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Preface
TriCore is a unified, 32-bit microcontroller-DSP, single-core architecture optimized for
real-time embedded systems. 
This document has been written for system developers and programmers, and hardware
and software engineers.
• Volume 1 (this volume) provides a detailed description of the Core Architecture and

system interaction.
• Volume 2 gives a complete description of the TriCore Instruction Set including

optional extensions for the Memory Management Unit (MMU) and Floating Point Unit
(FPU).

It is important to note that this document describes the TriCore architecture, not an
implementation. An implementation may have features and resources which are not part
of the Core Architecture. The product documentation for that implementation will
describe all implementation specific features.
When working with a specific TriCore based product always refer to the appropriate
supporting documentation.

TriCore versions
There have been several versions of the TriCore Architecture implemented in production
devices. This manual documents the following architectures: TriCore 1.3, TriCore 1.3.1.
• Unless defined otherwise in the text, or in the margin, all descriptions are common to

both the TriCore 1.3 and the TriCore 1.3.1 architecture.
• Information specific to the TriCore 1.3 or TriCore 1.3.1 architecture only is always

labelled.
The chapter TriCore 1.3.1 Architectural Extensions, page 13-1 summarises the new
features of the TriCore 1.3.1 architecture.

Additional Documentation
For information and links to documentation for Infineon products that use TriCore, visit:
http://www.infineon.com/32-bit-microcontrollers
User’s Manual P-1 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core
Text Conventions
This document uses the following text conventions:
• The default radix is decimal. 

– Hexadecimal constants are suffixed with a subscript letter ‘H’, as in: FFCH.
– Binary constants are suffixed with a subscript letter ‘B’, as in: 111B.

• Register reset values are not generally architecturally defined, but require setting on
startup in a given implementation of the architecture. Only those reset values that are
architecturally defined are shown in this document. Where no value is shown, the
reset value is not defined. Refer to the documentation for a specific TriCore
implementation.

• Bit field and bits in registers are in general referenced as ‘Register name.Bit field’, for
example PSW.IS. The Interrupt Stack Control bit of the PSW register.

• Units are abbreviated as follows:
– MHz = Megahertz.
– kBaud, kBit = 1000 characters/bits per second.
– MBaud, MBit = 1,000,000 characters per second.
– KByte = 1024 bytes.
– MByte = 1048576 bytes of memory.
– GByte = 1,024 megabytes. 

• Data format quantities referenced are as follows:
– Byte = 8-bit quantity.
– Half-word = 16-bit quantity.
– Word = 32-bit quantity.
– Double-word = 64-bit quantity.

• Pins using negative logic are indicated by an overbar: BRKOUT.
In tables where register bit fields are defined, the conventions shown in Table 1 are used
in this document.

Note: In register layout tables, a ‘Reserved Field’ is indicated with ‘-’ in the Field and
Type column. 

Table 1 Bit Type Abbreviations
Abbreviation Description
r Read-only. The bit or bit field can only be read.
w Write-only. The bit or bit field can only be written.
rw The bit or bit field can be read and written.
h The bit or bit field can be modified by hardware (such as a status bit). 

‘h’ can be combined with ‘rw’ or ‘r’ bits to form ‘rwh’ or ‘rh’ bits.
- Reserved Field. Read value is undefined, must be written with 0.
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Architecture Overview
1 Architecture Overview
This chapter gives an overview of the TriCore® architecture.

1.1 Introduction
TriCore is the first unified, single-core, 32-bit microcontroller-DSP architecture optimized
for real-time embedded systems. The TriCore Instruction Set Architecture (ISA)
combines the real-time capability of a microcontroller, the computational power of a
DSP, and the high performance/price features of a RISC load/store architecture, in a
compact re-programmable core.

Figure 1 TriCore Architecture Overview

The ISA supports a uniform, 32-bit address space, with optional virtual addressing and
memory-mapped I/O. The architecture allows for a wide range of implementations,
ranging from scalar through to superscalar, and is capable of interacting with different
system architectures, including multiprocessing. This flexibility at the implementation
and system levels allows for different trade-offs between performance and cost at any
point in time.
The architecture supports both 16-bit and 32-bit instruction formats. All instructions have
a 32-bit format. The 16-bit instructions are a subset of the 32-bit instructions, chosen
because of their frequency of use. These instructions significantly reduce code space,
lowering memory requirements, system and power consumption.
Real-time responsiveness is largely determined by interrupt latency and context-switch
time. The high-performance architecture minimizes interrupt latency by avoiding long
multi-cycle instructions and by providing a flexible hardware-supported interrupt
scheme. The architecture also supports fast-context switching.
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Architecture Overview
1.1.1 Feature Summary
The key features of the TriCore Instruction Set Architecture (ISA) are:
• 32-bit architecture.
• 4 GBytes of address space.
• 16-bit and 32-bit instructions for reduced code size.
• Most instructions executed in one cycle.
• Branch instructions (using branch prediction).
• Low interrupt latency with fast automatic context switch using wide pathway to

on-chip memory.
• Dedicated interface to application-specific coprocessors to allow the addition of

customised instructions.
• Zero overhead loop capabilities.
• Dual single-clock-cycle 16×16-bit multiply-accumulate unit (with optional saturation).
• Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU).
• Extensive bit handling capabilities.
• Single Instruction Multiple Data (SIMD) packed data operations (2×16-bit or 4×8-bit

operands).
• Flexible interrupt prioritization scheme.
• Byte and bit addressing.
• Little-endian byte ordering for data memory and CPU registers.
• Memory protection.
• Coprocessor support.
• Debug support.

1.2 Programming Model
This section covers aspects of the architecture that are visible to software:
• Architectural Registers page 1-3.
• Data Types page 1-4.
• Memory Model page 1-4.
• Addressing Modes page 1-6.
The Programming Model is described in detail in the chapter Programming
Model, page 2-1.
User’s Manual 1-2 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

Architecture Overview
1.2.1 Architectural Registers
The architectural registers consist of:
• 32 General Purpose Registers (GPRs).
• Program Counter (PC).
• Two 32-bit registers containing status flags, previous execution information and

protection information (PCXI - Previous Context Information register, and PSW -
Program Status Word).

Figure 2 Architectural Registers

The PCXI, PSW and PC registers are crucial to the procedure for storing and restoring
a task’s context.
The 32 General Purpose Registers (GPRs) are divided into sixteen 32-bit data registers
(D[0] through D[15]) and sixteen 32-bit address registers (A[0] through A[15]).
Four of the General Purpose Registers (GPRs) also have special functions:
• D[15] is used as an Implicit Data register.
• A[10] is the Stack Pointer (SP) register.
• A[11] is the Return Address (RA) register.
• A[15] is the Implicit Address register.
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Registers [0H - 7H] are referred to as the ‘lower registers’ and registers [8H - FH] are
called the ‘upper registers’.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. These are not
included in either the upper or lower context (see Tasks and Functions, page 4-1) and
are not saved and restored across calls or interrupts. They are normally used by the
operating system to reduce system overhead.
In addition to the General Purpose Registers (GPRs), the core registers are composed
of a certain number of Core Special Function Registers (CSFRs). See General Purpose
and System Registers, page 3-1.

1.2.2 Data Types
The instruction set supports operations on:
• Boolean.
• Bit String.
• Byte.
• Signed Fraction.
• Address.
• Signed / Unsigned Integer.
• IEEE-754 Single-Precision Floating-Point.
Most instructions work on a specific data type, while others are useful for manipulating
several data types.

1.2.3 Memory Model
The architecture can access up to 4 GBytes (address width is 32-bits) of unified program
and I/O memory.
The address space is divided into 16 regions or segments [0H - FH], each of 256 MBytes.
The upper four bits of an address select the specific segment. The first 16 KBytes of each
segment can be accessed directly using absolute addressing.
The diagram which follows shows the TriCore architecture address space mapping.
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Figure 3 Address Map and Memory Model (TriCore 1.3)

Figure 4 Address Map and Memory Model (TriCore 1.3.1)
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1.2.4 Addressing Modes
Addressing modes allow load and store instructions to efficiently access simple data
elements within data structures such as records, randomly and sequentially accessed
arrays, stacks and circular buffers. 
The architecture supports seven addressing modes. The simple data elements are 8-
bits, 16-bits, 32-bits and 64-bits wide.
These addressing modes support efficient compilation of C/C++ programs, easy access
to peripheral registers and efficient implementation of typical DSP data structures
(circular buffers for filters and bit-reversed indexing for Fast Fourier Transformations).
Addressing modes which are not directly supported in the hardware can be synthesized
through short instruction sequences.
For more information see Synthesized Addressing Modes, page 2-13.
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1.3 Tasks and Contexts
A task is an independent thread of control. There are two types: Software Managed
Tasks (SMTs) and Interrupt Service Routines (ISRs).
SMTs are created through the services of a real-time kernel or Operating System, and
are dispatched under the control of scheduling software. ISRs are dispatched by
hardware in response to an interrupt. An ISR is the code that is invoked directly by the
processor on receipt of an interrupt. SMTs are sometimes referred to as user tasks,
assuming that they execute in User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode

cannot enable or disable interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals.

Typically this would be a read or write access to serial port, a read access to timer,
and most I/O status registers. Tasks in this mode may disable interrupts for a short
period.

• Supervisor Mode: Permits read/write access to system registers and all peripheral
devices. Tasks in this mode may disable interrupts.

Individual modes are enabled or disabled primarily through the I/O mode bits in the
Processor Status Word (PSW).
A set of state elements are associated with any task, and these are known collectively
as the task’s context. The context is everything the processor needs to define the state
of the associated task and enable its continued execution. This includes the CPU
General Registers that the task uses, the task’s Program Counter (PC), and its Program
Status Information (PCXI and PSW). The architecture efficiently manages and maintains
the context of the task through hardware. The context is subdivided into the upper
context and the lower context.

Context Save Areas
The architecture uses linked lists of fixed-size Context Save Areas (CSAs). A CSA
consists of 16 words of memory storage, aligned on a 16-word boundary. Each CSA can
hold exactly one upper or one lower context. CSAs are linked together through a Link
Word.
The architecture saves and restores context more quickly than conventional
microprocessors and microcontrollers. The unique memory subsystem design with a
wide data path allows the architecture to perform rapid data transfers between processor
registers and on-chip memory.
Context switching occurs when an event or instruction causes a break in program
execution. The CPU then needs to resolve this event before continuing with the program.
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The events and instructions which cause a break in program execution are:
• Interrupt or service requests.
• Traps.
• Function calls.
See Tasks and Functions, page 4-1.

1.4 Interrupt System
A key feature of the architecture is its powerful and flexible interrupt system. The
interrupt system is built around programmable Service Request Nodes (SRNs).
A Service Request is defined as an interrupt request or a DMA (Direct Memory Access)
request. A service request may come from an on-chip peripheral, external hardware, or
software.
Conventional architectures generally take a long time to service interrupt requests, and
they are normally handled by loading a new Program Status (PS) from a vector table in
data memory. In the TriCore architecture, service requests jump to vectors in code
memory to reduce response time. The entry code for the ISR is a block within a vector
of code blocks. Each code block provides an entry for one interrupt source.

1.4.1 Interrupt Priority
Service requests are prioritized, and prioritization allows for nested interrupts. The rules
for prioritization are:
• A service request can interrupt the servicing of a lower priority interrupt.
• Interrupt sources with the same priority cannot interrupt each other.
• The Interrupt Control Unit (ICU) determines which source will win arbitration based

on the priority number.
All Service Requests are assigned Priority Numbers (SRPNs). Even the ISR has its own
priority number. Different service requests must be assigned different priority numbers.
The maximum number of interrupt sources is 255. Programmable options range from
one priority level with 255 sources, up to 255 priority levels with one source each.
Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is
feasible because interrupt numbers are not hardwired to individual sources, but are
assigned by software executed during the power-on boot sequence.
See Interrupt System, page 5-1.
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1.5 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception or illegal access. The TriCore architecture contains eight trap
classes and these traps are further classified as synchronous or asynchronous,
hardware or software. Each trap is assigned a Trap Identification Number (TIN) that
identifies the cause of the trap within its class. The entry code for the trap handler is
comprised of a vector of code blocks. Each code block provides an entry for one trap.
When a trap is taken, the TIN is placed in data register D[15].
The trap classes are:
• MMU (Memory Management Unit).
• Internal Protection.
• Instruction Error.
• Context Management.
• System Bus and Peripherals.
• Assertion Trap.
• System Call.
• Non-Maskable Interrupt (NMI).
See Trap System, page 6-1.

1.6 Protection System
One of the domains that TriCore supports is safety-critical embedded applications. The
architecture features a protection system designed to protect core system functionality
from the effects of software errors in less critical application tasks, and to prevent
unauthorised tasks from accessing critical system peripherals. The protection system
also facilitates debugging. It detects and traps errors that might otherwise go unnoticed
until it was too late to identify the cause of the error.
The overall protection system is composed of three main subsystems:
1. The Trap System: Described briefly in Section 1.5, but covered in detail in Trap

System, page 6-1.
2. The I/O Privilege Level: TriCore supports three I/O modes: User-0 mode, User-1

mode and Supervisor mode. The User-1 mode allows application tasks to directly
access non-critical system peripherals. This allows embedded systems to be
implemented efficiently, without the loss of security inherent in the common practice
of running everything in Supervisor mode.

3. The Memory Protection System: This protection system provides control over
which regions of memory a task is allowed to access, and what types of access it is
permitted.
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For TriCore v1.3 and later architecture revisions, there are actually two independent
memory protection systems. For applications that require virtual memory, the optional
Memory Management Unit (MMU) supports a familiar page-based model for memory
protection. That model gives each memory page its own access permissions. The
relatively conventional MMU design and the page-based memory protection model
facilitate porting of standard operating systems that expect this model. The MMU is
detailed in Memory Management Unit (MMU), page 10-1.
For the smaller and lower cost applications there is a range-based memory protection
system. This is designed to provide coarse-grained memory protection for systems that
do not require virtual memory. The range-based memory protection system and its
interaction with I/O privilege level for access to peripherals, is detailed in Memory
Protection System, page 9-1.

1.7 Memory Management Unit
TriCore can make use of an optional Memory Management Unit (MMU). When
configured with an MMU, the memory space has two addressing regions; physical and
virtual. The physical and virtual address space is 4 GBytes in each instance, with those
4 GBytes each divided into sixteen, 256 MByte segments.
Segments [8H-FH] bypass virtual mapping and are directly, physically used. Segments
[0H-7H] are virtually mapped by the MMU when it is present and enabled, or physically
mapped when the MMU is not present or disabled.
Virtual addresses are always translated into physical addresses before accessing
memory. This translation to a physical address is either a Direct Translation or a Page
Table Entry (PTE) Translation, depending on MMU mode and virtual address region:
• Direct Translation: If the virtual address belongs to the upper half of the virtual

address space, then the virtual address is directly used as the physical address. If
the virtual address belongs to the lower half of the address space and the processor
is operating in Physical mode, then the virtual address is used indirectly as the
physical address.

• Page Table Entry (PTE) Translation: If the processor is operating in Virtual mode
and the virtual address belongs to the lower half of the address space, then the virtual
address is translated using PTE. PTE translation is performed by replacing the Virtual
Page Number (VPN) of the virtual address by a Physical Page Number (PPN) to
obtain a physical address.

See Memory Management Unit (MMU), page 10-1.
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1.8 Core Debug Controller
The Core Debug Controller (CDC) is designed to support real-time systems that require
non-intrusive debugging. Most of the architectural state in the CPU Core and Core
on-chip memories can be accessed through the system Address Map. The debug
functionality is an interface of architecture, implementation and software tools.
Access to the CDC is typically provided via the On-Chip Debug Support (OCDS) of the
system containing the CPU.
A general description of the mechanism and registers is detailed in Core Debug
Controller (CDC), page 12-1

1.9 Coprocessor Interface
The TriCore architecture may be extended with implementation defined application
specific instructions. These instructions are executed on dedicated coprocessor
hardware attached to the coprocessor interface. 
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2 Programming Model
This chapter discusses the following aspects of the TriCore® architecture that are visible
to software:
• Supported data types page 2-1.
• Data formats in registers and memory page 2-2.
• The Memory model page 2-6.
• Addressing modes page 2-7.

2.1 Data Types
The instruction set supports operations on the following Data Types:
• Boolean page 2-1.
• Bit String page 2-1.
• Byte page 2-1.
• Signed Fraction page 2-2.
• Address page 2-2.
• Signed and Unsigned Integers page 2-2.
• IEEE-754 Single-precision Floating-point Number page 2-2.
Most instructions operate on a specific Data Type, while others are useful for
manipulating several Data Types.

2.1.1 Boolean
A Boolean is either TRUE or FALSE:
• TRUE is the value one (1) when generated and non-zero when tested.
• FALSE is the value zero (0).
Booleans are produced as the result in comparison and logic instructions, and are used
as source operands in logical and conditional jump instructions.

2.1.2 Bit String
A bit string is a packed field of bits.
Bit strings are produced and used by logical, shift, and bit field instructions.

2.1.3 Byte
A byte is an 8-bit value that can be used for a character or a very short integer. No
specific coding is assumed.
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2.1.4 Signed Fraction
The architecture supports 16-bit, 32-bit and 64-bit signed fractional data for DSP
arithmetic. Data values in this format have a single high-order sign bit, where 0
represents positive (+) and 1 represents negative (-), followed by an implied binary point
and fraction. Their values are therefore in the range [-1,1).

2.1.5 Address
An address is a 32-bit unsigned value.

2.1.6 Signed and Unsigned Integers
Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned integers
are sign-extended or zero-extended to 32 bits when loaded from memory into a register.

Multi-precision
Multi-precision integers are supported with addition and subtraction using carry. Integers
are considered to be bit strings for shifting and masking operations. Multi-precision shifts
can be made using a combination of single-precision shifts and bit field extracts.

2.1.7 IEEE-754 Single-Precision Floating-Point Number
Depending on the particular implementation of the core architecture, IEEE-754
floating-point numbers are supported by coprocessor hardware instructions or by
software calls to a library.

2.2 Data Formats
All General Purpose Registers (GPRs) are 32 bits wide, and most instructions operate
on word (32-bit) values. When byte or half-word data elements are loaded from memory,
they are automatically sign-extended or zero-extended to fill the register. The type of
filling is implicit in the load instruction. For example, LD.B to load a byte with sign
extension, or LD.BU to load a byte with zero extension.
The supported Data Formats are:
• Bit.
• Byte: signed, unsigned.
• Half-word: signed, unsigned, fraction.
• Word: signed, unsigned, fraction, floating-point.
• 48-bit: signed, unsigned, fraction.
• Double-word: signed, unsigned, fraction.
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Figure 5 Supported Data Formats
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2.2.1 Alignment Requirements
Alignment requirements differ for addresses and data (see Table 1). Address variables
loaded into or stored from address registers, must always be word-aligned.
Data can be aligned on any half-word boundary, regardless of size, except where noted
below. This facilitates the use of packed arithmetic operations in DSP applications, by
allowing two or four packed 16-bit data elements to be loaded or stored together on any
half-word boundary.
There are some restrictions of which programmers must be aware, specifically:
• The LDMST and SWAP instructions require their operands to be word-aligned.
• Half-word alignment for LD.D and ST.D is only allowed when the source or

destination address is targeted at cached memory or data scratchpad RAM (see
Scratchpad RAM, page 8-4). For all other addresses double-word accesses must
be word-aligned.

• The byte operations LD.B, ST.B, LD.BU, ST.T may be byte aligned.

Table 1 Alignment Rules
Access type Access size Alignment of address 

in memory
Load, Store Data 
Register

Byte Byte (1H)
Half-word 2 bytes (2H)
Word 2 bytes (2H)
Double-word 2 bytes (2H)

Load, Store Address 
Register

Word 4 bytes (4H)
Double-word 4 bytes (4H)

SWAP.W, LDMST Word 4 bytes (4H)
ST.T Byte Byte (1H)
Context Load / Store / 
Restore / Save

16 x 32-bit registers 64 bytes (40H)
User’s Manual 2-4 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

Programming Model
2.2.2 Byte Ordering
The data memory and CPU registers store data in little-endian byte order (the
least-significant bytes are at lower addresses). The following figure illustrates byte
ordering. Little-endian memory referencing is used consistently for data and instructions.

Figure 6 Byte Ordering
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2.3 Memory Model
The architecture has an address width of 32 bits and can access up to 4 GBytes of
memory. The address space is divided into 16 regions or segments, [0H - FH]. Each
segment is 256 MBytes. The upper 4 bits of an address select the specific segment. The
first 16 KBytes of each segment can be accessed using absolute addressing.
Many data accesses use addresses computed by adding a displacement to the value of
a base address register. Using a displacement to cross one of the segment boundaries
is not allowed and if attempted causes a MEM trap. This restriction allows direct
determination of the accessed segment from the base address.
See Trap System, page 6-1 for more information on Traps.

Physical Memory Attributes
The physical memory attributes of segments zero to seven are implementation
dependent. If an MMU is present and enabled, segments [0H - 7H] are considered virtual
addresses that must be translated. If an MMU is not present the access characteristics
are implementation dependent and may cause a trap.

Physical Memory Addresses
Physical memory addresses in segment FH are guaranteed to have the peripheral space
attribute and therefore all accesses are non-speculative and are not accessible to User-0
mode. This segment can therefore be used for mapping peripheral registers.
The Core Special Function Registers (CSFRs) are mapped to a 64 KBytes space in the
memory map. The base location of this 64 KBytes space is implementation-dependent.
Segments 8H to DH have further limitations placed upon them in some implementations.
For example, specific segments for program and data may be defined by device-specific
implementations. Other details of the memory mapping are implementation-specific.
For more information see Physical Memory Attributes (PMA), page 8-1.

Table 2 Physical Address Space
Address Segments Description
FFFF FFFFH : E000 0000H EH - FH Peripheral space.
DFFF FFFFH : 8000 0000H 8H - DH Detailed limitations are implementation 

specific.
7FFF FFFFH : 0000 0000H 0H - 7H Implementation dependent.
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2.4 Semaphores and Atomic Operations
The TriCore architecture has two instructions which read and write memory in atomic
fashion, which are supported by all versions of the architecture:
• LDMST (Load, Modify, Store)
• SWAP.W (Swap register with memory).
LDMST uses a mask register to write selected bits from a source register into a memory
word. However it does not return a value, so it can not be used as an atomic "test and
set" type operations for binary semaphores. The SWAP.W is provided for this purpose.

2.5 Addressing Modes
Addressing modes allow load and store instructions to access simple data elements
such as records, randomly and sequentially accessed arrays, stacks, and circular
buffers.
The simple data elements are 8-bits, 16-bits, 32-bits, or 64-bits wide. The architecture
supports seven addressing modes.
The addressing modes support efficient compilation of C/C++, give easy access to
peripheral registers, and efficient implementation of typical DSP data structures (circular
buffers for filters and bit-reversed indexing for FFTs).

Addressing modes which are not directly supported in the hardware can be synthesized
through short instruction sequences.
For more information see Synthesized Addressing Modes, page 2-13.

Table 3 Addressing Modes
Addressing Mode Address Register Use
Absolute None
Base + Short Offset Address Register
Base + Long Offset Address Register
Pre-increment Address Register
Post-increment Address Register
Circular Address Register Pair
Bit-reverse Address Register Pair
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Instruction Formats
The instruction formats provide as many bits of address as possible for absolute
addressing, and as large a range of offsets as possible for base + offset addressing.
It is possible for an address register to be both the target of a load and an update
associated with a particular addressing mode. In the following case for example, the
contents of the address register are not architecturally defined:
ld.a a0, [a0+]4
Similarly, consider the following case:
st.a [+a0]4, a0
It is not architecturally defined whether the original or updated value of A[0] is stored into
memory. This is true for all addressing modes in which there is an update of the address
register.

2.5.1 Absolute Addressing
Absolute addressing is useful for referencing I/O peripheral registers and global data.
Absolute addressing uses an 18-bit constant specified by the instruction as the memory
address. The full 32-bit address results from moving the most significant 4 bits of the
18-bit constant to the most significant bits of the 32-bit address (Figure 7). Other bits are
zero-filled.

Figure 7 Translation of Absolute Address to Full Effective Address

2.5.2 Base + Offset Addressing
Base + offset addressing is useful for referencing record elements, local variables (using
Stack Pointer (SP) as the base), and static data (using an address register pointing to
the static data area). The full effective address is the sum of an address register and the
sign-extended 10-bit offset.
A subset of the memory operations are provided with a Base + Long Offset addressing
mode. In this mode the offset is a 16-bit sign-extended value. This allows any location in
memory to be addressed using a two instruction sequence.
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2.5.3 Pre-Increment and Pre-Decrement Addressing
Pre-increment and pre-decrement addressing (where pre-decrement addressing is
obtained by the use of a negative offset), may be used to push onto an upward or
downward-growing stack, respectively.
The pre-increment addressing mode uses the sum of the address register and the offset
both as the effective address and as the value written back into the address register.

2.5.4 Post-Increment and Post-Decrement Addressing
Post-increment and post-decrement addressing (where post-decrement addressing is
obtained by the use of a negative offset), may be used for forward or backward
sequential access of arrays respectively. Furthermore, the two versions of the mode may
be used to pop from a downward-growing or upward-growing stack, respectively.
The post-increment addressing mode uses the value of the address register as the
effective address and then updates this register by adding the sign-extended 10-bit
offset to its previous value.

2.5.5 Circular Addressing
The primary use of circular addressing (Figure 8) is for accessing data values in circular
buffers while performing filter calculations.

Figure 8 Circular Addressing Mode

The circular addressing mode uses an address register pair to hold the state it requires:
• The even register is always a base address (B).
• The most significant half of the odd register is the buffer size (L).
• The least significant half holds the index into the buffer (I).
• The effective address is (B+I).
• The buffer occupies memory from addresses B to B+L-1.
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The index is post-incremented using the following algorithm:

Figure 9 Circular Addressing Index Algorithm

The 10-bit offset is specified in the instruction word and is a byte-offset that can be either
positive or negative. Note that correct ‘wrap around’ behaviour is guaranteed as long as
the magnitude of the offset is smaller than the size of the buffer.
To illustrate the use of circular addressing, consider a circular buffer consisting of 25,
16-bit values. If the current index is 48, then the next item is obtained using an offset of
two (2-bytes per value). The new value of the index ‘wraps around’ to zero. If we are at
an index of 48 and use an offset of four, the new value of the index is two. If the current
index is four and we use an offset of -8, then the new index is 46 (4-8+50).
In the end case, where a memory access runs off the end of the circular buffer
(Figure 10), the data access also wraps around to the start of the buffer. For example,
consider a circular buffer containing n+1 elements where each element is a 16-bit value.
If a load word is performed using the circular addressing mode and the effective address
of the operation points to element n, the 32-bit result contains element n in the bottom
16 bits and element 0 in the top 16 bits.
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Figure 10 Circular Buffer End Case

The size and length of a circular buffer has the following restrictions:
• The start of the buffer must be aligned to a 64-bit boundary. An implementation is free

to advise the user of optimal alignment of circular buffers etc., but must support
alignment to the 64-bit boundary.

• The length of the buffer must be a multiple of the data size, where the data size is
determined from the instruction being used to access the buffer. For example, a
buffer accessed using a load-word instruction must be a multiple of 4 bytes in length,
and a buffer accessed using a load double-word instruction must be a multiple of
8-bytes in length.

If these restrictions are not met the implementation takes an alignment trap (ALN). An
alignment trap is also taken if the index (I) >= length (L).
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2.5.6 Bit-Reverse Addressing
Bit-reverse addressing is used to access arrays used in FFT algorithms. The most
common implementation of the FFT ends with results stored in bit-reversed order (Bit-
Reverse Addressing, page 2-12).

Figure 11 Bit-Reverse Addressing

Bit-reverse addressing uses an address register pair to hold the required state:

Figure 12 Register Pair for Bit-Reverse Addressing

• The even register is the base address of the array (B).
• The least-significant half of the odd register is the index into the array (I).
• The most-significant half is the modifier (M), used to update I after every access.
• The effective address is B+I.
• The index, I, is post-incremented and its new value is reverse [reverse (I) + reverse

(M)]. The reverse(I) function exchanges bit n with bit (15–n) for n = 0, ... 7.
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To illustrate for a 1024 point real FFT using 16-bit values, the buffer size is 2048 bytes.
Stepping through this array using a bit-reverse index would give the sequence of byte
indices: 0, 1024, 512, 1536, and so on. This sequence can be obtained by initializing I to
0 and M to 0400H.

The required value of M is given by; buffer size/2, where the buffer size is given in bytes.

2.5.7 Synthesized Addressing Modes
This section describes how addressing that is not directly supported in the hardware
addressing modes, can be synthesized through short instruction sequences.

Indexed Addressing
The Indexed addressing mode can be synthesized using the ADDSC.A instruction (Add
Scaled Index to Address), which adds a scaled data register to an address register. The
scale factor can be 1, 2, 4 or 8 for addressing indexed arrays of bytes, half-words, words,
or double-words.

Bit Indexed Addressing
To support addressing of indexed bit arrays, the ADDSC.AT instruction scales the index
value by 1/8 (shifts right 3 bits) and adds it to the address register.
The two low-order bits of the resulting byte address are cleared to give the address of
the word containing the indexed bit.
To extract the bit, the word in which it is contained, is loaded. The bit index is then used
in an EXTR.U instruction.
A bit field, beginning at the indexed bit position, can also be extracted. To store a bit or
bit field at an indexed bit position, ADDSC.AT is used in conjunction with the LDMST
(Load/Modify/Store) instruction.

Table 4 1024-point FFT Using 16-bit Values
I (decimal) I (binary) Reverse(I) Rev[Rev(I) + Rev(M)]
0 0000000000000000B 0000000000000000B 0000010000000000B

1024 0000010000000000B 0000000000100000B 0000001000000000B

512 0000001000000000B 0000000001000000B 0000011000000000B

1536 0000011000000000B 0000000001100000B 0000010001100000B
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PC-Relative Addressing
PC-relative addressing is the normal mode for branches and calls. However the
architecture does not support direct PC-relative addressing of data. This is because the
separate on-chip instruction and data memories make data access to the program
memory expensive.
When PC-relative addressing of data is required, the address of a nearby code label is
placed into an address register and used as a base register in base + offset mode to
access the data. Once the base register is loaded it can be used to address other
PC-relative data items nearby.
A code address can be loaded into an address register in various ways. If the code is
statically linked (as it almost always is for embedded systems), then the absolute
address of the code label is known and can be loaded using the LEA instruction (Load
Effective Address), or with a sequence to load an extended absolute address. The
absolute address of the PC relative data is also known, and there is no need to
synthesize PC-relative addressing.
For code that is dynamically loaded, or assembled into a binary image from position-
independent pieces without the benefit of a relocating linker, the appropriate way to load
a code address for use in PC-relative data addressing is to use the JL (Jump and Link)
instruction. A jump and link to the next instruction is executed, placing the address of that
instruction into the return address (RA) register A[11]. Before this is done though, it is
necessary to copy the actual return address of the current function to another register.
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3 General Purpose and System Registers
There are two types of Core Register, the General Purpose Registers (GPRs) and the
Core Special Function Registers (CSFRs). The GPRs consist of 16 general purpose
data and 16 general purpose address registers. The CSFRs control the operation of the
core and provide status information about the core.
• General Purpose Registers.
• System registers (PSW, PC, PCXI).
• Stack Management registers are (A[10] and ISP).
• SYSCON and CPU_ID registers.
• Trap registers.
• Context Management registers.
• Memory Protection registers.
• Memory Management registers.
• Debug registers.
• Floating Point registers.
• Special Function registers associated with the core.

Reset Values
It should be noted that because this manual describes the TriCore® architecture, not an
implementation of that architecture, some reset values are not given. Where they are not
given, the values are implementation specific.

ENDINIT Protection
The architecture supports the concept of an initialisation state prior to an operational
state.
When in the initialisation state, all Core Special Function Registers can be modified,
using the MTCR instruction. In the operational state only a subset of CSFRs can be
modified in this way. All other functions remain identical between these states.
CSFRs that are only writable in the initialisation state are described as ENDINIT
protected.
The transition between the initialisation state and the operational state is controlled by
the system implementation. This facility adds an extra level of protection to critical
CSFRs by only allowing them to be changed in the initialisation state. 
The following registers are ENDINIT protected:
• BTV, BIV and ISP
• SMACON, BMACON, COMPAT, MIECON (TriCore 1.3.1)
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3.1 General Purpose Registers (GPRs)
The General Purpose Registers (GPRs) are split evenly into:
• 16 Data registers (DGPRs), D[0] to D[15].
• 16 Address registers (AGPRs), A[0] to A[15].
The separation of data and address registers facilitates efficient implementations in
which arithmetic and memory operations are performed in parallel. Several instructions
allow the interchange of information between data and address registers (used for
example, to create or derive table indexes). Two consecutive even-odd data registers
can be concatenated to form eight extended-size registers (E[0], E[2], E[4], E[6], E[8],
E[10], E[12], and E[14]), in order to support 64-bit values. The address registers (P[0],
P[2], P[4], P[6], P[8], P[10], P[12], and P[14]) can be used in the same way.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. Their contents
are not saved or restored across calls, traps or interrupts.
Register A[10] is used as the Stack Pointer (SP). See Stack Management
Registers, page 3-13.
Register A[11] is used to store the Return Address (RA) for calls and linked jumps, and
to store the return Program Counter (PC) value for interrupts and traps.
While the 32-bit instructions have unlimited use of the GPRs, many 16-bit instructions
implicitly use A[15] as their address register and D[15] as their data register. This implicit
use eases the encoding of these instructions into 16 bits.
Support of 64-bit data values is provided with the use of odd/even register pairs. In the
assembler syntax these register pairs are either referred to as a pair of 32-bit registers
(for example, D[9]/D[8]) or as an extended 64-bit register. For example, E[8] is the
concatenation of D[9] and D[8], where D[8] is the least significant word of E[8].
In order to support extended addressing modes, an even/odd address register pair holds
the extended address reference as a pair of 32-bit address registers (A[8]/A[9] for
example).
There are no separate floating-point registers. The data registers are used to perform
floating-point operations. The floating-point data is saved and restored automatically
using the fast context switch support. 
Figure 13,  page 3-4, shows the 32-bit wide GPRs.
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3.1.1 Data General Purpose Registers

3.1.2 Address General Purpose Registers

Dn (n = 0-15)
Data Register n (FF00H+n*4) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

rw

Field Bits Type Description
DATA [31:1] rw Data Register n Value

An (n = 0-15)
Address Register n (FF80H+n*4) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

rw

Field Bits Type Description
ADDR [31:1] rw Address Register n Value
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Figure 13 General Purpose Registers (GPRs)

The GPRs are an essential part of a task’s context. When saving or restoring a task’s
context to and from memory the context is split into the upper and lower contexts:
• Registers A[2] to A[7] and D[0] to D[7] are part of the lower context.
• Registers A[10] to A[15] and D[8] to D[15] are part of the upper context.
Note: Upper and lower contexts are described in detail in Chapter 4 Tasks and

Functions.
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3.2 Program State Information Registers
The PC, PSW, and PCXI registers hold and reflect program state information. These
registers are an important part of storing and restoring a task’s context, when the
contents are stored, restored or modified during this process.
• PC: Program Counter page 3-5.
• PSW: Program Status Word page 3-6.
• PCXI: Previous Context Information page 3-12.

3.2.1 Program Counter (PC)
The 32-bit Program Counter (PC) shown below, holds the address of the instruction that
is currently running. The Program Counter is part of a task’s state information.

PC
Program Counter Register (FE08H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC -

rw

Field Bits Type Description
PC [31:1] rw Program Counter
- 0 - Reserved Field
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3.2.2 Program Status Word Register (PSW)
The Program Status Word register (PSW) is a 32-bit register that contains a task-specific
architectural state not captured in the General Purpose Register values. The lower half
holds control values and parameters related to the protection system, including:
• The Protection Register Set (PRS).
• The I/O privilege level (IO).
• The Interrupt Stack flag (IS).
• The Global register Write permission flag (GW).
• The Call Depth Counter (CDC).
• The Call Depth Count Enable field (CDE).

 

PSW
Program Status Word (FE04H) Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

USB -

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- PRS IO IS GW CDE CDC

rw rw rw rw rw rw

Field Bits Type Description
USB [31:24] rw User Status Bits

The eight most significant bits of the PSW are designated 
as User Status Bits. These bits may be set or cleared as 
execution side effects of user instructions. Refer to the 
PSW User Status Bits section which follows this table.

- [23:14] - Reserved Field
PRS [13:12] rw Protection Register Set

Selects the active Data and Code Memory Protection 
Register Set. The memory protection register values 
control load, store and instruction fetches within the 
current process.
00B : Protection Register Set 0.
01B : Protection Register Set 1.
10B : Protection Register Set 2.
11B : Protection Register Set 3.
User’s Manual 3-6 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

General Purpose and System Registers
IO [11:10] rw Access Privilege Level Control (I/O Privilege)
Determines the access level to special function registers 
and peripheral devices.
00B : User-0 Mode
No peripheral access. Access to memory regions with the 
peripheral space attribute are prohibited and results in a 
PSE or MPP trap. This access level is given to tasks that 
need not directly access peripheral devices. Tasks at this 
level do not have permission to enable or disable 
interrupts.
01B : User-1 Mode
Regular peripheral access. Enables access to common 
peripheral devices that are not specially protected, 
including read/write access to serial I/O ports, read access 
to timers, and access to most I/O status registers. Tasks 
at this level may disable interrupts.
10B : Supervisor Mode
Enables access to all peripheral devices. It enables read/
write access to core registers and protected peripheral 
devices. Tasks at this level may disable interrupts.
11B : Reserved Value

IS 9 rw Interrupt Stack Control
Determines if the current execution thread is using the 
shared global (interrupt) stack or a user stack.
0 : User Stack
If an interrupt is taken when the IS bit is 0, then the stack 
pointer register is loaded from the ISP register before 
execution starts at the first instruction of the Interrupt 
Service Routine (ISR).
1 : Shared Global Stack
If an interrupt is taken when the PSW.IS bit is 1, then the 
current value of the stack pointer is used by the Interrupt 
Service Routine (ISR).

