6.170 Assignment 4 Documentation

Dina Betser

March 29, 2012

1 Models

1.1 Object Models

The object model for the problem domain is included in the figure below. The problem domain
object model demonstrates the system that must be built.

The top-level object is a Game, which includes the concepts of Players, a Board, a play Mode,
a GameStateHistory for undo/redoing moves, and GameStats to store things like the number of
boxes allocated to each player.



LoggedInUser AnonymousUser

id uname \ password

Userld Username Password

User
!
note
TextContent Note
\l Aﬂim . ¥, Z “golor
Content Position Color

1.2 State Machines

The following state machine describes how the state of the application changes as game play
progresses.



Save,
Cancel

User's Stickies

Editing Stickies

New,
Edit

—_—— e e e e e e e e e e == =y

|
|
|
|
|
|
|
LDQDUt ngin E
:
|
|
Home |

-

Delete

2 Design Notes

2.1 Key Challenges

2.2

Displaying/deleting notes

Need to be logged in to play?

Editing notes on the fly or using a popup dialog.
Storing the state in the frontend for a dirty sticky.
Save on login and/or save.

Status of server. Should it be stateless?

Issues Arising

How to implement undo and redo.
This required adding a way for a user to “commit a transaction”, which was done using the
“Submit” button. The Submit button ensured that the user was done with the current play



before attempting to commit a move to change the state of the model. Upon submit, the
state of the board was also recorded to the BoardStateHistory array. That array served as a
stack to navigate during undo/redo. A pointer into the stack was kept such that the pointer
always pointed to the last move committed, which could be decremented to get to previous
states upon undo, and which would be incremented upon redo. In that way, the entire state
of the board can be kept with every game. One downside of this approach is that within the
undo/redo history there is no branching, therefore, if a sequence of moves is played that is
then undone to the initial starting board, future moves can still access all that history, which
may not be ideal.

e A random player is selected to go first.
In Othello, black always goes first. In my implementation of the versus human mode, this is no
problem because both players are human so either player can be assigned to the black player.
However, in versus computer mode, this means that the computer has a slight advantage
since the second player to move always has the advantage in Reversi.

e Button display.
The four gameplay buttons are always displayed as active in the UI, even if they are not
enabled. It might have been nice to grey out the buttons when they are not applicable, such
as the “Submit” button if no box is selected, but instead the same effect is achieved through
the use of alerts to prevent players from submitting without selecting a box first.

e Computer player’s algorithm.
As the assignment specified, the goal of this project was not to build an Al, so I focused on
structuring the code well instead of making the pickPlayPosition function do anything but
select a random valid move.

e How to signify a valid move.
Currently, users are prevented from clicking a box that is invalid because an alert pops up
when they click an invalid box. However, this is not as usable as possible; the number of
keystrokes needed to remove the alert that pops up is larger than if a user knew in advance
which spaces were valid in the first place. It might be nice to include that by changing the
color of the box during hover based on whether or not the move under the cursor is valid.

e Shortcut enter key to submit a move.
It is possible to use the enter key to submit a move in addition to clicking the “Submit”
button. This is not displayed in the UI because it might clutter the screen. Power users
might appreciate this information, however, and it might be a good thing to include in future
iterations of the interface.

2.3 Critique

This project implemented separation of concerns by using the MVC design pattern. Each mod-
ule created had a clear specification and purpose, so the code itself was organized fairly well. All
view /controller code was stored in reversi. js, while all model code was stored in reversi_model. js.
All code relating to updating the user interface was called from the view or controller; the model
always called these view updates using callback function passed in to the model.



The GameStateData data structure was particularly succinct at storing all of the information re-
quired to store and restore the state of a game during undo/redo.

The implementation chose more sophisticated notions of undo/redo than required; for instance,
one way to view “undo”ing is that before a user submits a selected box, he can switch his selected
box. In addition to implementing that form of undo, I also implemented a chain-based undo where
previous states of the board could be restored from any given state.

The implementation also allowed a user to change play mode in the middle of the game, something
that many implementations for this project did not.

