ML PERSONAL MECHATRONICS LAB

Personal Mechatronics Lab
www.PML4all.org

Matlab/Simulink Support Package

W

W AdvancedExample

File Edit View Simulation Format Tools Help

DSES&| s BR|e 4 | nfor [Nma pEBE: RRES
FIC Master
. . ‘Genesate Code
e g I Outt] In ner:
Pic Master Initialization Subsystem ‘Welcome Subsystem Generate Code (Double Clidk)
cas=[3]
cas= [T
Virtual Virtual Integer ul case[11]:
case[15]:
default:
LCD Display3
Keypad Switch Case v r
default: { } case: [} caze] case: {} casel}
This example shows how the AZD, RS232, RTC, and EEPROM
medules can =l be used together with the switch/case blod.
Invalid Option EEPROM RTC RSZ232 AZD
Created on: Tue Jul 20 15:02:40 2013
Author: Douglas
Model Name: AdvancedExsmple

Ready |IUU% \ | |F|xed5tapD|scrate Al

©2013 M.R. Emami

Contents

Lo INTFOAUCTION .ttt sttt et e b e e h e s bt e s st e st e et e e be e beesbeesaeeeaseenteebeesaeesane e 2
1.1 OVEIVIEW ettt ettt ettt e e ettt e e st e e st e s s ar et e e s mr e e e e e mr e e e s s mr e e e e e mre e e s emreeeeeanreeessanreneeennrenes 2
A T L U1 = PP OPPT 2

P O] o<1 -1 o] o WU T OO TP O PPPPTROPPTPPI 2
2.1 INSEAIIATION Lottt sttt et e b e s he e st s e e b e b b e nbeesareenreen 2
D) (= o3 o 1] A=Y o B U o] o - | HS SRRt 3
D AN o1 1=l To oY o N I UL v o] o = PSR PROt 5
2.3 Subsystem ENable TULOIIAl......uuiii ittt e st e e s sbte e e s sbtaee s snrneeesanes 8

3. Support for iNAIVIAUAl DIOCKS ...cc..eiiiiieeee e e e e s s e e e sbee e e e sbeeeeesanes 11
3.1 MCU Peripherals LIBrary ...ttt st e e vee e e st ee e e s ate e e s s abeeessnnbeeessnneeas 11

700 0 R D113 = @ IO OSSR OUSURRURRPR 11
BL0.2 ADCINIT 1ttt ettt h et ettt e bt e bt e h e e sa et e bt e be e bt e beeeheeeateebe e beenbeesanena 12
3.L.3 ADCCONVEIT....eeiiiiiiieet ettt sttt st e s st e e s s et e e s sb et e e s e be e e e s era e e e s eraeeesaaree 12
3. 1.4 EEPROMINIEIAIIZE . evteee ettt ettt ettt e e s st e e e sbte e e e sbteeaesnbeeeeesraneeesnnes 12
3.1.5 EEPROIMWIIEE «.uttiteiteiieeiiitteee e e e ettt et e e e s sttt e e e e s s e s aabae e e e e e s s sasastbtaaaeeesssasassbeaaaeeesssnsnsnneaaeeens 12
3.1.6 EEPROIMREAM ...ttt ettt ettt sttt e b e s he e sat e st e st e et e e bt e s beesseesateenbeebeenbeesaeenas 13
I B A o =Y o | [a1 (=T VT o U UP SRRt 13
23 1/ o - [PR 13
3.1.9 LCD DiSPIaY ..eeeueerieerieeieirteeiee sttt ettt sttt st b e s st r e e reenreesree e 13
3.1.10 RS232 CUSEOM COUEceuviiiieiiirieetiete ettt sttt ettt et set e st b et e b e sree st e eneereesneesane e 13
BLLLTI PWIM Lttt ettt st sttt e h e s h e sttt b bR e e she e st et e e reenreesane e 13
R 0 A -1 o { U] T USRS 13
0 0 R N 0o 1 o - | =T USROS 14
3018 RTCINIE ettt ettt ettt b e s ae e et e et e e bt e s bt e she e sat e e ae e et e e bt e bt e sheesabeenbe e beenbeesanenas 14
3115 RTCREAM .. ettt sttt et et e bt e st e st st e bt e b e be e s seesateeane e reenreesnee e 14
0 N S] < PP P PP PP PPPRPPPOU 14
3.1.17 CuStOmM €O LIBIarycoeiciiiee ettt ettt e st e e e e be e e e s s bte e e e ebteaeesntaeeesanes 14
3.2 Driver BOArd LIDrary ... ettt e e et e e e e e e ettt e e e e e e e e e nrtaa e e e e e e e e annrraaeaaaeeannns 15
S Y Y o gl 2 o =T o I T o= V2P SUTRN 18
U 11 AV = T T Y e I N o] - Y P RTRN 20

