FYS4220
Real time and embedded data systems

Introduction to Tools & VHDL

Ketil Rged
Autumn 2015

Motivation

* Doing your first FPGA design. (Lab 1).

 Some keywords for this lecture
— Entity & architecture
— Signal declaration & assignment

— Description models (Structural, behavioral)
« Component and port map
* non-procedural and procedural (data-flow and process)

(Some slides are based on material from 2011 lectures by J.K. Bekkeng)

VHDL

“It is well worth noting that VHDL and other
similar hardware design languages are used to
create most of the digital integrated circuits
found in the various electronic gizmos that
overwhelm our modern lives.”

FREE RANGE
VHDL

Mealy and Teppero, “Free range VHDL”

VHDL

VHDL: VHISC Hardware Description Language
— VHISC: Very High Speed Integrated Circuits

Introduced by the US Department of Defence (DoD) in 1981

Initially a specification and modeling language - documenting behavior of ASICs
— Alternative to complex manuals

The idea of simulating this documentation became attractive and logic
simulators where developed in the late 1980s.

The next step was the development of logic synthesis tools to read VHDL and
output a definition of the physical implementation of the circuit

Today it is an industry standard (IEEE 1987) for specifying, verifying and
designing digital electronics (library IEEE; use IEEE.std_logic_1164.all;)

Revised VHDL standards: VHDL 93, 2000, 2002, 2007, 2008

VHDL

 VHDL can be looked at as a model of a digital system
— Powerful alternative to schematic based design

* A change (transition) on the input may lead to a new
system state and consequently a change of the output
after a given time delay

e Describes and simulates concurrent events

IN ouT

Representation of a digital system

Important remarks

VHDL is a HARDWARE DESCRIPTION LANGUAGE

You are designing actual hardware!

A VHDL model is translated into actual hardware and mapped onto
a CPLD/FPGA

Due to the nature of hardware components which are always
running, VHDL is a highly concurrent language.

— Simultaneously execution of several tasks

This is in contrast to other high level languages where the code is
executed (sequentially) by a processor (predefined hardware).

Execution of a VHDL code means that the VHDL model is being
simulated (by software running on a computer)

Design approach

VHDL descriptions of circuits are based on the black-box approach.

The two main parts of any hierarchical design are the black box and the
stuff that goes into the black box (e.g. other black boxes)

In VHDL the black box is referred to as entity and the stuff that goes inside
it is referred to as the architecture.

Allows to use hierarchical structure (modularity) and the reuse of
previously written code.

A module is referred to by its inherently simple black box representation
rather than by the details of its inside circuitry

Compared with an IC

By >

CEIN]

* The entity describes the
interface to the outside world
(connection pins of package)

 The architecture describes the |8) [Ta)
functionality of the circuit) DD
inside the entity (package) LT T T T %,

Entity & architecture templates

entity model name is
port

(Same name as the file,

] ' .£. modul .vhd
list of inputs and outputs €.g. module_name.v

);

end model name;

architecture architecture _name of model name is
begin

VHDL concurrent statements

end architecture _name ;

Entity declaration

e Abstract the functionality of a circuit description to a
higher level.

* Provides a wrapper for the lower-level circuitry

Entity AND_GATE is

entity AND GATE 1is
port (L: in std logic:’
E: in std logic’
¥: out std logic) .

end;

Unique direction Type of data
|dentifier
name

Direction (mode)

e In—flow into the entity °* Buffer-flow out of the

. Out — flow out of the entity, feedback allowed

entity, no feedback * Inout - for bi-directional
sighals

MOOS Mode

In

Out

U

Buffer

Inout

v

o X -

N
L~
e
" l{\
] Out

/

Architecture

While entity describes the interface or external representation of
the circuit, the architecture describes what the circuit actually does

— Defines structure/behavior of the entity

Entity declarations are generally easy while describing the operation
of a circuit can become very complex

Entity AND_GATE is

architecture struct of AND GATE is

~--Deklarasjons omr 3de A Y
-Kan besta av f£.eks Tvper, sagnal, komponent Architecture

begin

Y <= A and B; B Y<=Aand B

end;

Example of basic AND-gate

library ieee;
Entity AND_GATE is use ieee.std logic 1164.8LL;

y entity AND GATE is
port (i: in std logic:

Architecture B: in std logic:

¥: out std logic):

Y<=Aand B

end;

architecture struct of AND_GATE is

begin
Y Y <= A and B;
end;

Main VHDL object types

* Signals
— communication between components
— Software representation of a wire (real physical signal)
— Signal assighments are associated with a delay
* Variables
— Convenient mechanism for local storage
— E.g. loop counters, intermediate values
— All assignments take place immediately (no delay)
* Constants
— |Is like a variable object but the value cannot change

Declaration and assighment

Needs to be declared before they are used

Declaration of

— Signals are done inside the scope of the architecture (cannot be
declared inside a process)

— Variables can only be done inside a process
— Constants can be done in architecture and inside process

Assignment of a new value to a
— Signal is done using the operator

o

<=l|

“w,_n

— Variable is done using the operator “:

Variable assignments are executed instantaneously while
signal assignments are executed after a certain time

ldentifier

|dentifier is the name of an object (e.g. signal)

Names can be constructed using:
— abc...z(alphabetic letters)

entity AND GATE is

— 012..9 (numbers) port (4: in std logic:
—_ _(underscore) E: in std logic:
Y: out std_logic];

end;

With the following reservations:
— The first character must be a letter
— The last character cannot be an under score
— Successive underscores are not allowed
— Cannot use VHDL reserved words (e.g. and, or, port, constant)

VHDL is case insensitive
nextstate < NEXTSTATE < nExTsTaTe

Arithmetic & logical

Arithmetic operators
e + Addition

e - Subtraction

e * Multiplication
« / Division

operators

Use with care, creates much logic

library IEEE;
use IEEE.std logic 1164.all
use ieee.numeric std.all;

Logical operators:
 and, nand, or, nor, not, xor, xnor

* |EEE 1164 uses these operators in std_

Logical operators

and, or, not, nand, nor, xor og xnor are predefined for bit, boolean, std_(u)logic,

Logical operators (except not) do not have precedence in VHDL, therefore parenthesis is
demanded in multi level logic:

X <=Aor B and C gives an error in VHDL (equal precedence of operators)
A or (B and ()

(A or B) and C } Correct for VHDL

not A and B This is the same as:

(not A) and B not has higher precedence than and, hence not A is
evaluated before the and term.

General recommendation is to be generous with parenthesis, it will make
equations more readable and less prone to errors.

And you will not have to bother with precedence.

Comments

-- In VHDL, when a double dash (--) is used, any text to the right
will be treated as a comment and will not be interpreted by the
compiler.

--Lab la: Assign all switches to LEDs
--Toggle swithces give @ when in down position(closest to board edge)

--LEDs are on when assign a high value
LEDR(16 downto @) <= SW(16 downto @); --A comment can also be placed here.

“Research has shown that using lots of appropriate comments is
actually a sign of high intelligence. “

According to Mealy and Teppero, “Free range VHDL”

Relational operators

e equality =
* inequality /=

Size operators <, <=, > 6 >=

* The operands must both be of the same type, and the result is a
Boolean value (true/false)

Example:

signal a : std_logic;

.......... Gives an error, becasue a is
std logic, while 1 is an integer
ifa=1then . — -o9 g

Data type std _ulogic / std ulogic vector

|IEEE standards for representation of
digital signals

Available after declaration of:

library ieee;
.5td logic 1164.ALL:

use ieee

Normally assuming values 0 and 1

However, the desire to model three-
state drivers, pull-up and pull-down
outputs, high impedance state the
std_ulogic type includes 9 different
values

"
"
0’
1
7
W
"
'y

’

Uninitialized
Forcing Unknown
Forcing O

: For synthesis
Forcing 1 of logic
High Impedance

Weak unknown

Weak 0 - pull down
Weak 1 --pullup
Don’t care

Std logic 1164 resolution function

The sub type std_logic is “resolved” std_ulogic. When two or more
drivers are connected together the value is determined by a
“resolution table”