Field Bits Type Description
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GW 8 rw Global Address Register Write Permission
Determines whether the current execution thread has 
permission to modify the global address registers.
Most tasks and ISRs use the global address registers as 
‘read only’ registers, pointing to the global literal pool and 
key data structures. However a task or ISR can be 
designated as the ‘owner’ of a particular global address 
register, and is allowed to modify it. The system designer 
must determine which global address variables are used 
with sufficient frequency and/or in sufficiently time-critical 
code to justify allocation to a global address register. By 
compiler convention, global address register A[0] is 
reserved as the base register for short form loads and 
stores. Register A[1] is also reserved for compiler use.
Registers A[8] and A[9] are not used by the compiler, and 
are available for holding critical system address variables.
0 : Write permission to global registers A[0], A[1], A[8], 

A[9] is disabled.
1 : Write permission to global registers A[0], A[1], A[8], 

A[9] is enabled.
CDE 7 rw Call Depth Count Enable

Enables call-depth counting, provided that the PSW.CDC 
mask field is not all set to 1. 
0 : Call depth counting is temporarily disabled. It is 

automatically re-enabled after execution of the next 
Call instruction.

1 : Call depth counting is enabled. 
If PSW.CDC = 1111111B, call depth counting is disabled 
regardless of the setting on the PSW.CDE bit.

Field Bits Type Description
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CDC [6:0] rw Call Depth Counter
Consists of two variable width subfields. The first subfield 
consists of a string of zero or more initial 1 bits, terminated 
by the first 0 bit.
The remaining bits form the second subfield 
(CDC.COUNT) which constitutes the call depth count 
value. The count value is incremented on each Call and is 
decremented on a Return.
0ccccccB  : 6-bit counter; trap on overflow.
10cccccB  : 5-bit counter; trap on overflow.
110ccccB  : 4-bit counter; trap on overflow.
1110cccB  : 3-bit counter; trap on overflow.
11110ccB  : 2-bit counter; trap on overflow.
111110cB  : 1-bit counter; trap on overflow.
1111110B  : Trap every call (call trace mode).
1111111B  : Disable call depth counting.
When the call depth count (CDC.COUNT) overflows a trap 
(CDO) is generated.
Setting the CDC to 1111110B allows no bits for the counter 
and causes every call to be trapped. This is used for Call 
Depth Tracing.
Setting the CDC to 1111111B disables call depth counting.

Field Bits Type Description
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PSW User Status Bits
The eight most significant bits of the PSW are designated as User Status Bits. These bits
may be set or cleared as execution side effects of user instructions, typically recording
result status. Individual bits can also be used to condition the operation of particular
instructions. For example the ADDX (Add Extended) and ADDC (Add with Carry)
instructions use bit 31 to record the carry out from the ADD operation, and the
pre-execution value of the bit is reflected in the result of the ADDC instruction.

There are two classes of instructions that employ the user status bits:
• Arithmetic instructions that may produce carry and overflow results.
• Implementation-specific coprocessor instructions which may use any or all of the

eight bits, in a manner that is entirely implementation specific.
Bits [23:16] of the PSW are reserved bits with no defined use in current versions of the
architecture. They read as zero when the PSW is read via the MFCR (Move From Core
Register) instruction after a system reset. Their value after writing to the PSW via the
MTCR (Move To Core Register) instruction, is architecturally undefined and should be
written as zero.

Table 5 PSW User Status Bits
Field Bits Type Description
C 31 rw Carry.
V 30 rw Overflow.
SV 29 rw Sticky Overflow.
AV 28 rw Advance Overflow.
SAV 27 rw Sticky Advance Overflow.
- [26:24] - Reserved Field.
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Access Privilege Level Control (I/O Privilege)
Software Managed Tasks (SMTs) are created through the services of a real-time kernel
or Operating System, and are dispatched under the control of scheduling software.
Interrupt Service Routines (ISRs) are dispatched by hardware in response to an
interrupt. An ISR is the code that is invoked directly by the processor on receipt of an
interrupt. SMTs are sometimes referred to as user tasks, assuming that they execute in
User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode may

not enable or disable interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals.

Typically this would be a read or write access to serial port, a read access to timer,
and most I/O status registers. Tasks in this mode may disable interrupts.

• Supervisor Mode: Permits read/write access to system registers and all peripheral
devices. Tasks in this mode may disable interrupts.

A set of state elements are associated with any task, and these are known collectively
as the task’s context. The context is everything the processor needs to define the state
of the associated task and enable its continued execution. This includes the CPU
General Registers that the task uses, the task’s Program Counter (PC), and its Program
Status Information (PCXI and PSW). The architecture efficiently manages and maintains
the context of the task through hardware.
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3.2.3 Previous Context Information and Pointer Register (PCXI)
The Previous Context Information Register (PCXI) contains linkage information to the
previous execution context, supporting fast interrupts and automatic context switching.
The PCXI is part of a task’s state information. The Previous Context Pointer (PCX) holds
the address of the CSA of the previous task.

PCXI, PCX
Previous Context Information (FE00H)
Previous Context Pointer Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCPN PIE UL - PCXS

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Bits Type Description
PCPN [31:24] rw Previous CPU Priority Number

Contains the priority level number of the interrupted task.
PIE 23 rw Previous Interrupt Enable

Indicates the state of the interrupt enable bit (ICR.IE) for 
the interrupted task.

UL 22 rw Upper or Lower Context Tag
Identifies the type of context saved: 
0 : Lower Context.
1 : Upper Context.
If the type does not match the type expected when a 
context restore operation is performed, a trap is 
generated.

- [21:20] - Reserved Field
PCXS [19:16] rw Previous Context Pointer Segment Address 

Contains the segment address portion of the PCX. This 
field is used in conjunction with the PCXO field.

PCXO [15:0] rw Previous Context Pointer Offset Field 
The PCXO and PCXS fields form the pointer PCX, which 
points to the CSA of the previous context.
User’s Manual 3-12 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

General Purpose and System Registers
3.3 Stack Management Registers
Stack management in the architecture supports a user stack and an interrupt stack.
Address register A[10], the Interrupt Stack Pointer (ISP) and a PSW bit are used in the
management of the stack.
• A[10](SP): A[10] (Stack Pointer) page 3-14.
• ISP: Interrupt Stack Pointer page 3-15.
A[10] is used as the stack pointer. The initial contents of this register are usually set by
an RTOS when a task is created, which allows a private stack area to be assigned to
individual tasks.
The ISP helps to prevent Interrupt Service Routines (ISRs) from accessing the private
stack areas and possibly interfering with the software managed task’s context. An
automatic switch to the use of the ISP instead of the private stack pointer is implemented
in the architecture. The PSW.IS bit indicates which stack pointer is in effect. When an
interrupt is taken and the interrupted task was using its private stack (PSW.IS == 0), the
contents are saved with the upper context of the interrupted task and A[10](SP) is loaded
with the current contents of the ISP.
When an interrupt or trap is taken and the interrupted task was already using the interrupt
stack (PSW.IS == 1), then no pre-loading of A[10](SP) is performed. The Interrupt
Service Routine (ISR) continues to use the interrupt stack at the point where the
interrupted routine had left it.
Usually it is only necessary to initialize the ISP once during the initialization routine.
However, depending on application needs, the ISP can be modified during execution.
Note that there is nothing preventing an ISR or system service routine from executing on
a private stack.
Note: Use of A[10](SP) in an ISR is at the discretion of the application programmer.
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3.3.1 Address Register A[10] (SP)
The A[10] Stack Pointer (SP) register is defined as follows:

A[10](SP)
Address Register A[10] (Stack Pointer)(FFA8H)

Reset Value: Implementation Specific 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A[10](SP)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A[10](SP)

rw

Field Bits Type Description
A[10](SP) [31:0] rw Address Register A[10] (Stack Pointer)
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3.3.2 Interrupt Stack Pointer (ISP)
The Interrupt Stack Pointer is defined as follows.

Note: This register is ENDINIT protected.

ISP 
Interrupt Stack Pointer (FE28H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ISP

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISP

rw

Field Bits Type Description
ISP [31:0] rw Interrupt Stack Pointer
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3.4 System Control Register (SYSCON)
The System Configuration Register provides the enable/disable bit for the memory
protection system and a status flag for the Free Context List Depletion condition.

 

SYSCON
System Configuration Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- PRO 
TEN

FCD
SF

rw rwh

Field Bits Type Description
- [31:2] - Reserved Field
PROTEN 1 rw Memory Protection Enable

Enables the memory protection system. Memory 
protection is controlled through the memory protection 
register sets. Note: Initialize the protection register sets 
prior to setting PROTEN to one.
0 : Memory Protection is disabled.
1 : Memory Protection is enabled.

FCDSF 0 rwh Free Context List Depleted Sticky Flag
This sticky bit indicates that a FCD (Free Context List 
Depleted) trap occurred since the bit was last cleared by 
software.
0 : No FCD trap occurred since the last clear.
1 : An FCD trap occurred since the last clear.
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3.5 CPU Identification Register (CPU_ID)
Identification Registers identify the processor type and revision used. Only the CPU core
ID register is described here. All other ID registers are described in the product
documentation. The CPU Identification Register identifies the CPU type and revision.

CPU_ID
CPU Module Identification (FE18H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MOD

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOD_32B MOD_REV

r r

Field Bits Type Description
MOD [31:16] r Module Identification Number 

Used for module identification.
MOD_32B [15:8] r 32-Bit Module Enable

A value of C0H in this field indicates a 32-bit module 
with a 32-bit module ID register.

MOD_REV [7:0] r Module Revision Number
Used for revision numbering. The value of the 
revision starts at 01H (first revision) up to FFH.
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3.6 Compatibility Mode Register (COMPAT) 
Note: TriCore 1.3.1 architecture only

The COMPAT register is provided to allow implementations to selectively force
compatibility of features with previous versions.
The contents of the register are implementation specific.

Note: This register is ENDINIT protected.

COMPAT
Compatibility Mode Register (9400H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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3.7 Access Control Registers

3.7.1 BIST Mode Access Control Register (BMACON) 
Note: TriCore 1.3.1 architecture only.

Implementations may control the operation of Built in Self Test (BIST) systems using the
BMACON register. The contents of this register is implementation specific.

Note: This register is ENDINIT protected

BMACON
BIST Mode Access Control (9004H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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3.7.2 SIST Mode Access Control Register (SMACON) 
Note: TriCore 1.3.1 architecture only.

Implementations may control the operation of Software in System Test (SIST) systems
using the SMACON register. The contents of this register is implementation specific.

Note: This register is ENDINIT protected

SMACON
SIST Mode Access Control (900CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
User’s Manual 3-20 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

General Purpose and System Registers
3.8 Interrupt Registers
A typical Service Request Control register in the TriCore architecture holds the individual
control bits to enable or disable the request, to assign a priority number, and to direct the
request to one of the service providers. The Core Special Function Registers (CSFR)
which control the Interrupts are described in Interrupt System, page 5-1.

3.9 Memory Protection Registers
The number of Memory Protection Register Sets is specific to each implementation of
the architecture. There can be a maximum number of four sets (one set includes both a
data set and a code set). Each register set is made up of several range registers (also
called Range Table Entries).
Each Range Table Entry consists of a Segment Protection register pair and a bit field
within a common Mode register. The register pair specifies the lower and upper
boundary addresses of the memory range.
The Core Special Function Registers (CSFR) which control the Memory Protection
Registers are described in Memory Protection System, page 9-1.

3.10 Trap Registers
The Core Special Function Registers (CSFR) which control the Trap Registers are
described in Trap System, page 6-1.

3.11 Memory Management Unit Registers
The optional Memory Management Unit (MMU) supports virtual memory and
page-based memory access protection. The Core Special Function Registers (CSFR)
which control the optional MMU are described in Memory Management Unit
(MMU), page 10-1.

3.12 Core Debug Controller Registers
TriCore 1 registers that support debugging are described in Core Debug Controller
(CDC), page 12-1

3.13 Floating Point Registers (TriCore 1.3.1)
The registers for the optional TriCore Floating Point Unit are described on
FPU_TRAP_CON, page 11-14.
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3.14 Updating Core Special Function Registers (CSFRs)
The need for software updates to CSFRs is usually infrequent. Implementations are
therefore not required to implement hardware structures to avoid hazard conditions that
may result from the update of CSFRs. Such hazard conditions are avoided by the
insertion of an ISYNC instruction immediately after the MTCR update of the CSFR. The
ISYNC instruction ensures that the effects of the CSFR update are correctly seen by all
following instructions.
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4 Tasks and Functions
Most embedded and real-time control systems are designed according to a model in
which interrupt handlers and software-managed tasks are each considered to be
executing on their own ‘virtual’ microcontroller. That model is generally supported by the
services of a Real-time Executive or Real-time Operating System (RTOS), layered on
top of the features and capabilities of the underlying machine architecture.
In the TriCore® architecture, the RTOS layer can be very ‘thin’ and the hardware can
efficiently handle much of the switching between one task and another. At the same time
the architecture allows for considerable flexibility in the tasking model used. System
designers can choose the real-time executive and software design approach that best
suits the needs of their application, with relatively few constraints imposed by the
architecture.
The mechanisms for low-overhead task switching and for function calling within the
TriCore architecture are closely related.

4.1 Context Types
A task is an independent thread of control. The state of a task is defined by its context.
When a task is interrupted, the processor uses that task’s context to re-enable the
continued execution of the task.
The context types are:
• Upper context: Consists of the upper address registers A[10] to A[15] and the upper

data registers D[8] to D[15]. The upper context also includes PCXI and PSW. These
registers are designated as non-volatile for purposes of function-calling (their
contents are preserved across calls).

• Lower context: Consists of the lower address registers A[2] to A[7], the lower data
registers D[0] to D[7], A[11] (Return Address) and PCXI.

Contexts, when saved to memory, occupy 16 word blocks of storage, known as Context
Save Areas (CSAs).
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Figure 14 Upper and Lower Contexts
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4.1.1 Context Save Area
The architecture uses linked lists of fixed-size Context Save Areas. A CSA is 16 words
of memory storage, aligned on a 16 word boundary. Each CSA can hold exactly one
upper or one lower context. CSAs are linked together through a Link Word.
The Link Word includes two fields that link the given CSA to the next one in a chain. The
fields are a 4-bit segment and a 16-bit offset. The segment number and offset are used
to generate the Effective Address (EA) of the linked CSA. See Figure 15.
Incrementing the pointer offset value by one always increments the EA to the address
that is 16 word locations above the previous one. The total usable range in each address
segment for CSAs is 4 MBytes, resulting in storage space for 216 CSAs.

Figure 15 Generation of the Effective Address of a Context Save Area (CSA)

If the CSA is in use (for example, it holds an upper or lower context image for a
suspended task), then the Link Word also contains other information about the linked
context. The entire Link Word is a copy of the PCXI register for the associated task.
For further information on how linked CSAs support context switching, refer to Context
Save Areas (CSAs) and Context Lists, page 4-5
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4.2 Task Switching Operation
The architecture switches tasks when one of the events or instructions listed in Table 6,
occurs. When one of these events or instructions is encountered, the upper or lower
context of the task is saved or restored. The upper context is saved automatically as a
result of an external interrupt, trap or function call. The lower context is saved explicitly
through instructions. In Table 6 ‘Save’ is a store through the Free CSA List Head Pointer
register (FCX) after the next value for the FCX is read from the Link Word. ‘Store’ is a
store through the Effective Address of the instruction with no change to the CSA list or
the FCX register. ‘Restore’ is the converse of ‘Save’. ‘Load’ is the converse of ‘Store’.
There is an essential difference in the treatment of registers in the upper and lower
contexts, in terms of how their contents are maintained. The lower context registers are
similar to global registers in the sense that a interrupt handler, trap handler or called
function, sees the same values that were present in the registers just before the interrupt,
trap or call. Any changes made to those registers that are made in the interrupt, trap
handler or called function, remains present after the return from the event, since they are
not automatically restored as part of the Return From Call (RET) or Return From
Exception (RFE) semantics. That means that the lower context registers can be used to
pass arguments to called functions and pass return values from those functions. It also
means that interrupt and trap handlers must save the original values they find in these
registers before using the registers, and to restore the original values before exiting.
The upper context registers are not guaranteed to be static hardware registers.
Conceptually, a function call or interrupt handler always begins execution with its own
private set of upper context registers. The upper context registers of the interrupted or
calling function are not inherited.
Only the A[10](SP), A[11](RA), PSW, PCXI and (in the case of a trap) D[15] registers
start with architecturally defined values in the called function, trap handler or interrupt
handler. A function, trap handler or interrupt handler that reads any of the other upper
context registers before writing a value into it, is performing an undefined operation.

Table 6 Context Related Events and Instructions 
Event / Instruction Context 

Operation
Complement Instruction Context 

Operation
Interrupt Save Upper RFE - Return from Exception Restore Upper
Trap Save Upper RFE - Return from Exception Restore Upper
CALL - Function Call Save Upper RET - Return from Call Restore Upper
BISR - Begin Interrupt 
Service Routine

Save Lower RSLCX - Restore Lower 
Context

Restore Lower

SVLCX - Save Lower 
Context

Save Lower RSLCX - Restore Lower 
Context

Restore Lower
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4.2.1 Save and Restore Context Operations
The Effective Address of all context related operations must be a physical memory
address which maps to cached memory or data scratchpad RAM (of the processor
performing the access). Using address ranges not covered by physical memories will
lead to undefined results.

4.3 Context Save Areas (CSAs) and Context Lists
The upper and lower contexts are saved in Context Save Areas (CSAs). Unused CSAs
are linked together in the free context list. CSAs that contain saved upper or lower
contexts are linked together in the previous context list. The following figure (Figure 16)
shows a simple configuration of CSAs within both context lists.

Figure 16 CSAs in Context Lists

The contents of the FCX register always points to an available CSA in the free context
list. That CSAs Link Word points to the next available CSA in the free context list.

STLCX - Store Lower 
Context

Store Lower LDLCX - Load Lower Context Load Lower

STUCX - Store Upper 
Context

Store Upper LDUCX - Load Upper Context Load Upper

Table 6 Context Related Events and Instructions  (Continued)
Event / Instruction Context 

Operation
Complement Instruction Context 

Operation
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Before an upper or lower context is saved in the first available CSA, its Link Word is read,
supplying a new value for the FCX. To the memory subsystem, context saving is
therefore a read/modify/write operation. The new value of FCX, which points to the next
available CSA, is available immediately for subsequent upper or lower context saves.
The LCX register points to one of the last CSAs in the free list and is used to recognise
impending free CSA list depletion. If the value of FCX matches that of LCX when an
operation that performs a context save is attempted, the operation completes and a free
CSA list depletion trap (FCD) is taken on the next instruction; i.e., the return address of
the FCD trap is the first instruction of the trap/interrupt/called routine or the instruction
following an SVLCX or BISR instruction. See Context Management (Trap
Class 3), page 6-10.
The action taken by the trap handler depends on the software implementation. It might
issue a system reset for example, if it is determined that the CSA list depletion resulted
from an unrecoverable software error. Normally however it extends the free list, either by
allocating additional memory or by terminating one or more tasks and reclaiming their
CSA call chains. In those cases the trap handler exits with a RFE instruction.
The link word in the last CSA in a free context list must be set to null before it is first used.
This is necessary to support the FCU trap. Before first use of the CSA, the PCX pointer
value should be null. This is to support CSU (Call Stack Underflow) traps.
The PCXI.PCX field points to the CSA where the previous context was saved. The
PCXI.UL bit identifies whether the saved context is upper (PCXI.UL == 1) or lower
(PCXI.UL == 0). If the type does not match the type expected when a context restore
operation is performed, a CYTP exception occurs and a context management trap is
taken.
After the context save operation has been performed the Return Address A[11](RA) is
updated:
• For a call, the A[11](RA) is updated with the function return address.
• For a synchronous trap, the A[11](RA) is updated with the PC of the instruction which

raised the trap.
• For a SYSCALL and an asynchronous trap or an interrupt, the A[11](RA) is updated

with the PC of the next instruction to be executed.
When a lower context save operation is performed the value of A[11](RA) is included in
the saved context and is placed in the second word of the CSA. This A[11](RA) is
correspondingly restored by a lower context restore.
The Call Depth Control field (PSW.CDC) consists of two subfields; A call depth counter,
and a mask that determines the width of the counter and when it overflows.
The Call Depth Counter is incremented on calls and is restored to its previous value on
returns. An exception occurs when the counter overflows. Its purpose is to prevent
software errors from causing ‘runaway recursion’ and depleting the CSA free list.
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4.4 Context Switching with Interrupts and Traps
When an interrupt or trap (for example NMI or SYSTRAP) occurs, the processor saves
the upper context of the current task in memory, suspends execution of the current task
and then starts execution of the interrupt or trap handler.
If, when an interrupt or trap is taken, the processor is not using the interrupt stack
(PSW.IS bit == 0), the Stack Pointer is then loaded with the current contents of the ISP
(Interrupt Stack Pointer). The PSW.IS bit is then set to one (1) to indicate execution from
the interrupt stack.
The Interrupt Control Register (ICR) holds the Current CPU Priority Number
(ICR.CCPN), the Interrupt Enable bit (ICR.IE) and Pending Interrupt Priority Number
(ICR.PIPN). These fields, together with the Previous CPU Priority Number (PCXI.PCPN)
and Previous Interrupt Enable (PCXI.PIE) are all part of the interrupt management
system.
ICR.CCPN is typically only non-zero within Interrupt Service Routines (ISRs) where it is
used to order interrupt servicing. It is held in a register that is separate from the PSW and
is not part of the context that the RTOS handles for switching among Software Managed
Tasks (SMTs).
PCXI.PIE is only typically zero within Trap handlers started within ISRs, e.g. an NMI or
SYSTRAP occurring during a peripheral service request.
For both interrupts and traps, the existing PCPN and PIE values in the current PCXI are
saved in the CSA for the upper context, and the existing IE and CCPN values in the ICR
are copied to the PCXI.PIE and PCXI.PCPN fields. Once the interrupt or trap is handled,
the saved lower context is reloaded if necessary and execution of the interrupted task is
resumed (RFE).
On an interrupt or trap the upper context of the current task context is saved by hardware
as an explicit part of the interrupt or trap sequence. For small interrupt and trap handlers
that can execute entirely within this set of registers saved on the interrupt, no further
context saving is needed. The handler can execute immediately and return. Typically
handlers that make calls or require more registers execute the BISR (Begin Interrupt
Service Routine) or SVLCX (Save Lower Context) instruction to save the lower context
registers that were not saved as part of the interrupt or trap sequence. That instruction
must be issued before any of the associated registers are modified, but it need not be
the first instruction in the handler.
Interrupt handlers with critical response time requirements can perform their initial, time-
critical processing immediately, using upper context registers. After that they can
execute a BISR and continue with less time-critical processing. The BISR re-enables
interrupts, hence its use dividing time critical from less time critical processing.
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Trap handlers typically do not have critical response time requirements, however those
that can occur in an ISR or those which might hold off interrupts for too long can also
take a similar approach to distinguish between non-interruptible and interruptible
execution segments.

4.5 Context Switching for Function Calls
When a function call is made (the CALL instruction is executed), the context of the calling
routine must be saved and then restored in order to resume the caller’s execution after
return from the function.
On a function call the entire set of upper context registers are saved by hardware.
Furthermore, the saving of the upper context by the CALL instruction happens in parallel
with the call jump. In addition, restoring the upper context is performed by the RET
(Return) instruction and takes place in parallel with the return jump. The called function
does not need to save and restore the caller’s context and is freed of any need to restrict
its usage of the upper context registers. The calling and called functions can co-operate
on the use of the lower context registers.
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4.6 Context Save and Restore Examples
This section provides an example of a context save operation and an example of a
context restore operation.

4.6.1 Context Save
Figure 17 shows the free and previous context lists for this example. The free context
list (FCX) contains three free CSAs (3, 4, and 5), and the previous context list (PCX)
contains two CSAs (2 and 1).
The FCX points to CSA3, the first available CSA. The Link Word of CSA3 points to
CSA4; the Link Word of CSA4 points to CSA5. The PCX points to the most recently
saved CSA in the previous context list. The Link Word of CSA2 points to CSA1. CSA1
contains the saved context prior to CSA2.
When the context save operation is performed, the first CSA in the free context list
(CSA3) is pulled off and is placed on the front of the previous context list.

Figure 17 CSAs and Processor State Prior to Context Save

Figure 18 shows the steps taken during the context save operation. The numbers in the
figure correspond to the steps listed after the figure.
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Figure 18 CSA and Processor SFR Updates on a Context Save Process

1. The contents of the Link Word in CSA3 are loaded into the NEW_FCX. The
NEW_FCX now points to CSA4. The NEW_FCX is an internal buffer and is not
accessible by the user.

2. The contents of the PCX are written into the Link Word of CSA3. The Link Word of
CSA3 now points to CSA2.

3. The contents of FCX are written into the PCX. The PCX now points to CSA3, which
is at the front of the Previous Context List.

4. The NEW_FCX is loaded into the FCX.
The processor SFRs and CSAs look as shown in Figure 19. The processor context to
be saved is now written into the rest of CSA3.

Figure 19 CSAs and Processor State After Context Save
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4.6.2 Context Restore
The example in Figure 20, shows the previous context list (PCX) with three CSAs (3, 2,
and 1) and the free context list (FCX) containing two CSAs (4 and 5).
The FCX points to CSA4, the first available CSA in the free context list. PCX points to
CSA3, the most recently saved CSA in the previous context list.
The Link Word of CSA3 points to CSA2; the Link Word of CSA2 points to CSA1; the Link
Word of CSA4 points to CSA5.

Figure 20 CSAs and Processor State Prior to Context Restore

When the context restore operation is performed, the first CSA in the previous context
list (CSA3) is pulled off and is placed on the front of the free context list.
Figure 21 shows the steps taken during the context restore operation. The numbers in
the figure correspond to the following steps:
1. The contents of the Link Word in CSA3 are loaded into the NEW_PCX. The

NEW_PCX now points to CSA2. The NEW_PCX is an internal buffer and is not
accessible by the user.

2. The contents of the FCX are written into the Link Word of CSA3. The Link Word of
CSA3 now points to CSA4.

3. The contents of the PCX are written into the FCX. The FCX now points to CSA3,
which is at the front of the free context list.

4. The NEW_PCX is loaded into the PCX.
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Figure 21 CSA and Processor SFR Updates on a Context Restore Process

The processor SFRs and CSAs now look as shown in Figure 22. The restored context
is then written into the upper or lower context registers.

Figure 22 CSAs and Processor State After Context Restore
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4.7 Context Management Registers
The three context management registers are pointers that are used during context save
and restore operations.
• FCX: Free CSA List Head Pointer page 4-14.
• PCX: Previous Context Pointer page 4-15.
• LCX: Free CSA List Limit Pointer page 4-16.
Each pointer consists of two fields:
• A16-bit offset.
• A 4-bit segment specifier.
Table 23 shows how the effective address of a Context Save Area (CSA) is generated
using these two fields. A Context Save Area is an address range containing 16 word
locations (64 bytes), which is the space required to save one upper or one lower context.
Incrementing the pointer offset value by one always increments the Effective Address
(EA) to the address that is 16 word locations above the previous one. The total usable
range in each address segment for CSAs is 4 MBytes, resulting in storage space for
64 KByte CSAs.

Figure 23 Generation of the Effective Address of a Context Save Area (CSA)

Note: See Context Save Area, page 4-3 for additional constraints on the Effective
Address (EA).
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4.7.1 Free CSA List Head Pointer Register (FCX)
The Free CSA List Head Pointer (FCX) register holds the free CSA list head pointer. This
always points to an available CSA. 

FCX
Free CSA List Head Pointer (FE38H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- FCXS

rw

15 14 13 12 11 10 19 8 7 6 5 4 3 2 1 0

FCXO

rw

Field Bits Type Description
- [31:20] - Reserved Field
FCXS [19:16] rw FCX Segment Address Field

Used in conjunction with the FCXO field.
FCXO [15:0] rw FCX Offset Address Field

The FCXO and FCXS fields together form the FCX 
pointer, which points to the next available CSA.
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4.7.2 Previous Context Pointer Register (PCX)
The Previous Context Pointer (PCX) holds the address of the CSA of the previous task.
The PCX is part of the PCXI register. 
 

 

PCX
Previous Context Pointer Register (FE00H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- PCXS

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Bits Type Description
[31:20] - These bits are not relevant to the pointer function and so 

are not described here. See the PCXI register.
PCXS [19:16] rw Previous Context Pointer Segment Address Field

This field is used in conjunction with the PCXO field.
PCXO [15:0] rw Previous Context Pointer Offset Field

The PCXO and PCXS fields form the pointer PCX, which 
points to the CSA of the previous context.
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4.7.3 Free CSA List Limit Pointer Register (LCX)
The free CSA List Limit Pointer (LCX) register is used to recognize impending free CSA
list depletion. If a context save operation occurs and the value of FCX matches LCX then
the ‘free context depletion’ condition is recognized, which triggers an FCD trap
immediately after completion of the operation causing the context save; i.e. the return
address of the FCD trap is the first instruction of the trap/interrupt/called routine, or the
instruction following an SVLCX or BISR instruction.
Note: Please refer to the FCD trap description for details on the use and setting of LCX.

See FCD - Free Context list Depletion (TIN 1), page 6-10.
 

 

LCX
Free CSA List Limit Pointer (FE3CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- LCXS

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCXO

rw

Field Bits Type Description
- [31:20] - Reserved Field
LCXS [19:16] rw LCX Segment Address

This field is used in conjunction with the LCXO field.
LCXO [15:0] rw LCX Offset Field

The LCXO and LCXS fields form the pointer LCX, which 
points to the last available CSA.
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4.8 Accessing CSA Memory Locations
Implementations may internally buffer context information to increase performance. To
ensure memory coherency, a DSYNC instruction must be executed prior to any access
to an active CSA memory location. The DSYNC instruction forces all internally buffered
CSA register state to be written to memory.
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5 Interrupt System
This chapter describes the interrupt system, including arbitration, the priority level
scheme, and access to the vector table.
In a TriCore® system, multiple sources such as peripherals or external inputs can
generate an interrupt signal to the CPU to request for service. The interrupt system also
supports the implementation of additional units which are capable of handling interrupt
requests, such as a second CPU, a standard DMA (Direct Memory Access) unit, or a
PCP (Peripheral Control Processor). In the context of this chapter such units are known
as ‘service providers’. Interrupt requests are often therefore referred to as ‘service
requests’.
Besides the main CPU, up to three additional service providers can be handled with an
interrupt Service Request Node (SRN). The actual number of additional service
providers implemented in a given device is implementation dependent.
Each interrupt or service request from a module connects to a Service Request Node,
containing a Service Request Control Register (SRC). Interrupt arbitration busses
connect the SRNs with the interrupt control units of the service providers. These control
units handle the interrupt arbitration and communication with the service provider.
Figure 24, page 5-2 shows an overview of a typical TriCore interrupt system.

5.1 Service Request Node (SRN)
Each Service Request Node contains a Service Request Control Register (SRC) and the
necessary logic for communication with the requesting source module and the interrupt
arbitration busses. A peripheral or other module can have several service request lines,
with each one of them connecting to its own individual SRN.
To support software-posting of interrupts for RTOS code, the TriCore architecture
defines four Service Request Nodes (SRNs) which are not attached to a peripheral or
any other module on the chip. The interrupt request bit can only be set by software.
These SRNs are called the CPU Service Request Nodes. It should be noted however,
that the interrupt request can also be set through an external bus master for example.
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Figure 24 Block Diagram of a Typical TriCore Interrupt System
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5.1.1 Service Request Control Register (SRC)
A typical Service Request Control register in the TriCore architecture holds the individual
control bits to enable or disable the request, to assign a priority number, and to direct the
request to one of the service providers. A request status bit shows whether or not the
request is active. Besides being activated by the associated module through hardware,
each request can also be set or reset through software.
The generic format and description of a Service Request Control register (SRC) is given
below.

.

module_SRCn
Service Request Control (n=0 to 3) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS - SRPN

w w rh rw rw rw

Field Bit Type Description
- [31:16] - Reserved Field
SETR 15 w Service Request Set Bit

0 : No action.
1 : Set SRR (no action if CLRR == 1).
Written value is not stored. Read returns 0. 
No action if CLRR is also set.
See Service Request Set and Clear Bits (SETR, CLRR) 
description.

CLRR 14 w Service Request Clear Bit
0 : No action.
1 : Clear SRR (no action if SETR == 1).
Written value is not stored. Read returns 0. 
No action if SETR is also set.
See Service Request Set and Clear Bits (SETR, CLRR) 
description.
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Service Request Set and Clear Bits (SETR, CLRR)
These bits enable software to set or clear the actual service request bit SRR.
• Writing 1 to the SETR bit causes the SRR bit to be set to 1.
• Writing 1 to the CLRR bit causes the SRR bit to be cleared to 0.
If hardware attempts to modify SRR during an atomic read-modify-write software
operation (such as store) the software operation succeeds and the hardware operation
has no effect.
The value written to SETR or CLRR is not stored. Writing zero to these bits has no effect
and these bits always return zero when read. If both SETR and CLRR are written to 1 at
the same time, the SRR bit is not affected.

SRR 13 rh Service Request Flag
0 : No Service Request pending.
1 : Service Request is pending.
See Service Request Flag (SRR) description.

SRE 12 rw Service Request Enable Control
0 : Service Request is disabled.
1 : Service Request is enabled.
See Service Request Enable Control (SRE) description.

TOS [11:10] rw Type-of-Service Control
00B : Service Provider 0. Typically CPU service is initiated.
01B : Request Service Provider 1. Implementation 
specific.
10B : Request Service Provider 2. Implementation 
specific.
11B : Request Service Provider 3. Implementation 
specific.
See Type-of-Service Control (TOS) description.

- [9:8] - Reserved Field
SRPN [7:0] rw Service Request Priority Number

00H : A Service Request on this priority is never serviced.
01H : Service Request, lowest priority.
…
FFH : Service Request, highest priority.
See Service Request Priority Number (SRPN) 
description.

Field Bit Type Description
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Service Request Flag (SRR)
The SRR bit is directly set or reset by the associated hardware. For example, an
associated trigger event in a peripheral sets this bit to one and the acknowledgment of
the service request by the Service Provider causes this bit to be cleared.
Bit SRR can be set or reset by software via bits SETR or CLRR, respectively. Writing
directly to SRR via software has no effect.
SRR can be set or cleared (either by hardware or by software) regardless of the state of
the enable bit SRE.
If SRE == 1, a pending service request takes part in the interrupt arbitration of the
service provider selected via the TOS bit field. Bit SRR is automatically reset by
hardware when the service request is acknowledged and serviced.
If SRE == 0, a pending service request is excluded from interrupt arbitrations. Software
can poll SRR to check for a pending service request. SRR must be reset by software in
this case (write 1 to CLRR).

Service Request Enable Control (SRE)
The SRE bit controls whether an active interrupt request is passed to the designated
interrupt service provider (See the Type-of-Service Control (TOS) description, which
follows). If SRE == 1, then the interrupt source associated with this SRN is enabled; i.e.
if SRE is set to 1 and the value of the SRR bit moves to 1 (a service request is pending),
the Service Request Node (SRN) will participate in interrupt arbitration rounds until the
bit is cleared by software or until the interrupt is accepted for presentation to the interrupt
service provider indicated by the TOS field. If the SRE bit is set to 0, then the associated
interrupt source is disabled.
Disabling an interrupt source by clearing its SRE bit does not affect the setting or clearing
of the SRR bit. The SRR bit can still be set by hardware or software (via the SETR bit),
and can be read by software, but if the interrupt source is disabled it will not cause a
hardware interrupt to be asserted. Users can therefore choose whether to handle the
event associated with an individual SRN as an interrupt or through software polling.