1. Introduction

1.1 Overview

The Simulink PML (short for personal mechatronics laboratory) block set was designed
as an interface between Simulink and the following 5 PML boards: Microcontroller board,
Driver board, Sensor board, Utility board, and FPGA board. The use of this block set requires a
basic working knowledge of Simulink. The main usage of this block set is to drag a few of the
blocks into a new model, connect the blocks together, and then double click the generate code
block. The Simulink coder will then generate a C code compatible with the selected PIC, and
compile and burn the hex code directly onto the PIC if said options are selected. Also, this block
set can be utilized to monitor the sensors on a sensor board, or control the motors on the
driver board.

1.2 Features

Open source, modular design with easy to understand parameters for beginners
Supports code generation for the PIC16f877, PIC16f887, and PIC16f1937
Includes virtual input and output options for block ordering

Code Section parameter to give users added flexibility

Custom code blocks to enable users to embed their own C code

MCU Peripherals library to interface with Microcontroller board

Driver Board Library to monitor and control motors

Sensor Board Library with analog and digital inputs

Utility Board Library complete with oscilloscope

External Applications Library to access important standalone applications

YVVVVVVYVYYVVYY

Automatic code generation block
» Automatic code report open option

> Automatic hex code generation and hex code burning

2. Operation

2.1 Installation

To install the Simulink PML block set, the folder SimulinkPML must be set to the
MATLAB working directory. This folder is automatically installed when any of the PML
applications are installed. Note, the folder SimulinkPML may need to be copied to a writable
directory first. Next, the slblocks.m script must be ran. This script puts the Simulink PML library
into the Simulink browser, under the name Simulink PML block set. The user must also ensure

that the Microchip xc8 compiler is installed correctly, and that the application xc8.exe is on the

current MATLAB path. This can be confirmed by typing Ixc8.exe in the MATLAB command

window.

2.2 Step by Step Tutorial

(| MATLAB R20: o
File Edit Debug Parallel Desktop Window Help
S 4 RE 9 o @ B @ | Curent Folder CaUsers\Douglas\Documents\VEAR2 Semester2\ AERJOB\Simulink PML Blockset\ REQUIREDFILES!! -
© Shorteuts [2] How to Add 2] What's New
Current Folder oo x Workspace T
|| « REQUREDFAL.. » ~ © @ &~ |[f >) o 8 83 B | Stack:[Base - || G2 Select datato plot
Name = Name = Value Min Max
basic3_pic - ans <l struct>
basicd_pic v cm *pic_maintic
BlinkingLED._dspic €] cs <14 Simulink.Config...
CustominitCode2_pic lsve mc *make_rtw'
CustominitCade_pic] solver FixedStepDiscrete’
CustominitCodeExample_pic stf pictle
CustominitializationCodeExampl... Jone] tmf ‘pictmf’
DigitallnputWriteExample_pic
DigitslOutputWriteExample_pic
EEPROMInitializeExample_pic
EEPROMReadExample_pic
EEPROMWriteExample_pic
EmbeddedCustominitCodexam...
EmbeddedCustominitializationC.
ExternallnterruptExample_pic §0mmand Histery =
KeypadExample_pic i i-elear
LCODisplayExample_pic Lol
MultipleCustominitCodeExample.. egob
MultipleEmbeddedCustominitCo... i
PICDrivers_pic [
- H ~gchb . NumI 3=
RS232Example_pic Le RO
Samples ; gchb. NumInputPorts
sfun_x2_dspic H ~BlockOrderingGui
slpr L.g-- 15/07/2013 4:33 PM --%
test_pic E-3-- 16/07/2013 10:18 AM —-%
tle_c edit ert_default_tmd
[BipolarMotor.exe i - -
) BipolorMotorsm sdit ert_default_tms
%) BlankBlock.m ~edit ccopenfen
ankBlock.tlc L
%] BlankBlock. 2 b
Details s ~clo
4\ Start OVR

Open a new Matlab window.

