -backwards to include the backward analysis and the warning
insertion. Without this option, using the -remove-annots argument to Frama-C, only
the forward analysis and the warning removal are applied.

The goal of our bidirectional predicate propagation is to reduce the review time by
lowering the number of overall warnings. To this end, the forward analysis calls the
warning removal module when it reached a fixed point and the backward analysis calls the
warning insertion module. However, the result of the forward and backward analysis can
be used for more than reducing the number of warnings. The results provide restrictions
of variables for statements. Hence, one could use the results in other analyses of Frama-C
to improve the concretisation, as the valuations of variables are further restricted.

While implementing the plug-in, we encountered a few issues. Among them, pointers
turn out to be particularly troublesome. In the next section, we have a look at what
problems pointers can cause.

4.3 Problem with C Pointers

The flow data equations from Figure 3.4 and Figure 2.25 both state that we have to
remove all predicates that contain a reassigned variable. Having an instruction like h =

1;, we know easily what variable is reassigned, namely the variable h. Hence, we have
to remove all predicates that contain the variable h. However, we could also have an
instruction like *h = 1;. A pointer reassignment makes it harder to determine what
variables are reassigned. The pointer could actually point to every other variable in the
program. Therefore, every time we reassign a pointer we empty the flow data completely
since we cannot be certain which variables actually get reassigned.

The other option to handling pointers would be to determine to which variables a
pointer may point. To gain this information, we would have to implement and run a
points-to-analysis or depend on the value analysis. In case we had the result of a points-
to-analysis, we would only have to remove all the predicates that contain any of the

49

4 Plug-In to Remove Redundant Warnings

variables the pointer points to.

Another pointer-related problem are function calls. In a function call, one can pass
a pointer as an argument. Further, C has global variables and pointers. Therefore, one
can actually change the valuation of a variable during a called function. Having the
possibility that basically any variable got reassigned in a function, we also remove all
flow data after a function call. Handling pointers in such a fashion results in the fact
that our implementation stays sound. However, it also unfortunately makes it slightly
more imprecise.

With the pointer problem in mind, let us have a look at what we handle in the
implemented plug-in.

4.4 Restrictions in the Plug-In

In Table 1, we can see all the types a predicate can have in Frama-C. Some of them are
pointer-related like Pfreeable, Pinitialized, and Pallocable. However, we do not
handle pointers properly in our analysis. Therefore, we restrict the predicates we add
to our flow data to not be pointer related. Further, many of these predicates are not
useful for us. Hence, we restrict ourself to predicates of either type Prel or Pand. A
predicate of type Pand, which is a conjunction of two predicates, is recursively split it
up and examined again for predicates of type Prel or Pand until we end up only with
predicates of type Prel.

Relational predicates, Prel, are predicates with two terms and a relation operator.
A relational operator is one of the operators ≤, <,≥, >,=, 6=. Restricting ourselves
to these predicates, we are able to handle division-by-zero, array-index-out-of-bound,
singed-overflow, and unsigned-overflow run-time warnings. Therefore, we are able to
handle all run-time warnings but the memory/pointer-related warnings. There is another
restriction we made in the plug-in. A programmer is allowed to write assembly code in a
C program. However, we do not include assembly written in a C program in our analysis.

We did not only make restrictions in the plug-in to implement the data flow equations
for the C programming language but we also included a few refinements.

4.5 Improvements to the Plug-In

Using predicates to track warnings plus the Dataflow module of Frama-C provides
us with opportunities to remove even more warnings. Overall, we implemented four
enhancements to the plug-in that all use the fact that we are tracking predicates. The
first is to make the forward data flow analysis path-sensitive. For path sensitivity, we
additionally consider the guarding conditions.

4.5.1 Path Sensitivity

The first refinement we present is to make the forward analysis path-sensitive. In C,
some constructs, like an if then else block, have a guard. Based on the evaluation of

50

4.5 Improvements to the Plug-In

the guard, we either take the then branch or the else branch. Further, we actually can
insert the predicate that has to hold to take a certain branch into the flow data for that
branch.

To depict how path sensitivity helps, let us have a look at the example from Figure 3.6.
We used that example to show how the backward analysis can help us in our bidirectional
predicate propagation to remove even more warnings.

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0} {x = 0}

{x 6= 0} {x = 0, x 6= 0}

{}

{x 6= 0}

Figure 4.1: CFG with Predicates from
Path Sensitivity Included in
Flow Data

x 6= 0 1

h = 1/x 2 h = 1/x 3

4

{x 6= 0} {x 6= 0}

{x 6= 0} {x = 0}

{x 6= 0} {x = 0, x 6= 0}

{}

{x 6= 0}

Figure 4.2: CFG with Removed Warnings

Figure 4.1 shows the flow data of applying the forward analysis with the path sensi-
tivity. The interesting part is the first block. In the first block, we have a guard, namely
x 6= 0. The guard does not throw a warning. However, we can use the guard in our flow
data. In case the guard holds the program will take the then branch. Otherwise, the
program will take the else branch. Therefore, we can add the guard to the flow data
of the outgoing edge of the then branch. Further, we can negate the guard and add it
to the flow data of the else branch. Adding these predicates, we now have predicates
in the flow data for the outgoing edges from the first to the second and third block.

The predicate x 6= 0 is in the in set of the second block. The second block also has a
warning containing that predicate. Thus, we can remove the warning. Figure 4.2 depicts
the result with the removed warning.

Another interesting part is that the outgoing flow data of the third block contains
x = 0 and x 6= 0. Having such mutually exclusive predicates, we know that this path is
not feasible in an execution without run-time errors. For such a path, the user has to
ensure that the run-time error actually cannot occur.

In our plug-in, the path sensitivity for the forward analysis is called by the option
-path. In Frama-C, the function doGuard of the Forwards Dataflow Analysis module
from the Dataflow module facilitates the implementation the path sensitivity. The
function allows us to easily change the flow data of each branch individually when we
reach a guard. Therefore, we add the guard to the then branch and add the negated
guard to the else branch. However, we cannot exploit every guard. The predicates in

51

4 Plug-In to Remove Redundant Warnings

our flow data are all relational predicates. Hence, we only include a guard into the flow
data in case it is a relational guard, like x 6= 0 or x < 10.

Tracking predicates to remove warnings has another advantage. Some predicates imply
others. Thus, we take a closer look at how we can make use of the implications to further
reduce the overall number of warnings in the next subsection.

4.5.2 Predicate Implication

In this subsection, we present another way to make use of the relational predicates. To
demonstrate how relational predicates can imply each other, we have a look at three
examples.

Listing 4.1 shows a function written in C annotated by Frama-C’s rte plug-in. In
the function, we define two arrays. One array has five elements while the other has six
elements. Further, we access both arrays with the variable x as index.

1 void main (int x) {
2 const int a [] = {0 , 1 , 2 , 3 , 4} ;
3 const int b [] = {0 , 1 , 2 , 3 , 4 , 5} ;
4 int h ;
5 /∗@ a s s e r t r t e : index bound : 0 ≤ x ; ∗/
6 /∗@ a s s e r t r t e : index bound : x < 5 ; ∗/
7 h = a [x] ;
8 /∗@ a s s e r t r t e : index bound : 0 ≤ x ; ∗/
9 /∗@ a s s e r t r t e : index bound : x < 6 ; ∗/

10 h = b [x] ;
11 }

Listing 4.1: Annotated C Code with Different Restrictions

Accessing the first array with x as index, Frama-C annotates the statement with the
assertions 0 ≤ x and x < 5. An array with five elements only permits the indexes from
0 to 4. Therefore, these restrictions are asserted. The second array, b, has six elements.
Frama-C asserts that 0 ≤ x and x < 6 have to hold for a run-time error free execution.

