
saces
A Simple Artificial Chemistry

Experiment System

DIPLOMA 2006
Berne University of Applied Sciences

School of Engineering and Information Technology
Departement Information Technology

Authors
Anthony Aguillon, Daniel Noelpp

Supervisors
Dr. Peter Schwab, Dr. Thomas Hinze

Expert
Prof. Dr. Federico Flueckiger

Abstract

‘saces’ is a simple tool written in Java which visualizes chemical pro-
cesses using 3D animation of molecules. It is intended as both an application
in artificial chemistry and as an educational tool for students and teachers in
chemistry. ‘saces’ simulates ideal gases in a rectangular reaction vessel. The
molecules are hard, colored spheres.

An artificial chemistryis a man-made system that is similar to a real
chemical system. There is a population of molecules, a set of reaction rules
and an algorithm which executes the reactions. With artificial chemistry
many applications are possible: artificial life, chemistry modeling, mas-
sively parallel execution of finite automata, graph rewriting and modeling
solution processes of NP-complete problems.



saces

A Simple Artificial Chemistry Experiment System

Contents

1 Introduction 5

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Fields of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . .7

1.3 Software and Hardware . . . . . . . . . . . . . . . . . . . . . . .7

1.4 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .7

2 What is Artificial Chemistry? 8

2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The SAT Problem . . . . . . . . . . . . . . . . . . . . . .9

2.1.2 SAT and Artificial Chemistry . . . . . . . . . . . . . . .11

2.2 The General Form of an Artificial Chemistry . . . . . . . . . . . .12

2.2.1 The Molecules . . . . . . . . . . . . . . . . . . . . . . .12

2.2.2 The Reactions (Collision Rules) . . . . . . . . . . . . . .12

2.2.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . .13

2.3 Applications in Artificial Chemistry . . . . . . . . . . . . . . . .13

2.3.1 Information Processing . . . . . . . . . . . . . . . . . . .14

2.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . .15

2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . .16

2



saces

CONTENTS

3 Proposal of ‘saces’ 17

3.1 Fact Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2 The Position of ‘saces’ in Artificial Chemistry . . . . . . . . . . .18

3.3 The Artificial Chemistry of ‘saces’ . . . . . . . . . . . . . . . . .20

3.3.1 The Molecules . . . . . . . . . . . . . . . . . . . . . . .20

3.3.2 The Reactions . . . . . . . . . . . . . . . . . . . . . . . .20

3.3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . .21

3.4 Main Features of ‘saces’ . . . . . . . . . . . . . . . . . . . . . .21

4 The User Manual 23

4.1 First Steps with ‘saces’ . . . . . . . . . . . . . . . . . . . . . . .23

4.2 The Main Window . . . . . . . . . . . . . . . . . . . . . . . . .26

4.3 The Settings Dialog . . . . . . . . . . . . . . . . . . . . . . . . .27

4.4 Data Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

4.5 Command Line Arguments . . . . . . . . . . . . . . . . . . . . .34

5 Some Experiments with ‘saces’ 37

5.1 The Default Experiment, an Artificial Explosion . . . . . . . . . .37

5.2 Detonating Gas . . . . . . . . . . . . . . . . . . . . . . . . . . .38

5.3 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . .40

5.4 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . .41

5.5 A Lotka-Volterra System . . . . . . . . . . . . . . . . . . . . . .44

6 The Internals of the tool ‘saces’ 48

6.1 Package Structure . . . . . . . . . . . . . . . . . . . . . . . . . .48

6.1.1 The UI Packagessaces.appandsaces.app.gui. . . . . . . 49

6.1.2 The Experiment Model Packagesaces.exp. . . . . . . . . 49

6.1.3 The Input/Output Packagesaces.file. . . . . . . . . . . . 49

6.1.4 The OpenGL Packagesaces.gl. . . . . . . . . . . . . . . 49

6.1.5 The Plug-and-play Packagesaces.pnp. . . . . . . . . . . 49

6.1.6 The Simulation Packagesaces.sim. . . . . . . . . . . . . 50

3



saces

CONTENTS

6.2 Data Architecture . . . . . . . . . . . . . . . . . . . . . . . . . .50

6.2.1 The Experiment Data Model . . . . . . . . . . . . . . . .50

6.2.2 The Experiment XML File . . . . . . . . . . . . . . . . .53

6.2.3 The Simulation State . . . . . . . . . . . . . . . . . . . .53

6.3 The Process Architecture . . . . . . . . . . . . . . . . . . . . . .56

6.3.1 The Mediator . . . . . . . . . . . . . . . . . . . . . . . .56

6.3.2 The Simulation Process . . . . . . . . . . . . . . . . . .56

6.4 The Steps of the Simulation Process . . . . . . . . . . . . . . . .59

6.4.1 Initializing the Experiment —init() . . . . . . . . . . . . 61

6.4.2 Initial Distribution of the Particles —distribute() . . . . . 61

6.4.3 Repositioning of the Particles —position() . . . . . . . . 61

6.4.4 Reflecting at the Reaction Vessel Walls —reflect() . . . . 62

6.4.5 Measurements of Physical Values —measure(). . . . . . 62

6.4.6 Collision Detection —detect(). . . . . . . . . . . . . . . 64

6.4.7 Merge Reactions —merge() . . . . . . . . . . . . . . . . 65

6.4.8 Transform Reactions —transform() . . . . . . . . . . . . 66

6.4.9 Collision Response —response() . . . . . . . . . . . . . 67

6.4.10 Decay Reactions —decay() . . . . . . . . . . . . . . . . 71

6.5 How to Implement the Plug-and-play Classes . . . . . . . . . . .72

6.6 Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . .74

6.7 The Binary Logger . . . . . . . . . . . . . . . . . . . . . . . . .76

7 Java OpenGL (JOGL) 79

7.1 A Bit of History . . . . . . . . . . . . . . . . . . . . . . . . . . .79

7.2 ‘saces’ and OpenGL . . . . . . . . . . . . . . . . . . . . . . . .80

7.3 Viewing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . .81

7.4 Detail Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

7.5 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

7.6 OpenGL State Variables . . . . . . . . . . . . . . . . . . . . . .85

A Known Problems 86

4



saces

A Simple Artificial Chemistry Experiment System

Chapter 1

Introduction

1.1 Summary

‘saces’ is a simple educational tool which visualizes chemical processes and re-
actions using 3D animation of molecules. The paradigms of artificial chemistry
are helpful when considering a compromise between costly physics based calcu-
lations and a more abstract approach to modeling. Artificial chemistry is also in
itself a fascinating and important subject.

Adleman demonstrated that computations can be carried out using molecules
and solved aTraveling Salesman1 problem using real DNA in 1994. An artificial
chemistry can be designed to model DNA computing and their operations. Other
applications of artificial chemistry are parallel execution of finite automata, graph
rewriting, artificial life and chemical and biology modeling. Molecules in arti-
ficial chemistry need not always represent physical molecules. Strings, graphs,
bit vectors etc. are also good candidates for artificial molecules. Reaction rules
then recombine them in diverse ways. Artificial chemistry is therefore more about
speculative thinking than it is an attempt to model chemistry with physical real-
ism. TheConway’s Game of Life2 can be viewed as an extremely abstracted form
of artificial chemistry.

Despite the level of abstraction dictated by artificial chemistry, ‘saces’ uses a
more concrete model. The molecules are hard, colored spheres which move as an

1The problem statement is: Given a number of cities and the costs of traveling between them,
what is the cheapest round-trip route that visits each city once and then returns to the starting city?

2It is a cellular automaton with two states: A cell can be either alive or dead. The rules are:
a) A cell with fewer than two and more than three neighbors dies.b) A cell with exactly three
neighbors comes to life. All births and deaths occur simultaneously in the grid [Sil05].

5



saces

1 Introduction

ideal gas in a rectangular reaction vessel. They may collide with each other. If a
reaction applies upon collision, the educt molecules are removed from the simu-
lation and the product molecules are added. Physical conservation laws for mass,
energy and momentum can be modeled where necessary. A few sample experi-
ments are available: an abstract explosion, a simplified detonating gas explosion,
Brownian movement and others.

Figure 1.1: A screenshot of an ‘artificial’ explosion

More general-purpose experiments are possible. A Lotka-Volterra system
models predator-prey interaction. The Lotka-Volterra experiment fluctuates as
expected: The number of prey molecules decreases as the number of predators
increases. The predators in turn begin to die out when most of the prey has been
eaten, giving the prey species a chance to recover. The cyclic nature of predator-
prey systems can therefore be visualized. A finite automaton experiment is also
included. The states and the letters of the input alphabet are modeled as molecules.
State transitions are reactions of which the new state is the product.

‘saces’ is developed using Java 5 and JOGL (Java OpenGL) and is available
for Windows, Mac OS X and Linux3. JOGL is a native wrapper which provides
hardware-accelerated 3D graphics to Java applications. Experiments are saved as
XML files and validated with XML Schema.

3‘saces’ is tested only on Windows.

6



saces

1 Introduction

1.2 Fields of the Thesis

• Theoretical Computer Science and Artificial Chemistry

• Software Engineering: OOA and OOD, Profiling and Optimization

• Software Development: Java 5 and OpenGL

• Natural Science: Physics and Chemistry

1.3 Software and Hardware

Software Java 5 and JOGL.

Hardware Platform neutral, but rather ressource-intensive.

A video card with OpenGL hardware acceleration and enough RAM (around
256 MB or more) is recommended.

Wheel button mouse For zooming in and out of the simulation space.4

1.4 Acknowledgments

We would like to acknowledge the assistance of everyone who supervised or took
the time to review our work. We especially thank Dr. Thomas Hinze from the
TU Dresden, Dr. Peter Schwab from the Berne University of Applied Sciences,
and Prof. Dr. Federico Flueckiger from the University of Applied Sciences of
Southern Switzerland for their invaluable input. We would also like to thank Dr.
Olivier Biberstein for his advice, Ariana Aguillon, Yvonne Hegi, Matthias Noelpp
and Victor Senn for the critical reviews. Last but not least, we would like to thank
our friends and relatives for their support and patience.

4There is a keyboard mapping, but using the mouse wheel is more intuitive.

7



saces

A Simple Artificial Chemistry Experiment System

Chapter 2

What is Artificial Chemistry?

2.1 Rationale

As the name suggests, anartificial chemistryis a constructed, artificial world.
Laws of physics and chemistry work as prototypes for the rules applied in an
artificial chemistry. There is therefore no attempt to emulate nature to the highest
degree of detail.

The famousConway’s Game of Life[Sil05] follows very simple rules yet ex-
hibits intricate patterns and forms of quasi-life when it is played. The contrast
between the simplicity of the game’s design, and the complexity resulting from
it, illustrates the usefulness of simplifying complex processes in order to better
understand them. TheGame of Lifeis Turing-complete.1 The rules of theGame
of Life are abstract and detached from natural science laws. Artificial chemistry
uses similar abstraction by borrowing the concepts of molecular interaction (in
a reaction vessel), and applying these concepts to model other systems. It does
not attempt to model the real world with physical realism, as doescomputational
chemistry.

In [DZB01], page 227, a broad definition is given:

An artificial chemistry is a man-made system that is similar to a real
chemical system.

Some might ask: Why invent artificial worlds? What are the benefits of “fantasy”
worlds with rules not applying to the real laws of physics?

1A computational or logical system is calledTuring-completeif it has a computational power
equivalent to a universal Turing Machine. In other words, the Game of Life can in principle
compute everything a computer can compute.

8



saces

2 What is Artificial Chemistry?

One reason is simplification. Simple models are easily understood and there-
fore easy to use. Keeping the model as simple as possible, also helps in keeping
the focus on the questions at hand, instead of on the model. There is also a cer-
tain educational value. Students or people not versed in a specialized and difficult
subject can investigate simpler, more intuitive models, which in turn encourages
their understanding for the real-world systems the models represent. Lastly, one
can compare abstracted and strictly controlled models with real-world models (or
with experiments) and be surprised about the similarities and differences between
the two.

In computational chemistry some properties of molecules (reaction behav-
iour, molecular “shape”, total energy, dipole moment etc.) are modeled with
quantum-chemical computational methods. Software has been developed which
is based on many methods that solve the molecular Schrödinger equation. For
example a package of Fortran programs, the Molpro quantum chemistry package
[WKL +03], can perform accurateab initio2 calculations for single large mole-
cules. Large-scale numeric calculation are needed for many of these methods.

Artificial chemistry, however, is more about speculative thinking than about a
realistic model of the world. The aims and intentions in using artificial chemistry
are more important. One might want to explore computation models like DNA or
molecular computing. Can some problems from theoretical computer science be
solved using artificial chemistry? How do the time and space complexities behave
asymptotically?

In DNA computing aTraveling Salesmanproblem has been solved using real
DNA [Adl94]. Adleman demonstrated with the experiment the feasibility of car-
rying out computations at the molecular level. It is therefore possible to solve
other well-known Computer Science problems like the satisfiability of logic ex-
pressions, the so-called SAT problem, in this way.

2.1.1 The SAT Problem

To see the connection between artificial chemistry and real chemical reactions,
we take the SAT Problem as an example. First we explain the problem, then
what happens if we tackle it with a massively parallel computer using DNA- or
chemical computing.

2In quantum chemistry or quantum mechanicsab initio is understood as the solving of the
Schrödinger equation using only the “first principles”, using only the constants of Natural Science,
for example. For a more complete treatment ofab initio see [Sce04].

9



saces

2 What is Artificial Chemistry?

A logic expression consists of boolean variables joined together with conjunc-
tions and disjunctions. Some variables can be negated. An example is:3

(x1 ∨ x2 ∨ x4) ∧ (¬x3 ∨ x4 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ (x3 ∧ ¬x5))

The question is: Is it possible to find an assignment to the variables so that the
evaluation of the logic expression yields the valuetrue?

The SAT problem is NP-complete. Algorithms to solve SAT are based on the
full enumeration of all possible assignments and their verification.4 We therefore
have to try every possible solution before we can answer for sure: “No, this logic
expression does not have a satisfiable assignment”. Computers of today are not
very good at coping with the SAT problem. The SAT problem is important how-
ever, because many practical problems (database queries, Artificial Intelligence
and expert systems, Electronic Design Automation etc.) depend on SAT.

The complexity (expense in either time or memory) doubles with every addi-
tional variable. Suppose we have a computer that can solve a SAT problem with
25 variables in about one second. If we give it a SAT problem with twice as many
variables, namely 50 variables, it will need about a year to find an answer! (We
assume about 30 nanoseconds for a step, about 33 million steps for 25 variables,
and these 33 million steps squared (1.12 · 1015) for 50 variables.)

If we have a good computer using chemistry or molecular biology for its calcu-
lations, we can trade memory for time. Instead of trying out all possible solutions
one after the other, we try out all possible solutions at once and extract the solu-
tions we require. Such a computation model allows a massively parallel execution
of algorithms. Information can be packed much more densely using molecules in
a test tube than using electromagnetic states in RAM. An operation can be applied
to all the molecules simultaneously, for example by pouring an reagent into the
test tube.

There is, however, still an important limitation when trading time for memory.

The SAT problem has exponential complexity. If we added an additional vari-
able to a SAT problem, we would double the problem space, because there would
be twice as many possible solutions to verify. Suppose we buy a computer which
works twice as fast. We would only be able to solve SAT problems withonemore
variable in the same time: a rather pathetic improvement.

3The vee operator∨ is the disjunction (‘or’). The wedge operator∧ is the conjunction (‘and’).
And¬ is the negation operator (‘not’).

4The NP in NP-complete comes from non-deterministic polynomial. A non-deterministic Tur-
ing machine would solve all problems in NP in polynomial time. Equivalently a deterministic
Turing machine canverify the solutions of all problems in NP, in polynomial time. See footnote
for finite automaton on page 44 for further explanation.

