PetNADTM

Leptospirosis (lipL32) Detection Kit

For leptospirosis

User Manual

For Research Use Only

Manufacturer:

GeneReach Biotechnology Corporation

TEL: 886-4-24639869 FAX: 886-4-24638255

No. 19, Keyuan 2nd Rd., Central Taiwan Science Park, Taichung City, Taiwan 407

Web Site: www.petnad.com

Content

INTENDED USE1					
SU	MMARY AND EXPLANATION	1			
PR	INCIPLES OF THE PROCEDURE	2			
PR	ODUCT DESCRIPTION	3			
A.	Materials Provided	3			
B.	Materials and Equipments Required, but Not Provided	3			
C.	Storage and Stability	4			
D.	Sample Type	4			
PR	ECAUTIONS	5			
LI	MITATIONS	6			
PR	OCEDURE	7			
A.	PetNAD TM Leptospirosis (<i>lipL32</i>) Detection Kit Quick Guide	7			
B.	Procedure	8			
DA	TA INTERPRETATION	10			
AN	ALYTICAL SENSITIVITY	10			
TR	OUBLESHOOTING	11			
DE	TEDENCE	12			

INTENDED USE

PetNADTM Leptospirosis (*lipL32*) Detection Kit is intended for *in vitro* detection of Leptospirosis DNA based on insulated isothermal polymerase chain reaction (iiPCR) technology. This kit is designed specially to be used with an iiPCR-compatible instrument, **POCKIT**TM Nucleic Acid Analyzer. The assay is intended for use by people with basic laboratory skills.

This kit is intended for research use only.

SUMMARY AND EXPLANATION

Leptospirosis, an emerging infectious disease in humans and dogs, is a worldwide zoonotic disease caused by infection with the motier spirochetal bacterium of the genus, *Leptospira* (Bharit et al., 2003). There are over 250 pathogenic serovars based on difference in the carbohydrate component of the bacterial lipopolysaccharide (Levett, 2001; Ko, Goarant, Picardeau, 2009). Different serovars are adapted to different wild or domestic animal reservoir hosts.

Leptospirosis in dogs often occur with signs of renal or hepatic failure,

uveitis, pulmonary hemorrhage, acute febrile illness, or abortion (Sykes et al., 2011). Leptospirosis is transmitted by urine of an infected animal, outbreaks of disease in dogs often follow periods of high rainfalls.

PCR is one of the most commonly accepted methods that provide high sensitivity and specificity for leptospirosis detection. However, conventional PCR assays take three to four hours, and require sophisticated thermocyclers and well-trained technicians to perform. GeneReach has developed **PetNAD**TM Leptospirosis (*lipL32*) Detection Kit based on iiPCR technology, which significantly reduces reaction time and offers sensitivity and specificity comparables to those of conventional nested PCR (Tsai, 2012; Chang, 2012). Furthermore, this simple and easy assay could be completed rapidly in a portable **POCKIT**TM Nucleic Acid Analyzer.

PRINCIPLES OF THE PROCEDURE

In iiPCR, hydrolysis probe-based chemistry is used to generate fluorescent signal during amplification of target DNA. The primers and probe target *lipL32* gene and do not cross-react with nucleic acid from host and non-pathogenic *Leptospira* spp.

PRODUCT DESCRIPTION

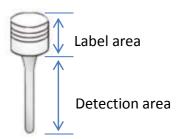
A. Materials Provided (24 tests/kit)

Component	Contents or Purpose		Amount
Premix Pack	■ Leptospirosis Premix		24 bags (1 leptospirosis
		(lyophilized pellet) containing	Premix vial and
		dNTPs, primers, probe, and	desiccating agent/bag)
		enzyme for amplification.	
	-	Desiccating agent pack.	
Premix Buffer B	■ Reaction buffer to re-dissolve		2 vials (1.3 ml/vial)
		the lyophilized pellet.	
P(+) Standard	d Dried plasmid containing		1 vial
		leptospirosis partial sequence.	
Standard Buffer Reaction buffer to 1		Reaction buffer to re-dissolve	1 vial (110 μl/vial)
		P(+) Standard.	
R-tube			1 bag (24 pieces/bag)
Cap			1 bag (24 pieces/bag)
User Manual			1 сору