(IUI, IUI’ IUII IUI’ IUII IUI’ IUI’ IUII IUI) |
('u', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') |
('g', 'X', '0', 'X', '0', '0', '0', '0', 'X') |
('u', 'X', 'X', '1', ‘'1', ‘'1', ‘'1', '1', 'X') |
(‘g, 'X', '0', '1', 'z', 'W', 'L', 'H', 'X'), -- |
() |
() |
() |
() |

~

~

~

~

'y, 'X', '0', '1', W', 'W', 'W', 'W', 'X'
'g', 'X', 'o', '1', 'L', 'W', 'L', 'W', 'X'
'g', 'X', 'o', '1', 'H', 'W', 'W', 'H', 'X'

~

~

o H SN O XA

Ex. Multiple drivers: bus -

Entity B

The resolution function is used to
simulate a data bus. oy A

Useful that the simulator can
indicate an unknown value if two or
more entities write to the same bus
line at the same time with opposite

Entity D

logic values
. architecture multiply_driven_signal of my_design is
If one module writes to a bus, the begin _ and b:
outputs of the other module’s bus Jyosaorbi
. . o . e m - - ’
line must be in tri-state (high ne P y-ariven-sgns
impedance) :

b y

The unknown value ‘X’ has no
meaning for synthesis. (0.7) :11
Resolution

_’ -x-

(1,7,)

y X

Conflicting assignment must be resolved

Description models

e Structural
— Interconnection of components (black boxes)
— Concurrent execution of statements
— Can be used to create hierarchy in the code
— Keywords: component & port map

* Behavioral
— Models how the circuit outputs will react to the circuit inputs
— Both concurrent and sequential execution of statements

— Keywords: data flow & process

Example of structural model

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity struct_ex is

Port (
A_IN
B_IN
C_IN

: in STD_LOGIC;

: in STD_LOGIC;

: in STD_LOGIC;
: out STD_LOGIC

end struct_ex ;

architecture Structural of struct_ex is

signal intl :
signal int2 :
signal int3 :

std_logic;
std_logic;
std_logic;

component AND_GATE
port (
A, B : in std_logic;
Y : out std_logic);
end component;

component OR_GATE
port (
A, B, C : in std_logic;
Y : out std_logic);
end component;

begin

Al: AND_GATE port map (A=>A_IN,
A2: AND_GATE port map (A=>B_IN,
A3: AND_GATE port map (A=>A_IN,
01: OR_GATE port map (A=>intl,

end Structural;

B=>B_IN, Y=>intl);
B=>C_IN, Y=>int2);
B=>C_IN, Y=>int3);
B=>int2, C=>int3, Y=>Y_OUT);

Can not directly connect together
the input/output of a component to
another component’s output/input!
Must use an internal signal (such as
intl in this example), unless a
connection to a port is made

INPUT AND2
A D
INPUT AND2 OR3
N < OUTPUT
AND2
INPUT)
o

Behavioral model styles

* Non-procedural (Data-flow)
— Concurrent execution

* Procedural (more in next lecture)
— Algorithmic
» step-by-step calculations / sequence of operations
— Sequential execution of statements within process

— Execution of a process is equivalent to a single
concurrent statement.

* All VHDL processes execute concurrently

Data flow (non-procedural)

* Concurrent statements

— Executed in parallel (order or statements is irrelevant)
 Event driven

— Executed only if transition/change on input

B <=C; --executed if transition on C
A <= B; --executed if transition on B

1s equivalent to C ’ B ’ A

A <=B; ’ ’
B <=(;

Data flow (non-procedural)

architecture CONCURRENT of MULTIPLE 1is
signal Z, A, B, C, D : std logic:
begin
Z <= A and B;
Z <= C and D;
end CONCURRENT:

Multiple drivers for one signal

Conflicting assignment must be resolved

Code structure

Architecture rtl of ex 1is
Parallell deklarasjonsdel

e B L
Parallell VHDL N
... —~
Process (...
mekvensiell deklarasjonsdel P
rocess
parallelt
begin VHDL
Sekvensiell VHDL kommando
B iciniol it A _
Parallell VHDL _//

end rtl;

