
Product Manual
1061 - PhidgetAdvancedServo 8-Motor

Phidgets 1061 - Product Manual

For Board Revision 1

© Phidgets Inc. 2012

Contents

5 Product Features
5 Programming Environment

5 Connection

6 Getting Started
6 Checking the Contents

6 Connecting all the pieces

6 Testing Using Windows 2000/XP/Vista/7

6 Downloading the Phidgets drivers

6 Running Phidgets Sample Program
7 Testing Using Mac OS X

8 If you are using Linux

8 If you are using Windows Mobile/CE 5.0 or 6.0

9 Programming a Phidget
9 Architecture

9 Libraries

9 Programming Hints

9 Networking Phidgets

10 Documentation

10 Programming Manual

10 Getting Started Guides

10 API Guides
10 Code Samples

10 API for the PhidgetAdvancedServo 8-Motor

10 Structures

11 Functions

13 Events

14 Technical Section
14 How RC Servo Motors Work

14 The PhidgetAdvancedServo

14 Current Sense

14 Limitations

14 Degree Abstraction

15	 Defining	a	Custom	Servo

15 Degree Abstraction (historical model)
15 Using the 1061 with a Servo Motor

15 Using the 1061 with Continuous Rotation Servos

16 Using the 1061 with Electronic Speed Controllers (ESCs)

16 Connecting your servo motor to the 1061

17 Product History

17 Support

51061_1_Product_Manual - July 18, 2012 10:19 AM

Product Features

Control the position, velocity, and acceleration of up to 8 RC servo motors•	

Requires a 6-15VDC external power supply with center positive polarity.•	

High resolution - 125 steps per degree•	

Measures current consumption of each servo.•	

A	switching	power	supply	allows	the	AdvancedServo	to	efficiently	operate	from	6	to	15	VDC,	and	be	used	with	a	•	
wide range of batteries.

Switching Regulator protects motors from overvoltage.•	

Powers servo motors of up to 3.4 amps.•	

Terminal blocks designed for 12-24AWG wires•	

Programming Environment
Operating Systems: Windows 2000/XP/Vista/7, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP,
and Cocoa.

Examples: Many example applications for all the operating systems and development environments above are

available for download at www.phidgets.com >> Programming.

Connection
The board connects directly to a computer’s USB port.

61061_1_Product_Manual - July 18, 2012 10:19 AM

Connect the RC Servo Motors to the 1.
PhidgetAdvancedServo.

Plug in a power supply using the barrel connector. 2.

You can also connect a power supply to the Terminal 3.
Block for high-current applications. Be sure to observe
correct polarity.

Connect the PhidgetAdvancedServo to your computer 4.
using the USB cable.

1

3

2

4

Getting Started

Checking the Contents

In order to test your new Phidget you will also
need:

Some RC Servo Motors•	

A 6 - 15V DC Power Supply •	 with center positive polarity*

* When using a power supply with a barrel connector, make sure
that your power supply has center positive polarity.

You should have received:

A PhidgetAdvancedServo 8-Motor•	

A Mini-USB Cable•	

Connecting all the pieces

Testing Using Windows 2000/XP/Vista/7
Downloading the Phidgets drivers
Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the
following:

Go to www.phidgets.com >> Drivers

Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your
new Phidget works properly.

The source code for the AdvancedServo-full sample program can be found under C# by clicking on Phidget.com >
Programming.

71061_1_Product_Manual - July 18, 2012 10:19 AM

Double Click on the icon to activate the
Phidget Control Panel and make sure that the
Phidget Advanced Servo Controller 8-Motor
is properly attached to your PC.

Double click on1. Phidget Advanced Servo Controller 8-Motor in
the Phidget Control Panel to bring up AdvancedServo-full and check
that the box labelled Attached contains the word True.

Select a connected servo. In this example, a servo is connected at 2.
position 0.

Select your servo type. If your servo is not in the list, select “default”.3.

Use the Velocity slider to set the velocity limit. The servo will try to 4.
accelerate to this point during motion.

Use the Acceleration slider to set the acceleration.5.

Use the Min/Max Position slider to set the position range. It can 6.
prevent the servo from trying to go beyond its actual range of motion.

Check the Engaged box to power the servo. If the servo is not already 7.
the target position, it should begin to move.

Move the Position slider to set a target position. The servo will turn 8.
until its actual position equals the target position. If Speed Ramping
is enabled, the servo will move using the user set acceleration and
velocity.