10



saces

2 What is Artificial Chemistry?

If we had a computer based on chemistry working a million times faster, then
we could add twenty more variables to the SAT problem (the dual logarithm of
a million is roughly 20). This is better, but not much better. If we want to add
100 more variables, we would run into problems. Suppose we need2100 water
molecules with a molecular weight of around 18, then they would weigh

18 · 2100

NA

≈ 38 · 106

grams or around 38 tons (NA being Avogadro’s number). With a few more vari-
ables we would need more water than there is available on the earth. This is the
limitation of the memory for time tradeoff.

It is not known whether a more efficient algorithm for the SAT problem exists
or not. One of the greatest unsolved problems of Mathematics and Computer
Science is theP versus NPproblem [Coo03], [Dev02]. Most theoretical computer
scientists “believe” that there are no efficient (polynomial-time) algorithms for
NP-complete problems. But this has not been proven yet.

A practical way to cope with the SAT problem is to use heuristics (backtrack
search). In practice, the SAT problem can be solved in reasonable time for many
instances [Nad02].

2.1.2 SAT and Artificial Chemistry

Suppose someone designs a working computer with DNA. With simple reasoning
it has been shown that even massive parallelity with many DNA strands is not
“enough”. Massive parallelity will just push the limit of the problem size by a few
dozen units.

This insight leads us to suspect that problems more complex than the one dis-
cussed above are perhaps better formulated using artificial chemistry, and there-
fore suggest the analyzing of computation models as one of the applications of
artificial chemistry.

A ‘saces’ experiment has been developed for an artificial chemistry of a finite
automaton (see section 5.4, page 41). Many, if not all, NP-complete problems can
be “run” using finite automata. If a certain final state is reached, the question is
answered with ‘yes’. We could therefore create a representation of a SAT problem
as a ‘saces’ experiment.

A finite automaton, however, is not Turing-complete.

11



saces

2 What is Artificial Chemistry?

2.2 The General Form of an Artificial Chemistry

A formal definition of anartificial chemistryis given in [SBB+00] and [DZB01].
A model of a reaction vessel or a domain containing objects or molecules and of
reactions inside the vessel is assumed. The definition is (see [DZB01], section 2.1,
page 227):

An artificial chemistrycan be defined by a triple(S, R, A), whereS
is the set of all possible molecules,R is a set of collision rules rep-
resenting the interaction among the molecules, andA is an algorithm
describing the reaction vessel or domain and how the rules are applied
to the molecules inside the vessel.

Let us have a look at the molecules, the reactions and the algorithm.

2.2.1 The Molecules

The elementss ∈ S are molecules. They can be objects (like strings of characters
A, C, G, T as highly abstracted models of DNA strands) or numbers to solve
mathematical problems. To solve the SAT problem, one can use boolean arrays or
binary strings. A yes/no value in such a string is an assignment to a variable in the
logic expression. The setS might even be infinite (as the set of natural numbers).
This does not mean that the population of molecules inside the reaction vessel
itself is infinite. Only the “choice” of possible elements ofS is infinite.

The molecules can have additional parameters like position or speed inside the
reaction vessel. These parameters are used in the reaction rules.

2.2.2 The Reactions (Collision Rules)

R, the set of reaction or collision rules, describes the interactions between the
objects in the domain. A ruler ∈ R can be written in the same notation for
chemical reactions:

s1 + s2 + · · ·+ sn −→ s′1 + s′2 + · · ·+ s′m wheresi, s
′
j ∈ S

The elementssi are educts of the reaction and the elementss′j products. The
educts react with one another and are removed from the population in the vessel.
After the reaction, the products are added to the population. The “+” sign is not a
mathematical operator here, but a separator between the reagent symbols.

12



saces

2 What is Artificial Chemistry?

Rules can have conditions and, as molecules, additional parameters. The most
important condition for a rule to apply, is that all educts of the rule must be avail-
able or have collided. An additional condition could be a reaction probability (the
reaction is executed only if a random number in range[0..1] exceeds the reaction
probability). Another rule parameter or condition is the activation energy (the rule
is activated only if the kinetic energy of the educt molecules exceeds the activation
energy).

The set of rulesR can be infinite like the set of moleculesS. Infinitively
many rules can be constructed by a meta-rule, as the rulea + b → (a/b) + b, for
example.a andb are natural numbers anda is divisible byb. The products are
the new natural numbersa/b andb. Such a meta-rule is useful for an artificial
chemistry designed for findingprime numbers(see [SBB+00], page 13).

2.2.3 The Algorithm

The algorithm determines which molecules react with one another, what is done
with the reaction products and how to treat molecule and reaction parameters. A
very simple artificial chemistry does not require the notion of space. Molecules
which “collide” with one another are selected randomly and reaction rules are
applied to the collided molecules. ‘saces’, however, uses a three-dimensional
reaction vessel and molecules collide when their trajectories intersect.

Another approach is to use differential equations. Reaction rules are reformu-
lated to contain stoichiometry factors. Such a rule can be understood as a recipe:
“Add two parts of agentA, three parts of agentB etc., and you get one part of
agentX and three parts of agentZ”. Instead of acting on single collisions, the
algorithm calculates the concentration of the agents in the reaction vessel with
differential equations (see [DZB01], page 229).

There are many different approaches to letting molecules react and to han-
dle reaction products. Sometimes an alternative definition of artificial chemistry
makes more sense, namely a tuple(S, I), whereS is the same as before, a set
of molecules andI a description of the interactions among the molecules. This
definition avoids a separation between reaction rules and the algorithm if they are
coupled tightly.

2.3 Applications in Artificial Chemistry

Because of artificial chemistry’s fairly elevated level of abstraction, it becomes
possible to model a wide palette of formal problems. These models include self-

13



saces

2 What is Artificial Chemistry?

organization and evolution, automatic proof, chaotic systems, graph rewriting and
DNA computation.

Applications in artificial chemistry can generally be classified into three types:
Information processing, modeling and optimization. All three application types
rely on the one significant aspect of artificial chemistry which keeps it bound to
natural chemistry, namely the metaphor of interacting molecules which are capa-
ble of recombination and procreation (the creation of new molecules).

2.3.1 Information Processing

We will look at two examples for information processing:DNA Computingand
Graph Rewriting.

DNA Computing

DNA computing uses real DNA molecules for calculation. The data density of
DNA and its double stranded nature, allows the possibility of massively paral-
lel computation. This was demonstrated by Adleman in 1994 [Adl94] when he
solved aTraveling Salesmanproblem using real DNA. Not only did this illustrate
the possibilities of using DNA to solve a class of problems which are tedious to
solve using traditional computing, it also demonstrated the unique characteristics
of DNA when used as a data structure.

The approach usually taken when modeling DNA computing, is the so-called
Adleman-Liptonparadigm, an extension of Adleman’s work. This modeling tech-
nique consists of three basic steps, namely: The molecules are initialized accord-
ing to the problem at hand (preparation phase). The molecules are then mixed
together to generate solution candidates (assembly phase), and finally the solu-
tions are picked out from among these candidates (detection phase). This basic
algorithm exploits the massive parallelism of biochemical reactions to perform an
exhaustive search.

Information processing applications in artificial chemistry can be stripped of
the physical realism, assuming only the metaphor of molecular interaction. In
[Tom04], an artificial chemistry for DNA computation is modeled using theAdleman-
Liptonparadigm.

14



saces

2 What is Artificial Chemistry?

Graph Rewriting

Graph rewriting is also refered to asgraph grammarsin the context of formal
language systems. The termrewriting used in computer science and logic covers
a wide range of non-deterministic methods of replacing subterms of a formula
with other terms. This is practical in equation solving.Rewrite systemsbeing
non-deterministic, do not dictate a strict substitution rule the way an algorithm
would, but offer a set of possible substitution for each term. This is where the
combinatorial properties of an artificial chemistry come in handy.

Graph rewriting is in itself abstract and can be applied to various models,
some of which have already been investigated. One of these is the investigation of
chemical networks using an artificial chemistry based on graph rewriting [BFS03].
Large chemical reaction networks were generated and their generic properties an-
alyzed. Again,genericemphasizes the adequacy of an artificial chemistry for this
kind of analysis.

2.3.2 Modeling

Modeling applications include the above mentioned investigation of complex and
dynamic systems such as biological or evolutionary systems, social systems, con-
sumer-producer dynamics (predator-prey systems) and parallel processes. An ex-
ample of such an application is aLotka-Volterraexperiment for ‘saces’. The ex-
periment models predator-prey interaction (see section 5.5, page 44).

2.3.3 Optimization

Optimization is closely related to evolutionary computing because both can be re-
duced to combinatorial problems, problems easily modeled by an artificial chemis-
try. Optimization consists of picking the best possible solution out of a set of can-
didates which in turn is a tool used by evolution to make a system sustainable. The
Traveling Salesman Problemis an example of such an optimization problem. The
optimal solution for such problems can only be obtained (in classical terms) using
an exhaustive search. Many optimization problems are in fact NP-complete, mak-
ing artificial chemistry an interesting approach when investigating possible ways
in which to tackle them.

15



saces

2 What is Artificial Chemistry?

2.3.4 Summary

As we have seen in this chapter, applications in artificial chemistry are numerous
and diverse in what they are capable of modeling. Most, if not all, of the appli-
cations presented here rely on simplified models which, despite their simplicity,
result in complex behaviour. This is a trait common to complex and dynamic
systems which can be studied with artificial chemistry. This is where simplifica-
tion and the setting of limits become essential to the modeling process. Making
assumptions or even educated guesses about a complex system is usualy more
practical than attempting to model the system with utmost realism.

This paradigm is a very powerful analytical tool because its application does
not lie in chaos, nor in order, but in the very colorful realm between the two.
This is where real world problems originate, and where life itself originates. The
simplification and limiting aspects of the modeling concepts described here are
also fundamental to the paradigms offered bySystemics[NBH01].

Investigating the dynamics of complex systems such as life employs the con-
cept ofemergence. Emergence can be described as deducing a system’s global
properties by observing the interaction of the system’s components. Again, the
interaction is emphasized and not the component itself. This is because local in-
teraction between components, each following certain simple rules autonomously,
can effect the system’s global behaviour, leading to theemergenceof global prop-
erties. Directing investigation toward the system’s components instead of their
interaction would obscure the macro view completely. Simply put, a complex
system such as life, owes much of its being (i.e. system properties) not to the
properties of its components, but to the mutual function of its components. The
basic characteristics of artificial chemistry therefore reflect the idiosyncrasies of
life itself.

The suitability of artificial chemistry for modeling such systems lies in its
ability to idealize a system to an extent at which all of the system parameters
become controllable. By defining a distinct imaginary border around the core
parameters of a complex system, the system can be investigated using formal
methods. The results of such investigations, although based on assumption rather
than fact, may yield surprisingly realistic results when compared to the empirical
values obtained through observation of the complex system as a whole.

16



saces

A Simple Artificial Chemistry Experiment System

Chapter 3

Proposal of ‘saces’

As a part of this work, a small and simple tool is proposed: ‘saces’. The name is an
acronym forSimple Artificial Chemistry Experiment Systemand is the code-name
of the project. It does three-dimensional visual simulations of ideal gas processes.
It is useful as both an educational tool and as an application inartificial chemistry.

3.1 Fact Sheet

The tool ‘saces’

• is a moderately realistic simulation of an ideal gas undergoing reactions,

• has a three-dimensional smooth visual animation of the chemical process,

• is useful as a simple educational tool and as an application of artificial
chemistry,

• allows the specification of particles and chemical reactions,

• uses a space partioning algorithm for almost linear-time collision detection
between molecules,

• uses Monte-Carlo methods for collision response and reactions,

• is developed in Java 5 using JOGL (Java OpenGL, see [Dav04]),

• allows replacement of steps in the simulation loop (Collision detection and
response, handling reactions etc., see section 3.4 on page 22),

17



saces

3 Proposal of ‘saces’

• runs on Windows, Linux and Mac OS X 10.4,

• is recommended to be used with a video card capable of OpenGL hardware
acceleration and enough system RAM (256 MB or more).

Further technical details are described in chapter 6, page 48ff.

3.2 The Position of ‘saces’ in Artificial Chemistry

‘saces’ acts on a middle ground between the high abstractions of “true” artificial
chemistry and the highly realistic models of computational chemistry. We wanted
to simulate certain simple chemical processes and at the same time provide an
appealing and instructive visual display. Some corners had to be cut, or in other
words, we had to introduce abstractions and simplifications necessary to reach
adequate animation frame rates.

Nevertheless, it is possible to play through artificial chemistry scenarios as
well (see chapter 5, page 37).

Abstractions and Simplifications

1. The reaction vessel or test tube has flat rectangular walls. The space inside
the reaction vessel has the form of a cuboid (see figure 3.1).

¡
¡

¡

¡
¡

¡

¡
¡

¡

¡
¡

¡

w

h

d

Figure 3.1: The shape of the reaction vessel in ‘saces’

2. Molecules are hard spheres. Collisions are elastic (except if reactions ap-
ply).

18



saces

3 Proposal of ‘saces’

3. Ideal gases are assumed. There are no van der Waals forces and other inter-
molecular forces.

4. No quantum chemistry.

5. Collision detection in ‘saces’ is not water-tight. A few percent of all col-
lisions are not detected. Particles overlapping to neighboring partitions are
ignored in these partitions (see chapter 6, page 74).

6. A problem is the quasi-simultaneous collision of more than two particles.
Particles handled after the first collision are ignored or handled in the next
simulation loop iteration.

7. Fast particles might pass through each other before collision detection has
the chance to detect a penetration. Collision detection only occurs at certain
points in time (around 50 to 5 times per second).

8. Collision response determines the reflection angle randomly. Rutherford
or other sophisticated reflection models are not implemented. (They could
be programmed as an extension to ‘saces’, but perhaps at the expense of
animation performance.)

9. The following types of reaction equations are supported:

Transform of form E1 + E2 → P1 + P2 (two educts transform to two
products),

Merge of form E1 + E2 → P (two educts merge to one product) and

Decay of form E → P1 + P2 (an educt decays spontaneously to two prod-
ucts).

More complicated reactions can be composed out of these simple equations.

Most of these simplifications arise from the need to do the calculations at run-
time. For details on how the calculations are implemented see chapter 6, page 48ff.

19



saces

3 Proposal of ‘saces’

3.3 The Artificial Chemistry of ‘saces’

We analyze ‘saces’ according to the definition of artificial chemistry using the
triple (S,R,A) as explained in the general form of artificial chemistry.

3.3.1 The Molecules

The elements of the setS are moving particles in a test tube. The particles are
represented by spheres. They have the following parameters:

• position~p

• velocity~v

• its “species”, namely the particle class with the parameters

– massm,

– bound energyE,

– sphere radiusr and

– a display name and color

The initial number of particles and their particle classes are determined by the
experiment configuration. The setS is finite, provided we ignore the molecule
parameters.

3.3.2 The Reactions

The rules have one or two educts and one or two products with the following
parameters:

• reaction probabilitypr and

• activation energyEr

A reaction rule is applied only if the kinetic energy of the colliding molecules
exceeds the activation energy, and if the generated random number in the range
[0..1] exceeds the probabilitypr. The setR is finite as well.

20



saces

3 Proposal of ‘saces’

When considering energy conservation, an additional condition applies. Sup-
pose the reaction is endothermic1, and two fast particles do not collide head-on but
slightly graze each other instead. In this case it is possible, that there is still not
enough energy in the mass center reference frame. The impetus of the collision is
not enough (see section 6.4.9, page 70).

3.3.3 The Algorithm

The algorithm takes into account the velocities and the positions of the molecules.
It performs collision detection and collision response for each particle. The list
of collision pairs is given to the reactions to be handled. A special case are decay
reactions which occur quasi-spontaneously (using random numbers).

The visualization of the moving particles is not part of the definition of the
artificial chemistry algorithm.

