
The Embedded I/O Company

TPMC866-S
Linux Device D

8 Channel Serial

Version 2.1.x

User Manu

Issue 2.1.0

April 2012

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

PMC

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC866-SW-82 - Linux Device Driver Page 2 of 15

TPMC866-SW-82

Linux Device Driver

8 Channel Serial PMC

Supported Modules:
TPMC866

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2000-2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue February 10, 2000

1.1 Support for Kernel 2.4 August 21, 2001

1.2 Full Modem Support for TPMC866-10 (1st+2nd Channel)

Modification for Kernel 2.4.18

June 19, 2003

2.0.0 Support for Kernel 2.6, DEVFS and UDEV

Build-In-Self-Test function (TPMC866_IOCQ_BIST)

selectable feature: full modem support

April 28, 2006

2.0.1 File list modified, general revision, New Address TEWS LLC September 19, 2008

2.0.2 New top level Makefile, diagnostic info for kernel 2.6 added
and archive file list corrected, address TEWS LLC removed

August 9, 2010

2.1.0 New file structure, support of Kernel 3.x.x April 12, 2012

TPMC866-SW-82 - Linux Device Driver Page 3 of 15

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

2.1 Build and install the Device Driver..6

2.2 Uninstall the Device Driver ..6

2.3 Install Device Driver into the running Kernel...6

2.4 Remove Device Driver from the running Kernel..7

2.5 Change Major Device Number ...7

2.6 FIFO Configuration ...8

2.7 Selectable Features ..9

2.8 Configuration Hints...9

3 DEVICE DRIVER PROGRAMMING ... 10

3.1 ioctl ...10

3.1.1 TPMC866_IOCQ_BIST..12

4 DIAGNOSTIC.. 15

TPMC866-SW-82 - Linux Device Driver Page 4 of 15

1 Introduction
The TPMC866 Linux device driver is a full-duplex serial driver which allows the operation of a
TPMC866 serial PMC on Linux operating systems.

The TPMC866 device driver is based on the standard Linux serial device driver and supports all
standard terminal functions (TERMIOS).

The TPMC866 device driver includes the following features:

 Extended baud rates up to 460800 Baud
 Each channel uses the transmit and receive FIFO (FIFO size depends on the module)
 Programmable trigger level for transmit and receive FIFO
 Hardware (RTS/CTS) and software flow control (XON/XOFF) direct controlled by the serial

controller. The advantage of this feature is that the transmission of characters will immediately
stop as soon as a complete character is transmitted and not when the transmit FIFO is empty
for handshake under software control. This will greatly improve flow control reliability.

 Direct support of different physical interfaces
 Designed as Linux kernel module with dynamic loading
 Supports shared IRQ’s
 Built on new style PCI driver layout
 Creates TTY devices (ttySTPMC866_x) with dynamically allocated or fixed major device

numbers.
 DEVFS and UDEV support for automatic device node creation
 IOCTL function for a Built-In-Self-Test

Selectable features (see chapter Installation)

 Full-Modem support for 1
st

and 2
nd

channel
 Creates a dialout device cuaTPMC866 (Kernel 2.4.x) with dynamically allocated or fixed major

device numbers.

The TPMC866-SW-82 device driver supports the modules listed below:

TPMC866-10/-11 8 Channel Serial Interface (ST16C654) (PMC)

TPMC866-12 8 Channel Serial Interface (XR16C864) (PMC)

To get more information about the features and use of TPMC866 device it is recommended to read
the manuals listed below.

TPMC866 User manual (TPMC866-10/-11)

TPMC866 Engineering Manual (TPMC866-10/-11)

ST16C654 UART Hardware Manual (TPMC866-10/-11)

TPMC866-12 User manual (TPMC866-12)

TPMC866-12 Engineering Manual (TPMC866-12)

XR16C864 UART Hardware Manual (TPMC866-12)

