

 9/2007

WebAssign User's Manual

rnorris
Text Box
WebAssign Support Notice:

This document contains only chapters and appendices of the User's Manual that relate to question coding.

Original chapter and page numbers were retained for your convenience.

Please use the Bookmarks that display on the left to navigate to a specific chapter number while you are viewing the PDF online.

Some of the material contained in this document is outdated. An update to the original User's Manual is in progress.

Please refer to the WebAssign Essentials Guide for instructions regarding commonly-performed WebAssign tasks.

9/2007

WebAssign User's Manual Version 4.0 is published by Advanced Instructional Systems, Inc.

© 2003–2007 by Advanced Instructional Systems, Inc.
All rights reserved
Printed in the United States of America

09252007

Under the copyright laws, neither this documentation nor the software may be copied, in whole or in part, without
the written consent of Advanced Instructional Systems, except in the normal use of the software.

Questions in the database that are identified with a specific textbook have been used with the permission of the
publisher who owns the copyright.

Order the WebAssign service from:

WebAssign
Centennial Campus
1730 Varsity Drive
Suite 200
Raleigh, NC 27606

Web: http://webassign.net

Tel: (800) 955-8275 or (919) 829-8181
Fax: (919) 829-1516

E-mail: info@webassign.net
User’s listserv: listserv@webassign.net

WebAssign® is a registered service mark of North Carolina State University under license to Advanced
Instructional Systems, Inc.

ISBN 1-928550-30-4

vi WebAssign User’s Manual 4.0

9/2007

 8. CREATING QUESTIONS 161

 8.1 Question Editor ..161

 8.2 Multiple-Choice Questions...165
 8.2.1 Creating a multiple-choice question...165
 8.2.2 Ordered multiple-choice questions ..167
 8.2.3 True or false questions ...168
 8.2.4 Multiple-choice pulldown menus...169
 8.2.5 Controlling the position of radio buttons ...171

 8.3 Multiple-Select Questions ..171
 8.3.1 Creating a multiple-select question..172
 8.3.2 Ordered multiple-select questions..173
 8.3.3 Controlling the position of check boxes...174
 8.3.4 Random number of correct answers for multiple-select questions...175

 8.4 Fill-in-the-Blank Questions ..176
 8.4.1 Creating a fill-in-the-blank question ..176
 8.4.2 Controlling case and space sensitivity ...177
 8.4.3 Rank-order questions ...178

 8.5 Numerical Questions ..179
 8.5.1 Creating a numerical question..179
 8.5.2 Changing the tolerance in a numerical question ..180
 8.5.3 Significant figures using $SIGFIGS ..181
 8.5.4 Significant figures using $DECFIGS...182
 8.5.5 Numerical questions with units..183

 8.6 Symbolic Questions..185
 8.6.1 Creating a symbolic question ...186
 8.6.2 Using randomized variables...188
 8.6.3 Displaying a student symbolic response ..189
 8.6.4 Changing the domain with $DEFAULTVALS (advanced) ...189
 8.6.5 Changing the tolerance with $MAXERR (advanced)...190

 8.7 Algebraic Questions ...190
 8.7.1 Creating an algebraic question ...191
 8.7.2 Use of evalb ...192
 8.7.3 Accepting equations as an answer..193

 8.8 Essay Questions..194

 8.9 File Upload Questions ..196
 8.9.1 Specifying the file type ..196
 8.9.2 Specifying the maximum file size..197

 8.10 Poll Questions ..198
 8.10.1 Creating a poll multiple-choice question ...198
 8.10.2 Creating other types of poll questions..199

 8.11 Image Map Questions...200

 8.12 Matching Questions..203

 Contents vii

 9/2007

 8.12.1 Extra distracters ...205
 8.12.2 Matching with labels..205

 8.13 Practice Questions ..206

 8.14 Java Questions (Advanced) ..207

 8.15 Multi-mode Questions..208

 8.16 Question Editor Features ..208
 8.16.1 Testing and previewing questions..208
 8.16.2 My Files or using figures and other files in questions..210
 8.16.3 Hot keys ...213

 9. ADVANCED QUESTION WRITING 215

 9.1 Introduction to the <eqn> and the <EQN> Tags ...216
 9.1.1 Using multiple Perl statements in <eqn> tags ..217
 9.1.2 Variable names in the <eqn> tag ..217
 9.1.3 Use of the <EQN> tag ..218