Parallell

> del

Ex.: 7-segment decoder

- HEXe DOl

RN17 1K HEXO0
HEX0 DO 1 2] A0 0 |a
HEX0 D1 2 | 7 BO 9 b VCC33
HEXO D2 13 6 CO 8 | —
HEX0O D3 4 5 DO 5 |4 I I ond
4 e — cAZ
=
RN18 1K 3 |g — O
HEX0 D4 1 8 EOQ 7 ldp
HEX0O D5 o 7 FO
HEXO D6 3 6 GO0 7Segment Display
HEX0_DP 4 5 DPO

M m & O T » © @ N O O & W N = O

0x3F 0x7E
0x086 0x30
0x5B |0x6D
Ox4F 0x79
0x66 0x33
0x6D | 0x5B
0x7D |Ox5F
0x07 | 0x70
0x7F | Ox7F
0xBF 0x7B
0x77 0x77
0x7C Ox1F
0x39 Ox4E
0x5E |0x3D
0x79 Ox4F
0x71 0x47
‘0’ 2> ON

‘1’ > OFF

0 12 3456
Digit gfedcba abcdefg a b ¢ d e

on
off
on
on
off
on
on
on
on
on
on
off
on
off
on

on

on
on
on
on
on
off
off
on
on
on
on
off
off
on
off

on
on
off
on
on
on
on
on
on
on
on
on
off
on
off

on
off
on
on
off
on
on
off
on
on
off
on
on
on

on

off |off | off

on
off
on
off
off
off
on
off
on
off
on
on
on
on
on

on

f
on
off
off
off
on
on
on
off
on
on
on
on
on
off
on

on

g
off

off
on
on
on
on
on
off
on
on
on
on
off
on
on

on

Ex.: 7-segment decoder

HEX1 (6) <= ((not A) and (not B) and (not C)) or ((not A) and B and C and
(A and B and (not C) and (not D)); --g

HEX1(5) <= ((not A) and C and D) or ((not A) and (not B) and D) or
((not A) and (not B) and C) or (A and B and (not C) and D); --f

HEX1(4) <= ((not A) and D) or ((not B) and (not C) and D) or
((not A) and B and (not C)); --e

HEX1(3) <= (B and C and D) or ((not A) and (not B) and (not C) and D) or
((not A) and B and (not C) and (not D)) or (A and (not B) and C and (not

v

HEX1(2) <= (A and B and C) or (A and B and (not D)) or
((not A) and (not B) and C and (not D)); --c

oy

HEX1(1) <= (A and C and D) or (B and C and (not D)) or
(A and B and (not D)) or ((not A) and B and (not C) and D); --b

oy

HEX1 (0) <= ((not A) and (not B) and (not C) and D) or ((not A) and B and
A and B and (not C) and D) or (A and (not B) and C and D); --a

D)); --d

(not C)

and (not D))

The use of logical operators and concurrent signal assignment is no

longer comfortable.

VDHL

Non-procedural (data-flow)

Procedural (sequential)

Process statement
When else statement
With select statement
Signal declaration
Block statement

If- then- else statement
Case statement
Variable declaration
Variable assignment
Loop statement

Return statement

Null statement

Wait statement

Allowed in both non-procedural and procedural part

Signal assignment

Declaration of types and constants

Function and procedure calls

Assert statements

When-else / with-select (non-procedural)

Conditional signal assighment

general format: example:

expression when condition else Z <= A when S =“00” else
expression when condition else B when S =*“11” else
expression when others; C;

Selected signal assignment

general format: example:

with selection select with S select

expression when condition, Z <= A when “00,
expression when condition, B when “11”,

expression when others; C when others;

Ex. when — else: Tri-state buffer

The output buffer can be put into a high impedance ('Z’) state, such that
only one entity writes to the bus
* Three possible signal levels: '0’, ’1’, ’Z’

FPGAs and CPLDs have three-state buffers on the outputs (the signals
defined as port in the entity)

However, many programmable logic devices can not have three-state
buffers internally on the circuit (on internal signals)

data Data_bus

When — else /‘

enable

Data_bus <= data when enable ='1' else (others => 7’);

Data_bus : inout std_logic_vector(7 downto ©0));

