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METHOD AND APPARATUS FOR SHARING 
A SIGNAL LINE BETWEEN AGENTS 

This is a divisional of application Ser. No. 08/420,494, 
?led Apr. 12 1995, US. Pat. No. 5,651,137. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to computer systems. More 

particularly, this invention relates to memory transactions 
Within a dual processor computer system. 

2. Art Background 
The heart of a personal computer system is usually a 

central processing unit (CPU) that resides on a micropro 
cessor chip. When a microprocessor operates at a high 
speed, computer instructions and data must be supplied to 
the microprocessor chip quickly if the speed of the micro 
processor is to be utiliZed effectively. The bus that provides 
instructions for the microprocessor to execute, and that also 
provides the data that the microprocessor Will use When 
executing these instructions, can become a bottle neck in a 
computer system having a fast microprocessor. 

If the next instruction to be executed is not available When 
the microprocessor needs it, then the microprocessor must 
Wait idly While the required instruction is retrieved and 
provided to the microprocessor. This idling also occurs When 
the microprocessor has the next instruction to be executed 
available, but the next instruction to be executed requires 
data that is not immediately available to the microprocessor. 
In order to decrease the frequency With Which the micro 
processor encounters these Wait cycles, many modern high 
performance microprocessors have a small internal cache 
sometimes called a primary cache. Instructions that are 
likely to be executed, and data that is likely to be required 
by the executing instructions, are stored in the internal cache 
so that they can be accessed immediately by the CPU of the 
microprocessor. 
When an instruction is to be executed or data is required, 

the cache is checked to determine Whether a copy of the 
required instruction or data is immediately available Within 
the cache. If a copy is stored Within the cache (called a cache 
hit), then the copy can be supplied to the CPU immediately 
from the cache, and there is no need for the CPU to Wait 
While the instruction or data is retrieved to the micropro 
cessor chip from Wherever it is stored Within the computer 
system. On the other hand, if a copy is not stored Within the 
cache (called a cache miss), then the CPU must Wait While 
the instruction or data is retrieved to the microprocessor chip 
from Wherever it is stored Within the computer system. 
When executing a program, the CPU may modify the 

copy of a line stored in the cache. In a Write through caching 
scheme, the main memory is immediately updated When a 
cached copy has been modi?ed. A Write through caching 
scheme has the advantage that data in the cache is alWays 
consistent With data in main memory. This is especially 
advantageous in multiprocessor systems and in systems 
having direct memory access devices because the main 
memory alWays contains the most recent copy of the data. A 
disadvantage of the Write through caching scheme is that it 
increases the traf?c on the bus. This is because the bus is 
immediately used to send the modi?ed data to the main 
memory so that the main memory can be updated every time 
that data in the cache is modi?ed. This is particularly 
disadvantageous When a memory location is used to store 
temporary results that change frequently because the main 
memory must be updated each time the temporary result 
data changes. 

10 

15 

25 

35 

45 

55 

65 

2 
By contrast, in a Write back caching scheme, the main 

memory is not updated every time that a copy stored Within 
the cache is modi?ed. Instead, in a Write back caching 
scheme, the copy stored Within the cache may be modi?ed 
several times before the main memory is updated. This has 
the advantage of reducing the traf?c on the bus because the 
main memory is not updated as frequently. Furthermore, 
because the main memory update can be deferred, it is 
frequently possible to select a time When the bus is idle to 
update the main memory With the modi?ed data. A disad 
vantage of the Write back caching scheme is that the main 
memory can contain stale data. This happens When the data 
Within the cache has been modi?ed and the main memory 
has yet to be updated With the modi?ed data. In multipro 
cessor systems, or systems having direct memory access 
devices, care must be taken to maintain cache coherency by 
ensuring that stale data Within the main memory is not used 
by a co-processor or direct memory access device. 

A cache consistency protocol is a set of rules by Which 
states are assigned to cached entries (lines) in order to help 
maintain cache consistency. The rules apply for memory 
read and Write cycles. Every line in a cache is assigned a 
state dependent on both processor generated activities and 
activities generated by other bus masters (e.g., snooping). 
The MESI cache consistency protocol consists of four 

states that de?ne Whether a line is valid (i.e., hit or miss), 
Whether it is available in other caches, and Whether it has 
been modi?ed. The four states are: M (Modi?ed), E 
(Exclusive), S (Shared) and I (Invalid). A M-state line is 
available in only one cache and it is also modi?ed (i.e., it is 
different from main memory). An E-state line is also avail 
able in only one cache in the system, but the line is not 
modi?ed (i.e., it is the same as main memory). AWrite to an 
E-state line Will cause the line to become modi?ed. A line 
With a S-state indicates that the line is potentially shared 
With other caches (i.e., the same line may exist in more than 
one cache). A Write to a shared line Will generate a Write 
through cycle. The Write through cycle may invalidate this 
line in other caches. Finally, an I-state indicates that the line 
is not available in the cache. Aread to this line Will be a miss 
and may cause a line ?ll operation (i.e., a fetch of the Whole 
line into the cache from main memory). AWrite to an invalid 
line Will typically cause the processor to execute a Write 
through cycle on the bus. 

Inquire cycles, also called snoop cycles, are initiated by 
the system to determine if a line is present in a code or data 
cache, and, if the line is present, What state the line has. 
Inquire cycles are typically driven to a processor When a bus 
master other than the processor initiates a read or Write bus 
cycle. Inquire cycles are driven to the processor When the 
bus master initiates a read to determine if the processor data 
cache contains the latest information. If the snooped line is 
in the processor data cache in the modi?ed state, the 
processor has the most recent information and must schedule 
a Write back of the data. Inquire cycles are driven to the 
processor When the other bus master initiates a Write to 
determine if the processor code or data cache contains the 
snooped line and to invalidate the line if it is present. 

It is also common to implement the main memory using 
DRAM, and then to supplement the DRAM based main 
memory With a SRAM based external cache memory (i.e., a 
second level cache memory that is external to the micro 
processor chip). Because the external cache is not contained 
on the microprocessor chip, it can typically be made to store 
more data and instructions than can be stored by the internal 
cache. Because the external cache is not located on the 
microprocessor chip, hoWever, it must supply the data and 
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instructions to the microprocessor using one of the buses 
that often form bottlenecks for data and instructions entering 
and leaving the microprocessor chip. 
A high speed microprocessor chip typically interfaces 

With the rest of the computer system using one or tWo high 
speed buses. The ?rst of these buses is a relatively high 
speed asynchronous bus called a main memory bus. The 
second of these buses is a relatively high speed synchronous 
bus called a local bus. High bandWidth devices such as 
graphics adapter cards and fast input/output (I/O) devices 
can be coupled directly to the local bus. Each device coupled 
to the local bus, hoWever, has an associated capacitive load. 
As the load on the local bus is increased, the maximum 
operating speed for the local bus decreases and the poWer 
required to drive the bus increases. Therefore, one device 
coupled to the local bus can be a peripheral bus bridge from 
the local bus to another bus called a high speed peripheral 
bus (e.g., a peripheral component interconnect (PCI) bus). 
The bus bridge isolates the load of the devices coupled to the 
high speed peripheral bus from the high speed local bus. 
Another device coupled to the local bus is typically an 
expansion bus bridge that couples the high performance 
local bus to a loWer performance expansion bus. The loW 
bandWidth components of the computer system are then 
coupled to the loWer performance expansion bus. 

