

Personal Mechatronics Lab
www.PML4all.org

Matlab/Simulink Support Package

©2013 M.R. Emami

1

Contents
1. Introduction .. 2

1.1 Overview ... 2

1.2 Features .. 2

2. Operation .. 2

2.1 Installation .. 2

2.2 Step by Step Tutorial ... 3

2.2 While loop Tutorial ... 5

2.3 Subsystem Enable Tutorial .. 8

3. Support for individual blocks .. 11

3.1 MCU Peripherals Library ... 11

3.1.1 Digital I/O ... 11

3.1.2 ADCInit ... 12

3.1.3 ADCConvert .. 12

3.1.4 EEPROMInitialize .. 12

3.1.5 EEPROMWrite .. 12

3.1.6 EEPROMRead ... 13

3.1.7 External Interrupt ... 13

3.1.8 Keypad .. 13

3.1.9 LCD Display ... 13

3.1.10 RS232 Custom Code ... 13

3.1.11 PWM .. 13

3.1.12 Capture ... 13

3.1.13 Compare ... 14

3.1.14 RTCInit .. 14

3.1.15 RTCRead ... 14

3.1.16 RTCSet .. 14

3.1.17 Custom Code Library .. 14

3.2 Driver Board Library .. 15

3.3 Sensor Board Library ... 18

3.4 Utility Board Library .. 20

2

1. Introduction

1.1 Overview

 The Simulink PML (short for personal mechatronics laboratory) block set was designed

as an interface between Simulink and the following 5 PML boards: Microcontroller board,

Driver board, Sensor board, Utility board, and FPGA board. The use of this block set requires a

basic working knowledge of Simulink. The main usage of this block set is to drag a few of the

blocks into a new model, connect the blocks together, and then double click the generate code

block. The Simulink coder will then generate a C code compatible with the selected PIC, and

compile and burn the hex code directly onto the PIC if said options are selected. Also, this block

set can be utilized to monitor the sensors on a sensor board, or control the motors on the

driver board.

1.2 Features

 Open source, modular design with easy to understand parameters for beginners
 Supports code generation for the PIC16f877, PIC16f887, and PIC16f1937
 Includes virtual input and output options for block ordering
 Code Section parameter to give users added flexibility
 Custom code blocks to enable users to embed their own C code
 MCU Peripherals library to interface with Microcontroller board
 Driver Board Library to monitor and control motors
 Sensor Board Library with analog and digital inputs
 Utility Board Library complete with oscilloscope
 External Applications Library to access important standalone applications
 Automatic code generation block
 Automatic code report open option
 Automatic hex code generation and hex code burning

2. Operation

2.1 Installation

 To install the Simulink PML block set, the folder SimulinkPML must be set to the

MATLAB working directory. This folder is automatically installed when any of the PML

applications are installed. Note, the folder SimulinkPML may need to be copied to a writable

directory first. Next, the slblocks.m script must be ran. This script puts the Simulink PML library

into the Simulink browser, under the name Simulink PML block set. The user must also ensure

3

that the Microchip xc8 compiler is installed correctly, and that the application xc8.exe is on the

current MATLAB path. This can be confirmed by typing !xc8.exe in the MATLAB command

window.

2.2 Step by Step Tutorial

 Open a new Matlab window.

4

Open the Simulink library browser. Click file -> new model.

Under Simulink PML block set, drag a Pic Master block to your new model

Add an LCD initialization block, LCD Display block and generate code block to your model and

save it.

5

Link them together as such using the block ordering dialog parameter of each block. The

parameters box is accessed by double clicking the block. To link blocks together, hold control

and click the first block followed by the second block. Next choose the appropriate pic from the

choose a pic dialog parameter in the Pic Master block. Double click generate code, then open

PICusb and burn the hex file onto your desired PIC. Alternatively, you can also select the 'Burn

Hex Code Automatically' parameter in the extra features tab of the Pic Master block.