Type-of-Service Control (TOS)
The interrupt system is designed to manage up to four Service Providers for service
requests from peripherals or other sources. The TOS bit field is used to select the service
provider for a request, indicating whether the service request takes part in the interrupt
arbitration of the selected service provider. The number of service providers for a given
device is implementation specific.
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Service Request Priority Number (SRPN)
The 8-bit Service Request Priority Number (SRPN) of a service request, indicates its
priority with respect to other sources requesting an interrupt to the same service
provider, and to the priority of the service provider itself.
Each SRPN used by active sources requesting the same service provider must be
unique at a given time. No active sources can use the same SRPN at the same time,
except for the default SRPN of 00H which excludes an SRN from taking part in the
arbitration. This means that no two or more active sources (requesting CPU service for
example) are allowed to use the same SRPN, although they can use the same SRPNs
as sources which are requesting another service provider. The term active source in this
context means a source which has its request enable bit SRE set to 1, to allow the
request to participate in interrupt arbitrations. If a source is not active, meaning its
service request enable bit is cleared (SRE == 0), no restrictions are applied to the
Service Request Priority Number.
Implementations may look at a subrange of SRPN fields. In such an implementation or
configuration the SRPN examined fields must be unique within the examined field.
The SRPN also identifies the entry into the interrupt vector table (or similar structures
depending on the nature of the service provider). Unlike other interrupt systems the
TriCore vector table provides an entry for each priority number, not for a specific interrupt
source. In this way the vector table is de-coupled from the peripherals and a single
peripheral can have multiple entry points for different purposes depending on its priority
at a given time.
The range for the Service Request Numbers used in a system depends on the number
of active service requests and the user-definable organization of the vector table. With
the 8-bit SRPN, the interrupt arbitration scheme permits up to 255 sources to be active
at one time. More information on the range of SRPNs can be found in Interrupt Priority
Groups, page 5-12.

5.2 Interrupt Control Unit (ICU)
The Interrupt Control Unit (ICU) manages the interrupt system and arbitrates incoming
interrupt requests to find the one with the highest priority and to determine whether or
not to interrupt the service provider. The number of Interrupt Control Units depends on
the number of service providers implemented in a TriCore device. Each ICU controls its
associated interrupt arbitration bus and manages the communication with its service
provider. The ICU is closely coupled with the CPU and its Interrupt Control Register
(ICR). This register and the operation of the ICU is described in the sections which follow.
In this document, only the CPU Interrupt Control Unit is detailed.
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5.2.1 ICU Interrupt Control Register (ICR)
The ICU Interrupt Control Register (ICR) holds the current CPU Priority Number (CCPN),
the global Interrupt enable/disable bit (IE) and the Pending Interrupt Priority Number
(PIPN), as well as implementation-specific bits to control the interrupt arbitration cycles.

5.2.2 Interrupt Control Unit Operation
When an interrupt service is requested by one or more enabled sources, these requests
are serviced depending on their priority ranking. The interrupt system must therefore
determine which request has the highest priority each time multiple requests are
received. The interrupt system uses a scheme that performs the arbitration in parallel to
normal CPU operation. The Interrupt Control Unit (ICU) controls this scheme, which
takes place in one or more cycles using the interrupt arbitration bus. The detailed
arbitration scheme is implementation specific.
The ICU automatically starts an arbitration when a new interrupt request is detected. At
the end of the arbitration the ICU has determined the service request with the highest
priority number. This number is stored in the PIPN field of register ICR and generates an
interrupt request to the CPU.
The CPU checks the state of the global interrupt enable bit ICR.IE, and compares the
current CPU priority number CCPN in register ICR, against the PIPN. The CPU can be
interrupted only if ICR.IE == 1 and PIPN is greater than CCPN. If this is true the CPU can
enter the service routine; it reads the PIPN to determine the vector entry and
acknowledges the ICU, which in turn sends acknowledgement back to the pending
interrupt request (the ‘winner’ of this arbitration round), to inform it that it will be serviced.
This node then resets its service request flag (SRR).
After sending the acknowledge, the ICU sets PIPN to 00H (no valid pending request) and
automatically starts a new arbitration to check whether there is another pending interrupt
request. If there is then the priority number of this request is written to PIPN at the end
of this arbitration. If there is no pending interrupt request then PIPN remains at 00H and
the ICU enters an idle state, waiting for the next interrupt request.
Note: Further CPU interrupt service actions are described in Entering an Interrupt

Service Routine (ISR), page 5-8.
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Several conditions could block the CPU from immediately responding to the interrupt
request generated by the ICU. These are:
• The interrupt system is globally disabled (ICR.IE == 0).
• The current CPU priority CCPN, is equal to or higher than the Pending Interrupt

Priority Number (PIPN).
• The CPU is in the process of entering an interrupt or trap service routine.
• The CPU is operating on non-interruptible trap services.
• The CPU is executing a multi-cycle instruction.
• The CPU is executing an instruction which modifies the ICR.
The CPU responds to the interrupt request only when these conditions are no longer
true.
An arbitration is performed when a new service request is detected, regardless of
whether the interrupt system is globally enabled or not, and regardless of whether there
are other conditions preventing the CPU from servicing interrupts. In this way the PIPN
field therefore reflects the pending service request with the highest priority. This can for
example, be used for software polling techniques to determine high priority requests
while keeping the interrupt system globally disabled.
If a new service request is generated by an SRN while an arbitration is in progress, this
request has to wait until at least the end of that arbitration.

5.2.3 Arbitration Scheme
The arbitration scheme is implementation specific and is detailed in the documentation
accompanying a specific TriCore product.

5.3 Entering an Interrupt Service Routine (ISR)
When all conditions are clear for the CPU to service an interrupt request, the following
actions are performed to enter an Interrupt Service Routine (ISR):
• The upper context of the current task is saved, and A[11] (Return Address) is updated

with the current PC.
• If the processor was not previously using the interrupt stack (PSW.IS = 0), then the

A[10] Stack Pointer is set to the interrupt stack pointer (ISP). The stack pointer bit is
then set for using the interrupt stack: PSW.IS = 1.

• The I/O mode is set to Supervisor mode, which means all permissions are enabled:
PSW.IO = 10B.

• Memory protection using the interrupt memory protection map is enabled:
PSW.PRS = 00B.

• The Call Depth Counter (PSW.CDC) is cleared, and the call depth limit selector is set
for 64: PSW.CDC = 0000000B.

• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
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• The interrupt system is globally disabled: ICR.IE = 0. The old ICR.IE is saved into
PCXI.PIE.

• The Current CPU Priority Number (ICR.CCPN) is saved into the Previous CPU
Priority Number (PCXI.PCPN) field.

• The Pending Interrupt Priority Number (ICR.PIPN) is saved into the Current CPU
Priority Number (ICR.CCPN) field.

• The interrupt vector table is accessed to fetch the first instruction of the ISR. The
effective address is the contents of the BIV register, ORd with the PIPN number
left-shifted by 5.

Note: Global register write permission is disabled (PSW.GW == 0) whenever an
Interrupt Service Routine or trap handler is entered. This ensures that all traps and
interrupts must assume they do not have write access to the registers controlled
by PSW.GW by default.

An Interrupt Service Routine is entered with the interrupt system globally disabled and
the current CPU priority (CCPN) set to the priority (PIPN) of the interrupt being serviced.
It is up to the user to enable the interrupt system again and optionally modify the priority
number CCPN to implement interrupt priority levels or handle special cases. See Using
the TriCore Interrupt System, page 5-12.
The interrupt system can be enabled with the ENABLE instruction. ENABLE sets
ICR.IE = 1 (interrupt system enabled). The BISR (Begin Interrupt Service Routine)
instruction also enables the interrupt system, sets the ICR.CCPN to a new value, and
saves the lower context of the interrupted task. The interrupt enable bit (ICR.IE) and
current CPU priority number (ICR.CCPN) can also be modified with the MTCR (Move To
Core Register) instruction.
The ENABLE, BISR, and DISABLE (disable interrupts) instructions are all executed such
that the CPU is blocked from taking interrupt requests until the instruction is completely
finished. This avoids pipeline side effects and eliminates the need for an ISYNC
(synchronize instruction stream) following these instructions. MTCR is an exception and
must be followed by an ISYNC instruction.

5.4 Exiting an Interrupt Service Routine (ISR)
When an ISR exits with an RFE (Return From Exception) instruction, the hardware
automatically restores the upper context. The upper context includes the PCXI register
which holds the Previous CPU Priority Number (PCPN) and the Previous Global
Interrupt Enable Bit (PIE). The values in these respective bits are used as follows:
• PCXI.PCPN is written to ICR.CCPN to set the CPU priority number to the value

before interruption.
• PCXI.PIE is written to ICR.IE to restore the state of this bit.
The interrupted routine then continues.
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5.5 Interrupt Vector Table
Interrupt Service Routines are associated with interrupts at a particular priority by way of
the Interrupt Vector Table. The Interrupt Vector Table is an array of Interrupt Service
Routine (ISR) entry points. The Interrupt Vector Table is stored in code memory.
When the CPU takes an interrupt, it calculates an address in the Interrupt Vector Table
that corresponds with the priority of the interrupt (the ICR.PIPN bit field). This address is
loaded in the program counter. The CPU begins executing instructions at this address in
the Interrupt Vector Table. The code at this address is the start of the selected Interrupt
Service Routine (ISR). Depending on the code size of the ISR, the Interrupt Vector Table
may only store the initial portion of the ISR, such as a jump instruction that vectors the
CPU to the rest of the ISR elsewhere in memory.
The Base of Interrupt Vector Table register (BIV) stores the base address of the Interrupt
Vector Table. Interrupt vectors are ordered in the table by increasing priority. The BIV
register can be modified using the MTCR instruction during the initialization phase of the
system (the BIV is ENDINIT protected), before interrupts are enabled. With this
arrangement, it is possible to have multiple Interrupt Vector Tables and switch between
them by changing the contents of the BIV register.
When interrupted, the CPU calculates the entry point of the appropriate Interrupt Service
Routine from the PIPN and the contents of the BIV register. The PIPN is left-shifted by
five bits and ORed with the address in the BIV register to generate a pointer into the
Interrupt Vector Table. Execution of the ISR begins at this address. Due to this operation,
it is recommended that bits [12:5] of register BIV are set to 0. Note that bit 0 of the BIV
register is always 0 and cannot be written to (instructions have to be aligned on even byte
boundaries).

Figure 25 Interrupt Vector Table Entry Address Calculation

Left-shifting the PIPN by 5 bits creates entries in the vector table which are evenly
spaced by 8 words. If an interrupt handler is very short it may fit entirely within the
8 words available in the vector code segment. Otherwise the code stored at the entry
location can either span several vector entries, or should contain some initial instructions
followed by a jump to the rest of the handler. See Spanning Interrupt Service Routines
across Vector Entries, page 5-12.
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Figure 26 Interrupt Vector Table

The BIV register allows the interrupt vector table to be located anywhere in the available
code memory. The default on power-up is fixed to 0000 0000H, however the BIV register
can be written to using the MTCR instruction during the initialization phase of the system,
before interrupts are enabled. It is also possible to have multiple interrupt vector tables
and switch between them simply by modifying the contents of the BIV register.
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5.6 Using the TriCore Interrupt System
The following sections contain examples showing how the TriCore architectures flexible
interrupt system can be used to solve both typical and special application requirements.

5.6.1 Spanning Interrupt Service Routines across Vector Entries
Because vector entries are not tied to the interrupt source, it is easy to span Interrupt
Service Routines (ISRs) across vector entry locations, as shown previously in Figure 26,
page 5-11. Spanning eliminates the need of a jump to the rest of the interrupt handler if
it would not fit into the available eight words between entry locations.
Note that priority numbers relating to entries occupied by a spanned service routine must
not be used for any of the active Service Request Nodes (SRNs) which request service
from the same service provider.
In Figure 26,  page 5-11, vector locations three and four are covered through the service
routine for entry two. Therefore these numbers must not be assigned to SRNs requesting
CPU service, although they can be used to request another service provider. The next
available vector entry is now entry five.
Use of this technique increases the range of priority numbers required in a given system,
but the size of the vector table must be adjusted accordingly.

5.6.2 Interrupt Priority Groups
Interrupt priority groups describe a set of interrupts which cannot interrupt each others
service routine. These groups are easily created with the TriCore interrupt system
architecture.
When the CPU starts the service of an interrupt, the interrupt system is globally disabled
and the CPU priority CCPN is set to the priority of the interrupt being serviced. This
blocks all further interrupts from being serviced until the interrupt system is either
enabled again through software, or the service routine is terminated with the RFE
(Return From Exception) instruction.
Note: The RFE instruction automatically re-installs the previous state of the ICR.IE bit.

This will be one (ICE.IE = 1), otherwise that interrupt would not have been
serviced.

When Interrupt Service Routine (ISR) software enables the interrupt system again by
setting ICR.IE without changing the CCPN, the effect is that all interrupt requests with
the same or lower priority than the CCPN are still blocked from being serviced. This
includes a re-occurrence of the current interrupt; i.e. it can not interrupt this service.
However this ISR will be interrupted by each request which has a higher priority number
than the CCPN. A potential problem (that is easily overcome in the TriCore architecture)
is that application requirements often require interrupt requests of similar significance to
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be grouped together in such a way that no request in that group can interrupt the ISR of
another member of the same group.
Creating these Interrupt Priority Groups is easily accomplished in the interrupt system.
For a defined group of interrupt requests, the software of their respective service routines
sets the CCPN to the number of the highest SRPN used in that group, before enabling
the interrupt system again. Figure 27 shows an example.

Figure 27 Interrupt Priority Groups

The interrupt requests with the priority numbers 11 and 12 form one group while the
requests with priority numbers 14 to 17 inclusive form another group. Every time one of
the interrupts from group one is serviced, the service routine sets the CCPN to 12, the
highest number in that group, before re-enabling the interrupt system.
Every time one of the interrupts from group two is serviced, the service routine sets the
CCPN to 17 before re-enabling the interrupt system. If interrupt 14 is serviced for
example, it can only be interrupted by requests with a priority number higher than 17, but
not through a request from its own priority group or requests with lower priority.
One can see the flexibility of this system and its superiority over systems with fixed
priority levels. In the example above, the interrupt request with priority number 13 forms
its own single member ‘group’. Setting the CCPN to the maximum number 255 in each
service routine has the same effect as not enabling the interrupt system again; i.e. all
interrupt requests can be considered to be in one group.
The flexibility for interrupt priority levels ranges from all interrupts being in one group, to
each interrupt request building its own group, and all possible combinations in between.
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5.6.3 Dividing ISRs into Different Priorities
Interrupt Service Routines can be easily divided into parts with different priorities. For
example, an interrupt is placed on a very high priority because response time and
reaction to an event is critical, but further operations in that service routine can run on a
lower priority. In this instance the service routine would be divided into two parts, one
containing the critical actions, the other part the less critical ones.
The priority of the interrupt node is first set to the high priority, so that when the interrupt
occurs the necessary actions are carried out immediately. The priority level of this
interrupt is then lowered and the interrupt request bit is set again via software (indicating
a pending interrupt) while still in the service routine. Returning to the interrupted program
terminates the high priority service routine. The pending interrupt is serviced when the
CPU priority is lower than its own priority. After entering the service routine, which is now
at a different address in the program memory, the outstanding but low-priority actions of
the interrupt are performed.
In other instances the priority of a service request might be low because the response
time to an event is not critical, but once it has been granted service it should not be
interrupted. To prevent any interruption the TriCore architecture allows the priority level
of the service request to be raised within the ISR, and also allows interrupts to be
completely disabled.

5.6.4 Using Different Priorities for the Same Interrupt Source
For some applications the priority of an interrupt request in relation to other requests is
not fixed, but depends on the current situation in the system. This can be achieved
simply by assigning different Service Request Priority Numbers (SRPNs) at different
times to an interrupt source depending on the application needs. Usually the ISR for that
interrupt executes different code depending on its priority.
In traditional interrupt systems, the ISR would have to check the current priority of that
interrupt request and perform a branch to the appropriate code section, causing a delay
in the response to the request. In the TriCore system however, the interrupt will
automatically have different vector entries for the different priorities. An extra check and
branch in the ISR is not necessary, therefore the interrupt latency is reduced.
In case the ISR is independent of the interrupt’s priority, branches need to be placed to
the common ISR code on each of the vector entries for that interrupt.
Note: The use of different priority numbers for one interrupt has to be taken into

consideration when creating the vector table.
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5.6.5 Software-Posted Interrupts
A software-posted interrupt is a true hardware interrupt, carrying an interrupt priority that
is processed through the regular interrupt subsystem when the interrupt is taken. The
only difference is that the interrupt request is generated by explicitly setting the service
request bit in a Service Request Node (SRN), through a software update of the node’s
control register.
Once the interrupt request bit in a service request control register is set, there is no way
to distinguish between a software-posted interrupt request and a hardware interrupt
request. For that reason it is generally advisable to use Service Request Nodes and
interrupt priority numbers for software-posted interrupts that are not used for hardware
interrupts, such as interrupts which are triggered by a peripheral module. However the
number of hardware SRNs available in a given system for such purposes depends on
the application requirements. An RTOS can not therefore rely on a certain number of
‘free’ SRNs for software-posting of interrupts.
To support the use of software-posted interrupts, principally for RTOS code, the
architecture provides a number of Service Request Nodes which are intended solely for
the purpose of software-posting. They are not connected to any peripheral or any other
module on the chip, and the service request flag can only be set by software. This
guarantees that there are SRNs available for the RTOS and user code which are not
used by hardware modules.
Note: Current implementations contain four CPU Service Request Nodes.

5.6.6 Interrupt Priority Level One
Interrupt one is the first and lowest-priority entry in the interrupt vector and is best used
for ISRs performing task management.
ISRs whose actions affect the launching of software-managed tasks post a software
interrupt request at priority level one to signal the change. This posting is normally from
RTOS code in a service function called directly from the ISR. The ISR can then execute
a normal return from interrupt, rather than jumping to an ISR exit function in the kernel.
There is no need for an exit function to check whether the ISR is returning to the
background task level or to a lower priority ISR that it interrupted, in order to determine
when to invoke the task dispatch function.
When there is a pending interrupt at a priority higher than the return context for the
current interrupt, this interrupt will then be serviced. When a return to the background
task level is performed the software-posted interrupt at priority level one will
automatically be recognized and serviced.
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6 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception, memory-management exception or an illegal access. Traps are
always active; they cannot be disabled by software action. This chapter describes the
different traps that can occur and the TriCore® architecture’s trap handling mechanism.

6.1 Trap Types
The TriCore architecture specifies eight general classes for traps. Each class has its own
trap handler, accessed through a trap vector of 32 bytes per entry, indexed by the
hardware-defined trap class number. Within each class, specific traps are distinguished
by a Trap Identification Number (TIN) that is loaded by hardware into register D[15]
before the first instruction of the trap handler is executed. The trap handler must test and
branch on the value in D[15] to reach the subhandler for a specific TIN.
Traps can be further classified as synchronous or asynchronous, and as hardware or
software generated. These are explained after the following table which lists the trap
classes, summarising and classifying the pre-defined set of specific traps within each
class.
In the following table: TIN = Trap Identification Number / Synch. = Synchronous /
Asynch. = Asynchronous / HW = Hardware / SW = Software.

Table 7 Supported Traps
TIN Name Synch. / 

Asynch.
HW / 
SW

Definition Page

Class 0 — MMU
0 VAF Synch. HW Virtual Address Fill.  page 6-7
1 VAP Synch. HW Virtual Address Protection.  page 6-7
Note: For VAF and VAP, see also MMU Traps, page 10-5.  page 10-5

Class 1 — Internal Protection Traps
1 PRIV Synch. HW Privileged Instruction.  page 6-7
2 MPR Synch. HW Memory Protection Read.  page 6-7
3 MPW Synch. HW Memory Protection Write.  page 6-8
4 MPX Synch. HW Memory Protection Execution.  page 6-8
5 MPP Synch. HW Memory Protection Peripheral Access.  page 6-8
6 MPN Synch. HW Memory Protection Null Address.  page 6-8
7 GRWP Synch. HW Global Register Write Protection.  page 6-8
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Class 2 — Instruction Errors
1 IOPC Synch. HW Illegal Opcode.  page 6-8
2 UOPC Synch. HW Unimplemented Opcode.  page 6-8
3 OPD Synch. HW Invalid Operand specification.  page 6-9
4 ALN Synch. HW Data Address Alignment.  page 6-9
5 MEM Synch. HW Invalid Local Memory Address.  page 6-9
Class 3 — Context Management
1 FCD Synch. HW Free Context List Depletion (FCX = LCX).  page 6-10
2 CDO Synch. HW Call Depth Overflow.  page 6-11
3 CDU Synch. HW Call Depth Underflow.  page 6-11
4 FCU Synch. HW Free Context List Underflow (FCX = 0).  page 6-11
5 CSU Synch. HW Call Stack Underflow (PCX = 0).  page 6-11
6 CTYP Synch. HW Context Type (PCXI.UL wrong).  page 6-11
7 NEST Synch. HW Nesting Error: RFE with non-zero call 

depth.
 page 6-12

Class 4 — System Bus and Peripheral Errors
1 PSE Synch. HW Program Fetch Synchronous Error.  page 6-12
2 DSE Synch. HW Data Access Synchronous Error.  page 6-12
3 DAE Asynch. HW Data Access Asynchronous Error.  page 6-12
4 CAE Asynch. HW Coprocessor Trap Asynchronous Error. 

(TriCore 1.3.1)
 page 6-13

5 PIE Synch. HW Program Memory Integrity Error. 
(TriCore 1.3.1)

 page 6-13

6 DIE Asynch/
Synch.

HW Data Memory Integrity Error. 
(TriCore 1.3.1)

 page 6-13

Class 5— Assertion Traps
1 OVF Synch. SW Arithmetic Overflow.  page 6-14
2 SOVF Synch. SW Sticky Arithmetic Overflow.  page 6-14
Class 6 — System Call1)

SYS Synch. SW System Call.  page 6-14

Table 7 Supported Traps (Continued)
TIN Name Synch. / 

Asynch.
HW / 
SW

Definition Page
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6.1.1 Synchronous Traps
Synchronous traps are associated with the execution or attempted execution of specific
instructions, or with an attempt to access a virtual address that requires the intervention
of the memory-management system. The instruction causing the trap is known precisely.
The trap is taken immediately and serviced before execution can proceed beyond that
instruction.

6.1.2 Asynchronous Traps
Asynchronous traps are similar to interrupts, in that they are associated with hardware
conditions detected externally and signaled back to the core. Some result indirectly from
instructions that have been previously executed, but the direct association with those
instructions has been lost. Others, such as the Non-Maskable Interrupt (NMI), are
external events. The difference between an asynchronous trap and an interrupt is that
asynchronous traps are routed via the trap vector instead of the interrupt vector. They
can not be masked and they do not change the current CPU interrupt priority number.

6.1.3 Hardware Traps
Hardware traps are generated in response to exception conditions detected by the
hardware. In most, but not all cases, the exception conditions are associated with the
attempted execution of a particular instruction. Examples are the illegal instruction trap,
memory protection traps and data memory misalignment traps. In the case of the MMU
traps (trap class 0), the exception condition is either the failure to find a TLB (Translation
Lookaside Buffer) entry for the virtual page referenced by an instruction (VAF trap), or
an access violation for that page (VAP trap). See MMU Traps, page 10-5 for more
information.

6.1.4 Software Traps
Software traps are generated as an intentional result of executing a system call or an
assertion instruction. The supported assertion instructions are TRAPV (Trap on
overflow) and TRAPSV (Trap on sticky overflow). System calls are generated by the

Class 7 — Non-Maskable Interrupt
0 NMI Asynch. HW Non-Maskable Interrupt.  page 6-14
1) For the system call trap, the TIN is taken from the immediate constant specified in the SYSCALL instruction.

The range of values that can be specified is 0 to 255, inclusive.

Table 7 Supported Traps (Continued)
TIN Name Synch. / 

Asynch.
HW / 
SW

Definition Page
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SYSCALL instruction. System call traps are described further in System Call (Trap
Class 6), page 6-14.

6.1.5 Unrecoverable Traps
An unrecoverable trap is one from which software can not recover; i.e. the task that
raised the trap can not be simply restarted.
In the TriCore architecture, FCU (a fatal context trap) is an unrecoverable error. See
FCU - Free Context List Underflow (TIN 4), page 6-11 for more information.

6.2 Trap Handling
The actions taken on traps by the trap handling mechanisms are slightly different from
those taken on external or software interrupts. A trap does not change the CPU interrupt
priority, so the ICR.CCPN field is not updated. See Exception Priorities, page 6-15.

6.2.1 Trap Vector Format
The trap handler vectors are stored in code memory in the trap vector table. The BTV
register specifies the Base address of the Trap Vector table. The vectors are made up
of a number of short code segments, evenly spaced by eight words.
If a trap handler is very short it may fit entirely within the eight words available in the
vector code segment. If it does not fit the vector code segment then it should contain
some initial instructions, followed by a jump to the rest of the handler.

6.2.2 Accessing the Trap Vector Table
When a trap occurs, a trap identifier is generated by hardware. The trap identifier has
two components:
• The Trap Class Number (TCN) used to index into the trap vector table.
• The Trap Identification Number (TIN) which is loaded into the data register D[15].
The Trap Class Number is left shifted by five bits and ORd with the address in the BTV
register to generate the entry address of the trap handler.

6.2.3 Return Address (RA)
The return address is saved in the return address register A[11].
For a synchronous trap, the return address is the PC of the instruction that caused the
trap. Only the SYS trap and FCD trap are different. On a SYS trap, triggered by the
SYSCALL instruction, the return address points to the instruction immediately following
SYSCALL. The behaviour for the FCD trap is described in FCD - Free Context list
Depletion (TIN 1), page 6-10.
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For an asynchronous trap, the return address is that of the instruction that would have
been executed next, if the asynchronous trap had not been taken. The return address
for an interrupt follows the same rule.

6.2.4 Trap Vector Table
The entry-points of all Trap Service Routines are stored in memory in the Trap Vector
Table. The BTV register specifies the base address of the Trap Vector Table in memory.
It can be assigned to any available code memory. The BTV register can be modified
using the MTCR instruction during the initialization phase of the system, (the BTV
register is ENDINIT protected). This arrangement makes it possible to have multiple
Trap Vector Tables and switch between them by changing the contents of the BTV
register.
When a trap event occurs, a trap identifier is generated by the hardware detecting the
event. The trap identifier is made up of a Trap Class Number (TCN) and a Trap
Identification Number (TIN).
The TCN is left-shifted by five bits and ORd with the address in the BTV register to form
the entry address of the TSR. Because of this operation, it is recommended that bits [7:5]
of register BTV are set to 0 (see Figure 28). Note that bit 0 of the BTV register is always
0 and can not be written to (instructions have to be aligned on even byte boundaries).
Left-shifting the TCN by 5 bits creates entries into the Trap Vector Table which are
evenly spaced 8 words apart. If a trap handler (TSR) is very short, it may fit entirely within
the eight words available in the Trap Vector Table entry. Otherwise, the code at the entry
point must ultimately cause a jump to the rest of the TSR residing elsewhere in memory.
Unlike the Interrupt Vector Table, entries in the Trap Vector Table cannot be spanned.

Figure 28 Trap Vector Table Entry Address Calculation
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6.2.5 Initial State upon a Trap
The initial state when a trap occurs is defined as follows:
• The upper context is saved.
• The return address in A[11] is updated.
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the

processor was not previously using the interrupt stack (in case of PSW.IS = 0). The
stack pointer bit is set for using the interrupt stack: PSW.IS = 1.

• The I/O mode is set to Supervisor mode, which means all permissions are enabled:
PSW.IO = 10B.

• The current Protection Register Set is set to 0: PSW.PRS = 00B.
• The Call Depth Counter (CDC) is cleared, and the call depth limit is set for 64:

PSW.CDC = 0000000B.
• Call Depth Counter is enabled, PSW.CDE = 1.
• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
• The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ ICR.IE and ICR.CCPN

are saved into PCXI.PIE and PCXI.PCPN respectively. ICR.CCPN remains
unchanged.

• The trap vector table is accessed to fetch the first instruction of the trap handler.
Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with
interrupts disabled. They can therefore perform critical initial operations without
interruptions, until they specifically re-enable interrupts.
For the non-recoverable FCU trap, the initial state is different. The upper context cannot
be saved. Only the following states are guaranteed:
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the

processor was not previously using the interrupt stack (in case of PSW.IS == 0).
• The I/O mode is set to Supervisor mode (all permissions are enabled:

PSW.IO = 10B).
• The current Protection Register Set is set to 0: PSW.PRS = 00B.
• The interrupt system is globally disabled: ICR.IE = 0. ICR.CCPN remains

unchanged.
• The trap vector table is accessed to fetch the first instruction of the FCU trap handler.
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6.3 Trap Descriptions
The following sub-sections describe the trap classes and specific traps listed in Table 7
Supported Traps, page 6-1.

6.3.1 MMU Traps (Trap Class 0)
For those implementations that include a Memory Management Unit (MMU), Trap
class 0 is reserved for MMU traps. There are two traps within this class, VAF and VAP.

VAF - Virtual Address Fill (TIN 0)
The VAF trap is generated when the MMU is enabled and the virtual address referenced
by an instruction does not have a page entry in the MMU Translation Lookaside Buffer
(TLB).

VAP - Virtual Address Protection (TIN 1)
The VAP trap is generated (when the MMU is enabled) by a memory access undergoing
PTE translation that is not permitted by the PTE protection settings, or by a User-0 mode
access to an upper segment that does not have the privileged peripheral property.

6.3.2 Internal Protection Traps (Trap Class 1)
Trap class 1 is for traps related to the internal protection system. The memory protection
traps in this class, MPR, MPW, and MPX, are for the range-based protection system and
are independent of the page-based VAP protection trap of trap class 0. See Memory
Protection Register Sets, page 9-2 for more details.
All memory protection traps (MPR, MPW, MPX, MPP, and MPN), are based on the
virtual addresses that undergo direct translation.
The following internal Protection Traps are defined:

PRIV - Privilege Violation (TIN 1)
A program executing in one of the User modes (User-0 or User-1 mode) attempted to
execute an instruction not allowed by that mode.
A table of instructions which are restricted to Supervisor mode or User-1 mode, is
supplied in the Instruction Set chapter of Volume 2 of this manual.

MPR - Memory Protection Read (TIN 2)
The MPR trap is generated when the memory protection system is enabled and the
effective address of a load, LDMST or SWAP instruction does not lie within any range
with read permissions enabled. This trap is not generated when an access violation
occurs during a context save/restore operation.
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MPW - Memory Protection Write (TIN 3)
The MPW trap is generated when the memory protection system is enabled and the
effective address of a store, LDMST or SWAP instruction does not lie within any range
with write permissions enabled.
This trap is not generated when an access violation occurs during a context save/restore
operation.

MPX - Memory Protection Execute (TIN 4)
The MPX trap is generated when the memory protection system is enabled and the PC
does not lie within any range with execute permissions enabled.

MPP - Memory Protection Peripheral Access (TIN 5)
A program executing in User-0 mode attempted a load or store access to a segment that
has the privileged peripheral property. See Physical Memory Attributes
(PMA), page 8-3.

MPN - Memory Protection Null address (TIN 6)
The MPN trap is generated whenever any program attempts a load / store operation to
effective address zero.

GRWP - Global Register Write Protection (TIN 7)
A program attempted to modify one of the global address registers (A[0], A[1], A[8] or
A[9]) when it did not have permission to do so.

6.3.3 Instruction Errors (Trap Class 2)
Trap class 2 is for signalling various types of instruction errors. Instruction errors include
errors in the instruction opcode, in the instruction operand encodings, or for memory
accesses, in the operand address.

IOPC - Illegal Opcode (TIN 1)
An invalid instruction opcode was encountered. An invalid opcode is one that does not
correspond to any instruction known to the implementation.

UOPC - Unimplemented Opcode (TIN 2)
An unimplemented opcode was encountered. An unimplemented opcode corresponds
to a known instruction that is not implemented in a given hardware implementation. The
instruction may be implemented via software emulation in the trap handler.
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Example UOPC conditions are:
• A MMU instruction if the MMU is not present.
• A FPU instruction if the FPU is not present.
• An external coprocessor instruction if the external coprocessor is not present.

OPD - Invalid Operand (TIN 3)
The OPD trap may be raised for instructions that take an even-odd register pair as an
operand, if the operand specifier is odd. The OPD trap may also be raised for other cases
where operands are invalid.
Implementations are not architecturally required to raise this trap, and may treat invalid
operands in an implementation defined manner.

ALN - Data Address Alignment (TIN 4)
An ALN trap is raised when the address for a data memory operation does not conform
to the required alignment rules. See Alignment Requirements, page 2-4, for more
information on these rules. An ALN trap is also raised when the size, length or index of
a circular buffer is incorrect. See Circular Addressing, page 2-9 for more details.

MEM - Invalid Memory Address (TIN 5)
The MEM trap is raised when the address of an access can be determined to either
violate an architectural constraint or an implementation constraint.
Defined MEM trap subclasses are different segment, segment crossing, CSFR access,
CSA restriction and scratch range.
An implementation must define which implementation constraint MEM traps it will raise,
or the alternative behaviour if the MEM trap is not raised. It must also document any
other implementation specific MEM traps it will raise.
Architectural constraints which will raise the MEM trap are:
• An addressing mode that adds an offset to a base address results in an effective

address that is in a different segment to the base address (different segment).
• A data element is accessed with an address, such that the data object spans the end

of one segment and the beginning of another segment (segment crossing)
Implementation constraints which can raise the MEM trap are
• A memory address is used to access a Core SFR (CSFR) rather than using a MTCR/

MFCR instruction (CSFR access)
• A memory address is used for a CSA access and it is not valid for the implementation

to place CSA there (CSA restriction)
• An access to Scratch memory is attempted using a memory address which lies

outside the implemented region of memory (scratch range error).
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6.3.4 Context Management (Trap Class 3)
Trap class 3 is for exception conditions detected by the context management subsystem,
in the course of performing (or attempting to perform) context save and restore
operations connected to function calls, interrupts, traps, and returns.

FCD - Free Context list Depletion (TIN 1)
The FCD trap is generated after a context save operation, when the operation causes
the free context list to become ‘almost empty’. The ‘almost empty’ condition is signaled
when the CSA used for the save operation is the one pointed to by the context list limit
register LCX. The operation responsible for the context save completes normally and
then the FCD trap is taken.
If the operation responsible for the context save was the hardware interrupt or trap entry
sequence, then the FCD trap handler will be entered before the first instruction of the
original interrupt or trap handler is executed. The return address for the FCD trap will
point to the first instruction of the interrupt or trap handler.
The FCD trap handler is normally expected to take some form of action to rectify the
context list depletion. The nature of that action is OS dependent, but the general choices
are to allocate additional memory for CSA storage, or to terminate one or more tasks,
and return the CSAs on their call chains to the free list. A third possibility is not to
terminate any tasks outright, but to copy the call chains for one or more inactive tasks to
uncached external or secondary memory that would not be directly usable for CSA
storage, and release the copied CSAs to the free list. In that instance the OS task
scheduler would need to recognize that the inactive task's call chain was not resident in
CSA storage, and restore it before dispatching the task.
The FCD trap itself uses one additional CSA beyond the one designated by the LCX
register, so LCX must not point to the actual last entry on the free context list. In addition,
it is possible that an asynchronous trap condition, such as an external bus error, will be
reported after the FCD trap has been taken, interrupting the FCD trap handler and using
one more CSA. Therefore, to avoid the possibility of a context list underflow, the free
context list must include a minimum of two CSAs beyond the one pointed to by the LCX
register. If the FCD trap handler makes any calls, then additional CSA reserves are
needed.
In order to allow the trap handlers for asynchronous traps to recognize when they have
interrupted the FCD trap handler, the FCDSF flag in the SYSCON (system configuration)
register is set whenever an FCD trap is generated. The FCDSF bit should be tested by
the handler for any asynchronous trap that could be taken while an FCD trap is being
handled. If the bit is found to be set, the asynchronous trap handler must avoid making
any calls, but should queue itself in some manner that allows the OS to recognize that
the trap occurred. It should then carry out an immediate return, back to the interrupted
FCD trap handler. See System Control Register (SYSCON), page 3-16.
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CDO - Call Depth Overflow (TIN 2)
A program attempted to execute a CALL instruction with the Call Depth counter enabled
and the call depth count value (PSW.CDC.COUNT) at its maximum value. Call Depth
Counting guards against context list depletion, by enabling the OS to detect ‘runaway
recursion’ in executing tasks. See Program Status Word Register (PSW), page 3-6.

CDU - Call Depth Underflow (TIN 3)
A program attempted to execute a RET (return) instruction with the Call Depth counter
enabled and the call depth count value (PSW.CDC.COUNT) at zero. A call depth
underflow does not necessarily reflect a software error in the currently executing task.
An OS can achieve finer granularity in call depth counting by using a deliberately narrow
Call Depth Counter, and incrementing or decrementing a separate software counter for
the current task on each call depth overflow or underflow trap. A program error would be
indicated only if the software counter were already zero when the CDU trap occurred.

FCU - Free Context List Underflow (TIN 4)
The FCU trap is taken when a context save operation is attempted but the free context
list is found to be empty (i.e. the FCX register contents are null). The FCU trap is also
taken if any error is encountered during a context save or restore operation. The context
operation cannot be completed. Instead a forced jump is made to the FCU trap handler
and D15 updated with the FCU TIN value.
In failing to complete the context save or restore, architectural state is lost, so the
occurrence of an FCU trap is a non-recoverable system error. The FCU trap handler
should ultimately initiate a system reset.

CSU - Call Stack Underflow (TIN 5)
Raised when a context restore operation is attempted and when the contents of the PCX
register were null or otherwise invalid. This trap indicates a system software error (kernel
or OS) in task setup or context switching among software managed tasks (SMTs). No
software error or combination of errors in a user task can generate this condition, unless
the task has been allowed write permission to the context save areas which, in itself, can
be regarded as a system software error.

