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Abstract 
 

Economic modelling of financial markets means to model highly complex systems in which 
expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents 
form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn 
and adapt. Agents’ bounded rationality leads us to a rule-based approach which we model using 
Fuzzy Rule-Bases. E. g. if a single agent believes the exchange rate is determined by a set of possible 
inputs and is asked to put their relationship in words his answer will probably reveal a fuzzy nature 
like: “IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US 
THEN the EURO will rise against the USD”. ‘Low’ and ‘larger’ are fuzzy terms which give a gradual 
linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy 
Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as 
learning operators. These examples can either be empirical data or originate from an economic 
simulation model. The software GENEFER (GEnetic NEural Fuzzy ExplorER) has been developed for 
designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, 
Fuzzification, Rule-Base Generating and Rule-Base Tuning. The two latter steps make use of genetic 
and neural learning algorithms for optimizing the Fuzzy Rule-Base. 
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1. Introduction 

Modelling expectations has always been a major endeavour for economists as well as for 

psychologists. In economics there is a variety of theories requiring explicit expectation 

modelling. During the course of this paper we refer in particular to financial markets because 

of the predominant influence of forecasts on asset market transactions. As financial markets 

keep on displaying phenomena such as bubbles, crashes, herd behaviour, contagion, GARCH 

effects or focal points we will continue to ask: What moves the asset prices? FARMER gives a 

first hint by stating: “... to have a good theory of how prices behave, we will need to explain 

the behaviour of the agents on whom they depend”1. The standard academic literature is still 

not very convincing about modelling expectation formation. Although agents face a pool of 

publicly available information which consists of past prices, trading volumes, economic 

indicators, political events, rumours, news, etc., “there may be many different, perfectly 

defensible statistical ways based on different assumptions and different error criteria to use 

them…”2. That is the point where the psychologists’ view comes into play. Some cognitive 

scientists believe that agents form ‘mental models’ of the world in order to deal with complex 

environments.3 They look for patterns, hypothesize, try, make mistakes, learn and adapt.4 In 

doing so they inductively form expectations.5 The attempt to model their underlying mental 

processes explicitly is challenging, but it “… helps to ensure that theorists are not taking too 

much for granted and that their theories are not vague, incoherent, or, like mystical insights, 

only properly understood by their proponents”6. In recent years, there is a growing literature 

about the use of Artificial Intelligence (AI) methods for modelling these ‘mental models’ and 

their adaptation to a constantly evolving economic environment. Several papers are about 

John Holland’s Classifier Systems7 and their applications to various economic problems.8 As 

discussed in section 2, this technique does not meet all our demands on an AI-based approach 

for modelling expectations. Therefore, we propose an alternative way to model the formation 

of expectations in a complex environment using Fuzzy Rule-Bases (FRB) as an operational 

representation of ‘mental models’. We divided the design process of such a FRB in four major 

                                                 

1  See Farmer (1999), p. 31. 
2  See Arthur (1995), p. 7. 
3  For an introduction on mental models see Johnson-Laird (1983). 
4  See Marengo/Tordjman (1996), p. 410. 
5  See Arthur (1994). 
6  See Johnson-Laird/Shafir (1993), p. 6. 
7 See Holland (1975). 
8  See for instance Vriend (2000); Arthur et al. (1996); Marengo/Tordjman (1996) and Beltrametti et al. (1997). 



 4 

steps and apply Genetic Algorithms as well as Artificial Neural Networks in order to learn 

and tune FRBs from observed data. In section three these steps of modelling and training 

FRBs are described. We do so by following a typical FRB-design session with the software 

tool GENEFER (G E netic N E ural Fuzzy ExplorE R ) which was developed for handling 

Neural- and Genetic-Fuzzy Rule-Bases and whose key features for model builders are 

highlighted in section 3.6. The papers closes with a glance at possible applications of 

GENEFER and some suggestions for further research. 
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2. A Genetic and Neural Fuzzy Rule-Base approach towards 
modelling expectations 

The ‘true model’ of the world economy or national economies or even their single subsystems 

(e.g. markets, industries or firms) is still to be found. The massive interaction between 

millions of heterogeneous agents is the source for complexity which is continuously 

challenging our understanding of the world we live and (trans)act in. Although we record 

stock and bond prices, interest rates, exchange rates and many more prices for more than a 

century, we still lack a commonly accepted theory explaining the formation of these prices. 

Especially in financial market research we see several competing theories who each seem 

appropriate to explain specific market phenomena. Recent research breaks away from the 

widespread idea of neoclassical market foundations and the assumption of homogenous 

rational agents who instantaneously discount new information into prices, so that no technical 

trading can offer any consistent speculative profits and let markets appear to be perfectly 

efficient. Homogeneity means mutual consistency of perceptions about the environment (one 

commonly shared ‘true model’) and allows for the representative agent framework. There is 

accumulating behavioural evidence against this rational view9 as well as theoretical objections 

like costs of gathering and processing information and transacting, bounded rationality of 

agents and indeterminacy of deductively formed expectations10.11  

Real financial markets are characterised by heterogeneous agents, who have different motives 

to trade, different planning horizons12, different beliefs about the ‘functioning or driving 

forces of the market’ and future events that will affect their action today and influence 

tomorrow’s asset prices. Financial decision makers face theoretical (competing theories), 

empirical (spurious correlation) and operational (non-measurability of inputs) difficulties in 

identifying relevant input data. Therefore, they do not base their decisions on a uniform input 

data set nor on a single accepted theory (but rather on a mixture of theories, on technical 

analysis (chart analysis), on what their competitors do etc.). Despite all these problems agents 

have to form expectations when (trans)acting in financial markets. Since their expectations 

                                                 

9  See McFadden (1999), p. 75 onwards. George Soros, one of the most successful and therefore most famous 
traders, expressed his opinion about the standard academic theory as follows: “…this [efficient market theory] 
interpretation of the way financial markets operate is severely distorted. ... It may seem strange that a patently 
false theory should gain such widespread acceptance“. 