Applying the forward analysis, the predicates 0 ≤ x and x < 5 are in the incoming flow
data of the statement where we access the array b. A predicate in the flow data means
that the restriction of the predicate have to hold at the current point in the program to
guarantee a run-time error free execution. The statement from line 10 has two warnings
attached to it. One warning has the predicate 0 ≤ x. We also have that predicate in the
incoming flow data. Therefore, we can remove it. The other warning has the predicate
x < 6. We do not have exactly that predicate in the incoming flow data. However, from
the predicates of the incoming flow data we know that x < 5 has to hold. Since x has
to be smaller than 5 for an error free execution, it will also be smaller than 6. Thus,
we can remove the warning with the predicate x < 6 due to the predicate x < 5 in our
incoming flow data.

1 void main (int x) {

52

4.5 Improvements to the Plug-In

2 const int a [] = {0 , 1 , 2 , 3 , 4} ;
3 const int b [] = {0 , 1 , 2 , 3 , 4 , 5} ;
4 int h ;
5 /∗@ a s s e r t r t e : index bound : 0 ≤ x ; ∗/
6 /∗@ a s s e r t r t e : index bound : x < 5 ; ∗/
7 h = a [x] ;
8 /∗@ a s s e r t r t e : s i g n e d o v e r f l o w : x+1 ≤ 2147483647; ∗/
9 /∗@ a s s e r t r t e : index bound : 0 ≤ (i n t) (x+1) ; ∗/

10 /∗@ a s s e r t r t e : index bound : (i n t) (x+1) < 6 ; ∗/
11 h = b [x +1] ;
12 }

Listing 4.2: Annotated C Code with Different Restrictions

Listing 4.2 depicts a C function similar to the one in Listing 4.1. The only difference
is that we access the array b with the index x+1. We can rewrite the predicates of the
warnings that are attached to the statement of line 11. The predicate x+1 ≤ 2147483647
can be rewritten as x ≤ 2147483647 − 1 = 2147483646. Further, we can rewrite 0 ≤
(int)(x+ 1) to −1 ≤ x and (int)(x+ 1) < 6 to x < 5. We rewrite these predicates with
the assumption that no overflow will occur.

Applying the forward analysis to this annotated piece of code, we again have the
predicates 0 ≤ x and x < 5 in the incoming flow data of the statement where we access
the array b. For this statement, we have a warning with the rewritten predicate x < 5.
Thus, we can remove the warning. The predicate 0 ≤ x from the incoming flow data
also implies that −1 ≤ x has to hold in an error free execution. Lastly, we still have
a warning with the predicate x ≤ 2147483646. From the incoming flow data, we know
that x has to be smaller than five. Therefore, x ≤ 2147483646 will also hold and we can
remove the warning with that predicate.

1 void main (int x) {
2 const int a [] = {0 , 1 , 2 , 3 , 4} ;
3 const int b [] = {0 , 1 , 2 , 3 , 4 , 5} ;
4 int h ;
5 /∗@ a s s e r t r t e : index bound : 0 ≤ x ; ∗/
6 /∗@ a s s e r t r t e : index bound : x < 6 ; ∗/
7 h = b [x] ;
8 /∗@ a s s e r t r t e : index bound : 0 ≤ x ; ∗/
9 /∗@ a s s e r t r t e : index bound : x < 5 ; ∗/

10 h = a [x] ;
11 }

Listing 4.3: Annotated C Code with Different Restrictions

In Listing 4.3, we exchanged the access of the arrays compared to Listing 4.1. Applying
the forward analysis to this function, we have the predicates 0 ≤ x and x < 6 in the flow
data reaching the statement accessing the array a. In that statement, we have warnings
with the predicates 0 ≤ x and x < 5. The predicate 0 ≤ x is already in the incoming

53

4 Plug-In to Remove Redundant Warnings

flow data. Hence, we remove the corresponding warning. For the predicate x < 5, we
have no predicate in the incoming flow data that implies the predicate. In the incoming
flow data, we assert x < 6. Thus, x could be 5. However, that would not be allowed for
the predicate x < 5. Therefore, we cannot remove the warning with the predicate x < 5
since no predicate in our flow data implies that the assertion holds.

To enable this feature in our plug-in, one needs to supply the -sat option. In the
plug-in, we implemented a linear constraint solver. The solver can handle all of the
examples we presented here and many more. The predicates have to be of the form
var relOp const or var(+|−)const relOp const. Since from our experience the variables
are restricted in most cases by integers, the constants are restricted to integers. We also
normalise the predicates so that it does not matter whether the variable is on the left-
or right-hand side of the relational operator. The solver is sound because it only states
that we can remove a warning in case at least one predicate from the incoming flow
data implies the predicate we currently investigate. However, it can be the case that our
solver falsely rejects a correct implication.

4.5.3 Splitting up Predicates

We also take advantage of predicate implications during the warning retrieval for the
forward analysis. The predicate x∗y 6= 0 implies that not only x∗y 6= 0 has to hold from
this point in the program onwards but also the predicates x 6= 0 and y 6= 0. These two
additional predicates have to hold since otherwise x ∗ y 6= 0 could not hold. Every time
we encounter a predicate of the form variable1 ∗ variable2 6= 0, we want to ensure that
we also generate the predicates variable1 6= 0 and variable2 6= 0 for that statement.
Therefore, we add for each new predicate an item to our warning list containing the
predicate and statement. Thereby, we also insert the newly generated predicates into
our flow data during our forward analysis. Inserting these statement into the warning
list during retrieval has the advantage that we still know all the predicates that can be in
our flow data before we start the analysis. Having all the predicates beforehand, we can
still implement our analysis as a bit-vector analysis. This refinement is always applied
in our forward analysis.

The last refinement for our plug-in makes use of the fact that predicates restrict the
valuation of the variables.

4.5.4 Transfer of Warnings

A predicate is always a restriction of the possible valuations of a variable. Assigning a
variable that is restricted by a predicate to another variable, the restriction also holds
for the newly assigned variable in a run-time error free execution.

1 void main (int x , int y) {
2 int h ;
3 /∗@ a s s e r t r t e : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
4 h = 1/x ;
5 y = x ;

54

4.5 Improvements to the Plug-In

6 x=1;
7 /∗@ a s s e r t r t e : d i v i s i o n b y z e r o : y 6= 0 ; ∗/
8 h = 1/y ;
9 /∗@ a s s e r t r t e : d i v i s i o n b y z e r o : x 6= 0 ; ∗/

10 h = 1/x ;
11 }

Listing 4.4: Annotated C Code with Restriction Transfer

Listing 4.4 contains annotated C code with three warnings. The first statement has
an attached warning, asserting x 6= 0. In the next statement, we assign the valuation of
x to y. The predicate x 6= 0 restricts the valuation of x. Therefore, after we assign the
valuation of x to y, y should also not be allowed to be zero. To state that y 6= 0 has
to hold after the assignment, we add the predicate to our flow data. In the following,
we reassign x, which does not change that y 6= 0 has to hold, and we have two more
division-by-zero warnings.

Let us have a look at the result of the forward analysis if we include the transfer of
warnings when we assign a variable to another variable.

h = 1/x 1

y = x 2

x = 1 3

h = 1/y 4

h = 1/x 5

{x 6= 0}

{x 6= 0}

{y 6= 0}

{}

{x 6= 0}

{x 6= 0, y 6= 0}

{y 6= 0}

{y 6= 0}

{x 6= 0, y 6= 0}

Figure 4.3: CFG of the Code from List-
ing 4.4

h = 1/x 1

y = x 2

x = 1 3

h = 1/y 4

h = 1/x 5

{x 6= 0}

{x 6= 0}

{y 6= 0}

{}

{x 6= 0}

{x 6= 0, y 6= 0}

{y 6= 0}

{y 6= 0}

{x 6= 0, y 6= 0}

Figure 4.4: CFG of the Code from List-
ing 4.4

Figure 4.3 shows the result of the forward analysis with the transfer of the restriction
for the code from Listing 4.4. The most interesting statement in this example is the

55

4 Plug-In to Remove Redundant Warnings

second statement. In that statement, we take all predicates from our flow data that
contain x and replace the x with y and insert the newly generated predicates into the
flow data.