CTYP - Context Type (TIN 6)
Raised when a context restore operation is attempted but the context type, as indicated
by the PCXI.UL bit, is incorrect for the type of restore attempted; i.e. a restore lower
context is attempted when PCXI.UL == 1, or a restore upper context is attempted when
PCXI.UL == 0. As with the CSU trap, this indicates a system software error in context list
management.
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NEST - Nesting Error (TIN 7)
A program attempted to execute an RFE (return from exception) instruction with the Call
Depth counter enabled and the call depth count value (PSW.CDC.COUNT) non-zero.
The return from an interrupt or trap handler should normally occur within the body of the
interrupt or trap handler itself, or in code to which the handler has branched, rather than
code called from the handler. If this is not the case there will be one or more saved
contexts on the residual call chain that must be popped and returned to the free list,
before the RFE can be legitimately issued.

6.3.5 System Bus and Peripheral Errors (Trap Class 4)

PSE - Program Fetch Synchronous Error (TIN 1)
The PSE trap is raised when:
• A bus error1) occurred because of an instruction fetch.
• An instruction fetch targets a segment that does not have the code fetch property.

See Physical Memory Attributes (PMA), page 8-3.
• A Code Fetch operation from Program scratchpad RAM2) (PSPR) (See Scratchpad

RAM, page 8-4) where the access is beyond the end of the memory range.

DSE - Data Access Synchronous Error (TIN 2)
The DSE trap is raised when:
• A data access is attempted to a segment that does not have the data access

property. (See Physical Memory Attributes (PMA), page 8-3).
• Whenever a bus error occurred because of a data load operation. It is also raised in

the case of a data load operation from Data scratchpad RAM2) (DSPR) (Scratchpad
RAM, page 8-4) where the access is beyond the end of the memory range.

Note: There are implementation-dependent registers for DSE which can be interrogated
to determine the source of the error more precisely. Refer to the User's Manual for
a specific TriCore implementation for more details.

DAE - Data Access Asynchronous Error (TIN 3)
The DAE trap is raised when the memory system reports back an error which cannot
immediately be linked to a currently executing instruction. Generally this means an error
returned on the system bus from a peripheral or external memory.

1) A bus fetch error is also generated for an instruction fetch to the data scratch pad RAM region (D000 0000H
to D3FF FFFFH) when the memory access is outside the range of the actual scratchpad RAMs.

2) PSPR is also known as SPRAM (Scratchpad RAM). DSPR is also known as Local Data RAM (LDRAM).
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This trap is raised whenever a bus error occurred because of a data store operation, or
when:
• There is a data store operation to local scratch memory but the access is beyond the

end of the memory range.
• There is an error caused by a cache management instruction.
Note: There are implementation-dependent registers for DAE which can be interrogated

to determine the source of the error more precisely. Refer to the User's Manual for
a specific TriCore implementation for more details.

CAE - Coprocessor Trap Asynchronous Error (TIN 4) (TriCore 1.3.1)
This CAE asynchronous trap is generated by a coprocessor to report an error.
Examples of typical errors that can cause a CAE trap are unimplemented coprocessor
instructions and arithmetic errors (as found in the Floating Point Unit for example).
CAE is shared amongst all coprocessors in a given system. A trap handler must
therefore inspect all coprocessors to determine the cause of a trap.

PIE - Program Memory Integrity Error (TIN 5) (TriCore 1.3.1)
The PIE trap is raised whenever an uncorrectable memory integrity error  is detected in
an instruction fetch. The trap is synchronous to the erroneous instruction. A PIE trap is
raised if any element within the fetch group contains an unrecoverable error. Hardware
is not required to localise the error to a particular instruction.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.

DIE - Data Memory Integrity Error (TIN 6) (TriCore 1.3.1)
The DIE trap is raised whenever an uncorrectable memory integrity error  is detected in
a data access. 
Implementations may choose to implement the DIE trap as either an asynchronous or
synchronous trap.
A DIE trap is raised if any element accessed by a load or store contains an uncorrectable
error. Hardware is not required to localise the error to the access width of the operation.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.
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6.3.6 Assertion Traps (Trap Class 5)

OVF - Arithmetic Overflow (TIN 1)
Raised by the TRAPV instruction, if the overflow bit in the PSW is set (PSW.V == 1).

SOVF - Sticky Arithmetic Overflow (TIN 2)
Raised by the TRAPSV instruction, if the sticky overflow bit in the PSW is set
(PSW.SV == 1).

6.3.7 System Call (Trap Class 6)

SYS - System Call (TIN = 8-bit unsigned immediate constant in SYSCALL)
The SYS trap is raised immediately after the execution of the SYSCALL instruction, to
initiate a system call. The TIN that is loaded into D[15] when the trap is taken is not fixed,
but is specified as an 8-bit unsigned immediate constant in the SYSCALL instruction.
The return address points to the instruction immediately following the SYSCALL.

6.3.8 Non-Maskable Interrupt (Trap Class 7)

NMI - Non-Maskable Interrupt (TIN 0)
The causes for raising a Non-Maskable Interrupt are implementation dependent.
Typically there is an external pin that can be used to signal the NMI, but it may also be
raised in response to such things as a watchdog timer interrupt, or an impending power
failure. Refer to the User's Manual for a specific TriCore implementation for more details.

6.3.9 Debug Traps

BBM - Break Before Make / BAM - Break After Make
Please refer to the Core Debug Controller chapter for information on debug traps. See
Chapter 12 Core Debug Controller (CDC), page 12-1.
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6.4 Exception Priorities
The priority order between an asynchronous trap, a synchronous trap, and an interrupt
from the software architecture model, is as follows:
1. Asynchronous trap (highest priority).
2. Synchronous trap.
3. Interrupt (lowest priority).
The following trap rules must also be considered:
1. The older the instruction in the instruction sequence which caused the trap, the

higher the priority of the trap. All potential traps with lower priorities are void.
2. Attempting to save a context with an empty free context list (FCX = 0) results in a

FCU (Free Context List Underflow) trap. This trap takes priority over all other
exceptions.

3. When the same instruction causes several synchronous traps anywhere in the
pipeline, priorities follow those shown in the table below.

Table 8 Synchronous Trap Priorities
Priority Type of Trap
Instruction Fetch Traps
1 Breakpoint (Virtual address, BBM)
2 VAF-P
3 VAP-P
4 MPX
5 PSE
6 PIE (TriCore 1.3.1)
Instruction Format Traps
7 IOPC
8 OPD
9 UOPC
Instruction Traps
10 Breakpoint trap (Instruction, BBM)
11 PRIV
12 GRWP
13 SYS
Context Traps
14 FCD
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15 FCU (Synchronous)
16 CSU
17 CDO
18 CDU
19 NEST
20 CTYP
Data Memory Access Traps
21 MEM (Data address)
22 ALN
23 MPN
24 VAF-D
25 VAP-D
26 MPR
27 MPW
28 MPP
29 DSE
30 DIE (TriCore 1.3.1)
General Data Traps
31 SOVF
32 OVF
33 Breakpoint trap (BAM)

Table 9 Asynchronous Trap Priorities
Priority Asynchronous Traps
1 NMI
2 DAE1)

1) DAE is used for store errors.

3 DIE (TriCore 1.3.1)
4 CAE (TriCore 1.3.1)

Table 8 Synchronous Trap Priorities (Continued)
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6.5 Interrupt and Trap Control Registers
Three CSFRs support interrupt and trap handling:
• ICR: Interrupt Control Register page 6-17.
• BIV: Base Interrupt Vector Table Pointer page 6-19.
• BTV: Base Trap Vector Table Pointer page 6-20.
The ICR holds the Current CPU Priority Number (CCPN), the enable/disable bit for the
Interrupt System (IE), the Pending Interrupt Priority Number (PIPN), and an
implementation specific control for the interrupt arbitration scheme. The other two
registers hold the base addresses for the interrupt (BIV) and trap vector tables (BTV).
Special instructions control the enabling and disabling of the interrupt system. For more
information see Interrupt System, page 5-1.

6.5.1 ICU Interrupt Control Register (ICR)
The ICU Interrupt Control register is defined as follows:

 

ICR
ICU Interrupt Control (FE2CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- Implementation 
Specific PIPN

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- IE CCPN

rwh rwh

Field Bits Type Function
- [31:27] - Reserved Field

[26:24] - Implementation Specific 
Control of the arbitration. See the relevant documentation 
for a specific TriCore product implementation.
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PIPN [23:16] rh Pending Interrupt Priority Number
A read-only bit field that is updated by the ICU at the end 
of each interrupt arbitration process. It indicates the 
priority number of the pending service request. ICR.PIPN 
is set to 0 when no request is pending, and at the 
beginning of each new arbitration process.
00H : No valid pending request.
01H : Request pending, lowest priority.
…
FFH : Request pending, highest priority.

- [15:9] - Reserved Field
IE 8 rwh Global Interrupt Enable Bit

The interrupt enable bit globally enables the CPU service 
request system. Whether a service request is delivered to 
the CPU depends on the individual Service Request 
Enable Bits (SRE) in the SRNs, and the current state of 
the CPU.
ICR.IE is automatically updated by hardware on entry and 
exit of an Interrupt Service Routine (ISR). ICR.IE is 
cleared to 0 when an interrupt is taken, and is restored to 
the previous value when the ISR executes an RFE 
instruction to terminate itself. ICR.IE can also be updated 
through the execution of the ENABLE, DISABLE, MTCR, 
and BISR instructions.
0 : Interrupt system is globally disabled.
1 : Interrupt system is globally enabled.

CCPN [7:0] rwh Current CPU Priority Number
The Current CPU Priority Number (CCPN) bit field 
indicates the current priority level of the CPU. It is 
automatically updated by hardware on entry or exit of 
Interrupt Service Routines (ISRs) and through the 
execution of a BISR instruction. CCPN can also be 
updated through an MTCR instruction.

Field Bits Type Function
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6.5.2 Base Interrupt Vector Table Pointer (BIV)
The BIV register contains the base address of the interrupt vector table. When an
interrupt is accepted, the entry address into the interrupt vector table is generated from
the priority number (taken from the PIPN) of that interrupt, left shifted by five bits, and
then ORd with the contents of the BIV register. The left-shift of the interrupt priority
number results in a spacing of 8 words (32 bytes) between the individual entries in the
vector table.

 

Note: This register is ENDINIT protected.

BIV
Base Interrupt Vector Table Pointer (FE20H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BIV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIV -

rw

Field Bits Type Description
BIV [31:1] rw Base Address of Interrupt Vector Table

The address in the BIV register must be aligned to an even 
byte address (halfword address). Because of the simple 
ORing of the left-shifted priority number and the contents 
of the BIV register, the alignment of the base address of 
the vector table must be to a power of two boundary, 
dependent on the number of interrupt entries used.
For the full range of 256 interrupt entries an alignment to 
an 8 KByte boundary is required. If fewer sources are 
used, the alignment requirements are correspondingly 
relaxed.

- 0 - Reserved Field
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6.5.3 Base Trap Vector Table Pointer (BTV)
The BTV contains the base address of the trap vector table. When a trap occurs, the
entry address into the trap vector table is generated from the Trap Class of that trap,
left-shifted by 5 bits and then ORd with the contents of the BTV register. The left-shift of
the Trap Class results in a spacing of 8 words (32 bytes) between the individual entries
in the vector table.

Note: This register is ENDINIT protected.

BTV
Base Trap Vector Table Pointer (FE24H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTV -

rw

Field Bits Type Description
BTV [31:1] rw Base Address of Trap Vector Table

The address in the BTV register must be aligned to an 
even byte address (halfword address). Also, due to the 
simple ORing of the left-shifted trap identification number 
and the contents of the BTV register, the alignment of the 
base address of the vector table must be to a power of two 
boundary. 
There are eight different trap classes, resulting in Trap 
Classes from 0 to 7. The contents of BTV should therefore 
be set to at least a 256 byte boundary (8 Trap Classes * 8 
word spacing).

- 0 - Reserved Field
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7 Memory Integrity Error Mitigation (TriCore 1.3.1)
Note: This chapter only applies to the TriCore 1.3.1 architecture. 

This chapter describes the architectural features used to support the mitigation of
memory integrity errors within the local memories of TriCore® processors.

7.1 Memory Integrity Error Classification
Memory integrity errors are classified as being either Correctable or Uncorrectable.

Uncorrectable Memory Integrity Error
If on accessing a memory element containing a memory integrity error, hardware is not
able to provide the expected data to the core, the memory integrity error is defined as
being uncorrectable. 

Correctable Memory Integrity Error 
If on accessing a memory element containing a memory integrity error, hardware is able
to provide the expected data to the core, the memory integrity error is defined as being
correctable.
Correctable memory integrity errors are further catagorised as either Resolved or
Unresolved. Correctable memory integrity errors always provide the correct data to the
core. As part of the correction process hardware may also update the erroneous source
data in memory with the corrected data. Such a memory integrity error is defined as
being Resolved. If the erroneous source data in memory is not updated the memory
integrity error is defined as being Unresolved.
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7.2 Memory Integrity Error Traps 
When an uncorrectable memory integrity error is encountered one of the following traps
is raised.

7.2.1 Program Memory Integrity Error (PIE)
The PIE trap is raised whenever an uncorrectable memory integrity error is detected in
an instruction fetch from a local memory. The trap is synchronous to the erroneous
instruction. The trap is of Class 4 and TIN 5. 
A PIE trap is raised if any element within the fetch group contains an unrecoverable error.
Hardware is not required to localise the error to a particular instruction.
Note: There are implementation specific registers that can be interrogated to determine

the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.

7.2.2 Data Memory Integrity Error (DIE)
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in
a data access to a local memory. The trap is of Class 4 and TIN 6.
A TriCore implementation may choose to implement the DIE trap as either an
asynchronous or synchronous trap.
A DIE trap is raised if any element accessed by a load/store contains an uncorrectable
error. Hardware is not required to localise the error to the access width of the operation.
Note: There are implementation specific registers that can be interrogated to determine

the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.
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7.3 Corrected Error Counts
Two architecturally visible registers (CCPIER, CCDIER) are used to maintain a running
count of corrected memory integrity errors in the local memory systems.
Each register contains two count fields, one for resolved corrected errors and one for
unresolved corrected errors. 

7.3.1 Count of Corrected Program Memory Integrity Errors Register
• The CCPIE-R counter is incremented on each detection of a corrected-resolved

memory integrity error in the local instruction memories. The counter saturates at the
value FFH.

• The CCPIE-U counter is incremented on each detection of a corrected-unresolved
memory integrity error in the local instruction memories. The counter saturates at the
value FFH.

Note: TriCore 1.3.1 Architecture Only.

CCPIER
Count of Corrected Program Memory Integrity Errors Register

(9218H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCPIE-R CCPIE-U

rwh rwh

Field Bits Type Description
- [31:16] - Reserved
CCPIE-R [15:8] rwh Count of Corrected-Resolved Program Integrity 

Errors.
In local instruction memory.

CCPIE-U [7:0] rwh Count of Corrected-Unresolved Program 
Integrity Errors.
In local instruction memory.
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7.3.2 Count of Corrected Data Integrity Errors Register
• The CCDIE-R counter is incremented on each detection of a corrected-resolved

memory integrity error in the local data memories. The counter saturates at the value
FFH.

• The CCDIE-U counter is incremented on each detection of a corrected-unresolved
memory integrity error in the local data memories. The counter saturates at the value
FFH.

Note: TriCore 1.3.1 Architecture Only.

CCDIER
Count of Corrected Data Integrity Errors Register

(9028H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCDIE-R CCDIE-U

rwh rwh

Field Bits Type Description
- [31:16] - Reserved
CCDIE-R [15:8] rwh Count of Corrected-Resolved Data Integrity 

Errors.
In local data memory.

CCDIE-U [7:0] rwh Count of Corrected-Unresolved Data Integrity 
Errors.
In local data memory.
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7.4 Error Information Registers
To provide information for memory integrity error handling and debug, a number of
implementation specific registers are provided. The contents of these registers are
implementation specific.

7.4.1 Program Integrity Error Trap Register (PIETR)
This register contains information allowing software to localise the source of the last
detected program memory integrity error.
Note: TriCore 1.3.1 Architecture Only.

PIETR
Program Integrity Error Trap Register

(9214H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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7.4.2 Program Integrity Error Address Register (PIEAR)
This register contains the address accessed by the last operation that caused a program
memory integrity error.
Note: TriCore 1.3.1 Architecture Only.

PIEAR
Program Integrity Error Address Register

(9210H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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7.4.3 Data Integrity Error Trap Register (DIETR)
This register contains information allowing software to localise the source of the last
detected data memory integrity error.
Note: TriCore 1.3.1 Architecture Only.

DIETR
Data Integrity Error Trap Register

(9024H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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7.4.4 Data Integrity Error Address Register (DIEAR)
This register contains the address accessed by the last operation that caused a data
memory integrity error.
Note: TriCore 1.3.1 Architecture Only.

DIEAR
Data Integrity Error Address Register

(9020H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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7.4.5 Memory Integrity Error Control Register
The MIECON register is provided to allow software to control the memory integrity error
detection and correction mechanisms. The register is architecturally defined, however
the register contents are implementation specific.
Note: TriCore 1.3.1 Architecture Only.

Note: This register is ENDINIT protected.

MIECON
Memory Integrity Error Control Register

(9044H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

Field Bits Type Description
- [31:0] - Implementation Specific
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7.5 Summary
A detected memory integrity error in local instruction memory will lead to either:
• a correctable error and an increment of one of the CCPIE counters or
• an uncorrectable error triggering a PIE trap.
A detected memory integrity error in local data memory will lead to either: 
• a correctable error and an increment of one of the CCDIE counters or 
• an uncorrectable error triggering a DIE trap.
The actual method used for the detection of memory integrity errors is implementation
dependent. 
User’s Manual 7-10 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

Physical Memory Attributes (PMA)
8 Physical Memory Attributes (PMA)
This chapter describes the Physical Memory Attributes (PMA) that regions of the
TriCore® physical address map may or may not have. These attributes are defined by
groups of physical memory properties.

8.1 Physical Memory Properties (PMP)
The TriCore architecture defines properties which physical memory addresses may or
may not possess. These properties are:
• Privileged Peripheral (P).
• Cacheable (C).
• Speculative (S).
• Code Fetch (F).
• Data Access (D).
Each property defines a characteristic of the accesses that are possible to a physical
memory region. For example, an address that does not have the cacheable property C,
would be described as Non-cacheable C.
In the following definitions the concept of necessary and speculative accesses is
introduced. Necessary accesses are those required to correctly compute the program
and any implementation or simulation of the program execution must perform these
accesses. Speculative accesses are those that an implementation may make in order to
improve performance either in correct or incorrect anticipation of a necessary access.

Privileged Peripheral (P)
Only Supervisor and User-1 mode data accesses are possible. No User-0 mode data
access is possible. User-0 mode data accesses result in an MPP (Memory Protection
Peripheral access) trap. All accesses are exempt from the protection system settings.
PTE translation where the physical address targets a region with this property results in
undefined behaviour.

Cacheable (C)
It is possible for data and code fetch accesses to the region to be cached by the CPU if
a data cache or code cache is respectively present and enabled.

Speculative (S)
It is possible to perform speculative data accesses to the memory. A speculative data
access is a read access to memory addresses that are not strictly necessary for correct
program execution. The processor never performs speculative write accesses which are
visible in a memory region.
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Code Fetch (F)
Fetch accesses are possible to this region. The fetch property allows full speculation on
all fetch accesses to the region. The cacheable property has no affect on the amount or
range of speculation of code fetches. If a necessary fetch access is directed by program
flow to a physical memory region that does not have the fetch property then a PSE
(Program fetch Synchronous Error) trap occurs.

Data Access (D)
Data accesses are possible to this region. If a data access is directed by necessary
program flow to a physical memory region that does not have the Data Access property,
then a DSE (Data access Synchronous Error) trap occurs.
For data accesses, the interpretation of the combinations of the Privileged Peripheral,
Cacheable and Speculative properties for a memory region are defined in Table 10. All
other combinations of these three properties not present in this table, are reserved.

Table 10 Data Access - Cacheable and Speculative Properties
Name Privileged 

Peripheral 
Property

Cacheable 
Property

Speculative 
Property

Behaviour of Physical 
Memory Region

Precise data 
access

P or P C S The processor only performs 
necessary accesses, in order, 
to the region.

Non-Cached 
access

P C S The processor may read an 
entire cache line1) containing 
the address of a necessary 
access and place it in a buffer 
for subsequent accesses. The 
order of accesses is not 
guaranteed 2).

1) The size of a cache line is implementation dependant. Examples of implemented cache lines are 16-bytes and
32-bytes, but may be smaller or larger.

2) The order of non-cached data accesses can be guaranteed by inserting a DSYNC instruction after each load
or store instruction. 

Full 
Speculation

P C S The processor may perform 
speculative read accesses to 
entire cache lines in physical 
memory and place them in the 
cache. The order of accesses is 
not guaranteed.
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8.2 Physical Memory Attributes (PMA)
A physical memory attribute is a defined set of physical memory properties. The
architecture defines four attributes:
Peripheral Space = PCSFD.
Emulator Space = PCSFD.
Cacheable Memory = PCSFD.
Non-Cacheable Memory = PCSFD.
All accesses to physical memory that have the Emulator Space attribute are directly
translated (See Memory Management Unit (MMU), page 10-1) and are not subject to
the protection constraints imposed by the protection system (See Memory Protection
System, page 9-1); i.e. It is not possible to generate an MPX, MPR or MPW trap with a
memory access to Emulator Space.

8.2.1 Physical Memory Attributes of the Address Map
The 4 GBytes (32-bit) of physical address space is divided into 16 equally sized
segments. Each segment has its own physical memory attribute.
Segment FH is constrained to be Peripheral Space and the lower 15 segments have
defined physical memory attributes, although Segment DH is constrained to be either
Cacheable or Non-Cacheable Memory. The lower 15 segments have implementation
defined physical memory attributes.
The default defined attributes are shown in the following table:

Table 11 TriCore Default Physical Memory Attributes for all Segments 
Segment Attributes
FH

1)

1) FH is constrained to be Peripheral Space.

Peripheral Space.
EH Peripheral Space.
DH Non-cacheable Memory.
CH

2)

2) See Section 8.3.2 for Segment C constraints. 

Cacheable Memory.
BH Non-cacheable Memory.
AH Non-cacheable Memory.
9H Cacheable Memory.
8H Cacheable Memory.
7H - 0H Cacheable Memory.
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The Emulator Space attribute is assigned to an implementation defined region of
memory when the Debug Mode is enabled. All physical memory accesses are subject to
the constraints imposed by the PMA attributes before being permitted to execute.

8.3 Scratchpad RAM

8.3.1 Scratchpad RAM (TriCore 1.3)
Segment D contains the scratchpad RAM. There are two different scratchpad RAMs:
• DSPR - Data scratchpad RAM.
• PSPR - Program scratchpad RAM.

8.3.2 Scratchpad RAM (TriCore 1.3.1)
Segment C and D contain the scratchpad RAM. There are two different scratchpad
RAMs:
• DSPR - Data scratchpad RAM.
• PSPR - Program scratchpad RAM.

In TriCore 1.3.1, segments C and D are constrained to have the attributes cacheable or
non-cacheable, although the cacheable property is only relevant for accesses in the
range C8000000H – CFFFFFFFH and D8000000H – DFFFFFFFH, implementation
defined for data accesses to PSPR and implementation defined for code fetch accesses
to DSPR.

Table 12 Scratchpad RAM (TriCore 1.3)
Segment D Regions Properties
DFFFFFFFH – D8000000H Implementation Dependent
D7FFFFFFH – D4000000H PSPR
D3FFFFFFH – D0000000H DSPR

Table 13 Scratchpad RAM (TriCore 1.3.1)
Segment C and D Regions Properties
DFFFFFFFH – D8000000H Implementation Dependent
D7FFFFFFH – D4000000H PSPR Image
D3FFFFFFH – D0000000H DSPR
CFFFFFFFH – C4000000H Implementation Dependent
C3FFFFFFH – C0000000H PSPR
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8.4 Permitted versus Valid Accesses
A memory access can be permitted without necessarily being valid. There are three
sources of permission for a memory access, the Protection System (PS), the Memory
Management Unit (MMU) and the Physical Memory Attributes (PMA). 

Figure 29 Translation Paths
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If a memory access is permitted by the MMU or PS, then it must also be permitted by the
PMA for the access to proceed, as shown in Figure 29. A memory access is not valid if
the address of the access is to an unimplemented region of memory or is misaligned;
therefore an access can be permitted but not valid.
The PS and MMU act upon the direct translation and virtual translation paths
respectively, therefore the permission for a memory access that undergoes virtual
translation lies only with the MMU, not the PS, and vice-versa.
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9 Memory Protection System
The TriCore® protection system provides the essential features needed to isolate errors.
The system is unobtrusive, imposing little overhead and avoids non-deterministic run-
time behaviour.
The protection system incorporates hardware mechanisms that protect user-specified
memory ranges from unauthorized read, write, or instruction fetch accesses. 
The protection hardware can also facilitate debugging and generate signals sent to the
Core Debug Controller (CDC) (See Core Debug Controller (CDC), page 12-1).

9.1 Memory Protection Subsystems
The following subsystems are involved with Memory Protection.

The Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception or illegal access. The TriCore architecture contains eight trap
classes and these traps are further classified as synchronous or asynchronous,
hardware or software. Covered in detail in Trap System, page 6-1.

The I/O Privilege Level
There are three I/O modes: User-0 mode, User-1 mode and Supervisor mode. The User-
1 mode allows application tasks to directly access non-critical system peripherals. This
allows systems to be implemented efficiently, without the loss of security inherent in
running in Supervisor mode. Covered in more detail in Access Privilege Level Control
(I/O Privilege), page 3-11.

Memory Protection
Provides control over which regions of memory a task is allowed to access, and what
types of access it is permitted.
• Range Based
The range-based memory protection system is designed for small and low cost
applications to provide coarse-grained memory protection for systems that do not require
virtual memory. This system is detailed in this chapter.
• Page Based
For applications that require virtual memory, the optional Memory Management Unit
(MMU) supports a familiar model that gives each memory page its own access
permissions. The MMU design and the page-based memory protection model facilitate
porting of standard operating systems that expect this model. The MMU is detailed in
Memory Management Unit (MMU), page 10-1.
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Peripheral or Emulator Space Protection
The majority of this chapter is concerned with memory protection, which does not apply
to memory regions that have the peripheral space or emulator space attribute. See the
chapter Physical Memory Attributes (PMA), page 8-1.

Effective Addresses
Effective addresses are translated into physical addresses using one of two translation
mechanisms:
• Direct translation.
• Page Table Entry (PTE) based translation.
Memory protection for addresses that undergo direct address translation is enforced
using the range-based memory protection system described in this chapter.
Virtual translation mechanisms are defined in the chapter Memory Management Unit
(MMU), page 10-1.

9.2 Range Based Memory Protection
The range-based memory protection system is designed for small and low cost
applications to provide coarse-grained memory protection for systems that do not require
virtual memory.

9.2.1 Memory Protection Register Sets
TriCore contains register sets that specify the address range and the access
permissions for a number of memory ranges. The PSW.PRS field is used to select which
register set is active at a given time. Two register sets are selected simultaneously:
• One Data Memory Protection.
• One Code Memory Protection.
The PSW.PRS field allows selection of up to four such register sets; four for data and
four for code. See Program Status Word Register (PSW), page 3-6 for more details
on the PSW.
At any given time one of the sets is the current protection register set which determines
the legality of memory accesses by the current task or ISR. The PSW.PRS field
determines the current protection register set number.
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Figure 30 Memory Protection Register Sets

The number of register sets provided for memory protection is specific to each TriCore
implementation, limited to a minimum of two and a maximum of four. This document only
describes the generic format of these register sets. Unimplemented register set
addresses are reserved and undefined.

Range Table Entries
Each register set is made up of several range registers (also called Range Table
Entries). The number of range registers in a Data or Code Memory protection set is
implementation defined, limited to a minimum of one and a maximum of four for any valid
protection set. Implementation may implement differing numbers of code and data range
registers in any given protection set. Each Range Table Entry (Figure 31,  page 9-4)
consists of a segment Protection register pair and a bit field within a common Mode
register.
The register pair specifies the lower and upper boundary addresses of the memory
range.
Lower Bound <= address < Upper Bound.
The Mode register contains the access permission. The control options are different for
the data and the code memory protection. The Mode register also contains the debug
control bits.
For load and store operations, data address values are checked against the entries in
the data range table.
On instruction fetches, the PC value for the fetch is checked against the entries in the
code range table. When an address is found to fall outside of all ranges defined in the
appropriate range table, then permission for the access is denied. When an address is
found to fall within a range defined in the appropriate range table, the associated mode
table entry is checked for access permissions. 
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An instruction fetch cannot occur from a byte aligned address, and so the least
significant bit of the Code Segment Protection upper and lower bound registers
(CPRx_n) is not writeable and always returns zero.

Figure 31 Example of a Protection Register Set implementing Four Range 
Table Entries and Four Data Range Table Entries.

Modes of Use for Range Table Entries 
Individual range table entries can be used just for memory protection or for debugging.
One entry is rarely used for both purposes. If the upper and lower bound values have
been set for debug breakpoints they are probably not meaningful for defining protection
ranges, and vice-versa. However, it is both possible and reasonable to have some
entries used for memory protection and others used for debugging.
To disable an entry for use in memory protection, clear both the RE and WE bits in a data
range table entry or clear the XE bit in a code range table entry. The entry can be
disabled for use in debugging by clearing any debug signal bits.
When a range entry is being used for debugging, the debug signal bits that are set
determine whether it is used as a single range comparator (giving an in-range/not
in-range signal) or as a pair of equal comparators. The two uses are not mutually
exclusive.
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Using Protection Register Sets
Supervisor mode does not automatically disable memory protection. The protection
register set that is selected for Supervisor mode tasks will normally be set up to allow
write access to regions of memory that are protected from User mode access. In addition
Supervisor mode tasks can execute instructions to change the protection maps, or to
disable the protection system entirely. But the Supervisor mode does not implicitly
override memory protection, and it is possible for a Supervisor mode task to take a
memory protection trap.
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9.3 Memory Protection Registers

9.3.1 Data Segment Protection Register - Upper
 

DPRx_mU
Data Segment Protection Register x_m Upper Bound 
(x = set number 0 to 3; m = range table entry)

(C004H+n*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPPBND

rw

Field Bits Type Description
UPPBND [31:0] rw DPRx_m Upper Boundary Address
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9.3.2 Data Segment Protection Register - Lower

DPRx_mL
Data Segment Protection Register x_m Lower Bound
(x = set number 0 to 3; m = range table entry)

(C000H+n*8H)
Reset Value: Implementation Specific 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOWBND

rw

Field Bits Type Description
LOWBND [31:0] rw DPRx_m Lower Boundary Address
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9.3.3 Code Segment Protection Register - Upper

CPRx_nU
Code Segment Protection Register x_n Upper Bound 
(x = set number 0 to 3; n = range table entry 0 to 3)

(D004H+n*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPPBND 0

rw r

Field Bits Type Description
UPPBND [31:0] rw CPRx_n Upper Boundary Address

The least significant bit is not writeable and always returns 
zero.
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9.3.4 Code Segment Protection Register - Lower

CPRx_nL
Code Segment Protection Register x_n Lower Bound 
(x = set number 0 to 3; n = range table entry 0 to 3) 

(D000H+n*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOWBND 0

rw r

Field Bits Type Description
LOWBND [31:0] rw CPRx_n Lower Boundary Address

The least significant bit is not writeable and always returns 
zero.
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9.3.5 Data Protection Mode Register

DPMx 
Data Protection Mode Register x 
(x = set number 0 to 3) (E000H+n*80H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WE3 RE3 WS3 RS3 WB
L3

RB
L3

WB
U3

RB
U3 WE2 RE2 WS2 RS2 WB

L2
RB
L2

WB
U2

RB
U2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WE1 RE1 WS1 RS1 WB
L1

RB
L1

WB
U1

RB
U1 WE0 RE0 WS0 RS0 WB

L0
RB
L0

WB
U0

RB
U0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description
WE(3-0) 31, 23, 

15, 7
rw Address Field Write Enable

0 : Data write accesses to associated address range not 
permitted.

1 : Data write accesses to associated address range 
permitted.

RE(3-0) 30, 22, 
14, 6

rw Address Field Read Enable
0 : Data read accesses to associated address range not 

permitted.
1 : Data read accesses to associated address range 

permitted.
WS(3-0) 29, 21, 

13, 5
rw Address Range Data Write Signal

0 : Data write signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data write accesses to associated address range.
RS(3-0) 28, 20, 

12, 4
rw Address Range Data Read Signal

0 : Data read signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data read accesses to associated address range.
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WBL(3-0) 27, 19, 
11, 3

rw Data Write Signal on Lower Bound Access
0 : Data write signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data write access to an address that matches lower 
bound address of associated address range.

RBL(3-0) 26, 18, 
10, 2

rw Data Read Signal on Lower Bound Access
0 : Data read signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data read access to an address that matches lower 
bound address of associated address range.

WBU(3-0) 25, 17, 
9, 1

rw Data Write Signal on Upper Bound Access
0 : Write signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data write access to an address that matches upper 
bound address of associated address range.

RBU(3-0) 24, 16, 
8, 0

rw Data Read Signal on Upper Bound Access
0 : Data read signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

data read access to an address that matches upper 
bound address of associated address range.

Field Bits Type Description
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9.3.6 Code Protection Mode Register

CPMx
Code Protection Mode Register x
(x = set number 0 to 3) (E200H+n*80H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XE3 - XS3 - BL3 - BU3 XE2 - XS2 - BL2 - BU2

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XE1 - XS1 - BL1 - BU1 XE0 - XS0 - BL0 - BU0

rw rw rw rw rw rw rw rw

Field Bits Type Description
XE(3-0) 31, 23, 

15, 7
rw Address Range Execute Enable

0 : Instruction fetch accesses to associated address range 
not permitted.

1 : Instruction fetch accesses to associated address range 
permitted.

- 30, 28, 
[26:25],
22, 20, 
[18:17],
14, 12, 
[10:9], 
6, 4, 
[2:1]

- Reserved Field

XS(3-0) 29, 21, 
13, 5

rw Address Range Execute Signal
0 : Execute signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

instruction fetch accesses to associated address 
range.
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BL(3-0) 27, 19, 
11, 3

rw Execute Signal on Lower Bound Access
0 : Lower bound execute signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

instruction fetch access to an address that matches 
lower bound address of associated address range.

BU(3-0) 24, 16, 
8, 0

rw Execute Signal on Upper Bound Access
0 : Upper bound execute signal disabled.
1 : Signal asserted to Core Debug Controller (CDC) on 

instruction fetch access to an address that matches 
upper bound address of associated address range.

Field Bits Type Description
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9.4 Access Permissions for Intersecting Memory Ranges
The permission to access a memory location is the OR of the memory range
permissions. If one of the ranges allows it, the memory access is permitted. This means
that when two ranges intersect, the intersecting regions will have the permission of the
most permissive range.
For example, if range A is set for read/write permission and range B read-only, the
intersecting region of A and B will be read/write. Nesting of ranges can be used for
example to allow read/write access to a subrange of a larger range in which the current
task is allowed read access.

9.4.1 Example Data Protection Register Set
Figure 32 illustrates the Data Protection Register Set x, where x is one of the four sets
as selected by the PSW.PRS field. The register set in this example consists of four range
table entries.

Figure 32 Example Configuration of a Data Protection Register Set
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In Figure 32 the four Data Segment and four Data Protection Mode Registers are set up
as follows:
• Data Segment Protection Registers DPRx_3U and DPRx_3L, define the upper (U)

and lower (L) bound for Data Range 3. Data Protection Mode Register 3 (DPMx_3)
defines the read-only permissions for Data Range 3.

• DPRx_2U and DPRx_2L define the upper (U) and lower (L) bound for Data Range 2.
DPMx_2 defines the read-write permissions for Data Range 2.

Note: Data Range 2, which has read/write permission, is nested within Data Range 3,
which has read-only permission. Because the intersecting rules state that
permission to access a memory location is the OR of the regions permissions, this
region therefore has read/write permission.

• DPRx_1U and DPRx_1L define the upper (U) and lower (L) bound for Data Range 1.
DPMx_1 defines the permissions for Data Range 1.

• DPRx_0U and DPRx_0L define the upper (U) and lower (L) bound for Data Range 0.
DPMx_0 defines the permissions for Data Range 0.

This same configuration can be used to illustrate Code Protection Register Set x.
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9.5 Using the Memory Protection System
When the protection system is enabled every memory access (read, write or execute) is
checked for legality before the access is performed. The legality is determined by all of
the following:
• The Protection Enable bit in the SYSCON register (SYSCON.PROTEN).
• The currently selected protection register set (PSW.PRS).
• The ranges defined in the protection register set.

9.5.1 Protection Enable bit
For the memory protection system to be active, the Protection Enable bit
(SYSCON.PROTEN) must be set to one (SYSCON.PROTEN == 1). If the memory
protection system is disabled (SYSCON.PROTEN == 0), then any access to any
memory address is permitted.

9.5.2 Set Selection
At any given time, one of the sets is the current protection register set which determines
the legality of memory accesses by the current task or Interrupt Service Routine. The
PSW.PRS field indicates the current Protection Register Set number.