10  See Arthur (1995), p. 8. 
11  See Albin (1998). 
12  For an interesting discussion about the effect of different planning horizons see Olsen/Dacarogna/Müller/ 

Pictet (1992). 
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mainly determine the aggregate market outcome which they try to predict, expectations 

become self-referential and a rational deduction of the ‘true model’ becomes impossible. An 

agent cannot deductively form his expectations, since he needs to know others’ (privately 

held) expectations in order to form his own ones – consequently these are indeterminate.13 

Even in the absence of informational deficits an agent might not be able to fully understand 

the complexity of a market or the costs of discovering the exact input-output relation in finite 

time exceed the benefits from it. Both, the limited information processing capability, that 

stems from the intrinsic data complexity, as well as the lack of information, bound the agents’ 

rationality. With respect to the case of non-measurability of others’ expectations, they face an 

absolute barrier to rationality. But of course we see agents forming expectations everyday. 

How do they do it? 

As we mentioned above, agents look for patterns or rules within the market. In doing so they 

mentally form a rule-based representation of the market’s functioning. These rules reflect 

their experiences and may be influenced by economic theory. This rule-based approach 

includes the expression of explicit (e. g. technical trading rules) as well as tacit knowledge. 

Due to agents’ bounded rationality these rules, however, should not be interpreted as exact 

mathematical functions but rather as a relationship between the agents’ interpretation of the 

input and output variables’ states. We contend that agents interpret these crisp states vaguely 

by associating them gradually with a limited number of linguistic terms (e. g. ‘low’, 

‘medium’, ‘high’).14 

An evolving economic environment continuously generates new observations which extend 

an agent’s experience. New observations might conflict with current knowledge so that there 

is a necessity to learn (by changing rules or the interpretation of crisp data). 

The conclusions we draw from the description above leads to the following list of demands on 

a realistic approach for modelling expectations: 

(D1) explicit knowledge representation ((theory-driven rules), model building) 

(D2) vague formulation of forecasts (bounded rationality) 

(D3) dependency upon experiences (ability to learn) 

                                                 

13  See Foley (1998), p. 53 onwards and for a beautiful explanation Arthur (1995), p. 3 onwards. 
14 This is opposed to classifier systems which usually interpret crisp data by means of crisp intervals (see fn. 8). 
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In order to meet these demands we choose Fuzzy-Rule Bases as an operational representation 

of mental models and apply Genetic Algorithms (GA) and Artificial Neural Networks (ANN) 

as learning operators. 

A single fuzzy rule expresses the vague relation between input(s) and output, like: 

IF the US current account deficit is very high AND the GDP growth rate is lower 

than in the Euro-Zone THEN the EURO is expected to rise strongly against the USD. 

The IF parts of such a fuzzy rule are called antecedents, whereas the THEN parts are their 

consequents. ‘Very high’, ‘lower’ and ‘strongly’ are fuzzy terms. The set of all fuzzy rules 

represents an agents knowledge base (KB) and is called Fuzzy Rule-Base (FRB) in the 

following. A FRB can be divided into two parts (i) the rule-base RB and (ii) the fuzzification 

base FB (see Figure 1).15 The former captures all rules as IF-THEN statements whereas the 

latter provides the fuzzy sets, which express the terms’ linguistic meaning as membership 

functions in the universes of discourse. We additionally assign a weight to each rule 

indicating its relative importance within the RB and therefore allow for a simple hierarchy. 

Figure 1: Structure of Fuzzy Rule-Bases 

FB RB

KB = FRB
Knowledge Base = Fuzzy Rule-Base

Fuzzification Base Rule Base

IF Input1 AND Input2 THEN Output 

 low  medium  medium 

 low  very high  high 

 medium  very low  low 

 high  very high  high 

 low  low  low 

 high  medium  medium 

 high  very low  medium 

 medium  low  low 

 medium  medium  medium 

 high  medium  medium 

 

Input1

mediumlow high

Input2

high very highmediumlowvery low

mediumlow high

Output
 

                                                 

15  This separation is also realised in GENEFER’s data handling, which allows for a greater flexibility of linking 
different FBs to different RBs. 
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Both, FB and RB can be modified during an agent’s learning process. The GA-approach 

requires a suitable encoding of these objects in order to apply its genetic operators (selection, 

mutation, crossover). Transforming the FRB into an equivalent Artificial Neural Network 

opens it up to neural learning techniques (such as error-backpropagation). 

Whereas fuzzy systems account for (D1) and (D2), their combination with GA- and ANN-

training techniques meet all three demands. The use of Genetic and Neural Fuzzy Rule-Bases 

and their implementation in GENEFER is sketched in the next section. 