 9.2 Including Hints in Questions ..218
 9.2.1 Hint for a simple question..218
 9.2.2 Controlling placement of the hint ..219
 9.2.3 The $HINT variable ...220

 9.3 Using Functions to Randomize and Format ...220
 9.3.1 Functions to randomize numbers and text..221
 9.3.2 The randnum function..222
 9.3.3 The decform function...222
 9.3.4 The pickone and picksame functions ...222
 9.3.5 The scinot function...224
 9.3.6 The sigform function..224
 9.3.7 Writing a simple question with random values ..224
 9.3.8 Additional considerations when randomizing numbers ...226
 9.3.9 Questions with randomized numbers and answers with intermediate steps...........................227

 9.4 Checking Significant Figures and Scientific Notation with sprintf ..230

 9.5 Simple Multi-part and Multi-Mode Questions ...231
 9.5.1 Writing a simple multi-part question ...231
 9.5.2 Multi-Mode questions and <SECTION> tags ...233
 9.5.3 Writing a multi-mode question ..234

 9.6 Using JavaScript in Questions..237
 9.6.1 Using JavaScript alone...237
 9.6.2 Using JavaScript with applets in WebAssign ..238

 9.7 Post-Processing Student Responses ...244
 9.7.1 Forcing two or more correct answers into one for grading ..244
 9.7.2 Preserving one answer to evaluate another ..244

 9.8 Using Perl Modules and Functions...245
 9.8.1 Using functions from a Perl module ..245
 9.8.2 Writing your own functions ...246

 9.9 Creating “Java” Type Questions ..246

viii WebAssign User’s Manual 4.0

9/2007

 9.10 Math Display ..249
 9.10.1 Using Math Display ...249
 9.10.2 Expressions available in Math Display ..252
 9.10.3 Defining a variable for a Math Display image ...255

 9.11 Images and HTML Shortcuts ...256
 9.11.1 Creating images with the s tag ...256
 9.11.2 Creating HTML code with the h tag ..256

 Contents ix

 9/2007

 APPENDIX B: HTML TAGS 327

 B.1 General ..327

 B.2 Fonts ..328

 B.3 Links and Images...328

 B.4 Lists ...328

 B.5 Tables ..328

 B.6 HTML Special Characters ...329

 B.7 WebAssign Classes..330

x WebAssign User’s Manual 4.0

9/2007

 APPENDIX C: GREEK LETTERS AND SYMBOLS 331

 APPENDIX D: TAGS, FUNCTIONS, AND VARIABLES 335

 D.1 Special WebAssign Tags...335
 D.1.1 The <eqn> and <EQN> tags ..335
 D.1.2 Functions used in <eqn> and <EQN> tags...335
 D.1.3 Additional WebAssign tags...339

 D.2 WebAssign Reserved Variables ..340

 D.3 WebAssign Flags...342

 D.4 WebAssign Internal Values ...342

 D.5 If-then-else Perl Expressions ...344

 TERMS OF USE 345

 8. CREATING QUESTIONS

You can create your own questions in WebAssign. The exact method for creating a new
question depends upon the mode of your question. Multiple-choice questions, for
example, are entered a bit differently than questions with a numerical answer. The
difference most frequently lies in the way answers are entered into WebAssign.

 8.1 Question Editor
To write new questions, select Create from the Questions Menu or click Question on
the Quick Create tool.

162 WebAssign User’s Manual 4.0

9/2007

The Questions Editor appears. This is where all questions are created and modified. First,
decide what name you will give your question and enter it. That way, when you are
creating an assignment later, you will be able to easily identify your questions and add
them to your assignment. Then decide what kind of question you are going to write, and
select the appropriate mode from the pulldown Mode menu.

Notice that the entry boxes for the question, answer, and solution are sizeable. You can
click the triangles and decrease or increase the size of the editor boxes. The size remains
with the question when you save. When you choose Create from the Questions menu,
the sizes of the question, answer, and solution box return to their default size.

Next, in the Question field you will enter the text of the question you are writing. You
may either type in this text directly, or cut and paste it from another program. For most
questions, plain text is all that is required. If you want to use special characters or
formatting, such as superscripts or subscripts, italics, or boldface, you can use HTML.
Any valid HTML can be used in a WebAssign question, including tables, images, and
animations.