TPMC866-SW-82 - Linux Device Driver Page 5 of 15

2 Installation
The directory TPMC866-SW-82 on the distribution media contains the following files:

TPMC866-SW-82-2.1.0.pdf This manual in PDF format
TPMC866-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TPMC866-SW-82-SRC.tar.gz contains the following files and
directories:

example/Makefile Example application makefile
example/tpmc866example.c Send and receive example application
example/tpmc866setspeed.c Speed configuration example application
example/tpmc866bist.c Example for using Built-In-Self-Test
hal/ Hardware abstraction layer driver needed for all kernel versions
hal/Makefile HAL driver makefile
hal/tpmc866hal.c HAL driver source file
hal/tpmc866haldef.h HAL driver private header file
serial/ UART driver directory
serial/2.4.x/Makefile Serial driver makefile (kernel 2.4.x)
serial/2.4.x/tpmc866serial.c Serial driver source file (kernel 2.4.x)
serial/2.4.x/tpmc866serialdef.h Serial driver private header file (kernel 2.4.x)
serial/Makefile Serial driver makefile (Kernel 2.6.x+)
serial/tpmc866serial.c Serial driver source file (Kernel 2.6.x+)
serial/tpmc866serialdef.h Serial driver private header file (Kernel 2.6.x+)
serial/makenode Shell script to create devices nodes without DEVFS
serial/makenodeFM24 Alternative shell script to create devices nodes without DEVFS
include/config.h Driver independent library header file
include/tpmodule.h Driver and kernel independent library header file
include/tpmodule.c Driver and kernel independent library source file
include/tpxxxhwdep.h Hardware abstraction library header file
include/tpxxxhwdep.c Hardware abstraction library source file
tpmc866def.h Driver private header file
tpmc866.h User application header file
Makefile Top-level Makefile

In order to perform an installation, extract all files of the archive TPMC866-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC866-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

 Login as root and change to the target directory

 Copy tpmc866.h to /usr/include

TPMC866-SW-82 - Linux Device Driver Page 6 of 15

2.1 Build and install the Device Driver

 Login as root

 Change to the tpmc866 target directory

 To create and install the HAL and SERIAL driver in the module directory
/lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

2.2 Uninstall the Device Driver

 Login as root

 Change to the tpmc866 target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

2.3 Install Device Driver into the running Kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc866serialdrv

 After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode, which resides in
Serial/ directory, to do this. If your kernel has enabled a dynamic device file system (devfs,
udev, ...) then skip running the makenode script. Instead of creating device nodes from the
script the driver itself takes creating and destroying of device nodes in its responsibility.

sh makenode

If the selectable feature TPMC866_ENA_FULLMODEM has been enabled for a system running
2.4.x kernel, makenodeFM24 should be used for device node creation instead of makenode.

On success the device driver will create a minor device for each compatible channel found. The first
channel of the first PMC module can be accessed with device node /dev/ttySTPMC866_0, the second
channel with device node /dev/ttySTPMC866_1 and so on.

The assignment of device nodes to physical PMC modules depends on the search order of the PCI
bus driver.

TPMC866-SW-82 - Linux Device Driver Page 7 of 15

2.4 Remove Device Driver from the running Kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc866serialdrv

If your kernel has enabled a dynamic device file system (devfs, udev, ...), all /dev/ttySTPMC866_*
nodes will be automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc866serialdrv: Device or resource busy” and the driver will still remain in the
system until you close all opened files and execute modprobe –r again.

2.5 Change Major Device Number

This paragraph is only for Linux kernels without a dynamic device file system installed.

The released TPMC866 driver uses dynamic allocation of major device numbers. If this isn’t suitable
for the application it’s possible to define a major number separately for the TTY and CUA driver.

To change the major number edit the file Serial/<version>/tpmc866serial.c, change the following
symbols to appropriate values and enter make install to create a new driver.

TPMC866_TTY_MAJOR Defines the value for the terminal device. Valid numbers are in range
between 0 and 255. A value of 0 means dynamic number allocation.

TPMC866_CUA_MAJOR Defines the value for the dialout device. Valid numbers are in range
between 0 and 255. A value of 0 means dynamic number allocation.

Example:

#define TPMC866_TTY_MAJOR 122

#define TPMC866_CUA_MAJOR 123

The definition of the major number for the CUA driver is only used if the selectable feature for
full modem support TPMC866_ENA_FULLMODEM is enabled

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that it is necessary to create new device nodes if the major number for the
TPMC866 driver has changed and the makenode script isn’t used.

TPMC866-SW-82 - Linux Device Driver Page 8 of 15

2.6 FIFO Configuration

After installation of the TPMC866 Device Driver the trigger level for transmit and receive FIFO are set
to their default values.

Default values are:

Receive FIFO Transmit FIFO Module Type

56 16 TPMC866-10/-11

96 32 TPMC866-12

The configuration of the FIFO trigger level is used for all TPMC866 devices in common.