3.4 Main Features of ‘saces’

The most important parts of the tool are:

• A three-dimensional view of the rectangular reaction vessel

• The simulation process

• A data viewer window to view diagrams and a binary logger

• A dialog window to edit the experiment settings and chemical reactions

The Three-dimensional View of the Reaction Vessel

The main window displays a three-dimensional view of the simulation. The
bounding box of the reaction vessel is painted. Molecules are animated within
the reaction vessel (see figure 1.1, page 6). Two tool bars with buttons appear at
the bottom and to the right of the main view. The user can start or stop the sim-
ulation, edit experiments (click on ‘Settings. . . ’), change the perspective etc.

1If the product particles have a total bound energy higher than the educt particles, then the
energy difference is negative and the reaction endothermic. In the detonating gas example (see
page 38) there are two reactions: a reaction producing water (steam) and freeing a lot of bound
energy and the inverse, endothermic reaction.

21



saces

3 Proposal of ‘saces’

The user can zoom in and out using the mouse wheel or arrow keys, and rotate the
vessel using the virtual track ball2 (drag the mouse inside the view).

The Simulation Loop

The simulation loop calculates the simulation parameters, displays the particles
and saves data to a binary file. The simulation loop consists of the following
steps:

1. Reposition the particles and reflect on the reaction vessel walls

2. Measure and log pressure, temperature etc.

3. Detect particle collisions

4. Apply merge and transform reactions, if necessary

5. Calculate collision response for the remaining collision pairs

6. Apply decay reactions, if necessary

7. Paint the scene

For a complete treatment of not only the simulation loop, but the whole simu-
lation process, see section 6.3.2, page 56.

The Data Viewer and the Binary Log

Thermodynamical data such as temperature and pressure, mechanics such as par-
ticle count, a histogram of particle speeds and other data are presented as diagrams
in the data viewer. The data viewer can be started as a separate process, or even on
another workstation, if the binary log file is stored on the network. The binary log
is used to transfer data to the viewer (for more details, see section 6.7, page 76).

The Experiment Settings Dialog Window

The experiment settings dialog allows the user to load, edit and save experiments
(for more details, see the manual, page 27).

2The virtual track ball is a known three-dimensional user interface attributed to [CMS98]. See
section 7.3, page 81 as well.

22



saces

A Simple Artificial Chemistry Experiment System

Chapter 4

The User Manual

This chapter is a description of the ‘saces’ user interface. We will begin with first
steps to get the reader acquainted with ‘saces’. We will then describe the windows
and their controls in more detail.

4.1 First Steps with ‘saces’

Getting ‘saces’

‘saces’ is delivered as a.jar file for all platforms. It is available on the ‘saces’
CD or on the project homepagehttp://saces.yce.ch . An executable for
Windowssaces.exeis available.

Java Runtime Environment Version 5

‘saces’ works with Java versions 5 and upward only. Java version 5 is available
for download athttp://java.com/en/download/manual.jsp . This is also
necessary when using the Windows executable.

Getting JOGL (Optional)

Note! This step is not necessary when using the Windows executable. It is only
required when using the.jar file.

23



saces

4 The User Manual

‘saces’ uses the library filejogl.jar from JOGL and native libraries, which are
different for each platform. They are available on the JOGL homepage or on the
‘saces’ CD.

1. Go tohttps://jogl.dev.java.net and downloadjogl.jar . Do not
download the “Current nightly build”, but go to the “Downloads” section,
click “Precompiled binaries and documentation” and select a release. Re-
lease 1.1 from June 2005 is stable. It is also available in thejogl-1.1subdi-
rectory on the ‘saces’ CD.

2. Download thejogl-natives-< platform>.jar file, or use the libraries from
the ‘saces’ CD.

3. Windows users unpack the file usingWinZipand copy the.dll files to the
same directory as thesaces.jar file. For JOGL release 1.1 they are
jogl.dll andjogl_cg.dll .

Linux users enterunzip jogl-natives-linux.jar and copy the result-
ing .so files to the same directory as thesaces.jar file. For JOGL
release 1.1 they arelibjogl.so andlibjogl_cg.so .

Mac OS X users startTerminal and enter:
unzip jogl-natives-macosx.jar and copy the resulting.jnilib files
to the same directory as thesaces.jar file. For JOGL release 1.1 they
arelibjogl.jnilib andlibjogl_cg.jnilib .

Note that the_cg files are part of JOGL, but optional for ‘saces’.

Starting ‘saces’

Double-click the program icon.

A window with a black empty background appears. This is the main view. Click
the ‘Run’ button at the bottom. A sample experiment is started. Molecules are
displayed as colored spheres of various sizes. OpenGL lighting is applied to give
a more realistic view.

Stopping the Simulation and Loading Another Experiment

Click the ‘Settings. . . ’ button while the simulation is running. This stops the
simulation and shows the settings window.

24



saces

4 The User Manual

Click the ‘Load. . . ’ button and load theSimpleFiniteAutomaton.xmlsample
experiment file. The file is available from the ‘saces’ CD or can be downloaded
from the project homepagehttp://saces.yce.ch .

Tweaking the Experiment

Change the reaction vessel wall colors to a different color (click on ‘Box Color’
input field).

Change the initial count of the moleculeR (click on the ‘Particle Classes’ tab and
select the ‘Initial Count’ column of the row ‘R’ and edit the number). If you like,
change the color of the particle, too.

Change the probability of the reactionR + a → S (click the ‘Reactions’ tab and
set the probability of the reaction to a number between 0 and 1).

Starting the New Experiment

You can save the modified experiment or start the simulation right away (click
the ‘Run’ button). The settings window disappears and the new experiment is
started.

View Diagrams

Click the ‘View Data. . . ’ button, and you have a selection of diagrams. You
can view how the number of particles of each class change over time, the speed
distribution etc.

Dump the Binary Log

The binary log contains the data for the diagrams in binary form. To dump it in a
form usable for further processing by other software, open a shell (DOS Prompt
on Windows, Terminal on Mac OS X) and enter:

java -cp jogl.jar -jar saces.jar -tail SimpleFiniteAutomaton.xml

This dumps the contents of the binary log in text form. It works like the Unix
tail -f command. This means the program waits at the end of binary log for
more data from the running simulation. It can be cancelled using Control-C. If no
data shows up, verify that the tail dumper is reading the right binary log.

25



saces

4 The User Manual

The Snapshot

The snapshot saves velocity, position and corresponding particle class of all par-
ticles currently in the simulation in the binary log and is available for further
processing. Click the ‘Snapshot. . . ’ button to make a snapshot.

4.2 The Main Window

The ‘saces’ main window consists of two toolbars and the display area containing
the animation. The toolbar to the right controls a running simulation and the
toolbar at the bottom enables access to the application and experiment settings.

Icon Button Function

/ Run/Stop Start or halt the simulation.

Reset Reset the simulation to the beginning.

Default Perspective Set view to the default perspective.
View

Particle View Set view to the ‘Be a particle’ perspective: the
point of view moves with a randomly selected particle.

Orthographic View Set orthographic view with three outline views.

Speed Up Speed up the animation.

Slow Down Slow down the animation.

Low Detail Set the graphical detail level to low (only edges).

Medium Detail Set the graphical detail level to medium (no lighting).

High Detail Set the graphical detail level to high (with lighting).

Table 4.1: Buttons of the vertical toolbar to the right

Icon Button Function

/ Run/Stop Start or halt the simulation.

Snapshot Save a snapshot to the binary log. A snapshot contains
velocity, position and particle class of all particles.

Settings. . . Open the settings dialog window to edit an experiment.

View data. . . Start the data viewer with a selection of diagrams.

Table 4.2: Buttons of the horizontal toolbar at the bottom

26



saces

4 The User Manual

The user can zoom in and out of a running simulation with the mouse wheel
or the cursor keys (cursor up and down) and rotate the perspective by dragging the
mouse (except in the orthographic viewing mode). See also section 7.3, page 81
about the perspective view in OpenGL.

4.3 The Settings Dialog

Figure 4.1: Experiment settings window

With the settings dialog experiments can be loaded, saved and edited. There
are four tabs:Experiment, Particle Classes, ReactionsandProperties and a
toolbar at the bottom.

Icon Button Function

Load. . . Load an experiment XML file.

Save Save back the edited experiment.

Save as. . . Save an experiment.

Start Start the experiment and close the dialog.

Table 4.3: Settings dialog toolbar buttons

Note the input validation of experiment data. It is not possible to leave an
input field containing invalid data, like negative masses for particle classes, for
example.

27



saces

4 The User Manual

The experiment tab

The experiment tab allows to edit global experiment parameters.

Experiment Description A short description of the experiment.

Initial temperature The initial temperature with which the experiment will start
(if Maxwell-Boltzmann distribution is used, see section 6.4.2, page 61).
Must be non-negative. The value can be interpreted as a temperature in
Kelvin, if the constantsk (Boltzmann constant) andR (ideal gas constant)
are configured accordingly. See section 6.4.5, page 63.

Time Step The simulation time step is a factor that influcences the speed of the
simulation. Unlike the slow down and speed up functions which stay pro-
portional to time (simulation time slows down and speeds up as well), the
step factor specifies how many steps are made per iteration. The default
here is the value1, meaning that one iteration is equivalent to one step. Set-
ting the value to0.5 would half the distance a particle has moved in one
iteration. This is a method for speeding up the simulation, independent of
time.

Box Color The color of the reaction vessel (bounding box). The user can click
on the color field to access a standard color picker dialog.

Box Dimensions The width, height and depth of the reaction vessel (bounding
box). Values for width, height and depth are usually between 1 and 50,
although this is not a must. The bounding box volume must be large enough
to accommodate the particles defined in the particle class tab.

Random SeedThe random seed is used by the simulation when generating ran-
dom numbers. The random seed parameter is optional. If a seed is specified,
the experiment becomes repeatable. If not, a new random seed is calculated
every time anew.

28



saces

4 The User Manual

The Particle classes tab

The particle classes tab lets the user define the particle classes whose particles are
to be simulated. There is a table with rows for each particle class and columns for
the properties of them.

Figure 4.2: Experiment settings window: editing the particle classes

Name Define an unique name for a particle class.

Initial Count Define the initial particle count for a given particle class. Must be
a non-negative integer.

Energy The bound energy of the particle class. Particles with high bound energy
have high ‘energy content’. Must be a positive number.

Radius The radius of the particle sphere. Note: If the distributor finds that the
reaction vessel is too small (or the particles too big), an error message is
shown with further instructions (like making the particles smaller). Must be
a positive number.

Mass The mass of the particle. Must be a positive number.

Color The color of the particle. Note that OpenGL lighting might produce color
shades slightly different to the selected color.

To create a new particle class clickNew Particle Class. A new row appears
in the table. To delete a particle class, select the row and clickDelete Current.
Note that the particle class must not be involved in reactions. Delete the reactions
first, then the particle class.

29



saces

4 The User Manual

The Reactions tab

Reactions are entered as equations in the form of:O + O → O2. There is a table
with rows for each reaction and columns for the properties of them.

Figure 4.3: Experiment settings window: editing reactions

Description A short description of the reaction.

Equation The reaction equation. There must be one or two particle class names
(separated by the plus sign) before and after the arrow (the string-> ), and
at least three particle classes must be used. The particle classes must be
already defined in the particle classes tab.

Probability The probabilityp ∈ [0..1] of a reaction. Note that multiple reactions
applying to the same particle classes before the arrow (the educts) are ac-
cepted by ‘saces’, but must be defined carefully. If, for example, the first
reaction has the probability of 1, the following reactions of the same educts
are never activated.

Activation Energy The minimal combined kinetic energy of the educts which
the reaction requires to come into effect. Activation energy is optional, but
if entered, it must be a positive number.

To create a new reaction clickNew Reaction. A new row appears in the table.
To delete a reaction, select the row and clickDelete Current.

30



saces

4 The User Manual

The Properties Tab

Additional experiment settings are defined as name-value pairs, the experiment
properties. Table 4.6, page 35 at the end of the chapter, lists all experiment prop-
erties of ‘saces’. The simulation plug-and-play uses the properties to find imple-
mentations of the simulation steps (see section 6.1.5, page 49), for example.

There are default values for many properties. If a property is not defined,
‘saces’ assumes the default.

Figure 4.4: Experiment settings window: editing properties

The table in the properties tab with rows for each experiment property has
only two columns:

Name Define an unique name for a property.

Value The property value. Can be a string (like a class name for a plug-and-play
property), a number (like the standard deviation forDistributorRandom) or
a boolean value (to enable or disable validation of mass conservation).

To create a new property clickNew Property. A new row appears in the table.
To delete a property, select the row and clickDelete Current.

31



saces

4 The User Manual

4.4 Data Viewer

The data viewer visualizes the data stream of a running simulation in form of
diagrams. The data stream is read continuously from the binary log, split up
and displayed as different sequences of data instances in diagrams. The particle
diagram, for example, is a sequence of particle counts per partition. With the
toolbar buttons it is possible to navigate forward and backwards in the sequence.

Figure 4.5: Particle diagram of the data viewer

Icon Button Function

First Data Jump to the first data instance of the binary log.

Previous Data Move to the previous data instance in the binary log.

/ Continue/Stop Loading Continue/Stop loading binary log.

Next Data Move to the next data instance in the binary log.

Last Data Jump to the last data instance of the binary log.

Table 4.4: Settings dialog toolbar buttons

The available views or diagrams are:

Particle Diagram Display the progression of the particle count for each particle
class in time. The thin vertical line indicates at what time (position on the
time axis) the displayed data was recorded. The exact counts are displayed
in the upper left corner in a semi-transparent pane. See figure 4.5 above.

Speed Histogram Display the particle speed distribution for a given time. The
speeds on thex axis are subdivided into smaller intervals. They axis is the
count of the particles whose speeds fall into the interval. The vertical line

32



saces

4 The User Manual

shows the average speed. Also displayed are the exact minimum, average
and maximum speeds.

Figure 4.6: Speed histogram of the data viewer

Measurements Display temperature and pressure progression in time. The thin
vertical line indicates at what time (position on the time axis) the displayed
temperature and pressure was recorded.

Figure 4.7: Measurements diagram of the data viewer

Other Data (Log) A lot of data in the binary log is saved as key-value pairs.
For example, how the reaction vessel is being partitionized for an efficient
collision detection (see section 6.6, page 74) is saved as a series of key-value
pairs. They can be viewed in the view. All data instances have their own
time-stamp printed in the UTC timezone.Note that the navigation buttons
do not have an effect in the other data view.

Running theData viewerand the simulation on the same host decreases ani-
mation performance. To avoid this, start a view-only instance of ‘saces’ with the
command-line option-viewfrom another workstation.

33



saces

4 The User Manual

Figure 4.8: Other data view of the data viewer

4.5 Command Line Arguments

(no arguments) Load the default experiment.

-loadexperiment.xml Load the specified experiment.

-view experiment.xml Start the data viewer only (optionally using another
[saces.binlog] binary log than specified in the experiment).

-tail experiment.xml Dump the binary log of the experiment (works like
[saces.binlog] the Unix tail -f command).

Table 4.5: Command line arguments to ‘saces’

Note that the command-line arguments only work with the.jar executable.
To load the experimentSimpleFiniteAutomaton.xml, invoke (assuming the exper-
iment file is in the same directory as the filessaces.jarand the native library):

java -cp jogl.jar -jar saces.jar -load SimpleFiniteAutomaton.xml

34



saces

4 The User Manual

Name Default Meaning
BinaryLog saces.binlog The file name of the binary log file.
Boltzmann-

Constant

1 The Boltzmann constant k (see
page 62).

Decayer saces.pnp.

DecayerSimple

Name of Java class to handle decay re-
actions. The class must implement the
interfacesaces.pnp.Decayer .

Detector saces.pnp.

Detector-

Partitionized

Name of Java class to provide the col-
lision detection. The class must imple-
ment the interfacesaces.pnp.Detec-

tor .
Detector-

Partitionized.

particleCount-

PerPartition

12 A hint to the partitionizer about how
many partitions are to be created. The
value is the average count of particles in
each partition (see section 6.6 page 74).