B. Materials and Equipments Required, but Not Provided

- 1) **PetNAD**TM Nucleic Acid Co-prep Kit
- POCKITTM Nucleic Acid Analyzer: PetNADTM-compatible instrument.
- 3) **cubee**TM Mini-Centrifuge (cubee)
- 4) Micropipette and tips

C. Storage and Stability

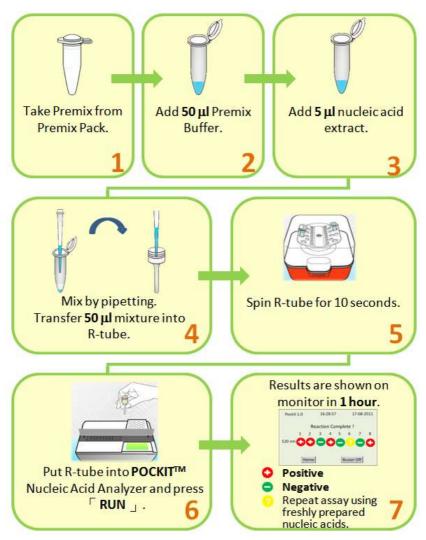

- 1) The kit should be stored at 4°C and is stable until the expiration date which is stated on the label.
- 2) Store Premix vials in sealed Premix Pack to avoid hydration of lyophilized components.
- 3) Reconstituted P (+) Standard is stable for 6 months at 4°C. Aliquot reconstituted P (+) Standard to avoid degradation and contamination of nucleic acid.

D. Sample Type

Nucleic acid extracted from whole blood or urine.

PRECAUTIONS

- A. Do not open R-tube(s) after reaction to prevent any carryover contamination.
- B. Perform extraction and amplification in two independent spaces to minimize contamination.
- C. Do not reuse R-tube and Premix.
- D. Include the P(+) Standard to:
 - 1) Ensure **POCKIT**TM Nucleic Acid Analyzer is working normally.
 - 2) Ensure detection kit performance after storage.
- E. To get optimal fluorescence detection.
 - Wear powder-free gloves to handle R-tubes.
 - Do not label in the detection area of R-tube.



LIMITATIONS

- A. The test should be used only for testing nucleic acid extracted from animal specimen. Do not add specimen (i.e. whole blood) directly into Premix.
- B. **PetNAD**TM Nucleic Acid Co-prep Kit is recommended for nucleic acid extraction.
- C. Any deviation from recommended procedure may not achieve the optimal results and should be validated by the users.
- D. It is strongly recommended to use freshly prepared nucleic acid (within 1 hour after extraction) to achieve optimal results.
- E. Vaccination with a modified-live leptospirosis vaccine may result in positive PCR results for a few weeks after vaccination. Killed or vectored-recombinant vaccines will not interfere with PCR testing. PetNADTM is recommended in sick animals with clinical signs and/or laboratory abnormalities consistent with infection or in an animal with a suspected subclinical infection as based upon history, physical examination and clinical laboratory findings.

PROCEDURE

A. PetNADTM Leptospirosis (lipL32) Detection Kit Quick Guide

B. Procedure

Note: Before using for the first time, add 100 μ l Standard Buffer to P(+) Standard. Store reconstituted P(+) Standard at 4°C.

- 1) Label R-tube(s) in the label area.
- 2) Prepare one Premix for each sample. (Premix tube is in Premix Pack. Each Premix Pack contains one Premix.)

Note: If the pellet is not found at the bottom of the tube, spin tube briefly to bring it down.

- 3) Add 50 µl Premix Buffer B to each Premix tube.
- 4) Add 5 μ l nucleic acid extract or P(+) Standard to each Premix tube. Mix by pipetting up and down.
- 5) Transfer 50 µl Premix/sample mixture into R-tube.
- 6) Seal top of each R-tube with a cap. Make sure R-tube is capped tightly.
- 7) Place R-tube into the holder of **POCKIT**TM.
- 8) Spin tube briefly in **cubee**TM to make sure all solution is collected at the bottom of R-tube.

Note: Start reaction within 1 hour to prevent nucleic acid degradation.

Note: Make sure there are no bubbles in the tube.