When the servo has reached the target position, a tick mark will 9.
appear in the Stopped box.

These boxes report the controller’s internally calculated position and 10.
velocity of the servo, as well as current consumed in amps.

1

2

3

4

5

6

7

8

9

10

Testing Using Mac OS X
Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane•	

Make sure that the •	 Phidget Advanced Servo Controller 8-Motor is properly attached.

Double Click on •	 Phidget Advanced Servo Controller 8-Motor in the Phidget Preference Pane to bring up the
AdvancedServo-full example. This example will function in a similar way as the Windows version.

81061_1_Product_Manual - July 18, 2012 10:19 AM

If you are using Linux
There are no sample programs written for Linux.

Go to www.phidgets.com >> Drivers

Download Linux Source

Have	a	look	at	the	readme	file	•	

Build Phidget21 •	

There is no Control Panel written for Linux, but there are C/C++ and Java code samples available for all Phidgets
which	will	compile	and	run	on	Linux	without	modification.

Notes:

Many Linux systems are now built with unsupported third party drivers. It may be necessary to uninstall these
drivers for our libraries to work properly.

Phidget21 for Linux is a user-space library. Applications typically have to be run as root, or udev/hotplug must be
configured	to	give	permissions	when	the	Phidget	is	plugged	in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Drivers

Download x86, ARMV4I or MIPSII, depending on the platform you are using. Mini-itx and ICOP systems will be x86,
and most mobile devices, including XScale based systems will run the ARMV4I.

The	CE	libraries	are	distributed	in	.CAB	format.		Windows	Mobile/CE	is	able	to	directly	install	.CAB	files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A desktop version of Visual
Studio	can	usually	be	configured	to	target	your	Windows	Mobile	Platform,	whether	you	are	compiling	to	machine	
code or the .NET Compact Framework.

91061_1_Product_Manual - July 18, 2012 10:19 AM

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices
like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have
developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X,
and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not impose our own
programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at the core surrounded
by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE, OS X and Linux. With
the C API, C/C++, you can write cross-platform code. For systems with minimal resources (small computers), the C
API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your particular platform may not
support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but we also have .NET
libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6, VBScript, Excel (VBA),
Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see below). ActionScript 3.0
is used in Flex and Flash 9.

Programming Hints
Every Phidget has a unique serial number - this allows you to sort out which device is which at runtime. Unlike •	
USB devices which model themselves as a COM port, you don’t have to worry about where in the USB bus you
plug your Phidget in. If you have more than one Phidget, even of the same type, their serial numbers enable
you to sort them out at runtime.

Each	Phidget	you	have	plugged	in	is	controlled	from	your	application	using	an	object/handle	specific	to	that	•	
phidget. This link between the Phidget and the software object is created when you call the .OPEN group of
commands. This association will stay, even if the Phidget is disconnected/reattached, until .CLOSE is called.

For full performance, the Phidget APIs are designed to be used in an event driven architecture. Applications that •	
require receiving all the data streaming from the device will have to use event handlers, instead of polling.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a network proxy on a computer. The
PhidgetWebService will allow other computers on the network to communicate with the Phidgets connected to that
computer. ALL of our APIs have the capability to communicate with Phidgets on another computer that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that you wrote and that are
connected to the PhidgetWebService, through the PhidgetDictionary object.

101061_1_Product_Manual - July 18, 2012 10:19 AM

Documentation
Programming Manual
The Phidget Programming Manual documents the Phidgets software programming model in a language and device
unspecific	way,	providing	a	general	overview	of	the	Phidgets	API	as	a	whole.		You	can	find	the	manual	at	www.
phidgets.com >> Programming.

Getting Started Guides
We have written Getting Started Guides for most of the languages that we support. If the manual exists for the
language	you	want	to	use,	this	is	the	first	manual	you	want	to		read.	The	Guides	can	be	found	at	www.phidgets.com
>> Programming, and are listed under the appropriate language.

API Guides
We maintain API references for COM (Windows), C (Windows/Mac OSX/Linux), Action Script, .Net and Java. These
references document the API calls that are common to all Phidgets. These API References can be found under www.
phidgets.com >> Programming	and	are	listed	under	the	appropriate	language.	To	look	at	the	API	calls	for	a	specific	
Phidget, check its Product Manual.