3. Managing Fuzzy Rule-Bases with GENEFER 

GENEFER is a software for designing a FRB of the Mamdani multiple-input-single-output 

type. The primarily technical literature about fuzzy control proposes numerous ways of setting 

up a FRB. GENEFER does not focus on one of the many ways but separates the design 

process in four major steps (and thus offers the user to combine alternative methods): (i) 

identifying inputs, (ii) fuzzifying crisp input and output data (FB), (iii) generating a rule base 

(RB) and finally (iv) tuning the FRB.16 The design methods of each step can be run either in 

an inductive or in a manual (expert) mode. The former applies combinations of GA or ANN 

with Fuzzy Logic Controllers17 and requires a training data set of observations (TDS) for 

learning. GENEFER is equipped with a DESIGN NAVIGATOR that allows quick and easy 

navigation through the process of FRB-design. The description of each step below will show 

the respective DESIGN NAVIGATOR’s appearance. 

We will not explain the basics in fuzzy inference but only mention that we used t-norm 

operators for calculating the activation degree ADi of a single rule i and accumulated these 

degrees using the sum procedure [min(1, ∑ ADi )] in order to obtain a compositional 

activation degree. The fuzzy inference result can optionally be defuzzified by the (i) Centre of 

Maximum weighted by surface, (ii) Centre of Maximum weighted by significance, (iii) Centre 

of Gravity weighted by Surface or (iv) Centre of Gravity weighted by Significance. Since it is 

beyond our purposes here, we will also avoid to go into detail with GA and ANN and refer to 

the standard literature instead. We do not understand this paper as a user manual. We will 

rather highlight the most crucial features to model builders, in order to raise interest in 

applying GENEFER to economic simulations. 

                                                 

16 The modular design is strongly influenced by the work of Cordón/Herrera (1997). 
17 See Lin/Lee (1991), Lin (1994) and Cordón/Herrera (1997). 
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For the sake of better readability and easier access to mathematical notations, we list our 

frequently used indexes and variables below: 

j ∈  {1,…,J} Input index outt Output in t 

t ∈  {1,…,T} Period index Ai Antecedent of Rule i 

i ∈  {1,…,M} Rule index Aij Fuzzy set of input j in Rule i 

TDS Training data set Bi Output fuzzy set in Rule i 

p ∈  {1,…,P} Period index (only in 3.1.1.a)  B = {B1,...,BNOut
 } Set of all output fuzzy sets 

n ∈  {1,...,N} Fuzzy set index Ai(injt) [Bi(outt)] Membership value of injt 

injt Input j in t Bi(outt) [Bi(outt)] Membership value of outt 

int = {in1t,...,inJt} Input vector in t outFRB(int) Crisp inference result 

3.1. Input Identification 

GENEFER’s data interface uses an Excel 5 compatible file format with the following 

worksheet organisation: horizontally the worksheet is divided into the output range (first 

column) and the input range (following columns). The 

first row is designated for time series labels. The 

number of the following rows containing numerical 

data is equal to the number of periods. After importing 

data GENEFER offers three different ways to proceed. 

If the user has complete pre-knowledge about the 

relevant inputs he will choose the respective option in 

the DESIGN NAVIGATOR and select the desired 

time series. Otherwise he can apply GENEFER’s identification algorithm. If the user is 

completely or partially ignorant on the set of independent inputs, he will proceed along the 

tree items ‘none’ and ‘partial’ respectively. In the latter case preselected time series are 

definitely included in the final set of inputs before the user runs the FC/FS-identification 

algorithm. This algorithm iteratively eliminates unimportant and related inputs. In the first 

step it calculates J fuzzy curves (FC) for each input–output combination and determines the 

MSE between these curves and the observed output data. FC-Ranking in ascending order 

yields the most important input (lowest MSE). Each step will be closed by eliminating a 

��������	�������
�� ���� ��
�
��������� ��	��
����
��
��������������������
�
��	��������
�����

previously identified input with each remaining possible input and output to calculate (1-

�⋅(N-1) fuzzy surfaces (FS). Sorting all FS according to MSE indicates the second most 

important input. Computation of these surfaces will proceed until the set of possible inputs is 
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empty. The FC/FS-algorithm is a computationally fast method to isolate an independent set of 

significant input variables of a complex, poorly defined, nonlinear system.18 

3.2. Fuzzification 

As far as the previous step has been accomplished a variable’s fuzzification can be accessed 

directly via the DESIGN NAVIGATOR. Clicking on one of these variables opens the 

Fuzzification Dialog in Figure 2. Starting with a default 

FB this dialog allows the user to fuzzify each variable 

separately. The degree of granularity (number of fuzzy 

sets) or the type of fuzzy sets (triangular or gaussian) 

are not uniform but may differ for input(s) and output. 

As it is known from cognitive science, human beings 

are usually capable of distinguishing up to 7 significant 

classes.19 Therefore we restrict the number of fuzzy sets 

per variable. This may be either 3, 5 or 7.  

The fuzzification dialog assists the user in easily fuzzifying the output and the identified 

inputs. GENEFER displays the default fuzzification for all variables if the user has not 

specified a FB yet. The user may modify this by changing the settings in the displayed form 

below. These settings refer to the selected variable in ➀ . The user determines the number of 

fuzzy sets in ➁  and their type in ➂ . Grid ➃  shows the centres and widths but also allows for 

manual editing if this option is selected (deactivation of ➄ ). Additionally, a clustering 

algorithm is offered for which the required settings can be found in ➅  above the grid. This 

algorithm runs over all periods in the fuzzification interval ➆  and guarantees a minimum 

membership value (equal to the overlap in ➅ ) for each observation of the selected variable 

within this interval. Maximum and minimum values of the chosen variable within this interval 

are displayed in ➇ . It is important to point to the ‘S-Shape (Border Sets)’ option ➈ . In case of 

a new observation being outside the support of all fuzzy sets, this option helps avoiding the 

failure to generate an inference result.20 

                                                 

18  For a detailed description of the FC/FS-algorithm see Lin/Cunningham/Coggeshall (1996), pp. 65-71. In 
addition to their proposal all input time series are scaled within the unit interval in order to avoid distorted 
results due to significant differences in standard deviations. 