The standard PCI speci?cation is targeted to support the 
functions of an I/O bus. Ahigh speed peripheral bus, such as 
the PCI bus, has adequate bandWidth to be used as a memory 
bus for loW end systems (i.e., memory bus functionality can 
be overlaid onto the I/O bus functionality). The trend in 
mobile computers is toWards smaller, faster, less expensive 
and lighter units. In entry level or mobile systems, part or all 
of the system memory may be coupled directly to the PCI 
bus. This may include read-only program modules as Well as 
DRAM, both of Which must be cacheable by the processor. 
The PCI cache support option provides a standard interface 
betWeen PCI memory agent(s) and the bridge (or caching 
agent), that alloWs the use of an inquiry (snooping) cache 
coherency mechanism. This caching option assumes a ?at 
address space (i.e., a single address has a unique destination 
regardless of access origin) and a single level bridge topol 
ogy. This support option is optimiZed for simple, entry level 
systems, rather than for maximum processor-cache-memory 
performance. Thus, advanced mechanisms for cache consis 
tency cycles, cache attribute mapping, and dual processor 
support are all beyond the scope of a high speed peripheral 
bus such as set forth in the standard PCI speci?cation. 

SUMMARY OF THE INVENTION 

Memory bus extensions to a high speed peripheral bus are 
presented. Speci?cally, sideband signals are used to overlay 
advanced mechanisms for cache attribute mapping, cache 
consistency cycles, and dual processor support onto a high 
speed peripheral bus. 

In the case of cache attribute mapping, three cache 
memory attribute signals that have been supported in pre 
vious processors and caches are replaced by tWo cache 
attribute signals that maintain all the functionality of the 
three original signals. 

In the case of cache consistency cycles, advanced modes 
of operation are presented. These include support of fast 
Writes, the discarding of Write back data by a cache for full 
cache line Writes, and read intervention that permits a cache 
to supply data in response to a memory read. 

In the case of dual processor support, several neW signals 
and an associated protocol for support of dual processors are 
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4 
presented. Speci?c support falls into three areas: the exten 
sion of snooping to support multiple caches, the support of 
shared data betWeen the tWo processors, and the provision of 
a processor and upgrade arbitration protocol that permits 
dual processors to share a single grant signal line. 

Other objects, features, and advantages of the present 
invention Will be apparent from the accompanying draWings 
and from the detailed description Which folloWs beloW. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The objects, features, and advantages of the method and 
apparatus of the present invention Will be apparent from the 
folloWing detailed description of the invention in Which: 

FIG. 1 illustrates a computer system Wherein a processor 
is supplemented by an upgrade processor and Wherein 
processor traffic is routed to a high speed peripheral bus; 

FIG. 2 illustrates a computer system Wherein a processor 
is supplemented by a co-processor and Wherein processor 
traffic is ?ltered by a cache complex before being routed to 
a high speed peripheral bus; 

FIG. 3 illustrates a non-cacheable single Word read access 
Wherein default cache attributes are assumed; 

FIG. 4 illustrates a cacheable access Wherein the target 
speci?es cache attributes; 

FIG. 5 illustrates coupling betWeen an original processor 
and an upgrade processor; 

FIG. 6 illustrates co-processor arbitration for a bus request 
from a non-bus oWner; 

FIG. 7 illustrates co-processor arbitration With a bus grant 
offered by a bus oWner; 

FIG. 8 illustrates the insertion of Wait states until a snoop 
completes; 

FIG. 9 illustrates a transaction completion before a snoop 
result is indicated; and 

FIG. 10 illustrates a memory read transaction Wherein the 
cache provides data. 

DETAILED DESCRIPTION OF THE 
INVENTION 

In the folloWing description, for purposes of explanation, 
speci?c numbers, materials and con?gurations are set forth 
in order to provide a thorough understanding of the present 
invention. It Will be apparent to one skilled in the art, 
hoWever, that the present invention may be practiced With 
out these speci?c details. In other instances, Well knoWn 
systems are shoWn in diagrammatic or block diagram form 
in order not to obscure the present invention unnecessarily. 

FIG. 1 illustrates a block diagram of a multi-processor 
computer system 100, Wherein processor 110 has been 
supplemented by addition of upgrade processor 120. In 
computer system 100, processor 110 is coupled by high 
speed peripheral bus 140 to upgrade processor 120, external 
cache 130, bus bridge 150 and main memory 160. Bus 
bridge 150, in turn, is coupled by input/output (I/O) bus 170 
to one or more peripheral devices 180. Input/output bus 170 
is representative of a class of relatively sloW buses usually 
used for loW bandWidth communications. Examples of 
input/output bus 170 Would include buses adhering to the 
industry standard architecture (ISA), extended industry stan 
dard architecture (EISA) or micro channel architecture 
(MCA) bus standards. High speed peripheral bus 140, on the 
other hand, is a high speed input/output bus upon Which 
advanced memory bus operations have been overlaid, the 
details of Which Will be set forth beloW. In the case of the 
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system of FIG. 1, high speed peripheral bus 140 has been 
enhanced in order to reduce the cost and complexity of 
system 100 by eliminating the need to provide a separate 
memory bus Within the system. Thus, computer system 100 
is an example of a loW end system Where central processor 
unit (CPU) traf?c is routed directly to an enhanced high 
speed peripheral bus. Because of the limited bus bandWidth 
of bus 140, upgrade processor 120 is a turbo upgrade. 

For one embodiment, high speed peripheral bus 140 is a 
peripheral component interconnect (PCI) bus as de?ned by 
the PCI standard, rev. 2.0 that has been augmented so as to 
provide enhanced memory capabilities. To provide a con 
sistent example, the folloWing description Will describe 
modi?cations that can be made to overlay advanced memory 
bus operations upon the PCI standard bus. It is to be 
understood, hoWever, that the techniques set forth herein are 
not limited solely to application to the PCI bus. Instead, high 
speed peripheral bus 140 is representative of a class of high 
speed input/output buses to Which advanced memory capa 
bilities can be provided. 

It is to be further understood that the architecture of 
computer system 100 is merely representative of a Wide 
class of computer system architectures in Which the present 
invention can be practiced. For example, FIG. 2 illustrates a 
block diagram of an alternate architecture multi-processor 
computer system 200 that can bene?t by providing advanced 
memory bus operational capability to a high speed periph 
eral bus 140. 

In system 200, processor and cache complex 210 has been 
supplemented by addition of co-processor and cache com 
plex 220. In computer system 200, processor and cache 
complex 210 is coupled by high speed peripheral bus 140 to 
co-processor and cache complex 220, bus bridge 150 and 
main memory 160. Bus bridge 150, in turn, is coupled by 
input/output bus 170 to one or more peripheral devices 180. 
In contrast to system 100 of FIG. 1, system 200 of FIG. 2 is 
a higher-end system Wherein CPU traf?c is ?ltered by a 
cache complex (i.e., a front side or back side second level 
cache), before being routed to high speed peripheral bus 
140. In system 200, the ?ltering effect of the second level 
cache on bus 140 traffic permits bus 140 to support a dual 
processor multi-processor type (MP-type) of system. 
Alternately, in system 200, the ?ltering effect of the second 
level cache on bus 140 traffic permits bus 140 to support an 
application accelerator type (A-type) of system. 
With the exception of the functionality provided to over 

lay the advanced memory bus operational capability onto 
high speed peripheral bus 140, computer system 100 of FIG. 
1 and its constituent components operate in a manner that is 
Well knoWn in the art. Furthermore, With the exception of the 
functionality provided to overlay the advanced memory bus 
operational capability onto high speed peripheral bus 140, 
computer system 200 of FIG. 2 and its constituent compo 
nents operate in a manner that is Well knoWn in the art. 
Therefore, the operation of computer systems 100 and 200 
and their constituent components Will not be discussed 
further except to describe hoW the operation of the compo 
nents of computer systems 100 and 200 affect the function 
ality provided to overlay advanced memory bus operational 
capability onto high speed peripheral bus 140. 

