
1

S b PhSub-Phase

Low Level Design (cont)

1

Map of design phase
DESIGN

LOW LEVEL
HIGH LEVEL

DESIGN

Module Interfaces

Data
Persistant
Subsystem

LOW LEVEL
DESIGN

Classes
I t ti Di

Janice Regan, 2008 2

Modularization

User Interface User Manual

architecture

Interaction Diagrams
Class Interfaces

Implementation

2

Low Level Design
Objective of Low Level Design

Refine representation (models) of
software system to a level of detail that
will allow resulting representation to be
used as a blueprint for implementation
and unit test planning phases

Janice Regan, 2008 3

Interaction Diagrams
Model dynamic aspects of the software
system by specifying the interaction system by specifying the interaction
among objects to produce a particular
behaviour

For each use case

Show object interaction

Janice Regan, 2008 4

j

Show how software system realizes a use
case

Help identify object operations (methods)

3

Interaction Diagrams
Two types of interaction diagrams are defined in
UML

Collaboration diagram: emphasizes the structural
organization of objects that send and receive
messages

Sequence diagram: emphasizes the time ordering
of the messages passed between objects

Janice Regan, 2008 5

However, both diagrams are not computationally
complete; they are not algorithms!
-> They do not define the behaviour

Modeling at different phases

Requirements

DynamicStatic

1. System Context Diagram 2. Informal Scenarios
Requirements

analysis

High Level
Design

3. Class Diagram 4. Use cases
5. Use cases Diagrams

7. Architecture (from 1,4,5,6)

6. Scenarios

9. Refined use cases (from 4,7, 8)
8. Analyze data persistence

10. Sequence Diagrams (from 9)

Janice Regan, 2008 6

Low Level
Design 13. Refined Sequence Diagrams and

collaboration diagrams (from 12)

12. Refined use cases and scenarios
(from 9)

11. Refined Class Diagram
including attributes and
methods (from 3, 12, 13)

4

UML Notational Elements of
Collaboration Diagram

ObjObject
object : Class

Message

Link

Sequence of message

: Class

Janice Regan, 2008 7

[Condition] response := method(parameters)

initiating actor

g

Creating Collaboration Diagrams
Summary:

1 scenario (use case) per collaboration diagram1 scenario (use case) per collaboration diagram

Identify participating classes (objects)

Determine messages to be sent (+ parameters)
to carry out the behaviour by reading
scenario/use case

Look at 1 scenario per use case

Janice Regan, 2008 8

Look at 1 scenario per use case

What changes for other scenarios?

Introduce solution for object persistence, if
needed

5

Refined Scenario #1
Use Case Name: CheckInResource (#7)

Scenario: Student Patron Paul returns a book
on time.

Preconditions:

Librarian Eva has successfully gained access to
the LMS.

Janice Regan, 2008 9

t e S

LMS is ready to go (DB has been populated,
network is up, and LMS has been initialized).

LMS screen with Check menu is displayed.

Refined Scenario #1
Use Case Name: CheckInResource (#7)

S iScenario: Student Patron Paul returns a book
on time.

Preconditions:

Librarian Eva has successfully gained access to
the LMS.

Janice Regan, 2008 10

LMS is ready to go (DB has been populated,
network is up, and LMS has been initialized).

LMS screen with Check menu is displayed.

6

Refined Scenario #1
Main flow of events:

1. Student Patron Paul comes up to the librarian
counter to return the Quantum Physics book he
borrowed last week.

2. Eva the Librarian chooses CheckInResource
option from the LMS screen by selecting the In
command option under the Check menu.

Janice Regan, 2008 11

command option under the Check menu.

3. A window representing a Check In Form is then
displayed.

Refined Scenario #1
Main flow of events (cont):

E t k th b k P l i h di t h d 4. Eva takes the book Paul is handing to her and
types in its Dewey call number in the
appropriate text field then presses the "Accept"
button to commit the entry.

5. The Dewey call number for the book was
entered successfully and it was a valid call

Janice Regan, 2008 12

y
number, information about the Quantum
Physics book and the borrowing patron is
retrieved from the Database and displayed on
the Check In screen.