9.5.3 Address Range
Data addresses (read and write accesses) are checked against the currently selected
data address range table, while instruction fetch addresses are checked against the
code address range tables. The mode entries for the data range table entries enable only
read and write accesses, while the mode entries for the code range table entries enable
only execute access.
In order for data to be read from program space, there must be an entry in the data
address range table that covers the address being read. Conversely there must be an
entry in the code address range table that covers the instruction being read.
The protection system does not differentiate between access permission levels. The
data and code protection settings have the same effect, whether the permission level is
currently set to Supervisor, User-1 or User-0 mode.
The protection system does not apply to accesses in memory regions with the peripheral
space or emulator space attribute. If a memory access is attempted to either of these
segments, the access is permitted by the protection system (but not necessarily the
Physical Memory Attributes) regardless of the protection system settings. For more on
PMA, see Physical Memory Attributes (PMA), page 8-1.
Saves or restores of contexts to the context save area (see Save and Restore Context
Operations, page 4-5) do not require the permission of the protection system to
proceed.
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9.5.4 Traps
There are three traps generated by memory protection, each corresponding to the three
protection mode register bits:
• MPW (Memory Protection Write) trap = WE bit.
• MPR (Memory Protection Read) trap = RE bit.
• MPX (Memory Protection Execute) trap = XE bit.
Refer to Chapter 6 Trap System, page 6-1 for a complete description of Traps.

9.6 Crossing Protection Boundaries
A memory access can straddle two regions defined by the protection system. Figure 33
shows a memory access (code or data) crossing the boundary of a permitted region and
a ‘not permitted’ region of memory. In this situation it is implementation defined as to
whether or not a memory protection trap is taken.
To ensure deterministic behaviour in all implementations of TriCore, a region at least
twice the size of the largest memory accesses, minus one byte, should be left as a buffer
between each memory protection region.

Figure 33 Protection Boundaries
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10 Memory Management Unit (MMU)
This chapter describes the TriCore® Memory Management Unit (MMU) architecture. The
MMU is an optional component in TriCore configurations. It need not be present in every
system that uses the core, and even when present it can be disabled. 
If the MMU is not present and enabled in a system, then virtual memory and page-based
memory access protection are not supported for that system. The range-based
protection system (a non-optional core component) still provides basic memory
protection services. For more details see Memory Protection System, page 9-1.
The memory management features include:
• 4 GBytes of virtual address space divided into 16 segments of 256 MBytes each. The

upper half of the virtual address space (segments [8H - FH]) is global, and mapped
directly onto the physical address space. The lower segment (segments [0H - 7H]) is
implicitly qualified by an Address Space Identifier (ASI). The operating system can
allocate distinct address spaces to each unique ASI. Two or more processes can also
share an address space ID, either serially or in parallel.

• 4 GBytes of physical address space divided into 16, 256 MByte segments.
• Virtual to physical address translation by direct translation or via Page Table Entries

(PTE), depending on the segment number of the virtual address and the status of the
MMU.

• Cacheability and access permissions based on physical memory attributes for
directly translated addresses, or by a combination of physical memory attributes and
virtual page attributes for addresses translated via Page Table Entries. Attributes for
segments [8H - FH] are pre-defined in a system memory map.

Virtual addresses are always translated into physical addresses before accessing
memory. The virtual address is translated into a physical address using either direct
translation or Page Table Entry (PTE) translation.
• Direct translation: If the virtual address belongs to the upper segment of the virtual

address space then the virtual address is directly used as the physical address. If the
virtual address belongs to the lower segment of the address space, then the virtual
address is used directly as the physical address if the processor is operating in
Physical mode (i.e. the MMU is disabled or not present).

• PTE translation: If the virtual address belongs to the lower segment of the address
space and the processor is operating in Virtual mode (i.e. the MMU is present and
enabled), then the virtual address is translated using a Page Table Entry.

PTE translation is performed by replacing the Virtual Page Number (VPN) of the virtual
address by a Physical Page Number (PPN) to obtain a physical address.
Six memory-mapped Memory Management Unit (MMU) Core Special Function
Registers (CSFRs) control the memory management system.
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10.1 Address Spaces
The TriCore virtual address space is 4 GBytes in size and divided into 16 segments, with
each segment consisting of 256 MBytes. The upper 4 bits of the 32-bit virtual address
are used to identify the segment. Segments are numbered [0H - FH].
Note: A virtual address is always translated into a physical address before accessing

memory.

The physical address space is 4 GBytes in size and is divided into 16 segments of
256 MBytes each.
The physical and virtual address space maps are shown in the following figure:

Figure 34  Physical and Virtual Address Spaces

A 32-bit virtual address is comprised of a Virtual Page Number (VPN) concatenated with
a Page Offset.
A 32-bit physical address is comprised of a Physical Page Number (PPN) concatenated
with a Page Offset.
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10.2 Address Translation
The MMU_CON.V bit controls the operating mode, Physical or Virtual, of the processor;
Physical mode if MMU_CON.V == 0, or Virtual mode if MMU_CON.V == 1 (See MMU
Configuration Register (MMU_CON), page 10-13).
The virtual address is translated into a physical address using either direct translation or
Page Table Entry translation, as shown in Figure 35.
Translation using the Page Table Entry (PTE) is performed by replacing the Virtual Page
Number (VPN) of the virtual address by a Physical Page Number (PPN), to obtain a
physical address.
If the virtual address is from the upper segments of the virtual address space then the
virtual address is used directly as the physical address (direct translation).
If the virtual address is from the lower segments of the address space, then the virtual
address is used directly as the physical address if the processor is operating in Physical
mode, or translated using a Page Table Entry if the processor is operating in Virtual
mode.

Figure 35 Virtual Address Translation

10.2.1 Address Translation for CSFR Pointers
The context pointers (PCX, FCX, and LCX), the Base Trap Vector (BTV) and the Base
Interrupt Vector (BIV) are constrained to use segments that undergo direct translation.
See Context Management Registers, page 4-13 and Interrupt and Trap Control
Registers, page 6-17.
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10.3 Translation Lookaside Buffers (TLBs)
The MMU provides PTE-based virtual address translation through two Translation
Lookaside Buffers (TLBs); TLB-A and TLB-B.
The MMU supports four page sizes; 1 KByte, 4 KBytes, 16 KBytes, and 64 KBytes,
although not all of these sizes can be used at once. At any given time each TLB provides
translations for only one particular page size. The page size setting of each TLB is
determined through the MMU_CON.SZA and MMU_CON.SZB fields, as described in
MMU Configuration Register (MMU_CON), page 10-13.
Each TLB contains a number (N) of TLB Table Entries (TTEs), where N is a minimum of
4 and a maximum of 128. The MMU_CON.TSZ field determines the size of each TLB.
Each TTE has an 8-bit index associated with it:
• Index numbers 0, …, MMU_CON.TSZ, are used for the entries in TLB-A.
• Index numbers 128, …, 128+MMU_CON.TSZ, are used for the entries in TLB-B.
Each TTE contains a Page Table Entry (PTE).
The organization (associativity) of each TLB is implementation-dependent.

Figure 36 Translation Lookaside Buffers
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10.3.1 TLB Table Entry (TTE) Contents
TLB Table Entries (TTE) contain the following fields:
• Address Space Identifier (ASI): Specifies the address space corresponding to the

virtual address. ASIs allow mappings of up to 32 virtual address spaces to coexist in
a TLB. An ASI is similar to a Process ID.

• Virtual Page Number (VPN): Stores 32 – log2 Pagesize bits where Pagesize is the
size of the page in bytes.

• Physical Page Number (PPN): Stores 32 – log2 Pagesize bits where Pagesize is
the size of the page in bytes.

• Execute Enable (XE): Allows instruction fetches from the virtual page.
• Write Enable (WE): Allows data writes to the virtual page.
• Read Enable (RE): Allows data reads from the virtual page.
• Cacheability bit (C): Allows the virtual page to be cached.
• Global bit (G): Indicates that the page is globally mapped therefore making it visible

in all address spaces.
• Valid bit (V): Indicates that the TTE contains a valid mapping.

10.4 Multiple Address Spaces
The MMU provides efficient support for multiple and shared virtual address spaces. Each
TTE (TLB Table Entry) contains an Address Space Identifier (ASI) which can identify the
distinct address space corresponding to the particular mapping. The ASI Register
(MMU_ASI) provides the current address space identifier for all memory accesses.
Virtual address translation is performed by a valid TTE if:
• It is a non-global TTE that matches the incoming VPN of the virtual address and the

Address Space Identifier contained in the ASI register.
• It is a global TTE that matches the incoming VPN.
Note: Global TTEs are indicated by the TTE[ ].G bit. Such mappings are visible to all

virtual address spaces.

10.5 MMU Traps
MMU traps belong to Trap Class Number (TCN) 0. The MMU can generate the following
traps:
• VAF (Virtual Address Fill).
• VAP (Virtual Address Protection).
The VAF trap is generated if PTE-based translation is required for a virtual address and
there is no PTE translation in the MMU. The VAP trap is generated if there is a matching
PTE and the access is disallowed. The VAP trap can also occur when User-0 accesses
upper segments in virtual mode.
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The VAF trap is assigned a TIN (Trap Identification Number) of 0 while the VAP trap is
assigned a TIN of 1. Both the VAF and VAP traps are synchronous traps.
The events that happen on an MMU trap are the same as those that happen on any other
trap. In addition to context saving and control transfer, the virtual address is right shifted
by 10 + 2 * min(MMU_CON.SZA, MMU_CON.SZB), and loaded into the Translation
Fault Page Address register (MMU_TFA). Figure 37 shows Virtual mode traps for read,
write and fetch accesses.

Figure 37 Virtual Mode Traps for Read, Write and Fetch Accesses1) 2)

Any User-0 mode access to a virtual address in the upper segments that does not have
the peripheral space attribute results in a VAP trap. See Trap Types, page 6-1 for more
on traps.

1) In User-0 mode the MPP trap is for read/write accesses, and the PSE trap for fetch accesses. In User-1 and
Supervisor modes, the PSE trap is for fetch accesses. There is no trap for read/write accesses in these modes.

2) Subject to constraints imposed by the Physical Memory Attributes. See Physical Memory Attributes
(PMA), page 8-1.
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10.6 Virtual Mode Protection
Memory protection is enforced using separate mechanisms for the two translation paths.
These are described in this section.

10.6.1 Direct Translation
Virtual memory protection for addresses that undergo direct translation is provided using
standard TriCore range-based protection. The range-based protection mechanism
provides support for protecting memory ranges from unauthorized read, write or
instruction fetch accesses. Refer to the chapter Memory Protection System, page 9-1.

10.6.2 Page Table Entry (PTE) Based Translation
Virtual memory protection for addresses that undergo PTE-based translation is provided
by properties of the PTE used for the address translation. The PTE provides support for
protecting a virtual address from unauthorized read, write or instruction fetches by other
processes. The following PTE bits are provided for this purpose:
• Execute Enable (XE) - allows instruction fetch from the virtual page.
• Write Enable (WE) - allows data writes to the virtual page.
• Read Enable (RE) - allows data reads from the virtual page.
For each of these bits; 1 = allows and 0 = disallows.
See Translation Physical Address Register (MMU_TPA), page 10-17.

10.7 Cacheability
A memory access is cacheable if both the virtual address is allowed to be cached and
the physical memory attributes allow the access to be cached. The physical memory
attributes (PMA) are described in Physical Memory Attributes (PMA), page 8-1.

10.7.1 Direct Translation Virtual Address Cacheability
For all virtual addresses undergoing Direct Translation the virtual address is cacheable.

10.7.2 PTE Translation Cacheability
For all virtual addresses undergoing PTE (Page Table Entry) Translation, the virtual
address is cacheable if the PTE entry C bit is set and not cacheable if the PTE entry C
bit is reset.
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10.7.3 Cacheability of a Virtual Address Flow
The following figure describes the determination for cacheability of a memory access.

Figure 38 Cacheability of a Virtual Address

10.8 MMU Instructions
All MMU instructions are privileged instructions that require Supervisor mode for
execution. If the MMU is physically present (MMU_CON.NOMMU == 0) the instructions
execute normally, whether or not the MMU is enabled (MMU_CON.V == 0 or 1). If the
MMU is not present (MMU_CON.NOMMU == 1), then all MMU instructions cause an
unimplemented opcode (UOPC) trap.
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10.8.1 TLBMAP (TLB Map)
The TLBMAP instruction is used to install a mapping in the MMU. The TLBMAP
instruction takes an extended data register E[a] as a parameter. The data register D[a]
contains the virtual address for the translation and the data register D[a+1] contains the
page attributes and PPN (Physical Page Number). The ASI (Address Space Identifier)
for the translation is obtained from the MMU_ASI register. The page attributes are
contained in the most significant byte of the odd register with the format as shown:

Figure 39 TLBMAP E[a] Format

Entering a mapping with any of the following properties results in undefined behaviour:
• A mapping with a virtual page that wholly or partly overlaps an existing virtual page

mapping. A virtual page mapping will overlap with another virtual page mapping if the
mappings have an equal or enclosing VPN and the same ASI or at least one of the
mappings has its global bit (G) set.

• A mapping for a page size which is not one of the two valid page sizes.
• A mapping using a physical address in a memory region that has the peripheral

space attribute.
• A mapping where the VPN is in the upper half of the address space.
• A mapping where the V bit is set to 0.
Undefined behaviour in the context of a TLBMAP instruction means that the MMU TLBs
contain undefined PTEs (Page Table Entries). To restore defined behaviour both TLBs
have to be flushed (see TLBFLUSH (TLB Flush), page 10-10), and the valid PTEs re-
entered.
Entering a mapping when the two TLBs have identical page size settings results in the
mapping being entered in one of the two TLBs, with the choice being implementation
dependent.
Bits D[a][9:0] and D[a+1][23:22] are reserved and are 0. Bits D[a][15:10] and D[a+1][5:0]
are reserved when unused, and therefore are 0 when unused by the page size. For
example, if the page size (PSZ) is set to 4 KBytes (01B) then bits D[a][11:10] of the VPN
are unused and must be set to 0. Similarly, bits D[a+1][1:0] of the PPN are also unused
and must be set to 0.
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Note that a TLBMAP instruction must be followed by an ISYNC instruction before
attempting to use a new installed mapping.

10.8.2 TLBDEMAP (TLB Demap)
The TLBDEMAP instruction is used to uninstall a single mapping in the MMU.
TLBDEMAP takes as a parameter a data register that contains the virtual address whose
mapping is to be removed. The address space identifier for the demap operation is
obtained from the Address Space Identifier (ASI) register (MMU_ASI). Demapping a
translation that is not present in the MMU is legal and results in a NOP.

Figure 40 TLBDEMAP D[a] Format

Note: A TLBDEMAP instruction should be followed by an ISYNC before any access to
an address in the demapped page is made.

10.8.3 TLBFLUSH (TLB Flush)
The TLBFLUSH instructions are used to flush mappings from the MMU. There are two
variants of the TLBFLUSH instruction:
• TLBFLUSH.A flushes all the mappings from TLB-A.
• TLBFLUSH.B flushes all the mappings from TLB-B.
Note: A TLBFLUSH instruction should by followed by an ISYNC before any access to an

address requiring PTE translation is made.
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10.8.4 TLBPROBE (TLB Probe)
The TLBPROBE instructions are TLBPROBE.A and TLBPROBE.I.

TLBPROBE.A (TLB Probe Address)
This instruction takes a data register D[a] as a parameter and is used to probe the MMU
for a virtual address. The D[a] register contains the virtual address for the probe. The
address space identifier for the probe is obtained from the ASI (Address Space Identifier)
register.

Figure 41 TLBPROBE.A

TLBPROBE.I (TLB Probe Index)
This instruction takes a data register D[a] as a parameter and is used to probe the TLB
at a given TLB index. The D[a] register contains the index for the probe. The index for
the TLBs is implementation specific and there is no architecturally defined way to predict
what TLB index value will be associated with a given address mapping. Bits D[a][31:8]
are reserved and must be set to 0's.

Figure 42 TLBPROBE.I

The TLBPROBE instructions return the following:
• The ASI and VPN (Virtual Page Number) of the translation in the Translation Virtual

Address register (TVA).
• The PPN (Physical Page Number) and attributes in the Translation Physical Address

register (TPA).
• The TLB index of the translation in the Translation Page Index register (TPX).
The MMU_TPA.V bit is set to zero if the TTE contained an invalid translation or an invalid
index was used for the probe. All of the other bitfields are undefined.
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10.9 TLB Usage
The TriCore architecture does not specify any PTE replacement algorithm. Entry of a
valid new mapping using the TLBMAP instruction does not guarantee the continued
existence of a previously entered mapping even if the TLB has not been filled; i.e. the
replacement algorithm may over-write a previous mapping. An implementation will
always provide a means to ensure forward progress of instructions requiring multiple
mappings to execute. Use of the MMU will therefore involve a software architecture with
the same fundamental mechanisms as shown in Figure 43.
When executing TLBDEMAP, TLBFLUSH.A or the TLBFLUSH.B instruction, an
implementation may require additional operations to be performed in order to maintain
coherency of the processors view of memory. For example, removing a mapping that
has the cacheability bit set using the TLBDEMAP instruction may require the data and
program caches to be flushed before a new mapping can be entered that uses an
overlapping physical page with the cacheability bit clear.
An implementation may also impose additional restrictions on the PTEs that can be
mapped in order to maintain coherency of the processors view of memory. For example,
an implementation may require that the least significant n bits of cacheable PTEs, VPN
and PPN, be identical to avoid aliasing in a virtually indexed cache.
Context saves and restores are always directly translated irrespective of the segment the
context save area resides in.

Figure 43 Using TLB (Translation Lookaside Buffer)
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10.10 MMU Core Special Function Registers
All MMU Core Special Function Registers can be read using the MFCR instruction. The
MMU_CON and MMU_ASI registers are the only software-writeable registers. They are
both written using the MTCR instruction. The MTCR instruction must be followed by an
ISYNC instruction before any PTEs are used.
Note: If MMU_CON.NOMMU == 1 (MMU not present) then all other registers in the

section do not exist and are undefined. If they are accessed no error occurs, but
the read and write results are undefined.

Note: If no MMU is present (MMU_CON.NOMMU == 1), then MMU instructions will
cause a UOPC (Unimplemented Opcode) trap.

All MMU registers other than the MMU_CON register have undefined values at reset.

10.10.1 MMU Configuration Register (MMU_CON)
A MTCR instruction that changes the SZA (Page Size A) bit field must be preceded by
a TLBFLUSH.A instruction to ensure that TLB A remains coherent with the programmers
view. Similarly a MTCR instruction that changes the SZB (Page Size B) bit field must be
preceded by a TLBFLUSH.B instruction. MTCR instructions that change the
MMU_CON.V bit must only be executed from memory addresses undergoing direct
translation or, in the case of disabling the MMU, be executed from a virtual address that
translates to the exact same physical address, otherwise the MMU behaviour is
undefined.

MMU_CON
Configuration Register (8000H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NO 
MMU - TSZ SZB SZA V

r r rw rw rw
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Field Bits Type Description
- [31:16] - Reserved Field
NOMMU 15 r No MMU Available

0 : MMU is present.
1 : MMU is not present (all other bits in MMU_CON 

undefined).
Note that to enable the MMU when present 
(MMU_CON.NOMMU == 0), the MMU_CON.V bit must be 
set.

- [14:12] - Reserved Field
TSZ [11:5] r TLB Size

Determines the size of each TLB. The entries of TLB-A are 
indexed 0 through TSZ while the entries of TLB-B are 
indexed 128 through 128+TSZ. Each TLB has a maximum 
of TSZ+1 entries.

SZB [4:3] rw Page Size B
Page size of the mappings in TLB-B.
00B : 1 KByte.
01B : 4 KByte.
10B : 16 KByte.
11B : 64 KByte.

SZA [2:1] rw Page Size A
Page size of the mappings in TLB-A.
00B : 1 KByte.
01B : 4 KByte.
10B : 16 KByte.
11B : 64 KByte.

V 0 rw Virtual mode
0 : Physical mode.
1 : Virtual mode.
This bit enables the MMU when the MMU is present 
(MMU_CON.NOMMU == 0).
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10.10.2 Address Space Identifier Register (MMU_ASI)
The Memory Management Unit (MMU), Address Space Identifier (ASI) register
description.

 

MMU_ASI
Address Space Identifier Register (8004H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- ASI

rw

Field Bits Type Description
- [31:5] - Reserved Field
ASI [4:0] rw Address Space Identifier

The ASI register contains the Address Space Identifier of 
the current process.
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10.10.3 Translation Virtual Address Register (MMU_TVA)
The MMU_TVA register is used to return the ASI and VPN (Virtual Page Number) result
of a TLBPROBE instruction.

MMU_TVA
Translation Virtual Address Register (800CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- ASI - VPN

r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

r

Field Bits Type Description
- [31:29] - Reserved Field
ASI [28:24] r Address Space Identifier

The ASI field contains the Address Space Identifier of the 
PTE.

- [23:22] - Reserved Field
VPN [21:0] r Virtual Page Number

The VPN of the PTE accessed by the last TLBPROBE 
instruction.
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10.10.4 Translation Physical Address Register (MMU_TPA)
The MMU_TPA register is used to return the PPN (Physical Page Number) and
attributes of a translation by a TLBPROBE instruction.

MMU_TPA
Translation Physical Address Register (8010H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

V XE WE RE G C PSZ - PPN

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPN

r

Field Bits Type Description
V 31 r Valid bit

Indicates that the TTE contains a valid mapping.
0 : Invalid.
1 : Valid.

XE 30 r Execute Enable
Enables instruction fetches to the page.
0 : Disabled.
1 : Enabled.

WE 29 r Write Enable
Enables data writes to the page.
0 : Disabled.
1 : Enabled.

RE 28 r Read Enable
Enables data reads from the page.
0 : Disabled.
1 : Enabled.

G 27 r Global
Indicates that the page is globally mapped therefore 
making it visible in all address spaces.
0 : Not globally mapped.
1 : Globally mapped.
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C 26 r Cacheability
Indicates that the page is cacheable.
0 : Not Cacheable.
1 : Cacheable.

PSZ [25:24] r Page Size
00B : 1 KByte.
01B : 4 KByte.
10B : 16 KByte.
11B : 64 KByte.

0 [23:22] - Reserved Field
PPN [21:0] r Physical Page Number

Holds the PPN from the PTE.

Field Bits Type Description
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10.10.5 Translation Page Index Register (MMU_TPX)
The MMU_TPX register is used to return the TLB (Translation Lookaside Buffer) index
result of a TLBPROBE instruction.

 

MMU_TPX
Translation Page Table Index Register (8014H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- INDEX

r

Field Bits Type Description
- [31:8] - Reserved Field
INDEX [7:0] r Translation Index
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10.10.6 Translation Fault Page Address Register (MMU_TFA)
The MMU_TFA register contains the faulting virtual page number (where faulting refers
to a VAP or VAF trap). It is the faulting virtual address, right shifted by 10 + 2 * min (SZA,
SZB) bits.
 

MMU_TFA
Translation Fault Page Address Register(8018H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- FPN

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPN

r

Field Bits Type Description
- [31:22] - Reserved Field
FPN [21:0] r Faulting Page Number

VPN from the faulting Virtual Address.
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11 Floating Point Unit (FPU)
This chapter describes the TriCore® Floating Point Unit (FPU) architecture. The FPU is
an optional component in TriCore configurations. It need not be present in every system
that uses the core, and even when present it can be disabled.
The optional FPU is an IEEE-754 compatible floating-point unit to accompany the
TriCore instruction set.

11.1 Functional Overview
The FPU executes single precision IEEE-754 compatible floating-point arithmetic
instructions and supports the following feature set:
• Floating-point add, subtract, multiply, MAC, and divide instructions.
• Conversion to or from IEEE-754 single precision format from or to TriCore signed and

unsigned integers and 32-bit signed fractions (Q31 format).
• QSEED.F instruction used to obtain an approximate value intended for use in

Newton-Raphson iterations to perform a square-root operation.
• Comparison of two floating-point numbers.
• All four IEEE-754 rounding modes are implemented.
• Asynchronous traps can be generated on selected IEEE-754 exceptions

(TriCore 1.3.1).

Restrictions
The FPU has the following restrictions and usage limitations:
• Only IEEE-754 single precision format is supported.
• IEEE-754 denormalized numbers are not supported for arithmetic operations.
• IEEE-754 compliant remainder function cannot be implemented using FPU

instructions because of the effects of multiple rounding when using a sequence of
individually rounded instructions.

• Fused multiply-and-accumulate operations (MACs) are not part of the IEEE-754
standard. Using FPU MAC operations can give different results from using separate
multiply and accumulate operations because the result is only rounded once at the
end of a MAC.

• Full compliance with the IEEE-754 standard is not achieved because denormal
numbers are not supported.

• If no FPU is present, then FPU instructions will cause a UOPC (unimplemented
opcode) trap.
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11.2 IEEE-754 Compliance

11.2.1 IEEE-754 Single Precision Data Format

Figure 44 Single Precision IEEE-754 Floating-Point Format

The single precision IEEE-754 floating-point format has three sections: a sign bit, an
8-bit biased exponent, and a 23-bit fractional mantissa with an implied binary point
before bit 22. For normal numbers the mantissa has an implied 1 immediately to the left
of the binary point. Table 14 shows the different types of number representation in
IEEE-754 single precision format. In this table:
s = bit [31]: sign bit.
e = bits [30:23]: biased exponent.
f = bits [22:0]: fractional part of mantissa.

Note: Both signed values of zero are always treated identically and never produce
different results except different signed zeros.

Table 14 IEEE-754 Single Precision Representation Types
Condition Represented Value Description
0 < e < 255 (-1)s*2(e-127)*1.f Normal number.
e == 0 AND f != 0 (-1)s*2(-126)*0.f Denormal number.
e == 0 AND f == 0 (-1)s*0 Signed zero.
s == 0 AND e == 255 AND f == 0 + ∞ + infinity.
s == 1 AND e == 255 AND f == 0 - ∞ – infinity.
e == 255 AND f != 0 AND f[22] == 0 Signalling NaN1).

1) IEEE-754 does not define how to distinguish between signalling NaNs and quiet NaNs, but bit[22] has become
the standard way of doing this.

e == 255 AND f != 0 AND f[22] == 1 Quiet NaN1).
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11.2.2 Denormal Numbers
Denormal numbers are not supported for arithmetic operations. With the exception of the
CMP.F instruction, all instructions replace denormal operands with the appropriately
signed zero before computation. Following computation, if a denormal number would
otherwise be the result, it is replaced with the appropriately signed zero.
Conceptually, the conventional order for making IEEE-754 computations is:
1. Compute result to infinite precision.
2. Round to IEEE-754 format.
This is replaced with:
1. Substitute signed zero for all denormal operands.
2. Compute result to infinite precision.
3. Round to IEEE-754 format.
4. Substitute signed zero for all denormal results.
This procedure has a subtle effect on underflow; see Round to Nearest: Denormals
and Zero Substitution, page 11-7.
Denormal numbers are supported only by the CMP.F instruction which makes
comparisons of denormal numbers in addition to identifying denormal operands.

11.2.3 NaNs (Not a Number)
NaNs (Not a Number) are bit combinations within the IEEE-754 standard that do not
correspond to numbers. There are two types of NaNs: signalling and quiet. The FPU
defines signalling NaNs to have bit 22 = ‘0’, and quiet NaNs to have bit 22 = ‘1’.
When invalid operations are performed (including operations with a signalling NaN
operand), FI is asserted and a quiet NaN is produced as the floating-point result. The
quiet NaN contains information about the origin of the invalid operation; see Invalid
Operations and their Quiet NaN Results, page 11-10.
IEEE-754 suggests that quiet NaNs should be propagated so that the result of an
instruction receiving a quiet NaN as an operand (with no signalling NaN operands)
should be that quiet NaN. The FPU does not propagate quiet NaNs in this way. The
result of an operation that has one (or more) quiet NaN operands and no signalling NaN
operands is always the quiet NaN 7FC00000H.
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11.2.4 Underflow
Underflow occurs when the result of a floating-point operation is too small to store in
floating-point representation.
IEEE-754 requires two conditions to occur before flagging underflow:
• The result must be ‘tiny’.

– A result is ‘tiny’ if it is non-zero and its magnitude is < 2-126 (for single precision).
IEEE-754 allows this to be detected either before or after rounding.

• There must be a loss of accuracy in the stored result.
Loss of accuracy can be detected in two ways: either as a denormalization loss, or an
inexact result.
Denormalization loss occurs when the result is calculated assuming an unbounded
exponent, but is rounded to a normalized number using 23 fractional bits. If this rounded
result must be denormalized to fit into IEEE-754 format and the resultant denormalized
number differs from the normalized result with unbounded exponent range, then a
denormalization loss occurs.
An inexact result is one where the infinitely precise result differs from the value stored.
The FPU determines tininess before rounding and inexact results to determine loss of
accuracy.
In the case of the FPU, even if a denormal result would produce no loss of accuracy,
because it is replaced with a zero, accuracy is lost and underflow must be flagged.
Any tiny number that is detected must therefore result in a loss of accuracy since it will
either be a denormal that is replaced with zero or rounded up. Therefore underflow
detection can be simplified to tiny number detection alone; i.e. any non-zero unrounded
number whose magnitude is < 2-126.

11.2.5 Fused MACs
Fused multiply-and-accumulate operations (MACs) are not supported by the IEEE-754
standard. Using FPU MAC operations (MADD.F and MSUB.F) can give different results
from using separate multiply (MUL.F) and accumulate (ADD.F or SUB.F) operations
because the result is only rounded once at the end of a MAC.

11.2.6 Traps (TriCore 1.3.1)
For TriCore 1.3.1, IEEE-754 allows optional provision for synchronous traps to occur
when exception conditions occur. Under these circumstances the results returned by
arithmetic operations may differ from IEEE-754 requirements to allow intermediate
results to be passed to the trap handling routines. These traps are provided to assist in
debugging routines and operations.
FPU traps are asynchronous and therefore are not IEEE-754 compliant traps. Since
IEEE-754 traps are optional this does not cause any IEEE-754 non compliance.
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11.2.7 Software Routines
Operations required for IEEE-754 compliance, but not implemented in the FPU
instruction set, are detailed in Table 15.

Table 15 IEEE-754 Operations Requiring Software Implementation
IEEE-754 Operation Suggested Implementation
Square root Newton-Raphson using QSEED.F instruction.
Remainder FPU instructions cannot be used to implement the 

remainder function because of the errors that can occur 
from multiple rounding. For reference, the IEEE method for 
calculating remainder is given below. Note that rounding 
must only occur on the conversion to integer, and for the 
final result.
rem = x - (d * (FTOI(x/d)1)))
rem: remainder
x: dividend
d: divisor

1) Round to nearest.

Round to integer in 
Floating-point format

ITOF(FTOI(x)).

Convert between binary 
and decimal

-
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11.3 Rounding
All four rounding modes specified in IEEE-754 are supported. The rounding mode is
selected using the RM field of the PSW (PSW[25:24]).

IEEE-754 defines the rounding modes in terms of representable results, in relation to the
‘infinitely precise’ result. The infinitely precise result is the mathematically exact result
that would be computed by the operation, if the number of mantissa and exponent bits
were unlimited.
• Round to nearest is defined as returning the representable value that is nearest to

the infinitely precise result. This is the default rounding mode that should be selected
when RTOS software initializes a task. See Round to Nearest: Even, page 11-7, for
further information.

• Round toward + ∞ is defined as returning the representable value that is closest to
and no less than the infinitely precise result.

• Round toward – ∞ is defined as returning the representable value that is closest to
and no greater than the infinitely precise result.

• Round toward zero is defined as returning the representable value that is closest to
and no greater in magnitude than the infinitely precise result. It is equivalent to
truncation.

The rounding mode can be changed by the UPDFL (Update Flags) instruction.
Rounding is performed at the end of each relevant FPU instruction, followed by the
replacement of all denormal numbers with the appropriately signed 0.
IEEE-754 does not specify the MAC instructions (MADD.F and MSUB.F) that combine
multiplication and addition in a single operation. The result from the multiply part of a
MAC instruction is not rounded before it is used in the addition in the FPU. Instead the
whole MAC is calculated with infinite precision and rounded at the end of the add. It is
therefore possible that the result from a MADD.F instruction will differ from the result that
would be obtained using the same operands in a MUL.F followed by an ADD.F.

Table 16 Rounding Mode Definition (PSW.RM)
Rounding Mode Value Mode
001)

1) Round to nearest is the default rounding mode.

Round to nearest.
01 Round toward + ∞.

10 Round toward - ∞.
11 Round toward zero.
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Rounding Mode Restored (TriCore 1.3.1)
In TriCore 1.3.1 the rounding mode is restored on a RET (Return from Call) instruction
by default. This default behaviour may be inhibited by clearing the relevant bit in the
COMPAT register. The rounding mode is also restored on an RFE (Return From
Exception) instruction or on an  RFM (Return From Monitor) instruction.

11.3.1 Round to Nearest: Even
‘Round to nearest’ is defined as returning the representable value that is nearest to the
infinitely precise result. If two representable values are equally close (i.e. the infinitely
precise result is exactly half way between two representable values), then the one whose
LSB (Least Significant Bit) is zero is returned. This is sometimes known as rounding to
nearest even.
This is usually straight forward, but if the infinitely precise result is half way between two
representable numbers with different exponents, the result with the larger exponent is
always selected (the LSB of its mantissa is zero).
For example, if the infinitely precise result is:
1.111 1111 1111 1111 1111 1111 1000 0000 0000B * 20

This is half way between:
1.0000 0000 0000 0000 0000 000B * 21

and:
1.111 1111 1111 1111 1111 1111B * 20

The result with the larger exponent is returned.

11.3.2 Round to Nearest: Denormals and Zero Substitution
Following computation, results are first rounded to IEEE-754 representable numbers
and then the appropriately signed zero is substituted for any denormal results that may
have occurred. This produces some results that can seem counter intuitive.
Consider an infinitely precise result that has been computed and falls between the
smallest representable positive IEEE-754 normal number (1.000 … 000 * 2-126) and the
largest representable positive IEEE-754 denormal number (0.111 … 111 * 2-126).
• If the infinitely precise result is nearer to the normal number, or halfway between the

two, then the result must be rounded to the normal number.
• If the infinitely precise result is nearer to the denormal number, then the result is

rounded to the denormal value. Zero is then substituted for the denormal result.
The FPU architecture cannot produce denormal results, however the concept of
denormal numbers is important to the FPU. It would be wrong to assume that the
infinitely precise result should be rounded to the nearest FPU representable number, in
this case (+1.000 … 000 * 2-126) or (0). Such an implementation would mean that all
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unrounded results between (+1.000 … 000 * 2-126) and (+0.100 … 000 * 2-126) would be
rounded to the smallest representable positive IEEE-754 normal number.

11.3.3 Round Towards ± ∞: Denormals and Zero Substitution
Following computation results are first rounded to IEEE-754 representable numbers,
then the appropriately signed zero is substituted for any denormal results that may have
occurred. See Denormal Numbers, page 11-3.
According to the IEEE-754 definition of the rounding modes, when rounding towards + ∞
(- ∞ ) the rounded result should not be less than (greater than) the infinitely precise result.
However if a positive (negative) result would otherwise be rounded to a denormal
number, it is then substituted for a zero. Therefore the returned result of zero is less than
(greater than) the infinitely precise result. The returned result appears to contradict the
definition of these rounding modes in this case.

11.4 Exceptions
The FPU implements all five IEEE-754 exceptions (invalid operation, overflow, divide by
zero, underflow, and inexact). When one of these exceptions occur the corresponding
exception flag in the PSW is asserted.

Asynchronous Traps (TriCore 1.3.1)
In TriCore 1.3.1 an asynchronous trap may optionally be taken when an exception
occurs, however IEEE-754 compliant traps are not implemented, see Section 11.5
Asynchronous Traps (TriCore 1.3.1) ( page 11-13). 

IEEE-754 Exception Flags
The IEEE-754 exception flags are stored as part of the PSW register as shown in the
following table. In accordance with IEEE-754, each bit is sticky so that the FPU
instructions in general assert these flags when an exception occurs and do not negate
them when the exception does not occur. The UPDFL instruction can be used to clear
the exception flags.

Table 17 FPU Exception Flags
ALU Flag FPU Flag FPU Exception PSW Bit Position
C FS Some Exception. 31
V FI Invalid Operation. 30
SV FV Overflow. 29
AV FZ Divide by Zero. 28
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Since the IEEE-754 exception flags are sticky, it can be impossible to tell if an exception
occurred on the last instruction if it was asserted before the last instruction executed. An
additional, non sticky, exception flag (FS) is therefore implemented to identify if the last
FPU instruction caused an IEEE-754 exception or not.
Note that the PSW bits used to store the exception flags are also used to store ALU flags
as shown in the table above. When an ALU instruction updates these flags, the
corresponding FPU exception flag is overwritten and lost.
The following conditions are true for all FPU operations asserting exception flags, with
the exception of UPDFL.
• Any FPU operation can assert only one of the FI, FV, FZ or FU exception flags.
• FX can be asserted by any operation so long as FI and FZ are negated.
• When either FV or FU are asserted, FX is also asserted.

FS - Some Exception
This bit is not sticky and is asserted or negated for all instructions that can cause
IEEE-754 exceptions to occur. If any of the IEEE-754 exceptions (FI, FV, FZ, FU, FX)
have occurred during that instruction, FS is also asserted.
Note: UPDFL can assert IEEE-754 exceptions without asserting FS.