2.2 While loop Tutorial

 Open a new Simulink model and name it WhileLoopTutorial. Drag a Pic Master block

and Generate code block from the Simulink PML block set to the new model. This example will

use the Pic16f877, and so it will be selected from the Pic Master block.

6

Next, drag a while subsystem block from the Ports and subsystems library under Simulink in the

Simulink browser to your new model. Then add an LCD Init block and MCU Digital Input read

block, and set the blocks as shown below.

7

Double click the While Iterator Subsystem block, and drag an LCD Display block and MCU Digital

Input Read block inside the subsystem. Set up the subsystem as shown below.

8

Turn on the Create Hex Code automatically and Burn Hex Code Automatically options under the

Extra Features tab in the Pic Master block as shown below. Then, connect your microcontroller

board, ensure it is in program mode, and then double click the generate code block. This

example will continually write the message, "You are pressing a key!" to the lcd while RB1 is

high. The complete model can be found in the model WhileloopExample.mdl under the

Samples folder.

2.3 Subsystem Enable Tutorial

 Open a new model and set it up as shown below. MCU Digital Input Read is found

under the Digital I/O library of Simulink PML blockset. The Enabled subsystem blocks can be

found under the Ports and Subsystems sublibrary under the Simulink library in the Simulink

browser. The Compare to Zero block can be found under the logic library. Do not worry if

there are currently input and output ports attached to the enable subsystem blocks.

9

Double click on each enabled subsytem block and set it up as shown below. The removal of the

input and output blocks automatically get rid of the ports on the corresponding blocks.

The mask of each LCD display block should appear as below, with the custom text being

whatever you desire. It is important to note that the code section must be output. Likewise,

the delay can be set to any arbitrary number, but for this example 500ms was selected.

10

This example displays Key Pressed on the LCD when a key is pressed, and Key not pressed when

a key is not pressed. The complete model can be found in the model

EnableSubsystemExample.mdl under the Samples folder.

11

3. Support for individual blocks

3.1 MCU Peripherals Library

Figure 1- The Microcontroller Board

 Every block in the MCU peripherals library corresponds and controls a module on the

Microcontroller board pictured above. For more information on each of the modules, refer to

the sections below or to the microcontroller board user manual.

3.1.1 Digital I/O

 Every microcontroller that is inserted into the MCU board will have a number of pins

which can be set to input or output. Traditionally, to set a pin to input, the user would set the

associated TRIS bit in the program memory. For example, to set the pin RC7 to input, one

 would write the line bsf TRISC,7 in assembly syntax or TRISC7 = 1 in C syntax.

12

Conversely, to set the pin RC7 to output, one would write bcf TRISC,7 in assembly syntax or

TRISC7 = 0 in C syntax.

 The digital I/O blocks are used to configure the I/O pins and clear or set the output pins,

as well as to read the input pins. Before using any of the write or read blocks, the I/O

configuration block must be implemented with the appropriate array of pins for each port being

selected. A Matlab array takes the form "[1 2 3 4]". This block will essentially set or clear the

aforementioned Tris bits in the program memory. The MCU Digital Output Write block accepts

any Simulink block as input(s) and will set the pin of the pic associated with the input port to

whatever state the input port is in. This input should be a boolean value. Note, this block only

operates in the outputs function, any initialization of pins must be done using a custom code

block. The MCU Digital Input Read block will output the state of the selected pins via its output

ports at each simulation time step. The extended I/O blocks work in a similar fashion to the

aforementioned blocks, however the I2C Setup block must be used before setting the I/O

configurations. Also, the MCU must be in RUN mode for extended I/O to function.

 The MCU Digital Output Read block is a very different block intended for advanced users

only. The main premise of the block is to create a link between Matlab and the register

watcher standalone program. The use of the register watcher program requires a specific

firmware.