7

Refined Scenario #1
Main flow of events (cont):

Since Student Patron Paul is returning the Quantum g Q
Physics book before its due date, there is no overdue
charge. Also, no one is currently requesting the Quantum
Physics book.

LMS completes the check-in process by

changing the status of the book to “reshelve“,

canceling its “due date” and “date of loan“,

Janice Regan, 2008 13

updating its “date of return“ to today,

Clearing the borrowing patron ID,

removing the Quantum Physics book from the Student
Patron Paul’s list of borrowed resources.

Refined Scenario #1
Main flow of events (cont):

LMS updates the records for the Quantum LMS updates the records for the Quantum
Physics book and the borrowing Student Patron
Paul in the Database.

LMS updates the screen showing the newly
checked-in book along with the updated dates.

Eva verifies by looking at the screen that the

Janice Regan, 2008 14

book has been checked in properly, then
presses the “Done” button.

8

Refined Scenarios #1
Postconditions:

St d t P t P l’ d i h i Student Patron Paul’s record is now showing
that he is no longer borrowing the Quantum
Physics book. The Quantum Physics book has
now a status of “reshelve”, today's date as a
“date of return”, “date of loan” has been
cleared and so has the “due date”.

Janice Regan, 2008 15

checkIn(Dewey call #)

Sequence Diagram - 1

Librarian
: LibrarySystem

QPBook := getResource(call #)

db : LibraryDB

QPBook : Book

Paul : Student

paul := getPatron(patronId)

QPBook := create(book, db)

paul := create
(student, db)name := getName()

patronId :=
getBorrowingPatronId()

Janice Regan, 2008 16

g ()
expiryDate := getExpiryDate()
title := getTitle()
author := getAuthor()
loanDate := getLoanDate()

dueDate := getDueDate()
status := getStatus()

9

Sequence Diagram – 2 A
Librarian

ok := checkIn(date)

: LibrarySystem db : LibraryDBQPBook : Book Paul : Student

ok := update(QPBook)

checkIn(call #)

ok := checkIn(date)

Remove QPBook from

Set status = “reshelve”
Set “loan date” = 0
Set “due date” = 0
Set “return date” = “today” (date)
Set “borrowing patron id” = 0

Janice Regan, 2008 17

update(paul)“list of borrowed resources”

update(ok)checkIn (ok)

Display(startpage)

display(checkInPage)
Press
done confirm

1. checkIn(Dewey call #)

Collaboration Diagram – A

: LibrarySystem

2. verify(checkInpage)
1.13 display(checkInpage)

2.1 display(startpage)

1.12 [flag = done] checkIn(call #)

Librarian
: LibrarySystem

Paul : Student

1.1. QPBook := getResource(call #)

db : LibraryDB

1.3. paul := getPatron(patronId)

1.3.1 paul := create(student, db)

1.4. name := getName()
1.5. expiryDate := getExpiryDate()

1.12.1 ok := update(paul)
1 11 1 ok :=

Janice Regan, 2008 18

1.8. loanDate := getLoanDate()
1.9. dueDate := getDueDate()

1.11. [flag = done] ok := checkIn(date)
1.10. status := getStatus()

QPBook : Book

1.1.1 QPBook := create (book, db)
1.2. patronId := getBorrowingPatronId()

1.6 title := getTitle()
1.7 author := getAuthor()

1.11.1 ok :=
update(QPBook)

10

Sequence Diagram – 2 B
Librarian

: LibrarySystem db : LibraryDBQPBook : Book Paul : Student

display(checkInPage)
if (fl)

Press

ok := checkIn(call #)

Set status = “reshelve”
Set “loan date” = 0
Set “due date” = 0
Set “return date” = “today” (date)
Set “borrowing patron id” = 0

Q f

[flag = done] ok := checkIn(date)
verify(flag)done or

cancel

Janice Regan, 2008 19

ok := update(QPBook)

ok := update(paul)Remove QPBook from
“list of borrowed resources”

Display(startpage)

1. checkIn(Dewey call #)

Collaboration Diagram – B

: LibrarySystem

1.11 display(checkInpage)
2. verify(checkInpage)