FI - Invalid Operation
FI is asserted in three circumstances:
• When a signalling NaN (see NaNs (Not a Number), page 11-3) is an operand for a

FPU instruction.
• For invalid operations such as QSEED.F (≈1/√ x) of a negative number.
• Conversions from floating-point to other formats where the rounded result is outside

the range of the target.
When an instruction that produces a floating-point result asserts FI as a result of a
signalling NaN or invalid operation, the result is a quiet NaN.

SAV FU Underflow. 27
- FX Inexact. 26

Table 17 FPU Exception Flags
ALU Flag FPU Flag FPU Exception PSW Bit Position
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Table 18 Invalid Operations and their Quiet NaN Results
Invalid Operation Quiet NaN
Signalling NaN operand for arithmetic instructions.1)

1) Also see the FPU operation syntax description in the Instruction Set.

7FC00000H
2)

2) The quiet NaN (7FC00000H) is produced as the result of arithmetic operations that have any NaN as an
operand. FI is only asserted when one of these NaNs is signalling. See NaNs (Not a Number), page 11-3.

Signalling NaN operand for CMP.F instruction. n.a.5)

ADD.F with + ∞ and - ∞ as operands. 7FC00001H

SUB.F with (+ ∞ and + ∞ ) or (- ∞ and - ∞ ) as operands. 7FC00001H

MADD.F if the result of the multiplication is ± ∞ and the addend is the 
oppositely signed ∞.

7FC00001H

MSUB.F if the result of the multiplication is ± ∞ and the minuend is the 
same signed ∞.

7FC00001H

MUL.F with 0 and ± ∞ as multiplicands. 7FC00002H

MADD.F with 0 and ± ∞ as multiplicands. 7FC00002H

MSUB.F with 0 and ± ∞ as multiplicands. 7FC00002H

QSEED.F with a negative operand3).

3) -0 is not negative, therefore QSEED.F of -0 is -∞.

7FC00004H

DIV.F with 0 as both operands4).

4) 0/0 is defined as being an invalid operation (FI) rather than a divide by zero (FZ).

7FC00008H

DIV.F with both operands being an ∞ of either sign. 7FC00008H

FTOI, FTOU or FTOQ31 with rounded result outside the range of the 
target format. 

n.a.5)

5) The result is not in floating-point format and therefore cannot be a quiet NaN. Refer to the instruction
description for what the result should be.

FTOIZ, FTOUZ or FTOQ31Z with rounded result outside the range of 
the target format. 
(TriCore 1.3.1).

n.a. 5)

FTOI, FTOU or FTOQ31 with the input operand a quiet NaN, a 
signalling NaN or ± ∞. 

n.a.5)

FTOIZ, FTOUZ or FTOQ31Z with the input operand a quiet NaN, a 
signalling NaN or ± ∞.
(TriCore 1.3.1).

n.a.5)
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FV - Overflow
For operations that return a floating-point result, the FV flag is set as stated in IEEE-754;
‘whenever the destination format’s largest finite number is exceeded in magnitude by
what would have been the rounded floating-point result, were the exponent range
unbounded’.
The result returned is determined by the rounding mode and the sign of the unrounded
result:
• Round to nearest carries all overflows to infinity, with the sign of the unrounded result.
• Round toward zero carries all overflows to the format’s largest finite number with the

sign of the unrounded result.
• Round toward minus infinity carries positive overflows to the format’s largest finite

number, and carries negative overflows to minus infinity.
• Round toward plus infinity carries negative overflows to the format’s most negative

finite number, and carries positive overflows to plus infinity.
When overflow is flagged (FV asserted), the returned result can not be exactly equal to
the unrounded result. Therefore whenever FV is asserted FX is also asserted.
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FZ - Divide by Zero
The FZ flag is set by DIV.F if the divisor operand is zero and the dividend operand is a
finite non zero number. The result is an infinity with sign determined by the usual rules.
Note that:
• 0/0 is defined as an invalid operation, so FI is asserted rather than FZ.
• All arithmetic with ± ∞ as an operand is defined as being exact, except for invalid

operations where FI is asserted. Therefore for ± ∞ / ± 0 FZ is not asserted, the
appropriately signed ∞ is returned as the result with no other exceptions occurring.

FU - Underflow
As discussed in Underflow, page 11-4, underflow is detected and so FU is asserted,
when the unrounded result is smaller in magnitude than the smallest representable
normal number (2-126).
The Q31TOF instruction can cause an underflow as well as the arithmetic instructions
ADD.F, SUB.F, MUL.F, MADD.F, MSUB.F, and DIV.F.
The return result for instructions flagging an underflow are complicated by the way that
FPU treats denormal numbers. This is described in detail in Round to Nearest:
Denormals and Zero Substitution, page 11-7.

FX - Inexact
If the rounded result of an operation is not exactly equal to the unrounded result, then
the FX flag is set.
The result delivered is the rounded result, unless either overflow (FV) or underflow (FU)
has also occurred during this instruction, when the overflow or denormalization return
result rules are followed.
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11.5 Asynchronous Traps (TriCore 1.3.1)
In TriCore 1.3.1 the FPU can be configured such that a trap is signalled to the TriCore
core when an FPU instruction causes an IEEE-754 exception. The trap generated is a
Co-Processor Asynchronous Error (CAE), Trap Class 4 - TIN 4. FPU CAE traps should
not be confused with the synchronous exception traps optional to IEEE-754 which allow
software routines to correct arithmetic overflow or underflow.
The FPU CAE trap is intended for debug purposes only and has no effect on either the
exceptional instruction or any other instruction which may be executing within the FPU.
The result returned by an exceptional instruction causing a CAE trap is identical to that
which would be returned if no trap were taken. The CAE trap is signalled after instruction
completion.
The specific exception conditions which cause FPU CAE traps to be generated are
under software control. To enable the trap generation for a specific exception type the
appropriate enable bit in the FPU_TRAP_CON register must be asserted (FIE, FVE,
FZE, FUE or FXE). Any number of these enable bits may be set to allow traps to be taken
if any of a range of exceptions occur. FX is a regularly occurring condition, care should
be taken in enabling this trap.
When an instruction causes one of the enabled exceptions, information about the
exceptional instruction including the instruction PC, opcode and source operands are
captured in the FPU special function registers. At the same time the Trap Status flag
(TST) is set within the FPU_TRAP_CON register, denoting that the contents of the FPU
trap capture registers are valid. In addition, so long as FPU_TRAP_CON.TST remains
set, further FPU CAE trap generation is inhibited. This avoids multiple traps being
generated from the same root problem and the original information being lost. Once the
trap handler has interrogated the FPU to determine the cause of the trap, the
FPU_TRAP_CON.TST bit may be cleared to enable further traps.
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11.6 FPU CSFR Registers (TriCore 1.3.1)

The FPU CSFR registers are used to store the details of instructions causing traps.
The result of the exceptional instruction causing a trap is not stored in an FPU register.
The result will be available in the instruction’s destination register as long as it has not
been overwritten before the asynchronous trap is taken.

11.6.1 FPU Trap Control Register 
Note: TriCore 1.3.1 architecture only.

 

FPU_TRAP_CON
Trap Control Register (A000H) Reset value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- FI FV FZ FU FX - FIE FVE FZE FUE FXE -

rh rh rh rh rh rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- RM - TCL TST

rh rh w rh

Field Bits Type Description
- 31 - Reserved Field
FI 30 rh Captured FI

Asserted if the captured instruction asserted FI. Only 
valid when TST is asserted.

FV 29 rh Captured FV
Asserted if the captured instruction asserted FV. Only 
valid when TST is asserted.

FZ 28 rh Captured FZ
Asserted if the captured instruction asserted FZ. Only 
valid when TST is asserted.

FU 27 rh Captured FU
Asserted if the captured instruction asserted FU. 
Only valid when TST is asserted.
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FX 26 rh Captured FX
Asserted if the captured instruction asserted FX. Only 
valid when TST is asserted.

- [25:23] - Reserved Field
FIE 22 rw FI Trap Enable

When set, an instruction generating an FI exception 
will trigger a trap.

FVE 21 rw FV Trap Enable
When set, an instruction generating an FV exception 
will trigger a trap.

FZE 20 rw FZ Trap Enable
When set, an instruction generating an FZ exception 
will trigger a trap.

FUE 19 rw FU Trap Enable
When set, an instruction generating an FU exception 
will trigger a trap.

FXE 18 rw FX Trap Enable
When set, an instruction generating an FX exception 
will trigger a trap.

- [17:10] - Reserved Field
RM [9:8] rh Captured Rounding Mode

The rounding mode of the captured instruction. Only 
valid when TST is asserted.
Note that this is the rounding mode supplied to the 
FPU for the exceptional instruction. UPDFL 
instructions may cause a trap and change the 
rounding mode. In this case the RM bits capture the 
input rounding mode.

- [7:2] - Reserved Field
TCL 1 w Trap Clear

1 : Clears the trapped instruction (TST will be 
negated).
0 : Does nothing.
Read: always reads as 0.

Field Bits Type Description
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TST 0 rh Trap Status
0 : No instruction captured:
The next enabled exception will cause the 
exceptional instruction to be captured.
1 : Instruction captured: 
No further enabled exceptions will be captured until 
TST is cleared.

Field Bits Type Description
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11.6.2 FPU Trapping Instruction Program Counter Register
Note: TriCore 1.3.1 architecture only.
 

 

FPU_TRAP_PC 
Trapping Instruction Program Counter (A004H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC

rh

Field Bits Type Description
PC [31:0] rh Captured Program Counter

The program counter (virtual address) of the 
captured instruction. Only valid when 
FPU_TRAP_CON.TST is asserted.
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11.6.3 FPU Trapping Instruction Opcode Register
Note: TriCore 1.3.1 architecture only.
 

 

FPU_TRAP_OPC
Trapping Instruction Opcode (A008H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- DREG

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- FMT OPC

rh rh

Field Bits Type Description
- [31:20] - Reserved Field
DREG [19:16] rh Captured Destination Register

The destination register of the captured instruction. 
0H : Data general purpose register 0.
…
FH : Data general purpose register 15.
Only valid when FPU_TRAP_CON.TST is asserted.

- [15:9] - Reserved Field
FMT 8 rh Captured Instruction Format

The format of the captured instruction’s opcode.
0 : RRR.
1 : RR.
Only valid when FPU_TRAP_CON.TST is asserted.

OPC [7:0] rh Captured Opcode
The secondary opcode of the captured instruction. 
When FPU_TRAP_OPC.FMT=0 only bits [3:0] are 
defined. OPC is valid only when 
FPU_TRAP_CON.TST is asserted.
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11.6.4 FPU Trapping Instruction Operand SRC1 Register 
Note: TriCore 1.3.1 architecture only.
 

 

FPU_TRAP_SRC1
Trapping Instruction Operand (A010H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC1

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC1

rh

Field Bits Type Description
SRC1 [31:0] rh Captured SRC1 Operand

The SRC1 operand of the captured instruction. Only 
valid when FPU_TRAP_CON.TST is asserted.
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11.6.5 FPU Trapping Instruction Operand SRC2 Register
Note: TriCore 1.3.1 architecture only.
 

 

FPU_TRAP_SRC2
Trapping Instruction Operand (A014H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC2

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC2

rh

Field Bits Type Description
SRC2 [31:0] rh Captured SRC2 Operand

The SRC2 operand of the captured instruction. Only 
valid when FPU_TRAP_CON.TST is asserted.
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11.6.6 FPU Trapping Instruction Operand SRC3 Register
Note: TriCore 1.3.1 architecture only.
 

 

FPU_TRAP_SRC3
Trapping Instruction Operand (A018H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC3

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC3

rh

Field Bits Type Description
SRC3 [31:0] rh Captured SRC3 Operand

The SRC3 operand of the captured instruction. Only 
valid when FPU_TRAP_CON.TST is asserted.
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11.6.7 FPU Identification Register 
Note: TriCore 1.3.1 architecture only.

The FPU Identification Register identifies the FPU type and revision.

FPU_ID
FPU Module Identification (A020H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MOD

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOD_32B MOD_REV

r r

Field Bits Type Description
MOD [31:16] r Module Identification Number 

Used for module identification.
MOD_32B [15:8] r 32-Bit Module Enable

A value of C0H in this field indicates a 32-bit module 
with a 32-bit module ID register.

MOD_REV [7:0] r Module Revision Number
Used for revision numbering. The value of the 
revision starts at 01H (first revision) up to FFH.
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12 Core Debug Controller (CDC)
The TriCore® debug functionality is an interface of architecture, implementation and
software tools, so users are advised that mechanisms may differ in subsequent
architecture generations.
The Core Debug Controller (CDC) is designed to support real-time systems that require
non-intrusive debugging. Most of the architectural state in the CPU Core and Core
on-chip memories can be accessed through the system Address Map.
Access to the CDC is typically provided via the On-Chip Debug Support (OCDS) of the
system containing the CPU.

CDC Features
CDC features are aimed predominantly at the software development environment. It
offers real-time run control and internal visibility of resources such as data and
memories. Features include:
• Real-time run control (Halt and Restart the CPU).
• Access and update internal registers and core local memory.
• Setting breakpoints and watchpoints with complex trigger conditions.

Enabling the CDC
To enable the CDC, the system containing the core must set the Debug Enable bit (DE)
in the Debug Status Register (DBGSR). The CDC is disabled when DBGSR.DE == 0,
and enabled when DBGSR.DE == 1. How the DBGSR.DE bit is controlled and how the
CDC is enabled or disabled, is system dependent.

12.1 Run Control Features
Real-time run control functions are accessed and controlled by address mapped reads
and writes, typically by the OCDS or by any other bus master that has the appropriate
authorization. The CDC provides hardware hooks into the core allowing the detection of
Debug Events which result in Debug Actions.
Four signals are provided by the CDC for communication with the OCDS:
• Core Break-In.

– An indication from the OCDS to the Core of a condition of interest.
• Core Break-Out.

– An indication from the Core to the OCDS of a condition of interest.
• Core Suspend-In.

– An indication from the OCDS to the Core to enter Halt mode.
• Core Suspend-Out.
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– An indication from the Core to the OCDS of the state of the Debug Status register
(DBGSR) SUSP field (DBGSR.SUSP). This signal can be controlled by writes to
the Debug Status register, whereas the Core Break-Out signal can not.

Features
• Single-Step support in hardware.
• Debug Events that can cause a Debug Action:

– Assertion of the external Core Break-In signal to the core.
– Execution of the DEBUG instruction.
– Execution of the MTCR (Move To Control Register) or the MFCR (Move From

Control Register) instruction.
– Events raised by the Trigger Event Unit (see Trigger Event Unit, page 12-4).

• Debug Actions can be one or more of the following:
– Update Debug Status register.
– Indicate event on Core Break-Out signal and/or Core Suspend-Out signal.
– Halt CPU execution.
– Take Breakpoint Trap.
– Raise Breakpoint Interrupt.
– Control performance counters.

• Real-time features:
– Read and write of core memory and register while the core is running, with

minimum intrusion (may steal cycles).
– The service of high priority interrupt routines by use of the Breakpoint Interrupt

Debug Action.
Note: The reading and writing of other system memory while the CPU is running can be

intrusive, depending on the number of cycles that are required to perform the
operation. When this happens, cycle stealing occurs.

The programming of Debug Events and Debug Actions can occur while the CPU is
running with little or no intrusion. The detection of Debug Events has no effect on
real-time execution.
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12.2 Debug Events
When the CDC is enabled, a Debug Event can be generated by:
• Core Break-In signal.

– See External Debug Event, page 12-3.
• Execution of a DEBUG instruction.

– See Debug Instruction, page 12-3.
• Execution of the MTCR or MFCR instruction.

– See MTCR and MFCR Instructions, page 12-3.
• A hardware Event generation unit.

– See Trigger Event Unit, page 12-4.

12.2.1 External Debug Event
An External Debug Event is not correlated in any way to the instruction flow, but it
provides the ability to stop and gain control of the CPU without having to reset. It may
take several clocks for the Debug Event to be recognized by the CPU if it is currently
executing a multi-cycle, non-cancellable instruction (such as a context save and restore
for example).
The Debug Action taken on the assertion of the Core Break-In signal is specified in the
EXEVT (External Event) register (see EXEVT, page 12-17).

12.2.2 Debug Instruction
TriCore supports a User mode DEBUG instruction which can generate a Debug Event
when the CDC is enabled. When the CDC is disabled it is treated as a NOP (No
Operation). Both 16-bit and 32-bit forms of the DEBUG instruction are provided. This
feature facilitates software debug, which allows a jump to a monitor program and
provides a relatively inexpensive software instrumentation and interrogation mechanism.
The Debug Action taken on the Debug Event is specified in the SWEVT (Software Debug
Event) register (See SWEVT, page 12-19).

12.2.3 MTCR and MFCR Instructions
A Debug Event is raised when a MTCR (Move To Control Register) or MFCR (Move
From Control Register) instruction is used to read or modify a user Core Special Function
Register (CSFR). This gives the debug software the ability to monitor, detect and modify
changes to CSFRs. A Debug Event is not raised when code reads or modifies one of the
dedicated Debug SFRs (Special Function Registers):
• Debug Status Register (DBGSR, page 12-15).
• Core Register Access Event Register (CREVT, page 12-18).
• Software Debug Event Register (SWEVT, page 12-19).
• External Event Register (EXEVT, page 12-17).
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• Trigger Event Register (TRnEVT) (TR0EVT, page 12-33 and TR1EVT, page 12-33).
• Debug Monitor Start Register (DMS, page 12-37).
• Debug Context Pointer Register (DCX, page 12-24).

Additional TriCore 1.3.1 Registers
• Counter Control Register - Counter Control Register, page 12-45.
• CPU Clock Count Register - CPU Clock Cycle Count Register, page 12-47.
• Instruction Count Register - Instruction Count Register, page 12-48.
• Multi-Count Register 1 - Multi-Count Register 1, page 12-49.
• Multi-Count Register 2 - Multi-Count Register 2, page 12-50.
• Multi-Count Register 3 - Multi-Count Register 3, page 12-51.
The Debug Action taken when the Debug Event is raised is specified in the CREVT
register (See CREVT, page 12-18).

12.2.4 Trigger Event Unit
The Trigger Event Unit is responsible for generating Debug Events when a
programmable set of Debug Triggers are active. Debug Triggers come from the
protection system and are either:
• Code Addresses.
• Data Accesses.
Note: Compared addresses are virtual addresses.

These Debug Triggers provide the inputs to a programmable block of logic which
produces Debug Events as its output (see Debug Triggers, page 12-5 for more details
on programmable combinations).
The Debug Action taken when the Debug Event is raised, is specified in the Trigger
Event register (TRnEVT). See Trigger Event Registers, page 12-33 for the register
definition.
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12.3 Debug Triggers
The CDC can generate the following types of Debug Triggers:
• Execution of an instruction at a specific address.
• Execution of an instruction within a range of addresses.
• Loading a value from a specific address.
• Loading a value from within a range of addresses.
• Storing a value to a specific address.
• Storing a value to within a range of addresses.
The Debug Trigger Event Unit takes inputs from the Protection mechanism Range Table
Entries (RTEs) and combines them as specified by the TRnEVT registers to produce a
Debug Event. Range Table Entries that do not have a corresponding TRnEVT register
can not be used to generate a Debug Event.
The RTEs which provide Debug Trigger information are those selected by the PRS
(Protection Register Set) field in the PSW (Program Status Word) register (PSW.PRS).
If it is not known which PRS is active, the RTEs in all potentially used PRSs should be
programmed in the same way.

Figure 45 An Implementation Combination Example, Using two TRnEVT 
Registers
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12.3.1 Combining Debug Triggers
The CDC allows Code and Data triggers to be combined to create a Debug Event. The
combination is specified by the Trigger Event Register (TRnEVT).
The Trigger Event Unit can generate a number of Trigger Debug Events by combining
four Debug Triggers for each Trigger Debug Event. The Debug Triggers are generated
by the memory protection system. The four Triggers used to generate the Triggern
Debug Event come from the Coden and Datan Range Table Entries (RTE).

The combinations of Debug Triggers that generate a Debug Event are controlled by bits
in the TRnEVT register. The possible combinations are given in Table 20.

Table 19 Debug Triggers Generated by the Memory Protection System
Trigger Description
DU Data read or write access to the upper bound of the Data RTEn, as 

enabled in the Data Protection Mode (DPM) register.
DLR Data read or write access to the lower bound or range of the Data RTEn, 

as enabled in the Data Protection Mode (DPM) register.
CU Code execution from the upper bound address of the Code RTEn, as 

enabled in the Code Protection Mode (CPM) register.
CLR Code execution from the lower bound address or address range of the 

Code RTEn, as enabled in the Code Protection Mode (CPM) register.

Table 20 Debug Trigger Combinations that Generate a Debug Event 
TRnEVT 
[11:8]

Data (D) and Code (C), Upper(U) and Lower(L) Bound, 
Combinations

0000 DU or DLR or CU or CLR

0001 (DLR and CLR) or DU or CU

0010 (DLR and CU) or DU or CLR

0011 (DLR and CLR) or (DLR and CU) or DU

0100 (DU and CLR) or DLR or CU

0101 (DLR and CLR) or (DU and CLR) or CU

0110 (DLR and CU) or (DU and CLR)
0111 (DLR and CLR) or (DLR and CU) or (DU and CLR)
1000 (DU and CU) or DLR or CLR

1001 (DLR and CLR) or (DU and CU)
1010 (DLR and CU) or (DU and CU) or CLR
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Note: DBGSR.EVTSRC, DBGSR.PREVSUSP and DBGSR.SUSP are updated for all
Debug Actions except 000 (None; disabled) and 101/110/111 reserved (same
behaviour as 000).

12.4 Debug Actions
When a Debug Event occurs, one or more of the following Debug Actions are taken
depending upon the programming of the relevant Event Register:
• Update Debug Status Register (DBGSR), page 12-7.
• Indicate on Core Break-Out Signal, page 12-8.
• Indicate on Core Suspend-Out Signal, page 12-8.
• Halt, page 12-8.
• Breakpoint Trap, page 12-8.
• Breakpoint Interrupt, page 12-10.
• Suspend Out, page 12-11.
• Performance Counter Start/Stop (TriCore 1.3.1), page 12-11.
• None (TriCore 1.3.1), page 12-11.
• Disabled, page 12-12.
• Suspend In Halt (TriCore 1.3.1), page 12-12.

12.4.1 Update Debug Status Register (DBGSR)
When a Debug Event occurs the EVTSRC (Event Source), PEVT (Posted Event),
PREVSUSP (Previous State of Suspend Signal) and SUSP (Current State of Suspend
Signal) fields of the Debug Status Register (DBGSR) are always updated.
The PREVSUSP field is updated from the contents of the SUSP field.
SUSP is updated from the EVTA field of the register that prompted the Debug Event
(EXEVT, CREVT, SWEVT or TRnEVT).

1011 (DLR and CLR) or (DLR and CU) or (DU and CU)
1100 (DU and CLR) or (DU and CU) or DLR

1101 (DLR and CLR) or (DU and CLR) or (DU and CU)
1110 (DLR and CU) or (DU and CLR) or (DU and CU)
1111 (DLR and CLR) or (DLR and CU) or (DU and CLR) or (DU and CU)

Table 20 Debug Trigger Combinations that Generate a Debug Event  
TRnEVT 
[11:8]

Data (D) and Code (C), Upper(U) and Lower(L) Bound, 
Combinations
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12.4.2 Indicate on Core Break-Out Signal
A Debug Event can indicate to the OCDS that the Event has occurred. Note that it is
implementation dependent whether or not this signal is connected to an external pin.

12.4.3 Indicate on Core Suspend-Out Signal
On a Core Suspend-Out action, the value of the SUSP field in the Debug Status Register
(DBGSR) is copied to the PREVSUSP field (DBGSR.PREVSUSP).
The DBGSR.SUSP field is updated with the contents of the SUSP field from the register
that prompted the Debug Event (EXEVT, CREVT, SWEVT or TRnEVT).
Modification of the DBGSR.SUSP bit will be reflected in the Core Suspend-Out Signal.
When writing to the DBGSR.SUSP bit, PREVSUSP is not updated.
When a debug event causes a breakpoint interrupt to be posted, DBGSR.SUSP,
DBGSR.PREVSUSP and the Core Suspend-Out signal remain unchanged.

12.4.4 Halt
The Debug Action Halt, causes the Halt mode to be entered. Halt mode performs a
cancel of:
• All instructions after and including the instruction that caused the breakpoint if Break

Before Make (BBM) is set.
• All instructions after the instruction that caused the breakpoint if BBM is clear.
Once these instructions have been cancelled the CPU enters Halt mode, where no more
instructions are fetched or executed. Halt mode is entered when the DBGSR.HALT bit
field is set to 01B. On entering Halt mode the DBGSR.EVTSRC bit field is updated.
Once in Halt mode the external Debug system is used to interrogate the target through
the mapping of the architectural state into the FPI address space.
While halted, the CPU does not respond to any interrupts and only resumes execution
once the Debug Status register HALT bit is clear (DBGSR.HALT). The bit is cleared by
writing 10B to the HALT field.

12.4.5 Breakpoint Trap
The Breakpoint Trap enters a Debug Monitor without using any user resource. It relies
upon the following emulator resources:
• A Debug Monitor which is executed commencing at the address defined in the DMS

(Debug Monitor Start Address) register.
• A 4-word area of RAM is available at the address defined in the DCX (Debug Context

Save Area Pointer) register. This is used to store the critical state during the Debug
Monitor entry sequence.
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When a Breakpoint Trap is taken, the following actions are performed:
• Write PSW to DCX + 4H
• Write PCXI to DCX + 0H
• Write A[10] to DCX + 8H
• Write A[11] to DCX + CH
• A[11] = PC
• PCXI.PIE = ICR.IE
• PCXI.PCPN = ICR.CCPN
• PC = DMS
• PSW.PRS = 0H
• PSW.IO = 2H
• PSW.GW = 0H
• PSW.IS = 1H
• PSW.CDE = 0H
• PSW.CDC = 0000000B
• ICR.IE = 0H
• DBGTCR.DTA = 1H (TriCore 1.3.1)
The corresponding return sequence is provided through the privileged instruction RFM
(Return From Monitor).
This provides an automated route into the Debug Monitor which does not take any User
resource. The RFM (Return From Monitor) instruction is then used to return control to
the original task. The RFM instruction is a NOP (No Operation) when the CDC is disabled
(i.e. DBGSR.DE == 0).

Multiple Breakpoint Traps (TriCore 1.3.1)
On taking a breakpoint trap TriCore saves a debug context (PCX, PSW, A10, A11) at the
location indicated by the DCX register. At the end of the debug trap handler an RFM
instruction is used to restore this state.
The DCX location is only able to store a single debug context. Problems therefore arise
if multiple breakpoint traps are triggered. Only the state saved by the final breakpoint trap
is retained, all state from the previous breakpoint traps is lost.
To prevent this situation occurring the breakpoint trap entry sequence sets the Debug
Trap Active (DTA) bit in the Debug Trap Control Register (DBGTCR). This bit is used to
inhibit further breakpoint traps.
The DTA bit is cleared on an RFM instruction and set on a breakpoint trap (It may also
be set and cleared by MTCR).
A breakpoint trap may only be taken in the condition DTA==0. Taking a breakpoint trap
sets the DTA bit to one. Further breakpoint traps are therefore disabled until such time
as the breakpoint trap handler clears the DTA bit or until the breakpoint trap handler
terminates with a RFM or on a debug reset.
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12.4.6 Breakpoint Interrupt
One of the possible Debug Actions to be taken on a Debug Event, is to raise a Breakpoint
Interrupt. The interrupt priority is programmable and is defined in the control register
associated with the breakpoint interrupt.
The architecture allows a Debug Event to raise one of four Breakpoint Interrupts, each
of which can have its own interrupt priority. The number of Breakpoint Interrupts is
implementation dependant.
The Breakpoint Interrupt allows a flexible Debug environment to be defined which is
capable of satisfying many of the requirements for efficient debugging of a real-time
system. For example, the execution of safety critical code can be preserved while the
debugger is active.
Breakpoint Interrupts can be used to provide the conventional Debug Model available in
traditional microcontrollers, where a Breakpoint stops the processor, by simply assigning
the highest interrupt priority level to the Debug Monitor or by ensuring interrupts are
disabled in the Debug Monitor. It also provides the flexibility for critical interrupts to be
programmed with a higher priority than the Debug Monitor. The advantages of this are
that:
• The Debug Monitor can be interrupted in an identical manner to any other interrupt

by a higher level interrupt. This allows the CPU to service critical interrupts while the
Debug Monitor is running.

• Any Debug Events posted in a critical routine are postponed until the CPU priority
drops below that of the Debug Monitor.

Figure 46 Debug Monitor - Simple and Advanced Models
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Posted Breakpoint Interrupts
The situation needs to be considered where a Breakpoint Interrupt targeted at the CPU
is at an interrupt priority level below the current CPU priority. In the Advanced Model in
Figure 46 for example, if a Breakpoint Interrupt is set in Interrupt Routine 'A' it is a
problem, because the Debug Monitor is programmed to be at a lower priority than the
current Task.
This scenario is indicated by posting a software interrupt at the interrupt level associated
with the Breakpoint. Therefore, when the CPU interrupt priority level falls below that of
the Debug Monitor, the Debug Monitor routine is entered. In order to indicate to the
Monitor routine that the Breakpoint was postponed, the Posted Event bit (PEVT) in the
Debug Status register is set when the software interrupt is posted. It is the responsibility
of the Breakpoint Interrupt handler to check this bit in the Debug Status register and to
subsequently clear that bit if necessary.
Note: DBGSR.SUSP and DBGSR.PREVSUSP are not updated when a breakpoint

interrupt is posted.

Note: DBGSR.EVTSRC is always updated regardless of whether or not a breakpoint
interrupt is posted.

Interrupts to Other Targets
As well as being targeted at the CPU, a breakpoint interrupt can be targeted at other
cores in the system.

12.4.7 Suspend Out
The suspend out signal will either be asserted or negated when a debug event occurs.
The previous state of the suspend out signal is recorded in DBGSR.PREVSUSP.

12.4.8 Performance Counter Start/Stop (TriCore 1.3.1)
When the performance counter is operating in task mode, the counters are started and
stopped by debug actions. All event registers allow the counters to either be started or
stopped.
The trigger event registers also allow the mode to be toggled to active (start) or inactive
(stop). This allows a single RTE to be used to control the performance counter, in certain
applications.

12.4.9 None (TriCore 1.3.1)
No action is implemented through the EVTA field of the event’s register, however the
suspend out signal, performance count and DBGSR register updates still occur as
normal for an event.
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12.4.10 Disabled
The event is disabled and no actions occur: the suspend out signal, performance counter
control and DBGSR register ignore the event.

12.4.11 Suspend In Halt (TriCore 1.3.1)
When the Suspend In signal is asserted, halt mode is always entered so long as debug
is enabled. The CPU remains in halt mode so long as Suspend In is asserted. When
Suspend In is negated, the CPU is released from halt.
This facility is implemented so that in a multi core system, several cores can be halted
and released from halt simultaneously.

12.5 Priority of Debug Events
When two or more Debug Events occur on the same instruction, priorities are used to
determine which Debug Event occurs. This section describes how those priorities are
determined.
All Debug Events can be linked to specific instruction except for the external condition
(EXEVT) Debug Event which is not linked to any instruction being executed. The latency
of the EXEVT Debug Event is not defined.
When linking Debug Events to a specific instruction, they can be generated either
logically before or logically after the execution of the instruction that they are linked with.
This is known as Break Before Make (BBM) and Break After Make (BAM) respectively,
and is controlled by the BAM1) bit in the various Debug Event registers.
Note: Data access and data/code combination access triggers can only create BAM

Debug Events. When triggers occur, TRnEVT.BBM is ignored.

There are two types of Debug Action: those that change the program flow immediately
by either halting the processor or redirecting the program flow (pipeline Debug Actions),
and those that do not change the program flow immediately (non-pipeline Debug
Actions). Halt, breakpoint trap and taken breakpoint interrupts are the pipeline Debug
Actions. Indicate on core breakout and posted breakpoint interrupts are the non-pipeline
Debug Actions.
There are four classes of priority to determine the relative priority of two Debug Events.
Priority (high to low):
1. Pipeline / Non-pipeline.
2. Instruction order.
3. BBM/BAM.
4. Debug Event Priorities.

1) EXEVT.BAM has no effect on the latency of external condition Debug Events.
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Pipeline debug events change the program flow and must always be taken, so if a non-
pipeline debug event occurs in the same cycle as a pipeline debug event, the pipeline
debug event takes priority. This may occur because a BBM non-pipeline debug event
and BAM pipeline debug event occur on the same instruction. Because of TriCore's
superscalar architecture, it may also occur if a pipeline debug event occurs on an
instruction immediately following an instruction with a non-pipeline debug event.
When the CDC is setup to create more than one BBM Debug Event on the same
instruction, only one Debug Event is generated. Similarly, when the CDC is setup to
create more than one BAM Debug Event on the same instruction, only one Debug Event
is generated. In both cases the Debug Event priorities are used to determine which
Debug Event is generated.

Note: The external condition may not generate a Debug Event even when programmed
to do so, if a BAM Debug Event is generated in the same cycle. To avoid potential
loss of EXEVT Debug Events, BBM Debug Events should be used.

12.6 Call Tracing
The tracing of subroutine calls in a TriCore system is performed using the PSW based
call depth counter and the CDO trap handler.
The sequence followed for call tracing is as follows:
1. The PSW based Call Depth Counter is set so as to generate a CDO trap on every

subroutine call. (PSW.CDC = 1111110B).
2. The Call Depth counting system is enabled. (PSW.CDE = 1).
3. When the next CALL is attempted, a CDO trap will be taken instead of the subroutine

call.
4. The CDO trap handler then performs the required trace function.
5. The CDO trap handler clears the PSW.CDE bit of the trapping context in memory.
6. The CDO trap handler executes a Return from Exception (RFE). This restores the

trapping context from memory, this time with the call depth tracing disabled.
(PSW.CDE=0).

Table 21 Debug Event Priorities
Priority (high to low) Type of Debug Event
1 Debug Instruction (SWEVT) / Core Register Access (CREVT).
2 Trigger 0 (TR0EVT).
3 Trigger 1 (TR1EVT).
4 Trigger n (TRnEVT).

Note that the number of TRnEVT registers is implementation 
dependent.
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7. The original CALL is executed. As the call depth tracing system is now disabled
(PSW.CDE=0) the subroutine call will be successful.

• Whenever the PSW is saved by a CALL instruction the CDE bit is forced to "1". 
• The state of the PSW.CDE bit at the start of a subroutine is "1".
Refer to the CALL instruction in Volume 2: Instruction Set.
Therefore in a Call Tracing sequence the PSW.CDE bit has a "one-shot" operation,
being disabled for a single subroutine call after being cleared by the CDO trap.

12.7 The CDC Control Registers
The Debug Status Register (DBGSR) contains information about the current status of
the Core Debug Controller (CDC) hardware in the CPU core:
• A bit to indicate whether the CDC is enabled.
• The source of the last Debug Event..
Each source of a Debug Event has an associated register which defines the Debug
Actions to be taken when the Debug Event is raised. These registers may contain extra
information about the criteria that must be met for the Debug Event to be raised, such as
the combination of Debug Triggers for example.
TriCore 1.3 and TriCore 1.3.1 have different register fields. Both versions are described
in this chapter. TriCore 1.3 registers are described from page 12-15. TriCore 1.3.1
registers are described from page 12-25.
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12.8 CDC Control Registers (TriCore 1.3)

12.8.1 DBGSR Debug Status Register
Note: TriCore 1.3 Architecture only.

DBGSR
Debug Status Register (FD00H)

Reset Value: 0000 0000H (Boot Execute)
0000 0002H (Boot Halt)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- EVTSRC P
EVT

PSU
SP - SU

SP - HALT DE

rh rwh rh rwh rwh rh

Field Bits Type Description
- [31:13] - Reserved Field
EVTSRC [12:8] rh Event Source

0 : EXEVT.
1 : CREVT.
2 : SWEVT.
16 + n TRnEVT (n = 0, 1).
other = Reserved.

PEVT 7 rwh Posted Event
0 : No posted event.
1 : Posted event.

PREVSUSP 6 rh Previous State of Core Suspend-Out Signal
0 : Previous core suspend-out inactive.
1 : Previous core suspend-out active.
Updated when a Debug Event causes a hardware 
update of DBGSR.SUSP. This field is not updated for 
writes to DBGSR.SUSP.

- 5 - Reserved Field
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SUSP 4 rwh Current State of the Core Suspend-Out Signal
0 : Core suspend-out inactive.
1 : Core suspend-out active.

- 3 - Reserved Field
HALT [2:1] rwh CPU Halt Request / Status Field

HALT can be set or cleared by software. 
HALT[0] is the actual Halt bit. HALT[1] is a mask bit to 
specify whether or not HALT[0] is to be updated on a 
software write. HALT[1] is always read as 0. HALT[1] 
must be set to 1 in order to update HALT[0] by 
software (R: read; W: write).
00B R: CPU running. 

W: HALT[0] unchanged.
01B R: CPU halted. 

W: HALT[0] unchanged.
10B R: Not Applicable.

W: reset HALT[0].
11B R: Not Applicable.

W: If DBGSR.DE == 1 (The CDC is enabled), set 
HALT[0]. If DBGSR.DE == 0 (The CDC is not 
enabled), HALT[0] is left unchanged.

DE 0 rh Debug Enable
Indicates whether the CDC is enabled.
0 : The CDC disabled.
1 : The CDC enabled.