In the third statement, we reassign x. Thereby, we have to remove all the predicates
containing x. However, even though the predicate y 6= 0 was generated based on a
warning with x as subject, we do not remove that predicate. We do not remove the
predicate since the reassignment from the third statement does not change the possible
valuations from x in the second statement and y is bounded to the possible valuations
from x in the second statement. In the following, we are now able to remove the division-
by-zero warning from the fourth statement but not from the fifth statement as depicted
in Figure 4.4.

This refinement unfortunately has a drawback. In our bidirectional predicate propaga-
tion, we know all the predicates that we can encounter before we start the analysis. We
know them since we could simply collect all the Frama-C asserted predicates of warnings
and build a lattice of the power set from these predicates. Knowing all the predicates in
before, gives us the advantage that we could define our analysis as a bit vector analysis.
The gen and kill sets are constant for every block and we could calculate them before
we started either of the analyses. Therefore, we could also provide the transfer function
for every block beforehand. These are requirements for a bit vector analysis.

By transferring restrictions, not all predicates we can encounter are necessarily anno-
tated by Frama-C. However, we only know all the predicates after we ran our analysis.
We generate a new predicate every time we encounter an assignment of a variable that is
contained in a predicate from the Frama-C annotations to another variable. The gen and
kill set cannot be completely provided before we start the analysis. Hence, we cannot
define it as a fast bit vector analysis anymore.

In our plug-in, the argument -sub enables the restriction transfer. We restrict the
substitution to exactly one variable, e.g., y = x but not h = y * x. Even if we have a
predicate containing y * x, we would not transfer the restriction since it is not a single
variable. Further, we only substitute the variable in predicates that contain only the
variable we want to substitute on one side of the relation. An example of that would be
that we have x 6= 0 in our flow data and assign y = x. Here would add the predicate
y 6= 0 to our flow data. Having x∗y 6= 0 in our flow data and assigning h = x, we would
not substitute a variable in a predicate since x is not the only variable on the left-hand
side of the relation. The restriction is made for reasons of simplicity only. Further, the
variable is also only allowed to appear one time. Otherwise, we would have to add many
predicates during some substitutions. The predicate x ∗ x ∗ x < 10 with the assignment
y = x would result in the addition of the predicates y ∗ x ∗ x < 10, y ∗ y ∗ x < 10,
y ∗ x ∗ y < 10, y ∗ y ∗ y < 10, x ∗ y ∗ x < 10, x ∗ y ∗ y < 10, and x ∗ x ∗ y < 10 to the flow
data. Thus, we would have to add for every n occurrences of a variable in a predicate
2n − 1 new predicates for n ≥ 2.

With the plug-in and all its established options, we still need to have a look at how it
performs with the different options. In the next chapter, we take a look at the correctness
of the implementation by testing it with small C programs. Further, we conduct a
benchmarking on how many warnings we can remove using the different options.

56

5 Evaluation

In this chapter, we have a look at the implemented plug-in. We begin with the cor-
rectness of the implementation. To check the correctness of the implementation, we ran
several tests on it. Afterwards, we take a look at the value analysis. The value analysis
has a feature to remove warnings. Therefore, we compare our plug-in with theirs. Fur-
ther, we discuss under which circumstances our tool can improve the result of the value
analysis. Lastly, we present how well our plug-in can perform. To that end, we conduct
a benchmarking. For that benchmark, we use over 300 C programs from the test suite
provided by the National Institute of Standards and Technology (NIST) [4, 5].

5.1 Testing of the Implementation

So far, we discussed how the bidirectional predicate propagation works. Further, that
applying our analysis only removes warnings that are covered by other warnings. What
remains to show is that the plug-in correctly implements our analysis. For this purpose,
we test that the plug-in returns the expected result. To test the plug-in, we checked
every module independently. For every module, we tested different combinations of if

then else blocks and while loops. For these combinations we used code where we
expected to remove certain warnings as well code where we expected certain warnings
to remain. All of these tests passed.

Figure 5.1: A Test Case for the Confluence Operator

Figure 5.1 shows the result of the application of the forward analysis to the example
from Subsection 2.2.1. We use the example to check that the confluence operator works

57

5 Evaluation

as expected in the forward analysis of our plug-in. The only difference to the example
from Subsection 2.2.1 is that we added an additional warning to show that the predicate
1/y is not in the flow data after the combination of the branches.

To the left of the code, we can see five bubbles. The blue bubbles that are not filled
mean that the status of the annotation is unknown. Therefore, we cannot assume with
certainty that the assertion has to hold. The green filled bubble assures that the assertion
holds. In case an assertion holds, we do not need to consider the corresponding warning
anymore. Thereby, the warning is removed. Another bubble that occurs frequently in
the GUI of Frama-C is orange filled. An orange filled bubble means that a verification
attempt to the assertion has been made. However, during that attempt it could not be
concluded with certainty that the assertion holds.

The rte plug-in annotates the code with the blue bubbles that are not filled. Our plug-
in only changes the colour of the bubbles in case we could conclude that the assertion
holds. The one assertion that has a green bubble is verified by our plug-in. We could
also change all the others to orange since we tried to verify them but could not. But
we only change the status of an annotation in case we could prove the assertion of the
annotation.

In the example, we have in each branch an assertion stating that x 6= 0 has to hold
for a run-time error free execution. Combining the two branches, the predicate is still
in the flow data. In one branch, we have the predicate y 6= 0. However, the predicate
is not in the other branch. Therefore, it does not survive the combination. Having only
the predicate x 6= 0 in the flow data after the combination, we can conclude that the
annotation with the predicate x 6= 0 has to hold. Further, since the predicate y 6= 0
was removed during the combination, we cannot conclude that the annotation with the
predicate y 6= 0 has to hold. Thereby, the plug-in returned the result we expected.

We also did similar tests for the forward analysis with a while loop and the com-
bination of both. Further, testing all modules like this, we fixed a few bugs. Besides
testing every module with small C examples, where it is easy to calculate the correct
result, we also checked the result of a few C programs from NIST which we also use for
the benchmark. In these bigger C programs, we concluded that all the warnings that
the plug-in removed are allowed to be removed. Having tested the program with small
examples and C programs from a test suite, we are confident that the plug-in implements
the data flow equations correctly.

To evaluate the plug-in further, we compare it to the value analysis and its warning
removal feature in the next section.

5.2 Evaluation with the Value Analysis

As we mentioned before, the value analysis does not only annotate the IR with possible
run-time errors but also tries to verify assertions that have to hold. To that end, the value
analysis performs a data flow analysis to gain knowledge about the possible valuations
of variables. To encode the possible valuations of variables they use different abstract
domains, namely a k-set, an interval, and a congruence domain. The information of

58

5.2 Evaluation with the Value Analysis

possible valuations can be encoded as an interval like [-10,10]. In the verifying process,
the value analysis annotates hardly any false positives in case the predicate is inside of
the interval of the variable. However, it could be better in case we want to exclude a
value like 0. Here the value analysis would need to track two intervals, e.g., the interval
[-10,0) and another interval (0,-10]. By simply calling the value analysis without any
additional options, it does not split up the intervals like this but keeps the entire interval
[-10,10]. In the following, we go through a few examples where our plug-in is of help and
improves the result even if we call their warning removal plug-in.