19  See Altrock (1995), p. 153 and Pedrycz/Gomide (1998), p. 67. 
20  Note that this failure cannot occur during the FRB-design process, since the interval for inductive learning can 

only be equal or part of the interval in the previous step. 
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Figure 2: Fuzzification Dialog 
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3.3. Rule-Base Generating  

The user’s decision about the granularity of input variables determines the maximum number 

of possible rules MMax = ∏
j = 1

J

 Nj, which is equal to every possible combination of input fuzzy 

sets. A RB consisting of MMax rules will inevitably 

become intractable if the number of inputs increases. 

Therefore it seems advantageous to remove (or better 

not even create) all redundant rules. E. g. if an agent 

who distinguishes between a ‘low’, ‘medium’ and 

‘high’ inflation rate and ‘weak’, ‘medium’ and 

‘strong’ growth of GDP, has never experienced a 

combination of low inflation rate and strong growth of 

GDP, why should he have a rule for this case? 

21 The 

DESIGN NAVIGATOR above shows the two major steps of the RB generating process 

which are described below.  

                                                 

21  See Legrenzi/Girotto/Johnson-Laird (1993), pp. 38 onwards. For those, who might ask what to do, if a new 
observation begets an unexperienced input value combination, we refer to section 3.5. 
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3.3.1. Rule-Base Creating 

Rule-Base Creating splits up in a descriptive and an approximate approach. They differ in the 

linguistic meaning of each fuzzy set when interpreting fuzzy rules. The descriptive approach 

is characterised by a uniform meaning of all fuzzy sets in all rules. If the second set of the 

third input appears in more than one rule, it always has the same meaning (e.g. medium) and 

is represented by the same membership function. Changing this function will consequently 

affect all rules that contain the respective fuzzy set. Hence there are no restrictions on 

economic interpretability of a descriptive FRB. In contrast to this, the approximate approach 

allows fuzzy sets to differ from rule to rule (free semantics). Whereas this may have 

advantages concerning the goodness of fit, it is not accessible to an economic interpretation. 

With respect to our purposes here, we do not consider the approximate approach in the 

following, but concentrate on the interpretable descriptive one.22 

The designer of a FRB has to pay attention to two properties in order to obtain good results.23 

The completeness property guarantees that the FRB is able to generate an inference result for 

each observation of input values in the TDS. The completeness property can be assigned to 

the FB and the RB. A FB is complete if the union of all fuzzy sets for each input variable 

covers the related universe of discourse. If it covers to a level of σ ∈  [0,1], the FB is called σ-

complete. In contrast to this, a RB is called complete if it is able to generate an inference 

result for any input proposition. As we mentioned above this may lead to an unacceptable 

large number of rules if certain regions in the input space are not covered or can be excluded. 

Therefore we relax the RB completeness property by requiring each observation dt = (int, outt) 

in the TDS to be covered to a degree of at least CV(dt) ≥ ε > 0. The Covering Value CV is 

calculated as follows: 

(1) Ai (int) = min(Ai1 (in1t),…, AiJ (inJt)) 

(2) Ri (dt) = min(Ai (int), Bi (outt)) 

(3) CV(dt) = U
i=1

M

 Ri (dt)  

(4) CV(dt) = ∑
i=1

M

 Ri (dt)  

                                                 

22 We plan to test GENEFER’s forecast abilities and will, of course, include the approximate approach in order 
to evaluate if it shows better results than the descriptive one.  

23 See Pedrycz/Gomide (1998), ch. 10.6 and especially Gordón/Herrera (1997), pp. 377-380. 



 13 

Equation 1 (2) is the compatibility degree between the ith rule’s antecedent (the ith rule) and 

the observation int (dt). Equation 3 is the generic Covering Value while the iterative nature of 

the evolutionary RB creating procedure (see below) requires its modification to equation 4. 

The second property is the consistency of a FRB. A Rule-Base (not FRB!) is called consistent 

if it does not contain contradictions. A contradiction arises when two or more rules have the 

same antecedents but not the same consequent. In FRBs there is a need to relax the 

consistency requirement due to fuzzy modelling. It is the essence of fuzzy modelling that a 

crisp observation may be consistent with more than one fuzzy rule, which may of course 

differ in their consequents. But this does not necessarily imply contradictions, just like there is 

no contradiction in stating that a person is tall to a degree of 0,9 and very tall to a degree of 

0,25. In order to avoid contradictions in FRBs we will apply the concepts of positive and 

negative observations. An observation is regarded positive for a fuzzy rule if it matches its 

antecedent and consequent with a compatibility degree Ri(dp) greater than or equal to ω : 

(5) TDSS�

+(Ri) = {dp ∈  TDSp   Ri (dp) ≥ ω} 

In case of matching the antecedent but not the consequent the observation is considered 

negative for the rule.  

(6) TDSp
-(Ri) = {dp ∈  TDSp   Ri (dp) = 0 and Ai(inp) > 0} 

With respect to this relaxation we call a FRB consistent if it provides a sufficient small 

number of negative observations, measured as the percentage k of positive observations.  