Ex. when — else: Tri-state buffer

Ex.: 7-segment decoder

with SW(2 downto 0) select

HEX0 <= "1000000" when "0O0OO", --0
"11131001" when "0001", --1
"0100100" when "0010", -=2
"0110000" when "0011", --3
"0011001" when "0100", --4
"0010010" when "0101", --5
"0000010" when "0110", --6
"11131000" when "0111", -=7
"0000000"™ when "1000", --8
"0010000" when "1001", --9
"0001000" when "1010", -4
"0000011" when "1011", --b
"1000110" when "1100", --C
"0100001" when "1101", --d
"0000110" when "1110", --E
"0001110" when "1111", ——

"31313131331" when others:

DE1-SoC board

I systen VGA Out

Mic Line Line VGA
In In Out Video-In 24-bit DAC

W Frca

(4 |

—d
JTAG Header_it»
Audio Codec 1

Video Decoder
PS2 el

UsB-Blaster | RS IRRERE ; e || e IRRS N >, 00 GPIO x2

G Altera 28-nm
— Cyclone V FPGA

o 2 3 A
PowerON/OFF = 10 SO 3L - i B i ARM Cortex-A9

64MB SDRAM
ADC
ADC Header

7-Segment Display
LED x10

IR-out

IR-in

A 0T NN TN

Switch x10 Button x4

User Manual: DE1-SoC User Manual(rev.C/rev.D Board)

TERASIC: DE1-SoC webpage

DE1-SoC board revisions

rev. D

Rev D What are the parts changed?

The JTAG chain has been changed. Starting from rev. C, the HPS comes before FPGA in the JTAG chain.
94v-0 This is to bypass a bug in the DS-5 where reset can't function properly.

P014050091 1422F

® LR

Overview Specification Layout Resources Compare Demo Kit Contents Order Now

DE1-SoC Board
171 people like this.

rev. B JTAG chain: USB Blaster Il —-> FPGA -—> HPS —-> USB Blaster Il How to distinguish rev. B, rev. C, rev. D, rev. E and rev. F board?
Documents
Disable UB2 JTAG
BB 7AG Braster TO) g [— s DE1-SoC User Manual(rev.E Board) 2.3 7598 2015-08-06 ,@
on-Board s e —
UsB Blaster Il > LA i LA DE1-SoC User Manual (rev.F Board) 2.0 7787 2015-08-06 'Ef

L
TDO ——————————— TDI TDO —» TDI TDO > X
JTAG_Biaster_TOO DE1-SoC User Manual(rev.C/rev.D Board) 1.2.2 6472 2015-04-07 mf;
L
. . DE1-SoC User Manual(rev.B Board) 1.0 9830 2014-02-07 m’;
JTAG chain starting from rev. C: USB Blaster Il —-> HPS ---> FPGA --> USB Blaster I Ladote
DE1-SoC Learning Roadmap 1.0 2079 2014-02-07 lﬁt
Lase

Disable UB2 JTAG
Header

I TCK — TCK

DI
JTAG_Blaster_TDI

On-Board
USB Blaster Il > TMS HPS — TMS FPGA

e JTAG_Blaster_TDO iR LD g U o

DE1-SoC board

Normal Type-B

X2

; A 4

25MHz Clock Input
(Clock Generator x1)

R
Psrz‘e —X4
‘, ,

x39

SDRAM x16 64 MB >

s =

Video xi2

x2
From HPS _Tswitch Control

D
G ——

Clock(Clock Generator) _b

R s -
A

S5CSEMASF31C6N

FPGA

mn

UL
i U

RGM" % JU ULEthernet

T

Micro

6 $D Card

".d
Ead b
x13 e———mmp

USB Host
Normal Type- A‘ ;d

DDR3
SDRAM x32 1 GB

W USB Mini-B
o

ﬂ 247 LTC Header
x7

x72

A

x4
3

(o] o] [o] [¢]

Push Button x4

Y

REREERERRN

Slide Switch x10

x10

x42 x6 x1 x1

UserLED RST User
Button

7- Segment

O

|splay x6

x1
)|

HPS HPS WARM
RST

Design using FPGA/CPLD

Ethernet 10/100M Port
USB Device Port

Micin LineIn Line Out VGAOut RS-232 Port
USB Blaster Port USB Host Port l T waez In1 Vld:c in2 T