Tables are entered using the HTML <TABLE> tag. Fonts can be changed using the
tag. Figures can be uploaded into WebAssign using the My Files Page Tool and easily
displayed in the question with the options in My Files.. If you want to include a
simulation, such as a Java applet or a Shockwave file, WebAssign supports it. The
application file can reside on your server or we can mount it on WebAssign. Sound as
well as movies can be displayed within a question, as well as in the Answer field. You
just need to point to the correct file in a tag.

Some examples of what can go into a WebAssign question follow.

 1. Straight text

 Creating Questions 163

 9/2007

 When did Columbus arrive in the Americas?

 2. Simple text with HTML

 If y is proportional to x², and if y = 12 when

x = 2, what is the value of y when x = 5?

 3. Tables

 The variables <I>x</I>, <I>v</I>, <I>t</I>, and <I>a</I>

have the units shown in the table below.

<TABLE>

 <TR>

 <TD>Variable</TD><TD>Units</TD>

 </TR>

 <TR>

 <TD><I>x</I></TD><TD>meters (m)</TD>

 </TR>

 <TR>

 <TD><I>v</I></TD>

 <TD>meters per second (m/s) </TD>

 </TR>

 <TR>

 <TD><I>t</I></TD><TD>seconds (s) </TD>

 </TR>

 <TR>

 <TD><I>a</I></TD>

 <TD>meters per second squared

 (m/s²) </TD>

 </TR>

</TABLE>

Is it possible for <I>x</I>²/<I>v</I> to be

dimensionless?

 4. Fonts

 What is tanq if <FONT FACE =

SYMBOL>q = 30°?

 5. Figures

164 WebAssign User’s Manual 4.0

9/2007

 What kinds of intermolecular attractive forces are present

in

 6. Java applet

 <applet archive = "/classes/mass_spring/wileyapplets.jar"

code=Sim8.class name=sim8 width=508 height=400 VIEWASTEXT>

 <param name=background value=#ffffff>

<PARAM NAME="file1" VALUE="pictures/s8_bg.jpg">

<PARAM NAME="file2" VALUE="pictures/ball40x40.gif">

<PARAM NAME="file3" VALUE="pictures/n_slider.gif">

<PARAM NAME="file4" VALUE="pictures/n_play.gif">

<PARAM NAME="file5" VALUE="pictures/n_reset.gif">

<PARAM NAME="file6" VALUE="pictures/n_pause.gif">

<PARAM NAME="file7" VALUE="pictures/n_stforw.gif">

<PARAM NAME="file8" VALUE="pictures/n_stback.gif">

<PARAM NAME="file9" VALUE="pictures/n_check.gif">

<PARAM NAME="file10" VALUE="pictures/n_cleartrace.gif">

<PARAM NAME="mediabase" VALUE="/classes/mass_spring/">

</applet>

 <P>

Experiment with the spring-mass system. See what happens

when you choose different values for the mass and initial

velocity. (To change a value, click reset first.)

 Which of the following quantities can you use to determine

the spring constant?<SECTION>
From which plots can you

determine the period of the system?

 Creating Questions 165

 9/2007

 7. Sound

 Identify the following bird <A HREF =

"/userimages/demo@demo/bird.au">song:

In the Answer field, you will enter the answer or formula for the question you are writing.
The exact format will depend on the type of question.

 8.2 Multiple-Choice Questions
A multiple-choice question presents mutually exclusive choices, with only one correct
response available. To write a similar question with more than one correct answer, see
section 8.3, Multiple-Select Questions.

 8.2.1 Creating a multiple-choice question
To write a multiple-choice question, choose Create from the Questions menu and
perform the following steps:

 1. Enter a name for the question.

 2. Select Multiple-choice as the Mode of the question.

 3. Enter the question text in the Question field.

 4. Enter the correct answer to your question on the first line of the box marked
Answer and press return.

 5. Enter distracters—incorrect answers that you would like to include as choices—
on the lines below the correct answer, with one on each line.

166 WebAssign User’s Manual 4.0

9/2007

The question editor contains a soft-wrap feature, for your convenience. WebAssign
will not read any text moved to another line without a carriage return as starting a
separate line. This allows you to enter longer answers or distracters, while easily
viewing the entire entry.