Field Bits Type Description
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12.8.2 External Event Register
Note: TriCore 1.3 Architecture only.
EXEVT
External Event Register (FD08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- SU
SP - BBM EVTA

rw rw rw

Field Bits Type Description
- [31:6] - Reserved Field
SUSP 5 rw CDC Suspend-Out Signal State

Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

- 4 - Reserved Field
BBM 3 rw Break Before Make (BBM) or Break After Make 

(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
000B : None; disabled.
001B : Pulse BRKOUT signal.
010B : Halt and pulse BRKOUT signal.
011B : Breakpoint trap and pulse BRKOUT signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT signal1.
1) If not implemented, None.
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12.8.3 Core Register Access Event Register
Note: TriCore 1.3 Architecture only.
CREVT
Core Register Access Event (FD0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- SU
SP - BBM EVTA

rw rw rw

Field Bits Type Description
- [31:6] - Reserved Field
SUSP 5 rw CDC Suspend-Out Signal State

Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

- 4 - Reserved Field
BBM 3 rw Break Before Make (BBM) or Break After Make 

(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
000B : None; disabled.
001B : Pulse BRKOUT signal.
010B : Halt and pulse BRKOUT signal.
011B : Breakpoint trap and pulse BRKOUT signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT signal1).
1) If not implemented, None.
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12.8.4 Software Debug Event Register
Note: TriCore 1.3 Architecture only.
SWEVT
Software Debug Event (FD10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- SU
SP - BBM EVTA

rw rw rw

Field Bits Type Description
- [31:6] - Reserved Field
SUSP 5 rw CDC Suspend-Out Signal State

Value to be assigned to the CDC suspend-out 
signal when the event is raised.

- 4 - Reserved Field
BBM 3 rw Break Before Make (BBM) or Break After Make 

(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
000B : None; disabled.
001B : Pulse BRKOUT signal.
010B : Halt and pulse BRKOUT signal.
011B : Breakpoint trap and pulse BRKOUT signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT signal1).
1) If not implemented, None.
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12.8.5 Trigger Event Registers
Note: TriCore 1.3 Architecture only.
 

TR0EVT
Trigger Event 0 (FD20H) Reset Value: 0000 0000H
TR1EVT
Trigger Event 1 (FD24H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- ASI

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASI_
EN - DU_

U
DU_
LR

DLR
_U

DLR
_LR - SU

SP - BBM EVTA

rw rw rw rw rw rw rw rw

Field Bits Type Description
- [31:21] - Reserved Field
ASI [20:16] rw Address Space Identifier

The ASI of the Debug Trigger process.
(Not implemented in TriCore 1.2)

ASI_EN 15 rw Enable ASI Comparison
0 : No ASI comparison performed. Debug Trigger 

is valid for all processes.
1 : Enable ASI comparison. Debug Events are 

only triggered when the current process ASI 
matches TRnEVT.ASI.

Field should be set to 0 for implementations 
without an MMU.
(Not implemented in TriCore 1.2)

- [14:12] - Reserved Field
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DU_U 11 rw Controls combinations of DU and CU
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DU triggers event unless DU_LR == 1, where 

CLR is also required.
CU triggers event unless DLR_U == 1, where
DLR is also required.

1 : DU and CU only trigger an event when they are 
both present.

DU_LR 10 rw Controls combination of DU and CLR
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DU triggers event unless DU_U == 1. Where 

CU is also required.
CLR triggers event unless DU_U == 1. Where 
DU is also required.

1 : DU and CLR only trigger an event when they 
are both present.

DLR_U 9 rw Controls combination of DLR and CU
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DLR triggers event unless DLR_LU == 1. 

Where CLR is also required.
CU triggers event unless DU_U == 1. Where 
DU is also required.

1 : DLR and CU only trigger an event when they 
are both present.

DLR_LR 8 rw Controls combination of DLR and CLR
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DLR triggers event unless DLR_LU == 1. 

Where CU is also required. 
CLR triggers event unless DU_U == 1. Where 
DU is also required.

1 : DLR and CLR only trigger an event when they 
are both present.

Field Bits Type Description
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SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

BBM 3 rw Break Before Make (BBM) or Break After Make 
(BAM) Selection
Code triggers BBM or BAM selection.
0 : Code only triggers Break After Make (BAM).
1 : Code only triggers Break Before Make (BBM).
Note that data access and data/code combination 
access triggers can only create BAM Debug 
Events. When these triggers occur, 
TRnEVT.BBM is ignored. 

EVTA [2:0] rw Event Associated
Specifies the Debug Action associated with the 
Debug Event:
000B : None; disabled.
001B : Pulse BRKOUT signal.
010B : Halt and pulse BRKOUT signal.
011B : Breakpoint trap and pulse BRKOUT signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT signal1).
1) If not implemented, None.

Field Bits Type Description
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12.8.6 Debug Monitor Start Address Register
Note: TriCore 1.3 Architecture only.

The DMS reset value is DE00 00n0H, where ‘n’ is Core ID.

 

DMS
Debug Monitor Start Address (FD40H)

Reset Value: DE00 00n0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DMS Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMS Value -

rw

Field Bits Type Description
DMS Value [31:1] rw Debug Monitor Start Address

The address at which monitor code execution 
begins when a breakpoint trap is taken.

- 0 - Reserved Field
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12.8.7 Debug Context Save Area Pointer Register
Note: TriCore 1.3 Architecture only.

DCX
Debug Context Save Area Pointer   (FD44H)

Reset Value: DE80 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DCX Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCX Value -

rw

Field Bits Type Description
DCX Value [31:4] rw Debug Context Save Area Pointer

Address where the debug context is stored 
following a breakpoint trap.

- [3:0] - Reserved Field
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12.9 CDC Control Registers (TriCore 1.3.1) 

12.9.1 Debug Status Register
Note: TriCore 1.3.1 Architecture only.
 

DBGSR
Debug Status Register (FD00H)

Reset Value: 0000 0000H (Boot Execute)
0000 0002H (Boot Halt)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- EVTSRC P
EVT

PRE
VSU
SP

- SU
SP SIH HALT DE

rh rwh rh rwh rh rwh rh

Field Bits Type Description
- [31:13] - Reserved Field
EVTSRC [12:8] rh Event Source

0 : EXEVT.
1 : CREVT.
2 : SWEVT.
16 + n TRnEVT (n = 0, 1).
other = Reserved.

PEVT 7 rwh Posted Event
0 : No posted event.
1 : Posted event.

PREVSUSP 6 rh Previous State of Core Suspend-Out Signal
0 : Previous core suspend-out inactive.
1 : Previous core suspend-out active.
Updated when a Debug Event causes a hardware 
update of DBGSR.SUSP. This field is not updated for 
writes to DBGSR.SUSP.

- 5 - Reserved Field
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SUSP 4 rwh Current State of the Core Suspend-Out Signal
0 : Core suspend-out inactive.
1 : Core suspend-out active.

SIH 3 rh Suspend-in Halt
State of the Suspend-In signal.
1 : The Suspend-In signal is asserted. The CPU is in 

Halt Mode. 
0 : The Suspend-In signal is negated. The CPU is not 

in Halt Mode, (except when the Halt mechanism 
is set following a Debug Event or a write to 
DBGSR.HALT).

HALT [2:1] rwh CPU Halt Request / Status Field
HALT can be set or cleared by software. 
HALT[0] is the actual Halt bit. HALT[1] is a mask bit to 
specify whether or not HALT[0] is to be updated on a 
software write. HALT[1] is always read as 0. HALT[1] 
must be set to 1 in order to update HALT[0] by 
software (R: read; W: write).
00B R: CPU running. 

W: HALT[0] unchanged.
01B R: CPU halted. 

W: HALT[0] unchanged.
10B R: Not Applicable.

W: reset HALT[0].
11B R: Not Applicable.

W: If DBGSR.DE == 1 (The CDC is enabled), set 
HALT[0]. If DBGSR.DE == 0 (The CDC is not 
enabled), HALT[0] is left unchanged.

DE 0 rh Debug Enable
Indicates whether CDC is enabled.
0 : The CDC disabled.
1 : The CDC enabled.

Field Bits Type Description
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12.9.2 External Event Register
Note: TriCore 1.3.1 Architecture only.

EXEVT
External Event Register (FD08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- CSP CST SU
SP BOD BBM EVTA

rw rw rw rw rw rw

Field Bits Type Description
- [31:8] - Reserved Field
CSP 7 rw Counter Stop

When this event occurs, in addition to the event’s 
action, stop the performance counters when they 
are in task mode.

CST 6 rw Counter Start
When this event occurs, in addition to the event’s 
action, start the performance counters when they 
are in task mode.

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the 

Debug Action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes 

priority over any assertion generated by the 
EVTA field.
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BBM 3 rw Break Before Make (BBM) or Break After Make 
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT 

Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

Signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
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12.9.3 Core Register Access Event Register
Note: TriCore 1.3.1 Architecture only.

CREVT 
Core Register Access Event (FD0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- CSP CST SU
SP BOD BBM EVTA

rw rw rw rw rw rw

Field Bits Type Description
- [31:8] - Reserved Field
CSP 7 rw Counter Stop

When this event occurs, in addition to the event’s 
action, stop the performance counters when they 
are in task mode.

CST 6 rw Counter Start
When this event occurs, in addition to the event’s 
action, start the performance counters when they 
are in task mode.

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the 

action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes 

priority over any assertion generated by the 
EVTA field.
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BBM 3 rw Break Before Make (BBM) or Break After Make 
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT 

Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

Signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
User’s Manual 12-30 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.9.4 Software Debug Event Register
Note: TriCore 1.3.1 Architecture only.
 

SWEVT
Software Debug Event (FD10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- CSP CST SU
SP BOD BBM EVTA

rw rw rw rw rw rw

Field Bits Type Description
- [31:8] - Reserved Field
CSP 7 rw Counter Stop

When this event occurs, in addition to the event’s 
action, stop the performance counters when they 
are in task mode.

CST 6 rw Counter Start
When this event occurs, in addition to the event’s 
action, start the performance counters when they 
are in task mode.

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out 
signal when the event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the 

action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes 

priority over any assertion generated by the 
EVTA field.
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BBM 3 rw Break Before Make (BBM) or Break After Make 
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT 

Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

Signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
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12.9.5 Trigger Event Registers
Note: TriCore 1.3.1 Architecture only.
 

TR0EVT
Trigger Event 0 (FD20H) Reset Value: 0000 0000H
TR1EVT
Trigger Event 1 (FD24H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- ASI

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASI_
EN - DU_

U
DU_
LR

DLR
_U

DLR
_LR CNT SU

SP BOD BBM EVTA

rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description
- [31:21] - Reserved Field
ASI [20:16] rw Address Space Identifier

The ASI of the Debug Trigger process.
ASI_EN 15 rw Enable ASI Comparison

0 : No ASI comparison performed. Debug Trigger 
is valid for all processes.

1 : Enable ASI comparison. Debug Events are 
only triggered when the current process ASI 
matches TRnEVT.ASI.

Field should be set to 0 for implementations 
without an MMU.

- [14:12] - Reserved Field
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DU_U 11 rw Controls combinations of DU and CU
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DU triggers event unless DU_LR == 1, where 

CLR is also required.
CU triggers event unless DLR_U == 1, where
DLR is also required.

1 : DU and CU only trigger an event when they are 
both present.

DU_LR 10 rw Controls combination of DU and CLR
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DU triggers event unless DU_U == 1. Where 

CU is also required.
CLR triggers event unless DU_U == 1. Where 
DU is also required.

1 : DU and CLR only trigger an event when they 
are both present.

DLR_U 9 rw Controls combination of DLR and CU
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DLR triggers event unless DLR_LU == 1. 

Where CLR is also required.
CU triggers event unless DU_U == 1. Where 
DU is also required.

1 : DLR and CU only trigger an event when they 
are both present.

DLR_LR 8 rw Controls combination of DLR and CLR
Note: Refer to Table 20,  page 12-6 for 
clarification of trigger conditions that generate a 
Debug Event.
0 : DLR triggers event unless DLR_LU == 1. 

Where CU is also required. 
CLR triggers event unless DU_U == 1. Where 
DU is also required.

1 : DLR and CLR only trigger an event when they 
are both present.

Field Bits Type Description
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CNT [7:6] rw Counter
When this event occurs adjust the control of the 
performance counters in task mode as follows:
00 : No change.
01 : Start the performance counters.
10 : Stop the performance counters.
11 : Toggle the performance counter control (i.e. 

start it if it is currently stopped, stop it if it is 
currently running).

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out 
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the 

action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes 

priority over any assertion generated by the 
EVTA field.

Field Bits Type Description
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BBM 3 rw Break Before Make (BBM) or Break After Make 
(BAM) Selection
Code triggers BBM or BAM selection.
0 : Code only triggers Break After Make (BAM).
1 : Code only triggers Break Before Make (BBM).
Note that data access and data/code combination 
access triggers can only create BAM Debug 
Events. When these triggers occur, 
TRnEVT.BBM is ignored. 

EVTA [2:0] rw Event Associated
Specifies the Debug Action associated with the 
Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT 

Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT 

Signal.
101B : If implemented, breakpoint interrupt 1 and 

pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and 

pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and 

pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
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12.9.6 Debug Monitor Start Address Register
Note: TriCore 1.3.1 Architecture only.

The DMS reset value is DE00 0nn0H, where ‘nn’ is the 4-bit Core ID in bits [9:6].

DMS
Debug Monitor Start Address (FD40H)

Reset Value: DE00 0nn0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DMS Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMS Value -

rw

Field Bits Type Description
DMS Value [31:1] rw Debug Monitor Start Address

The address at which monitor code execution 
begins when a breakpoint trap is taken.

- 0 - Reserved Field
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12.9.7 Debug Context Save Area Pointer Register
Note: TriCore 1.3.1 Architecture only.

The reset value of the DCX register is DE80 0nn0H, where ‘nn’ is the 4-bit Core ID in bits
[9:6].
 

DCX 
Debug Context Save Area Pointer   (FD44H)

Reset Value: DE80 0nn0H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DCX Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCX Value -

rw

Field Bits Type Description
DCX Value [31:4] rw Debug Context Save Area Pointer

Address where the debug context is stored 
following a breakpoint trap.

- [3:0] - Reserved Field
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12.9.8 Debug Trap Control Register
Note: TriCore 1.3.1 Architecture only.

The Debug Trap Control Register contains the DTA (Debug Trap Active) bit. The reset
value of DTA is zero. The DTA bit is defined as being cleared on an RFM instruction and
set on a breakpoint trap. It may also be set and cleared by MTCR.
 

DBGTCR
Debug Trap Control Register (FD48H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- DTA

rwh

Field Bits Type Description
- [31:1] Reserved Field
DTA 0 rwh Debug Trap Active Bit

1: A breakpoint Trap is active.
0: No breakpoint trap is active.
A breakpoint trap may only be taken in the
condition DTA==0. Taking a breakpoint trap sets
the DTA bit to one. Further breakpoint traps are
therefore disabled until such time as the breakpoint
trap handler clears the DTA bit or until the
breakpoint trap handler terminates with a RFM.
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12.9.9 Software Breakpoint Service Request Control Register
The Software Breakpoint Service Request Control Register (SBSRCn) defines the
interrupt request parameters for a breakpoint interrupt, where n = 0, 1, 2 or 3. SBSRC1,
2 and 3 are optional and may not be implemented
Software Breakpoint Service Request Control Registers are located in the address range
of the CPU slave interface (CPS).

SBSRCn (n = 0 to 3)
Software Breakpoint Service Request Control Register

(FFBCH -n*4H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS - SRPN

w w rh rw rw rw

Field Bits Type Description
- [31:16] - Reserved Field
SETR 15 w Service Request Set

SETR is required to set SRR.
0 : No action.
1 : Set SRR. Written value is not stored. Read always 

returns 0. No action if CLRR is also set.
CLRR 14 w Service Request Clear

CLRR is required to clear SRR.
0 : No action.
1 : Clear SRR. Written value is not stored. Read always 

returns 0. No action if SETR is also set.
SRR 13 rh Service Request Flag

0 : No Breakpoint Interrupt Service Request is pending.
1 : A Breakpoint Interrupt Service Request is pending.

SRE 12 rw Service Request Enable
0 : Breakpoint Interrupt Service Request is disabled.
1 : Breakpoint Interrupt Service Request is enabled.
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TOS [11:10] rw Type Of Service Control
00B : Service Provider 0 - Typically CPU service is 

initiated.
01B : Service Provider 1 - Implementation Specific.
10B : Service Provider 2 - Implementation Specific.
11B : Service Provider 3 - Implementation Specific.

- [9:8] - Reserved Field
SRPN [7:0] rw Service Request Priority Number

00H : Breakpoint Interrupt Service Request is never 
serviced.

01H : Breakpoint Interrupt Service Request, 
lowest priority.

…
FFH : Breakpoint Interrupt Service Request, 

highest priority.

Field Bits Type Description
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12.10 Core Performance Measurement and Analysis (TriCore 1.3.1)
Real-time measurement of core performance provides useful insights to system
developers, architects, compiler developers, application developers, OS developers,
and so on.
TriCore includes the ability to measure different performance aspects of the processor
without any real-time effect on its execution. The performance measurement hardware
is configured so that only a subset of performance measurements can be taken
simultaneously. 
The performance measurement block can be used to measure basic parameters:
• CPU Clocks.
• Instruction Count. 
• Instruction Cache Hit / Miss.
• Data Cache Hit / Miss (clean or dirty).
The performance counters can be used in a free running manner, enabled to acquire
aggregate information. Alternatively they can be used in conjunction with the debug
event logic to control ‘windows’ of operation for an individual task, for example starting
and stopping the counters dynamically to filter the measured information on some
desired event. 

Performance Counter Overview
The Performance counters are controlled in the Counter Control Register (CCTRL). 
The performance counters can be enabled or disabled by writing the appropriate value
to the counter enable CCTRL.CE bit. 
Typically two parameters are always counted for base line measurement; 

– The clock count. 
– The number of instructions issued.

One of:
• Instruction Cache Hits.
• Data Cache Hits.
One of:
• Instruction Cache Misses.
• Data Cache Clean Misses.
Additionally:
• Data Cache Dirty Misses (cache write-back / eviction was required).
Note: Counters can only be written when they are disabled (i.e. not in ‘counting mode’).

Any attempt to write during counting-mode will have no effect.

Note: The counters are free running incrementors once enabled, and will roll over to zero
after the maximum value is reached. 
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The grouping of counter functions allows typical measurements to be clustered; i.e. Data
Cache performance and Instruction Cache performance. 
These can all be measured against the background statistics of clock cycles and
instructions issued.
The start of counters is not precisely synchronized to any pipeline stage. For example,
once the instruction counter is enabled to count, it starts counting all retiring instructions
from that clock cycle onward. Similarly, once the instruction cache miss counter is
started, it will count all the instruction cache misses from that clock cycle onward.
There are two ways to enable counters: Normal mode and Task mode (CCTRL.CM). 
Normal (default mode) or Task mode are configured by CCTRL.CM:
• Normal mode - The counters start counting as soon as they are enabled, and will

keep counting until they are disabled. 
• Task mode - The counters will only count if the processor detected a debug event

with the action to start the performance counters. 

Writing of the Counters
Counters can be read any time, but they can only be written when they are not actively
counting (i.e. when they are disabled). If the counters are disabled, then they are not
considered to be in counting mode and so they can be written. 
A counter is said to be in the counting mode if:
• The Normal or Task mode is selected.
• The mode is active (Normal mode is always active).
• The counter enable CE bit (in the Counter Control register - CCTRL) is enabled.

Counter Modes
The Counter Mode (CM) bit in the Counter Control CSFR (i.e. CCTRL.CM) determines
the operating mode of all the counters. 
In the Normal mode of operation the counter increments on their respective triggers if the
Count enable bit in the CCTRL is set (CCTRL.CE). In Task mode there is additional
gating control from the debug unit which allows the data gathered in the performance
counters to be filtered by some specific criteria, such as a single task for example. 

Wrapping of the counters / Sticky bit
The performance counters give the user some indication that the counters had wrapped
(by use of a sticky bit.) This helps to tell whether the counter has wrapped between two
measured values.
• All performance counters are 31bit counters with free wrapping operation.
• Bit 31 of each counter is sticky. It gets set when bits 30:0 wrap. It stays set until

written by software.
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For example:
if (counter_event && counters_en)
  begin
    counter[30:0] <= counter[30:0] + 1;
    if (counter[30:0] == 31'hFFFFFFFF)
      counter[31] <= 1;
  end
else if (count_we) 
  counter[31:0] <= write_data;

12.11  Performance Counter Registers (TriCore 1.3.1)
The performance counter registers used are:

Table 22 OCDS Control Registers
Register Description Offset 

Address
Reference

CCTRL Counter Control Register. FC00H  page 12-45
CCNT CPU Clock Count Register. FC04H  page 12-47
ICNT Instruction Count Register. FC08H  page 12-48
M1CNT Multi Count Register 1. FC0CH  page 12-49
M2CNT Multi Count Register 2. FC10H  page 12-50
M3CNT Multi Count Register 3. FC14H  page 12-51
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12.11.1 Counter Control Register
Note: TriCore 1.3.1 Architecture only.

CCTRL
Counter Control (FC00H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

-

  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- M3 M2 M1 CE CM

 rw rw rw rw rw

Field Bits Type Description
- [31:11] - Reserved Field
M3 [10:8] rw M3CNT configuration

000 : Reserved.
001 : Reserved.
010 : Reserved.
011 : Data Cache Dirty Miss Count.
100 : Reserved.
101 : Reserved.
110 : Reserved.
111 : Reserved.

M2 [7:5] rw M2CNT configuration
000 : Reserved.
001 : Instruction Cache Miss Count.
010 : Reserved.
011 : Data Cache Clean Miss Count.
100 : Reserved.
101 : Reserved.
110 : Reserved.
111 : Reserved.
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M1 [4:2] rw M1CNT configuration
000 : Reserved.
001 : Reserved.
010 : Instruction Cache Hit Count.
011 : Data Cache Hit Count.
100 : Reserved.
101 : Reserved.
110 : Reserved.
111 : Reserved.

CE 1 rw Count Enable 
0 : Disable the counters: CCNT, ICNT, M1CNT, 

M2CNT, M3CNT.
1 : Enable the counters: CCNT, ICNT, M1CNT, 

M2CNT, M3CNT.
CM 0 rw Counter Mode

0 : Normal Mode.
1 : Task Mode.

Field Bits Type Description
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12.11.2 CPU Clock Cycle Count Register
Note: TriCore 1.3.1 Architecture only.

 

CCNT
CPU Clock Cycle Count (FC04H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

This bit is set by hardware when count value [30:0] 
= 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value [30:0] rw Count Value
Current Count of the CPU Clock Cycles.
User’s Manual 12-47 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.11.3 Instruction Count Register
Note: TriCore 1.3.1 Architecture only.

ICNT
Instruction Count  (FC08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

 rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

This bit is set by hardware when count value [30:0] 
= 31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Instructions Executed.
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12.11.4 Multi-Count Register 1
Note: TriCore 1.3.1 Architecture only.
 

 

M1CNT
Multi-Count Register 1 (FC0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

This bit is set by hardware when count value [30:0] 
= 31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
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12.11.5 Multi-Count Register 2
Note: TriCore 1.3.1 Architecture only.

M2CNT
Multi-Count Register 2  (FC10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

This bit is set by hardware when count value [30:0] 
= 31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
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12.11.6 Multi-Count Register 3
Note: TriCore 1.3.1 Architecture only.
 

M3CNT
Multi-Count Register 3 (FC14H)  Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

This bit is set by hardware when count value [30:0] 
= 31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
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13 TriCore 1.3.1 Architectural Extensions
The TriCore® 1.3.1 CPU contains a small number of extensions to the existing
TriCore 1.3 Architecture to support the required feature set.

13.1 TriCore 1.3.1 Architectural Extensions - Trap System
The following trap types are introduced:

CAE Coprocessor Trap Asynchronous Error (TIN 4)
This asynchronous trap is generated by a coprocessor to report an error. Examples of
typical errors that can cause a CAE trap are unimplemented coprocessor instructions
and arithmetic errors (as found in the Floating Point Unit for example). 
CAE is shared amongst all coprocessors in a given system. A trap handler must
therefore inspect all coprocessors to determine the cause of a trap.

PIE Program Memory Integrity Error (TIN 5)
The PIE trap is raised whenever an uncorrectable memory integrity error is detected in
an instruction fetch.. The trap is synchronous to the erroneous instruction. The trap is of
Class 4 and TIN 5.
A PIE trap is raised if any element within the fetch group contains an unrecoverable error.
Hardware is not required to localise the error to a particular instruction.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.

DIE Data Memory Integrity Error (TIN 6)
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in
a data access. The trap is of Class 4 and TIN 6.
Implementations may choose to implement the DIE trap as either an asynchronous or
synchronous trap.
A DIE trap is raised if any element accessed by a load or store contains an uncorrectable
error. Hardware is not required to localise the error to the access width of the operation.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.
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Trap Priority
The DIE trap has a priority one lower than the DAE trap when the exception is taken as
an asynchronous trap.
The DIE trap has a priority one lower than the DSE trap when the exception is taken as
a synchronous trap
The PIE trap has the lowest priority of the program side instruction fetch traps. (Between
PSE and IOPC in the priority table).
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13.2 TriCore 1.3.1 Architectural Extensions - Core Registers
A number of Core Special Function Registers (CSFRs) have been introduced to the
TriCore 1.3.1 architecture in order to fully support functional enhancements. These are:

Table 13-1 New CSFR Registers
Register Name Description Page
SMACON SIST Mode Access Control Register  page 3-20
BMACON BIST Mode Access Control Register  page 3-19
MIECON Memory Integrity Error Control  page 7-9
CCPIER Count of Corrected Program Integrity Errors  page 7-3
CCDIER Count of Corrected Data Integrity Errors  page 7-4
PIEAR Program Integrity Error Address Register  page 7-6
PIETR Program Integrity Error Trap Register  page 7-5
DIEAR Data Integrity Error Address Register  page 7-8
DIETR Data Integrity Error Trap Register  page 7-7
FPU_TRAP_CON FPU Trap Control Register  page 11-14
FPU_TRAP_PC FPU Trapping Instruction Program Count  page 11-17
FPU_TRAP_OPC FPU Trapping Instruction Opcode Register  page 11-18
FPU_TRAP_SRC1 FPU Trapping Instruction Operand Register  page 11-19
FPU_TRAP_SRC2 FPU Trapping Instruction Operand Register  page 11-20
FPU_TRAP_SRC3 FPU Trapping Instruction Operand Register  page 11-21
FPU_ID FPU Identification Register  page 11-22
COMPAT Compatibility Control Register  page 3-18
DBGTCR Debug Trap Control Register  page 12-39
CCTRL Counter Control Register  page 12-45
CCNT CPU Clock Count Register  page 12-47
ICNT Instruction Count Register  page 12-48
M1CNT Multi Count Registers 1  page 12-49
M2CNT Multi Count Registers 2  page 12-50
M3CNT Multi Count Registers 3  page 12-51
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13.3 TriCore 1.3.1 Architectural Extensions - Instruction Set
The following instructions are introduced:
• CACHEI.W and CACHEI.WI
• FPU Conversion Instructions. FTOIZ, FTOQ31Z and FTOUZ.

Cachei.w and Cachei.wi
These cache index instructions are used for efficient flushing without knowing the cache
contents and preferably knowing very little about the cache itself (the total cache size
and the cache line size). This helps in debugging and coherence in flushing data
structures to optimize performance.

FPU Conversion Instructions 
These instructions convert from floating point to other formats and always use round
towards zero rounding irrespective of the current rounding mode.
User’s Manual 13-4 V1.3.8, 2008-01



TriCore® 1 (V1.3 & V1.3.1)
32-bit Unified Processor Core

TriCore 1.3.1 Architectural Extensions
13.4 TriCore 1.3.1 - Documentation References
This table references all sections of the manuals that contain TriCore 1.3.1 specific
information.

Table 23 TriCore 1.3.1 Documentation References - Volume 1
General Purpose and System Registers
ENDINIT Protection, page 3-1
Compatibility Mode Register (COMPAT), page 3-18
Floating Point Registers (TriCore 1.3.1), page 3-21

Trap System
CAE - Coprocessor Trap Asynchronous Error (TIN 4) (TriCore 1.3.1), page 6-13
PIE - Program Memory Integrity Error (TIN 5) (TriCore 1.3.1), page 6-13
DIE - Data Memory Integrity Error (TIN 6) (TriCore 1.3.1), page 6-13
Synchronous Trap Priorities, page 6-15
Asynchronous Trap Priorities, page 6-16

Memory Integrity Error Mitigation
Memory Integrity Error Mitigation (TriCore 1.3.1), page 7-1

Physical Memory Attributes
Scratchpad RAM (TriCore 1.3.1), page 8-4
BIST Mode Access Control Register (BMACON), page 3-19
SIST Mode Access Control Register (SMACON), page 3-20

Core Debug Controller
Breakpoint Trap, page 12-8
Multiple Breakpoint Traps (TriCore 1.3.1), page 12-9
Performance Counter Start/Stop (TriCore 1.3.1), page 12-11
None (TriCore 1.3.1), page 12-11
Suspend In Halt (TriCore 1.3.1), page 12-12
CDC Control Registers (TriCore 1.3.1), page 12-25
Core Performance Measurement and Analysis (TriCore 1.3.1), page 12-42
Performance Counter Registers (TriCore 1.3.1), page 12-44
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Floating Point Unit
Functional Overview, page 11-1
Traps (TriCore 1.3.1), page 11-4
Rounding Mode Restored (TriCore 1.3.1), page 11-7
Invalid Operations and their Quiet NaN Results, page 11-10
Asynchronous Traps (TriCore 1.3.1), page 11-13
FPU CSFR Registers (TriCore 1.3.1), page 11-14

Table 24 TriCore 1.3.1 Documentation References - Volume 2
CACHEI.W
CACHEI.WI
DVINIT DVINIT.U DVINIT.B DVINIT.BU DVINIT.H DVINIT.HU
RET
RFM
FTOIZ
FTOQ31Z
FTOUZ

Table 23 TriCore 1.3.1 Documentation References - Volume 1
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14 Core Register Table
The following tables list all the TriCore® CSFRs and GPRs. The memory protection
system is modular and the actual number of registers is implementation-specific.

Table 25 General Purpose Registers (GPR)
Register Name Description Address 

Offset
D[0]
D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]

Data Register 0.
Data Register 1.
Data Register 2.
Data Register 3.
Data Register 4.
Data Register 5.
Data Register 6.
Data Register 7.
Data Register 8.
Data Register 9.
Data Register 10.
Data Register 11.
Data Register 12.
Data Register 13.
Data Register 14.
Data Register 15 - Implicit Data Register.

FF00H
1)

FF04H
FF08H
FF0CH
FF10H
FF14H
FF18H
FF1CH
FF20H
FF24H
FF28H
FF2CH
FF30H
FF34H
FF38H
FF3CH

1) These address offsets are not used by the MTCR instruction.

A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]
A[8]
A[9]
A[10] (SP)
A[11] (RA)
A[12]
A[13]
A[14]
A[15]

Address Register 0 - Global Address Register.
Address Register 1 - Global Address Register.
Address Register 2.
Address Register 3.
Address Register 4.
Address Register 5.
Address Register 6.
Address Register 7.
Address Register 8 - Global Address Register.
Address Register 9 - Global Address Register.
Address Register 10 - Stack Pointer Register.
Address Register 11 - Return Address Register.
Address Register 12.
Address Register 13.
Address Register 14.
Address Register 15 - Implicit Address Register.

FF80H
1)

FF84H
FF88H
FF8CH
FF90H
FF94H
FF98H
FF9CH
FFA0H
FFA4H
FFA8H
FFACH
FFB0H
FFB4H
FFB8H
FFBCH
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Table 26 Core Special Function Registers (CSFR)
Register Name Description Address 

Offset
PCXI
PCX

Previous Context Information Register. 
Previous Context Pointer Register.

FE00H

PSW Program Status Word Register. FE04H

PC Program Counter Register. FE08H

SYSCON System Configuration Register. FE14H

CPU_ID CPU Identification Register (Read Only). FE18H

BIV 1) Base Address of Interrupt Vector Table Register. FE20H

BTV 1) Base Address of Trap Vector Table Register. FE24H

ISP 1) Interrupt Stack Pointer Register. FE28H

ICR ICU Interrupt Control Register. FE2CH

FCX Free Context List Head Pointer Register. FE38H

LCX Free Context List Limit Pointer Register. FE3CH

COMPAT1) Compatibility Mode Register (TriCore 1.3.1) 9400H

Memory Protection Registers
DPR0_0L
DPR0_0U
DPR0_1L
DPR0_1U
DPR0_2L
DPR0_2U
DPR0_3L
DPR0_3U

Data Segment Protection Register 0, Set 0, Lower.
Data Segment Protection Register 0, Set 0, Upper.
Data Segment Protection Register 1, Set 0, Lower.
Data Segment Protection Register 1, Set 0, Upper.
Data Segment Protection Register 2, Set 0, Lower.
Data Segment Protection Register 2, Set 0, Upper.
Data Segment Protection Register 3, Set 0, Lower.
Data Segment Protection Register 3, Set 0, Upper.

C000H
C004H
C008H
C00CH
C010H
C014H
C018H
C01CH

DPR1_0L
DPR1_0U
DPR1_1L
DPR1_1U
DPR1_2L
DPR1_2U
DPR1_3L
DPR1_3U

Data Segment Protection Register 0, Set 1, Lower.
Data Segment Protection Register 0, Set 1, Upper.
Data Segment Protection Register 1, Set 1, Lower.
Data Segment Protection Register 1, Set 1, Upper.
Data Segment Protection Register 2, Set 1, Lower.
Data Segment Protection Register 2, Set 1, Upper.
Data Segment Protection Register 3, Set 1, Lower.
Data Segment Protection Register 3, Set 1, Upper.

C400H
C404H
C408H
C40CH
C410H
C414H
C418H
C41CH
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DPR2_0L
DPR2_0U
DPR2_1L
DPR2_1U
DPR2_2L
DPR2_2U
DPR2_3L
DPR2_3U

Data Segment Protection Register 0, Set 2, Lower.
Data Segment Protection Register 0, Set 2, Upper.
Data Segment Protection Register 1, Set 2, Lower.
Data Segment Protection Register 1, Set 2, Upper.
Data Segment Protection Register 2, Set 2, Lower.
Data Segment Protection Register 2, Set 2, Upper.
Data Segment Protection Register 3, Set 2, Lower.
Data Segment Protection Register 3, Set 2, Upper.

C800H
C804H
C808H
C80CH
C810H
C814H
C818H
C81CH

DPR3_0L
DPR3_0U
DPR3_1L
DPR3_1U
DPR3_2L
DPR3_2U
DPR3_3L
DPR3_3U

Data Segment Protection Register 0, Set 3, Lower.
Data Segment Protection Register 0, Set 3, Upper.
Data Segment Protection Register 1, Set 3, Lower.
Data Segment Protection Register 1, Set 3, Upper.
Data Segment Protection Register 2, Set 3, Lower.
Data Segment Protection Register 2, Set 3, Upper.
Data Segment Protection Register 3, Set 3, Lower.
Data Segment Protection Register 3, Set 3, Upper.

CC00H
CC04H
CC08H
CC0CH
CC10H
CC14H
CC18H
CC1CH

CPR0_0L
CPR0_0U
CPR0_1L
CPR0_1U
CPR0_2L
CPR0_2U
CPR0_3L
CPR0_3U

Code Segment Protection Register 0, Set 0, Lower.
Code Segment Protection Register 0, Set 0, Upper.
Code Segment Protection Register 1, Set 0, Lower.
Code Segment Protection Register 1, Set 0, Upper.
Code Segment Protection Register 2, Set 0, Lower.
Code Segment Protection Register 2, Set 0, Upper.
Code Segment Protection Register 3, Set 0, Lower.
Code Segment Protection Register 3, Set 0, Upper.

D000H
D004H
D008H
D00CH
D010H
D014H
D018H
D01CH

CPR1_0L
CPR1_0U
CPR1_1L
CPR1_1U
CPR1_2L
CPR1_2U
CPR1_3L
CPR1_3U

Code Segment Protection Register 0, Set 1, Lower.
Code Segment Protection Register 0, Set 1, Upper.
Code Segment Protection Register 1, Set 1, Lower.
Code Segment Protection Register 1, Set 1, Upper.
Code Segment Protection Register 2, Set 1, Lower.
Code Segment Protection Register 2, Set 1, Upper.
Code Segment Protection Register 3, Set 1, Lower.
Code Segment Protection Register 3, Set 1, Upper.

D400H
D404H
D408H
D40CH
D410H
D414H
D418H
D41CH

Table 26 Core Special Function Registers (CSFR)
Register Name Description Address 

Offset
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CPR2_0L
CPR2_0U
CPR2_1L
CPR2_1U
CPR2_2L
CPR2_2U
CPR2_3L
CPR2_3U

Code Segment Protection Register 0, Set 2, Lower.
Code Segment Protection Register 0, Set 2, Upper.
Code Segment Protection Register 1, Set 2, Lower.
Code Segment Protection Register 1, Set 2, Upper.
Code Segment Protection Register 2, Set 2, Lower.
Code Segment Protection Register 2, Set 2, Upper.
Code Segment Protection Register 3, Set 2, Lower.
Code Segment Protection Register 3, Set 2, Upper.

