

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM[™] and SRAM, Traveo[™] microcontrollers, the industry's only PSoC[®] programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense[®] capacitive touch-sensing controllers, and Wireless BLE Bluetooth[®] Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

32-BIT MICROCONTROLLER FM3 family Application Note

Wireless System Board

User Manual

ARM $\stackrel{\text{TM}}{\longrightarrow}$ ARM and Cortex-M3 are the trademarks of ARM Limited in the EU and other countries.

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Copyright© 2011-2012 FUJITSU SEMICONDUCTOR LIMITED all rights reserved

Revision History

Rev	Date	Remark
1.0	Aug.24,2011	First Edition
2.0	Feb.6,2012	Updated to latest format
		Deleted about FW and GUI part

Table of Contents

Revision Histe	ory	2
Table of Conte	ents	3
Target produc	.ts	6
1 INTROD	UCTION	7
2 NOTES.		7
3 OVERVI	EW OF THE WIRELESS SYSTEM BOARD	8
4 PREPAR	ING THE DEVICE	9
4.1 Item	s Included with the Product	9
4.2 Req	uired Equipment Not Included with the Product	10
4.3 Exte	rnal Appearance of the Wireless System Board	11
4.4 Coni	necting the RS232C Communication Conversion Cable	12
4.5 Setti	ng up the PC	13
5 POWER	SUPPLY METHOD	14
5.1 Pow	er Supply by Battery	14
5.2 Pow	er supply by USB bus power	14
6 OPERAT	10NS	15
6.1 Wire	less System Board Operations	15
6.1.1	Overview	15
6.1.1.1	CPU Operation Modes	15
6.1.1.2	Overview of Operating the Application	16
6.1.2	Operation	18
6.2 PC 0	Operation	19
6.2.1	Overview	19
6.2.2	Operation	20
6.2.2.1	Setting the Port Number	20
6.2.2.2	TOP Screen	20
6.2.2.3	Sensor Logger Mode Screen	21
6.2.2.4	Remote Control Mode Screen	22
7 SPECIFI	CATIONS	23
7.1 Harc	lware	23
7.1.1	General Specifications	23
7.1.2	Wireless Specifications	24
7.1.3	Hardware Block Diagram	25
7.1.4	Main Components	26

7.1.5	Mic	rocontroller	. 28
7.1.6	Ser	nsors	. 33
7.1.7	Swi	itches	. 35
7.1.7.	.1	Demo Switch	. 35
7.1.7.	.2	Reset Switch	. 36
7.1.7.	.3	Microcontroller Mode Selection Switch	. 37
7.1.7.	.4	Power Switch	. 37
7.1.8	Dis	play Device Specifications	. 38
7.1.8.	.1	Power LED	. 38
7.1.8.	.2	Demo LED	. 39
7.1.8.	.3	LCD	. 40
7.1.9	Rea	al Time Clock	. 41
7.1.10	Volt	tage Monitor IC	. 42
7.1.11	Pov	ver Supply Jumper	. 43
7.1.12	Inte	rface Specifications	. 44
7.1.12	2.1	Board Connection Connector	. 44
7.1.12	2.2	User Connector	. 47
7.1.12	2.3	USB miniB Connector	. 49
7.1.12	2.4	RS232C Connector	. 50
7.1.12	2.5	ICE Connector	. 51
7.2 Sof	ftware	е	. 52
7.2.1	Sof	tware Block Diagram	. 52
7.2.2	Sys	tem Specifications	. 53
7.2.2.	.1	Microcontroller System Specifications	. 53
7.2.2.	.2	Memory Map	. 54
7.2.2.	.3	MFS System Specifications	. 55
7.2.2.	.4	Interrupt System Specifications	. 55
7.2.3	Ope	erating Conditions	. 57
7.2.4	Ove	erall Application Operating Flow	. 57
7.2.4.	.1	Operation From Startup to Demo Mode Selected	. 57
7.2.4.	.2	Operation of Host Device in Sensor Logger Mode and Remote Con	trol
Mode	;	58	
7.2.4.	.3	Operation of Slave Devices in Sensor Logger Mode	. 59
7.2.4.	.4	Operation of Slave Devices in Remote Control Mode	. 61
7.2.5	Арр	Dication State Transitions	. 62
7.2.5.	.1	State Transitions from Startup to Standby State	. 62

FUJITSU

7.2.5	.2	Host Device State Transitions
7.2.5	.3	Slave Device State Transitions
7.2.6	Rel	ationship Between Demo Modes and CPU Operation Modes in Each
Applica	tion S	State
7.2.7	Арр	blication States
7.2.8	Ope	eration Flowcharts
7.2.8	.1	Main Processing Function
7.2.8	.2	Sample Application System Initialization Function
7.2.8	.3	Demo Operation Mode Decision Function
7.2.8	.4	Sample Application Demo Operation Function71
7.2.8	.5	Sensor Measurement Value Read and Sensor Measurement Value
Wirel	ess S	Send Function74
7.2.8	.6	Sensor Measurement Value Wireless Send Function75
7.2.8	.7	Data Wireless Receive Notification Function
7.2.8	.8	Data Wireless Send Complete Notification Function
7.2.8	.9	Periodic Processing Function
7.2.8	.10	Battery Status Monitoring Function

Target products

This application note is described about below products;

(TYPE0)

Series	Product Number (not included Package suffix)
MB9B500B	MB9BF504NB,MB9BF505NB,MB9BF506NB
	MB9BF504RB,MB9BF505RB,MB9BF506RB
MB9B400B	MB9BF404NB,MB9BF405NB,MB9BF406NB
	MB9BF404RB,MB9BF405RB,MB9BF406RB
MB9B300B	MB9BF304NB,MB9BF305NB,MB9BF306NB
	MB9BF304RB,MB9BF305RB,MB9BF306RB
MB9B100B	MB9BF102NB,MB9BF104NB,MB9BF105NB,MB9BF106NB
	MB9BF102RB,MB9BF104RB,MB9BF105RB,MB9BF106RB

1 INTRODUCTION

This user manual describes how to use and the specifications of the wireless system board.

2 NOTES

The hardware used in this wireless system board and the software that controls the microcontroller have been certified as compliant with the technical standards in the Radio Law of Japan. If you make any modifications or changes to the hardware or software in the system, you should check the law and take the appropriate measures to ensure that you do not infringe the Radio Law of Japan.

Furthermore, all of the countries around the world have established various rules and regulations regarding safety, electromagnetic interference, and radio waves.

You should comply with these rules and regulations when using or designing this wireless system board.

Please understand that Fujitsu will bear absolutely no liability for any damages arising from the use of this wireless system board.

3 OVERVIEW OF THE WIRELESS SYSTEM BOARD

The wireless system board has two demo operation modes as follows.