The Peripheral Component Interconnect (PCI) is a physi 
cal interconnect mechanism intended for use betWeen highly 
integrated peripheral controller components and processor 
memory systems. The PCI design Was developed to have a 
system architecture that uses a CPU-PCI bridge component 
to decouple the system I/O core design from the processor 
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6 
memory treadmill, thus alloWing the design to survive 
multiple generations of processor-memory technology. 

For a loW cost system, hoWever, it can make economical 
sense to interface the CPU directly to the PCI bus (i.e., to 
provide an integrated CPU-PCI bridge). It is also possible to 
further decouple the processor-memory treadmill using 
larger or more efficient ?rst level or second level caches, 
thereby alloWing a PCI bus to directly support future pro 
cessor generations. 

The folloWing describes memory bus extensions to the 
PCI bus for a range of CPU and second level cache com 
binations. In addition, the folloWing describes other system 
signals that can be used to support these upgrade and dual 
processor implementations. 

The memory bus extension to the PCI bus Will ef?ciently 
support the tWo con?gurations shoWn in FIGS. 1 and 2. In 
fact, for one embodiment, a chipset de?ned to support the 
memory bus extension Will logically Work With any one of 
the tWo con?gurations. For the upgrade and dual processor 
strategy, other system signals, such as FLUSH, INIT 
(described beloW) are also de?ned such that they are com 
patible across all con?gurations. 

The PCI bus speci?cation explicitly alloWs one snooping 
device and one caching device on the bus. The memory 
extension to the PCI described herein extends this to support 
up to tWo snooping devices (i.e., a dual processor MP or an 
A-type processor) on the memory bus. 

The folloWing description assumes that the reader is 
familiar With the PCI bus speci?cation and therefore stan 
dard PCI signals and protocol Will only be described brie?y 
herein. Hence, the emphasis of the folloWing discussion Will 
be upon additional signals and protocol needed to extend the 
PCI bus, or another type of high speed peripheral bus, into 
an execution bus. The folloWing discussion is organiZed into 
the sections: Cache Attributes, Bus Cycle De?nition, 
Upgrade Processor Support, Snoop Protocol, System Sig 
nals and System Error Model. 

CACHE ATTRIBUTES 

The cache attribute functions are provided by the target of 
an access. They are: Cache Enable, Write Back/Write 
Through and Write Protection. The Cache Enable attribute 
alloWs the current bus transaction to be de?ned as cacheable 
or non-cacheable. The information is consequently used to 
determine cycle length. 

For one embodiment, the memory bus extensions de?ned 
herein support the MESI cache coherency protocol or any 
proper subset of the MESI protocol. The Write Back/Write 
Through attribute alloWs a cache line to be de?ned as a Write 
back or Write through cache line. Thus, this attribute deter 
mines Whether a cache line is initially in the S or E state in 
a MESI cache. If the attribute is a Write through, the cache 
line is alWays saved, or remains, in the Shared (S) state. 
The Write Protection attribute alloWs a cache line to be 

de?ned as being Write protected. If the CPU Writes to a Write 
protected cache line, the Write data Will bypass the cache and 
be Written out to the external bus. 

For one embodiment, the three cache attribute functions, 
Cache Enable, Write Back/Write Through and Write 
Protection, are encoded in the folloWing tWo signals: KEN# 
and WBT. Signals hereafter Will be generally referred to by 
signal names. Particular signal names may be varied Without 
departure from the scope and spirit of the present invention. 
Further, signal states Will be referred to as being active or 
inactive, high or loW, one or Zero, true or false, asserted or 
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deasserted, etc. Signals Which are active When loW are 
indicated by a suffix of “#”; i.e. XXX#. As examples of these 
signal naming conventions, see Table 1 below: 

TABLE 1 

SIGNAL ELECTRICAL LOGICAL 
NAMES NOTATION NOTATION STATE 

WBT High 1 or true Active 
Low 0 or false Inactive 

KEN# LoW 1 or true Active 
High 0 or false Inactive 

Furthermore, a decimal radix convention Will be used 
When describing groups of signals. For example, AD(15:0) 
Will refer to all 16 signals of signal group AD. Within each 
group, the least signi?cant bit of the group is referred to With 
a suf?x of “0.” In other Words, ADO Will refer to the least 
signi?cant bit of the group and AD15 Will refer to the most 
signi?cant bit. 
KEN# and WBT are used during a data phase of an access 

to indicate the cacheability of the access. For one 
embodiment, the default attribute for the access is non 
cacheable (i.e., high for KEN# and WBT). For this 
embodiment, When combined together, KEN# and WBT 
have the folloWing encoded attributes: 

KEN# WBT Attributes 

H H Non-Cacheable 
L H Cacheable, Write-back 
L L Cacheable, Write-through 
H L Cacheable, Write protect 

For alternate embodiments Wherein only a subset of the 
cache attributes is to be supported, some of the signal pins 
can be “strapped”. For example, for Write through cache 
support, the WBT and KEN# pins can be tied together. 
Similarly, for a Write back cache With no Write protection or 
Write through support required, the WBT# pin can be 
strapped alWays high. 

FIG. 3 is a timing diagram that illustrates the use of the 
KEN# and WBT signals in a non-cacheable single read 
access. Timing diagrams shoW the relationship of signi?cant 
signals involved in transactions. When a signal is draWn as 
a solid line, it is actively being driven by the current master 
or target. When a signal is draWn as a dashed line, no agent 
is actively driving it. The signal may still be assumed to 
contain a stable value, hoWever, if the dashed line is at the 
high rail. Tri-stated signals are indicated to have indetermi 
nate values When the dashed line is betWeen the tWo rails 
(e.g., AD or C/BE# lines). When a solid line becomes a 
dotted line, it indicates that the signal Was actively driven 
and noW is tri-stated. When a solid line makes a loW to high 
transition and then becomes a dotted line, it indicates the 
signal Was actively driven high to precharge the bus, and 
then tri-stated. A turn-around cycle is performed on all 
signals that may be performed by more than one agent. The 
turn-around cycle is used to avoid contention When one 
agent stops driving a signal and another begins. This is 
indicated on the timing diagrams as tWo arroWs pointing at 
each other’s tail. 