The correct answer and the distracters for a multiple choice question each need to
occupy a single line in the answer field. Do not enter any line returns within an
answer.

 6. Click Redisplay to update the display as it will appear to the students. You may
continue to make changes and click Redisplay at any point to see an updated
display of your question. Note that the order of the choices has been scrambled
in this display. Multiple-choice answers are by default scrambled in WebAssign,
so that each student receives a different ordering of choices. The students will
not see the green circle (o) marking the correct answer unless they are viewing
the key.

 7. When you have finished editing, click Save to add the new question to the

database. This will also assign a unique question ID number to the question.

 Creating Questions 167

 9/2007

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.2.2 Ordered multiple-choice questions
WebAssign scrambles the order of the choices in a multiple-choice question by default. If
you do not want WebAssign to randomize the placement of multiple-choice options, you
need to tell WebAssign this. When creating this type of multiple-choice question, enter
the choices in the order you wish them to appear. Then you will tell WebAssign which
answer is correct by setting the variable $ORDERED equal to the location of the correct
answer in your list of choices. For example, if the third choice in your list is correct, you
will set $ORDERED = 3.

To write an ordered multiple-choice question with the third answer as the correct choice,
choose Create from the Questions menu and perform the following steps:

 1. Enter a name for the question.

 2. Select Multiple-choice as the Mode of the question.

 3. Enter the question text in the Question field.

 4. Type the following into the Answer field:

 <eqn $ORDERED = 3;"">

 followed by the first distracter.

The question editor contains a soft-wrap feature, for your convenience. WebAssign
will not read any text moved to another line without a carriage return as starting a
separate line. This allows you to enter longer answers or distracters, while easily
viewing the entire entry.

The correct answer and the distracters for a multiple choice question each need to
occupy a single line in the answer field. Do not enter any line returns within an
answer.

 5. Continue entering a distracter on the second line.

 6. Enter the correct answer on the third line.

 7. Continue entering distracters if there are more.

 8. Click Redisplay to update the display as it will appear to the students. Note that
the choices now appear in the order you have listed them, and the choice that
you have indicated as correct is marked with the green circle (o). The students
will not see the green circle (o) unless they are viewing the key.

168 WebAssign User’s Manual 4.0

9/2007

 9. When you have finished editing, click Save to add the new question to the

database. This will also assign a unique question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.2.3 True or false questions
A true or false question is a simple form of a multiple-choice question. Just enter the
correct answer, True or False, first, followed by the incorrect answer. It is also possible to
keep the choices in the same order by entering either of the following expressions on the
first line of the Answer field:

 <eqn $ORDERED = 1;"">

<eqn $ORDERED = 2;"">

where the value of the $ORDERED variable is the position of the correct answer and the
choices are not rearranged in the student view of the question. (See section 8.2.2 for more
information about ordered multiple-choice.)

 Creating Questions 169

 9/2007

 8.2.4 Multiple-choice pulldown menus
Occasionally it is desirable to have a multiple-choice question for matching type
questions in which the choices are in a pulldown menu. This allows you to write
questions that are more compact. In fact, you can have the pulldown menu in the middle
of a sentence, if you like.

Note: You cannot use HTML, images, or other special characters in a pulldown menu.
Browsers will not display them properly.

To write a multiple-choice question with a pulldown menu, choose Create from the
Questions menu and perform the following steps:

 1. Enter a name for the question and select Multiple-choice as the Mode of the
question

 2. Enter the question text in the Question field

 3. Type the tag for an answer box, <_>, in the Question field where you want the
pulldown menu to appear. (The keystroke combination for the answer box is
less-than, underscore, greater-than.)

170 WebAssign User’s Manual 4.0

9/2007

 4. Type <eqn $PULLDOWN = 1;$ORDERED = 3;""> in the first line of the Answer
field. The $ORDERED variable is not necessary for a pulldown menu, but it can be
used if you want to control the order of the choices, rather than let WebAssign
randomize the order within the pulldown menu.

 5. Type the first answer choice, followed by a return. On the next line type the next
choice, and so forth. In this example and in the following figure, the correct
answer is on line 3. Continue entering as many choices as you wish, one per
line.