File Edit Wiew Help

»»| Enter search term - H

Library: Simulink | Search Results: (none)

Most Freguently Used Blocks

Simulink co |
| mmonly Used
Commenly Used Blocks Blod

- Continuous

- Discontinuities

- Discrete

- Logic and Bit Operations
- Lookup Tables

- Math Operations

- Model Verification

- ModeHWide Utilties

- Ports & Subsystems.

- Signal Attributes

- Signal Routing

- Sinks

- SOUrces

- User-Defined Functions
[+~ Additional Math & Discrete
[]--E Aerospace Blockset

E]--E Communications System... -

Continuous

Discontinuities

Logic and Bit
Operations

Lookup Tables

Math
Operations

31 [2] [E] [

Showing: Simulink

Open the Simulink library browser. Click file -> new model.

File Edit View Help

O o= »»| Enter search term ~ M [E
Libraries Library. Simulink PML block set | Search Results: (none) | Most Frequently Used Blocks
[+ Wl SimEvents ~
- Tl SimRF cammca | Custom Code Digitsl 1D Driver Board
B simscape
B simulink 3D Animation e | Extemnal Mcu Miscell
E Simulink Coder fogimmEm Applications Peripherals jsesllansous
+/- | Simulink Control Design Cenereie Cog
H = m neraie =3
+I- Nl Simulink Design Optimiza... Sensor Board SIS | tility Board |=......c.._ I syt
E Simulink Design Verifier
i [l Simuiink Extras e | Seeraieceee - _ B ecomoie
- Igh| Simulink PML block set =port On {Bouble Glisd

Custom Code

Digital 'O

Driver Board

External Applications
WMCU Peripherals
Wiscellaneous
Sensor Board

m

Showing: Simulink PML block set

Under Simulink PML block set, drag a Pic Master block to your new model

File Edit View Simulation Format Tools Help

DI@H§|%5|<}==>{P|QQ|> II‘H].I] INnnTlaI ;”

led Initialization LCD Display

LCD Initialization LCD Display

Generate Code [Double Clidd)

[100% |FixedStepDiscrete

Add an LCD initialization block, LCD Display block and generate code block to your model and
save it.

@ untitled = C=0rEn X

File Edit View Simulation Format Tools Help

D EHS| & S b ufoo [Noma =]
PI?BFE?? P cd Initialization | LCD Display
Pic Master LCD Initialization LCD Display
Generate Code

Generate Code (Double Click)

Ready 100% FixedStepDiscrete

Link them together as such using the block ordering dialog parameter of each block. The
parameters box is accessed by double clicking the block. To link blocks together, hold control
and click the first block followed by the second block. Next choose the appropriate pic from the
choose a pic dialog parameter in the Pic Master block. Double click generate code, then open
PICusb and burn the hex file onto your desired PIC. Alternatively, you can also select the 'Burn
Hex Code Automatically' parameter in the extra features tab of the Pic Master block.

2.2 While loop Tutorial

Open a new Simulink model and name it WhileLoopTutorial. Drag a Pic Master block
and Generate code block from the Simulink PML block set to the new model. This example will
use the Pic16f877, and so it will be selected from the Pic Master block.

File Edit WView Sirmulation Format Tools Help
DEeE&E| P E2B| == 4 [52r 5100 |Noma

Generate Code {Double Click)

|Fixed StepDiscrete

Next, drag a while subsystem block from the Ports and subsystems library under Simulink in the
Simulink browser to your new model. Then add an LCD Init block and MCU Digital Input read
block, and set the blocks as shown below.

8 WhileLoopExample S— = | M=
- e T—

-— — - —
File Edit View Simulation Format Tools Help
'] t
WD EEHE| $BB (== 4 D22 » = 00 [Nomal Y|
Inputs
RB1
Outputs .
Virtual
RDO,R0M,RO2,RD3,AD4,ADE,ADE,ROT L ke
Extended Inputs
Pic Master Extended Outputs LCD Initializaticn
¢l /T Cenfigurstion
Hl MCU Digi
gital §
1 =C hile | ...
Input Read Ll while { ... } Generate Code
MCU Digital Input Read While lterator
Subsystem Generate Code (Double Click)
Ready [100% | [T=0.00 |FixedStepDiscrete y
- S ————

Double click the While Iterator Subsystem block, and drag an LCD Display block and MCU Digital
Input Read block inside the subsystem. Set up the subsystem as shown below.