5.2.1 Warning Removal Feature of the Value Analysis

The value analysis has the little known option -remove-redundant-alarms. The option
tries to find redundant warnings and removes them from the CIL IR [9]. A warning is
redundant in case its alarm is syntactically identical to a prior alarm and the variable
of the warning is not reassigned between the alarms. The latter alarm is treated as
redundant and removed from the IR. Therefore, the idea of the analysis is similar to our
idea. However, the -remove-redundant-alarms option works only in combination with
the value analysis. Our plug-in works in combination with every plug-in from Frama-C
that annotates warnings.

Listing 5.1 shows the application of the value analysis with the option -remove-

redundant-alarms to the code of Listing 2.1.

1 void main (int x , int y) {
2 int h ;
3 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
4 h = 1 / x ;
5 i f (x != 0) {
6 h = 1 / x ;
7 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : y 6= 0 ; ∗/
8 h = 1 / y ;
9 }

10 else
11 /∗@ a s s e r t Value : s i g n e d o v e r f l o w : 1/x ≤ 2147483647; ∗/
12 /∗@ a s s e r t Value : s i g n e d o v e r f l o w : −2147483648 ≤ 1/ x ; ∗/
13 h = 1 / x ;
14 return ;
15 }

Listing 5.1: -remove-redundant-alarms Applied to If Then Else Example

In Listing 2.1, we omitted the signed-overflow warnings in the else branch. The value
analysis annotates them due to over-approximation errors. We omitted these warnings
earlier since they are only false positives. Dividing by zero will result in a division-
by-zero but not in a signed-over-flow run-time error. This imprecision emerged when
analysing the value analysis for this work and has been fixed in the current Frama-C
version.

59

5 Evaluation

The -remove-redundant-alarms option selects the very same warnings to be removed
as we do. However, it removes the annotations while we set the status of the annotation
to hold. In this example, both plug-ins come to the same conclusion. In the next
subsection, we further compare our plug-in to the value analysis and its warning removal
tool. In the process, we show different examples in which we can still remove warnings
after we applied the warning removal tool of the value analysis as well as an example
where the value analysis already concludes all the correct assertions but our backward
analysis can still improve the result.

5.2.2 Bidirectional Predicate Propagation in Combination with the Value
Analysis

Listing 5.2 shows a C function Pascal Cuoq, a developer of the value analysis plug-in, uses
in his blog post “Minimizing the Number of Alarms Emitted by the Value Analysis” [9]
as an example of a redundant warning that cannot easily be removed by only using the
value analysis. A warning is redundant to a previous warning in case it cannot happen
if a previous warning can be verified not to happen first.

1 int A;
2 int B;
3 void main (int x , int y)
4 {
5 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : (i n t) (x∗y) 6= 0 ; ∗/
6 A = 100 / (x ∗ y) ;
7 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
8 B = 333 % x ;
9 return ;

10 }
Listing 5.2: Example Containing Two Division-By-Zero Warnings

The value analysis annotates two division-by-zero warnings in the code of Listing 5.2.
The first annotation states that x∗y 6= 0 has to hold for a run-time error free execution.
For the predicate x ∗ y 6= 0 to hold, neither x nor y is allowed to be zero. Multiplying
anything by zero returns zero, therefore, neither of the variables is allowed to be zero.
Otherwise, the predicate x ∗ y 6= 0 could not hold.

The other division-by-zero annotation states that the predicate x 6= 0 has to hold.
In between the annotations, the variable x is not reassigned. Thus, we can conclude
that the second warning is redundant and we can safely remove it. As we mentioned
before, the value analysis, without additional options, tracks the possible valuations of
a variable in a single interval. A single interval does not allow excluding values from it.
Hence, the value analysis cannot conclude that the assertion of the second annotation
has to hold due to the assertion of the first annotation. Further, the second annotation
is not syntactically identical to the first annotation. The -remove-redundant-alarms

option can only remove syntactically identical alarms, which makes it impossible for it
to remove the second annotation.

60

5.2 Evaluation with the Value Analysis

During the forward analysis of our bidirectional predicate propagation plug-in, we also
insert the predicates var1 6= 0 and var2 6= 0 into our flow data when we encounter a
predicate var1∗var2 6= 0. Having these predicates in our flow data, we can calculate that
the warning corresponding to the second annotation can be removed safely. Therefore,
our plug-in is able to remove the redundant warning from the example by Pascal Cuoq.

The code from Listing 5.3 is similar to the code from Listing 2.1. We left out the
statement h = 1/x; before the if then else block and the statement h = 1/y; in the
then block. Further, we inserted a new statement, h = 1/x;, after the if then else

block.

1 void main (int x , int y)
2 {
3 int h ;
4 i f (y != 0)
5 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
6 h = 1 / x ;
7 else
8 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
9 h = 1 / x ;

10 /∗@ a s s e r t Value : d i v i s i o n b y z e r o : x 6= 0 ; ∗/
11 h = 1 / x ;
12 return ;
13 }

Listing 5.3: Example with one Redundant Warning

The Listing 5.3 shows the result of applying the value analysis with the -remove-

redundant-alarms option. The built-in plug-in could not conclude that the warning
after the if then else block is redundant to the warnings inside the if then else

block. Our bidirectional predicate propagation computes that the predicate x 6= 0 has
to hold after the if then else block. Thus, we can safely remove the warning after the
if then else block. In case the value analysis could exclude the 0 from the interval of
the possible valuations, it would actually not annotate the warning after the if then

else block.
Another example where we can remove more warnings is the code of Listing 4.4. The

problem is the same that the value analysis uses only one interval if one applies it without
additional options. In that example, we could remove a warning since we transferred the
predicates from one variable to another. The value analysis also transfers the possible
valuations from one variable to another, however, it cannot exclude the zero in this
example. In addition, applying the -remove-redundant-alarms option does not remove
any warnings in this example. Hence, using our analysis, we are able to improve the
concretisation of the value analysis, the possible valuation of variables.

Listing 5.4 shows C code with two array-index-out-of-bound warnings, one in each
branch. After the if then else block, the value analysis restricts x to the interval [0, 4].
Thus, the value analysis does not annotate the third access of the array with additional
warnings. The main difference is that now one interval is sufficient to represent the

61

5 Evaluation

implications of the warning. However, even in this example our bidirectional predicate
propagation can reduce the overall number of warnings.

1 void f 5 (int x , int y)
2 {
3 const int a [] = {0 , 1 , 2 , 3 , 4} ;
4 int h ;
5 i f (y != 0)
6 /∗@ a s s e r t Value : index bound : 0 ≤ x ; ∗/
7 /∗@ a s s e r t Value : index bound : x < 5 ; ∗/
8 h = a [x] ;
9 else

10 /∗@ a s s e r t Value : index bound : 0 ≤ x ; ∗/
11 /∗@ a s s e r t Value : index bound : x < 5 ; ∗/
12 h = a [x] ;
13 h = a [x] ;
14 return ;
15 }

Listing 5.4: Example with Array-Index-Out-Of-Bound Warning

Applying first our backward analysis and then forward analysis, we insert a new
warning before the if then else block and can remove the warning inside the block.
Here, we can still reduce the number of warnings from 2 to 1.

Comparing our bidirectional predicate propagation with the value analysis and its
built-in plug-in, we come to the conclusion that there are still warnings that we can
remove which the -remove-redundant-alarms option cannot remove. Further, our
analysis can help the value analysis to improve the possible valuations of variables. In
our analysis, we can have predicates that exclude certain values. The value analysis
cannot exclude values from the interval of variables by splitting it up. Warnings that
restrict the interval of a variable are handled well by the value analysis. Thereby, the
value analysis already proves most of the assertions to be correct, leaving hardly any
false positives. Yet, our backward analysis can reduce the overall number of warnings
since the value analysis only applies a forward analysis. Lastly, Pascal Cuoq describes
in his blog post [9] how the -slevel option of the value analysis can reduce the number
of warnings. However, the -slevel option increases the time consumption from seconds
to minutes. Our analysis, on the other hand, just takes a few seconds based on our
experience.