D800H
D804H
D808H
D80CH
D810H
D814H
D818H
D81CH

CPR3_0L
CPR3_0U
CPR3_1L
CPR3_1U
CPR3_2L
CPR3_2U
CPR3_3L
CPR3_3U

Code Segment Protection Register 0, Set 3, Lower.
Code Segment Protection Register 0, Set 3, Upper.
Code Segment Protection Register 1, Set 3, Lower.
Code Segment Protection Register 1, Set 3, Upper.
Code Segment Protection Register 2, Set 3, Lower.
Code Segment Protection Register 2, Set 3, Upper.
Code Segment Protection Register 3, Set 3, Lower.
Code Segment Protection Register 3, Set 3, Upper.

DC00H
DC04H
DC08H
DC0CH
DC10H
DC14H
DC18H
DC1CH

DPM0
DPM1
DPM2
DPM3

Data Protection Mode Register 0.
Data Protection Mode Register 1.
Data Protection Mode Register 2.
Data Protection Mode Register 3.

E000H
E080H
E100H
E180H

CPM0
CPM1
CPM2
CPM3

Code Protection Mode Register 0.
Code Protection Mode Register 1.
Code Protection Mode Register 2.
Code Protection Mode Register 3.

E200H
E280H
E300H
E380H

Memory Management Registers
MMU_CON Memory Management Unit Configuration Register. 8000H

MMU_ASI MMU Address Space Identifier Register. 8004H

MMU_TVA MMU Translation Virtual Address Register. 800CH

MMU_TPA MMU Translation Physical Address Register. 8010H

MMU_TPX MMU Translation Physical Index Register. 8014H

MMU_TFA MMU Translation Fault Address Register. 8018H

BMACON1) BIST Mode Control Register. (TriCore 1.3.1) 9004H

SMACON1) SIST mode Control Register. (TriCore 1.3.1) 900CH

Table 26 Core Special Function Registers (CSFR)
Register Name Description Address 

Offset
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DIEAR Data Integrity Error Address Register. (TriCore 1.3.1) 9020H

DIETR Data Integrity Error Trap Register. (TriCore 1.3.1) 9024H

CCDIER Count Corrected Data Integrity Errors. (TriCore 1.3.1) 9028H

MIECON1) Memory Integrity Error Control Register (TriCore 1.3.1) 9044H

PIEAR Program Integrity Error Address Register. 
(TriCore 1.3.1)

9210H

PIETR Program Integrity Error Trap Register. (TriCore 1.3.1) 9214H

CCPIER Count Corrected Program Integrity Errors. 
(TriCore 1.3.1)

9218H

Debug Registers
DBGSR Debug Status Register. FD00H

EXEVT External Event Register. FD08H

CREVT Core Register Event Register. FD0CH

SWEVT Software Event Register. FD10H

TR0EVT Trigger Event 0 Register. FD20H

TR1EVT Trigger Event 1 Register. FD24H

DMS Debug Monitor Start Address Register. FD40H

DCX Debug Context Save Address Register. FD44H

DBGTCR Debug Trap Control Register. (TriCore 1.3.1) FD48H

CCTRL Counter Control Register (TriCore 1.3.1) FC00
CCNT CPU Clock Count Register (TriCore 1.3.1) FC04
ICNT Instruction Count Register (TriCore 1.3.1) FC08
M1CNT Multi Count Register 1 (TriCore 1.3.1) FC0C
M2CNT Multi Count Register 2 (TriCore 1.3.1) FC10
M3CNT Multi Count Register 3 (TriCore 1.3.1) FC14
Floating Point Registers 

FPU_TRAP_CON Trap Control Register. (TriCore 1.3.1) A000H

FPU_TRAP_PC Trapping Instruction Program Control Register. 
(TriCore 1.3.1)

A004H

FPU_TRAP_OPC Trapping Instruction Opcode Register. (TriCore 1.3.1) A008H

Table 26 Core Special Function Registers (CSFR)
Register Name Description Address 

Offset
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FPU_TRAP_SRC1 Trapping Instruction SRC1 Operand Register. 
(TriCore 1.3.1)

A010H

FPU_TRAP_SRC2 Trapping Instruction SRC2 Operand Register. 
(TriCore 1.3.1)

A014H

FPU_TRAP_SRC3 Trapping Instruction SRC3 Operand Register. 
(TriCore 1.3.1)

A018H

FPU_ID FPU Identification Register. (TriCore 1.3.1) A020H
1) These registers are ENDINIT protected.

Table 27 Special Function Registers Associated with the Core1)

1) These address offsets are calculated from a different base address to core registers. These registers cannot
be accessed using the MTCR and MFCR instructions.

CPU_SRC0 CPU Service Request Control Register 0. FFFCH

CPU_SRC1 CPU Service Request Control Register 1. FFF8H

CPU_SRC2 CPU Service Request Control Register 2. FFF4H

CPU_SRC3 CPU Service Request Control Register 3. FFF0H

CPU_SBSRC0 CPU Software Break Service Request Control
Register 0.

FFBCH

CPU_SBSRC12)

2) If implemented.

CPU Software Break Service Request Control 
Register 1.

FFB8H

CPU_SBSRC22) CPU Software Break Service Request Control 
Register 2.

FFB4H 

CPU_SBSRC32) CPU Software Break Service Request Control 
Register 3.

FFB0H 

Table 26 Core Special Function Registers (CSFR)
Register Name Description Address 

Offset
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A[10](SP) . . . . . . . . . . . . . . . . . . . 3-14
An (n = 0-15)  . . . . . . . . . . . . . . . . 3-3
BIV . . . . . . . . . . . . . . . . . . . . . . . . 6-19
BMACON . . . . . . . . . . . . . . . . . . . 3-19
BTV  . . . . . . . . . . . . . . . . . . . . . . . 6-20
CCDIER . . . . . . . . . . . . . . . . . . . . 7-4
CCNT . . . . . . . . . . . . . . . . . . . . . . 12-47
CCPIER . . . . . . . . . . . . . . . . . . . . 7-3
CCTRL . . . . . . . . . . . . . . . . . . . . . 12-45
COMPAT . . . . . . . . . . . . . . . . . . . 3-18
CPMx . . . . . . . . . . . . . . . . . . . . . . 9-12
CPRx_nL . . . . . . . . . . . . . . . . . . . 9-9
CPRx_nU . . . . . . . . . . . . . . . . . . . 9-8
CPU_ID  . . . . . . . . . . . . . . . . . . . . 3-17
CREVT . . . . . . . . . . . . . . . . . . . . . 12-18
DBGSR  . . . . . . . . . . . . . . . . . . . . 12-15
DBGSR  . . . . . . . . . . . . . . . . . . . . 12-25
DBGTCR  . . . . . . . . . . . . . . . . . . . 12-39
DCX . . . . . . . . . . . . . . . . . . . . . . . 12-24
DIEAR  . . . . . . . . . . . . . . . . . . . . . 7-8
DIETR  . . . . . . . . . . . . . . . . . . . . . 7-7
DMS . . . . . . . . . . . . . . . . . . . . . . . 12-23
DMS . . . . . . . . . . . . . . . . . . . . . . . 12-37
Dn (n = 0-15) . . . . . . . . . . . . . . . . 3-3
DPMx . . . . . . . . . . . . . . . . . . . . . . 9-10
DPRx_mL  . . . . . . . . . . . . . . . . . . 9-7
DPRx_mU  . . . . . . . . . . . . . . . . . . 9-6
EXEVT . . . . . . . . . . . . . . . . . . . . . 12-17
EXEVT . . . . . . . . . . . . . . . . . . . . . 12-27
FCX  . . . . . . . . . . . . . . . . . . . . . . . 4-14
FPU_ID  . . . . . . . . . . . . . . . . . . . . 11-22
FPU_TRAP_CON  . . . . . . . . . . . . 11-14
FPU_TRAP_OPC  . . . . . . . . . . . . 11-18
FPU_TRAP_PC . . . . . . . . . . . . . . 11-17
FPU_TRAP_SRC1  . . . . . . . . . . . 11-19
FPU_TRAP_SRC2  . . . . . . . . . . . 11-20
FPU_TRAP_SRC3  . . . . . . . . . . . 11-21
ICNT  . . . . . . . . . . . . . . . . . . . . . . 12-48
ICR . . . . . . . . . . . . . . . . . . . . . . . . 6-17
ISP   . . . . . . . . . . . . . . . . . . . . . . . 3-15
LCX  . . . . . . . . . . . . . . . . . . . . . . . 4-16

M1CNT . . . . . . . . . . . . . . . . . . . . . 12-49
M2CNT . . . . . . . . . . . . . . . . . . . . . 12-50
M3CNT . . . . . . . . . . . . . . . . . . . . . 12-51
MIECON . . . . . . . . . . . . . . . . . . . . 7-9
MMU_ASI . . . . . . . . . . . . . . . . . . . 10-15
MMU_CON . . . . . . . . . . . . . . . . . . 10-13
MMU_TFA  . . . . . . . . . . . . . . . . . . 10-20
MMU_TPA  . . . . . . . . . . . . . . . . . . 10-17
MMU_TPX  . . . . . . . . . . . . . . . . . . 10-19
MMU_TVA  . . . . . . . . . . . . . . . . . . 10-16
module_SRCn  . . . . . . . . . . . . . . . 5-3
PC . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
PCX  . . . . . . . . . . . . . . . . . . . . . . . 4-15
PCXI, PCX  . . . . . . . . . . . . . . . . . . 3-12
PIEAR . . . . . . . . . . . . . . . . . . . . . . 7-6
PIETR . . . . . . . . . . . . . . . . . . . . . . 7-5
PSW . . . . . . . . . . . . . . . . . . . . . . . 3-6
SBSRCn (n = 0 to 3) . . . . . . . . . . . 12-40
SMACON  . . . . . . . . . . . . . . . . . . . 3-20
SWEVT . . . . . . . . . . . . . . . . . . . . . 12-19
SWEVT . . . . . . . . . . . . . . . . . . . . . 12-31
SYSCON  . . . . . . . . . . . . . . . . . . . 3-16
TR0EVT  . . . . . . . . . . . . . . . . . . . . 12-20
TR0EVT  . . . . . . . . . . . . . . . . . . . . 12-33
TR1EVT  . . . . . . . . . . . . . . . . . . . . 12-20
TR1EVT  . . . . . . . . . . . . . . . . . . . . 12-33
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Index
Index

A
A0, A1, A8, A9

System Global Registers
GPRs 3-2
Overview 1-4

A0-A15
Address Registers 14-1

A10
Stack Pointer 3-13

Absolute
Addressing 2-8

Access Privilege 3-7
Address

Absolute 2-14
Array 2-12
Base Address of Vector Table 6-19
Code 2-14
Definition 2-2
Displacement 2-6
Effective 2-12, 4-13
General Purpose Registers 3-2
Half-word 6-20
Map 1-5

Physical Memory Attributes 8-3
Mapping 1-4
Multiple Address Spaces 10-5
Physical Memory 4-5
Range 9-16
Ranges 4-5
Register 2-14

Use with GPRs 3-2
Register A10 3-13
Return Address A11 3-2
Space 1-1, 1-4
Space Identifier (ASI) 10-1, 10-5
Spaces 10-2
Width 2-6

Address Offset
List of offsets 14-1

Address Register

Definition 3-14
Address Translation 10-3

Context Pointers 10-3
MMU_CON 10-3
PPN 10-3
PTE 10-3
VPN 10-3

Addressing
Absolute 2-8
Address Register 2-9
Base + Offset 2-8
Bit Indexed 2-13
Bit Reverse 2-12
Circular 2-9
Indexed 2-13
Modes 1-6, 2-7

Programming Model 2-1, 2-7
Synthesized 2-13

PC-relative 2-14
Post-decrement 2-9
Post-increment 2-9
Pre-decrement 2-9
Pre-Increment 2-9
Synthesized 2-13

ADDSC.A Instruction
Indexed Addressing 2-13

ADDSC.AT 2-13
Alignment

Requirements 2-4
Rules 2-4
Trap 2-11

ALN Trap
Data Address Alignment 6-9

Arbitration
Scheme 5-8

Architectural Registers 1-3
Architecture

Addressing Data 2-14
Overview 1-1
Traps 6-1

Array
Index 2-12
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Address Space Identifier 10-1, 10-5
Field in MMU_ASI Register 10-15
Field in MMU_TVA Register 10-16
Field in TRnEVT Register 12-20, 12-33

ASI_EN
Field in TRnEVT Register 12-20, 12-33

Assertion Traps 6-14
Associativity (of TLB) 10-4
Asynchronous Traps 6-3, 11-1, 11-13
Atomic Operations 2-7
Automatic Switch

Stack Management 3-13

B
BAM Trap

Break After Make 6-14
Priority of Debug Events 12-12

Base
+ Offset Addressing 2-8
Address 2-12
Register 2-14

Base + Offset Addressing 2-8
BBM

Debug Halt Action 12-8
Field in CREVT Register 12-18, 12-30
Field in EXEVT Register 12-17, 12-28
Field in SWEVT Register 12-19, 12-32
Field in TRnEVT Register 12-22, 12-36
Priority of Debug Events 12-12
Trap

Break Before Make 6-14
BISR 4-4
BISR Instruction

Context Switching with Interrupts 4-7
Bit

Bit-Reverse Addressing 2-12
Enable and Disable 6-17
String 2-1
Type Abbreviations 1-2

Bit Type
Abbreviations in Tables

Definitions 1-2
Bit-Reverse Addressing 2-12

Bit-Reversed Order 2-12
BIV

Interrupt Vector Table Location 5-11
Register

Address Offset 14-2
Definition 6-19
Interrupt and Trap Handling 6-17

BL
Field in CPMx Register 9-13

BMACON 3-19
Address Offset 14-4

Boolean
Programming Model 2-1

Breakpoint
CDC Features 12-1
Interrupt Debug Action 12-10
Trap 12-8

BTV
Base Trap Vector Table Pointer 6-20
Register

Address Offset 14-2
Definition 6-20
Interrupt and Trap Handling 6-17

BU
Field in CPMx Register 9-13

Buffer
Aligned to a 64-bit Boundary 2-11
Size 2-13
Start 2-11

Byte
Definition 1-2
Indices 2-13
Offset 2-10
Ordering 2-5

C
Cacheability 10-7
Cacheability Bit (C)

TLB Table Entry Contents 10-5
Cacheable (C)

Physical Memory Address Properties 
8-1

Cacheable Memory
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Call Depth Counter

CSAs and Context Lists 4-6
CALL Instruction

Context Switching & Calls 4-8
Calling and Called Functions 4-8
CCDIER

Address Offset 14-5
CCNT 12-47

Address Offset 14-5
CCPIER 7-3

Address Offset 14-5
CCPN

CPU Priority
Interrupt Priority Groups 5-12

Current CPU Priority Number 6-17
Field in ICR Register 6-18

CCTRL 12-42, 12-45
Address Offset 14-5

CCTRL.CM 12-43
CDC

Combining Debug Triggers 12-6
Control Registers 12-14
Core Debug Controller 12-1
Debug Triggers 12-5
Enabling 12-1
Features 12-1
Memory Protection System 9-1

CDE
Field in PSW Register 3-8

CDO Trap
Call Depth Overflow 6-11

CDU Trap
Call Depth Underflow 6-11

Circular
Addressing 2-9, 2-10
Buffer

Circular Addressing 2-9, 2-10
End Case 2-11
Restrictions 2-11

CLRR
Description 5-4
Field in SBSRC Register 12-40

Field in SRC Register 5-3
Code

Address 2-14
Fetch (F)

Physical Memory Address 
Properties 8-2

Protection Mode (CPM) Register 12-6
Code Protection Mode (CPM) Register

Address Offset 14-4
COMPAT

Compatibility Register 14-2
Compatibility Mode Register 3-18
Context

Current 4-7
Information Register 3-12
List

Context Restore 4-11
Description 4-5
Previous 4-5

List Management
CTYP Trap 6-11

Lower 4-1
Lower Context

Context Restore 4-12
PCXI Register Field 3-12
Registers 3-4
Task Switching Operation 4-4

Management Registers 4-13
Management Traps 6-10
Of Task 1-7, 3-11
Pointers

Address Translation 10-3
Restore

CTYP Trap 6-11
Example 4-9
Operation 4-11

Save 4-9
Example 4-9
FCU Trap 6-11
Operation 4-6, 4-9

Switching 1-7
With Function Calls 4-8
With Interrupts 4-7
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Upper 4-1
Upper Context

Registers 3-4
Task Switching Operation 4-4
UL Field in PCXI Register 3-12

Context Save Area (CSA)
Context Lists 4-5
Context Management Registers 4-13
Description 4-3
Lower Context 1-7
Upper and Lower Contexts 4-1

Coprocessor 1-11
Core

Break-Out Signal 12-8
Debug Controller (CDC) 12-1

Registers 3-21
Special Function Registers (CSFRs)

Core Registers 1-4, 3-1
Suspend-Out Signal 12-8

Core Register Table 14-1
Core Special Function Registers 14-2
Corrected Memory Integrity Errors 7-3
Counters

Normal Mode 12-43
Task Mode 12-43

CPM
Code Protection Mode Register 9-12

Combining Debug Triggers 12-6
CPR

Code Segment Protection (CPR) 
Register

Address Offset 14-3
CPRx_nL

Code Segment Protection Register
Lower Bound 9-9

CPRx_nU
Code Segment Protection Register

Upper Bound 9-8
CPU

Current Priority Number 5-9
CPU_ID

CPU Identification Register
Address Offset 14-2

CPU_SBSRC
CPU Software Break Service Request 
Control Register

Definition 12-40
CPU_SBSRC0

Address Offset 14-6
CPU_SBSRC1

Address Offset 14-6
CPU_SBSRC2

Address Offset 14-6
CPU_SBSRC3

Address Offset 14-6
CPU_SRC0

Address Offset 14-6
CPU_SRC1

Address Offset 14-6
CPU_SRC2

Address Offset 14-6
CPU_SRC3

Address Offset 14-6
CREVT

Address Offset 14-5
Core Register Access Event Register

Definition 12-18, 12-29
CSA

Context Lists 4-5
Context Save Area

Description 4-3
Lower Context 1-7
Upper and Lower Contexts 4-1

Effective Address 4-3
List Head Pointer 4-13
List Limit Pointer 4-13
List Underflow 4-16

CSA memory location 4-17
CSFR

Core Registers 1-4, 3-1
MMU 10-13
Register Table 14-1

CSU Trap
Call Stack Underflow 6-11

CTYP Trap
Context Type 6-11
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D
D0-D15 Data Registers 14-1
DAE Trap

Data Access Asynchronous Error 6-12
Data

Data Registers (D0 to D15) 3-2
DPR Data Segment Protection 
Register

Address Offset 14-2
Formats 2-1, 2-2
General Purpose Registers 3-2
Memory 2-14
Protection Mode Register (DPM) 12-6
Size 2-11
Types 2-1

List of 1-4
Values

Circular Addressing 2-9
Data Access

Cacheable and Speculative Properties 
8-2
Physical Memory Address Properties 
8-2

Data Protection Mode Register 9-10
Data Protection Mode Register (DPM)

Address Offset 14-4
Data Segment Protection Registers 9-15
DBGSR

Address Offset 14-5
Debug Status Register

CDC Control Registers 12-14
Definition 12-15, 12-25

Enabling CDC 12-1
DBGTCR

Address Offset 14-5
DCX

Address Offset 14-5
Debug Context Save Area Pointer 
Register

Definition 12-24, 12-38
Value

Field in DCX Register 12-24

DE
Field in DBGSR Register 12-16, 12-26

Debug
Monitor Start Address Register (DMS)

Breakpoint Trap 12-8
System 1-11
Traps 6-14

Debug Action
Description 12-7
EXEVT 12-7
Halt 12-8
Run Control Features 12-1
TRnEVT 12-4

Debug Event 12-1
Description 12-3
External 12-3
MTCR and MFCR 12-3
Priority 12-12

DEBUG Instruction 12-2, 12-3
Debug Monitor Start Address Register

(DMS) 12-8
Debug Registers 14-5
Debug Triggers 12-5

Combining 12-6
Debugging

Registers that support 3-21
Denormal Numbers 11-3
DIEAR

Address Offset 14-5
DIETR

Address Offset 14-5
Direct Memory Access (DMA) 1-8
Direct Translation

Description 1-10
Memory Protection System 9-2
MMU 10-1
Permitted Versus Valid Accesses 8-6
Virtual Mode Protection 10-7

DLR_LR
Field in TRnEVT Register 12-21, 12-34

DLR_U
Field in TRnEVT Register 12-21, 12-34

DMA
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Direct Memory Access 1-8
DMS 12-23, 12-37

Address Offset 14-5
Debug Monitor Start Address Register

Breakpoint Trap 12-8
Value

Field in DMS Register 12-23
Double-word

Accesses 2-4
Definition 1-2

DPM
Data Protection Mode Register

Combining Debug Triggers 12-6
Definition 9-10

DPR
Data Segment Protection Register 14-
2

Definition 9-6, 9-7
DPRx Register 9-7

DSE Trap
Data Access Synchronous Error 6-12

DSPR
Data scratchpad RAM 8-4
Data Scratchpad Register 3-19

DSYNC 4-17
DU_LR

Field in TRnEVT Register 12-21, 12-34
DU_U

Field in TRnEVT Register 12-21, 12-34

E
EA

Effective Address 4-3
Effective Address

Context Save Area (CSA) 4-3, 4-13
Emulator Space

Physical Memory Attribute 8-3
ENABLE Instruction 5-9
Endianess 2-5
ENDINIT protected 14-6
EVT 12-39
EVTA

Field in CREVT Register 12-18, 12-30

Field in EXEVT Register 12-17, 12-28
Field in SWEVT Register 12-19, 12-32
Field in TRnEVT Register 12-22, 12-36

EVTSRC
Field in DBGSR Register 12-15, 12-25

Exceptions
Floating Point Exception Flags 11-8

EXEVT
Address Offset 14-5
Register Definition 12-17, 12-27

Extended-Size Registers 3-2
EXTR.U 2-13

F
FCD Trap 4-16

Free Context List Depletion 6-10
FCU Trap

Free Context List Underflow 6-11
FCX

Context Management Register 4-13
Context Restore 4-11
CSAs and Context Lists 4-5
Free Context List

Context Save Description 4-9
Free CSA List Head Pointer Register

Definition 4-14
Offset Address 4-14
Pointer 4-14
Register

Address Offset 14-2
Definition 4-14
FCU Trap 6-11

Segment Address Field 4-14
FCXO

FCX Offset Address
Field in FCX Register 4-14

Feature Summary
TriCore 1-2

FFT
Algorithms 2-12
Bit-Reverse Addressing 2-13

FI
FPU Exception Flag 11-9
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Filter Calculations 2-9
Floating Point

Denormal Numbers 11-3
Exception Flags 11-8
Registers 3-2
Unit (FPU) 11-1

Floating Point Registers 14-5
Floating Point Unit (FPU) 11-1
FPN

Field in MMU_TFA Register 10-20
FPU 11-1

Denormal Numbers 11-3
Exception Flags 11-8
Exceptions 11-8
FI Exception Flag 11-9
Floating Point Unit 11-1
FS Exception Flag 11-9
FU Exception Flag 11-12
FV Exception Flag 11-11
FX Exception Flag 11-12
FZ Exception Flag 11-12
Identification Register 11-22
IEEE-754 11-1
Invalid Operations 11-10
NaN 11-3
Rounding 11-6
Trap Control Register 11-14

FPU_ID
Address Offset 14-6

FPU_TRAP_CON
Address Offset 14-5

FPU_TRAP_OPC
Address Offset 14-5

FPU_TRAP_PC
Address Offset 14-5

FPU_TRAP_SCR1
Address Offset 14-6

FPU_TRAP_SCR2
Address Offset 14-6

FPU_TRAP_SCR3
Address Offset 14-6

Free Context Depletion
CSA List Underflows 4-16

Free Context List
Available CSA 4-5
Context Restore 4-11
Context Save 4-9
FCD Trap 6-10
Free CSA 4-6

FS
FPU Exception Flag 11-9

FU
FPU Exception Flag 11-12

Function Call 4-8
Context Switching 4-8

FV
FPU Exception Flag 11-11

FX
FPU Exception Flag 11-12

FZ
FPU Exception Flag 11-12

G
GByte

Definition 1-2
General Purpose Registers 3-1, 14-1, 14-2
Global

Data 2-8
Register Write Permission 5-9
Registers 3-8

Global bit
TLBMAP 10-9

Global bit (G)
TLB Table Entry Contents 10-5

GPR
16-bit Instructions 3-2
Core Registers 1-3
General Purpose Registers

Data Formats 2-2
Overview 1-3

Register Table 3-4, 14-1
GRWP Trap

Global Register Write Protection 6-8
GW

Field in PSW Register 3-8
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Definition 1-2
Half-word

Boundary
Alignment Requirements 2-4

Definition 1-2
HALT

Field in DBGSR Register 12-16, 12-26
Halt

Debug Action 12-8
Hardware Traps 6-3

I
ICNT 12-48

Address Offset 14-5
ICR

Initial State upon a Trap 6-6
Interrupt Control Register

Address Offset 14-2
Definition 6-17
Description 5-7

ICU
Interrupt Control Unit

Description 5-6
Interrupt Priority 1-8

Operation 5-7
ID Registers 3-17
IEEE-754 2-2

FPU 11-1
Single Precision Floating Point 
Number 2-2

Implicit
Address Register 1-3
Data Register 1-3

INDEX
Field in MMU_TPX Register 10-19

Index
Algorithm 2-10
Array 2-12
Bit-Reverse 2-13
Modifier 2-12

Indexed
Addressing 2-13
Arrays 2-13

Indexed Addressing
Scaled Data Register 2-13

Indexes
Table Indexes

GPRs 3-2
Instruction

Load Double-word 2-11
Load Word 2-11
On-chip

PC-Relative Addressing 2-14
Word 2-10

Instruction Fetch 9-3
Instruction Formats 2-8
Instruction Set Architecture (ISA)

Features 1-2
Integers 2-2
Internal Buffer

Context Restore 4-11
Interrupt

Control Register 6-17
Definition 6-17

Enable 4-7
Enable/Disable Bit 5-7
Handler 4-4, 4-7
Interrupt Control Unit (ICU)

Interrupt Priority 1-8
Nested 1-8
Priority 1-8
Priority Groups 5-12
Register A11 3-2
Request

Priority Numbers 5-13
Requests 5-1

Priority 5-6
Service Routine (ISR) 1-7, 3-11, 3-13, 
4-7
Signal 5-1
Software-Posted Interrupts 5-15
Stack Management 3-13
Stack Pointer 3-13
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Vector Table 6-17, 6-19
Interrupt Control Register 5-7

Context Switching with Interrupts 4-7
Interrupt Control Unit (ICU) 5-6
Interrupt Service

Request 5-8
Request Node 5-1

Interrupt Service Routine (ISR)
Dividing into Priorities 5-14
Entering an ISR 5-8
Exiting an ISR 5-9
Stack Management 3-13

Interrupt Stack Control 3-7
Interrupt System

Chapter 5-1
Description 1-8
Service Request Enable 5-5
Service Request Flag (SRR) 5-4
Service Request Priority Number 
(SRPN) 5-6
Type-of-Service Control (TOS) 5-5
Typical Block Diagram 5-2
Using the Interrupt System 5-12

Interrupt-1 5-15
IO

I/O Privilege
Field in PSW Register 3-7

IOPC Trap
Illegal Opcode 6-8

IS
Interrupt Stack Control

Field in PSW Register 3-7
ISA

Feature Summary 1-2
ISP

Initialize 3-13
Interrupt Stack Pointer Register

Address Offset 14-2
Interrupt Stack Pointer Register 
Definition 3-15

ISR
Entering an ISR 5-8
Exiting an ISR 5-9

Splitting on to Different Priorities 5-14
Stack Management 3-13
Tasks and Contexts 1-7, 3-11

ISYNC Instruction
Entering an ISR 5-9
TLBMAP 10-10

ISYNC instruction 3-22

J
Jump and Link

Instruction
PC-Relative Addressing 2-14

K
KByte

Definition 1-2

L
LCX

Context Management Registers 4-13
FCD Trap 6-10
Free CSA List Limit Pointer Register

Address Offset 14-2
Definition 4-16

Offset 4-16
Segment Address 4-16

LDMST 2-7
LDMST Instruction

Alignment Requirements 2-4
LEA

Load Effective Address
PC-Relative Addressing 2-14

Link Word
Context Restore Example 4-11
Context Save Areas (CSAs) 4-5
Context Save Example 4-10
CSA 4-3
Lower Context and CSAs 1-7

Little-Endian 2-5
Load

Effective Address (LEA)
PC-Relative Addressing 2-14

Task Switching Operations 4-4
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Word 2-10
Local

Variables 2-8
LOWBND

Field in CPRx_nL Register 9-9
Field in DPRx_nL Register 9-7

Lower Context 4-1
PCXI Register Field 3-12
Registers 3-4
Task Switching Operation 4-4

M
M1CNT 12-49

Address Offset 14-5
M2CNT 12-50

Address Offset 14-5
M3CNT 12-51

Address Offset 14-5
MByte

Definition 1-2
MEM Trap

Invalid Local Memory Address 6-9
Memory

Access
Circular Addressing 2-10
Permitted versus Valid 8-5

Management 3-21
TLB Description 10-4

Management Unit (MMU)
Architecture Overview 1-10

Management Unit Registers 3-21
Memory Protection Enable 
(SYSCON.PROTEN) 3-16
Model 1-5, 2-6

Description 1-4, 2-6
Programming Model Overview 2-1

Protection
Model 9-7

Protection Model 9-6
Protection Register Sets 9-3
Protection Registers 9-2

Active Set 3-6
Overview 3-21

PSW.PRS Field 3-6
Protection System 9-1

Using 9-16
Memory Integrity Error

Classification 7-1
Data 7-2
Mitigation 7-1
Program 7-2

Memory Management Registers 14-4
Memory Management Unit

MMU Chapter 10-1, 11-1
Memory Protection Registers 14-2

Description 3-21
Memory Protection System 9-1
MFCR Instruction

Debug Events 12-3
Reading MMU CSFRs 10-13
Run-Control Features 12-2

MHz
Definition 1-2

MIECON
Address Offset 14-5

MMU 10-1
Architecture Overview 1-10
Instructions 10-8
Physically Present 10-8
Protection System 1-10, 9-1
Traps 10-5

MMU Configuration Register 10-13
MMU Traps 6-7
MMU_ASI

Address Offset 14-4
Address Space Identifier Register 
Definition 10-15

MMU_CON 10-13
Address Offset 14-4
Address Translation 10-3
MMU Configuration Register 10-13

MMU_TFA
Address Offset 14-4
Translation Fault Page Address 
Register Definition 10-20

MMU_TPA
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Address Offset 14-4
Translation Physical Address Register 
Definition 10-17

MMU_TPX
Address Offset 14-4
Translation Page Index Register 
Definition 10-19

MMU_TVA
Address Offset 14-4
Translation Virtual Address Register 
Definition 10-16

Mode
Supervisor 1-7, 3-11
User-0 1-7, 3-11
User-1 1-7, 3-11

Module Identification Number
CPU_ID.MOD Field 3-17, 3-18, 11-22

MPN Trap
Memory Protection Null Address 6-8

MPP Trap
Memory Protection Access 6-8

MPR Trap 9-17
Memory Protection Read 6-7

MPW Trap 9-17
Memory Protection Write 6-8

MPX Trap 9-17
Memory Protection Execute 6-8

MTCR Instruction
Debug Events 12-3
ICR.CCPN Update 6-18
MMU CSFRs 10-13
Modifying ICR.IE and ICR.CCPN 5-9
Run Control Features 12-2
Writing to the BIV Register 5-11

MTCR instruction 10-13
MTCR update 3-22

N
Negative Logic

Text Conventions 1-2
NEST Trap

Nesting Error
Description 6-12

Nesting
Ranges

PRS Usage Example 9-14
NMI

Asynchronous Traps 6-3
Description 6-14
Non-Maskable Interrupt

Trap Class 6-3
Trap

Non-Maskable Interrupt 6-14
Trap System

Architecture Overview 1-9, 9-1
Trap System Overview 6-1

NOMMU
Field in MMU_CON Register 10-14

Non-Cacheable Memory
Physical Memory Attribute 8-3

Normal Mode 12-43

O
OCDS

Control Registers 12-14
On-Chip Instruction

PC-Relative Addressing 2-14
OPD Trap

Invalid Operand 6-9
Overflow

Arithmetic Overflow
OVF Trap 6-2

OVF Trap
Arithmetic Overflow 6-14

P
Packed

Arithmetic in DSP 2-4
Page Mapping

TLB Map 10-9
Page Table Entry (PTE)

Memory Protection System 9-2
Virtual Address Translation 1-10, 10-1

PC
Program Counter Register

Address Offset 14-2
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Architectural Registers 1-3
Architecture Overview 1-3
Definition 3-5

Register A11 3-2
Relative Addressing 2-14

PCX
Context Management Registers 4-13
Context Restore 4-11
Context Save 4-9
CSU Trap 6-11
Offset 4-15
Previous Context Pointer Register 14-2

Definition 4-15
Segment Address 4-15

PCXI
Architectural Registers 1-3
Architecture Overview 1-3
Exiting an Interrupt Service Routine 5-9
Previous Context Information Register

Address Offset 14-2
Definition 3-12

Task Switching Operation 4-4
PCXO

Previous Context Pointer Offset
Field in PCXI Register 3-12

PCXS
PCX Segment Address

Field in PCXI Register 3-12
Pending

Interrupt Priority Number (PIPN)
Context Switching - Interrupts 4-7
Entering an ISR 5-9
Interrupt Control Register 6-17

Peripheral
Registers 2-8

Peripheral Space
Physical Memory Attribute 8-3

PEVT
Field in DBGSR Register 12-15, 12-25

Physical Address Space
Memory Management Unit 10-1
Memory Model 2-6
Physical Memory Attributes 8-3

Physical Memory Attributes (PMA) 8-1
Physical Memory Attributes for all Seg-

ments 8-3
Physical Memory Properties (PMP)

Cacheable (C) 8-1
Code Fetch (F) 8-1
Data Access (D) 8-1
Description 8-1
Privileged Peripheral (P) 8-1
Speculative (S) 8-1

PIEAR
Address Offset 14-5

PIETR
Address Offset 14-5

PIPN
Field in ICR Register 6-17
ICU Operation 5-7
Used with BIV Register 6-19

PMA
Description 8-1
Memory Protection System 9-16
Physical Memory Attributes 8-3

PMP
Description 8-1

Pointer
Interrupt Vector Table 6-17
Trap Vector Table 6-17

Posted Software Events
Debug Actions 12-11

Post-Increment Addressing 2-9
PPN

Address Spaces 10-2
Field in MMU_TPA Register 10-18
Page Table Entry Translation 1-10, 10-
1
Physical Page Number

TLB Table Entry Contents 10-5
Pre-Decrement Addressing 2-9
Pre-Increment Addressing 2-9
Previous Context

CSAs and Context Lists 4-6
Previous Context Information (PCXI)

Register Definition 3-12
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Previous Context Pointer (PCX)
Context Management Registers 4-13
Context Restore 4-11
Context Save 4-9
Register Definition 4-15

Previous CPU Priority Number (PCPN)
Field in PCXI Register 3-12

Previous Interrupt Enable (PIE)
Field in PCXI Register 3-12

PREVSUSP
Field in DBGSR Register 12-15, 12-25

Priority
Debug Events 12-12

Priority Number
CPU 4-7
of Interrupt Task 3-12
Pending Interrupt

Context Switching - Interrupts 4-7
Previous CPU 4-7

PRIV Trap
Privilege Violation 6-7

Privilege Level 3-7
Privileged Peripheral (P)

Physical Memory Address 8-1
Program

Counter
Architectural Registers 1-3
Register A11 3-2

Memory 2-14
State Information 3-5

Programming Model 2-1
Address Data Type 2-2
Bit String 2-1
Boolean 2-1
IEEE-754

Single Precision Floating Point 
Number 2-2

Signed Fraction 2-2
Signed/Unsigned Integers 2-2

Protection
Boundaries

Crossing Boundaries 9-17
I/O Privilege Level 1-9, 9-1

Internal Protection Traps 6-7
Memory Protection System 1-9
Page-Based 1-10, 9-1
Range-Based 1-10
Register Set 9-6, 9-7, 9-16

Data 9-14
Using 9-5

System 1-9, 9-1
Trap System 1-9, 9-1
Virtual Mode 10-7

Protection Register Set 3-6
Protection Register Set Example 9-4
PRS

Field in PSW Register 3-6
Protection Register Set

Debugger Triggers 12-5
PSE Trap

Fetch Synchronous Error 6-12
PSPR

Program scratchpad RAM 8-4
PSW

Architectural Registers 1-3
Architecture Overview 1-3
Example Register Set Usage 9-14
FPU Exceptions 11-8
Initial State upon a Trap 6-6
Interrupt Service Routine 5-8
Memory Protection 9-2
Processor Status Word 1-7
Program Status Word Register

Address Offset 14-2
CDC Field 4-6
Definition 3-6

Supervisor Mode 3-7
Task Switching Operation 4-4
User Status Bits 3-10

Definition 3-10
USB Field in PSW Register 3-6

User-0 Mode 3-7
User-1 Mode 3-7

PSZ
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