Code Samples
We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for
every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing
all the functionality of the device to be explored. Most developers start by modifying existing examples until they
have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the
language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the
devices for which we wrote code samples in that language.

Structures
enum Phidget_ServoType {

 PHIDGET_SERVO_DEFAULT = 1,

 PHIDGET_SERVO_RAW_us_MODE,

 PHIDGET_SERVO_HITEC_HS322HD,

 PHIDGET_SERVO_HITEC_HS5245MG,

 PHIDGET_SERVO_HITEC_805BB,

 PHIDGET_SERVO_HITEC_HS422,

 PHIDGET_SERVO_TOWERPRO_MG90,

 PHIDGET_SERVO_HITEC_HS1425CR,

 PHIDGET_SERVO_HITEC_HS785HB,

 PHIDGET_SERVO_HITEC_HS485HB,

 PHIDGET_SERVO_HITEC_HS645MG,

 PHIDGET_SERVO_HITEC_HS815BB,

API for the PhidgetAdvancedServo 8-Motor

We	document	API	Calls	specific	to	this	product	in	this	section.	Functions	common	to	all	Phidgets	and	functions	not	
applicable to this device are not covered here. This section is deliberately generic. For calling conventions under a
specific	language,	refer	to	the	associated	API	manual.	For	exact	values,	refer	to	the	device	specifications.

111061_1_Product_Manual - July 18, 2012 10:19 AM

 PHIDGET_SERVO_USER_DEFINED

}

Used	with	the	ServoType	[get,set]	functions.	These	are	servos	that	have	been	quantified	by	Phidget	Inc.	for	your	
convenience. The Default setting is included for historical reasons, so that the API will be backwards compatible by
default. RAW_us_MODE is used for quantifying new servos, or simply when a microsecond based interface makes
more sense then a degree based abstraction. USER_DEFINED should never be set directly with ServoType - this is
returned	when	a	custom	servo	type	has	been	defined	with	setServoParameters.

Functions
int Count() [get]

Returns the number of servos this PhidgetAdvancedServo can control. In the case of the 1061, this will always
return 8. This call does not return the number of servos actually connected.

double Acceleration(int ServoIndex) [get,set]

Acceleration is the maximum change in velocity the PhidgetAdvancedServo uses when speeding up / slowing down a
servo.

The range of valid Acceleration is bounded by AccelerationMax/AccelerationMin.•	

There is a practical limit on how fast your servo can accelerate, based on load and the physical design of the •	
motor.

This property should always be set by the user as part of initialization. The value does not initialize to the value •	
last set on the device.

double AccelerationMax(int ServoIndex) [get] : Constant

AccelerationMax is the upper limit to which Acceleration can be set. For the 1061, this will always return 320000.

double AccelerationMin(int ServoIndex) [get] : Constant

AccelerationMin is the lower limit to which Acceleration can be set. For the 1061, this will always return 19.53125.

double Velocity(int ServoIndex) [get]

Velocity returns the actual velocity that a particular servo is being driven at. A negative value means it is moving
towards a lower position. This call does not return the actual physical velocity of the connected motor.

double VelocityLimit(int ServoIndex) [get, set]

Gets or sets the maximum absolute velocity that the PhidgetAdvancedServo controller will drive the servo. If it’s
changed mid-movement, the controller will accelerate accordingly. If the target position of the controller is near
enough, then the VelocityLimit may never be reached.

This property should always be set by the user as part of initialization. •	

There is a practical limit on how fast your servo can rotate, based on the physical design of the motor. •	

The range of VelocityLimit is bounded by VelocityMax/VelocityMin•	

Note that when VelocityLimit is set to 0, the servo will not move.•	

double VelocityMax(int ServoIndex) [get] : Constant

VelocityMax is the absolute upper limit to which Velocity can be set. For the1061, this will always return 6400.

double VelocityMin(int ServoIndex) [get] : Constant

VelocityMin is the absolute lower limit to which Velocity can be set. For the 1061, this will always return 0.

double Position(int ServoIndex) [get,set]

Position is used for both the target and actual position for a particular servo. If the servo is currently engaged and a
new value is set, then the controller will continuously try to move to this position. Otherwise, this call will return the
current position of the servo. This call does not return the actual physical position of the servo.