3.1.2 ADCInit

 This block takes in a clock select and either right or left justified as parameters. The clock select

determines what frequency the conversion will take place at. If left justified is selected then the 8MSB

of the 10 bit conversion result will be placed in ADRESH, while the 2LSB will be placed in ADRESL. If right

justified is selected, the opposite is true.

3.1.3 ADCConvert

 This block simply converts and analog to digital signal and outputs it as a 10 digit number. The

user is able to select which channel he/she wants to be converted, and ADRESH and ADRESL will output

from the top and bottom outputs respectively. This block only functions when its input is true. ADCInit

must be placed in the model with this block, and it is strongly advised to set the analog pins to input

with an I/O configuration block.

3.1.4 EEPROMInitialize

 EEPROMInitialize allows the user to set the first 8 values of EEPROM memory by

entering a matrix of length 8.

3.1.5 EEPROMWrite

 This block functions in two modes, Input or custom values mode. The input mode

accepts two inputs, the first one being the value to be written, and the second one being the

13

address to be written to. In custom value mode, the user inputs pairs of the form [address

value] to be written to EEPROM.

3.1.6 EEPROMRead

 This block allows the user to read any EEPROM value by selecting how many addresses

they wish to read, and inputted those addresses. The outputs correspond to EEPROM values of

the entered addresses.

3.1.7 External Interrupt

 When the external interrupt block is double clicked a subsystem featuring a model
source and model start block are shown. The model start block simply sets up the interrupt
and the actual Interrupt service routine can be modified under the inter() function in model
source. It is assumed that external interrupts occur on RB0.

3.1.8 Keypad

 The keypad block takes in an input purely for block ordering purposes. It can be placed

in either the start or terminate code locations. The block will wait for the user to press a key

and output the result as an unsigned char from 0-15.

3.1.9 LCD Display

 LCD Display operates in one of 2 modes, either input or custom text. In the input mode,

the block accepts integer inputs and writes them to the lcd screen. In the custom text mode

the user enters the custom text desired for each line of the lcd screen. The user has the option

of selected either one or two lines, to clear the lcd before writing, and to go to a specific lcd

location before writing in any of the two modes. The use of this block requires the LCDInit

block to have been placed before it.

3.1.10 RS232 Custom Code

 The RS232 Custom Code block illustrates how to use blocks from the custom code

library. The user may change any of the code within the block to suit the needs of what should

be outputted via the RS232. The use of this block requires the RS232Init block to be placed

before it.

3.1.11 PWM

 This block allows the user to create a pulse wave modulation using either the CCP1 or CCP2

modules. The use of this block requires RC1 and RC2 to be set as outputs, and the period and CCPRxL

values can be entered. The CCPRxL value determines the duty cycle. The prescalar for timer2 can also

be set from the mask dialog.

3.1.12 Capture

 This block sets either the CCP1 or CCP2 modules to capture mode. The user can select when

they want the capture of timer1 contents to occur. The options are either every falling edge, rising

14

edge, 4th rising edge, and 16th rising edge of RC2. The block ordering is purely for the initialization

setup of timer 1. This block outputs CCPR1L and CCPR1H which will contain the contents of the last

capture of timer1.

3.1.13 Compare

 This block sets either the CCP1 or CCP2 modules to compare mode. The user can select what

value they want to compare TMR1 to be setting the CCPRxH and CCPRxL parameters. TMR1 is a 16 bit

timer, so CCPRxH and CCPRxL should both be 8 bit numbers. Next, the mode can be selected from the

drop down menu. Low to high mode, changes pin CCPx pin(RC2 or RC1) from low to high when the

compare values match up. High to low mode does the exact opposite. IRQ mode requests an interrupt

service routine, while special event trigger causes analog to digital conversion to run.

3.1.14 RTCInit

 This block is used as the initialization for RTC. RTCInit block requires I2C Setup block. All RTC

blocks rely on a DS1307 IC with lithium ion battery, the appropriate I2C firmware, and having jumpers

on both JP6 and JP7.