2.2 display(startpage)

Librarian
: LibrarySystem

Paul : Student

1.1. QPBook := getResource(call #)

db : LibraryDB

1.3. paul := getPatron(patronId)

Q ()

1.2.1 paul := create(student, db)

1.4. name := getName()
1.5. expiryDate := getExpiryDate()

2.1.1.1 ok := update(paul)
2 1 2 ok :=

Janice Regan, 2008 20
1.10. status := getStatus()

1.8. loanDate := getLoanDate()
1.9. dueDate := getDueDate()

2.1. [flag = done] ok := checkIn(date)

QPBook : Book

1.1.1 QPBook := create (book, db)

1.3 patronId := getBorrowingPatronId()
1.6 title := getTitle()

1.7 author := getAuthor()

2.1.2 ok :=
update(QPBook) 2.1.1 [flag = done] checkIn(call #)

11

Sequence Diagram – 2 C
Librarian

: LibrarySystem db : LibraryDBQPBook : Book Paul : Student
display(checkInPage)

Press
d verify(flag)

ok := checkIn(call #)

ok := checkIn(date)

Set status = “reshelve”
Set “loan date” = 0
Set “due date” = 0
Set “return date” = “today” (date)
Set “borrowing patron id” = 0

done or
cancel

verify(flag)

Janice Regan, 2008 21

ok := update(QPBook)

ok := update(paul)

Remove QPBook from
“list of borrowed resources”

Display(startpage)

1. checkIn(Dewey call #)

Collaboration Diagram – C

: LibrarySystem

1.11 display(checkInpage)
2. verify(checkInpage)

2.3 ok := update(paul)
2 4 ok := update(QPBook)

2.5 display(startpage)

2.2 [flag = done] checkIn(call #)

Librarian
: LibrarySystem

Paul : Student

1.1. QPBook := getResource(call #)

db : LibraryDB

1.2. paul := getPatron(patronId)

1.2.1 paul := create(student, db)

1.4. name := getName()
1.5. expiryDate := getExpiryDate()

2.4 ok := update(QPBook)

Janice Regan, 2008 22

1.8. loanDate := getLoanDate()
1.9. dueDate := getDueDate()

2.1. [flag = done] ok := checkIn(date)
1.10. status := getStatus()

QPBook : Book

1.1.1 QPBook := create (book, db)
1.3. patronId := getBorrowingPatronId()

1.6 title := getTitle()
1.7 author := getAuthor()

12

Patron and Resource class attributes
Patron

Name

Resource
TitleName

Address
Phone #
Patron ID

Patron Type
List of borrowed resources
List of requested resources

Outstanding fees
Resource borrowing limits

Title
Borrowing Patron’s ID

Resource Type
Dewey call number

Status
Due Date

Date of Loan
Date of Return

Daily overdue fee
Maximum overdue fee

Rewinding fee

Janice Regan, 2008 23

get ExpiryDate()
getName()

checkIn(call#)
create(student, db)

getBorrowingPatronId()
get Title()

getAuthor()
getLoanDate()
get DueDate()

getStatus()
checkIn(date)

create(book, db)

Discovering more methods
To be sure we have all the methods for a class
we need to consider all use cases that involve
that class and all the scenarios associate with
each of these use cases

Remember that although there is one class diagram for
the system, there is at least one collaboration diagram
or sequence diagram for each use case.

A collaboration diagram or sequence diagram can

Janice Regan, 2008 24

A collaboration diagram or sequence diagram can
contain information for more than one scenario
associated with a particular use case.

Usage of discovered methods must be consistent
between all use cases and scenarios

13

Creating interaction diagrams
Note that either a sequence diagram or a
collaboration diagram can be derived directly
from your use case and scenariosfrom your use case and scenarios

It is also possible to translate a collaboration
diagram into a sequence diagram or a sequence
diagram into a collaboration diagram

The development of interaction diagrams
represent an evolution of your model from
abstract (class diagram) to more concrete

Janice Regan, 2008 25

abstract (class diagram) to more concrete

Need to summarize the addition information
back to the class diagram.

Add more detail to the methods and attributes on the
class diagram