The PCI standard permits PCI signals to be supplemented 
by non PCI signals called sideband signals. A sideband 
signal is loosely de?ned as any signal not part of the PCI 
speci?cation that connects tWo or more PCI compliant 
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agents, and that has meaning only to those agents that it 
connects. The PCI speci?cation dictates that sideband sig 
nals may never violate the speci?ed protocol for de?ned PCI 
signals or cause the speci?ed protocol to be violated. KEN# 
and WBT are examples of sideband signals. In addition to 
KEN# and WBT, several standard PCI signals are depicted 
in FIG. 3. The PCI pin de?nitions are organiZed into the 
functional pin groups: System, Address and Data, Interface 
Control, Arbitration (Bus Masters only), Error Reporting, 
Interrupt (Optional), Cache Support (Optional), 64-bit Bus 
Extension (Optional), and JTAG/Boundary Scan (Optional). 
Pertinent pins from the System, Address and Data and 
Interface Control functional pin groups are depicted begin 
ning With FIG. 3 (With the exception of the interface control 
pin STOP#, Which Will not be discussed until FIG. 10). 
Pertinent pins from the Arbitration and Cache Support 
functional pin groups are depicted beginning With FIG. 5. 
One signal shoWn in FIG. 3 is the signal at the PCI bus 

CLK (clock) pin. CLK is de?ned by the PCI standard to be 
a standard input-only signal. CLK provides timing for all 
transactions on PCI and is an input to every PCI device. 
According to the PCI standard, With the exception of the PCI 
reset signal (RST#) and the four PCI interrupt signals 
(INTA#, INTB#, INTC# and INTD#), all other PCI signals 
are sampled on the rising edge of CLK and all other timing 
parameters are de?ned With respect to this edge. Thus, in 
FIG. 3, six clock cycles are shoWn With each of the cycles 
beginning at one of the rising edges 1A through 6A, 
respectively, and ending on the next successive rising clock 
edge. The PCI standard permits a PCI bus to operate at a 
clock frequency of up to 66 MHZ and, in general, the 
minimum PCI bus clock frequency is DC (0 HZ). 

Also shoWn in FIG. 3 are the signals at the PCI Address 
and Data pins, AD and C/BE#, and the signals at the PCI 
interface control pins, FRAME#, IRDY#, TRDY# and 
DEVSEL#. The AD and C/BE# signals are tri state (t/s) 
signals. A Tri state signal is a bi-directional tri-state input 
output pin. Each of the PCI interface control signals shoWn 
in FIG. 3, hoWever, are sustained tri state (s/t/s) signals. 
According to the PCI protocol, a Sustained tri state signal is 
an active loW tri state signal oWned and driven by one and 
only one agent at a time. The agent that drives an s/t/s pin 
loW must drive it high for at least one clock before letting it 
?oat. A neW agent cannot start driving a s/t/s signal any 
sooner than one clock after the previous oWner tri-states it. 
A pull-up is required to sustain the inactive state until 
another agent drives it, and must be provided by the central 
resource. 

According to the PCI standard, Addresses and Data are 
multiplexed on the same pins, AD(31:0). A bus transaction 
consists of an address phase folloWed by one or more data 
phases. The PCI address phase is the clock cycle in Which 
the interface control signal FRAME# is asserted. Thus, in 
FIG. 3, the address phase starts on clock 1A and ends on 
clock 2A. During the address phase, AD(31:00) contain a 
physical address (32 bits). For I/O this is a byte address; for 
con?guration and memory it is a DWORD address. During 
data phases, AD(07:00) contain the least signi?cant byte 
(lsb) and AD(31:24) contain the most signi?cant byte (msb). 
Write data is stable and valid When the interface control 
signal IRDY# is asserted and read data is stable and valid 
When the interface control signal TRDY# is asserted. Data is 
only transferred during clocks W herein both IRDY# and 
TRDY# are asserted. PCI supports both read and Write 
bursts. In FIG. 3, hoWever, there is only a single data phase. 
The data phase of FIG. 3 begins on clock 2A and ends on 
clock 5A. Clocks 3A and 4A insert Wait states in the data 
phase. 
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Similarly, bus commands and byte enables are multi 
pleXed on the PCI C/BE# pins. During the address phase of 
a transaction, C/BE#(3:0) de?ne a bus command. During the 
data phase C/BE#(3:0) are used as Byte Enables. The Byte 
enables are valid for the entire data phase and determine 
Which byte lanes carry meaningful data. C/BE#0 applies to 
byte 0 (lsb) and C/BE#3 applies to byte 3 (msb). 

The PCI interface control signal FRAME # (Cycle frame) 
is driven by the current master to indicate the beginning and 
duration of an access. FRAME# is asserted to indicate a bus 
transaction is beginning. While FRAME # is asserted, data 
transfers continue. When FRAME # is deasserted, the trans 
action is in the ?nal data phase. Thus, in FIG. 3, FRAME# 
is asserted at the beginning of the address phase at time 2A 
and FRAME# is deasserted at time 5A during the sole, and 
hence ?nal, data phase. 

The interface control signal IRDY# (Initiator ready) indi 
cates the ability of the initiating agent (i.e., the bus master) 
to complete the current data phase of the transaction. IRDY# 
is used in conjunction With the interface control signal 
TRDY# (Target ready). Signal TRDY# indicates ability of 
the target agent (i.e., the selected device) to complete the 
current data phase of the transaction. A data phase is 
completed on any clock that IRDY# and TRDY# are both 
sampled asserted. During a Write, IRDY# indicates that valid 
data is present on AD(31:00) and TRDY# indicates the 
target is prepared to accept data. During a read, TRDY# 
indicates that valid data is present on AD(31::00) and 
IRDY# indicates that the master is prepared to accept data. 
Wait cycles are inserted until both IRDY# and TRDY# are 
asserted together. 
When actively driven, the interface control signal 

DEVSEL# (Device select) indicates that the driving device 
has decoded its address as the target of the current access. As 
an input, DEVSEL# indicates Whether any device on the bus 
has been selected. In FIG. 3, DEVSEL# indicates on clock 
2A or 3A that the target has decoded the address of the 
address phase as being intended for it. The target then holds 
DEVSEL# loW until clock 6A When the transaction has 
completed. 

For one embodiment shoWn in FIGS. 3 and 4, each cache 
attribute takes on its default value if neither one of the KEN# 
and WBT signals is asserted loW Within a tWo clock WindoW 
after the ?rst clock FRAME# is asserted active. KEN# and 
WBT Will be sampled as valid on the clock in Which either 
one of the signals is asserted loW during the tWo clock 
WindoW (FIG. 4), or at the end of the WindoW, if neither is 
asserted during the tWo clock WindoW (FIG. 3). 

FIG. 3 illustrates a memory read line transaction Wherein 
a CPU initiates a cache line read. In FIG. 3, the memory read 
line transaction starts on Clock 2A With an address phase 
that occurs When FRAME# is asserted for the ?rst time. A 
cacheable central resource device has a tWo clock WindoW 
ending at clock 4A to decode the address and assert KEN# 
and WBT accordingly to indicate a cacheable access. In FIG. 
3, KEN# and WBT remain high during the tWo clock 
WindoW. Therefore, because the CPU has not been informed 
by clock 4A (the end of the tWo clock WindoW) that the 
access is cacheable, the CPU then deasserts FRAME# to 
indicate a single Word transfer. 

As shoWn in FIG. 3, for a single data phase transfer, 
FRAME# is deasserted at the same time that IRDY# is 
asserted. For a multiple data phase transfer such as that of 
FIG. 4, the CPU Will deassert FRAME# When starting the 
last data phase (this requires that IRDY# is asserted). For 
read transactions Wherein Whether or not the transaction is a 
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10 
multi-data phase transaction is conditioned upon the line 
being read being cacheable, IRDY# must be held back as 
shoWn in FIG. 4 until the cache attributes are valid. 

FIG. 4 illustrates a cacheable memory read line transac 
tion. In FIG. 4 the transaction starts on clock 2B With an 
address phase that occurs When FRAME# is asserted for the 
?rst time. The target then decodes the address and deter 
mines that the cache line is cacheable. Therefore, on clock 
3B, the target asserts KEN# and/or WBT accordingly. On 
sampling KEN# or WBT active during the 2 clock WindoW, 
the CPU then proceeds to complete the memory read line 
operation (i. e., the cache line read). 