@ WhileLoopExample/While Iterator Subsystem C=Aren X
File Edit View Simulation Format Tools Help

D& BB == 1|2 » =0 [Nomal

LCD Display

LCD Display2

MCU Digital

B1
Input Read cong while |

MCU Digital Input Read Ic :
- While [terator

IC

Ready [100% | [T=0.00 |FixedStepDiscrete y

Turn on the Create Hex Code automatically and Burn Hex Code Automatically options under the
Extra Features tab in the Pic Master block as shown below. Then, connect your microcontroller
board, ensure it is in program mode, and then double click the generate code block. This
example will continually write the message, "You are pressing a key!" to the Icd while RB1 is
high. The complete model can be found in the model WhileloopExample.mdl under the
Samples folder.

Master (mask) (link) -

Define and configure PIC porperties to create a compliant ¢ code

| Configuration | Clock Frequency | Extra Features

Launch Code Report
Create Hex Code Automatically

Burn Hex Code Automatically

m

oK H Cancel][Help H Apply

2.3 Subsystem Enable Tutorial

Open a new model and set it up as shown below. MCU Digital Input Read is found
under the Digital I/0O library of Simulink PML blockset. The Enabled subsystem blocks can be
found under the Ports and Subsystems sublibrary under the Simulink library in the Simulink
browser. The Compare to Zero block can be found under the logic library. Do not worry if
there are currently input and output ports attached to the enable subsystem blocks.

B EnableSubsystemsExa Bl I
|l File Edit View Simulation Format Tools Help
DeH&E| 2| 4[5 2 r oo [Noma 53| Jrel:
MCU Digital
Input Read B1 ¢
MCU Digital Input Read In
Enabled
Generate Code Subsystemn
Generate Code {Double Clidk)
Compare
To Zero L 4
n
PIC Master oo
a | Virtual
Pic Master LCD Initialization E',uEbn;:tI:ﬂ
Ready [100% [[T=0.00 |FixedStepDiscrete Y

Double click on each enabled subsytem block and set it up as shown below. The removal of the
input and output blocks automatically get rid of the ports on the corresponding blocks.

EnableSubsystemsExa nabled Subsystem * =
File Edit View Simulation Format Tools Help
DSHS| $ BB q 22 o0 om |
Enable
Virtual delay
LCD Display Delay Blod
Ready [100% [|FixedStepDiscrete A

The mask of each LCD display block should appear as below, with the custom text being
whatever you desire. It is important to note that the code section must be output. Likewise,
the delay can be set to any arbitrary number, but for this example 500ms was selected.

H

MCU Peripheral (mask) (link) o

LCD Display operates in one of 2 modes, either input or custom text. In the
input mode, the block accepts integer inputs and writes them to the lcd

| screen. In the custom text mode the user enters the custom text desired for
each line of the lcd screen. The user has the option of selected either one or
twa lines, to clear the lcd before writing, and to go to a specific lcd location
before writing in any of the two modes. The use of this block requires the
LCDInit block to have been placed before it. The code can also be placed
either in the start, outputs, or terminate function using the code location

parameter.

FParameters

Display: [Custom Text v]
Number of Lines ’1 '] =

Enter First Line:
Key Pressed

Code Location | Output h

Clear LCD Before Writing
Go to LCD Location Before Writing
Writing Location (Hex number) ie 40

0

Block Ordering(Input/Output) [[}utput v] -

[ok][Cancel H Help] Apply

This example displays Key Pressed on the LCD when a key is pressed, and Key not pressed when
a key is not pressed. The complete model can be found in the model
EnableSubsystemExample.mdl under the Samples folder.

10

3. Support for individual blocks

3.1 MCU Peripherals Library

qlﬁf‘riajg T :‘ ? 3)] . A2D] 12S

GED = [
A @U-I:L Sl =

b-.:u—lIJ G2

'1\\ //, OFF q]—:; ﬂ]:rEI
TTRTC PDNE_IE‘H_ 2] F’RC}GHHMMER

é:ﬁ
®

B
S
2 mi
CETIIT0HE
|
T
T —Fraprer ©
-

] OGG L fix]
- 3
g—ﬁ'ﬂ'ﬁ_gcggcbgéc\: ! s}
= . L
] o M 1 Cr
conrmast | e [a]E =
LCD % &
(=
o}
f
>
PR T O = on L] 1]
«cBEESEREELGEDEE - =1
BACKLIGHT
=)
—~ FIC<DIF& FCOPE PCOPIE A
RkeveaDl [T IC-IOBLS
e W -
s R UEBUG
s | | = = © 06 O
z v - |ras Far? RAS i MmO o =
o o e 0 6 @ , :
L . 24 et
:ﬂ :'-'“ Rad FRE - e L= =
it ot : .@ AR et e
: [z . -
R0 RO 3 BE 5 RO R =1
rex o (0] || D@ @ = | bk
RED RO) .
aaz |: ZEN Cint] "d ::
e - SIS © mll e
A4d RAZ a0 T =
FEd Rzt 4 -
= k| |lelelele 3
:: e R0 ARz Aoz e =
©6 6 o6 =5 E
I =
RE R — =E1 T ROV g -
L=l F &0 06 0Ll
i bt B
A A e e Qoo
— p— o o
e L LR 5F