GENEFER offers three options to create a FRB as shown in the DESIGN NAVIGATOR 

above. The two first inductively create a FRB by using the information inside the TDS. The 

third one allows for manual creation of fuzzy rules in order to make use of expert knowledge. 

a) evolutionary  

The evolutionary method is an iterative process to generate a complete and consistent RB for 

all observations in the TDSp. It is therefore necessary to carefully select these observations so 

that they cover all possible input combinations. One step encompasses the four following 

substeps: 

• Creation of a candidate RB matching all observations within the TDSp. 

• Evaluation of all candidate rules according to a fitness function. 

• Copying the best (the fittest) rule to the generated RB and clearing the candidate RB. 
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• Removal of all observations in the TDSp for which CV(dt) > ε 

A candidate rule is created by linking those fuzzy sets that yield the highest membership value 

for the current observation’s variables values. A TDSp of P observations will therefore lead to 

a candidate RB of P or less fuzzy rules, since doubles are excluded. The consecutive 

evaluation uses a multicriterion fitness function which considers the following criterions: 

(7) High Frequency Value: 

 TDS(Ri) =  

∑
p=1

P

 Ri (dp)

P   

 

(8) High Average Covering Degree Over Positive Observations: 

 G  (Ri) = ∑
dp∈ TDSp,

+(Ri)

 

 
Ri(dp)

 TDSp,
+(Ri) 

   

 

(9) Small Negative Example-Set: 

 gn(Ri

 -
 ) = 



 1 if TDSp

-(Ri)   ≤ k⋅TDSp,
+(Ri) 

1
 TDSp

-(Ri) −  k⋅TDSp,
+(Ri) + exp(1)

otherwise
 

 

(10) Fitness function:  

 F(Ri) = TDS(Ri)⋅G (Ri)⋅gn(Ri

 -
 ) 

The best rule, the one with the highest fitness value, is copied to the generated RB. This 

generated RB is then used to compute the Covering Value for all dp ∈  TDSp (see Equation 4) 

and all observations whose CV is greater than or equal to ε will be removed. The candidate 

RB is cleared for the next step which runs over the reduced TDSp. This process terminates 

when TDSp = ∅ .  

b) neural  

As an alternative to the evolutionary procedure GENEFER offers an unsupervised 

competitive neural learning algorithm for detecting rules in a given set of observations.24 The 

algorithm works as follows: At the beginning of the learning process all antecedents i are 

                                                 

24 For the underlying feature-map-algorithm see Kohonen (1988), ch. 5, particularly p. 132. 
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virtually connected with all consequent terms. “Virtually connected” means that there is a 

potential connection between each antecedent i (i = 1,...,MMax) and each consequent set q (q = 

1,...,NOut) with an initial connection weight of zero (wiq = 0 ∀  i). Presenting a training pattern 

dt allows to compute the activation degree for each antecedent Ai(int) and the membership 

value for each fuzzy set q of the output variable Bq(outt). These values are used to adapt the 

connection weights by means of the following learning rule: 

(11) ∆wiq = Bq(outt)⋅[−wiq + Ai(int)] 

At the end of the learning procedure (after a given fixed number of training patterns) the 

connection with the maximum connection weight of each antecedent is kept and all others are 

removed. 

c) manual 

GENEFER’s expert mode allows to (re-)design the complete RB or parts of it including the 

rule weights vector manually (setting a rule weight to zero deactivates the rule). If no RB has 

yet been created the program delivers an initialized normalized RB by generating all MMax 

antecedents with the output’s mid-term as the default consequent. This basic RB can then be 

used as a starting point for further individual modelling. 

By setting influence factors inffj for each input variable j the antecedents of an initialized RB 

can be connected automatically to the respective consequent sets. Influence factors reflect 

ceteris paribus reasoning and are represented by integers reaching from –3 to 3 (-3 means 

strong negative influence, zero means no influence and 3 means strong positive influence). 

In the automatic RB-connection procedure each input and output fuzzy term is identified by 

its relative position (RP) towards the respective mid-term. E.g. the linguistic term set {very 

low, low, medium, high, very high} is represented as {-2,-1,0,1,2}. Given the user defined 

influence factors for all inputs the relative position RP(Bi) of the consequent set in any rule i 

is found as follows: 

(12) RP(Bi) = trunc









1

3 ∑
j = 1

J
inffj⋅RP(Aij)    ∧  RP(Bi) ≥ RP(B)min   ∧  RP(Bi) ≤ RP(B)max 
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3.3.2. Rule-Base Simplifying 

Although the previous step already provides a valid FRB, the user can try to improve its 

performance. The RB-creating process might lead to a larger amount of rules than necessary. 

Redundant rules occur due to overlearning, when some observations in the TDS have a higher 

covering degree than the desired one.25 The purpose of simplification is to remove these 

redundant rules by applying genetic operations on a population of encoded RBs. A RB is 

encoded as a binary string C of length M which can be regarded as a sequence of switches 

that either turn a rule on (digit 1) or off (digit 0). A string only containing the digit 1 

represents the created RB of the previous step. All other individuals in the population are 

initialised randomly. The population is of constant size K with k ∈  {1,...,K}.  