The range of Position is bounded by PositionMin/PositionMax•	

121061_1_Product_Manual - July 18, 2012 10:19 AM

If the servo is not engaged, then the position cannot be read.•	

The position can still be set while the servo is not engaged. Once engaged, the servo will snap to position if it is •	
not there already.

This property should be set by the user as part of initialization. If not, it will report the last value set on the •	
device (unless the 1061 has been power-cycled).

Get will return the last value as reported by the device. This means sets to this value will take a small amount of •	
time to propagate.

double PositionMax(int ServoIndex) [get,set]

PositionMax is the upper limit to which Position can be set, and is initialized to 233. It can be used to prevent the
controller from going beyond a servo’s range of motion. A PhidgetException will be thrown if this is set above 233
or below PositionMin.

double PositionMin(int ServoIndex) [get,set]

PositionMin is the lower limit to which Position can be set, and is initialized to -22.9921875. It can be used to
prevent the controller from going beyond a servo’s range of motion. A PhidgetException will be thrown if this is set
below -22.9921875 or above PositionMax.

double Current(int ServoIndex) [get]

Current returns the power consumption in amps for a particular servo. The value returned for a disconnected or idle
servo will be slightly above zero due to noise.

bool SpeedRamping(int ServoIndex) [get,set]

SpeedRamping enables or disables whether the PhidgetAdvancedServo tries to smoothly control the motion of a
particular servo. If enabled, then the 1061 will progressively send commands based on velocity, acceleration and
position.

This property should be set by the user as part of initialization. If not, it will report the last value set on the •	
device (unless the 1061 has been power-cycled).

Get will return the last value as reported by the device. This means sets to this value will take a small amount of •	
time to propagate.

bool Engaged(int ServoIndex) [get,set]

Enables a particular servo to be positioned. If this property is false, no power is applied to the motors. Note that
when	it	is	first	enabled,	the	servo	will	snap	to	position,	if	it	is	not	physically	positioned	at	the	same	point.

Engaged is useful for relaxing a servo once it’s reached a given position. If you are concerned about keeping
accurate track of position, Engaged should not be disabled until Stopped = True.

This property should be set by the user as part of initialization. If not, it will report the last value set on the •	
device (unless the 1061 has been power-cycled).

Get will return the last value as reported by the device. This means sets to this value will take a small amount of •	
time to propagate.

bool Stopped(int ServoIndex) [get]

Stopped returns false if the servo is currently in motion. It guarantees that the servo is not moving (unless you are
moving it by hand), and that there are no commands in the pipeline to the servo. Note that virtually any API calls
will cause Stopped to be temporarily false, even changing Acceleration or VelocityLimit on a stopped servo.

Phidget_ServoType ServoType(int ServoIndex) [get,set]

Gets	/	Sets	the	servo	type	for	an	index.	There	is	a	list	of	some	common	servos	that	have	been	predefined	by	
Phidgets Inc. This sets the PCM range (range of motion), the PCM to degrees ratios used internally and the
maximum	velocity.	This	allows	the	degree	based	functions	to	be	accurate	for	a	specific	type	of	servo.	

Note that servos are generally not very precise, so two servos of the same type may not behave exactly the same.
Specific	servo	motors,	as	well	as	servos	not	in	the	list,	can	be	independently	quantified	by	the	user	and	set	up	with	
the setServoParameters funtion. This is detailed in the technical section.

131061_1_Product_Manual - July 18, 2012 10:19 AM

void setServoParameters(int ServoIndex, double MinUs, double MaxUs, double Degrees, double
VelocityMax)

Sets the parameters for a custom servo motor. MinUs is the minimum PCM in microseconds, MaxUs is the maximum
PCM in microseconds, Degrees is the degrees of rotation represented by the given PCM range and VelocityMax is the
maximum velocity that the servo can maintain, in degrees/second.

Quantifying a custom servo motor is detailed in the technical section.

Events
VelocityChange(int ServoIndex, double Velocity) [event]

An event issued when the velocity changes on a motor.

PositionChange(int ServoIndex, double Position) [event]

An event issued when the position changes on a motor.

CurrentChange(int ServoIndex, double Current) [event]

An event issued when the current consumed changes on a servo.

141061_1_Product_Manual - July 18, 2012 10:19 AM

Technical Section

How RC Servo Motors Work
RC Servos are used for positioning applications. They were originally
designed to control Remote Control airplanes and their low cost and high
torque makes them very useful as an actuator in prototyping applications.