 $(\ensuremath{\mathbb{I}})$ Sensor Logger Mode

The slave devices read the measurement values from the hygro-thermometer and illumination sensor and send them to the host device by wireless communication. Communication is possible with up to 4 slave devices for each host device. (Communication is possible with up to a maximum of 15 devices by expanding the system)

The host device sends the data received from the slave devices to a PC via UART.

② Remote Control Mode

The slave devices read the measurement value of the accelerometer at an interval of 200 milliseconds, and send the value to the host device by wireless communication. Communication is between one slave device for each host device.

The host device sends the data received from the slave device to a PC via UART.

Figure 1 System overview diagram

4 PREPARING THE DEVICE

4.1 Items Included with the Product

A list of the items included with the wireless system board is shown in Table 1, a photograph of the external appearance of the host and slave wireless system boards is shown in Figure 2, and a photograph of the external appearance of the RS232C communication conversion cable is shown in Figure 3.

No	Name	Qty.	Remarks		
1	Host wireless system board		The hardware is the same as No.2		
2	2 Slave wireless system board		The hardware is the same as No.1		
2	RS232C communication	4	RS232C cable that connects between No.1		
3	conversion cable	I	and the PC		

Table 1	List of	Items	in the	Package
	E101 01	1001110		i uonugo

Figure 2 Host and slave wireless system boards

Figure 3 RS232C communication conversion cable

4.2 Required Equipment Not Included with the Product

A list of required equipment that is not included with the product is shown in Table 2, and a list of equipment that can be used if needed is shown in Table 3.

No	Name Q		Qty.	Remarks		
1	PC		1			
0	Application		4	Application software that runs on the PC		
2	executable file		I	Can be downloaded from the WEB		
3	3 RS232C cable		1	Cross cable		
Power supply device		ce	Select depending on the power supply method			
4	(1) AAA battery 4 Used when power supplied by battery					
	(2) USB cable 1 Cable with TypeA-miniB connector					

Table 2 List of Required Equipment Not Included with the Product

Table 3 List of Equipment to be used if needed

No.	Name	Qty.	Remarks
1	ICE	1	Required when performing software debugging

4.3 External Appearance of the Wireless System Board

Photographs of the external appearance of the host and slave wireless system boards are shown in Figure 4 and Figure 5.

Figure 4 External appearance of the wireless system boards (front surface)

FUJITSU

Figure 5 External appearance of the wireless system boards (rear surface)

4.4 Connecting the RS232C Communication Conversion Cable

A diagram inserting the RS232C communication conversion cable that is used for connection the host wireless system board to a PC is shown in Figure 6.

Figure 6 Connecting the wireless system board and RS232C communication conversion cable

4.5 Setting up the PC

GUI is used for demonstration. In this chapter, the explanation of GUI is omitted.

5 POWER SUPPLY METHOD

There are two different ways of supplying power to the wireless system boards.

5.1 Power Supply by Battery

Insert four AAA batteries into the battery box on the rear side of the wireless system board as shown in Figure 7.

Figure 7 Photograph of the rear side of the wireless system board

Power is supplied by turning on the power switch as shown in Figure 8.

Power switch

Power supplied by switching to the lower side

Figure 8 Power Supply When Using Batteries

5.2 Power supply by USB bus power

Connect a USB cable between the USB connector and PC as shown in Figure 9. Power is supplied by turning on the power switch as shown in Figure 9.

by switching to the upper side

Figure 9 Power supply when using USB bus power

6 OPERATIONS

6.1 Wireless System Board Operations

- 6.1.1 Overview
 - 6.1.1.1 CPU Operation Modes

The wireless system boards have three CPU operation modes as shown in Table 4.

Host devices have mode 1 and mode 2, and slave devices have mode 1, mode 2, and mode 3.

CPU operation	Microcontroller operation state	Host	Slave
mode		devices	devices
1	CPU regular operation (PLL oscillator)	0	0
	CPU CLK=80MHz		
	Peripheral CLK=40MHz		
2	CPU regular operation (PLL oscillator)	0	0
	CPU CLK=60MHz		
	Peripheral CLK=30MHz		
3	CPU intermittent operation (PLL	_	0
	oscillator/CR oscillator)		
	When active: PLL oscillator		
	CPU CLK=80MHz		
	Peripheral CLK=40MHz		
	When standby: CR oscillator		
	CPU CLK=Stopped		
	Peripheral CLK=4MHz		

Table 4 CPU Operation Modes

6.1.1.2 Overview of Operating the Application

A block diagram showing an overview of the operation of the wireless system board application is shown in Figure 10.

At startup, you can choose between "Sensor Logger Mode" and "Remote Control Mode", and in "Sensor Logger Mode", you can also choose the CPU operation mode while running.

- LCD display after entering each mode
 - (1) Remote Control Mode in the host devices and slave devices

Figure 11 LCD display when host device or slave device is in Remote Control Mode

(2) Host device Sensor Logger Mode

Figure 12 LCD display when host device is in Sensor Logger Mode

(3) Slave device Sensor Logger Mode

Figure 13 LCD display when slave device is in Sensor Logger Mode

6.1.2 Operation

 Select between "Sensor Logger Mode" and "Remote Control Mode" (1) in Figure 10)

The mode is selected by the pressed status of demo switch 1 on the wireless system board when the power is turned on.

- Not pressed -> Selects "Sensor Logger Mode"
- Pressed continuously until LED1 goes out -> Selects "Remote Control Mode"

② Select the CPU operation mode when in "Sensor Logger Mode" (② in Figure 10) When running in "Sensor Logger Mode", the CPU operation mode is selected by pressing demo switch 1 on the wireless system board.

Although there are three CPU operation modes, the selection of the CPU operation mode differs between host devices and slave devices.

On host devices

The selection toggles between mode 1 and mode 2 when demo switch 1 is pressed.

On slave devices

The selection cycles through the sequence mode 1 -> mode 2 -> mode 3 -> mode 1 ... when demo switch 1 is pressed.

6.2 PC Operation

6.2.1 Overview

The following shows the structural overview of the operation of the PC application.

Upon starting, the TOP screen is displayed, and either the Sensor Logger Mode or the Remote Control Mode can be selected from the TOP screen. You should set the mode selected on the PC application to the same as the mode selected on the board.

The PC application is exited by selecting " \times " from the TOP screen.

Figure 14 Block diagram showing an overview of the PC application operation

6.2.2 Operation

6.2.2.1 Setting the Port Number

Before running the PC application, the port number that the host device is connected to needs to be set. The port number is configured by editing "Config.ini". "Config.ini" has the following structure, with the port number configured by changing the numeric value part on the right side of the parameter.