Distributor saces.pnp.

Distributor-

MaxwellBoltzmann

Name of Java class to provide the initial
distribution of the particles in an experi-
ment. The class must implement the in-
terfacesaces.pnp.Distributor .

DistributorRan-

dom.stdDev

1 A parameter for the classsaces.

pnp.DistributorRandom , namely
the standard deviation for the speeds
distributed to the particles.

HistogramMax 0 The maximum value of the histogram.
If it is 0 (zero), use the maximum speed
encountered so far in the simulation.

HistogramSize 100 The number of histogram steps (the res-
olution of the histogram).

IdealGasConstant 1 The ideal gas constantR (see page 62).
MeasureInterval 2000 The time in milliseconds between mea-

surements and histograms.
Measurer saces.pnp.

MeasurerDefault

Name of Java class to provide the mea-
surements of temperature, pressure etc.
The class must implement the interface
saces.pnp.Measurer .

Table 4.6: Experiment properties and their meaning

35



saces

4 The User Manual

Name Default Meaning
Merger saces.pnp.

MergerSimple

Name of Java class to handle merge re-
actions. The class must implement the
interfacesaces.pnp.Merger .

Particle saces.gl.Sphere Name of Java class which implements a
particle. The class must be able to ren-
der the particle in OpenGL.

Reflector saces.pnp.

ReflectorSimple

Name of Java class to provide the re-
flection of particles at the reaction ves-
sel walls. The class must implement the
interfacesaces.pnp.Reflector .

Response saces.pnp.

ResponseSchwab

Name of Java class to provide the col-
lision response. The class must imple-
ment the interfacesaces.pnp.Res-

ponse .
Transformer saces.pnp.

Transformer-

Simple

Name of Java class to handle transform
reactions. The class must implement the
interfacesaces.pnp.Transformer .

ValidateActiva-

tionEnergy

false Is activation energy validated? If yes
and a reaction’s negative bound energy
difference is greater than activation en-
ergy, an error message is shown.

ValidateMass-

Conservation

false Is mass conservation validated? If yes
and a reaction violates mass conserva-
tion, an error message is shown.

Table 4.6 continued

36



saces

A Simple Artificial Chemistry Experiment System

Chapter 5

Some Experiments with ‘saces’

5.1 The Default Experiment, an Artificial Explosion

When starting ‘saces’ a sample experiment is loaded and initialized. This is very
helpful for first-time users because they can start “playing” immediately, getting
a feel for the application. This is the “Batteries Included” philosophy: The user
is not required to do any additional preparations (buying batteries), to get a first
positive experience: It works out of the box!

The sample experiment is a very simple artificial explosion with two invented
atomsX andY and the moleculesX2, Y2 andXY . The first two have high bound
energies and if they collide they react as follows:

X2 + Y2 −→ 2XY

XY has low bound energy. The bound energy difference is converted into kinetic
energy. Because there is a probability of 50% and an activation energy, the explo-
sion does not start immediately. Only very few particles are fast enough to trigger
the first reaction when they collide. The reaction products move away at high
velocities. They collide with other particles, until more particles acquire enough
velocity to react. A chain reaction starts. Many reactions happen in a short time.
The average speed increases massively and with it the average kinetic energy. In
the beginning it is around 0.23 and after a minute, when an equilibrium has been
reached, it is at 11.8 (or around 50 times more). This would correspond to a
temperature increase from 200 Kelvin1 to 10000 Kelvin.

1The Kelvin is an unit of temperature and is measured with respect to the absolute zero, where
molecular motion stops. The melting point of water ice at 0◦C is 273.15K.

37



saces

5 Some Experiments with ‘saces’

There is the inverse reaction:

2XY −→ X2 + Y2

which can occur only if the twoXY molecules collide with much impetus. After
a while an equilibrium is reached (see figure 5.1).

Figure 5.1: Particle diagram of the artificial explosion

A few percent of theX2 andY2 molecules remain, because they are recreated
by the inverse reaction.

5.2 Detonating Gas

We are trying to model detonating gas in ‘saces’. Detonating gas is a hydrogen-
oxygen mixture, so that every two molecules of hydrogenH2 meet one molecule
of oxygenO2. It explodes violently on ignition, forming water. It has a very high
energy content per unit of weight. The reaction could be written as:

2H2 + O2 −→ 2H2O

In reality the explosion is a complex set of reactions. We model, however, a
much simpler set of reactions, involving atomic oxygen as follows:

H2 + O2 −→ H2O + O

O + O −→ O2

38



saces

5 Some Experiments with ‘saces’

We assume that the moleculesH2 andO2 have high bound energy, and the
atomO even a higher bound energy; water has low bound energy:2

O 200
H2 80
O2 120

H2O 10

Similar to the artificial explosion, after some delay the first few reactions are
triggered. These reactions do not set energy free, because atomic oxygen is gener-
ated. The bound energy difference80+120− (10+200) = −10 is even negative.
Only the second reaction is able to free energy. Because it is a merge reaction,
inelastic collision applies here. Inelastic collision conserves momentum, but not
energy. While a transform reaction can convert bound energy to kinetic energy,
so that the product particles are moving faster than educt particles, it is not as
easy with merge reactions, if we want to conserve momentum (see section 6.4.7,
page 65 for details).

The classMergerEnergyConservationabandons momentum conservation un-
der the assumption that the momentum conservation violations of all merge reac-
tions more or less cancel each other out. (see section 6.4.7, page 65).

Each time two oxygen atoms collide and merge to the oxygen moleculeO2,
bound energy is set free as added kinetic energy of the product molecule. The
effect is similar to the simpler artificial explosion: The gas heats up massively, but
with more delay, because the atomic oxygen particles have to be created first (see
figure 5.2 for a particle diagram of the detonating gas experiment).

Figure 5.2: Particle diagram of the detonating gas experiment

2Bound energies of particles are edited in the particle classes tab of the Settings dialog using
the columnEnergy.

39



saces

5 Some Experiments with ‘saces’

An enhancement of the model would be to add more reactions like atomic
oxygen and hydrogen to water:

O + H2 −→ H2O

and other reactions or even other molecules, ozoneO3, for example.

5.3 Brownian Motion

Brownian motion describes the random, jittery motion of minute particles im-
mersed in a fluid3. The mathematical model used to describe this random move-
ment is one of the simplest stochastic processes in a continuous domain. We
present a very simple ‘saces’ experiment (see figure 5.3):

Figure 5.3: Brownian Motion in ‘saces’

A big sphere, representing the minute particle of the Brownian movement,
and many small spheres, representing the fluid molecules, are animated. The big
sphere is jittering and moving randomly around the inside of the cube.

3There is a story about Robert Brown studying pollen grains floating in water under the micro-
scope.

40



saces

5 Some Experiments with ‘saces’

A few limitations apply. The most important is that ‘saces’ cannot handle mul-
tiple collisions at once. If two small spheres collide with the particle almost simul-
taneously, collision detection might drop the second collision. Another problem
is the scale of measure. To make the jittering movement visible, we had to model
the small and big spheres with equal mass. In reality the fluid molecules move at
a very high velocity, and that is why they have a visible effect on the particle at
all.

5.4 Finite Automata

Finite automata are simple computation models that describe the class of regular
languages.4 An automaton (deterministic or indeterministic) can be formally de-
scribed as a tuple of components (see [HS04], page 34). It is possible to use a
directed graph, equivalently. You find an example in figure 5.4.

R

S

T

U

a

b

b

a

b

a

a, b

Figure 5.4: A deterministic finite automaton as a directed graph

This automaton has four states (R, S, T, U ). StateR is the initial state andU
the final state. An automaton recognizes all strings leading from the initial to the
final state. It can therefore be used to check the syntax of regular languages. The
example automaton recognizes all strings described by the regular expression:

((aa∗b)|(bb∗a))((a|b)((aa∗b)|(bb∗a)))∗

An important question is whether the final stateU can be reached at all.

4A formal language is a set of finite-length words drawn from some finite alphabet (a set of
symbols). An example word is the stringaabaa. A regular language is described by a regular
expression and is accepted by a finite automaton.

41



saces

5 Some Experiments with ‘saces’

The automaton has been implemented as a ‘saces’ experimentSimpleFiniteAu-
tomaton.xml. The artificial chemistry can be construed from an automaton with
simple rules easily explained by the following example:

R + a −→ S

R + b −→ T

S + a −→ S

S + b −→ U + e

T + a −→ U + e

T + b −→ T

U + a −→ R

U + b −→ R

Note that mass conservation is impossible with this experiment. The third
reactionS + a −→ S cannot be expressed with mass conservation, if particle
a has mass. Mass conservation can be ignored by ‘saces’. An alternative is to
postulate a dummy particlex, if mass conservation is to be modeled.

Thee molecule indicates a successful recognition. Aside frome, there are six
different moleculesR, S, T, U, a, b. We can define them as in figure 5.5:

Figure 5.5: Particles of the finite automaton experiment

We start the automaton with 400 instances of the lettersa andb and with 100
instances of the initial stateR. The bigger spheres are states, the smaller spheres

42



saces

5 Some Experiments with ‘saces’

letters. There are only the lettersa and b (red and blue) and the stateR (light
gray).

Figure 5.6: Running the finite automaton, particle view

After a few seconds, other states pop up, red forS, blue for T and yellow
for U . A few small yellowe molecules indicate successful recognitions. See
figure 5.6. Half a minute later, almost all lettersa andb are consumed and thee
letters abound.

Figure 5.7: Particle diagram of the finite automaton experiment

A simple finite automata can therefore be simulated. Indeterministic automata
are possible and implied, because it is the collision that dictates which edge is

43



saces

5 Some Experiments with ‘saces’

taken.

How to transfer theKnapsack5 problem to a graph in polynomial time is shown
in [HS04], page 227. If, and only if, there is a solution to theKnapsackproblem,
is the final state is reachable. This graph can be modeled in ‘saces’. If a desired
state is reached, the problem is answered with ‘yes’.

Therefore, all NP-complete problems are representable as a finite automaton.6

If many different molecules and their reaction equations can be designed exactly,
a massively parallel approach to recognize7 solutions to NP-complete problems
could be modeled. It is supposed, that an algorithm which yields an exact so-
lution requires exponential resources (see page 11, [Coo03] and [Dev02]). As
already described in section 2.1.1, one could trade memory for time. The expo-
nential growth of the problem space is managed by the sheer number of molecules
available in a reaction vessel, at least to some extent.

A question remains to be answered: How many different particle species and
reaction equations can be managed by ‘saces’ without problems?

5.5 A Lotka-Volterra System

Introduction

The purpose of the Lotka-Volterra simulation is to demonstrate the diversity of
experiments possible with the ‘saces’ application.

The Lotka-Volterra Model can be used in simulating simple ecological preda-
tor-prey Systems. In its simplest form, it consists of only two actors: Prey that
gets preyed on, and predators that predate. This scenario is of course idealized.
It assumes that the prey is preyed upon by only one type of predator. In the
real world this is hardly ever the case. The simplified model can however, deliver
surprisingly realistic results when applied to questions about population dynamics
in such systems. The model follows two basic growth rules:

5Problem statement: There are a set of items, each with a weight/cost and a value. Try to pack
as many valuable items as possible in a bag without exceeding a given total weight/costC. It is
possible to attain at least the valueV ?

6An important consequence of theoretical computer science is that all NP-complete problems
are polynomial-time reducible to each other (in fact it is part of the definition of NP-complete). If
we show how to represent a specific NP-complete problem as a graph, we have done this for all NP-
complete problems. Polynomial-time reducible means that there is a polynomial-time algorithm
to translate a problem. A certain SAT problem can be translated to a certainKnapsackproblem.

7If there is no such solution, the finite automaton would run forever. The final state would
never be reached.

44



saces

5 Some Experiments with ‘saces’

1. A prey population increases at a rate proportional to the number of prey, but
is simultaneously reduced by predators at a rate proportional to the product
of the numbers of prey and predators.

2. A predator population decreases at a rate proportional to the number of
predators, but increases at a rate proportional to the product of the numbers
of prey and predators.

The following screenshot illustrates the expected behaviour of the simulation
as displayed by the data viewer.

Figure 5.8: Wolves and sheep population diagram

The Lotka-Volterra example supplied with ‘saces’ simulates a population of
wolves preying on sheep, and demonstrates the cyclic behaviour of such a system.
The events occur in the following order.

1. The sheep population increases because there are not many wolves which
prey on them.

2. The wolf population increases due to the increasing abundance of sheep.

3. The wolf population increases until there is not enough sheep to sustain the
wolf population.

4. The wolf population decreases due to the lack sheep.

Vito Volterra and Alfred J. Lotka described this cyclic behaviour in popula-
tion dynamics using two coupled differential equations, each one representing a
species.

45



saces

5 Some Experiments with ‘saces’

dH

dt
= rH − aHP ,

dP

dt
= bHP −mP

H = density of prey
P = density of predators
r = intrinsic rate of prey population increase
a = predation rate coefficient
b = reproduction rate of predators per 1 prey eaten
m = predator mortality rate

Now that we have handled the formal definitions, let us take a look at how
they are applied in the ‘saces’ experiment. The density of preyH and the density
of predatorsP become the ratios:

Npredator/Vbox and Nprey/Vbox

whereNpredator is the number of predators,Nprey is the number of prey andVbox

is the volume of the reaction vessel.

The intrinsic rate of prey population increaser becomes the probability that
an individual prey reproduces within a certain time slice. This is represented in
‘saces’ by the reaction probability factor. Sheep population increase is modeled
using a decay reaction occurring with a probability of 0.003. Wolf population
increase is modeled using a transform reaction occurring with a probability of 1.
A wolf therefore reproduces upon consuming a sheep.

Sheep reproduction (decay reaction)Sheep → Sheep + Sheep

Wolf reproduction (transform reaction)Wolf + Sheep → Wolf + Wolf

Predator mortality rate is handled by decay reaction that occurs with the probabil-
ity of 0.007. The decay reaction produces two dummy particles.

Wolf mortality (decay reaction)Wolf → Dummy + Dummy

While modeling wolf mortality, we run into a slight problem. The artificial
chemistry of ‘saces’ provides a formal collection of three reaction types. Unfor-
tunately, none of the three reaction types can be used to model particles which
disappear without leaving a reaction product behind (the way a wolf would when
it dies). Such a reaction would be in the form:

Wolf → −
Dummy particles are used to compensate for the missing reaction type. When

a wolf decays (dies), it produces two dummy particles and disappears. The dummy

46



saces

5 Some Experiments with ‘saces’

particles therefore function as placeholders in the decay reaction and are the educts
of three helper merge reactions necessary to maintain the system. These merge re-
actions clean up the simulation space by consuming dummy particles, preventing
an unwanted population growth of dummies. They have no other practical func-
tion in the simulation.

The helper merge reactions are:

Wolf + Dummy −→ Wolf

Sheep + Dummy −→ Sheep

Dummy + Dummy −→ Dummy

47



saces

A Simple Artificial Chemistry Experiment System

Chapter 6

The Internals of the tool ‘saces’

6.1 Package Structure

Java lets developers group their classes into packages; this is more or less the
equivalent of name spaces in C++. Using packages helps maintaining conceptual
integrity at the least. At the most, it is useful for grouping function and data
together in logical groups. The following seven sub-packages of thesacespackage
are the most important:app, app.gui, exp, file, gl, pnpandsim.

Figure 6.1: UML packet diagram for ‘saces’

48



saces

6 The Internals of the tool ‘saces’

6.1.1 The UI Packagessaces.appand saces.app.gui

The app package contains the program’s main entry point. It also hilds thegui
package containing the application’s dialogs and the routines which handle appli-
cation level user input. An example of this would be the loading of an experiment
into saces.

6.1.2 The Experiment Model Packagesaces.exp

Experiment definition data is packaged herein. This encompasses the particle,
reaction and the experiment space definition, i.e. everything which needs to be
defined for a valid experiment. All these classes are immutable once created, to
help maintain data integrity.