Figure 1- The Microcontroller Board

Every block in the MCU peripherals library corresponds and controls a module on the
Microcontroller board pictured above. For more information on each of the modules, refer to
the sections below or to the microcontroller board user manual.

3.1.1 Digital I/O
Every microcontroller that is inserted into the MCU board will have a number of pins
which can be set to input or output. Traditionally, to set a pin to input, the user would set the
associated TRIS bit in the program memory. For example, to set the pin RC7 to input, one
would write the line bsf TRISC,7 in assembly syntax or TRISC7 = 1 in C syntax.

11

Conversely, to set the pin RC7 to output, one would write bcf TRISC,7 in assembly syntax or
TRISC7 =0 in C syntax.

The digital 1/0 blocks are used to configure the 1/O pins and clear or set the output pins,
as well as to read the input pins. Before using any of the write or read blocks, the I/0
configuration block must be implemented with the appropriate array of pins for each port being
selected. A Matlab array takes the form "[1 2 3 4]". This block will essentially set or clear the
aforementioned Tris bits in the program memory. The MCU Digital Output Write block accepts
any Simulink block as input(s) and will set the pin of the pic associated with the input port to
whatever state the input portisin. This input should be a boolean value. Note, this block only
operates in the outputs function, any initialization of pins must be done using a custom code
block. The MCU Digital Input Read block will output the state of the selected pins via its output
ports at each simulation time step. The extended 1/0 blocks work in a similar fashion to the
aforementioned blocks, however the 12C Setup block must be used before setting the I/0
configurations. Also, the MCU must be in RUN mode for extended I/0 to function.

The MCU Digital Output Read block is a very different block intended for advanced users
only. The main premise of the block is to create a link between Matlab and the register
watcher standalone program. The use of the register watcher program requires a specific
firmware.

3.1.2 ADCInit

This block takes in a clock select and either right or left justified as parameters. The clock select
determines what frequency the conversion will take place at. If left justified is selected then the 8MSB
of the 10 bit conversion result will be placed in ADRESH, while the 2LSB will be placed in ADRESL. If right
justified is selected, the opposite is true.

3.1.3 ADCConvert

This block simply converts and analog to digital signal and outputs it as a 10 digit number. The
user is able to select which channel he/she wants to be converted, and ADRESH and ADRESL will output
from the top and bottom outputs respectively. This block only functions when its input is true. ADClnit
must be placed in the model with this block, and it is strongly advised to set the analog pins to input
with an 1/O configuration block.

3.1.4 EEPROMInitialize
EEPROMInitialize allows the user to set the first 8 values of EEPROM memory by
entering a matrix of length 8.

3.1.5 EEPROMWrite
This block functions in two modes, Input or custom values mode. The input mode
accepts two inputs, the first one being the value to be written, and the second one being the

12

address to be written to. In custom value mode, the user inputs pairs of the form [address
value] to be written to EEPROM.

3.1.6 EEPROMRead

This block allows the user to read any EEPROM value by selecting how many addresses
they wish to read, and inputted those addresses. The outputs correspond to EEPROM values of
the entered addresses.

3.1.7 External Interrupt

When the external interrupt block is double clicked a subsystem featuring a model
source and model start block are shown. The model start block simply sets up the interrupt
and the actual Interrupt service routine can be modified under the inter() function in model
source. Itis assumed that external interrupts occur on RBO.

3.1.8 Keypad

The keypad block takes in an input purely for block ordering purposes. It can be placed
in either the start or terminate code locations. The block will wait for the user to press a key
and output the result as an unsigned char from 0-15.

3.1.9 LCD Display

LCD Display operates in one of 2 modes, either input or custom text. In the input mode,
the block accepts integer inputs and writes them to the lcd screen. In the custom text mode
the user enters the custom text desired for each line of the Icd screen. The user has the option
of selected either one or two lines, to clear the lcd before writing, and to go to a specific Icd
location before writing in any of the two modes. The use of this block requires the LCDInit
block to have been placed before it.