[setting]		
COM port number = COM1 —	Set the port number by changing the number	

Figure 15 Structure of "Config.ini"

6.2.2.2 TOP Screen

After configuring the port number, run "PC_DEMO_APL.exe". When it is run, the TOP screen shown in Figure 24 is displayed. To switch to the Sensor Logger Mode screen, press the "Sensor Logger" button, and to switch to the Remote Control Mode Screen, press the "Remote Control" button. To exit the PC application, press the "×" button.

Figure 16 TOP screen

6.2.2.3 Sensor Logger Mode Screen

Press the "Sensor Logger" button in the TOP screen to display the Sensor Logger Mode screen. This mode displays the measurement values of the temperature, humidity, and illumination sensors sent from a maximum of 4 slave devices. The text boxes above each of the graphs display the latest measurement values from each of the sensors as sent from the slave devices.

To return to the TOP screen, press the "<-" button.

Figure 17 Sensor Logger Mode screen

6.2.2.4 Remote Control Mode Screen

Press the "Remote Control" button in the TOP screen to display the Remote Control Mode Screen. This mode displays a 3D model tilted by the accelerometer measurement values (in each of the three X/Y/Z directions) as sent from a single slave device. The text boxes at the top of the screen display the accelerometer measurement values (X/Y/Z) as sent from the slave device.

To return to the TOP screen, press the "<-" button.

Figure 18 Remote Control Mode Screen

7 SPECIFICATIONS

7.1 Hardware

7.1.1 General Specifications

The general specifications of the wireless system board are shown in Table 5.

Table 5 General Specifications

No.	Item		Details	Remarks
1	Microcontroller		Fujitsu Semiconductor MB9BF506R	
2	External input power supply		DC+5V (+4.5 to +6.5V)	
3	Dewer	Microcontroller board	150mA (typ.)	Design value
4	consumption	Wireless board	When sending: 33mA (typ.) When receiving: 17mA (typ.) When idle: 0.1uA (typ.)	Design value
5		Hygro-thermometer	Measurable temperature: -40 to +125 $^\circ\!\mathrm{C}$ Measurable humidity: 0 to 100%RH	Datasheet values
6	Sensors	Illumination sensor	Measurable range: 1 to 32,768lux	Datasheet values
7		Accelerometer	3-axis, sensitivity: \pm 1.5g	Datasheet values
8	Switches	Key input switch	Push switch \times 3	Green
9	Switches	Reset switch	Push switch \times 1	Black
10		LCD panel	16 character $ imes$ 2 row display	
11	Display units	LED	Power on indicator \times 1 (red) Demo indicators \times 2 (one each orange and green)	
12	Real time cloc	k	Calendar and watch function	
13	Power supply	monitor	Detection voltage: +4.2V	
14		USB I/F	USB miniB×1ch	
15	Extornal I/E	RS232C I/F	4-pin connector for conversion cable \times 1ch	
16		ICE I/F	20-pin connector for ICE connection \times 1ch	
17		User I/F	10-pin connector for user $ imes$ 1ch	
18	Battery case	For AAA batteries	AAA batteries \times 4 pieces	

10	For button battery		CR2032 × 1 piece	For real time
19 For butto		For buildin ballery	i bullon ballery	
20	Operating	Temperature	-5° C to $+45^{\circ}$ C	Design value
20	environment	Humidity	0 to 85%	Design value
21	Environmental conformance		European RoHS, Chinese RoHS	
22	External dimensions (W $ imes$ D)		100×135mm	
23	Weight (g)		145g	

7.1.2 Wireless Specifications

The wireless specifications of the wireless system board are shown in Table 6.

No.	ltem	Details	Remarks
1	Standard	Designated low-power wireless station 950MHz band wireless equipment for telemetry, telecontrol, and data transmission	Certified compliant with technical standards
2	Communication mode	Simplex communication	
3	Number of channels used simultaneously	Uses 3 simplex channel simultaneously	The bandwidth used is 3 channels wide
4	Number of channels	7ch	CH18 to 24
5	Frequencies used	954.4 to 955.6MHz	Spacing of 200kHz
6	Modulation type	FSK	
7	Transmission power	Greater than 1mW, less than 10mW	
8	Transmission speed	100kbps MAX	

Table 6 Wireless Specifications

7.1.3 Hardware Block Diagram

The hardware block diagram is shown in Figure 19.

Figure 19 Hardware block diagram

7.1.4 Main Components

The main components of the microcontroller board and wireless board are shown in Table 7 and Table 8.

No.	Part name	Qty.	Part number	Mfr.	Remarks
1	Microcontroller	1	MB9BF506R	Fujitsu Semiconductor	
2	Illumination sensor	1	ISL29023IROZ-T7	INTERSIL	
3	Hygro-thermometer	1	SHT21	SENSIRION	
4	Accelerometer	1	MMA7660FC	Freescale	
5	RS232C driver	1	MAX3232CUE+	MAXIM	
6	LDO	1	S-1170B33UC-OTST FU	SII	
7	Voltage monitor	1	BU4842FVE	Rohm	
8	Real time clock	1	RX-8564LC	Epson Toyocom	
9	LCD	1	SB1602B	Strawberry Linux	
10	Quartz oscillator	1	CX1255GB0400H0P ESZZ	Kyocera	
11	LED	3	SML-210 series	ROHM	One each red, green, orange
12	Demo switch	3	SKHMQLE010	ALPS	Green
13	Reset switch	1	SKHMQKE010	ALPS	Black
14	Microcontroller mode selection switch	1	CHS-01A	Copal Electronics	
15	Power switch	1	MS-12AAP1	NKK Switches	
16	Board connection connector	1	09P-1.25FJ	JST Connector	
17	User connector	1	FFC-10BMEP1B	Honda Connectors	
18	USB miniB connector	1	E48F-005-8902A	Mitsumi	
19	ICE connection connector	1	FFC-20BMEP1B	Honda Connectors	
20	AAA battery box	1	MP-4-4	Takachi	
21	Button battery box	1	BCR20H5	Takachi	

Table 7 Microcontroller Board Main Component List

	•					
No.	Part name	Qty.	Part number	Mfr.	Remarks	
1	Wireless transceiver	1	SX1233IMLTRT	SEMTECH	Version: V2b	
2	Quartz oscillator	1	TTS27NSC-A7 32MHz	Tokyo Denpa	тсхо	
3	High frequency coaxial connector	1	MM8430-2610	Murata Manufacturing		
4	Board connection connector	1	09R-1.25FJ	JST Connector		

Table 8 Wireless Board Main Component List

7.1.5 Microcontroller

A list of microcontroller pin connections is shown in Table 9.