6.1.3 The Input/Output Packagesaces.file

Thefile package handles input and output. This includes ‘saces’ persistency and
logging functionality. In ‘saces’, experiments are made persistent using XML.
Reading and writing XML is handled here, as well as validation using XML
Schema. Logging uses a binary protocol that is written to file and can be read
by the viewer (preferably running on another host machine to avoid any perfor-
mance loss when simulating). The file can then be read over a network share.

6.1.4 The OpenGL Packagesaces.gl

The gl package contains all the functionality required to render 3D scenes us-
ing OpenGL geometry definitions, transformations, lighting, material properties,
view port calculations, viewing modes, detail level settings etc. No other package
contains OpenGL code, aside from the mediator in thesimpackage. The Media-
tor serves as a hub where the simulation data meets the rendering capabilities of
‘saces’ (see figure 6.5, page 56).

6.1.5 The Plug-and-play Packagesaces.pnp

The plug-and-play package (pnp for short) consists of interfaces which define
the simulation steps and their implementations like for collision detection and
handling reactions etc. This package is named plug-and-play due to the possibility
of interchanging the actual implementations of the simulation steps.

49



saces

6 The Internals of the tool ‘saces’

In other words, the implementations used for an experiment are fully config-
urable in XML. Let us take the wall reflection as an example. One implementation
of the reflector interface might ‘heat’ the reaction vessel by increasing velocity af-
ter reflection. Another implementation might not reflect any particle at all, but
instead position the particle on the opposite end of the box, as if the sides of the
box would wrap around to form an unbounded wrapping simulation space. One
experiment might require one type of reflection; another might require something
quite different. Plug-and-play design enables developers to write their own cus-
tom implementations, tailored for the type of experiment they wish to examine.

6.1.6 The Simulation Packagesaces.sim

Thesimpackage represents what happens when the experiment is run. It also con-
tains the mediator, the positioner that calculates the location of every particle for
a given step and the partition class that divides the simulation space into smaller
cuboids for an optimized collision detection algorithm (see section 6.6, page 74
about space partitioning).

6.2 Data Architecture

‘saces’ distinguishes between experiment setup parameters and simulation state.
Experiment setup parameters are constant (usually one does not change rules in
the middle of a simulation) and its classes are located in packagesaces.exp. The
simulation state is dynamic and its classes are located in thesaces.simpackage.

6.2.1 The Experiment Data Model

The experiment parameters consist of three classes in packagesaces.exp. They
are classExperiment, classParticleClassand classReaction(see figure 6.2).

The ClassExperiment

An Experimentinstance provides global experiment parameters (likeinitial tem-
perature in the reaction vessel). It is used as a starting point to access the experi-
ment data. There are particle classes and reaction lists. There is only one instance
per running simulation. A running simulation can therefore have only one setup.

50



saces

6 The Internals of the tool ‘saces’

Figure 6.2: UML class diagram in packagesaces.exp

51



saces

6 The Internals of the tool ‘saces’

The ClassParticleClass

A particle class defines a particlespecies. Particles of the same class all have iden-
tical mass, for example. Mass and other parameters are stored in aParticleClass
instance.

The term “class” can be misunderstood by Java developers. A class is some-
thing like a blueprint that defines common characteristics of objects. This is also
true for particles, but a particle class is not a Java class. It is a definition of com-
mon parameters for particles.

Each particle class has both an unique name and an index. We findParticle-
Class instances starting from theExperimentinstance using either the name or
the index. In the simulation loop, finding the possible reactions of a particle must
be efficient. A particle class therefore contains three reaction lists, one for each
reaction type. These lists contain the reactions that the particle can be an educt of.

The ClassReaction

A Reactioninstance defines a reaction in ‘saces’. It contains reaction parameters:
the reagents, activation energy, probability of reaction etc.

There is a reagent list with three or four elements (depending on reaction type).
The order of elements in the list is important. First the educts are listed, then the
products.

Alternatively, access theEduct1, Educt2, Product1andProduct2Java-Beans-
style properties directly. The second educt or product are optional, of course. For
Mergereactions,Product2is not defined and forDecayreactions,Educt2is not
defined; that means the corresponding Java getter method returns a null pointer.

Reaction Type

There are three reaction types (see section 9, page 19):Transform, Mergeand
Decay. TheReactionTypeJava-Beans-style property can have one of these three
values. With Java 5, enumerated types are possible.ReactionTypeis an enumer-
ated type with these three values.

The Experiment Properties

Additional parameters are accessed as key-value pairs (see table 4.6, page 35).
Experiment properties are important to specify additional data for the experiment

52



saces

6 The Internals of the tool ‘saces’

in a flexible way.

6.2.2 The Experiment XML File

XML is used to persist experiments and XML Schema is used to validate ex-
periment files before they are loaded. See figure 6.3 for a class diagram for the
experiment XML files. Each class corresponds to an XML element, each mem-
ber to an XML attribute. The types are specified exactly by XML Schema (for
example probability values are to be clamped to the interval[0..1]).

Figure 6.3: XML Schema experiment definition as a class diagram

6.2.3 The Simulation State

A Side Note

Many design decisions explained in this section were influenced by performance
considerations. We did not do so-called “premature” optimization. We optimized
only if we discovered evidence of a performance problem. Two methods were
used to discover such problems. The most general was complexity theory. For the
naive, brute force collision detection, we calculated a time complexity ofO(n2).
Then, with a good Java profiler we analyzed running times and invocation counts
per class and per method.

53



saces

6 The Internals of the tool ‘saces’

Simulation State

The experiment setup defines static, initial parameters and data for the experiment.
Simulation state, however, is much more dynamic. It contains, for example, the
velocity and position of all particles, which change a lot during the simulation.

The two most important classes in thesaces.simpackage are theSimulation
andParticleclasses (see figure 6.4). ThePartition class is necessary for the colli-
sion detection algorithmspace partitioning(see section 6.6, page 74).

Figure 6.4: UML class diagram in packagesaces.sim

The classes contain many hotspots.1 A very significant hotspot is the method
Particle.overlaps(). A naive (quadratic) implementation of collision detection of
ten thousand particles, it is called almost fifty million times per iteration. At 20
frames per second, this would be a billion (109) times per second.

Usingspace partitioning, it is called about sixty thousand times, which is still
very ‘hot’. That is why we have public member fields in the classes instead of ac-

1A hotspot is a part of the program that is executed very frequently. The HotSpot Java compiler
from Sun optimizes these parts.

54



saces

6 The Internals of the tool ‘saces’

cessor methods. This is not conforming to our Java Coding Convention [Amb00],
which demands Java-Beans-style getter methods.

The ClassSimulation

A Simulationinstance contains the simulation’s dynamic state (current tempera-
ture, particle counts per particle class etc.) and is used as a starting point to access
the different parts of simulation state. The simulation holds a list of particles and
the three-dimensional array of partitions forspace partitioning. TheSimulation
instance is also responsible for the creation and removal of particles. This is nec-
essary to keep the particle counts per particle class up to date.

The ClassParticle

The particle is the main actor in the simulation. Where is the particle? How
fast does it move in the reaction vessel? Particles are very dynamic: they move
and change velocity often, they increase and decrease in numbers and even might
disappear completely. The only thing which stays the same is its class orspecies.

Theoverlaps()method, a hotspot as already mentioned, tests whether the par-
ticle overlaps another particle. Becauseoverlaps()requires the radius of the parti-
cles, the radius is cached as a public final member field. When a particle is created,
the radius is copied from the particle class and is left unchanged until the particle
disappears. Other critical particle class parameters are also cached in this way.

The classParticle is abstract. TheSphereclass extends it and provides an
implementation as a GLU (OpenGL Utility Library) sphere. There is noParticle
constructor. It is theSimulationinstance that creates and removes particles. An ex-
periment property dictates which implementation class to use (see keyParticle

in table 4.6, page 36).

The ClassPartition

Both Simulationand Particle instances maintain bidirectional references to the
Partition instances. Such tight coupling should be avoided in good software de-
sign. However, short access routes in two directions are necessary. Whenever a
moving particle crosses a partition boundary, particle lists in partitions must be
updated. For details aboutspace partitioningsee section 6.6, page 74.

55



saces

6 The Internals of the tool ‘saces’

6.3 The Process Architecture

6.3.1 The Mediator

The mediator mediates between the GUI and the state of both OpenGL and sim-
ulation. For example, if the user clicks on the‘Run’ button, the button event
handler callsMediator.setRunning(true). The GUI does not interact directly with
OpenGL or with the simulation state. User requests are mediated and delegated
to the objects responsible for processing the request.

Figure 6.5: The data and control flow of the mediator

Another responsibility of the mediator is the forwarding of JOGL display
events to the simulation loop. The JOGL framework uses an event-driven ar-
chitecture. The mediator implements the interfaceGLEventListener. display()
events are forwarded to the mediator which delegates the painting further to thegl
package.

6.3.2 The Simulation Process

A simulation contains an endless loop where the simulation state is being calcu-
lated repeatedly as long as the simulation is left running (see figure 6.6).

56



saces

6 The Internals of the tool ‘saces’

Figure 6.6: UML action diagram: a simple simulation process

This is a very simple example of a simulation process. When user starts the
simulation, calculating and painting is done repeatedly till the user stops2 the sim-
ulation. The actionsInitializing SimulationsandCalculating Simulationcan be
subdivided into more complex sub-processes (see figure 6.7).

Figure 6.7: UML action diagram: a more complex simulation process

What the steps do exactly is described in detail in the section 6.4, page 59ff.
An important aspect is data flow between the steps.Transformreactions need to
know which particles have collided, butMergereactions remove them from the
simulation. This is an example of how the steps influence each other.

2This is not exactly true. Even if the simulation is stopped, there are paint events. For example
they are necessary if a part of the window has been obscured by another window.

57



saces

6 The Internals of the tool ‘saces’

We tried to use theVisitor pattern [GHJV94] for the steps interface design. A
particle was visited by aTransformReactionVisitorinstance if it was to be used
in a Transformreaction, for example. We discovered very soon that the pattern
produced a lot of method calling overhead. Calling a method for every single
particle that underwent a reaction, was not acceptable due to performance issues.
After we switched to a “do-it-all-at-once” approach using arrays, performance
increased considerably. AllTransformreactions are handled withinonecall of the
transform()method of theTransformerinterface. Figure 6.8 shows a data-flow
diagram.

Figure 6.8: Data flow diagram: how data flows in the simulation process

Therefore particle arrays and collision pair arrays are created and passed around
instead of invoking methods for every single particle. Steps in italics are available
for the plug-and-play architecture. The data flows are:

Particle Arrays are passed todistribute(), position(), reflect(), measure()andde-
tect(). They are passed todecay(), as well, but as last step in the simulation
loop.

Updating Particles by Referenceis done by the stepsdistribute(), position(), re-
flect()andresponse().

Removing Educts and Creating Productsis done by the reaction steps (a bit
bigger)merge(), transform()anddecay().

58



saces

6 The Internals of the tool ‘saces’

Collision Pairs are created bydetect()and passed through tomerge(), trans-
form() and finallyresponse().

Modifying Collision Pairs is done bymerge(), which removes some pairs and by
transform(), which augments a collision pair with additional information:
bound energy difference and reaction products.

Simulation Properties can be read and written by all steps.

Binary Log is available for all steps to write data, especiallymeasure()needs the
binary log.

Initializing data flow is implicit through the mediator instance. Used byinit().

position(), for example, takes the current particles as an array and modifies
particles by reference.measure()does not modify anything. It simply writes to
the binary log and saves simulation properties. The reaction stepsmerge()and
transform()take collision pair arrays. They create product particles and remove
educt particles directly to and from the simulation state.

In a future version of ‘saces’, parts of the simulation process still too slow can
be re-implemented as native methods in C. Let us say thatdetect()needs to be re-
implemented. A classDetectorPartitionizedNativecan be written that loads the
native library and delegatesdetect()to it. This is why arrays are used in the data
flow. C can handle arrays better than complicated Java lists. In Java, array access
is also faster than list access. The only problem is that it is not possible to increase
array capacity dynamically. With a carefully designed data-flow architecture, the
need to add elements to arrays has been avoided.3

For the signatures of all simulation process steps, see table 6.1. The table con-
tains the interface names as well without the package namesaces.pnp. The table
shows only data flow by parameters, return values and direct adding or removing
of particles(simulation out). A special case isinit(), because data flow is implicit
through the mediator instance (necessary to initialize first).

6.4 The Steps of the Simulation Process

The next sections contain the detailed description of the simulation process steps
starting withinit() and ending withdecay().

3createParticle()in theSimulationclass is used to add product particles to the simulation. This
works, because the particles are saved in a list. The list is copied to an array at the beginning
of every simulation iteration. The simulation steps use the array, instead of the list. The cost of
copying the list to the array is counterweighted by the costs of list access of all steps.

59



saces

6 The Internals of the tool ‘saces’

Step Interface Signature and Data flow
init() part of the void init()

mediator implicit: simulation from mediator
implicit: new particle array is created in simulation

distribute() Distributor void distribute(Particle[], Simulation)

in: particle array and simulation
out: array withupdatedparticles(~p,~v )

position() Positioner void position(Particle[], Simulation)

(in package in: particle array and simulation
saces.sim) out: array withupdatedparticles(~p )

reflect() Reflector void reflect(Particle[], Simulation)

in: particle array and simulation
out: array with someupdatedparticles(~p,~v negated)

measure() part of the void measure(Particle[], Simulation)

Simulation in:particle array and simulation
class

detect() Detector Collision[] detect(Particle[], Simulation)

in: particle array and simulation
return: collision pairs array

merge() Merger void merge(Collision[], Simulation)

in: collision pair array and simulation
out: collision pair array withdeleted (null)elements
simulation out: removedandnewparticles

transform() Transformer void transform(Collision[], Simulation)

in: collision pair array and simulation
out: collision pair array with more information forresponse()
simulation out: removedandnewparticles

response() Response void response(Collision[], Simulation)

in: collision pair array and simulation
out: collision pair array with same elements but where parti-
cles havechangedvelocity (and perhaps position)

decay() Decayer void decay(Particle[], Simulation)

in: particle array and simulation
simulation out: removedandnewparticles

Table 6.1: Data flow and signatures of the simulation process

60



saces

6 The Internals of the tool ‘saces’

6.4.1 Initializing the Experiment — init()

The particles must be created. Plug-and-play classes must be dynamically loaded
and instantiated using Java reflection. Particle counts must also be set. If there is
a problem, an error message box is shown (see section 6.5, page 72).

Because ‘saces’ is always started with a default experiment,init() and dis-
tribute() are run before any user interaction. This should not pose problems. The
default experiment is carefully designed to not produce any problems. It is located
unchangeably within the.jar file.

The methodinit() is part of the mediator and not available for enhancement as
a plug-and-play step.

6.4.2 Initial Distribution of the Particles — distribute()

After the particles have been created, they are assigned position and velocity. The
Distributor interface consists of one method:distribute(). The distributor uses the
particle array passed to the method to set the position and velocity of the particles.

DistributorRandomis a distributor class.DistributorRandomdistributes po-
sition uniformly and velocity components normally using the standard deviation
saved in theDistributorRandom.stdDev experiment property.

TheDistributorMaxwellBoltzmannclass is a distributor implementation which
makes a Maxwell-Boltzmann distribution. It distributes the position as doesDis-
tributorRandom, but applies Maxwell-Boltzmann distribution to the velocity com-
ponents. The standard deviation is calculated using :σ =

√
kT/m, wherek is the

Boltzmann constant (defined as the experiment propertyBoltzmannConstant ),
T the initial temperature of the experiment andm the mass of the particle to be
distributed. DistributorMaxwellBoltzmannmakes smaller particles move more
quickly than heavier particles. This is because their velocity squared is inversely
proportional to their mass.