BUS CYCLE DEFINITION 

In this section, bus cycles relating to CPU access cycles 
are de?ned. Their de?nitions and rules are described in four 
sub-sections: command mapping, multidata phase cycle 
requirements, special cycle mapping and con?guration 
space mapping. 

Command Mapping 

This sub-section speci?es hoW CPU bus commands map 
into the PCI bus commands. The possible number of 
DWORD transfers that the CPU Will attempt to burst in the 
transaction is also presented. Because PCI supports transfers 
of variable length, there is no requirement herein regarding 
hoW long a memory read or memory Write can be. Thus, for 
eXample, a memory Write of three transfers (for possible 
Write packetiZing, etc.) is not precluded. 
A PCI Memory Read Line command (signi?ed by a 

C/BE(3:0) value of 1110) maps to a CPU intended cacheable 
code or data read access. The KEN# and WBT cache 
attributes are used to qualify the PCI memory read line 
command. Thus, the possible number of transfers that the 
CPU Will attempt to burst in the transaction Will be 1, 2 or 
4 When KEN# is inactive and WBT is active. OtherWise, the 
number of transfers that the CPU Will attempt to burst Will 
be 4 or 8. For all other command mappings the KEN and 
WBT signals do not modify the PCI command. 
APCI Memory Write and Invalidate command is signi?ed 

by a C/BE(3:0) value of 1111 and maps to a CPU intended 
access of a cache line transfer for a Write back cycle. The 
number of transfers that the CPU Will attempt to burst Will 
be 4 or 8. 

The PCI commands Interrupt acknowledge, Special 
Cycle, I/0 read and I/O Write (having C/BE(3:0) values of 
0000, 0001, 0010 and 0011, respectively) Will map to 
similarly named CPU intended accesses. In each case the 
CPU Will only attempt a single transfer. 

The PCI memory read command type (C/BE of 0100) 
maps to a non-cacheable code or data read CPU access and 
the CPU Will attempt to burst transfer 1, 2 or 4 DWORDs. 
Similarly, the PCI memory Write command type (C/BE of 
0111) maps to a non-cacheable cache Write CPU access and 
the CPU Will attempt to burst transfer 1 or 2 DWORDs. 

The PCI con?guration read command type (C/BE of 
1010) maps to a 32 bit I/O read CPU access to heX address 
0CFC. Similarly, the PCI con?guration Write command type 
(C/BE of 1011) maps to a 32 bit I/O Write CPU access to heX 
address 0CFC. In each case the CPU Will only attempt one 
transfer. 

Multi-Data Phase Cycle Requirements 

In the case of a read cycle, the PCI protocol alloWs the 
master or the target to abort during a transaction. For a 64 bit 
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aligned read transaction (this corresponds to PLOCK bus 
cycle in the standard i486 bus), the target and the CPU is 
required to guarantee an atomic transaction. The CPU Will 
assert IRDY# in the ?rst clock after the address phase for an 
atomic 64 bit aligned read transaction. The target may then 
use this to complete the transaction in an atomic fashion. 

Once KEN# and WBT are asserted to indicate a cacheable 
read access, the target cannot abort the transaction. For a 
target to abort on such access is a protocol error. In such a 
case the bus master Will assert the PCI system error signal, 
SERR#. In the case of a CPU, the CPU also has the option 
of vectoring to an internal fault handling routine. 

In the case of a Write cycle, the PCI protocol alloWs the 
master or the target to abort during a transaction. For cache 
line Write back and aligned 64 bit Write transactions, the 
target and the CPU should guarantee atomic transaction. 
This is accomplised by establishing locks on PCI With a 
read. Here, CPU cache line Write back cycle is mapped to the 
Memory Write and Invalidate command of the PCI bus. 
Similarly, the CPU 64 bit Write cycle is mapped to the 
memory Write cycle of the PCI bus. A 64 bit Write transfer 
is indicated in the PCI protocol by keeping FRAME# 
asserted during the ?rst IRDY# assertion. The target may 
then use this to complete the transaction in an atomic 
fashion. 

Most of the targets on the PCI bus Will handle a linear 
mode encoded transaction more ef?ciently than a cacheline 
Wrap. Therefore, a bus master should use a linear mode 
encoded transaction Whenever possible. 

Special Cycle Mapping 
A CPU Will generate single special cycles With one data 

phase only. In the PCI speci?cation, a special cycle message 
is encoded in a 32 bit data Word. The loWer 16 bits of the 
data Word are the message number, alloWing for up to 64K 
different message types. The upper 16 bits of the data Word 
can be used to hold message speci?c information. The 
message number can be programmable. The PCI speci?ca 
tion has included Halt and ShutdoWn special cycles gener 
ated by a CPU. The PCI protocol also de?nes special cycles 
that can be used for sideband signal Wire replacement. The 
folloWing are additional special cycles not set forth in the 
PCI speci?cation that can also be generated by a CPU. 

Three special cycles, CacheiFlush, CacheiWB and 
FlushiAck, concern caching of an internal processor cache. 
Assertion of the processor FLUSH# pin causes an on-chip 
processor cache to be invalidated. The INVD and WBINVD 
processor instructions also cause an on-chip processor cache 
to be invalidated. WBINVD causes the modi?ed lines in the 
internal data cache to be Written back, and all lines in both 
caches to be marked invalid. The CacheiFlush (?ush) 
special cycle is driven after the INVD or WBINVD instruc 
tions are executed. It is used to indicate to the external 
system that the internal caches Were invalidated and that 
external caches should also be invalidated. The CacheiWB 
(Write back) special cycle is driven after the WBINVD 
instruction is executed. It indicates that modi?ed lines in the 
data cache Were Written back. When the FLUSH# pin is 
asserted, all modi?ed lines in a Write back cache are Written 
back and then all lines in the cache(s) are invalidated. The 
FlushiAck (?ush acknoWledge) special cycle is driven after 
the Write back and invalidation have been completed. 

Additionally the Britrace (branch trace) special cycle 
alloWs external tracking of branch occurrences. Here the 
address phase of the special cycle is used to carry a 32 bit 
branch-target address. 
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Finally, the ICE (in circuit emulation) special cycle pro 

vides ICE support for a PCI based CPU-cache subsystem. 
The ICE special cycle is de?ned as a handshake betWeen the 
CPU and the ICE only. An additional sideband signal can 
then be used to permit transactions betWeen the CPU and the 
ICE. 

Con?guration Space Mappling 
The PCI speci?cation de?nes hoW softWare generates 

con?guration cycles and hoW softWare generates PCI special 
cycle transactions on the PCI bus. The PCI speci?cation also 
requires a con?guration register space in each PCI compliant 
device. Thus, a PCI compliant processors must implement 
speci?c con?guration registers in order for a processor 
connected directly to the PCI bus to deal With the PCI 
con?guration space. 
A PCI processor can be vieWed as containing tWo func 

tions: the processor core and a bridge to PCI. The core 
provides support for identi?cation mechanisms supported by 
standard processors. The bridge, on the other hand, provides 
support for the PCI con?guration space. The core and bridge 
identi?cation mechanisms do not need to track each other. 
Thus, for example, the core version may change While the 
bridge version number remains unchanged. Integrated 
bridges can be hardWired to respond as device 0 on bus 0. 