Pin no.	Pin name (Function used)	Connects to	I/O	Remarks
01	VCC	+3.3V power supply	—	
02	INT00_0	Demo switch 1	I	
03	INT01_0	Demo switch 2	I	
04	INT02_0	Demo switch 3	I	
05	INT07_2	Real time clock (INT)	I	
06	SOT6	Real time clock (SDA)	I/O	I ² C communication
07	SCK6	Real time clock (SCL)	I/O	I ² C communication
08	(Not used)	User connector (No.1)	I	
09	(Not used)	User connector (No.3)	I	
10	(Not used)	User connector (No.5)	I	
11	(Not used)	User connector (No.7)	I	
12	(Not used)	User connector (No.9)	I	
13	(Not used)	User connector (No.10)	I	
14	(Not used)	User connector (No.8)	I	
15	(Not used)	User connector (No.6)	I	
16	(Not used)		I	
17	(Not used)		I	
18	(Not used)		I	
19	(Not used)	—	I	
20	(Not used)	_	I	
21	(Not used)	_	I	
22	(Not used)		I	
23	(Not used)		Ι	
24	(Not used)		Ι	
25	(Not used)	_	I	
26	(Not used)	—	I	
27	(Not used)		I	

Table 9 Microcontroller Pin Connection List

Pin	Pin name (Function	Connects to	I/O	Remarks
10.	used)			
28	P3E	LED1 orange	0	
29	P3F	LED2 green	0	
30	VSS	GND		
31	VCC	+3.3V power supply		
32	(Not used)		I	
33	(Not used)		I	
34	(Not used)	—	I	
35	(Not used)	—	I	
36	(Not used)			
37	(Not used)		Ι	
38	С	Capacitor 4.7 μ F		
39	VSS	GND		
40	VCC	+3.3V power supply	<u> </u>	
41	(Not used)	—	I	
42	(Not used)			
43	INTX	Reset switch	Ι	
44	(Not used)		I	
45	SOT3_2	LCD(SDA)	I/O	I ² C communication
46	SCK3_2	LCD(SCL)	I/O	I ² C communication
47	(Not used)		Ι	
48	SCK7_1	Hygro-thermometer (SCL)	I/O	I ² C communication
49	SOT7_1	Hygro-thermometer (SDA)	I/O	I ² C communication
50	(Not used)		I	
51	(Not used)		Ι	
52	(Not used)	—	I	
53	(Not used)	_	I	
54	(Not used)	—	Ι	
55	(Not used)	—	I	
56	MD1	GND		
57	MD0	Microcontroller mode selection switch	I	
58	X0	Quartz oscillator (4MHz)	I	

Pin no.	Pin name (Function used)	Connects to	I/O	Remarks
59	X1	Quartz oscillator (4MHz)	I/O	
60	VSS	GND	—	
61	VCC	+3.3V power supply		
62	(Not used)		Ι	
63	(Not used)	_	Ι	
64	(Not used)		I	
65	(Not used)	—	Ι	
66	INT03_1	Wireless transceiver (INT)	Ι	
67	P15	Wireless transceiver (XCS)	0	
68	P16	Wireless transceiver (RESET)	0	
69	SIN2_2	Wireless transceiver (SIN)	Ι	SPI communication
70	AVCC	+3.3V power supply		
71	AVRH	+3.3V power supply		
72	AVSS	GND		
73	SOT2_2	Wireless transceiver (SOT)	0	SPI communication
74	SCK2_2	Wireless transceiver (SCK)	0	SPI communication
		FET (GATE)		
75	P1A	(Wireless mode power on/off selection)	0	L:ON, H:OFF
76	(Not used)	—	Ι	
77	(Not used)	_	I	
78	(Not used)	_	I	
79	(Not used)	_	I	
80	(Not used)	—	I	
81	(Not used)	—	I	
82	(Not used)	—	I	
83	(Not used)	—	I	
84	(Not used)	—	I	
85	(Not used)	—	I	
86	(Not used)	—	I	
87	SOT0_0	RS232C driver (TIN)	0	UART communication
88	SIN0_0	RS232C driver (ROUT)	I	UART communication

Pin no.	Pin name (Function used)	Connects to	I/O	Remarks
89	(Not used)	_	I	
90	VSS	GND		
91	VCC	+3.3V power supply		
92	TRSTX	ICE connector (TRSTX)	I	
93	ТСК	ICE connector (TCK)	I	
94	TDI	ICE connector (TDI)	I	
95	TMS	ICE connector (TMS)	I/O	
96	TDO	ICE connector (TDO)	0	
97	(Not used)	—	I	
98	(Not used)	—	I	
99	(Not used)	—	I	
100	(Not used)	—	I	
101	(Not used)	—	I	
102	(Not used)	—	I	
103	SOT4_0	Accelerometer (SDA)	I/O	I ² C communication
104	SCK4_0	Accelerometer (SCK)	I/O	I ² C communication
105	(Not used)	—	I	
106	(Not used)	—	Ι	
107	(Not used)	—	Ι	
108	INT12_2	Accelerometer (INT)	Ι	
109	(Not used)	—	Ι	
110	(Not used)	—	Ι	
111	(Not used)	_	Ι	
112	INT10_2	Voltage monitor IC (Vout)	Ι	+5V line monitor
113	(Not used)	—	Ι	
114	(Not used)	_	Ι	
115		FET (GATE)	0	LON HOFE
		(USB D+ pull-up on/off selection)		2.011, 11.011
116	INT15_1	USB bus power detection	I	
117	USBVCC	+3.3V power supply		
118	UDM0	USBminiB connector (USB D-)	I/O	
119	UDP0	USBminiB connector (USB D+)	I/O	

Pin no.	Pin name (Function used)	Connects to	I/O	Remarks
120	VSS	GND		

7.1.6 Sensors

The microcontroller board is equipped with an accelerometer, hygro-thermometer, and illumination sensor. These sensors are connected to the microcontroller, and the functions of each sensor can be controlled by the microcontroller. The external appearance and schematic connection diagram of each sensor are shown in Figure 20, and the specifications are shown in Table 10. Refer to the data sheet of the corresponding product for the detailed specifications of each sensor.

Figure 20 External appearance and schematic connection diagram of each sensor

No.	Item	Part number (Mfr.)	Specifications	Microcontroller connection
1	Hygro-thermometer	SHT21 (Sensirion)	Measurable temperature: -40 to +85 $^{\circ}$ C Measurable humidity: 0 to 100 $^{\circ}$ RH I ² C connection: Address 0x40	Pin number 48: SCK7_1 Pin number 49: SOT7_1

Table	10 Sensor	Specifications
iubio		opcomoutorio

2	Illumination sensor		Measurable range: 1	
		ISL29023IROZ-T7	to 32,768lux	
		(INTERSIL)	I ² C connection:	
			Address 0x44	
3	Accelerometer		3-axis, sensitivity: \pm	Pin number 104:
		MMA7660FC	1.5g	SCK4_0
		(Freescale)	I ² C connection:	Pin number 103:
			Address 0x4C	SOT4_0

7.1.7 Switches

7.1.7.1 Demo Switch

The microcontroller board is equipped with three demo switches. The external appearance and schematic connection diagram of the demo switches are shown in Figure 21.