An RC Servo can be instructed to move to a desired position by the
controller. Internally, it monitors the current position, and drives the motor
as fast as it can until it reaches the desired position.

This is a very cheap and simple way to control a motor. It has some
limitations - there is no way for the controller to know the current position
and speed of the motor. Applications that want smooth movement suffer
from the aggressive acceleration.

The PhidgetAdvancedServo
The PhidgetAdvancedServo is able to address some of these limitations.
Instead of sending the desired position immediately, the PhidgetAdvancedServo sends a series of progressive
positions according to acceleration and velocity parameters. In most applications, this dramatically smooths the
operation of the servo, and allows reasonably precise control of position, velocity and acceleration.

The	PhidgetAdvancedServo	has	a	built	in	switching	regulator	-	this	allows	it	to	efficiently	operate	from	a	wide	
voltage range (6-15VDC), and maintain proper power to the servo motors even if the power supply is varying. This
built in voltage regulator will not operate if your power supply is undersized.

Current Sense
The PhidgetAdvancedServo continuously measures the current consumed by each motor. The current roughly
corresponds to torque, making it possible to detect several scenarios.

By monitoring for no current, it’s possible to determine if the servo is not connected. It may not be possible to •	
distinguish between a servo at rest and a servo not attached.

Stalled motors can be detected, by monitoring for the maximum current possible with your motor. •	

The position limits of the servo can be programmatically determined by moving the servo until it stalls against •	
the internal or external stops.

Limitations
The PhidgetAdvancedServo does not know the current position of the motor on its own. If your motor is free to
move, and is not being driven beyond the physical limitations of the motor, the position returned to your application
will be very close to the position of the motor.

Degree Abstraction
The PhidgetAdvancedServo software component uses degrees to specify position, velocity, and acceleration.
The degree unit is translated into a pulse sent to the servo, but it’s up to the servo to translate this signal into a
particular position. This translation varies between servo models and manufacturers, and it is up to the user to set
up their particular servo so that the degree abstraction matches up with reality.

Phidgets	Inc.	has	quantified	a	number	of	common	servo	motors	(see	API	section),	which	can	be	used	with	the	
ServoType	function	for	to	set	these	parameters.		For	servos	not	in	this	list,	or	to	quantify	a	specific	servo,	the	
setServoParameters function can be used.

151061_1_Product_Manual - July 18, 2012 10:19 AM

Defining a Custom Servo
Servos	are	driven	with	a	PCM	(Pulse	Code	Modulation)	signal.	To	define	a	custom	servo,	you	need	to	find	the	
minimum and maximum PCM values that the servo supports.

The easiest way to do this is by bringing up the example and choosing RAW_us_MODE. This will display all positions
in microseconds instead of degrees. Move the servo to both of its extremes, stopping when it hits the stops, then
easing	up	a	little	(leave	a	few	degrees	of	leaway),	and	record	these	values.	You	could	also	choose	a	specific	range	in	
degrees	that	you	require	and	find	the	PCM	values	that	correspond.	Most	servos	operate	within	500us	-	2500us.

Record the degrees of rotation that this PCM range represents (using a protractor, for example).

Calculate the maximum velocity of your servo, in degrees/second. Most servos list their max speed in sec/60
degrees. convert this into degrees/second:

Velocity(deg/sec) = [(1 / (sec/60deg)) * 60]

The actual maximum velocity of your servo may be slightly higher or lower, as velocity depends on voltage.

Feed these four values into the serServoParameters function to complete the set up. This should be done before any
other function are called (in the attach event ideally).

Note that many servos can operate quite a bit outside of their rated ranges.

Degree Abstraction (historical model)
Historically, our degree abstraction has been based on the Futaba FP-S148 servo. This is the default abstraction
used for the PhidgetAdvancedServo, to maintain backwards compatibility when the new model was added.

PWM(ms)= [(degrees + 23) * 4/375]

Using the 1061 with a Servo Motor
The PhidgetAdvancedServo has been designed to be used with a variety of RC servo motors independent of the
motor-specific	position,	velocity	and	torque	limits.		Select	a	motor	that	suits	your	application	and	falls	within	the	
PhidgetAdvancedServo	device	specifications.

To	use	a	servo	motor,	first	select	(in	software)	which	attached	motor	the	PhidgetAdvancedServo	should	affect.		
Position, velocity and acceleration can be controlled for each individual motor. The software can also display a
readout	of	the	electrical	current	flowing	through	each	motor.		