3.1.10 RS232 Custom Code

The RS232 Custom Code block illustrates how to use blocks from the custom code
library. The user may change any of the code within the block to suit the needs of what should
be outputted via the RS232. The use of this block requires the RS232Init block to be placed
before it.

3.1.11 PWM

This block allows the user to create a pulse wave modulation using either the CCP1 or CCP2
modules. The use of this block requires RC1 and RC2 to be set as outputs, and the period and CCPRxL
values can be entered. The CCPRxL value determines the duty cycle. The prescalar for timer2 can also
be set from the mask dialog.

3.1.12 Capture
This block sets either the CCP1 or CCP2 modules to capture mode. The user can select when
they want the capture of timer1 contents to occur. The options are either every falling edge, rising

13

edge, 4th rising edge, and 16th rising edge of RC2. The block ordering is purely for the initialization
setup of timer 1. This block outputs CCPR1L and CCPR1H which will contain the contents of the last
capture of timerl.

3.1.13 Compare

This block sets either the CCP1 or CCP2 modules to compare mode. The user can select what
value they want to compare TMR1 to be setting the CCPRxH and CCPRxL parameters. TMR1 is a 16 bit
timer, so CCPRxH and CCPRxL should both be 8 bit numbers. Next, the mode can be selected from the
drop down menu. Low to high mode, changes pin CCPx pin(RC2 or RC1) from low to high when the
compare values match up. High to low mode does the exact opposite. IRQ mode requests an interrupt
service routine, while special event trigger causes analog to digital conversion to run.

3.1.14 RTCInit

This block is used as the initialization for RTC. RTCInit block requires I12C Setup block. All RTC
blocks rely on a DS1307 IC with lithium ion battery, the appropriate 12C firmware, and having jumpers
on both JP6 and JP7.

3.1.15 RTCRead

This mask requires four parameters, value, digit, block ordering, and code location.
Value is chosen from a popup menu, and allows the user to select from either Year, Month,
Date, Day, Hours, Minutes, or Seconds. Digit allows the user to select either the tens digit or
the ones digit of the aforementioned value. RTCInit block must be implemented to use this
block.

3.1.16 RTCSet

This mask requires allows the user to reset all, or set the date, time, time format,
AM/PM, and day of the week. Reset all sets all values to 0. RTCInit block must be implemented
to use this block.

3.1.17 Custom Code Library

The Custom Code library is very similar to the Simulink Coder library, and includes some
similar blocks. Basically, The System Start, Outputs, Terminate and Initialize blocks allow you to
place any pic compliant C code into any of these four main sections of code. The
VersatileCustomCode block allows the user to select virtual inputs and outputs for block
ordering as well as the specific code section. Model Header, and Model Source allow for
custom code to be added to the model header or model source respectively.
EmbeddedCustomInitCode takes the name of a file in the current working directory, and
embeds the contents within the start function. Customlnit Function takes the name of a C
code, puts that C code into a function, creates a header for the function, and then calls the
function in the specified function of the main code.

14

3.2 Driver Board Library

o [} e] | REEEE L A
Og u+nmmo= = EE _'"_. d f
-;':'qu-' = =l s e OOlOO OOIDO
) - =] - BB gy g en-

1 ' ?:‘" N E ;: o ﬁﬂﬂﬂ'] = v -]t r: -
,!F [Lm.. = KL 3-;;“ 5: ' 5
ooz =l 29
O'| -S43 T | T -1 : ‘

® e M3 23 BN qelEiE 1'!'!'0 0:19!0 0. 0,00
ogoknt 'l s & o o+ota o]

0'80 1 o B ek i o St e et ol = K 1

. bt o of o g I e e

‘oo i o p e o, o '

E-t a8+ aaet : =d-= T TIT

oo - o |

[- N - A g e

q“' Iﬂl‘ﬂll a =4

oo o & : :

[- - Ii& : : -— - ey

o B a & r seenonee

'.""'+_1r! W o o @ ellef e sass000l

nnnnn; 3 - La =, B - Fe) s 4
seseese | poee] | CEN “groovoee

[‘maas Bons = poga

-4--1: o8-8 saa & et = '.H

o e LLLLLLL L = ﬂ;ﬂll&

oo e 3 g 2y Ec.‘------1. ‘ale .8"" a-d‘---u‘ '--ol] 4 s]