Refer to section 6.1.2 for details on the operation when using the demo switches.

Figure 21 External appearance and schematic connection diagram of demo switches

7.1.7.2 Reset Switch

The microcontroller board is equipped with a reset switch. The external appearance and schematic connection diagram of the reset switch are shown in Figure 22.

Figure 22 External appearance and schematic connection diagram of the reset switch

7.1.7.3 Microcontroller Mode Selection Switch

The microcontroller board is equipped with a microcontroller mode selection switch. The external appearance and schematic connection diagram of the microcontroller mode selection switch are shown in Figure 23.

Refer to the microcontroller hardware manual for details on the microcontroller modes.

Figure 23 Microcontroller mode selection switch external appearance and schematic connection diagram

7.1.7.4 Power Switch

The microcontroller board is equipped with a power switch. The external appearance and schematic connection diagram of the power switch are shown in Figure 24.

Refer to chapter 5 for details on the power supply methods.

Figure 24 Power switch external appearance and schematic connection diagram

7.1.8 Display Device Specifications

7.1.8.1 Power LED

The microcontroller board is equipped with a power LED that indicates the power supply status. The external appearance of the power LED is shown in Figure 25, and the specifications are shown in Table 11.

Figure 25 Power LED external appearance

Table 11	Power	LED	Specifications
----------	-------	-----	----------------

No.	Item	Color	Specifications	Connects to
1	Power LED	Pod	Power on: Alight	
1	FOWERLED	Red	Power off: Dark	

7.1.8.2 Demo LED

The microcontroller board is equipped with two demo LEDs that are connected to the microcontroller. The external appearance and schematic connection diagram of the demo LEDs is shown in Figure 26, and the specifications are shown in Table 12.

Figure 26 Demo LED external appearance and schematic connection diagram

No.	ltem	Color	Microcontroller connection	Specifications
1	Demo LED1	Orange	Pin number 28: P3E	Microcontroller H output: Alight
		ereinge		Microcontroller L output: Dark
2	Domo I ED2	Groop	Din number 20: D2E	Microcontroller H output: Alight
2 Demo LED2	Demo LED2	Green	Fill Hullibel 29. F3F	Microcontroller L output: Dark

Table 12 Demo LED Specifications

7.1.8.3 LCD

The microcontroller board is equipped with an LCD that is connected to the microcontroller. The external appearance and schematic connection diagram of the LCD are shown in Figure 27, and the specifications are shown in Table 13. Refer to the data sheet of the corresponding product for the detailed specifications of the LCD.

Figure 27 LCD external appearance and schematic connection diagram

No	ltom	Part number (Mfr.)	Specifications	Microcontroller
NO.	пеш		opecifications	connection
			16 character $ imes$ 2 row	Pin number 45:
4	1 LCD	SB1602B	display	SOT3_2
I		(Strawberry Linux)	I ² C connection: Address	Pin number 46:
			0x3E	SCK3_2

Table 13 LCD Specifications

7.1.9 Real Time Clock

A schematic connection diagram of the real time clock on the microcontroller board is shown in Figure 28, and the specifications are shown in Table 14. The real time clock performs data communication with the microcontroller via l²C. Furthermore, it also supports receiving interrupt signals generated by the register settings of the real time clock.

Refer to the data sheet of the corresponding product for the detailed specifications of the real time clock.

Figure 28 Real time clock schematic connection diagram

No.	Part name	t name Part number (Mfr.) Specifications		Microcontroller
		, , , , , , , , , , , , , , , , , , ,	•	connection
				Pin number 7:
			I ² C connection: Address	SCK6_0
1	Real time	RX-8564LC	0x51	Pin number 6:
	clock	(Epson Toyocom)		SOT6_0
			Interrupt active: L	Pin number 5:
				INT07_2

Table 14 Real Time Clock Schematic	Connection Diagram
------------------------------------	--------------------

7.1.10 Voltage Monitor IC

A schematic connection diagram of the voltage monitor IC on the microcontroller board is shown in Figure 29, and the specifications are shown in Table 15.

The voltage monitor IC monitors the system power supply (+5V). The microcontroller receives the detection signal when the voltage monitor IC detects a voltage drop as an interrupt signal.

Refer to the data sheet of the corresponding product for the detailed specifications of the voltage monitor IC.

Figure 29 Voltage monitor IC schematic connection diagram

No.	Part name	Part number (Mfr.)	Specifications	Microcontroller connection
1	Voltage monitor IC	BU4842FVE (ROHM)	Detection voltage: 4.2V (TYP) Open drain output On detection: L output	Pin number 112: INT10_2

Table 15 Real Time Clock Specifications

7.1.11 Power Supply Jumper

A schematic connection diagram of the power supply jumper on the microcontroller board is shown in Figure 30. The +3.3V power supply created on the board is connected to the VCC, AVCC, AVRH, and USBVCC pins on the microcontroller via the power supply jumper. When the power supply jumper is not fitted, no power is supplied to the microcontroller.

Figure 30 Power Supply Jumper Schematic Connection Diagram

7.1.12 Interface Specifications

7.1.12.1 Board Connection Connector

The pin layout of the board connection connectors that connect the microcontroller board to the wireless board is shown in Figure 31, and the electrical specifications are shown in Table 16.

Figure 31 Board connection connector pin layout

	Microcontroller board side						Wireless board side						
	Microc conn	ontroller ection		Rated value		Rated value		Pin		Wireless		Rated val	ue
	Pin no.	Signal name	ltem	Min.	Max.	no.	10	connection	Item	Min.	Max.		
		+3.3V	_	_	—	1	_	+3.3V	_	_	_		
0	69	D17	VOH	Vcc-0.5	Vcc	C		DECET	VIH	VDD*0.8			
0	00	P1/	VOL	Vss	0.4	2	1	RESEI	VIL	_	VDD*0.2		
-	60		VIH	Vcc*0.8	Vcc+0.3	2	ο	MISO	VOH	VDD*0.9			
I	69	SINZ_Z	VIL	Vss-0.3	Vcc*0.2	3			VOL	_	VDD*0.1		
0	70	COTO O	VOH	Vcc-0.5	Vcc	Α		MOSI	VIH	VDD*0.8			
0	73	5012_2	VOL	Vss	0.4	4	I	MOSI	VIL	—	VDD*0.2		
0	74		VOH	Vcc-0.5	Vcc	F		SCK	VIH	VDD*0.8			
0	74	30NZ_Z	VOL	Vss	0.4	5	1	SCK	VIL	—	VDD*0.2		
0	67	D15	VOH	Vcc-0.5	Vcc	6		NCC	VIH	VDD*0.8			
0	67	PID	VOL	Vss	0.4	0	I	1122	VIL	—	VDD*0.2		
	<u>CE</u>	P13	VIH	Vcc*0.8	Vcc+0.3	7							
I	60	(not in use)	VIL	Vss-0.3	Vcc*0.2	1		(N.C.)	_				
Ι	66	INT03_1	VIH	Vcc*0.8	Vcc+0.3	8	0	DIO1	VOH	VDD*0.9			

 Table 16 Board Connection Connector Electrical Specifications (VSS=0V)

		VIL	Vss-0.3	Vcc*0.2			VOL		VDD*0.1
_	GND		_	_	9	 GND		_	

Furthermore, the +3.3V power supply line that passes through the board connection connectors can be controlled by a switch (FET). A schematic connection diagram of this switch is shown in Figure 32, and the power supply specifications are shown in Table 17.