In the next section, we run a benchmark to show the potential of the plug-in.

5.3 Benchmark

To conduct the benchmarking, we use two test suites, namely the “IARPA STONE-
SOUP Phase 1 - Null Pointer Dereference for C Version 1.0” [2, 4] and “IARPA
STONESOUP Phase 1 - Memory Corruption for C Version 1.0” [1, 4] test suite from

62

5.3 Benchmark

the Software Assurance Metrics And Tool Evaluation (SAMATE) project of NIST. As
the names of the test suites suggest, they have a number of pointer operations in the
programs. Having many pointer operations is not ideal for our analysis since we remove
all our flow data in case a pointer is reassigned. However, it also shows how our anal-
ysis performs under far from ideal circumstances. Running the benchmark, we use the
rte plug-in to annotate the warnings. The bidirectional predicate propagation plug-in
has four options and we run the benchmark for all the combinations of these options.
Therefore, we end up with 16 results per test suite.

In the following, we present the results of the test suites individually. For each test
suite, we first discuss the results of our analysis using only the forward analysis and
afterwards the results of the backward analysis included. Lastly, we summarise the
insights of the benchmark.

5.3.1 IARPA STONESOUP Phase 1 - Null Pointer Dereference for C
Version 1.0 Test Suite from NIST

We ran our benchmark on 113 of 115 programs from the test suite “IARPA STONE-
SOUP Phase 1 - Null Pointer Dereference”. We did not get the remaining two pro-
grams to run in combination with Frama-C. Therefore, we left them out. Table 5.1 shows
the result of the benchmark without the backward analysis.

Overall
Warnings

Options
Warnings Removed Absolutely Relatively Reduced

1921

none -sub -path -sat

778 40.50% 778 40.50% 849 44.20% 1008 52.47%
-path -sub -sat -sub -path -sat -path -sat -sub

850 44.25% 1008 52.47% 1128 58.72% 1129 58.77%

Table 5.1: Benchmark of the IARPA STONESOUP Phase 1 - Null Pointer Derefer-
ence for C Version 1.0 Test Suite from NIST without the Backward Analysis

In the 113 programs, we collected 1921 warnings that the rte plug-in annotated. In
each cell of the table, we have the enabled options in the top. The number of warnings
is in the lower left corner and the percentage of removed warnings is in the lower right
corner. By only applying the forward analysis without further options we can remove
778 of the 1921 warnings, which is 40.5%. Further, we can see that the -sat option, our
linear constrain solver, provides the most benefit from our three options. By enabling
the -sat option, we can remove 230 warnings additionally. Thereby, we can remove 1008
warnings, which is 52.47%. Moreover, we can see that the -sub option, our predicate
transfer, alone does not allow us to remove any additional warnings. Only in combination
with the -path option, our path sensitivity, does the -sub option remove one warning
more. This behaviour is the result of the rather strict restrictions we impose on the -sub
option. It is seldom the case that we assign one variable to another and encounter the
transferred predicate soon after. In the test suite, it is only the case when we generate

63

5 Evaluation

a predicate from a guard and transfer it to another variable. We can remove the most
warnings, namely 1129, which is 55.77%, by applying all three additional options. Thus,
we can remove 351 additional warnings by applying our three enhancements for the first
test suite.

Figure 5.2 shows how many warnings we could remove per program as a percentage of
the overall warnings in the program using only the forward analysis without additional
options. The interesting part is that in case we can remove warnings, we are often above
the average of 40.5%. However, we cannot remove any warnings in 30 out of the 113
programs. In Figure 5.3, all options are enabled. The combination of all options allows
us to remove a few more warnings in most programs. Further, the total number of
programs in which we cannot remove any warnings decreases to nine.

Figure 5.2: Percentage of Removed Warn-
ings (Y-Axis) for each Program
(X-Axis) using only the For-
ward Analysis

Figure 5.3: Percentage of Removed Warn-
ings (Y-Axis) for each Program
(X-Axis) using the Forward
Analysis with -path, -sat, and
-sub

Table 5.2 shows the results with the backward analysis included. The plug-in adds 107
warnings based on the results of the backward analysis. To compute the percentage of
removed warnings, we take the warnings we could remove and subtract the 107 warnings
added due to the backwards analysis and divide that result by the warnings annotated
by the rte plug-in.

Unfortunately, the cleaned number of removed warnings is always seven warnings less
than without the backward analysis. In the 113 programs, we never have the case that
we have the same warning in two branches and push it upwards so that we can remove at
least two warnings by inserting one warning. However, we actually push a few warnings
in branches and insert these warning in the branches. Thereby, we insert at least two
warnings to remove one warning. Therefore, the backward analysis does not improve
our result but changes it to the worse in terms of total number of warnings.

Overall, the results we could achieve for the test suite are good. The plug-in can
remove over 40% of the warnings by simply applying the forward analysis. In case we
include the three options -path, -sat, and -sub, the plug-in removes another 18%.

64

5.3 Benchmark

Original
Warnings

Warnings
Added

Options
Warnings Removed Removed - Added Relatively Reduced

1921 107

-backwards -sub

878 771 40.14% 878 771 40.14%
-path -sat

949 842 43.83% 1108 1001 52.11%
-path -sub -sat -sub

950 843 43.88% 1108 1001 52.11%
-path -sat -path -sat -sub

1228 1121 58.36% 1229 1122 58.41%

Table 5.2: Benchmark of the IARPA STONESOUP Phase 1 - Null Pointer Deref-
erence for C Version 1.0 Test Suite from NIST with the Backward Analysis

Having to look at only 792 warnings instead of 1921 is already a huge improvement and
reduces the review time drastically.

Let us go on with the second test suite.

5.3.2 IARPA STONESOUP Phase 1 - Memory Corruption for C Version 1.0
Test Suite from NIST

We ran our benchmark on 211 of 213 programs from the second test suite. We did not
get the remaining two programs to run in combination with Frama-C. Therefore, we
left them out. The result of the benchmark is again split up in the results without the
backward analysis and with the backward analysis included. Table 5.3 shows the results
containing only the forward analysis.

Overall
Warnings

Options
Warnings Removed Absolutely Relatively Reduced

7211

none -sub -path -sat

864 11.98% 864 11.89% 1148 15.92% 1334 18.50%
-path -sub -sat -sub -path -sat -path -sat -sub

1148 15.92% 1334 18.50% 1953 27.08% 1989 27.58%

Table 5.3: Benchmark of the IARPA STONESOUP Phase 1 - Memory Corruption
for C Version 1.0 Test Suite from NIST without the Backward Analysis

The results are not as impressive as the results of the first test suite. The plug-in
with only the forward analysis can remove about 12% of the warnings. Figure 1, from
the appendix, shows the chart of the percentage of the warnings we can remove for each
program using only the forward analysis. As in the first test suite the -sub option does
not improve the result. Further, the -sat option also improves the result the most.
Applying the forward analysis with all three options, we can remove additional 16%,
which is about the same percentage as for the first test suite. The percentage of the

65

5 Evaluation

warnings we can remove for each program with all the options enabled for the forward
analysis can be seen in Figure 2 in the appendix.

The interesting part is that the -sub option only removes additional warnings in
combination with -path and -sat. The reason for that is that we have to insert a few
predicates into our flow data using the guards. After we transfer these predicates to the
newly assigned variable, we still have to apply the linear constraint solver to prove that
the fault cannot occur in a run-time error free execution. To do so, we need all three
options enabled. Further, we can again reduce the number of programs where we cannot
remove any warnings from 71 to 26.