= =i gy o ; Tt 1 L £ ¥ 3 £ J r
:*3*1;7!%.-.-..2*: : .-%Fr-ﬂsr-iep-—i;@‘p--’ ﬂhl
soeesl Y oene 3 SR AT 00| 00000/00 00000
v e (8 i to,| sseadfP 070.0[0°0.0.00 000 070 000 ®

Figure 2 - An overview of the driver board

The Driver Board V 3.0 has been designed with the user in mind. It is an educational printed
circuit board that offers a complete method to test and understand motor drivers. The Driver Board is
capable of running 2 DC motors, 1 unipolar stepper motor, 1 bipolar stepper motor, 1 servo motor and
1 brushless DC motor and it provides the user the option of running the motors either manually, using
an external microcontroller or using the computer application software. Figure 2 shows an overview of
the complete driver board split into separate modules. Table 1 on the following page provides a brief
description of each of the modules.

15

Module

Description

1 - Power

2 = Computer Interface

3 = Unipolar Stepper Controller

3a = Unipolar Stepper Driver
4-DC 1 Controller

4a=-DC 1 Driver
5-DC 2 Controller

5a=DC 2 Driver
6 = Bipolar Stepper Controller

6a — Bipolar Stepper Driver
7 = Brushless DC Controller

7a=Brushless DC Driver

8 = Servo Motor Controller

9 - Mode Selector

Provides the necessary power for the controller side of the board. It
has a 2.1 mm jack for a 12 V adapter, the voltage is regulated to +5V.
A 1.25 A protection fuse can also be found in this module
Provides a USB connector for communication with the PC. The on-
board microcontroller (PIC18F4550) resides on this module. The PIC
microcontroller is responsible for the PC-Board communication
Provides the tools to control the speed and direction of the unipolar
stepper motor. It also provides the required terminals to drive the
unipolar stepper motor when using an external microcontroller.
Set of transistors and LED indicators that allow the user to verify
which coil of the motor is being energized
Provides the necessary tools to control the speed and direction of the
first DC motor.
Set of transistors forming an H-bridge. Provides LED indicators to
shows the direction in which the first motor is running
Provides the necessary tools to control the speed and direction of the
second DC motor.
Set of transistors forming an H-bridge. Provides LED indicators to
shows the direction in which the second motor is running
Provides the necessary tools to control the speed and direction of the
bipolar stepper motor. It also provides the required terminals to drive
the bipolar stepper motor when using an external microcontroller.
Combination of DC 1 and DC 2 drivers, connected by jumper J1
Provides the necessary tools to control the speed and direction of the
brushless DC motor. It also provides the required terminals to drive
the brushless DC motor when using an external microcontroller.
Combination of three half bridges connected to the phases of the
motor. It provides LED indicators to show the two phases that are
always on.
Provides the necessary tools to control the movement of the servo
motor.
Switch to select between running the DC motors or the bipolar
stepper motor. LED indicators show what mode the board is on.

Table 1 - Description of driver board modules

16

Open UnipolarMotorExample in the Samples folder. The model should appear as shown below.

B UnipolarMotorExample

File Edit Wiew Simulation Format Tools Help
D eEE # b = 5000 [Nomal ~|
PIC Master
18FETY
Pic Master
UnipolarMotor —‘
Unipolar Maotor |
Scope
Ready 100% FixedStepDiscrete

To monitor and control any motor in the Driver Board library, involves three simple steps. First,
the block must be double clicked to open the control GUI as shown below.

,

File View Help

EZ:II

- Forward

STATUS: Not Connected O

Unipolar Monitor

Next, the scope should be opened and the simulation should be started. Finally, the user must
click the play button on the control GUI to see the results display on the scope. Note, the Pic
master block is only included to set the appropriate solver parameters.

The Driver board library was expanded to add a motor controller block. This motor
controller block takes the type of motor as a parameter. Depending on the type of motor,
different options such as duty cycle, direction, and enable are provided as inputs to the block.
Putting the first input as a 1 turns on the motor, whereas 0 turns it off. Putting the second
input as 1 makes the motor move forward whereas 0 makes it go reverse. Duty cycle values

17

range from 0-4. All other motors can be controlled and monitored in a similar manner as
shown by the unipolar motor above.

3.3 Sensor Board Library

“!llll mn ;;i

Figure 3 - Picture of the Sensor board

The main purpose of the sensor board library is to monitor the signals of the sensros
attached to the sensor board pictured above in Figure 3. An example of how to use the Input
Monitor block in the sensor library is shown below.