 Table 17 Board Connection Connector Power Supply Specifications (value in wireless board connected state)

No			Lipito		
INU.	nem	Min.	Тур.	Max.	Units
01	Power supply Vcc	+3.15	+3.3	+3.45	V
02	Vcc rise time at power on tR	—	—	500	ns
03	Vcc fall time at power off tF	—	—	50	ms

7.1.12.2 User Connector

The microcontroller board is equipped with a user connector that allows the user to use MFS. The pin layout of the user connector is shown in Figure 33 and Table 18, and the electrical specifications are shown in Table 19.

Figure 33 User connector pin layout

Microco	ontroller	I/O	Pin no.		I/O	Microcontroller connection		
conne	ection	(*)			(*)			
Pin no.	Signal					Pin no.	Signal name	
	name							
8	SIN1_0	I	1	2	—	—	VCC (+3.3V)	
9	SOT1_0	0	3	4			GND	
10	SCK1_0	0	5	6	I/O	15	P31	
11	P59	0	7	8	I/O	14	P30	
12	P5A	I/O	9	10	I/O	13	P5B	

Table 18 User Connector Pin Layout

Table 19 User Connector Electrical	Specifications (VSS=0V)
------------------------------------	-------------------------

No	ltom			Rated value	Linite		
NO. Item			Min	Тур	Max	Units	
01	Power	supply volta	ge Vcc	+3.15	+3.3	+3.45	V
02	Power	Power supply current lcc			_	20	mA
03	loout	VIH –		VCC×0.8	_	VCC+0.3	
(*)	VIL –		_	VSS-0.3	_	VCC×0.2	V
04	Outp	VOH	I _{OH} =-2mA	VCC-0.5	_	VCC+0.3	

* External load conditions for items 03 and 04: Load resistance = 1k Ω , Load capacitance = 50pF

7.1.12.3 USB miniB Connector

The microcontroller board is equipped with a USB miniB connector for connecting a USB cable. The pin layout of the USB miniB connector is shown in Figure 34 and Table 20.

Figure 34 USB miniB connector pin layout

Din no	I/O		Microcontroller connection					
PIN NO.	(*)	Pin no.	Signal name					
1			+5V (VBUS)					
2	I/O	118	UDM0 (D-)					
3	I/O	119	UDP0 (D+)					
4	—		(N.C.)					
5			GND					

Table 20 USB miniB Connector Pin Layout

7.1.12.4 RS232C Connector

The microcontroller board is equipped with an RS232C interface connector. A pin layout d7iagram and schematic connection diagram of the RS232C connector are shown in Figure 35, and the pin layout chart is shown in Table 21.

To connect this board to a PC using an RS232C cable, use the RS232C communication conversion cable included in RS232C connector shown in Figure 35.

Figure 35 RS232C connector pin layout and schematic connection diagram

Din no	I/O		Microcontroller connection						
PIITIO.	(*)	Pin no.	Signal name						
1	0	87	SOT0_0						
2			GND						
3	I	88	SIN0_0						
4	—	—	GND						

Table 21 RS232C Connector Pin Layout

7.1.12.5 ICE Connector

The microcontroller board is equipped with an ICE connector for connecting an ICE. The pin layout diagram of the ICE connector is shown in Figure 36 and the pin layout chart is shown in Table 22.

Figure 36 ICE connector pin layout

Microcontroller con	I/O	Pin	no.	I/O	Microcontroller connection		
Pin no.	Signal	(*)			(*)	Pin no.	Signal name
	name						
	+3.3V		1	2			(N.C.)
92	TRSTX	I	3	4	—	—	GND
94	TDI	-	5	6			GND
95	TMS	I/O	7	8			GND
93	TCK	-	9	10			GND
(10K pull-down)	—		11	12			GND
96	TDO	0	13	14		_	GND
(Reset switch)	XSRST	-	15	16			GND
(10K pull-down)	_		17	18	_		GND
(10K pull-down)			19	20	_		GND

Table 22 ICE	Connector Pi	ו Layout
--------------	--------------	----------

7.2 Software

7.2.1 Software Block Diagram

A block diagram of the software is shown in Figure 37.

Application	Application							
				RTC contro	Sensor LCD control control		MAC library	Middleware
Application interface	Low CPU Voltage Mode detection contro	CPU clock I control	Timer LED control control		I ² C driver	UART driver driver	RF control driver SPI driver	Driver
								J
Hardware			Та	rget l	ooard			
						Fujits	u Electror	nics Library

Figure 37 Software block diagram

#Note:

"Fujitsu Electronics Library" is developed for only this demonstration, not for business.

So it is not given to the customers. When they want to make the same system, they will prepare the programs for their hardware system by themselves.

7.2.2 System Specifications

7.2.2.1 Microcontroller System Specifications

The microcontroller system specifications are shown in Table 23.

T	KP	0	o
Table 23	Microcontroller	System	Specifications

Item	Details	Remarks
	CPU: 80MHz	High-speed PLL oscillator
	Peripheral:	Internal 20x frequency multiplier
	40MHz	CPU operation mode 1, CPU operation mode 3/Active
	CPU: 60MHz	High-speed PLL oscillator
Operating alask	Peripheral:	Internal 15x frequency multiplier, CPU operation mode 2
Operating clock	30MHz	
	CPU:	CR oscillator
	Stopped	CPU operation mode 3/Standby
	Peripheral:	
	4MHz	
	Mode 1	Continuous high-speed PLL oscillator 80MHz operation
CPU operation	Mode 2	Continuous high-speed PLL oscillator 60MHz operation
mode	Mode 2	When active, high-speed PLL oscillator 80MHz operation
	wode 5	When standby, CR oscillator 4MHz operation
	6ab usad	Used by UART, I ² C(4ch), and SPI communication
	och useu	Refer to "7.2.2.3 MFS" for details
Timor	Dual	For timeout, 1 ms period
Timer	timer ch1	
External interrupt	INT10	Low voltage detection

* Multi Function Serial (MFS) Interface

7.2.2.2 Memory Map

The memory map of the ROM (FLASH) and RAM is shown in Figure 38.