The user may choose between three selection procedures: (i) Stochastic Universal Sampling 

(SUS) (rang-based), (ii) SUS (fitness-proportional) and (iii) Tournament Selection to 

determine the individuals for the mating pool. The activation of the elitist selection option 

guarantees the survival of the fittest individual in the next population. The offspring 

population is created by the classical binary multipoint crossover and uniform mutation 

operators. The fitness of one individual Ck is determined by its MSE over the TDS. The lower 

this error the better the individual. Since there is a need to fulfil the completeness requirement, 

the fitness value has to be modified in case of a completeness violation. We ensure this by 

requiring that each observation in the TDS has a CV (equation 3) of greater or equal to τ. The 

completeness property for Ck over the complete TDS is defined as training-set completeness 

degree: 

(13) TSCD(Ck, TDS) = 
dt∈ TDS

 CVCk
 (dt)  

The following fitness function penalises the fitness value if the training-set completeness 

degree is violated: 

(14)  F(Ck) = 



 MSE(Ck) if  TSCD(Ck, TDS) ≥ τ

1
2 ∑

dt∈ TDS

(outt)
2 otherwise

  

It is important to note that GENEFER does not delete any redundant rules. The procedure of 

simplifying attempts to improve the performance of a previously created FRB by switching 

                                                 

25 See Gordón/Herrera (1997), p. 391. 
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single rules on and off. As a result we obtain a binary code of switches that is linked to the 

generated FRB. This linkage might possibly yield a reduced FRB. Nevertheless the user is 

always able to work with the generated one by (re)-activating all rules (turning on all 

switches). 

3.4. Fuzzy Rule-Base Tuning 

 RB-simplifying and FRB-tuning both aim at improving the system’s forecast performance. 

Whereas RB-simplifying uses a given FB in order to refine the RB, the FRB-tuning focus is 

on adjusting the fuzzy sets parameters. The current 

fuzzification of input(s) and output might not be as 

suitable as it could be regarding the goodness of fit. The 

search space is limited to the fuzzy sets’ centres and 

widths without changing their a-priori defined type and 

the degrees of granularity. GENEFER offers two popular 

tuning algorithms for fuzzy systems: genetic and neural 

tuning (error-backpropagation). In the latter case the 

FRB is transformed into a Neural-FRB with a given 

topology. We do not apply explicit structural learning (changing the network’s topology) but 

focus on parametric learning.  

4.3.1. Genetic tuning 

The genetic approach requires a suitable representation of the input and output fuzzification. 

We encode the complete FB as a sequence of real 3-tupels such as (fl, fc, fr) with fl (fr) as a 

fuzzy set’s left (right) border and fc as its centre. The complete encoding C of all fuzzified 

variables (= FB) is the object to be genetically modified. The encoded fuzzification of one 

input variable j contains 3⋅Nj elements c, so that the encoded FB is a sequence of 3⋅Nj⋅Nout⋅J 

elements. The encoded current fuzzification as well as randomly initialised individuals form 

the starting population in the first generation t. Initialisation and genetic operations take place 

in a specified search space. The structure of C as well as the search space for fuzzy parameter 

adaptation are shown in figure 3. 
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Figure 3   Genetic Tuning of FB 
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The genetic operators need to be adapted to real coded individuals. We apply non-uniform 

mutation and Max-Min arithmetical crossover to create individuals for the next generation 

t+1. If an individual C is randomly selected for mutation one of its elements c (one of the two 

borders or a centre) is identified to be mutated. A random binary number α determines 

whether to increase or decrease the value of c. Assume that the selected element cn to be 

mutated to cn’ is a centre fc then: 

(15) cn’ = 


 cn + ∆(t,fcr − cn)  if α = 1

cn - ∆(t,cn  − fcl)  if α = 0
 

The result of the function ∆(t, y) is a value in the range [0, y] and the probability of the result 

being close to 0 increases in t according to: 

(16) ∆(t, y) = y (1 − r (1 − 
t
T)b

 ) 

If a pair of individuals (CP1, CP2) in the current population is selected for crossover, four 

offspring are created according to : 

(17) 

C1
t+1 = a CP1 + (1−a) CP2

C2
t+1 = a CP2 + (1−a) CP1

C3
t+1    with c 3

t+1 = min(cP1, cP2)    ∀  cP1 ∈  CP1 and cP2 ∈  CP2

C4
t+1    with c 4

t+1 = max(cP1, cP2)    ∀  cP1 ∈  CP1 and cP2 ∈  CP2

 

The parameter a is a constant in the range [0,1] and has to be set by the user. In order to keep 

the size of the population unchanged, only the two best of the four offspring are copied in the 
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next population. We used the same fitness function as in the previous simplification step for 

evaluating the population. Since each individual C represents a complete FB, it is linked to the 

created (or simplified) RB in order to determine the FRB’s output for MSE calculation.  

4.3.2. Neural Tuning (Error-Backpropagation) 

The neural FRB-tuning option makes use of the fact that both fuzzy and neural systems are 

based on a distributed knowledge representation. On principle, this allows to transform a 

fuzzy system into an equivalent neural network, in order to apply neural learning procedures 

to fuzzy systems. For this purpose we interpret the FRB as a hybrid neuro-fuzzy system 

(connectionist fuzzy control system) according to the basic technology presented by Lin and 

Lee.26 This approach uses a layered feedforward neural network with a total of five layers (see 

Figure 4). Each layer carries out a specific function in the fuzzy inference process. 