3.1.15 RTCRead

 This mask requires four parameters, value, digit, block ordering, and code location.

Value is chosen from a popup menu, and allows the user to select from either Year, Month,

Date, Day, Hours, Minutes, or Seconds. Digit allows the user to select either the tens digit or

the ones digit of the aforementioned value. RTCInit block must be implemented to use this

block.

3.1.16 RTCSet

 This mask requires allows the user to reset all, or set the date, time, time format,

AM/PM, and day of the week. Reset all sets all values to 0. RTCInit block must be implemented

to use this block.

3.1.17 Custom Code Library

 The Custom Code library is very similar to the Simulink Coder library, and includes some

similar blocks. Basically, The System Start, Outputs, Terminate and Initialize blocks allow you to

place any pic compliant C code into any of these four main sections of code. The

VersatileCustomCode block allows the user to select virtual inputs and outputs for block

ordering as well as the specific code section. Model Header, and Model Source allow for

custom code to be added to the model header or model source respectively.

EmbeddedCustomInitCode takes the name of a file in the current working directory, and

embeds the contents within the start function. CustomInit Function takes the name of a C

code, puts that C code into a function, creates a header for the function, and then calls the

function in the specified function of the main code.

15

3.2 Driver Board Library

Figure 2 - An overview of the driver board

 The Driver Board V 3.0 has been designed with the user in mind. It is an educational printed
circuit board that offers a complete method to test and understand motor drivers. The Driver Board is
capable of running 2 DC motors, 1 unipolar stepper motor, 1 bipolar stepper motor, 1 servo motor and
1 brushless DC motor and it provides the user the option of running the motors either manually, using
an external microcontroller or using the computer application software. Figure 2 shows an overview of
the complete driver board split into separate modules. Table 1 on the following page provides a brief
description of each of the modules.

16

Table 1 - Description of driver board modules

17

Open UnipolarMotorExample in the Samples folder. The model should appear as shown below.

To monitor and control any motor in the Driver Board library, involves three simple steps. First,

the block must be double clicked to open the control GUI as shown below.

Next, the scope should be opened and the simulation should be started. Finally, the user must

click the play button on the control GUI to see the results display on the scope. Note, the Pic

master block is only included to set the appropriate solver parameters.

 The Driver board library was expanded to add a motor controller block. This motor

controller block takes the type of motor as a parameter. Depending on the type of motor,

different options such as duty cycle, direction, and enable are provided as inputs to the block.

Putting the first input as a 1 turns on the motor, whereas 0 turns it off. Putting the second

input as 1 makes the motor move forward whereas 0 makes it go reverse. Duty cycle values

18

range from 0-4. All other motors can be controlled and monitored in a similar manner as

shown by the unipolar motor above.

3.3 Sensor Board Library

Figure 3 - Picture of the Sensor board

 The main purpose of the sensor board library is to monitor the signals of the sensros

attached to the sensor board pictured above in Figure 3. An example of how to use the Input

Monitor block in the sensor library is shown below.

Open SensorBoardInputMonitorExample in the Samples folder.

19

To monitor and control any input sensor, double click the Input Monitor block and select a

sensor after connecting the sensor board.

Open the scope block and press simulate. Setting the simulation time depends how long the

simulation will run for. The scope block is shown below. The top graph will display the signal,

while the middle and bottom graphs display the max and min respectively.

20

3.4 Utility Board Library

Figure 4 - Overview of utility board

21

 The utility board library is used to monitor either channel A, B, A+B or the signal

generated by the utility board pictured in figure 4. Below is a tutorial on how to use the

Channel A block in the utility board library. Open UtilityBoardChannelAExample in the Samples

folder. It should appear as shown below.

Double click the channel A block. The GUI below should appear.

Press the play button after connecting the Utility board. Signals should appear on the gui.

22

Next, open the scope and run the simulation. The voltage of channel A and average of channel

A will appear on the scope. The other blocks in this library work in a similar fashion to the

channel A block shown above.