Ch no.	Function	Baud rate	Remarks					
0	UART	115.2kbps	For RS232C communication with the PC of the					
			sensor data received by the wireless					
1	_	—	Not used					
2	SPI	1Mbps	For wireless transceiver control					
3	l ² C	400kbps	For LCD control					
4	l ² C	400kpbs	For accelerometer control					
5	—	—	Not used					
6	l ² C	400kbps	For real time clock control					
7	l ² C	400kbps	For hygro-thermometer and illumination sensor					
			control					

7.2.2.3 MFS System Specifications

Table 24 Multi Function Serial System Specifications

7.2.2.4 Interrupt System Specifications

Table 25 Interrupt System Specifications

Interrupt source	Function	Vector	Remarks
		no.	
Reset	Reset_Handler	#01	_
External interrupt 10	EXTI8_15_IRQHandler	#21	Used by low voltage detection
Dual timor 1 interrupt	DT_QDU_IRQHandler	#22	Performs interrupt processing at a
			period of 1ms.
	MFS0_IRQHandler	#23	Used by UART interrupt (sending to
		#24	PC)
			The receive side (#23) does no
			processing
MES of 2 Dy/Ty	MFS2_IRQHandler	#27	Used by SPI interrupt (wireless
		#28	transceiver control)
	MFS3_IRQHandler	#29	Used by I ² C interrupt (LCD control)
		#30	
	MFS4_IRQHandler	#31	Used by I ² C interrupt (accelerometer
		#32	control)
	MFS6_IRQHandler	#35	Used by I ² C interrupt (real time clock
IVIFS CN.0 KX/ I X		#36	control)

	MFS7_IRQHandler	#37	Used	by	I ² C	interrupt
MFS ch.7 Rx/Tx		#38	(hygro-the	rmometer	and	illumination
			sensor co	ntrol)		

7.2.3 Operating Conditions

This sample program operates under the following conditions.

Host device: Device number 0

When the device number is set to 0, the device operates as the host device.

Slave device: Device numbers 1 to 4

When the device number is set in the range of 1 to 4, the device operates as a slave device.

7.2.4 Overall Application Operating Flow

7.2.4.1 Operation From Startup to Demo Mode Selected

- 1 When the power is turned on, the pressed status of demo switch 1 is detected.
- ② If demo switch 1 was not pressed, the device enters Sensor Logger Mode.
- ③ If demo switch 1 was pressed, the device enters Remote Control Mode.

The operation up to this point is common to the host device and slave device. The above flow is shown in Figure 39.

Figure 39 Operation from startup to demo mode selected

7.2.4.2 Operation of Host Device in Sensor Logger Mode and Remote Control Mode The host device has the same operation in both Sensor Logger Mode and Remote Control Mode.

- ① Presses of demo switch 1 are detected.
- If a press of demo switch 1 is detected, the CPU operation mode changes.
 The CPU operation mode is initially mode 1, and toggles between mode 1 and mode 2.
- ③ A check is performed for whether there is a valid wireless reception from a slave device.
- ④ If there is a valid wireless reception from a slave device, the received data is sent to the PC via RS232C.

The above flow is shown in Figure 40.

Figure 40 Operation of host devices in Sensor Logger Mode and Remote Control Mode

- 7.2.4.3 Operation of Slave Devices in Sensor Logger Mode
- ① Presses of demo switch 1 are detected.
- If a press of demo switch 1 is detected, the CPU operation mode changes.
 The CPU operation mode is initially mode 1, and changes cyclically as mode 1 -> mode 2 -> mode 3 -> mode 1 ...
- ③ A check is performed of whether it is the periodic time to get the sensor measurement values.
- ④ If it is the periodic time to get the sensor measurement values, the measurement values are got from the hygro-thermometer and illumination sensor, and the got measurement values are sent by wireless. The program then waits for the sending to finish.
- Once the sending is complete, a check is performed for whether the standby conditions are met. The standby condition is that the CPU operation mode is mode 3.
- 6 For the standby conditions, the CPU clock changes to the CR oscillator (4MHz).
- ⑦ A check is performed for whether the standby time has elapsed. The standby time is the value of the sensor measurement value getting period minus the time taken to get the measurement values from the sensors and the time to send by wireless.
- ③ Once the standby time has elapsed, the CPU clock is changed to the PLL oscillator (80MHz).

The above flow is shown in Figure 41.

FUJITSU

Figure 41 Operation of slave devices in Sensor Logger Mode

- 7.2.4.4 Operation of Slave Devices in Remote Control Mode
- ① Presses of demo switch 1 are detected.
- ② If a press of demo switch 1 is detected, the CPU operation mode changes. The CPU operation mode is initially mode 1, and changes cyclically as mode 1 -> mode 2 -> mode 3 -> mode 1 Note that in Remote Control Mode, the operation of mode 3 is the same as mode 1.
- ③ A check is performed of whether it is the periodic time to get the sensor measurement values.
- ④ If it is the periodic time to get the sensor measurement values, the measurement values are got from the accelerometer, the got measurement values are sent by wireless, and the program then waits for the sending to finish.

The above flow is shown in Figure 42.

Figure 42 Operation of slave devices in Remote Control Mode

7.2.5 Application State Transitions

7.2.5.1 State Transitions from Startup to Standby State

The state transitions from the host device and slave devices starting to entering standby state are shown in Figure 43.

Figure 43 State transitions from startup to standby state

7.2.5.2 Host Device State Transitions

The host device operates in two states in both Sensor Logger Mode and Remote Control Mode, a standby state and a send data to PC state.

Figure 44 State transitions of the host device

7.2.5.3 Slave Device State Transitions

The slave devices operate in five states, Standby state, Preparing to sleep state, Sleep state, Sensor measurement value read state, and Sensor data send state.

Figure 45 Slave device state transitions

7.2.6 Relationship Between Demo Modes and CPU Operation Modes in Each Application State

The relationship between the demo modes and CPU operation modes in each application state are shown in Table 26.