Figure 4   Neural fuzzy system with two input variables 
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The nodes in layer one (basic input nodes) are sensors to the outside world. Their task is to 

receive the crisp values of the input variables and transmit them to the appropriate nodes in 

layer two (input term nodes). The input term nodes carry out the fuzzification function for 

                                                 

26 See Lin/Lee (1991) und Lin (1994). A good overiew of hybridizing neural and fuzzy technologies is delivered 
by Nauck/ Klawonn/Kruse (1994), pp. 231 onwards. A very concise description of the basic concepts of neural 
networks can be found in Buckley/Feuring (1999), ch. 3. For details in neural technologies see Hecht-Nielsen 
(1991). 
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each input. Every basic input node is connected with all input term nodes of the respective 

input variable which represent the different linguistic terms.The parameters used for 

characterizing the membership functions (centers and widths) can be interpreted as link 

weights between layer one and two. After calculating the degrees of membership for all 

linguistic input terms the layer two nodes propagate this result to the next layer whose nodes 

represent the antecedents of the RB. Each of them computes the activation degree of the 

respective rule by means of the fuzzy AND operator. All cross term combinations between all 

inputs are represented in the aggregation layer, so the number of links of each conditional 

node to the anterior nodes equals the number of inputs. Since the aggregation procedure 

works with unweighted input data (i.e. degrees of membership of the concerned terms) the 

link weights between layer two and three are constant and equal to one. Each node at layer 

four (consequent nodes in the conclusion/accumulation layer) corresponds to one linguistic 

term of the output variable (output term nodes). Each of these nodes receives the degrees of 

application of those conditional nodes which point at the respective consecutive term 

represented by the considered node at layer four. Optionally the activation degrees can be 

weighted by means of link weights between the layers three and four. A link weight of zero 

means that the respective rule has been deactivated. The third and fourth layer constitute the 

connectionist inference engine which embodies the complete RB of the equivalent fuzzy 

system. The single node in the fifth layer (output node) defuzzifies the fuzzy inference result 

and delivers the crisp forecast value. The link weights between layer four and five represent 

the centers and widths of the fuzzy sets that represent the linguistic terms of the output 

variable. 

The efficiency of a neural network with a given topology and node functionality only depends 

upon the values of the link weights which determine how the node output of layer s is 

propagated to the subsequent nodes in layer s+1. The knowledge of a neural network is 

therefore embodied in the values of the link weights. The fact that the complete functionality 

of the fuzzy inference process is represented equivalently by the neural network allows the 

application of neural learning methods for FRB-tuning. GENEFER’s neural learning method 

is a modified error-backpropagation procedure (MEBP). The starting point of the learning 

process is the mean squared error over the TDS: 

(18) MSE = 
1
2 

1
T∑

t = 1

T

(outFRB(int) – outt)
2 
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The learning procedure aims at minimizing the error function (18) by finding the weight 

vector which minimizes MSE. The underlying idea of error-backpropagation is that all nodes 

of the network (not only the output node) are responsible for the network error due to their 

influence on the signal propagated through the network. During the training phase the signal’s 

direction is reversed, so that each learning round starts at the output node with the network 

error being fed into the network. This error signal is then backpropagated layer by layer until 

it reaches the basic input nodes. Hereby, the global network error is distributed over all 

relevant nodes. Since each node’s signal can only be changed by adjusting its link weights 

these are the object of the learning process. The adjustment of each weight w is proportional 

to its marginal influence on the network error. This method implies a linear approximation of 

the error function in the environment of the current weight values. 

(19) ∆w = –µ ∂MSE
∂w

 

If we plot the network error as a function of all link weights we get a mountain-like error 

surface in which equation (19) describes the steepest way down with the exogenous learning 

rate µ determining the stride (gradient descent algorithm). We omit further details and 

formulas of the parameter adjustment procedures here,27 but it should be noticed that they 

depend on the fuzzy types, the fuzzy AND operator and the rule weighting option. 

The neural learning operations described so far reflect the standard error-backpropagation 

algorithm (EBP) whose results do not necessarily account for the specific needs of a fuzzy 

rule base. Sometimes, it is suitable to exclude the adaptation of certain parameters or to 

restrict their adjustment ranges in order to keep the whole fuzzy system in a sound state. 

Otherwise it might happen that the EBP-algorithm ruffles the FB leaving us with a 

degenerated system that lacks economic interpretability (e. g. negative or extremely small 

fuzzy set widths or fuzzy set centres that can hardly be distinguished from each other). In 

these situations special MEBP-filters intervene in order to get a differentiated fuzzification of 

the relevant crisp data intervals (e. g. by ensuring a minimum overlap of adjacent fuzzy sets). 

The underlying idea of the adjustment-filters is the formulation of various criteria for a sound 

FRB and to inhibit the learning process whenever one (or more) of these criteria is running 

the risk to be violated. 

                                                 

27 See Kooths (1998), section 2.5.3.4. 



 22 

The MEBP-algorithm was especially designed for applying a given FRB to observations 

which might differ considerably from the training data set. In this case GENEFER finds itself 

on „virgin soil“ which might be due to a radical change within the economic system. „Virgin 

soil“ appears whenever the fuzzy sets do not cover the relevant crisp interval in an adequately 

differentiated way and/or whenever the relevant crisp values lie in the border regions of the 

fuzzified interval.  

3.5. Adaptability of the system in a changing environment 

This section is about GENEFER’s application in an economic simulation. As we have 

mentioned in section 2, there is a need to guarantee the system’s adaptability to a changing 

environment due to the learning ability of agents. The major steps in the design process reveal 

some useful procedures which can be used for our purposes here as well. Nevertheless 

GENEFER’s spectrum must be extended. The software must allow for exploitation of agents’ 

existing knowledge as well as for exploration of new knowledge if the observed data conflict 

with the agents’ expectations.  