TV Decoder (NTSC/PAL) X2
12V DC Power Supply
nnector

Power ON/OFF Switch

<> PS2 Port
VGA 10-bit DAC
Ethernet 10/100M Controlier
USB Host/Slave
Controller

Audio CODEC

Altera USB Blaster — IR . 1 g BN 2 — 500z Oscillator
Controller chipset [
WPt Bl < Expansion Header 2
Atera EPCS16
Configuration Device Expansion Hoador 1

RUN/PROG Switch for
JTAG/AS Modes

Altera Cyclone Il
FPGA with 70K LEs

ItDA Transceiver

7-Segment Displays
8Mbyte Flash Memory
18 Red LEDs 8 Green LEDs

18 Toggle Switches <~ SMA Extemal Clock

32Mbyte SDRAMX2 ~ 28Mhz Oscillator 2Mbyte SSRAM 4 Push-button Switches

Fle Edt View Project Assgnments Processng Todls Window Hep &)

o @
DEHD S & 2@ o (oo IEGRE TP DR OB A0

[Project Navigator vaxl| & counters_Jeb.vhd <]

o BT

ARARK 05 @8~ | =320 e e R e e i
;

. File Edit View Add Format Tools dow
98] Wave - Default

D@8 8 (RBO2| - HED|| SR
7 | e @4 €« (EF[s0psd . SRRV MR R

@ Q@R[[L /MW
s Msgs.

buffer

& Cydone 11: AUTO 10 library
e counters lab1 88 .

I

e ’ B’ Jcounters lab1_vhd_tstbit cnt |101 [forz100}i01] 111jooo) 010011100 Jrio)riziooo} Joi0jpix] Jio1friofiia] Joorjorolori] |

< (i 25 | end councers_labi: ' Jrounters lab1_vhd_tst/ck L A U L L L
26 # Jcounters_lab1_vhd_tstjreset o

A rierarchy | B Fies | 87 Designunits 27 - jcounters_lab1_vhd_tst/word_eont [0101111

28 Harchitects:

= oo parts of counters labl i
fra =

Flow: (Compiation = 30 |constant WordsPerframe : integer
= 31 | signal WozrdStraobe : s
- 2| s2

v 4 » comie

52 Hoegin

36 | srTcounTER:

O edt Settings
B View Report 37 Elprocess(clk, reset)
v [38 |begin

aEiboration

39 if (resec = 'i') then -
P Partiion Merge 20 o

4 et veners a
& RLviener 22

@ sutemocie vener A [en orocesss

3 Techclogy Mep Vewer Gostt | | a5

P Design Assistant (Post-Mapping) ™ 1€

x/x v
8
@ ype Message

v

System /\ Processing J\ Extra Info /\ Info /\ Warning /\ Cribcal Warning /\ Error J\ Suppressed /\ Flag /

Messages

Ref: JKB slides 2011

[5929738491 ps to 99586872725 |

Quartus Il Development software

File Edit View Project Assignments Processing Tools Window Help & arch altera.com 0

Dl}"ﬂ =] L}{,@) Cu [counbers_labl

|Project Navigator @ X ’ 333 counters_lab1.vhd
Entity B ¢ LT A% %% 0T K E
Cydlone I1: AUTO i ; s
54 counters_lab1 &) o a1l
D = 12 all;
i3 1 i ed.all;
14
15 Hentity counters_labl is
16
17 port
i8 = (
19 clk : in
20 reset : in std 1
21 bit_cnt : buffer std vector 2 downto 0); —-- 8 bits/word
22 word_cnc: buffer std_ 6 downto 0) -— 96 words/frame (277 = 1
23)z =
24 -
<l | s 25 end counters_labl;
26
Hierarchy ‘ B Files | o¥ Design Units ‘ 27 L
r y 28 [Blarchitecture part3 of counters labl is
Tasks PEX|| g N
Flow: [Compilaﬁon v] [Customize... 30 constant WordsPerFrame :
31 signal WordStrobe B
Task & 32
v 4 P Compile Design 32 Dbegin
v 4 P Analysis & Synthesis 35
] Edit Settings = 36 BITCOUNTER:
B view Report 37 [Hprocess(clk, reset)
38 I begin
v P Analysis &Elaboration 39 E if (xreset = '1') then -—- async reset
P Partition Merge N 20 | bit_cnt <= (others => '0');
4 "_j Netlist Viewers il [E elsif fall _edge (clk) then
@ RTL Viewer 42 bit_cnt <= bit_cnt + 1;
R o 43 end if;
@ State Machine Viewer 42 end process;
ﬁ Technology Map Viewer (Post- 45
P Design Assistant (Post-Mapping) ™ 46 -
< U’ | ’ VN T »
X|| x ¥ <<Searchs> v
&
@