Table 26 Relationship between the Demo Mode and CPU Operation Mode in each Application state

			CPU operation mode
Device	Application state	Demo mode	Value in () is
			CPU/peripheral clock
Common to	①Reset state	_	Mode 1 (PLL 80/40MHz)
host device	②MAC library initial setting state	_	Mode 1 (PLL 80/40MHz)
and slave	③Demo mode judgment state	_	Mode 1 (PLL 80/40MHz)
devices	(4) Standby state	Sensor Logger Mode	Mode 1 (PLL 80/40MHz)
		Remote Control Mode	Mode 2 (PLL 60/30MHz)
			Mode 3 (PLL 80/40MHz)
Host device	5 Send data to PC state	Sensor Logger Mode	Mode 1 (PLL 80/40MHz)
		Remote Control Mode	Mode 2 (PLL 60/30MHz)
Slave	6 Sensor measurement value	Sensor Logger Mode	Mode 1 (PLL 80/40MHz)
devices	read state	Remote Control Mode	Mode 2 (PLL 60/30MHz)
			Mode 3 (PLL 80/40MHz)
	O Sensor data wireless send	Sensor Logger Mode	Mode 1 (PLL 80/40MHz)
	state	Remote Control Mode	Mode 2 (PLL 60/30MHz)
			Mode 3 (PLL 80/40MHz)
	⑧Preparing to sleep state	Sensor Logger Mode	Mode 1 (PLL 80/40MHz)
		Remote Control Mode	Mode 2 (PLL 60/30MHz)
			Mode 3 (PLL 80/40MHz)
	Isleep state	Sensor Logger Mode	Mode 3
			(CR Stopped/4MHz)

7.2.7 Application States

The nine states shown in "7.2.5 Application State Transitions" are described below.

1 Reset state

This state is common to host devices and slave devices, and is the state immediately after turning the power on and immediately after the reset switch is pressed. The reset state performs software internal initialization processing.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz).

② MAC library initial setting state

This state is common to host devices and slave devices, and is the MAC library initial setting state after the software internal initialization processing is complete. It performs initialization of the MAC library.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz).

③ Demo mode decision state

This state is common to host devices and slave devices, and is the demo mode decision state after the MAC library initial setting state.

It detects switch 1 pressed within a period of one second.

If switch 1 pressed is not detected within a period of one second, the demo mode is set to Sensor Logger Mode, and if switch 1 pressed is detected, it is set to Remote Control Mode.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz).

④ Standby state

This state is common to host devices and slave devices, and is common to Sensor Logger Mode and Remote Control Mode.

On the host device, it waits to receive wireless from the slave devices, and when it receives valid data, it switches to the send data to PC state.

On slave devices, if it performs no processing for a fixed period of time, and when the specified time elapses, it switches to the sensor measurement value read state.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz or CPU: 60MHz/Peripheral: 30MHz).

5 Send data to PC state

This is a host device state, and is common to Sensor Logger Mode and Remote Control Mode.

It sends the data received by wireless from the slave devices to the PC via the UART. Once the sending is complete, it switches to the standby state.

Data is still received from the slave devices while in the send to PC state, and if valid data is received while in this state, it switches to the standby state and then performs the processing.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz or CPU: 60MHz/Peripheral: 30MHz).

6 Sensor measurement value read state

This is a slave device state which reads the measurement values from the sensors. If the demo mode is Sensor Logger Mode, the measured data is read from the hygro-thermometer, illumination sensor, and accelerometer, if the demo is mode is Remote Control Mode, the data is read from the accelerometer.

Once reading the sensor measurement values has finished, it switches to the sensor data wireless send state.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz or CPU: 60MHz/Peripheral: 30MHz).

\bigcirc Sensor data wireless send state

This is a slave device state which sends the measurement values read from the sensor by wireless communication.

Once the sending is finished, it switches to the prepare to sleep state.

The operating clock is the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz or CPU: 60MHz/Peripheral: 30MHz).

⑧ Prepare to sleep state

This is a slave device state, and if the CPU operation mode is intermittent operation mode, it stops the CPU clock, changes the peripheral clock to the 4MHz CR, and switches to the sleep state. When not in intermittent operation mode, it switches to the standby (high-speed PLL CPU: 80MHz/Peripheral: 40MHz or CPU: 60MHz/Peripheral: 30MHz) state.

③ Sleep state

This is a slave device state that performs nothing for a fixed period of time. It operates with the CPU clock stopped and the peripheral clock set to 4MHz CR. Once the specific period of time has elapsed, the clock changes to the high-speed PLL (CPU: 80MHz/Peripheral: 40MHz), and it switches to the sensor measurement value read state.

7.2.8 Operation Flowcharts

The meanings of the function call points in the flowchart are shown in Figure 46.

Figure 46 Meanings of function call points

7.2.8.1 Main Processing Function

The flowchart of the main processing function (main) is shown in Figure 47.

Figure 47 Main function flowchart

7.2.8.2 Sample Application System Initialization Function

This function initializes the clocks, IO ports, serial such as UART, timers, LEDs, LCDs, sensors, etc. (rf_demoapp_system_init)

Figure 48 Sample application system initialization function flowchart

7.2.8.3 Demo Operation Mode Decision Function

This function decides whether to operate in Sensor Logger Mode or Remote Control Mode. (rf_demoapp_ABmode_select)

Figure 49 Demo operation mode decision function flowchart

7.2.8.4 Sample Application Demo Operation Function

This function performs the demo operation of the sample application. (rf_demoapp_demoproc)

Figure 50 Sample application demo operation function flowchart (1)

FUJITSU

Figure 51 Sample application demo operation function flowchart (2)

FUJITSU

Figure 52 Sample application demo operation function flowchart (3)

7.2.8.5 Sensor Measurement Value Read and Sensor Measurement Value Wireless Send Function

This function reads the sensor measurement values and sends the read sensor measurement values by wireless communication on slave devices where the demo operation mode is Sensor Logger Mode. (rf_demoapp_sensor_proc)

Figure 53 Sensor measurement value read and sensor measurement value wireless send function flowchart

7.2.8.6 Sensor Measurement Value Wireless Send Function

This function sends the measurement values read from the sensors by wireless communication. (rf_demoapp_send_data)

Figure 54 Sensor measurement value wireless send function flowchart

7.2.8.7 Data Wireless Receive Notification Function

This function is called when valid data is received by wireless from the remote device in MAC control. (rf_demoapp_recv_data)

This function is registered by passing it as the first parameter of the registration function in the MAC library (sr_mac_register), and is called from within the MAC control function (sr_mac_main_proc) when valid data is received.

Figure 55 Data wireless receive notification function flowchart

7.2.8.8 Data Wireless Send Complete Notification Function

This function is called when sending data by wireless finishes in the MAC control.

(rf_demoapp_send_complete)

This function is registered by passing it as the second parameter of the MAC library registration function (sr_mac_register), and is called from within the MAC control function (sr_mac_main_proc) when sending data by wireless is complete.

7.2.8.9 Periodic Processing Function

This function performs processing at a period of 1 ms. (appif_timer_proc)

The difference between the interrupt counter that is incremented by the 1 ms period interrupt processing function and the periodic counter of this function is monitored, and if a difference occurs, the MAC control periodic processing function (sr_mac_cyclic_proc) is called by passing the length of time found by multiplying the difference by the length of the period (1ms) as a parameter.

Figure 57 Periodic processing function flowchart

7.2.8.10 Battery Status Monitoring Function

This function monitors the battery detection status, and if there is a change, it sets the LCD display depending on the detected status. (appif_battery_proc)

Figure 58 Battery status monitoring function flowchart

-End-