 6. The first choice that is displayed to the student in the pulldown menu is '--
Select--.' If you want to use something else for this initial text, use
$Select_Option = "new text" For example,

 <eqn $PULLDOWN = 1;$ORDERED = 3;$Select_Option = "Use pulldown

menu";"">

This can be handy, for example, if you are using a pulldown menu in the middle of a
sentence, with choices of < and >, and do not want the box to be very large. In this
case, use something similar to “—“ or “??” as the initial text to be displayed.

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

 7. Click Redisplay to update the display as it will appear to the students. Note that

the choices now appear in the order you have listed them in a pulldown menu,
and the choice that you have indicated as correct is shown in green. The students
will not see the word(s) in green unless they are viewing the key.

 Creating Questions 171

 9/2007

 8. When you have finished editing, click Save to add the new question to the
database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.2.5 Controlling the position of radio buttons
When you need to specify the position of multiple-choice radio buttons so you can
include an image or footnote below the choices, use $SET_POSITION.

Set the $SET_POSITION flag to 1 in the Answer field at the start of the set of answers for
which you need to specify the position. In the Question field, insert an answer box <_>
where you want these radio buttons to appear. In the following example, the author
wanted the image below the choices. Without the $SET_POSITION flag, the image would
have been between the question and the choices.

 8.3 Multiple-Select Questions
A multiple-select question presents a list of choices. Any number of the choices can be
correct responses. All of the options can be correct, or none of them. Students must select

172 WebAssign User’s Manual 4.0

9/2007

all of the correct choices and none of the incorrect choices to receive credit for a
multiple-select question. We do not recommend making all the answers incorrect because
a student will get such a question correct without reading or considering it.

 8.3.1 Creating a multiple-select question
To write a multiple-select question, choose Create from the Questions menu and
perform the following steps:

 1. Enter a name for the question and select Multiple-select as the Mode of the
question.

 2. Enter the question text in the Question field.

 3. Enter the correct answers to your question on the first lines of the Answer field
and press return between each answer. If none of the answers is correct, you
should add the answer “None of these.” Otherwise students would be marked
correct without even answering the question!

The question editor contains a soft-wrap feature, for your convenience. WebAssign
will not read any text moved to another line without a carriage return as starting a
separate line. This allows you to enter longer answers or distracters, while easily
viewing the entire entry.

 4. Enter the tag <INCORRECT> and then the distracters—incorrect answers that you
would like to include as choices—on the lines below the correct answers, with
one on each line. The first distracter must follow immediately after the
<INCORRECT> tag, on the same line.

 5. Click Redisplay to update the display as it will appear to the students. Note that
the order of these choices has been randomized for the student. The choices with
a [x] next to them are the correct choices, and those with an empty [_] are not
correct. The students will not see the green [x] marks unless they are viewing
the key.

 Creating Questions 173

 9/2007

 6. When you have finished editing, click Save to add the new question to the

database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.3.2 Ordered multiple-select questions
WebAssign scrambles the order of the choices in a multiple-select question by default. If
you do not want WebAssign to randomize the placement of multiple-select options, you
need to tell WebAssign this. When creating this type of multiple-select question, enter the
choices in the order you wish them to appear. Then you will tell WebAssign which
answers are correct by setting the variable $ORDERED equal to a list of the locations of the
correct answers. For example, if the first and third choice in your list is correct, you will
use the following tag in the first line of the Answer field:

 <eqn $ORDERED = [1,3];"">

You will not enter an <INCORRECT> tag if you use $ORDERED.

174 WebAssign User’s Manual 4.0

9/2007

 8.3.3 Controlling the position of check boxes
When you need to specify the position of multiple-select check boxes so you can include
an image, footnote, or text below the choices, you can use $SET_POSITION, in the same
way it can be used for multiple choice questions.

Set the $SET_POSITION flag to 1 in the Answer field at the start of the set of answers for
which you need to specify the position. In the Question field, insert an answer box <_>
where you want these radio buttons to appear. In the following example, the author
wanted the image below the choices.

 Creating Questions 175

 9/2007

Without the $SET_POSITION flag, the text, “Choose all correct responses in each case”,
would have been between the question and the set of choices.

 8.3.4 Random number of correct answers for multiple-select questions
WebAssign allows you to make a variable number of correct answers in a multiple-select
question. This feature allows you to offer even more randomization within an assignment.
For example, for one randomization a student may find two (2) answers are correct, while
another may find three (3) answers are correct.