9) **POCKIT**TM reaction:

Note: Please see the user manual of POCKITTM for details.

a) Turn on **POCKIT**TM, which should complete

PetNADTM Leptospirosis (*lipL32*) Detection Kit self-testing within 5 minutes.

- b) Select "520 nm".
- c) When "System READY" is displayed, place the holder with R-tube(s) into the reaction chamber.
- d) Tap cap of each R-tube to make sure the tube is positioned properly.
- 10) Close lid and press "Run" to start reaction program.
- 11) Test results are shown on the monitor after reaction is completed.

DATA INTERPRETATION

* One example of results shown on the monitor.

520nm	Interpretation
0	Leptospirosis Positive
0	Leptospirosis Negative
(2)	Repeat reaction with freshly prepared nucleic acid

ANYLYTICAL SENSITIVITY

The detection limit of **PetNAD**TM Leptospirosis (*lipL32*) Detection Kit is about 10 copies/ reaction.

TROUBLESHOOTING

Problems	Possible causes	Solutions
False Positive	1) Reuse of micro-	■ Micro-centrifuge tubes, tips,
	centrifuge tubes,	R-tubes and Premix are for
	tips, R-tubes and	single-use only. Reusing these
	Premix.	accessories would cause cross-
	i ! !	contamination.
		■ Used micro-centrifuge tubes, tips,
	; ; ;	R-tubes and Premix should be
		collected and discarded according
	; ; ;	to local regulation. Do not place the
		waste close to the working area to
		prevent cross-contamination.
	2) Contaminated	■ Disassemble and clean up
	micropipette	micropipette.
	: : : :	■ Use aerosol-free tips.
	3) Contaminated	■ Consult with a GeneReach
	reagent	technical support representative or
	1 1 1 1	local distributor.
	4) Contaminated	■ Consult with a GeneReach
	working area	technical support representative on
	! ! ! !	how to clean up working area.

Problems	Possible causes	Solutions	
False	1) Nucleic acid	■ Consult manual of nucleic acid	
Negative	extraction failed.	extraction kit.	
	2) Bad nucleic acid	■ Check sample storage condition.	
	quality or nucleic	■ Please refer to Troubleshooting	
	acid concentration	section of PetNAD TM Nucleic Acid	
	too high	Co-prep Kit.	
		■ If a spectrophotometer is available,	
		check OD 260/280 ratio. This ratio	
		should be between 1.4 and 2.0.	
	3) PCR inhibition	■ Do not overload nucleic acid.	
	1 1 1 1	■ Spike nucleic acid sample into P(+)	
	1 1 1 1	Standard reaction for a parallel	
	; ; ;	PCR reaction. Negative results	
	1 1 1 1	indicate the presence of inhibitors	
	: 	in the nucleic acid. In that case,	
	1 1 1 1	prepare another nucleic acid	
	1 1 1	extract.	
Heavy	1) Leakage or spill of	■ Consult with a GeneReach	
contamination	reaction from	technical support representative or	
of amplicons	R-tube into	local distributor.	
in reaction	reaction chamber		
chamber of	of POCKIT TM .		
POCKIT TM .			

REFERENCE

- 1. Bharti, A.R., Nally, J.E., Ricaldi, J.N., et al., (2003). Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis;3(12):757–71.
- 2. Chang, H.F. G., Tsai, Y.L., Tsai, C.F., Lin, C.K., Lee, P.Y., Teng, P.H., Su, C. and Jeng, C.C., (2012). A thermally baffled device for highly stabilized convective PCR. *Biotechnology Journal* 7(5): 662-666, doi: 10.1002/biot.201100453
- 3. Levett, P.N., (2001). Leptospirosis. Clin Microbiol Rev 14:296–326.
- 4. Ko, A.I., Goarant, C., Picardeau, M., (2009). Leptospira: The dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7:736–747.
- 5. Sykes J.E., Bryan J., Amstrong P.J., (2011). 2010 ACVIM Small Animal Consensus Statement on Leptospirosis:Diagnosis, Epidemiology, Treatment, and Prevention. J Vet Intern Med 2011;25:1–13.
- Tsai Y.L., Wang H.T.T., Chang H.F.G., Tsai C.F., Lin C.K., Teng P.H., Su C. and Jeng C.C., (2012) Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. *PLoS ONE* 7(9): e45278. doi: 10.1371/journal. pone. 0045278