3 Specification

3.1 Overview

This application is a web application written using HTML/CSS/JavaScript that works as a browser-
based implementation of the Reversi Game. In addition to an implementation of the general game
logic, the project included an interactive game board that allowed up to two human players to play
the game. The application allows users to undo and redo moves such that previous states of the
board are restored, and alerts the users when the game has finished, displaying who won the game.
Two modes of play are supported and a game can be aborted/restarted at any point during game

play.
3.2 Key Features
The key features of this implementation of the 6.170 Othello implementation are:

e Minimalist, intuitive interface for scanning through photos in the gallery.

e User-friendly box selection that allows users to change their minds before committing.

Sophisticated undo/redo mechanism.

Visually appealing interface with visible buttons for managing the state of the application.

Restart that works from virtually any state in the application.

3.3 User Manual

The running application can be accessed at http://web.mit.edu/ dbetser/www/6.170/assignment3/reversi.html.

The desired type of play should be selected from the dropdown menu.



At any point, the “Restart” button can be clicked in order to return to the initial board state and
start afresh. This effectively aborts the current game and starts one from fresh.

With 1-player play, the black player begins. The desired box is selected by clicking, whereupon it
is highlighted in purple. Only valid moves can be selected in this way. The selected box can be
changed until the user is ready to submit the move, at which point the “Submit” button should be
clicked, or the “enter” key pressed.

Upon submitting the move, the turn switches to computer, which places a marker, switching play
back to the human player. With 2-player mode, the turn instead switches to the white player,
who is also human. At any point, moves can be undone and redone as long as there are moves to
undo/redo.

When the game ends, either because all boxes are occupied or no more valid moves are possible,
the outcome is displayed to the user beneath the board.

4 Implementation

4.1 Module Dependency Diagram

This code’s modules can be seen in the context of the Model-View-Controller framework, which
is roughly related to how the files were defined. The reversi.js file contains the View and
Controller, while reversi model. js contains the model, which includes the Game ADT as well as
the GameStateData ADT. Concerns are separated cleanly in that no code in the model touches
anything in the user interface. Whenever the model needs to communicate a change in state to the
View, a callback function is used such that a function in the view refreshes the View state. The
Controller consists of functions that handle events in the Ul, such as the hover and click handling
functions.

This code is written using the jQuery library for DOM handling and convenience functions. The
figure below shows the module dependency diagram.



reversi.html

]

4.2 Code Notes

The most major hack that was included in the project deals with updating the player whose turn
it is during undo/redo moves. One of the problems with my implementation was that for the
two different types of play (versus computer and versus human), the current player during undo
needed to be switched for versus human play and needed to stay the same for versus computer play.
I included a hack to manually switch the current player in the getCurrentBoardState function
based on the type of play. This allowed the current player to be correctly displayed even after a

series of undos and redos.

Another note is regarding the representation of markers in the Ul In order to present a box’s state,
I wanted to be able to include a round circle representing the marker that would be used in a real
Othello game. However, to do this, I needed to figure out how to change the CSS to include the
image of the circle. Using CSS sprites seemed to do the trick for that.

5 Testing

5.1 Test Plan

To test the application, the HTML was validated to ensure standards compliance. Lint was run to

reversi.css

jQueryLibrary reversi.js dbetser.util js
\«
Controller reversi_model.js

avoid poor programming constructs.

The testing for this project was mostly manual. The below was done in both the Firefox and

§

Vie

)/

Model




Chrome browsers.

I developed a number of test cases that ensured that the game functioned as specified.

5.2 Test Cases

To test the board itself, I did the following:

e Play the game until both players have won, in the versus computer and versus human modes.
Ensure that the outcome message is displayed appropriately in all cases (black wins, white
wins, tie).

e Ensure that refreshing resets all state during any other time of game play.

e Ensure that once a first box is selected, another box can be selected without affecting the
model.

e Test undo/redo with both modes to ensure that the board, statistics, and hovering marker
change accordingly.

e Test various combinations of undo/redo to ensure that no bug occurs when restoring state.

5.3 Rationale and Conclusions

This project fulfills the requirements of the assignment. The application runs as desired, and even
implements undo/redo in a sophisticated and extensible way. Because I used extra slack days, I
was able to debug to create a much cleaner and smoother product than I would have otherwise!

Many of the design decisions implemented made the interface easier and cleaner to use, which
improved the overall user experience.