Table 5.4 shows the result of the benchmark with the backward analysis. Unfortu-
nately, for the second test suite the backwards analysis worsens the result even more.
In four cases, we remove 135 warnings less, which also includes the case without any
options. However, in this test suite, we have a few programs that contribute a lot to this
reduction. Listing 1, from the appendix, shows a piece of code annotated by the rte

plug-in. In this example, we take one warning and push it into 10 branches. Thereby, we
insert 10 warnings from 1 original warning. Pushing one warning into so many branches
has a big impact on the result of the backward analysis.

Original
Warnings

Warnings
Added

Options
Warnings Removed Removed - Added Relatively Reduced

7211 1804

-backwards -sub

2533 729 10.11% 2533 729 10.11%
-path -sat

2817 1013 14.05% 2735 931 12.91%
-path -sub -sat -sub

2817 1013 14.05% 2735 931 12.91%
-path -sat -path -sat -sub

3631 1827 25.34% 3667 1863 25.84%

Table 5.4: Benchmark of the IARPA STONESOUP Phase 1 - Memory Corruption
for C Version 1.0 Test Suite from NIST with the Backward Analysis

Figure 5.4 shows how many warnings we could remove for each program. Using the
backward analysis, we end up with more warnings than we started in a few cases. These
are often programs where we could not remove more than one or two warnings using
only the forward analysis. If we then push a warning into many branches, we end up
with more warnings than we started with. The program to which the piece of code from
Listing 1 belongs is one of the −42% bars.

The backward analysis performs the worst with the -sat options and the combination
of -sat and -sub options. We cannot benefit from these options since we push many
warnings not far up from the origin. Having two warnings like first the predicate x < 4
and then x < 5, the -sat option removes the second warning. The backward analysis
pushes both of the warnings up to the last assignment of x, which is not necessarily
in a branch. Thereby, we insert one warning to remove one warning. However, now

66

5.3 Benchmark

the warning that was removed before by the -sat option also gets removed due to
the backward analysis and that still just counts as one removed warning. In the 213
programs, we observed a number of these cases.

Figure 5.4: Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis) using
the Backward Analysis without any Additional Options

By applying the -sat option in combination with the -path option, we only remove
126 warnings less. Using these options, we can actually remove a few of the warnings
the backward analysis inserted. Thus, the result slightly improves. Overall, the three
enhancements, which we implemented, also improve the result of the benchmark using
the second test suite a lot.

Let us now have a look at the insights we gained by the benchmark.

5.3.3 Insights of the Benchmark

The benchmark shows us that even under suboptimal conditions the bidirectional pred-
icate propagation plug-in can achieve our goal to remove warnings and thereby, likely to
reduce the review time. In the first test suite, we could remove nearly 60% of the warn-
ings. Further, in both test suites our three additional options -path, -sat, and -sub,
which enable the linear constrain solver, the path sensitivity, and the predicate transfer,
could improve the result by nearly 20%. Thus, these enhancements pay off. However,
applying our backwards analysis actually inserted more warnings than we could remove

67

5 Evaluation

using its result. To make the backward analysis more useful, we would have to ensure
that we do not push a warning into branches and insert warnings there. To ensure this,
one has to solve a graph problem to find the point exactly before the branches to insert
only one warning. Thereby, in the worst case we would insert one warning to remove an-
other warning. Therefore, we would most certainly not worsen the result of our analysis.
Aside from the backward analysis, our plug-in already performs really well.

To conduct the benchmark, we used the rte plug-in to annotate the warnings. We also
could have used the value analysis. However, the programs mostly contain warnings that
restrict the variable’s interval and hardly any warnings that exclude values. Hence, our
analysis could hardly improve the result of the value analysis. To show the performance
possibilities of our analysis, we therefore chose the rte plug-in to annotate the warnings.
With the rte plug-in to annotate the warnings, the results look promising.

68

6 Related Work

We start our related work by having a look at the paper “Review Efforts Reduction
by Partitioning of Static Analysis Warnings” by T. Muske, A. Baid, and T. Sanas [20].
Their paper presents a data flow analysis to reduce review efforts by removing warnings.
It was also the starting point for this thesis. The main difference, however, is that
they track expressions instead of predicates. They track the part of the expression
that causes the warning. Tracking only the expressions, we still would need to track
what kind of warning it was. Otherwise, we might mix up division-by-zero and array-
index-out-of-bound warnings [15]. Therefore, we would have to construct something like
the annotation of Frama-C ourselves if we wanted to implement the analysis tracking
expressions. Further, using predicates allows us to implement refinements as described
in Section 4.5. The ease of implementing the refinements was the crucial point why we
decided to use the predicates of the annotations from Frama-C.

In their paper, they also have two analyses, one forward and one backward analysis.
The result of each analysis is a set of redundant warnings. They combine the results of
the analyses to find warnings that maximise the set of redundant warnings to remove
as many as possible. We first apply the backward analysis and use the result to insert
warnings. Only afterwards, we apply the forward analysis to remove the warnings again.
By first applying the backward analysis, we push the warnings as far up as possible.
Using the pushed warnings, we also try to increase the set of warnings that is covered
by other warnings. In fact, it should not make a difference if we execute the forward
and backward analysis in parallel and combine the results afterwards or if we first apply
the backward and then the forward analysis and use that result. We should end up
in both cases with the same number of warnings to be removed. Assuming that the
number of warnings to be removed is the same, then our analysis performs as good as
their proposed analysis. Further, with our refinements, which we can only do since we
are tracking predicates, we are able to remove even more warnings. Therefore, we can
perform even better than their approach can.

Another related paper is by R. Cytron et al., titled “An Efficient Method of Computing
Static Single Assignment Form” [12]. In the paper, they define a dominance frontier. A
variable x dominates y if x is defined on every path from the function entry to y. We
could apply the definition to our warning removal. Here, we remove a warning if the
predicate of the warning is in the incoming flow data. A predicate is in the incoming flow
data only only if it is asserted on every path reaching this point. Therefore, we could
define our warning removal in terms of dominance. With the concept of dominance as a
basis, we can also prove the correctness of the removal.

The paper “The Reduced Product of Abstract Domains and the Combination of Deci-
sion Procedures” by P. Cousot, R. Cousot, and L. Mauborgne [8] describes a way to use
two analyses to improve the concretisation. We mentioned that we could use our analysis
to improve the concretisation of the value analysis. In their paper, they describe how
we could combine the results of two analyses using a direct product, which we could use

69

6 Related Work

to improve the concretisation of the value analysis by using the result of our backward
analysis and the predicates that exclude certain values of a variables valuation.

J. Fischer, R. Jhala, and R. Majumdar describe in their paper “Joining Dataflow with
Predicates” [13] how to make a data flow analysis path-sensitive to make it more precise.
In a way, we do the same with our -path option,which makes the analysis path-sensitive.
In our analysis, we only add the predicates to the corresponding branches but do not
exclude infeasible paths.

Another way to use predicates is described in the paper “Precise Static Analysis of Bi-
naries by Extracting Relational Information” by A. Sepp, B. Mihaila, and A. Simon [22].
They want to reverse-engineer binaries to actual source code. To achieve their goal, they
use a number of abstract domains. To get an idea of the valuation of variables, they
use widening and narrowing. For the narrowing, they use the predicates of conditions.
Hence, as we do, they use predicates to restrict the possible valuation of variables.

A way to reduce the manual review time for the value analysis in Frama-C is to use
the SPALTER plug-in presented in the paper “Driving a Sound Static Software Analyzer
with Branch-and-Bound” by S. Mattsen, P. Cuoq, and S. Schupp [19]. The SPALTER
plug-in can be used to check if a possible fault, which the value analysis annotated, really
can occur. In case it can occur, it provides the user with a counter-example. Otherwise,
it removes all the warnings and thereby, reduces the manual review time. However,
applying the SPALTER plug-in can be time-consuming.