To change the FIFO trigger levels edit the file hal/tpmc866haldef.h, change the following symbols to
appropriate values and enter make install to create a new driver.

TPMC866_10_RX_TRG_DEF Define the trigger level for the receiver FIFO of a TPMC866 with
ST16C654 controller (TPMC866-10/-11):

Valid trigger levels are:
UART_FCR_R_TRIGGER_60
UART_FCR_R_TRIGGER_56 (set by default)
UART_FCR_R_TRIGGER_16
UART_FCR_R_TRIGGER_8

TPMC866_10_TX_TRG_DEF Define the trigger level for the transmitter FIFO of a TPMC866 with
ST16C654 controller (TPMC866-10/-11):

Valid trigger levels are:
UART_FCR_T_TRIGGER_56
UART_FCR_T_TRIGGER_32
UART_FCR_T_TRIGGER_16 (set by default)
UART_FCR_T_TRIGGER_8

TPMC866_12_RX_TRG_DEF Define the trigger level for the receiver FIFO of a TPMC866 with
XR16C864 controller (TPMC866-12). Valid values are 1 to 128, the
default value is 96.

TPMC866_12_TX_TRG_DEF Define the trigger level for the transmitter FIFO of a TPMC866 with
XR16C864 controller (TPMC866-12). Valid values are 1 to 128, the
default value is 16.

Please refer to the User Manual of the appropriate controller to get more information how to
customize suitable FIFO trigger level.

TPMC866-SW-82 - Linux Device Driver Page 9 of 15

2.7 Selectable Features

Full modem support can be enabled by defining the symbol TPMC866_ENA_FULLMODEM in
“tpmc866def.h”.

Enabling this feature may lead to extra interrupts on serial channels that do not support full
modem lines. Extra interrupts will lead to loss of system performance. Therefore we
recommend not using full modem support until it is needed.

2.8 Configuration Hints

After loading the devices the device configuration can be changed. Be sure if it makes sense to have
echo enabled. It must be disabled for RS485 and it shall never be enabled on both sides of a
connection. By default the echo is enabled after loading the device. Configuration can be changed
with the stty function.

TPMC866-SW-82 - Linux Device Driver Page 10 of 15

3 Device Driver Programming
The TPMC866 driver is loosely based on the standard Linux terminal driver. Due to this way of
implementation the driver interface and functionality is compatible to the standard Linux terminal
driver.

Please refer to the TERMIOS man page and driver programming related man pages for more
information about serial driver programming.

3.1 ioctl

NAME

ioctl() device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation. The argument request specifies the control
code for the operation. The optional argument argp depends on the selected request and is described
for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc866.h:

Value Meaning

TPMC866_IOCQ_BIST Start Built-In-Self-Test

See below for more detailed information on each control code.

To use these TPMC866 specific control codes the header file tpmc866.h must be included in
the application.

RETURNS

On success, zero is returned. In case of an error, a value of –1 is returned. The global variable errno
contains the detailed error code.

TPMC866-SW-82 - Linux Device Driver Page 11 of 15

ERRORS

Error Code Description

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TPMC866 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC866-SW-82 - Linux Device Driver Page 12 of 15

3.1.1 TPMC866_IOCQ_BIST

NAME

TPMC866_IOCQ_BIST – Start Built-In-Self-Test

DESCRIPTION

The TPMC866 driver supports a special IOCTL function for testing module hardware and for system
diagnostic. The optional argument can be omitted for this ioctl function.

The functionality is called Built-In-Self-Test or BIST. With BIST you can test each channel of all your
modules separately. There are three different test classes. First is a line test, second an interrupt test
and the last a data integrity test. All tests run with local channel loopback enabled, so you don’t need
an external cable connection.

Communication parameters like baud rate, data length, etc. are configured during the BIST and
restored after the BIST is completed.

For a detailed description of the loopback wiring please refer to the controller manual and see the
description of Internal Loopback.

The line test contains a test of all modem lines pairs (RTS and CTS, DTR and DSR, OP1 and RI, OP2
and CD). Only the static states for both electrical levels are tested on each sender – receiver line pair.

For testing interrupts the BIST transmits a test buffer with known data and size. All data should be
received on the same channel during internal loopback. If not, there is an interrupt error. The buffer
size is 1024 byte.