Type Message

<
_System /\ Processing /\ Extra Info /\ Info /\ Warning /\ Critical Warning /\ Error /\ Suppressed /\ Flag /

Location: % Locate

| Messages

100% 00:00:03

Quartus system integration tool (QSYS)

A Qsys e =&l x
File Edit System View Tools Help
Component Library System Contents | Address Map | Clock Settings l Project Settings | Inst: Par; s | System Insp HDL Example | Generation
Y x‘ 4P Use Connections Name Description Export Clock Base End RQ Op
Project b 4 B clk Clock Source -
Q New Component... - clk_in Clock Input clk
’ System : clk_in_reset Reset Input reset
Library = ———— ck Clock Output clk
[#)-Bridges a % clk_reset Reset Output
G1-Clock and Reset — B cpu Nios Il Processor
[#-Configuration & Programming x clk Clock Input clk
[#-DSP } reset_n Reset Input [clk]
@)-Embedded Processors ? — data_master Avalon Memory Mapped Master [clk] IRQ O IRQ 31—
[#-Interface Protocols < instruction_master Avalon Memory Mapped Master [clK]
[)-Memories and Memory Controller! jtag_debug_module_re...|Reset Output [clk]
[)-Merlin Components jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0804_0800 0x0804_0£££
&-Microcontroller Peripherals *— custom_instruction_m... |Custom Instruction Master
G1-Peripherals B onchipmem On-Chip Memory (RAM or ROM)
E-PLL clk1 Clock Input clk
[)-Qsys Interconnect s1 Avalon Memory Mapped Slave [clk1] 0x0802_0000 0x0803_dfff
@&)-Verification resetl Reset Input [clk1]
&-Window Bridge B sysid System ID Peripheral
clk Clock Input clk
reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clK] 0x0804_1098 0x0804_109%
B jtag_uvart JTAG UART L
ck Clock Input clk 1
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0804_1090 0x0804_1097 >—[1]
B timer Interval Timer
clk Clock Input clk
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [cik] 0x0804_1020 0x0804_103% >—@
B led PIO (Parallel VO)
clk Clock Input clk
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] 0x0804_1070 0x0804_107£
external_connection Conduit led_external_connection
B sdram SDRAM Controller
clk Clock Input clk
reset Reset Input [clK]
s1 Avalon Memory Mapped Slave [clk] 0x0400_0000 O0x07££f ££££
wire Conduit sdram_wire
= led Altera Avalon LCD 16207
reset Reset Input [clk]
om0 clk Clock Input clk
control_slave Avalon Memory Mapped Slave [clk] 0x0804_1060 0x0804_106£ L
Edit & Add external Conduit Icd_external Y
< m] » |
lMessages ‘
Description Path

=@ 2 Info Messages

0 Errors, 0 Warnings

Development software

e Quartus Il Web Edition and Modelsim-Altera
Starter Edition software can be downloaded
for free from the Altera web page

e Contains also QSYS and NIOSII EDS

e Latest version is v15.0 (14.0 installed in lab.)

QSYS: Quartus system integration tool
EDS: Embedded Design suite

General design flow steps

Design entry
— Register Transfer Level (RTL) description of design (schematic or HDL)

Synthesis

— Checks code syntax, converts abstract form of desired circuit behavior
into a design implementation of basic gate level primitives (netlist), i.e.
circuit logic elements (gates, flip-flops, etc). A netlist is a text-based
representation of a logic diagram.

Translate

— Merges netlist and constraints (e.g. physical port assignment, timing)
into device specific design file.