For one embodiment, the con?guration space of the 
bridge portion does not need to be readable by any agent 
except the contained processor core. Alternately, the con 
?guration space of the bridge portion can be read by other 
agents. Whether or not the con?guration space of the bridge 
system need be readable by agents other than the contained 
processor core is a design decision that depends upon the 
necessary level of implementation complexity. In a multi 
processor implementation, hoWever, another mechanism, 
possibly softWare based, may be provided to detect and 
identify the number and types of processors Within the 
system. 

For one embodiment, the con?guration registers that are 
implemented by the bridge portion include: Vendor ID, 
Device ID, Command, Status, Revision ID, Class Code, 
Cache line SiZe and Latency Timer. All other registers are 
then read-only and return Zero values When they are read. 
The Vendor ID and Device ID ?elds can both be imple 
mented as read only registers, With the former identifying 
the vendor providing the part and the latter identifying the 
speci?c device provided by the vendor. In the case of the 
Command ?eld, Bits 6 (i.e., Parity Enable) and 8 (i.e., 
SERR# Enable) Will typically be implemented as being 
Writable. Depending upon the capability of a particular 
processor, other bits of the Command ?eld may also be 
Writable. Similarly, all de?ned bits (except bits 9, 10 and 11) 
should be Writable. If appropriate, the Cache Line SiZe ?eld 
should be implemented, in Which case the ?eld Will probably 
be a read only ?eld. The Class Code ?eld should be 
implemented With the encoding for a host bridge (i.e., 
060000h). The Revision ID ?eld need only be implemented 
as needed. 

UPGRADE SUPPORT 

There are three types of processor upgrades. They are 
turbo upgrade, dual processor (DP) upgrade and application 
processor upgrade. Considerations for the application 
processor upgrade are very similar to considerations for the 
dual processor upgrade. Hence, there Will be a turbo pro 
cessor upgrade discussion and a dual-application processor 
upgrade discussion only. 
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In the case of a turbo upgrade, the original processor 
cache pair are provided With an UP# (Upgrade Present) 
input pin and the upgrade processor-cache pair are provided 
With an UP# output pin. The UP# output pin of the upgrade 
processor is connected directly to the UP# input pin of the 
original processor-cache pair that is to be upgraded. When 
the Upgrade Processor occupies the Upgrade Socket, the 
UP# signal (active loW) forces the original processor to 
tri-state all outputs and reduce poWer consumption. When 
the upgrade processor is not in the Upgrade Socket, a pull up 
resistor, internal to the original processor, drives UP# inac 
tive and alloWs the original processor to control the proces 
sor bus. 

The dual-application processor upgrade case is more 
complex than the case of a turbo upgrade because of 
limitations set forth Within the PCI speci?cation. The PCI 
speci?cation provides for an arbitration mechanism betWeen 
bus masters. Each bus master communicates With the arbi 
tration mechanism using the point-to-point bus master sig 
nals REQ# and GNT#, With every master having its oWn 
REQ# and GNT# signal. REQ# (Request) indicates to the 
arbiter that the agent desires use of the bus. GNT# (Grant) 
indicates to the agent that access to the bus by the agent has 
been granted. 

The PCI speci?cation also provides for limited cache 
support through the PCI input/output pins SDONE and 
SBO#. SDONE (Snoop done) indicates the status of a snoop 
for a current access. When deasserted, SDONE indicates 
that the result of the snoop is still pending. When asserted, 
SDONE indicates that the snoop is complete. SBO# (Snoop 
Backoff), on the other hand, indicates a hit to a modi?ed line 
When asserted. Thus, When SBO# is deasserted and SDONE 
is asserted it indicates a CLEAN snoop result. A cacheable 
PCI memory should implement both cache support pins as 
inputs, to alloW the memory to Work With either Write 
through or Write back caches. Thus, if cacheable memory is 
located on PCI, a bridge connecting a Write back cache to 
PCI must implement both pins as outputs. A bridge con 
necting a Write through cache, hoWever, need only imple 
ment one pin, SDONE. 

The PCI speci?cation does not directly support dual 
processors, hoWever. Therefore the PCI speci?cation does 
not provide the appropriate signals to alloW the interaction 
betWeen dual processors that is required When dual proces 
sors are present Within a system. The PCI speci?cation can 
be extended to support dual processors by providing a dual 
cache mode Wherein the original processor is required to 
drive SDONE and the upgrade (or second) processor is only 
permitted to monitor SDONE. Both processor, hoWever, are 
alloWed to drive SBO# in this mode. In this case, rather than 
being a standard input/output signal, SBO# is modi?ed to 
become an s/t/s signal. Thus, because SBO# is a s/t/s signal, 
the agent that asserts SBO# is required to restore it to the 
deasserted state before tri-stating it. 

To insure proper operation of the tWo caches and the PCI 
protocol, arbitration and snoop support sideband signals are 
also added. The arbitration support signals PIN# and POUT# 
are shoWn in FIG. 5. Examples illustrating their operation 
Will be presented in connection With FIGS. 6 and 7. The 
PIN# and POUT# signals support arbitration betWeen an 
original processor and an upgrade processor. The snooping 
support signals: SBSY# (snoop busy), SH# (share) and 
SNARF# are also shoWn in FIG. 5. Examples illustrating 
their operation Will be presented in connection With FIGS. 8, 
9 and 10. SBSY# alloWs the original processor and the 
upgrade processor to have different and/or varying snoop 
WindoWs. SH# alloWs a MESI cache to enter the shared 
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state. SNARF#, discussed in conjunction With FIG. 10, 
alloWs a read intervention to occur When there is a snoop hit 
thereby reducing overhead on the bus. 
As shoWn in FIG. 5, the upgrade processor does not have 

a REQ# signal. For one embodiment, the arbiter Will grant 
the original processor access Whenever the bus is idle and no 
other requests are pending. Thus, the REQ# signal of the 
original processor is not required to be connected to the 
arbiter, thereby providing a savings of one pin on the arbiter. 
Alternately, the original processor has a REQ# signal to the 
PCI bus arbiter With Which the original processor indicates 
to the arbiter that the original processor desires use of the 
bus. In the latter case, the original processor is also respon 
sible for asserting its REQ# signal on behalf of the upgrade 
processor. In either case, hoWever, the original processor 
shares its GNT# With the upgrade processor. An “oWner” is 
de?ned as the processor Who oWns, or Will oWn, the PCI bus 
When the GNT# line is asserted by the arbiter. The tWo 
processors arbitrate amongst themselves using pins PIN# 
and POUT#. 

PIN# (Processor IN) is an input signal and is alWays an 
input to the processor regardless of Whether the processor is 
an original or upgrade processor. PIN# has one meaning 
When the processor to Which it is input is the oWner and 
another meaning When the processor to Which it is input is 
not the oWner. When a processor is the oWner of the PCI bus, 
its PIN# is a request line from the other processor indicating 
that the other processor requires access to the bus. When a 
processor is not the oWner of the PCI bus, its PIN# is a grant 
line from the oWner of the bus (i.e., from the other 
processor). PIN# of the original processor can be pulled high 
internally so as to disable the dual processor arbitration 
function When a second processor is not present Within a 
system. 
POUT# (Processor OUT) is an output signal and is alWays 

an output from the processor regardless of Whether the 
processor is an original or upgrade processor. As Was the 
case With PIN#, POUT# has one meaning When the proces 
sor from Which it is output is the oWner and another meaning 
When the processor from Which it is output is not the oWner. 
When a processor is the oWner of the PCI bus, its POUT# 
is a grant line to the other processor indicating that it has 
been granted access to the bus. When a processor is not the 
oWner of the PCI bus, its POUT# is a request line to the 
oWner of the bus (i.e., to the other processor). 