176 WebAssign User’s Manual 4.0

9/2007

The following question will randomly choose between “yellow” and “white” light. The
answer for “yellow” light is red and green, items 2 and 3. The answer for “white” light is
red, green, and blue, items 2, 3, and 4.

Question:

 What primary colors of light can be combined to make <eqn

$a=pickone(1,2); picksame(yellow,white)> light?

Answer:

 <eqn>($a==1)?

{$ORDERED=[2,3]}:{$ORDERED=[2,3,4]} ;''</eqn>magenta

red

green

blue

purple

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

See Appendix D, section D.5, for an explanation of the if-then-else structure above.

 8.4 Fill-in-the-Blank Questions
A fill-in-the-blank question presents a question or statement with an answer box into
which the answer can be typed. By default, the answer and response are compared in a
case-insensitive manner and white spaces are ignored. For example, “Abraham Lincoln”,
“abraham lincoln”, and “AbrahamLincoln” would all be considered equivalent answers.

 8.4.1 Creating a fill-in-the-blank question
To write a fill-in-the-blank question, choose Create from the Questions menu and
perform the following steps:

 1. Enter a name for the question and select Fill-in-the-blank as the Mode of the
question.

 2. Enter the question text in the Question field. Enter an answer box, <_>, in the
appropriate place for students to record their answer. (The keystroke
combination is less-than, underscore, greater-than.)

 3. Enter the correct answer to your question in the Answer field.

If there are several acceptable answers, enter all of them on the same line, separated
only by the characters {tab}. You may simply type {} and WebAssign will
automatically expand this to {tab} for you, or you may use the Tab link which is
directly above the Answer field.

 4. Click Redisplay to update the display as it will appear to the students. The
students will not see the various correct answers in brackets unless they are
viewing the key.

 Creating Questions 177

 9/2007

 5. When editing is complete, click Save to insert the new question into the

database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.4.2 Controlling case and space sensitivity
Fill-in-the-blank questions are, by default, case and space insensitive. In the above
example asking who said the quote, abe lincoln, lincoln, and Abelincoln would all be
counted as correct. To make fill-in-the-blank questions case sensitive, set the $CASE flag
to 1. To make questions space sensitive, set the $SPACE flag to 1.

178 WebAssign User’s Manual 4.0

9/2007

In the example above, an entry of 'lincoln' or 'Abelincoln' would be graded incorrect.

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

 8.4.3 Rank-order questions
You can use a fill-in-the-blank question to administer a rank-order question. In that case,
you should add instructions in the Question field indicating what answer format is
acceptable. For example, you might want your students to list the options, largest to
smallest, and you may require them to use only the characters > and = between the
numbers or letters representing the various choices. Since a rank-order question uses a
fill-in-the-blank format, the answer must be exact. For example a=b=c or 1=6=9, is not
the same as b=a=c or 9=6=1. The following screen gives an example of how you can
instruct your students.

 Creating Questions 179

 9/2007

 8.5 Numerical Questions
Numerical questions are similar to fill-in-the-blank ones, with an answer box for the
student’s response. The grading of numerical answers is according to numerical closeness
and not the exact form of the number. For example, 2, 2.0, 2.01, and even 1 + 1 are
considered matches for a numerical answer of 2.

 8.5.1 Creating a numerical question
To create a numerical question, choose Create from the Questions menu and perform
the following steps:

 1. Enter a name for the question and select Numerical as the Mode of the question.

 2. Enter the question text in the Question field. Enter an answer box, <_>, in the
appropriate place for students to record their answer. (The keystroke
combination is less-than, underscore, greater-than.)

 3. Enter the correct answer to your question in the Answer field.

180 WebAssign User’s Manual 4.0

9/2007

 4. Click Redisplay to update the display as it will appear to the students. The

students will not see the answer in brackets unless they are viewing the key.

 5. When editing is complete, click Save to insert the new question into the
database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.5.2 Changing the tolerance in a numerical question
By default, a student’s answer must be within 2% of the correct answer. We publish in
the student guide that the tolerance is 1% so that there will be less arguments about close
answers. However, you can change this tolerance for each question. For example, to
allow a tolerance of ±5 for an answer of 90, enter the following into the Answer field:

 90 {tab} 5

You may type {} and WebAssign will expand this to {tab} for you, or you may use the
Tab link, which is located directly above the Answer field.