70

7 Future Work & Conclusion

Future Work

In our plug-in, we still have two topics in particular that leave room for improvement.
The first topic is the way we handle pointers. In the current version, we handle pointers in
a safe and sound way and remove all our flow data when we might reassign a pointer since
we do not know to which variables the pointer may point. One possible improvement
would depend on the value analysis. It performs a points-to-analysis. However, then we
would need to always call the value analysis in combination with our plug-in. The other
option is to implement a may points-to-analysis [3]. Thereby, we would get a sound
over-approximation of variables a pointer points to. Having the over-approximation
we could remove only the predicates containing these variable instead of removing the
complete flow data. Due to the pointer problem, we also remove all our flow data when
we encounter a function call. The result of the points-to-analysis allows us to keep our
flow data and we could also pass some flow data down to the function called. Thus,
our precision would be better. Further, we could consider to also include pointer-related
predicates.

The second topic is the backward analysis. In our backward analysis, we try to push
the predicate as far up as possible. Hence, we sometimes push the predicate into branches
and insert warnings there. Inserting warnings in branches results in the fact that we
sometimes push one warning up and insert at least two warnings for that one warning.
Here, considering the fact that we want to reduce the overall number of warnings it
would be smarter, to solve the graph problem that we do not push warnings in the
last branching and insert the warning exactly before the last branching. Therefore, we
would insert only one warning for every warning we push up. With a one-to-one ratio,
we could always remove at least one warning for every warning we inserted by applying
the forward analysis. Formulating the algorithm to insert warnings along these lines,
the backward analysis would not increase the overall number of warnings if we apply the
forward analysis afterwards.

Conclusion

In this thesis, we presented the theoretical background for a bidirectional predicate
propagation. Our bidirectional predicate propagation consists of two data flow analyses
tracking predicates of warnings. We use the backward analysis to propagate predicates
upwards and the forward analysis to know what predicates have to hold in a run-time
error free execution. Further, we discussed how we can use the result of the backward
analysis to insert warnings and the forward analysis to remove warnings. To that end,
we presented the algorithms for the warning insertion and removal.

We implemented the bidirectional predicate propagation analysis as a Frama-C plug-
in. The plug-in has options to enable the backward analysis, the path sensitivity, the
predicate transfer, and the linear constraint solver. By applying our plug-in without

71

7 Future Work & Conclusion

additional options only the forward analysis and warning removal from our analysis gets
applied.

Further, we have tested our plug-in in combination with other Frama-C plug-ins.
During our evaluation with test suites from the SAMATE project of NIST, we could
remove up to 60% of the warnings. From these 60%, our enhancements could remove
about 20%. The path sensitivity and the linear constraint solver contributed the most to
the 20%. However, our backwards analysis inserted more warnings than we could remove
using the inserted warnings. In our future work, we outlined how we could change the
backward analysis so that it does not worsen the result anymore. In conclusion, we have
a working Frama-C plug-in with enhancements that improve our result. By applying
our plug-in, the manual review time can be reduced since we can drastically lower the
number of warnings we have to look at.

72

Bibliography

[1] Iarpa stonesoup phase 1 - memory corruption for c. http://samate.nist.gov/

SRD/testsuites/stonesoup/stonesoup-c-mc.zip. Accessed: 2014-07.

[2] Iarpa stonesoup phase 1 - null pointer dereference for c. http://samate.nist.

gov/SRD/testsuites/stonesoup/stonesoup-c-np.zip. Accessed: 2014-07.

[3] Berndt, M. Flow-insensitive points-to analyses for Frama-C based on Tarjan’s
disjoint-sets. Bachelor thesis, TU Hamburg-Harburg, Mar. 2014.

[4] Black, P. E. Software assurance metrics and tool evaluation. In Software Engi-
neering Research and Practice (2005), pp. 829–835.

[5] Black, P. E. SAMATE’s contribution to information assurance. NIST Special
Publication (2006).

[6] Canet, G., Cuoq, P., and Monate, B. A value analysis for C programs.
In Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, 2009. SCAM’09. (2009), IEEE, pp. 123–124.

[7] Correnson, L., Cuoq, P., Kirchner, F., Prevosto, V., Puccetti, A.,
Signoles, J., and Yakobowski, B. Frama-C user manual. http://frama-c.

com/download/frama-c-user-manual.pdf. Accessed: 2014-01.

[8] Cousot, P., Cousot, R., and Mauborgne, L. The reduced product of abstract
domains and the combination of decision procedures. In Foundations of Software
Science and Computational Structures. Springer, 2011, pp. 456–472.

[9] Cuoq, P. Minimizing-alarms. http://blog.frama-c.com/index.php?post/

2012/03/12/Minimizing-alarms, Jan. 2014. Accessed: 2014-01.

[10] Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson,
L., Monate, B., Prevosto, V., and Puccetti, A. Experience report: Ocaml
for an industrial-strength static analysis framework. In ACM Sigplan Notices (2009),
ACM, pp. 281–286.

[11] Cuoq, P., and Yakobowski, B. Value analysis manual. http://frama-c.com/

download/value-analysis-Neon-20140301.pdf. Accessed: 2014-07.

[12] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. An efficient method of computing static single assignment form. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (1989), ACM, pp. 25–35.

[13] Fischer, J., Jhala, R., and Majumdar, R. Joining dataflow with predicates.
In ACM SIGSOFT Software Engineering Notes (2005), ACM, pp. 227–236.

73

http://samate.nist.gov/SRD/testsuites/stonesoup/stonesoup-c-mc.zip
http://samate.nist.gov/SRD/testsuites/stonesoup/stonesoup-c-mc.zip
http://samate.nist.gov/SRD/testsuites/stonesoup/stonesoup-c-np.zip
http://samate.nist.gov/SRD/testsuites/stonesoup/stonesoup-c-np.zip
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://blog.frama-c.com/index.php?post/2012/03/12/Minimizing-alarms
http://blog.frama-c.com/index.php?post/2012/03/12/Minimizing-alarms
http://frama-c.com/download/value-analysis-Neon-20140301.pdf
http://frama-c.com/download/value-analysis-Neon-20140301.pdf

Bibliography

[14] Flemming Nielsen, H. N., and Hankin, C. Principles of Program Analysis,
2nd ed. Springer, 2005.

[15] Gehrke, M. A Frama-C plug-in for finding equal-valued expressions using dataflow
analysis. Projektarbeit, TU Hamburg-Harburg, Jan. 2014.

[16] Herrmann, P., and Signoles, J. Rte manual. http://frama-c.com/download/
rte-manual-Neon-20140301.pdf. Accessed: 2014-07.

[17] Julien Signoles, Löıc Correnson, M. L., and Prevosto,
V. Plug-in development guide. http://frama-c.com/download/

plugin-development-guide-Neon-20140301.pdf. Accessed: 2014-07.

[18] Kildall, G. A. A unified approach to global program optimization. In Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (1973), POPL ’73, ACM, pp. 194–206.

[19] Mattsen, S., Cuoq, P., and Schupp, S. Driving a sound static software analyzer
with branch-and-bound. In 2013 IEEE 13th International Working Conference on
Source Code Analysis and Manipulation (SCAM) (2013), IEEE, pp. 63–68.

[20] Muske, T. B., Baid, A., and Sanas, T. Review efforts reduction by partitioning
of static analysis warnings. In 2013 IEEE 13th International Working Conference
on Source Code Analysis and Manipulation (SCAM) (2013), IEEE, pp. 106–115.

[21] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. Cil: Intermediate
language and tools for analysis and transformation of c programs. In Proceedings
of the 11th International Conference on Compiler Construction (2002), CC ’02,
Springer-Verlag, pp. 213–228.