Map

1] e

— Fits the design into specific device resources (LUT, FF, RAM etc)

Place and route

— Decides where in the die the resources will be placed and wires them
together (accounts for timing constraints)

Generate configuration bit file
— That can be downloaded to the FPGA

General simulation steps

* Behavioral simulation

— Simulation to verify RTL behavioral code (no
timing and resource information)

* Gate level functional simulation
— Run simulation on gate level description
generated by the synthesizer.

— Can discover improper coding that works at RTL
level but which violates synthesis coding

conventions.
E.g. omitting a signal in the sensitivity list.

* Gate level timing simulation
— Gate level simulation with propagation delays

Simulation

configuration bi
file

Static Timing Analysis

* Gate level timing simulation of an entire design
can be slow and should be avoided.

* In fact, not supported for Cylcone/Arria/Stratix
V devices.

* |nstead, use Static Timing Analysis (STA)

— method of computing the expected timing of a w
digital circuit without requiring simulation

— Considers timing of paths from e.g. register to
register, input port to register, register to output
port, purely combinational paths.

— No need for test vectors "

— However, does not check functionality of design.
=> combine STA with behavioral simulation (RTL).

TimeQuest Timing Analyzer: http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

@Awdsm ALTERA STARTER EDITION 10.0d

How to simu

Use a simulation tool like e.g. ModelSim

Test bench to apply stimuli/test inputs to the VHDL code
Visual inspection through graphical output (waveform)
Self-checking test benches (add code to check and verify result)

(=)

C=L

late VHDL code

-
.
-
-
Stimulus I[)J';S‘;E:
Driver
- Test
-
-«

File Edit View Compil

Simulate Add Structure Tools Layout Window Help

D=8 4

[Fm@O2 O-NERE]| SHAN

T LR

Layout [Simulate | H ColumnLayout [A11Columns

= || I o o [ai]

% &l 4

EXRE

Jﬁa@&a

&} sim - Default

H x| | $a Objects Hd X

#fmnstance

|Design unit [Design unit type _|Visibilty _[Total cove kind |Mode

<l

@ WORDSYNC counters_a... Process +acc=<... 4. word_cnt 0101111Signal Out
@ WORDCOUN...counters_la... Process +acc=<... 4 WordStrobe 0 Signal Internal
@ line__59 counters_la... Process +4acc=<... “ WordsPerFrame 9% Cons... Internal
@ stimuli counters_la... Process +acc=<...
B standard standard Package +acc=<...
M textio textio Package +acc=<...
B std_logic_1164 std_logic_1... Package facc=<...
Ml std_logic_arith std_logic_arithPackage +acc=<...
Ml std_logic_unsigned std_logic_u... Package tacc=<...

Architecture +acc=<...

Signal In
Signal In
signal Out

.. counters_la...
counters_a....

;| £ reset
... counters_la... Process +acc=<... “. bit_ent

Hd X
[order [parent Path

4 Processes (Active)

[*iname

[Type (fitered) [state

i tbrary | & sm

e

A Transcript

run 10 ms
#

VSIM 2>

Y
a
[» x| |-

‘Now: 10ms Delta: 2

bl

BITCOUNTER

File Edit View Add Format Tools Window
£8 Wave - Default He x|
D-3E -8 (BB - ME || S8 RA|

mrew-ape||N adnip]|Lrer
|Tumimr

Msgs
[ooopo] p11]r00f301] Jii1jooo)”Jo10)011fi00} Jrio}iizioool Josolpis] Joujtiofiii] Joorjpioioii fEi
Uy U

@4 ¢ (B[opsELEEHS
EIEEEER

g2

e

J%%a%”

-

Jcounters_lab1_vhd_tstpbit ent 101

“ Jcounters_lab1_vhd_tst/dk 1
Jcounters_lab1_vhd_tstjreset 0
Jecounters_lab1_vhd_tst/word_ent 0101111

[10100111 0101000 0101001 0101010

tme
e

Now 10000000000 ps

P

Cursor 1

[9929738491 ps to 9958687272 p

Why focus on Verification

Consider a) FPGA development and
b) Further work related to FPGA quality

® FPGA Design
¥ FPGA Simulation
In-System Verification

Average Design & Functional

Verification tasks

- as seen in some reasonably
structured projects.

@
Qualified Efflclency

Room V442, 4t floor of Physics building

Please keep the lab. Clean and tidy

DE1-SoC boards