6.4.3 Repositioning of the Particles —position()

After each run of the simulation loop, a certain amount of real time has passed.
The particles are at new positions calculated using the velocities:

~p ′ = ~p + ∆t · ~v

61



saces

6 The Internals of the tool ‘saces’

This is an extremely simple step and we saw no need to provide a possibility to
enhanceposition(). This step is therefore one of the two steps not available to the
plug-and-play architecture.

6.4.4 Reflecting at the Reaction Vessel Walls —reflect()

position()did not worry whether the particles left the reaction vessel boundaries.
This is the task ofreflect(). It negates per component both velocityvσ and posi-
tion pσ, if the position component is outside the range[r . . . bσ − r] whereσ is
eitherx, y or z. Particle radiusr is considered.

vσ ← −vσ; pσ ← −pσ +

{
2r if pσ − r < 0

2bσ − 2r if pσ + r > bσ

With changing the sign, even the effect that the particle already has traveled a tiny
distance beyond the boundary is considered and the new position is set retroac-
tively. This works because it is assumed that the boundaries are rectangular and
orthogonal to each other (see section 3.2).

A possible improvement of this step would be the heating or cooling of the
vessel walls—this is whyreflect()is pluggable.

6.4.5 Measurements of Physical Values —measure()

People use their senses to perceive things. Physicists use measurement instru-
ments to measure things. In ‘saces’ we do measurements in themeasure()step.
Values like particle count, total mass of the experiment, temperature and pressure
are written to the binary log in regular intervals defined by theMeasureInterval

experiment property. See table 6.2 for an overview of the values measured.

Binary Logger Key How to calculate the value
ParticleCount n
TotalMass mtot =

∑
mi

TotalBoundEnergy Ebound,tot =
∑

Ei

TotalKineticEnergy Ekin,tot =
∑

mi~vi
2/2

AverageKineticEnergy Ekin = Ekin,tot/n
TotalEnergy Etot = Ebound,tot + Ekin,tot

Temperature T = 2Ekin/3k
Pressure p = nRT/V

Table 6.2: Values measured

62



saces

6 The Internals of the tool ‘saces’

Temperature and pressure are macroscopic values and need a little more ex-
planation.

Temperature

In the kinetic theory of thermodynamics, temperature is directly proportional to
the average kinetic energy in a system. We postulate that the particles have only
three degrees of freedom, one for each velocity component of the three dimen-
sions. There are no degrees of freedom for rotation or oscillation, because we
assume the particles are hard spheres with mass concentrated in the center i.e. an
ideal gas. For temperatureT we calculate:

T =
2Ekin

fk

wheref = 3 is the number of degrees of freedom.

We can try different values of the Boltzmann constantk (canonically it is
1.3806510−23JK−1) to get “plausible” values of temperature. In fact, the Boltz-
mann merely reflects a preference for expressing the average kinetic energy in
Kelvin. We are therefore free to redefinek in the chemistry of ‘saces’ considering
that particles are bigger and much slower than in reality.

Pressure

Pressure in an ideal gas can be described by the equationpV = nRT , whereR is
the ideal gas constant (canonically it is8.31447JK−1mol−1) andn is the mole (in
‘saces’ the number of particles). The gas constant is a conversion factor between
the gas units of energy, temperature and molecule number. We also can redefine
R to fit our experiments. We calculate pressure as follows:

p =
nRT

V

The Boltzmann and ideal gas constants are experiment properties and available
for tweaking (see table 4.6, page 35).

Speed distribution

Another task ofmeasure()is creating speed distributions, also called speed his-
tograms. The speed distribution subdivides the speed|~v| of the particles into

63



saces

6 The Internals of the tool ‘saces’

equal intervals. The number of intervals is determined by the experiment property
HistogramSize . The speed interval stretches from 0 to the value of the exper-
iment propertyHistogramMax or to the maximum speed in the simulation. The
minimum and average speeds are also saved. The histogram is viewable in the
speed histogram tab of the data viewer (see page 33).

Tight Coupling with Simulation

measure()is not part of the plug-and-play architecture. It is coupled a bit too
tightly with theSimulationinstance. Because it is responsible for calculating the
frame rate,measure()cannot be replaced. We have decided not to makemeasure()
available to the plug-and-play architecture for this reason. In a future version of
‘saces’ the measure step could be integrated better into the plug-and-play archi-
tecture.

6.4.6 Collision Detection —detect()

Without collisions ‘saces’ would not make sense at all. There would be no re-
actions and not even the simple Brownian Motion experiment would be possible.
The Brownian Motion experiment does not execute reactions, but particles do col-
lide.

Collision detection can be complicated. The most straight-forward approach
uses a doubly nested loop that compares each particle with every other particle. It
has quadratic time complexity and is not acceptable for an efficient simulation of
many particles. Working with a very simple geometric object such as the sphere,
makes the necessary calculations less complicated. When do two spheres ‘col-
lide’, that means, intersect? They intersect if the following inequality holds true:

|~p1 − ~p2| ≤ r1 + r2

where~pi are the position vectors of particle 1 and 2 andri their radii. This is
implemented by the methodoverlaps()in classParticle.

For collision detection in games, where more complicated objects can occur,
more complicated algorithms are necessary, but on the other hand we have to con-
tend with particle numbers ranging in thousands in ‘saces’. Broad phase collision
detection must therefore be very efficient while narrow phase collision detection
is non-existent because we work with spheres only.

For testing and experimenting purposes, we have developed two implementa-
tions of collision detectionDetectorNoneandDetectorSimplebesides the default,

64



saces

6 The Internals of the tool ‘saces’

efficient DetectorPartitionized. The first collision detector does nothing, i.e. it
lets the spheres pass through each other. The other one is the naive, quadratic-
time approach.

The default implementationDetectorPartitionizeduses a highly optimized al-
most linear-time approach described in detail in a separate section 6.6, page 74.
It usesspace partitioning. Naive collision detection is done in every partition
separately.

6.4.7 Merge Reactions —merge()

Merge reactions are reactions of the formP1 +P2 −→ P3. That means two educts
P1 andP2 merge together to produceP3. In effect, we have an inelastic collision.
Assuming molecules consist of atoms, the reaction product is a lump of atoms
glued together: inelastic collision!

This is a problem if we want to model energy conservation. Inelastic collisions
have an energy excess, even when not considering the bound energy difference.
When a car crashes into a tree, the complete kinetic energy of the car is converted
into deforming the car and perhaps also the tree. In ‘saces’, however, we do not
deform particles. We want to keep energy. This is not possible if we also keep
momentum. We have following equations:

Momentum conservation: m1~v1 + m2~v2 = m3~v3

Energy conservation:m1~v1
2/2 + m2~v2

2/2 = m3~v3
2/2

The first equation for momentum conservation already solves the product velocity:

~v3 =
m1~v1 + m2~v2

m3

The equation system for momentum and energy conservation is therefore over-
determined and does not have a solution in most cases. There are several prag-
matic approaches: Abandoning one of the two conservation laws, changing bound
energy, redistributing and energy excess.

Abandoning Energy Conservation MergerSimpleconserves only the momen-
tum with the equation above. This is a simple approach and useful for all
applications which need not model energy conservation.

Abandoning Momentum Conservation MergerEnergyConservationconserves
energy and abandons momentum. The direction of the resulting velocity

65



saces

6 The Internals of the tool ‘saces’

vector is parallel to the momentum after collision, but its length is deter-
mined by energy conservation:

~v3 ‖ m1~v1 + m2~v2

|~v3| =

√
m1~v1

2 + m2~v2
2

m3

This approach assumes that the momentum violations of all merge reactions
more or less cancel out each other. Therefore the total momentum of all
particles should not change a lot.

Changing Bound Energy The energy excess is added to the bound energy of the
product particle. The next time the particle collides this temporarily frozen
energy can be freed.

This approach is not implemented because it has implications on the simula-
tion process. The collision response and other reactions need to additionally
consider the frozen energy. While this approach seems to be quite possible,
it would exceed the limits of the diploma.

Redistributing Energy Excess The excess energies of all merge reactions in a
simulation iteration is summed up and uniformly distributed to all parti-
cles of the simulation. Again, this approach would exceed the limits of the
diploma and is therefore not implemented.

Handling Collision Objects

Merge reactions modify the collision object array in marking merged collisions
as alreadyMerged, effectively removing them from the array.4 The product is
created, the educts removed and velocity and position of the product is calculated
by one of the methods already described.

6.4.8 Transform Reactions —transform()

Transform reactions are reactions in the form ofP1 + P2 −→ P3 + P4. Thetrans-
form() method does not do the reflection calculations of the reaction itself, this
is the task ofresponse(). transform()only verifies whether a transform reaction
applies for a collision:

4The element is not nulled because this is not possible directly inside a Java 5 for-each loop
for (Collision collision : collisions) / * ... * /

66



saces

6 The Internals of the tool ‘saces’

TransformerSimplelooks up the transform reactions of both educts and tries
for each available reaction the probability, the activation energy and the collision
energy (if bound energy difference is negative, see page 71), and when everything
is in order, the reaction is applied and the collision object is augmented with the
products and the bound energy difference. The educt particles are removed from
the simulation and the product particles added. Note that in contrast to Merge
reactions both momentum and energy can be conserved.

TransformerNonedoes nothing and ignores the collision object array. This is
for experimenting purposes.

6.4.9 Collision Response —response()

When two particles have collided and perhaps even reacted, their new velocities
need to be calculated. Collision response parameters are (available in theCollision
instance):

Velocities ~v1 and~v2 of the collided particles

Positions ~r1 and~r2 of the collided particles

Massesm1 andm2 of the collided particles

Bound Energy Difference ∆E = E1 + E2 − E ′
1 − E ′

2 is the difference of the
bound energy before and after the reaction. A negative energy difference
means that the reaction isendothermic, or that an input of energy is required
for the reaction. The opposite is theexothermicreaction, a reaction that
releases heat.

Elastic Collision of Hard Spheres with Energy and Momentum Conservation

There are different approaches to collision response.

One approach solves momentum and energy conservation equations.Colli-
sionConservinguses a thorough but inefficient method to calculate the response.
The equations are:

~p = m1~v1 + m2~v2 (momentum before collision)
~p ′ = m3~v3 + m4~v4 (momentum after collision)
~p = ~p ′ (momentum conservation)

m1v
2
1 + m2v

2
2 = m1v

2
3 + m2v

2
4 (energy conservation)

~d = |~r1 − ~r2| ‖ ~p− ~p ′ (impulse transfer)

67



saces

6 The Internals of the tool ‘saces’

With the three equations of momentum and energy conservation and the impulse
transfer, a definite solution can be calculated. This represents a classic hard sphere
collision in three dimensions. We ignore mass changes(m1 = m3 andm2 = m4)
and bound energy difference(∆E = 0) for the moment. We proceed as follows:

1. Work with relative distance~d. We can think particle 1 as being in the origin
at the time of the collision.

2. Use the velocity of particle 2 a as reference frame . This way we can think
sphere 2 as resting.

3. Rotate the reference frame such that the x and y coordinates of particle 2
become zero. Rotate around the z-axis by angleθ2, cos(θ2) = dz/|d| and
around the y-axis by angleφ2, tan(φ2) = dy/|d|. The rotation matrix is:




cos(θ2) cos(φ2) − sin(θ2) cos(θ2) sin(φ2)
sin(θ2) cos(φ2) cos(θ2) sin(θ2) sin(φ2)
− sin(φ2) 0 cos(φ2)




4. These steps simplify the situation. Thez components are the only velocity
component that changes (because impulse change is parallel to thez axis).
Thez component of the new velocity of particle 2 is:

~v4|z =
2~v1|z

1 + m2/m1

5. Finally reverse step 2 and 3.

It is possible to consider bound energy difference and mass changes. The
formula of step 4 gets more complicated, but the steps stay the same.

The problem with this approach is that it uses trigonometric functions for the
rotation matrices. The Java implementation of the trigonometric calls are precise
but slow. The hardware instructions of sin and cos on x87 FPU have quite signifi-
cant errors outside the range[−π/4 . . . π/4]5 and are not used by the Java Virtual
Machine, The implementations provided by Java are a lot slower (see [Sun03]).

The approach of elastic collision with momentum and energy conservation
therefore turned out to be rather slow. A reimplementation as a native method
in C would be helpful but remains to be implemented.CollisionConservingwas
implemented only as a test class and never has been retrofitted to the plug-and-
play architecture. It is therefore not available in ‘saces’.

5In Java the expressionMath.sin(Math.PI) does not yield 0 but a very small non-zero
value because of rounding errors ofπ. This value is different after the fifth digit for fsin of the x87
FPU. Then the FPU only works within the range±263.

68



saces

6 The Internals of the tool ‘saces’

Central Collisions

In [Hin05a] a collision as described in [HS04], page 155, was proposed:

~v3 =
m1 −m2

m1 + m2

~v1 +
2m2

m1 + m2

~v2

~v4 =
m2 −m1

m1 + m2

~v2 +
2m1

m1 + m2

~v1

where~v1 and~v2 the velocities of particle 1 and 2 before collision,~v3 and~v4 after
collision; andm1 andm2 their masses. Inelastic collision is:

~v3 =
m1

m1 + m2

~v1 +
m2

m1 + m2

~v2

This is a simplified elastic central collision. When we wanted to add mass changes
and bound energy difference to this model, we ran into problems. When we dis-
cussed them with our diploma supervisor Dr. Schwab, he suggested an alternative
approach.

Collision with Random Scattering

With the reference frame of the mass center of the two particles, the problem is
reduced to a head-on collision. After the collision the particles move away from
each other exactly in two anti-parallel trajectories. The scattering angles can be
determined randomly. The approach is:

1. Calculate velocity of mass center~vcm = m1~v1+m2~v2

m1+m2

2. Translate to the mass center reference frame~w1 = ~v1−~vcm, ~w2 = ~v2−~vcm

3. Get a random unit normal vector~n, |~n| = 1 as a scattering direction. (For
each component of~n find a uniformly distributed random number in range
[−1 . . . 1]. Then normalize the vector as follows:~nN = ~n/|~n|.)

4. The resulting velocities are~v1
′ = ~vcm + ~nN |~w1| and~v2

′ = ~vcm − ~nN |~w2|.

This method does not use any trigonometric functions, three square roots and
three random numbers and is faster than elastic collision with hard spheres. With-
out energy difference and mass changes it is an elastic collision.

A side note. In the first implementation we forgot the minus sign for the
resulting velocity of the second particle. The velocities should be antiparallel

69



saces

6 The Internals of the tool ‘saces’

because after a collision the particles move away from each other (in the reference
frame of mass center). With two normal vectors pointing in the same direction we
get a very interesting and quite a funny effect. After collision the particles are
glued to each other and build compounds. We decided to keep this mistake as a
separate classResponseSchwabFunnySticky.

Energy Difference and Mass Changes

While the first approach with a Monte-Carlo method works well and is available as
ResponseSchwab, it does not consider mass changes and bound energy difference.
For the successorResponseSchwab2handling energy difference and mass changes
we use:

1

m3

√
m3m4

m3 + m4

(|~w1|2(m1 + m2)
m1

m2

+ 2∆E)

in the place of|~w1| and:

1

m4

√
m3m4

m3 + m4

(|~w2|2(m1 + m2)
m2

m1

+ 2∆E)

in the place of|~w2|. ResponseSchwabbecomes a special case withm1 = m3,
m2 = m4 and∆E = 0.

How did we find these terms? We start with energy conservation and use
momentum vectors instead of velocity vectors:

E =
|~p1|2
2m1

+
|~p2|2
2m2

=
|~p3|2
2m3

+
|~p4|2
2m4

−∆E

where~p1 is the momentum of particle1 and~p3 the momentum of the same particle
after collision. Note the term∆E which adds energy difference to the collision.