[22] Sepp, A., Mihaila, B., and Simon, A. Precise static analysis of binaries by ex-
tracting relational information. In Proceedings of the 2011 18th Working Conference
on Reverse Engineering (2011), WCRE ’11, IEEE Computer Society, pp. 357–366.

74

http://frama-c.com/download/rte-manual-Neon-20140301.pdf
http://frama-c.com/download/rte-manual-Neon-20140301.pdf
http://frama-c.com/download/plugin-development-guide-Neon-20140301.pdf
http://frama-c.com/download/plugin-development-guide-Neon-20140301.pdf

Appendix

type predicate =
| Pfalse (* always-false predicate. *)
| Ptrue (* always-true predicate. *)
| Papp of logic info * (logic label *
logic label) list * term list

(* application of a predicate. *)

| Pseparated of term list
| Prel of relation * term * term (* comparison of two terms. *)
| Pand of predicate named * predicate
named

(* conjunction *)

| Por of predicate named * predicate
named

(* disjunction. *)

| Pxor of predicate named * predicate
named

(* logical xor. *)

| Pimplies of predicate named * predicate
named

(* implication. *)

| Piff of predicate named * predicate
named

(* equivalence. *)

| Pnot of predicate named (* negation. *)
| Pif of term * predicate named * predi-
cate named

(* conditional *)

| Plet of logic info * predicate named (* definition of a local variable *)
| Pforall of quantifiers * predicate named (* universal quantification. *)
| Pexists of quantifiers * predicate named (* existential quantification. *)
| Pat of predicate named * logic label (* predicate refers to a particular program point. *)
| Pvalid read of logic label * term (* the given locations are valid for reading. *)
| Pvalid of logic label * term (* the given locations are valid. *)
| Pinitialized of logic label * term (* the given locations are initialized. *)
| Pallocable of logic label * term (* the given locations can be allocated. *)
| Pfreeable of logic label * term (* the given locations can be free. *)
| Pfresh of logic label * logic label * term
* term

(* \fresh(pointer, n) A memory block of n bytes is
newly allocated to the pointer. *)

| Psubtype of term * term (* First term is a type tag that is a subtype of the
second. *)

Table 1: Predicates of Frama-C

75

Appendix

Figure 1: Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis) using
only the Forward Analysis of the IARPA STONESOUP Phase 1 - Memory
Corruption for C Version 1.0 Test Suite from NIST

76

Figure 2: Percentage of Removed Warnings (Y-Axis) for each Program (X-Axis) using
the Forward Analysis with -path, -sat, and -sub of the IARPA STONE-
SOUP Phase 1 - Memory Corruption for C Version 1.0 Test Suite from
NIST

77

Appendix

Listing 1 shows a excerpt of code annotated by the rte plug-in. The original code
consists of a for loop, which got transformed into a while loop by Frama-C. The code
uses the for loop to go through three while loops and an assignment, which could be
achieved even without the for loop. Due to the construct of applying four statements in
a row using a for loop and the transformations Frama-C does, we push a false positive
warning into ten branches. The rte plug-in annotates the increasing of i with a signed-
overflow warning. However, i will never go beyond 4 in this piece of code. Thus, the
warning is a false positive. By removing the for loop, which would not make any
difference in the program execution, we would only push two other warnings into two
branches. Thereby, the result would be better as it is right now.

1 i = 0 ;
2 while (i < 4) {
3 switch (i) {
4 case 0 :
5 while (1) {
6 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
7 i f (∗ s) {
8 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
9 i f (! ((int) ∗ s == ’ ’)) {

10 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
11 i f (! ((int) ∗ s == ’ \ t ’)) {
12 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i

+1 ≤ 2147483647; ∗/
13 break ;
14 }
15 }
16 }
17 else {
18 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1 ≤

2147483647; ∗/
19 break ;
20 }
21 s++;
22 }
23 break ;
24 case 1 :
25 while (1) {
26 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
27 i f (∗ s) {
28 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
29 i f ((int) ∗ s != ’ ’) {
30 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
31 i f ((int) ∗ s != ’ \ t ’) {

78

32 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ;
∗/

33 i f (! ((int) ∗ s != ’ , ’)) {
34 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w :

i+1 ≤ 2147483647; ∗/
35 break ;
36 }
37 }
38 else {
39 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i

+1 ≤ 2147483647; ∗/
40 break ;
41 }
42 }
43 else {
44 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1

≤ 2147483647; ∗/
45 break ;
46 }
47 }
48 else {
49 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1 ≤

2147483647; ∗/
50 break ;
51 }
52 s++;
53 }
54 break ;
55 case 2 :
56 while (1) {
57 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
58 i f (∗ s) {
59 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
60 i f (! ((int) ∗ s == ’ ’)) {
61 /∗@ a s s e r t r t e : mem access : \ v a l i d r e a d (s) ; ∗/
62 i f (! ((int) ∗ s == ’ \ t ’)) {
63 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i

+1 ≤ 2147483647; ∗/
64 break ;
65 }
66 }
67 }
68 else {
69 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1 ≤

79

Appendix

2147483647; ∗/
70 break ;
71 }
72 s++;
73 }
74 break ;
75 case 3 :
76 /∗@ a s s e r t r t e : s i g n e d o v e r f l o w : −2147483648 ≤x∗x ; ∗/
77 /∗@ a s s e r t r t e : s i g n e d o v e r f l o w : x∗x ≤ 2147483647; ∗/
78 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1 ≤

2147483647; ∗/
79 name = (s + x ∗ x) − 121 ;
80 break ;
81 default :
82 /∗@ a s s e r t Warnings : r t e : s i g n e d o v e r f l o w : i+1 ≤

2147483647; ∗/ ;
83 break ;
84 }
85 /∗@ a s s e r t r t e : s i g n e d o v e r f l o w : i+1 ≤ 2147483647; ∗/
86 i ++;
87 }
Listing 1: Excerpt of C Code from ./TC C 785 v934/src/desaturate.c of the IARPA

STONESOUP Phase 1 - Memory Corruption for C Version 1.0 Test Suite
from NIST

80

	Introduction
	Introduction to Data Flow Analyses
	Control Flow Graph
	Forward Data Flow Analysis
	If Then Else Block
	While Loops
	Formal Definition of Forward Data Flow Analysis
	Definition of our Forward Analysis

	Backward Data Flow Analysis
	Formal Definition

	Worklist Algorithm
	Calculation using the Worklist Algorithm

	Data Flow Analyses for Bidirectional Predicate Propagation
	Forward Data Flow Analysis to Track Predicates
	Example
	Formal Definition

	Warning Removal
	Backward Data Flow Analysis to Track Predicates
	Example
	Definition
	Drawbacks

	Warning Insertion
	Correctness
	Must Analysis
	Correctness of the Backward Analysis
	Correctness of the Forward Analysis

	Plug-In to Remove Redundant Warnings
	Frama-C
	Plug-In
	Warning Collection Module
	Forward Analysis Module
	Warning Removal Module
	Backward Analysis Module
	Warning Insertion Module
	Combination of the Modules

	Problem with C Pointers
	Restrictions in the Plug-In
	Improvements to the Plug-In
	Path Sensitivity
	Predicate Implication
	Splitting up Predicates
	Transfer of Warnings

	Evaluation
	Testing of the Implementation
	Evaluation with the Value Analysis
	Warning Removal Feature of the Value Analysis
	Bidirectional Predicate Propagation in Combination with the Value Analysis

	Benchmark
	IARPA STONESOUP Phase 1 - Null Pointer Dereference for C Version 1.0 Test Suite from NIST
	IARPA STONESOUP Phase 1 - Memory Corruption for C Version 1.0 Test Suite from NIST
	Insights of the Benchmark

	Related Work
	Future Work & Conclusion
	Bibliography
	Appendix