For one embodiment, after system reset, the oWner is the 
original processor. Whenever the oWner is to start an access, 
the oWner folloWs the normal PCI protocol (i.e., once 
FRAME# and IRDY# are deasserted and GNT# is asserted, 
the oWner may start a transaction). When a processor is not 
the oWner, the processor asserts its POUT# signal to indicate 
to the oWner processor that the processor that is not the 
oWner requires use of the bus. When PIN# of the processor 
that is not the oWner is asserted by the oWner processor, the 
oWner has granted the other processor access to the bus. The 
processor that requested the bus then becomes the neW bus 
oWner and the normal PCI protocol is folloWed (see FIG. 6). 

To reduce arbitration latency, a bus oWner can also offer 
bus oWnership to the other processor. The original bus oWner 
can WithdraW its oWnership at any time, hoWever, so as long 
as the other processor has not yet successfully claimed 
oWnership (i.e., POUT# is not asserted by the other proces 
sor and sampled active at the same time as PIN# is sampled 
active, as shoWn in FIG. 7). 

In summary, the oWnership of the bus changes Whenever 
the PIN# and POUT# are sampled active at the same time. 
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In a system wherein both processors require use of the bus 
continually, their PIN# and POUT# signals are asserted 
continuously. OWnership Will change every time PIN# and 
POUT# is sampled active at the same time. POUT# of the 
oWner is used to signal grant to the other processor. When 
oWnership changes, the same POUT# used to signal the 
grant of oWnership becomes a request to the oWner for use 
of the bus and PIN# becomes the grant to the requester. 

FIG. 6 illustrates the handshaking betWeen an original 
processor and a second processor (i.e., a dual or application 
processor). As described earlier, after reset, the original 
processor is the oWner and determines When the second 
processor is given permission to use the interface. In this 
?gure, the PIN# and POUT# shoWn are the signals of the 
original processor and not those of the second processor. The 
POUT# signal of the second processor is connected to the 
PIN# of the original processor, hoWever, and the PIN# signal 
of the second processor is connected to the POUT# of the 
original processor. This is illustrated in the ?gure by shoW 
ing the PIN# and POUT# signals of the second processor in 
parentheses underneath the respective POUT# and PIN# 
signals of the original processor. Use of the PCI bus is 
requested at clock IC by the second processor by asserting 
its POUT# (Which is actually PIN# in the diagram). The 
original processor detects this on clock 2C and asserts its 
POUT# on clock 3C. The second processor then becomes 
the oWner of the bus and deasserts its POUT# in clock 4C. 
Thus, once the second processor becomes the oWner, the 
second processor performs the arbitration function to deter 
mine When the original processor should again have bus 
access by becoming the oWner once again. In clock 4C, the 
second processor starts a transaction. 

OWnership changes Whenever PIN# and POUT# are 
sampled active together. Because the original processor 
requires use of the PCI bus again, the original processor 
keeps POUT# active on clock 4C. On clock 5C, the second 
processor grants access back to the original processor by 
asserting its POUT# (i.e., PIN#). It is not required that either 
processor immediately grant the other processor access to 
the bus. In general, hoWever, the tWo processors Would 
alternate accesses on the bus. On clock 5C, the original 
processor has become the neW oWner. The neW oWner, 
hoWever, has to Wait until the bus is idle before it can start 
a transaction. Thus, it is not until clock 7C that the original 
processor can start a transaction. It should be noted, 
hoWever, that the second processor could also have kept 
PIN# asserted in clock 4C. In that case, the oWnership Would 
have changed hands on clock 4C. The neW oWner still Would 
have had to Wait until the bus Was idle before it could start 
a neW transaction, hoWever. 

Referring noW to FIG. 7, eXamples of bus grant arbitration 
are illustrated Wherein the bus grant is offered by the bus 
oWner to the processor that is not the bus oWner. In FIG. 7, 
the original processor offers the bus to the second processor 
on clock 2D. The second processor then requests the bus on 
clock 3D. As a result of oWnership change to the second 
processor on clock 3D (i.e., because POUT# and PIN# are 
sampled active), the second processor can initiate an access 
on clock 4D. The second processor also offers the bus to the 
original processor on clock 4D and then WithdraWs the offer 
on clock 5D. On clock 6D, the second processor again offers 
the bus oWnership to the original processor. Because the 
original processor asserts the bus request on clock 6D, the 
bus oWnership changes back to the original processor. The 
original processor is then able to initiate its access on clock 
7D. It should be noted that if the original processor Were to 
have requested the bus on clock 5D, bus oWnership would 

10 

15 

25 

35 

45 

55 

65 

16 
have changed to the original processor on clock 6D. In either 
case, hoWever, the original processor Will have to Wait for 
the bus to become idle on clock 7D before it can initiate a 
neW access. 

Referring noW to FIG. 8, the snooping support signals Will 
be described. In the PCI speci?cation, SDONE is driven by 
the snooping cache-CPU on the bus to indicate the avail 
ability of the snoop result. In a dual or application upgrade 
processor arrangement, to indicate the availability of the 
snoop result SDONE Will only be driven by the original 
processor. To coordinate different or varying snoop WindoWs 
betWeen the original processor and the second processor, 
SBSY# is used. 
SBSY# (Snoop Busy) is de?ned to be driven by the 

second processor to the original processor. It is used to 
indicate Whether or not the snoop by the second processor 
has been completed. If the second processor can complete 
snooping in one cycle, SBSY# Will not be asserted. If the 
second processor cannot complete snooping Within one 
clock after the snoop starts, SBSY# is asserted. SBSY# is 
then deasserted one cycle before the snoop result from the 
second processor is available. For one embodiment, SBSY# 
is internally pulled up by the original processor to insure that 
SBSY# does not ?oat When no second processor is present. 

SH# (Share) is driven by either the second processor or 
the original processor to indicate that there is a snoop hit to 
a clean line. SH# is a s/t/s signal. Because GNT# from the 
system arbiter is connected to both processors, to avoid SH# 
being driven by more than one processor at a time, SH# is 
driven only if the transaction is a memory read and the other 
processor is the master. On the basis of SH# and SBO#, the 
processor cache that initiates the memory read transaction 
can then determine the MESI state in Which the cache line 
should be. SH# is to be sampled on the ?rst clock When 
SDONE is asserted and deasserted the folloWing clock. For 
one embodiment, SH# is internally pulled up to insure it 
does not ?oat When no second processor is present. 
The original processor and the second processor share and 

drive the SBO# line. Because only one processor should 
drive the SBO# line one at a time, only the processor-cache 
that has a snoop hit to a modi?ed line should drive the SBO# 
line. 
SDONE Will be asserted by the original processor When 

its internal snooping is completed and the SBSY# from the 
second processor is sampled deasserted. SDONE is then 
deasserted by the original processor according to the stan 
dard PCI protocol. 
The PCI speci?cation de?nes SDONE and SBO# to 

provide information betWeen agents that participate in the 
cache protocol. There are three cache states that appear on 
PCI: STANDBY, CLEAN and HITM. When SDONE is 
asserted, it indicates that the snoop has completed (i.e., 
SDONE is deasserted during the STANDBY state). When 
SBO# and SDONE are both asserted, it indicates a hit to a 
modi?ed line (i.e., the HITM state). When SBO# is deas 
serted and SDONE is asserted, it indicates that no cache 
con?ict exists and therefore the memory access can com 