Open SensorBoardinputMonitorExample in the Samples folder.

18

.
B SensorBoardlinputMonitorExample EE

File Edit View Simulation Format Tools Help I
DEeE& 4 P #5000 [Nomnal |
signal -
Input max I I [
Monitor 4,—’
min Scope
Input Monitor
Ready 100% FixedStepDiscrete

To monitor and control any input sensor, double click the Input Monitor block and select a
sensor after connecting the sensor board.

um——

| il

I File Bootloader Help

A o =m

Temperature Sensor
Switch Sensor 1
Switch Sensor 2
Phototransistar 1
Phototransistar 2
Comparator Module
PIR. Sensor
Photodiode
Resistive Sensar 1

COMMECTION Resistive Sensor 2
R ———SSSs cinnal randitianina Kadola

Open the scope block and press simulate. Setting the simulation time depends how long the
simulation will run for. The scope block is shown below. The top graph will display the signal,
while the middle and bottom graphs display the max and min respectively.

19

=] 1000 2 . 4000 ROO0

Time offset: 0O

FUNCTION [5]
e e T JEEEETEREECEE! N
o ‘0o o |2 o o
§ m 5 E dNd 1 B N [+]
> = [s] (o] _ fr
Mo o °p e 2538 =238 g
o o 2] u w0 o0
i N i | Py P
3 S o« RkOSY O« WO 1H i
T — T o{:}osa

S440 IdWY L10A ALND D3dd

BATT! H}\ L1 BVPAS OOOOOOOOOODOOD
3 =00
5% Bl ol AD7862
Vv+—[0 @J1|5%F MAXTI3CPE
0 njo 0)2]6f
R oo 3|7 ©C9000000 |l oooooooo000000
8- <0 0J4[8] o o 0000000000000
P O RSENSE u! SPE
TSI . P18F2550 ol o £83
o “3 UoG0000000000000 |55 500
& B B S 0z 0z RESET SNEZNNE ;NN RB-0512D
© ° OKKSO o oflg K
] par (o o) oo
| o o 3 : 2
- fo} z E 30¢8 O 0 0 P
[=N-] oéggc.gmmzmo 05
H o o L 000000000 £
o R1 Ri oooocoooooflg % 9 9;F= L
Utility Board v2.0 "EFPEIEEED wovow

Figure 4 - Overview of utility board

20

The utility board library is used to monitor either channel A, B, A+B or the signal
generated by the utility board pictured in figure 4. Below is a tutorial on how to use the
Channel A block in the utility board library. Open UtilityBoardChannelAExample in the Samples
folder. It should appear as shown below.

File Edit Wiew Simulation Format Tools Help

DzE & b = 1000 [Nomal -]

Aversge

Channel A

Signal

Channel A

FixedStepDiscrete

Double click the channel A block. The GUI below should appear.

File View Reset Calibrate Help
o
VOLT/DIV VOLT/DIV
Display Display
ox BN o e ® sve W o .
) GND 2V - - GND - -
@ DC v () Square
nEY
Volage S Voltage
02v
Average Lav - i Average 01 - -
=])
Channel B ChA+ChB
VOLT/DIV VOLT/DIV
Displey Dispay
©) AC Offs. Ampl. @ ChAChB Offs. Ampl.
) GND - -) GND 2V - -
© 0c () ChAsChB Y
Voltage Voltage 2
0zv
Average N - Average v N N
= =] | [osea

Press the play button after connecting the Utility board. Signals should appear on the gui.

21

,

File View Reset Calibrate Help
Display VOLT/DV Display VOLT/DIV Set
® AC - COffs. Ampl @ Sine sv COffs. Ampl.
© GND 2 ~ Bl GND :
@ DC i () Square
Woltage B Voltage
282 12y 1675
Average pav N - Average 01 - N
049 = 0162 =
ChA+ChB
Display VOLT/D Display VOLT/DIV
@ AC lII Offs. Ampl @ ChAChB - Offs. Ampl.
") GND ~ Hi- > &I 2v = 0 -
© DC () ChAChB Y
oltage Voltage LY
034 0.01 L2
Average N - Aversge 01V - -
0261 Enter) o5 “Eter)

Next, open the scope and run the simulation. The voltage of channel A and average of channel
A will appear on the scope. The other blocks in this library work in a similar fashion to the
channel A block shown above.

22