Isolating|~p3|2 and using~p1 = −~p3 and~p2 = −~p4, because in the mass refer-
ence frame the momentum vectors of the two particles before and after collision
are antiparallel and of same length, we get:

|~p3|2 =
m3m4

m3 + m4

(|~p1|2m1 + m2

m1m2

+ 2∆E)

Then we divide the momenta by the masses of the particles, calculate the
square root, and we have the desired terms.

70



saces

6 The Internals of the tool ‘saces’

Negative Bound Energy Difference for Endothermic Reactions

Negative bound energy difference should not make the terms inside the square
roots negative. We have found that particles with high velocities grazing at each
other can yield negative terms. The concept ‘activation energy’ does not help
here to avoid impossible energy scenarios. Important is not only the high kinetic
energy, but also some sort of collision impetus or collision energy. That is why
transform()has an additional check after activation energy to avoid this problem.

Design by Contract

Because the math is at times rather difficult to realize in Java code and tiny typos
can have catastrophic or, even worse, unnoticed small effects,assert is used to
formulate pre- and post conditions and invariants. This isDesign by ContractTM, a
methodology based upon the metaphor of a legal contract.6 Physical conservation
laws are very good contracts: easily defined and verified. Energy and momentum
before and after collision are compared, and if they differ, anAssertionErroris
thrown and the ‘saces’ is halted.7 At times it was quite frustrating to find out
what went wrong, but if all was well the asserts were left in the code, maintaining
conservation laws. Note, however, that some asserts assume mass conservation.

6.4.10 Decay Reactions —decay()

Particles can decay with specified decay reaction probabilities.

In DecayerWithEnergyactivation energy is not considered in a decay reaction.
But a decay reaction cannot be activated if there is not enough bound energy:

Ee ≥ Ep1 + Ep2

Or, in other words, there are no endothermic decays.

Excess energy is transformed into kinetic energy. That means the decayed
particles are faster than the educt particles (assuming mass is same before and
after). The collision response approach with random scattering can be reused
here. The steps:

1. Create a collision pair and the educts

6The object-oriented Eiffel programming language was created to implementDesign by Con-
tract (DBC for short). However, the ideas behind DBC are applicable to many programming
languages. Bertrand Meyer is the initial designer of the Eiffel method and language.

7Only if asserts are enabled by the-ea option to the Java virtual machine.

71



saces

6 The Internals of the tool ‘saces’

2. Set the educt positions and velocity to the ones of the product

3. Set the two educt masses of the collision pair both to half the educt mass
me/2.

4. Calculate bound energy difference∆E = Ee − Ep1 + Ep2.

5. Call response().

Other approaches perhaps need to calculate the scattering angles differently
and cannot pass the pair to the collision response. That is whydecay()is the
last step of calculating the simulation.DecayerWithEnergy, however, reusesRe-
sponseSchwab2by composition. A privateResponseSchwab2member variable is
used.

6.5 How to Implement the Plug-and-play Classes

The idea, in principle, is simple. Just write a class which implements the interface
of your choice. What the method does exactly, is up to you. There are a few
intricacies, however.

1. The class should be in the classpath of ‘saces’. Usually this means using the
-classpath option of thejava command. Please refer to the JDK docu-
mentation from Sun Microsystems. A simple solution is using package-less
classes in the same directory assaces.jar.

Figure 6.9: An error message for a plug-and-play problem

2. The classes are loaded with Java reflection. With reflection many things can
happen. If loading or running a simulation an error message is shown like
in figure 6.9, consult the list of possible plug-and-play problems below to
find out what you can do.

72



saces

6 The Internals of the tool ‘saces’

3. The step must run fast. There is only a few milliseconds per step available.

4. The data flow (see figure 6.8, page 58) must be respected.

The List of Possible Plug-and-play Problems

ClassNotFoundException if the Java classloader did not find the class. The user
must set the classpath or move the class to the same directory as the.jar file.
If the class has package, the class file must be put into the corresponding tree
of subdirectories as Java requires it.

ClassCastExceptionif the instance could not be casted to the given interface.
The class must implement the corresponding interface. For example, to im-
plement thedetect()step, write a class that implements the interfacesaces.
pnp.Detector.

ExceptionInInitializerError if during class initialization an exception has been
thrown. Try to write a test program that creates the instance and see what
happens.

InstantiationException if the class is abstract or an interface. The class must be
a concrete class.

IllegalAccessExceptionif the constructor is not public. There must be a public
constructor without parameters.

Linkage Errors (rare) if the class file has a wrong format or could not be verified
and other linkage problems.

No Property Key (a bug: defaulting of properties failed) if there is no such ex-
periment property. Try to define the property with the correct key in the
‘Properties’ tab of the ‘Settings’ window as a workaround of this bug.

73



saces

6 The Internals of the tool ‘saces’

6.6 Space Partitioning

The naive, brute force collision detection is a double loop:

for each particle i in the reaction vessel do
for the remaining particles k after particle i do

does particle i intersect particle k?

and needsn(n + 1)/2 iterations. The time complexity ofO(n2) is not acceptable
for a large number of particles.

Partitioning is based on the idea that we need to check only particles that are
near to each other. It does not make sense to check if two particles intersect, if
they are in the opposite corners of the reaction vessel.

‘saces’ uses a variant ofBinary Space Partitioning, a technique for collision
detection in games. A BSP tree is a recursive, hierarchical partitioning of an
n-dimensional space [N+95]. BSP works well with varying densities of objects.
Where there are more objects, the partitioning is finer.Space Partitioningof
‘saces’ is not recursive and hierarchical. In a reaction vessel the particles are
usually evenly distributed and we do not need the hierarchy.8

DetectorPartitionizedfirst partitions the cuboid of the reaction vessel into
smaller sub-cuboids. With a constant number of particles per partitionN (usu-
ally a low number between 10 and 50), the collision detection becomes:

for each particle i do
find the partition of particle i

for each partition p do
for each particle i in partition p do

for the remaining particles k in partition p do
does particle i intersect particle k?

The first loop finds out in which partition a particle is located. The particles
are moving and do not stay forever in the same partition. It hasn iterations. The
second loop hasn/N iterations and its inner loop is the naive collision detection,
only that it works onN particles of the partition. We have

n +
n

N

N(N + 1)

2

8There is a problem however. Collisions at partition boundaries are not detected. This happens
if two particles intersect but their centers are in different partitions.

74



saces

6 The Internals of the tool ‘saces’

iterations. If we fixN = 12, we get71
2
n iterations for collision detection, there-

fore a time complexity ofO(n). But there is a big overhead, and we are not able to
see whether it is really linear. Anyway,DetectorPartitionizedseems to be better
for 300 particles and more9 (see tables 6.3 and 6.4).

Particle Count Running time Particle through-
of step (ms) put per ms

10 0.5 22.2
30 0.8 35.7

100 8.5 11.7
300 73.5 4.1

1000 751.8 1.3

Table 6.3: Running times and particle throughput ofDetectorSimple

Particle Count Running time Particle through-
of step (ms) put per ms

10 0.7 13.9
30 5.6 5.4

100 43.8 2.3
300 54.7 5.5

1000 134.1 7.5
3000 315.8 9.5

10000 911.5 11.0

Table 6.4: Running times and particle throughput ofDetectorPartitionized

It is important that the number of particles per partition is fixed (in fact it is the
experiment propertyDetectorPartitionized.particleCountPerPartition ).
If there are more particles, the partitioning will be finer. We calculate the number
of partitionsnP = n/N and try to find a subdivisioning of the reaction vessel
cuboid in three dimensions that yields the numbernP of partitions. This is not
always possible, because not all numbers are factors of three whole numbers, but
this approach gives adequate numbers:

nx = b 3
√

nP +
1

2
c

ny = b
√

nP /nx +
1

2
c

9The measurements were done with a Java profiler. Profiling imposes an overhead slowing
down the simulation performance. In practice we had 50% or better running times than the mea-
surement values in the table.

75



saces

6 The Internals of the tool ‘saces’

nz = b nP

nxny

+
1

2
c

The results of this step are written to the binary log. Suppose we have 2000 parti-
cles and want 12 particles per partition on average. The requested partition count
is 166, the number of subdivisions is 6, 5, 5 and therefore we get 150 partitions
and 13.3 particles per partition.

6.7 The Binary Logger

What is the sense of a beautiful visual simulation, if no hard data is available?
What if the user wants to know how many particles of which particle class are
currently in the reaction vessel?

To keep such a time-critical application such as ‘saces’ animating smoothly,
data logging must be as efficient as possible. We decided to exploit Java’s well-
defined internal representation of binary data. In dropping the conversion to text,
we gain performance.

We also want to decouple simulation and data visualization. We started with
the Observer pattern which provided a good decoupling between data ‘produc-
tion’, the Subjectand itsObservers, the ‘consumers’ of data. But performance-
wise the decoupling was not so great. If a CPU-intensive observer registered with
the simulation, animation performance suffered. We decided to leverage the file
system. Operating systems of today have highly optimized file systems with lazy
buffering. Writing data to files does not mean that the software must wait till the
hard disk spun up and wrote every bit. Another advantage are network-oriented
file systems. We get distributed processing almost for free. A workstation is visu-
alizing a simulation, another workstation accesses the binary log over the network
and displays diagrams. Invoke (see table 4.5, page 34 about command line argu-
ments):

java -cp jogl.jar -jar saces.jar -view experiment.xml saces.binlog

The structure of the binary logger is simple. It uses a record-oriented binary
format with eight different records and a timestamp for every record. The binary
logger emits a stream of records whose sizes are multiples of 8 bytes, and whose
ordering in the stream is free. A histogram record can be followed by a reaction
record, then by a snapshot etc. The only exception is the first record of a binary
log which should be the MAGIC record. The ‘saces’ binary log is marked as
such with this record. All records start with an eight-byte magic number, whose

76



saces

6 The Internals of the tool ‘saces’

last nybble10 is the record identifier and an eight-byte time stamp: the number of
milliseconds since midnight, January 1st, 1970, as produced by the Java method
currentTimeMillis() .

The only types written to the log are the record identifiers (8 bytes), the time
stamps (8 bytes), integers (4 bytes), floating point numbers (4 bytes), strings in
UTF-8 format with a two-byte length tag as written by the methodwriteUTF() as
defined in the interfaceDataOutput, and zero bytes to pad to a multiple of 8 byte.

The binary logger assumes that the data viewer has access to the experiment
definition. Without the experiment definition the binary data is uninterpretable,
because only indices to the list of particle classes are written, for example.

The MAGIC Record (Nybble 0)

The magic record starts with these bytes73416345732100f0 in hexadecimal. This
magic number is ASCII for the stringsAcEs! , followed by a null byte and a final
byte0xf0 in hexadecimal. The last nybble (0 for the MAGIC record) identifies the
record type. The magic is chosen so that ‘saces’ binary logs are easily recognized
and to facilitate resynchronization in case of data corruption (that record sizes
are multiples of 8 bytes also helps here). The MAGIC record is the only record
consisting of only 16 bytes, the magic and the time stamp.

The REACTION Record (Nybble 1)

The REACTION record has been dropped because it has turned out to be too
expensive to log every single reaction to the binary log.

The PARTICLECLASSES Record (Nybble 2)

The PARTICLECLASSES record contains the count of the particles per particle
class. If an experiment has nine particle classes,4 · 9 = 36 bytes and 4 additional
zero bytes to pad up to the length of 40 bytes are written to the binary log. The
particle classes are ordered same as in the experiment definition.

10A nybble is half a byte or 4 bits. The name is a play with words bit and byte — a nibble is a
small bit and a nybble a small byte. A nybble is written with onlyonehexadecimal digit and can
contain numbers from 0 to 15.

77



saces

6 The Internals of the tool ‘saces’

The SNAPSHOT Record (Nybble 3)

The SNAPSHOT record contains the count of all particles, then for each particle
its particle class index and six floating-point numbers; three for the position and
three for the velocity. It is a very big record. For 1000 particles,16 + 4 + (4 · 7 ·
1000) + 4 = 28020 + 4 bytes (or more than 27 kilobytes) are written.

The ‘Snapshot’ button causes such a snapshot to be saved to the binary log,
where it can be converted to text and be processed by other software.

The HISTOGRAM Record (Nybble 4)

Speed histograms show how particle speeds are distributed. The record has four
floating point values for the minimum, average and maximum speed and for
the top speed of the histogram. Maximum particle speed and upper limit of
the histogram do not need to coincide. Then the number of histogram speed
subdivisions and the number of particles in the speed subdivisions are written.
Suppose there are 10 subdivisions between speed zero and histogram top, then
16 + 4 · 4 + 4 + (4 · 10) + 4 = 80 bytes (including 4 bytes of padding) are written.

The PROPERTY Records (Nybbles d, e and f)

A name-value pair can be written to the binary log. The name is written by the
methodwriteUTF(). After the name the value follows. It can be of type int, float
or String, depending on the record type. Padding is also applied here.

The simulation process can write any data to the binary logger. Especially the
PROPERTY records are flexible and the data is easily identified by its name. The
partitioning algorithm, for example, writes how many partitions were requested,
the number of partitions for each dimension and the estimated average particle
count per partition as five PROPERTY records with the names “RequestedPar-
titionCount”, “PartitionCount[X]”, “PartitionCount[Y]” “PartitionCount[Z]” and
“AverageParticleCountPerPartition”.

78



saces

A Simple Artificial Chemistry Experiment System

Chapter 7

Java OpenGL (JOGL)

7.1 A Bit of History

OpenGL grew out of the IRIS GL specification written by Silicon Graphics and
is now regulated by the OpenGL Architecture Review Board (ARB). The ARB
exists since 1992 and consists of several companies with the likes of Apple, ATI,
Dell, Hewlett-Packard, IBM, NVidia, SGI and Sun Microsystems. Microsoft, one
of its founding members, left the ARB in 2003. This is not surprising considering
Microsoft’s decision to not fully support the OpenGL standard in Windows Vista.
Nevertheless, OpenGL remains one of the most robust, portable, widely used 3D
graphics API. It is also cherished by many developers for its simplistic, straight
forward interface.

‘saces’ uses JOGL, the OpenGL port for Java. JOGL does not add any func-
tionality to the OpenGL standard. Structurally, it is merely a JNI mapping of the
OpenGL functions to Java classes. This is an advantage for developers already
familiar with the OpenGL modus operandi. The Java OpenGL code therefore
bears a striking resemblance to OpenGL, used in the C programming language,
for which it was originally conceived. OpenGL is not object oriented and func-
tions basically as a state machine. The object-oriented Java wrapper does not
change this operative characteristic of OpenGL.

Java3D, the object-oriented 3D API written by Sun, was also evaluated as a
candidate for ‘saces’ 3D rendering. As mentioned in the project documents, the
decision not to use Java3D was based on the fact that it appears to have been aban-
doned by Sun. Other than that, it is a very large and complicated API implying
steep learning curve. JOGL on the other hand, is as intuitive as OpenGL.

The following chapter will discuss the algorithms and implementations con-

79



saces

7 Java OpenGL (JOGL)

cerned with the graphical representation of ‘saces’. This chapter may make a lot
more sense to a reader familiar with the general usage and internals of OpenGL,
although the authors have tried to describe the algorithms and implementation in
a straight forward manner, avoiding OpenGL technicalities that would only com-
plicate certain explanations. This chapter will start out by describing the objects
that need to be drawn by OpenGL for the application, and then we will discuss the
viewing modes, lighting and the detail levels implemented by ‘saces’.

7.2 ‘saces’ and OpenGL

Display Lists

Before we proceed with the actual objects, it might be useful to understand how
‘saces’ draws the objects. This is where display lists come in. Display lists are
used by OpenGL to increase drawing performance. OpenGL does this by compil-
ing the routines necessary to draw the desired object. As the reader might guess,
display lists cannot be modified once they have been compiled. Their main usage
is therefore limited to objects that do not change their geometrical appearance,
such as the spheres and bounding box in ‘saces’. Positioning of the spheres, plus
the shading and lighting, are done outside the display list. Using a display list for
the cuboid (bounding box) does not yield drastic performance boosts because of
the cuboid’s very simple geometry. The spheres are a little more complicated and
use trigonometry to calculate the angles needed for surface subdivision. This is
where a display list is advantageous, if not a prerequisite for smooth animations
with numerous particles. Now, let us move on with the geometrical objects.