plete normally (i.e., the CLEAN state). 
SNARF#, an optional sideband signal de?ned to support 

read intervention, is shoWn in FIG. 10. The PCI speci?cation 
speci?es a retry mechanism for a read transaction that results 
in a snoop hit to a modi?ed line. The standard PCI retry 
mechanism incurs an overhead of tWo unnecessary memory 
access transactions, hoWever, because the read access is ?rst 
backed off, then the modi?ed line is Written back and the 
read access is initiated again. The SNARF# signal is used to 
provide a mechanism to remove this overhead. 
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Thus, SNARF# is used in conjunction With SDONE and 
SBO# to indicate that the cache has the requested data and 
is capable of providing it in the order requested. SNARF# is 
a s/t/s signal. SNARF# can only be asserted With HITM 
When the cache is capable of providing the modi?ed data in 
the order requested. Thus, When the cache indicates HITM, 
it may or may not assert SNARF#. SNARF# is deasserted 
When the cache has placed data on the bus and is able to 
complete a neW data phase on each PCI clock. 

In the PCI speci?cation, on a snoop hit to a modi?ed line 
in a cache, the cache Will Write the modi?ed line back to the 
memory subsystem. This procedure requires three transac 
tions on the bus. The PCI signal STOP# (Stop) indicates that 
the current target is requesting the master to stop the current 
transaction. Thus, the ?rst transaction occurs When the 
master requests the data and is terminated With retry (i.e., 
STOP# asserted) because the snoop resulted in HITM. The 
second transaction occurs When the cache Writes the modi 
?ed line back to memory. The third and ?nal transaction 
occurs When the master re-requests the data and completes 
the transfer With the memory controller. The number of 
transactions required to complete this transfer can be 
reduced from three to one if the memory controller and the 
cache coordinate the data transfer. This coordination is 
accomplished by supporting SNARF#. A cache, hoWever, is 
not required to assert SNARF# on all transactions it signals 
HITM. For example, the cache may provide data When the 
burst sequence is linear or only Zero based (i.e., A2 and A1 
both Zero). 
When the cache can provide the modi?ed data in the 

requested order, the cache asserts SNARF# the same time it 
drives HITM on the bus. If the memory controller supports 
snar?ng, it does not assert STOP# (When it detects HITM), 
but instead holds the transaction in Wait states. 
When the memory controller detects HITM, it is required 

to tri-state the AD lines on the next clock regardless of the 
state of SNARF#. Thus, the cache insures at least one 
turn-around cycle betWeen the memory controller tri-stating 
the AD lines and When it starts driving the AD lines With the 
?rst data requested. When the cache is ready to continue the 
transfer, it deasserts SNARF# indicating to the memory 
controller that valid data is present on the bus. To use 
SNARF#, the cache guarantees that once SNARF# has been 
deasserted the cache is able to provide neW data upon each 
clock both IRDY# and TRDY# are asserted until an entire 
cache line has been transferred. The cache also has to 
provide the data in the requested order When SNARF# is 
asserted. Thus, for example, if the cache can only provide 
data in linear order and the current transaction requests the 
data as cacheline Wrap, then the cache can not assert 
SNARF# When HITM is signaled. 

The memory controller is informed that the cache Will 
provide the data to the master if SNARF# is asserted When 
HITM is signaled. The memory controller Will therefore 
latch and update the array With the data. If the master 
terminates the transaction before the entire line is 
transferred, the cache remains responsible for the entire line. 
The memory controller may discard the data that Was 
transferred, because the cache is required to Write back the 
entire line Whenever any data (in the cache line) is not 
transferred. The cache continues to signal HITM on the bus 
and asserts its REQ# line, if it is going to Write back the 
modi?ed line. All cacheable transactions are terminated With 
retry by the memory controller While HITM is signaled. The 
cache performs the Write back as it Would any Write back 
caused by a snoop. If the cache determines to keep the 
modi?ed line (by putting the line back in the cache as 
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modi?ed), instead of Writing it back, CLEAN can be sig 
naled and folloWed by STANDBY. Because the hit to a 
modi?ed line has been resolved, once HITM has been 
removed from the bus, the memory controller can then 
continue With normal operation. 

If a parity error is detected, the memory controller Will not 
assert PERR# because it is not the true recipient of the data. 
On a read transaction the assertion of PERR# is the respon 
sibility of the master. Thus, if a parity error occurs the master 
must take the appropriate action (e.g., repeat the transaction, 
set a status bit or do nothing.) If the entire line is transferred 
to the master and the memory controller detects a parity 
error, hoWever, the memory controller has a couple of 
options With respect to hoW to handle the error. For one 
embodiment, the memory controller Will assert SERR# 
because the data it has contains an error and any subsequent 
read may provide corrupted data. Alternately, the memory 
controller can guarantee that a parity error occurs on any 
subsequent read of the affected line. This alloWs a subse 
quent Write to the line that Will over-Write the bad data and 
thereby ?x the parity error. Although the ?rst approach 
causes a catastrophic system error, the second approach may 
alloW the system to continue operation. 
The memory controller is permitted to insert Wait states 

until it is ready to complete a transfer. This feature is useful, 
for example, When the previous transaction has ?lled the 
Write buffer of the memory controller. Thus, the memory 
controller can insert Wait states until the buffer is free and 
then the transaction can continue. In this case, insertion of a 
feW Wait states is more efficient than terminating the trans 
action With retry and thereby causing tWo subsequent addi 
tional transactions on the bus. 

The diagram in FIG. 8 illustrates the timing associated 
With the PCI cache protocol including the second processor 
sideband signals and their interaction. In the diagram a neW 
signal called SRDY# is used. SRDY# is an internal signal 
from the cache to the PCI interface logic. When SRDY# is 
asserted, the cache has completed the snoop. 
The transaction in FIG. 8 starts When an address is latched 

on clock 2E. The target then keeps TRDY# deasserted and 
inserts Wait states until the snoop completes. The snoop 
completes on clock 5E When SDONE is sampled asserted. 
Because SBO# Was not asserted When SDONE Was asserted, 
the snoop result indicates CLEAN. Because the target 
Waited for the snoop to complete, the transaction must be 
cacheable. SDONE is driven by the original processor and 
is asserted When SRDY# is asserted and SBSY# is deas 
serted. In this ?gure, SRDY# is asserted on clock 3E, but 
SBSY# is not deasserted until clock 4E. Thus, in this 
example, the snoop WindoW of the original processor is one 
clock smaller than that of the second processor. 

If the transaction is a memory read to a cacheable 
location, the target Will insert Wait states until the snoop 
completes. The memory controller Will access the requested 
data and then start driving the requested data onto the bus. 
The target Will continue to insert Wait states (i.e., TRDY# 
Will be kept deasserted) until SDONE is asserted. 

In FIG. 8, SH# is shoWn to be asserted on clock 4E or 
clock 5E and then deasserted on clock 6E. If the read 
transaction is from the second processor, the original pro 
cessor Will assert SH# as soon as its internal snoop is 

asserted by deasserting SRDY# (i.e., at clock 4E). If the read 
transaction is from the original processor, the second pro 
cessor Will assert SH# as soon as its internal snoop is 

asserted by deasserting SRDY# (i.e., at clock 5E). After 
SDONE has been asserted, SH# Will be deasserted on the 
folloWing clock. 