Using the 1061 with Continuous Rotation Servos
A continuous rotation servo is a servo motor that has had its headgear-stop removed and potentiometer replaced
by two matched-value resistors. This has the effect of allowing the motor to rotate freely through a full range of
motion, but disables the motor’s ability to control it’s position.

When	using	the	PhidgetAdvancedServo	with	a	servo	motor	modified	in	this	way,	the	position	control	in	software	
becomes the motor’s speed control. Because the two resistors that replace the motor’s potentiometer are matched
in value, the motor will always think its shaft is at center position. If the target position in software is set to center,
the motor will believe it has achieved the target and will therefore not rotate. The further away from center the
target position is set to, the faster the motor will rotate (trying to reach that position, but never doing so). Changing
the value above or below center changes the direction of rotation.

161061_1_Product_Manual - July 18, 2012 10:19 AM

Using the 1061 with Electronic Speed Controllers (ESCs)
Electronic Speed Controllers are commonly used in RC hobby planes, cars, helicopters. It’s a controller that accepts
a PWM input signal, and controls a motor based on that signal. The ESC accepts power from an external source,
normally a battery pack.

ESCs can be controlled by the 1061, but the vast majority of ESCs on the market will destroy the 1061 if they
are	plugged	in	without	modification.		In	a	hobby	RC	system,	the	ESC	is	responsible	for	regulating	some	of	the	
battery current down to ~5V, and supplying it to the radio receiver. An ESC designed to the power the receiver will
advertise that it has a Battery Eliminator Circuit (BEC). When you plug an ESC into the 1061, the 1061 is acting as
the radio receiver. The 1061 was not designed to be powered by the devices it controls, and the voltage regulator
on the 1061 will self-destruct if a device tries to power it. If the center pin from the 3-wire servo connector between
the 1061 and the ESC is disconnected, the BEC on the ESC will not be able to power the 1061, and the voltage
regulator will not fail.

How the ESC inteprets the PWM signal and controls the motor is a function of the ESC. Higher end ESCs can be
configured	based	on	the	application.

The hobby RC market has transitioned to Brushless DC Motors (BLDC). As you select an ESC, watch that the battery
voltage input matches that of your system, and the type of motor controlled is what you have. Brushed DC and
Brushless DC Motors are completely different, and require different controllers.

Wiring layout is critical with ESCs. The currents to the motor and on the ground return can be enormous. If these
currents end up travelling back through USB cables, the system will not be stable. Some ESCs are optically isolated
(OPTO) - a big advantage that reduces interference.

Connecting your servo motor to the 1061
The pins on the 1061 are labelled B R W on the board:

B for Black is the Ground•	

R for Red is 5V•	

W for White (or Yellow depending on your servo motor) is the Data Line•	

Black - GroundRed - 5VWhite (or yellow)
- Data Line

171061_1_Product_Manual - July 18, 2012 10:19 AM

Product History
Date Board Revision Device Version Comment
July 2008 0 Product Release

May 2011 0 301 getLabelString	fixed	for	labels	>	7	characters

January 2012 1 301 Mini-USB connector, larger input terminal blocks
(12-24AWG)

February 2012 1 302 Prevent signal line startup pulses

Support
Call the support desk at 1.403.282.7335 9:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00

or

E-mail us at: support@phidgets.com

181061_1_Product_Manual - July 18, 2012 10:19 AM

	Product Features
	Programming Environment
	Connection

	Getting Started
	Checking the Contents
	Connecting all the pieces
	Testing Using Windows 2000/XP/Vista/7
	Downloading the Phidgets drivers
	Running Phidgets Sample Program

	Testing Using Mac OS X
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	Documentation
	Programming Manual
	Getting Started Guides
	API Guides

	Code Samples
	API for the PhidgetAdvancedServo 8-Motor
	Structures
	Functions
	Events

	Technical Section
	How RC Servo Motors Work
	The PhidgetAdvancedServo
	Current Sense
	Limitations
	Degree Abstraction
	Defining a Custom Servo
	Degree Abstraction (historical model)

	Using the 1061 with a Servo Motor
	Using the 1061 with Continuous Rotation Servos
	Using the 1061 with Electronic Speed Controllers (ESCs)
	Connecting your servo motor to the 1061

	Product History
	Support