The Particles

The particles in ‘saces’ are in most cases represented by the GLU1 sphere. The
GLU sphere uses surface subdivision to approximate a sphere. The number of
vertical (stacks) and horizontal (slices) subdivisions are the parameters used for
adjusting the detail of the sphere. ‘saces’ uses sixteen stacks and slices for the
approximation in medium and high detail mode. In low detail mode, the spheres
are drawn with half the number of slices and stacks. This level of detail is useful
when simulating more particles than the host machine can handle in medium or
high detail.

1OpenGL Utility Library

80



saces

7 Java OpenGL (JOGL)

The Cuboid

The cuboid represents the bounding box of the experiment, a rectangular reaction
vessel wherein the particles are contained. It is coded as six polygons, sharing
eight vertices. The wire frame representation is drawn on top of the polygons to
accentuate the edges of the cuboid.

7.3 Viewing Modes

‘saces’ uses three viewing modes for visualization. Two of the three are frustum2

perspective views with a viewing angle of forty five degrees. The third is an
orthographic projection which draws three view ports: One from the top, front
and side of the cuboid.

Perspective View

The default perspective view (and the particle view) allows the user to rotate the
simulation space as if it were circumscribed by an invisible sphere with a radius
identical to the distance from the cuboid center to any of its eight vertices. This
is a user interface known as the virtual sphere, virtual track ball or cue ball and is
attributed to [CMS98].

The virtual track ball algorithm functions by mapping 2D mouse cursor po-
sition to the invisible bounding sphere and then calculating the rotation of the
cuboid by measuring the rotation angle of the sphere. The default perspective
view also implements a zoom in and out function that moves the camera towards
and away from the center of the cuboid with the mouse wheel or with the up and
down keys.

‘Be a Particle’ View

The ‘Be a particle’ view (or particle view), lets the user observe the simulation
from the view of a random particle moving around the reaction vessel. By default,
the camera points to the center of the cuboid, although this can be changed by the
user with the methods described in the virtual track ball section. Zooming is not
implemented for the particle view.

2A frustum is the basal part of a solid pyramid or cone, formed by cutting off the top by a plane
parallel to the base. It represents the viewing volume of a viewport.

81



saces

7 Java OpenGL (JOGL)

Orthographic View

As previously mentioned, orthographic viewing is more of a schematic interpre-
tation of the simulation. It draws the simulation space in three profiles, the way it
would be drawn using paper and pencil. Since orthographic viewing does not use
perspective, objects (particles) further away from the camera do not appear smaller
than they actually are. This is the behavior one would expect from CAD/CAM ap-
plications.

7.4 Detail Levels

‘saces’ uses three detail levels to leverage performance/detail tradeoff. The three
detail levels can be used in any of the three viewing modes described in the view-
ing modes section.

Low Detail

Low detail level strips the simulation of lighting, shading, z-buffer depth testing
and surface all together. This may remind some readers of the antiquities vector
based arcade games such as Lunar Lander from Atari (1979). Vector graphic dis-
play technology was in part conceived for the Apollo space program in an attempt
to create a system capable of simulating the moon landing. Using a bare-bone
display model such as this can increase the frame rate and helps keep the anima-
tion running smoothly when simulating a large number of particles. When using
a high-end video cards however, performance difference might not be as drastic
because rendering of the higher level detail (lighting, shading etc.) is hardware-
accelerated.

Medium Detail

Medium detail level uses lighting, smooth shading and the z-buffer3. When us-
ing lighting, material properties4 need to be assigned to all surfaces appearing to

3The z-buffer is a facility used for depth testing. Depth testing enables OpenGL to recognize
which objects are visible and which are obscured by other objects in relation to the viewpoint.
Without the z-buffer, objects which are drawn last, are simply drawn over existing objects.

4Material properties can be assigned to OpenGL primitives to define how these primitives react
to lighting. Material properties include the color and intensity of the primitive’s light emission and
the material’s shininess.

82



saces

7 Java OpenGL (JOGL)

be lit. This, together with the smooth shading and depth testing functions, influ-
ences performance substantially. On newer machines and in most cases, however,
performance should be acceptable in this viewing mode.

High Detail

Although visual reflections do not exist on an atomic level, together with lighting,
they help increase the feeling for 3D depth perception.

High detail mode adds reflection to the inner walls of the cuboid and translu-
cency to the outer walls. Removing three sides of the cuboid to expose the par-
ticles therein is an alternative to back face culling5 used in medium detail level
mode. The reason for choosing this alternative is as follows.

The costly thing about reflecting objects on a surface is that the objects must
be drawn for each reflecting surface. In our case, this means drawing all the par-
ticles three times (once for each visible wall). And it does not stop here: The
translucency of the outer walls can also be made visible by rotating the simulation
space to its backside. Since translucency works pretty much the same way re-
flection does, this implies that the particles need to be drawn another three times.
After drawing the entire cuboid in high detail level mode, each particle has been
drawn six times and needs to be drawn one more time; where they really are (in
the reaction vessel). Below is a sketch of the algorithm used by ‘saces’ for creat-
ing reflections and translucency. Quake6 fans might recognize this basic technique
used by John Carmack to implement the reflections in OpenGL Quake. It uses the
stencil buffer7 and alpha blending8 to attain the effect.

First, the three inner walls of the cuboid are drawn to the stencil buffer instead
of to the color buffer. This step is invisible because stencil buffer information is
not implicitly used by OpenGL when rendering.

The particle geometries are then scaled and combined with the content of the
stencil buffer for each wall. Scaling results in a mirror representation of the parti-
cles when calculated with the following factors:

5Culling can be used for hidden surface removal in 3D rendering. It can also be used to make
the back or front face of a polygon invisible. This effect is used by ‘saces’ to hide the walls that
obscure the inside of the cuboid

6Quake is a popular first person shooter game written by id Software
7The stencil buffer is an OpenGL facility that can be used for caching and combining off-screen

pixel data.
8Alpha-blending is a technique that can be used to create transparency and translucency. An

alpha value clamped between 0 and 1 can be interpreted as the opacity factor of the object.

83



saces

7 Java OpenGL (JOGL)

(−1, 0, 0) for x-axis,(0,−1, 0) for y-axis and(0, 0,−1) for z-axis mirroring.
Not using the stencil buffer for the mirroring operation would result in three new
sets of particles visible outside the cuboid. The stencil buffer therefore works the
way a stencil would in the real world.

Now that we have drawn the reflections to the inner walls using the stencil
buffer, we have to make the reflections visible. This is done by drawing the inner
walls again, this time using alpha-blending to blend the mirrored particles with
the new inner walls. The alpha value is clamped between zero and one. Using one
as the alpha value would make the inner walls opaque, zero would make the inner
walls invisible and the reflection effect would be mute. ‘saces’ blends with an 0.9
alpha value to attain the effect of a glassy type of reflection.

After we have completed the inner wall rendering, all that is left to do is to
repeat the process for the outer walls to make them appear translucent. The front
surface of the outer wall and the back surface of the inner wall are culled and
drawn into the same position, resulting in one visible wall with the depth of one
pixel.

A note on lighting: To make sure that the reflections look authentic, the parti-
cle materials have to be calculated using lighting before they are combined with
the stencil buffer. The same goes for the cuboid.

7.5 Lighting

Lighting is a very important part of any 3D visualization. It lends the viewer
of a scene an increased feeling of the position and interaction of the objects
depicted therein. ‘saces’ uses only one light source when rendering the scene
because any additional light sources would decrease performance drastically on
non-accelerated video cards. The light source is located on one of the top corners
of the box, giving the viewer a clearer impression of where a particle is located in
relation to other particles during simulation.

84



saces

7 Java OpenGL (JOGL)

7.6 OpenGL State Variables

The table below illustrates the OpenGL state variables9 and their settings, used
when rendering the simulation scene in low, medium and high detail as a refer-
ence.

Table 7.1: OpenGL state variables in the detail levels

Low Medium High
Shade model None GL_SMOOTH GL_SMOOTH
Lighting Disabled Enabled Enabled
Culling Disabled Enabled Enabled
Polygon mode GL_LINE GL_FILL GL_FILL
Depth test Disabled Enabled Enabled
Stencil test Disabled Disabled Enabled
Normalize Disabled Disabled Enabled
Blending Disabled Disabled Enabled

9OpenGL, being a state machine, allows the programmer to set and query state variables. State
variables have default values, and remain constant until modified.

85



saces

A Simple Artificial Chemistry Experiment System

Appendix A

Known Problems

As for any software system exceeding a certain size, ‘saces’ is not free from bugs
and other problems. This appendix lists them.

• It is possible to save files with extensions other than.xml.

• Restarting experiments can confuse the data viewer.

• Decay reactions are not tested as carefully as other reactions. There are
problems with energy conservation. Some experiments can cool down or
heat up, even when they should not.

• An attempt is occasionally made to remove a non-existent particle from the
simulation. If such a thing happens, a notification is printed to the standard
output.

• There is a logical memory leak. Running ‘saces’ over extended time can
slow down the workstation considerably.

• ‘saces’ was never tested on Linux.

• ‘saces’ has a serious problem on the Mac OS X; it crashes very soon.

• Decay reactions likeX → Y or evenX → − are not implemented.

• Input validation of probabilities automatically resets probabilities over 1 to
0 and beeps. (It should block the input field, not reset.)

• Some steps of the simulation process are very important and should not be
replaced. Basic functionality of the process should not be pluggable.

86



saces

A Known Problems

• A defined random seed does not always make the experiment reproducible.
Reproducibility also depends on the simulation performance. On slow work-
station more collisions are missed than on fast ones.

• Some (older) video cards seem to have problems in high detail mode. The
reflections are drawn, but also three sets of ghost particles.

• Some (older) video cards do not handle lighting correctly for a large number
of particles. The light seems to move inside the reaction vessel for more and
more particles.

It is suggested to use low detail mode or to use a better video card.

• Unexpected Java exceptions are caught and presented to the user with the
option to exit or continue. If continuing, ‘saces’ may behave erratically or
even crash.

It is suggested to exit.

• Partitioning for the collision detection is done only once, when the simu-
lation starts. If the particle number increases dramatically this can lead to
performance degradation. The subdivisioning of the reaction vessel should
be recreated every few seconds.

• When viewing in Orthographic mode, the axis labels are sometimes ob-
scured by the reaction vessel.

87



saces

A Simple Artificial Chemistry Experiment System

Bibliography

[Adl94] Leonard M. Adleman. Molecular computation of solution to combi-
natorial problems.Science, pages 1021–1024, 1994.

[Amb00] Scott W. Ambler. Writing robust java code: The AmbySoft Inc.
coding standards for java v17.01d. AmbySoft Inc.,http://
www.ambysoft.com/javaCodingStandards.html , 2000.
White Paper for Java software developers.

[BFS02] Gil Benkö, Christoph Flamm, and Peter F. Stadler. A graph-based toy
model of chemistry. Institut für Theoretische Chemie und Molekulare
Strukturbiologie, Universität Wien, 2002.

[BFS03] Gil Benkö, Christoph Flamm, and Peter F. Stadler. Generic properties
of chemical networks: Artificial chemistry based on graph rewriting.
Advances in Artificial Life — Proceedings of the 7th European Con-
ference on Artificial Life (ECAL 2003), pages 10–19, 2003.

[CMS98] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in
interactive 3-d rotation using 2-d control devices.Proceedings of
SIGGRAPH, pages 121–129, 1998.

[Coo03] Stephen Cook. The P versus NP problem.Journal of the ACM,
50/1:27–29, 2003.

[Dav04] Gene Davis.Learning Java Bindings for OpenGL (JOGL). Author-
House, 2004.

[Dev02] Keith Devlin. The Millenium Problems: The Seven Greatest Un-
solved Mathematical Puzzles of Our Time. Basic Books, 2002.

[DZB01] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial
chemistries—a review.Artificial Life, 7:225–275, 2001.

88



saces

BIBLIOGRAPHY

[FG04] Corina Frutschi and Pascal Grossniklaus. Simulation ausgewählter
DNA-Computing Operationen. Diploma, Hochschule für Technik
und Informatik Bern, Abteilung Informatik, 2004.

[Fra03] Irmgard Frank. Chemische Reaktionen „on the fly“.Angewandte
Chemie, 115:1607–1609, 2003.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and Johnson Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[Hin05a] Thomas Hinze.Arbeitsmaterial zum Diplomprojekt Ein Experimen-
tiersystem zur Simulation des Ablaufs chemischer Reaktionen. Tech-
nische Universität Dresden, Institut für theoretische Informatik, Ar-
beitsgemeinschaft Rechnen mit Molekülen, 2005. Preliminary spec-
ification for the ‘saces’ tool.

[Hin05b] Thomas Hinze.Beispielanwendungen der Künstlichen Chemie zur
Lösung von Aufgaben aus Mathematik und Informatik. Technische
Universität Dresden, Institut für theoretische Informatik, Arbeitsge-
meinschaft Rechnen mit Molekülen, 2005. Description how to run
finite automata in an artificial chemistry.

[HS04] Thomas Hinze and Monika Sturm.Rechnen mit DNA. Oldenbourg
Verlag München, 2004.

[Kne90] Fritz Kurt Kneubühl. Repetitorium der Physik. Teubner Studien-
bücher, 1990.

[LCF04] Rodrigo G. Luque, João L. D. Comba, and Carla M. D. S. Freitas.
Broad-phase collision detection using semi-adjusting BSP-trees. In-
stituto de Informática, UFRGS, Brazil, 2004.

[LJ05] Remo Lehmann and Bojan Jambrešić. Simulation der Arbeitsweise
eines DNA-Chips. Diploma, Hochschule für Technik und Informatik
Bern, Abteilung Informatik, 2005.

[N+95] Bruce Naylor et al. A FAQ about binary space parti-
tioning trees. http://www.faqs.org/faqs/graphics/
bsptree-faq , 1995. FAQ.

[Nad02] Alexander Nadel. Backtrack search algorithms for propositional
logic satisfiability: Review and innovations. Master’s thesis, Hebrew
University of Jerusalem, 2002.

89



saces

BIBLIOGRAPHY

[NBH01] Andreas Ninck, Leo Bürki, and Roland Hungerbühler.Systemik: In-
tegrales Denken, Konzipieren und Realisieren. Orell Füssli Verlag,
2001.

[SBB+00] Andre Skusa, Wolfgang Banzhaf, Jens Busch, Peter Dittrich, and
Jens Ziegler. Künstliche Chemie.Künstliche Intelligenz, 1/00:12–
19, 2000.

[Sce04] Eric R. Scerri. Just how ab initio is ab initio quantum chemistry?
Foundations of Chemistry, 6:93–116, 2004.

[Sil05] Stephen Silver. Life lexicon, release 24. http://www.
argentum.freeserve.co.uk/lex_home.htm , 2005. List
of Game of Life terms; see termUniversal Computer.

[Sun03] Sun Microsystems. Performance regression in trigonometric
functions (very slow strictmath). http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=4857011 , 2003. Bug
report for java:classes_lang.

[Tom04] Kazuto Tominaga. Modelling DNA computation by an artificial
chemistry based on pattern matching and recombination. Tokyo Uni-
versity of Technology, Hachioji, Tokyo, 2004.

[WKL +03] H.-J. Werner, P. J. Knowles, R. Lindh, M. Schütz, et al. Molpro,
version 2002.6, a package of ab initio programs. Birmingham UK,
http://www.molpro.net , 2003.

[WNDS99] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.OpenGL
Programming Guide Third Edition. Addison-Wesley, 1999.

[You04] W. Anthony Young. Comparison of collision detection algorithms.
University of Waterloo, Canada, 2004.

90