The two tuning procedures in the section above could serve as means for exploitation of 

knowledge. E. g. an agent who is used to an inflation rate between 1% and 2% will (sooner or 

later) change his opinion about the meaning of ‘high’, if the inflation rate exceeds his 

experienced top level. The tuning routines adapt the fuzzification of input(s) and output 

according to a changing economic environment. They check for the existence of a better FB, 

that leads to an improved forecast performance. The user specifies a time interval in which no 

tuning occurs. If he wants to prohibit tuning, he will set this interval equal to the simulation 

interval – if he wants agents to learn continuously, the interval is set to one. 

In contrast to this, exploration procedures search for new rules without adjusting the FB. As 

we mentioned above the generation process creates a FRB, which covers all observations in 

the TDS but cannot guarantee to provide a fuzzy rule for all possible values of input-output 

combinations. In the case of a missing rule or poor covering of existing rules28, GENEFER 

offers two ways to explore the rule search space. The first one is to continuously replace an 

agent’s FRB after a user-specified number of simulation periods. GENEFER will therefore 

generate a new FRB on (i) an enlarged TDS including all new observations or (ii) a TDS of 

constant size including a user specified number of observations (moving window). The 

                                                 

28 A poor covering may occur with gaussian fuzzy sets, which always yield positive membership values but not 
necessarily significantly different from zero.  
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technical realisation might exceed computational capacity when the number of agents 

increases and/or when they are forced to replace their FRB quite frequently. Additionally one 

cannot exclude the case of false inference, if an uncovered observations occurs during the 

interval of unchanged FRB. For that reason, we introduce a second procedure, which allows 

to generate a new rule in case of a new observation, for which no forecast value can be 

inferred. If there has never been an observation of low inflation rate differential and high 

unemployment rate differential so far, there will probably be no rule covering such an 

observation. What should an agent expect about the exchange rate (assume that is the one to 

predict)? Will he throw dices to find out? Certainly not. We assume that such an agent will try 

to derive a new rule (and therefore a forecast result) by using his current knowledge. Let us 

consider an agent with the FRB in Figure 1 on page 7, who experiences a low inflation rate 

differential and a high unemployment differential. Let us also assume that none of his rules 

covers the observed data, so that no result can be inferred. The agent will then compare the 

existing rules’ antecedents with the observed input data in order to identify the most similar 

ones. If we index the fuzzy sets according to their position, we can encode the FRB as: 

IF Inflation rate differential AND Unemployment rate differential THEN ����� 
 1  3  2 
 1  5  3 
 2  1  1 
 3  5  3 
 1  2  1 
 3  3  2 
 3  1  2 
 2  2  1 
 2  3  2 
 3  3  2 

We compute the sum of the squared distance between each index of the new antecedent (1,4) 

and the ones for all antecedents in the FRB above for each rule. The lowest value yields the 

rule(s), which we regard as most similar. These are the first two in our example (02 + 12 = 1). 

The agent has to decide whether to expect the first rule’s consequent or the second one’s. We 

calculate the mean value and round the result, which will yield ‘high. The following rule will 

be added to the agent’s current FRB. 

 1  4  3 

If the observed output at the end of this simulation period matches the newly appended rule’s 

consequent, it will be kept unchanged. If this is not the case, GENEFER will replace the 

consequent fuzzy set by the one yielding the highest membership value for the observed 

outcome. Therefore, an agent tends to expect what he has learned from observations so far.  
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3.6. Key Facts of GENEFER for Economic Model Builders 

GENEFER is not limited to a specific type of economic models. It can be implemented in: 

• macro-level simulations using a single FRB for modelling the representative agent’s or 

dominant market expectations (e. g. Dornbusch’s exchange rate model, Laidler’s 

monetarist business cycle model) 

• micro-level simulations for multiple-agent modelling with multiple FRBs giving room 

for analysing the interaction of heterogeneous expectations (see examples in fn. 8) 

The key AI-related features for expectation design are 

• 3 ways to set up a Knowledge Base consisting of fuzzy rules, which account for 

agents’ bounded rationality and allow for interpretability of the FRB inference result. 

• to modify this FRB in order to improve performance concerning a training data set 

(offline) or to model learning processes during a simulation (online). The modification 

includes the introduction of new fuzzy rules (exploration of knowledge) as well as the 

tuning of existing rules (exploitation of knowledge). 

• a huge flexibility in adapting the system’s behaviour to specific purposes. The user 

can set the agents’ inputs by default or let GENEFER learn which inputs are the most 

significant. He can define each rule in a FRB or let GENEFER learn a RB or even a 

combination of both. As far as simulation purposes are concerned the frequency to 

tune, simplify or even replace the FRB can be set individually for each agent. 

GENEFER comes with COM-server functionality giving access to those FRB-design related 

methods needed for the implementation of all features mentioned above. The user is therefore 

free to choose any preferred programming language for his computational economic 

simulations. 

4. Summary and directions for further research 

In this paper we propose a new AI-based technique for modelling expectations. This 

technique combines fuzzy systems as a representation of knowledge bases with Genetic 

Algorithms (GA) and Artificial Neural Networks as learning operators. We describe their 

synthesis and present the software GENEFER (GEnetic NEural Fuzzy ExplorER). Economic 

model builders can implement GENEFER in their simulations via a COM-interface and make 



 25 

use of its fuzzy inference and learning routines. Nevertheless it may also be used for pure 

forecasting purposes on empirical data. 

We are currently testing GENEFER’s performance in forecasting financial time series. The 

development of self-documenting-business-cycle-indicators is on our research agenda for the 

near future. GENEFER’s modular architecture gives room for further combinations of AI 

techniques. We plan to apply GA in order to evolve a population of Fuzzy Rule-Bases and 

therefore reduce the amount of exogenous parameters, e.g. the learning rate.  
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