The last test verifies received data to assert data integrity.

This function tests all internal I/O lines of the controller, even if they are not used for
interfacing.

TPMC866-SW-82 - Linux Device Driver Page 13 of 15

EXAMPLE

#include <tpmc866.h>

/* Start Built-In Selftest, */

result = ioctl(tty1, TPMC866_IOCQ_BIST, NULL);

if (result) printf("Error during Built-In Selftest <%d, 0x%08X>!\n",

result, result);

if (result < 0)

{

printf("ERRNO %d - %s\n", errno, strerror(errno));

} else if (result > 0) {

if (result & TPMC866ERTSCTS)

printf("RTS/CTS line broken!\n");

if (result & TPMC866_EDTRDSR)

printf("DTR/DSR line broken!\n");

if (result & TPMC866_ERI)

printf("OP1/RI line broken!\n");

if (result & TPMC866_ECD)

printf("OP2/DCD line broken!\n");

if (result & TPMC866_EDATA)

printf("Data integrity test failed!\n");

} else

printf("INFO: Port %s successfully tested.\n", DevName);

RETURNS

If return value is >0 one of three tests failed. Use the following flags to get a detailed error description.

Value Description

TPMC866_ERTSCTS If set RTS/CTS line broken.

TPMC866_EDTRDSR If set DTR/DSR line broken.

TPMC866_ERI If set OP1/RI line broken.

TPMC866_ECD If set OP2/CD line broken.

TPMC866_EDATA Data integrity test failed. No correct transmission possible.

TPMC866-SW-82 - Linux Device Driver Page 14 of 15

ERRORS

Error Code Description

ETIME A timeout occurred during wait, interrupts do not work
correctly.

EAGAIN Your task should never been blocked. Change it to use the
Built-In-Self-Test.

ERESTARTSYS Interrupted by external signal.

TPMC866-SW-82 - Linux Device Driver Page 15 of 15

4 Diagnostic
If the TPMC866 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices, and so on.
The following screen dumps displays information of a correct running TPMC866 driver (see also the
proc man pages).

lspci –v

04:01.0 Multiport serial controller: PLX Technology, Inc. PCI <-> IOBus
Bridge (rev 01)

Subsystem: TEWS Technologies GmbH TPMC866 8 Channel Serial Card

Flags: medium devsel, IRQ 16

Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]

I/O ports at e880 [size=128]

I/O ports at e800 [size=128]

Kernel driver in use: TEWS TECHNOLOGIES - TPMC866HAL Driver

Kernel modules: tpmc866haldrv, hisax

lsmod | grep tpmc866

tpmc866serialdrv 620461 0

tpmc866haldrv 30356 1 tpmc866serialdrv

ls /dev | grep 866

ttySTPMC866_0

ttySTPMC866_1

ttySTPMC866_2

ttySTPMC866_3

ttySTPMC866_4

ttySTPMC866_5

ttySTPMC866_6

ttySTPMC866_7

cat /proc/tty/driver/tpmc866serial

serinfo:1.0 driver revision:

0: uart:ST16C654 port:0000E800 irq:16 tx:0 rx:0

1: uart:ST16C654 port:0000E808 irq:16 tx:0 rx:0

2: uart:ST16C654 port:0000E810 irq:16 tx:0 rx:0 DSR|CD|RI

3: uart:ST16C654 port:0000E818 irq:16 tx:0 rx:0 DSR|CD|RI

4: uart:ST16C654 port:0000E820 irq:16 tx:0 rx:0 DSR|CD|RI

5: uart:ST16C654 port:0000E828 irq:16 tx:0 rx:0 DSR|CD|RI

6: uart:ST16C654 port:0000E830 irq:16 tx:0 rx:0 DSR|CD|RI

7: uart:ST16C654 port:0000E838 irq:16 tx:0 rx:0 DSR|CD|RI

	1	Introduction
	2	Installation
	2.1	Build and install the Device Driver
	2.2	Uninstall the Device Driver
	2.3	Install Device Driver into the running Kernel
	2.4	Remove Device Driver from the running Kernel
	2.5	Change Major Device Number
	2.6	FIFO Configuration
	2.7	Selectable Features
	2.8	Configuration Hints

	3	Device Driver Programming
	3.1	ioctl
	3.1.1	TPMC866_IOCQ_BIST

	4	Diagnostic