To allow a tolerance of ±15% for an answer, assign the answer to a variable, for example
$a, and then make the tolerance a fraction of that variable. For example, enter the
following into the Answer field:

 Creating Questions 181

 9/2007

 <eqn $a=$x/$y> {tab} <eqn 0.15 * $a>

It is also possible to change the tolerance for particular questions on an assignment or an
entire assignment without changing the question. You do this with the Assignment
Options in the Assignment Editor. You can change the tolerance of all numerical
questions you schedule for a class in the Options for that class, see section 4.1.3.

 8.5.3 Significant figures using $SIGFIGS
WebAssign allows you to set the number of significant figures that are displayed in the
answer key and to mark student responses incorrect that do not include the correct
number of significant figures.

To display a specified number of significant figures and compare the student’s response
with this number, use the following code in the Answer box

 <eqn $SIGFIGS=n; number>

where n is the number of significant figures and number is the numerical answer to the
question.

For example, suppose you are asked to calculate the area of a rectangle that is 1.28 m
long by 240 m wide. The answer is 310 m2. The maximum number of significant figures
is two (2), so the code is the following.

 <eqn $SIGFIGS=2; 310>

The tolerance will be automatically adjusted to correspond to the correct number of
significant figures. For example, if the answer is 310 to 2 significant digits, the tolerance
is ±10.

If a student’s response agrees with the correct answer, but contains either too few or too
many significant figures, the question will be marked incorrect, and the following hint
will be displayed.

Check the number of significant figures.

By default, a sigfig question displays with an icon, , indicating that the answer will
be judged based on the proper number of significant figures. The icon is also a link to the
rules WebAssign uses for significant figures.

182 WebAssign User’s Manual 4.0

9/2007

 8.5.4 Significant figures using $DECFIGS
Sometimes it is not possible to determine the number of significant figures in an answer,
but it is possible to specify the number of decimal places. WebAssign allows you to set
the number of decimal places displayed in the answer key and to mark student responses
incorrect that do not include the correct number of decimal places.

To display a specified number of decimal places and compare the student’s response with
this number, use the following code in the Answer box

 <EQN $DECFIGS=0.001; number>

where 0.001 is the precision required and number is the numerical answer to the question.

For example, suppose you ask the students to report the mass of a sample they measured.
Suppose the balance they used is accurate to the 4th decimal place. You do not want to
give credit for their answer unless it has 4 decimal places. You would code the answer as
follows:

 Creating Questions 183

 9/2007

 <EQN $DECFIGS=0.0001; $ans=$thisresponse>

If students enter any of the following, they will get the question correct:

 14.0034

 3.1254

 119.2314

However, if the student enters any of the following, he will get the question wrong:

 14.00341

 3.124

 119.2

and the following hint will be displayed.

Check the number of significant figures.

 8.5.5 Numerical questions with units
To create a numerical question which requires the student to enter the unit as well as the
numerical answer, click Question on the Quick Create tool or choose Create from the
Questions menu and perform the following steps:

 1. Enter a name for the questions and select Numerical as the Mode of the
question.

 2. Enter the question text in the Question field. Enter an answer box, <_>, in the
appropriate place for student to record their answer. (The keystroke combination
is less-than, underscore, greater-than.)

 3. Enter the correct numerical answer to your question in the Answer field
followed by the correct units.

184 WebAssign User’s Manual 4.0

9/2007

 4. Click Redisplay to update the display as it will appear to the students. The

students will not see the answer in brackets unless they are viewing the key.

 5. When editing is complete, click Save to insert the new question into the
database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

If the answer is expressed as a variable, the answer box might look like this:

 <eqn $ans> m/s

Any equivalent answer is scored correct. For example, for the question above, vectors
with units, the student will receive full credit for entering 1.31 km or 1.31 kilometers.
Additionally, 0.814 mi or 1310 m or 0.271 leagues would also receive full credit. Try this
out using the Test/Preview window.

 Creating Questions 185

 9/2007

If a student does not enter units, they receive the message,

 Units are required for this answer.

It is possible to give partial credit if a student enters the wrong number, but a
dimensionally correct unit. You do this in the Assignment Options.

You cannot see this from the Test/Preview window, but you can from the student view of
an assignment.

 8.6 Symbolic Questions
Symbolic question format allows students to enter a formula as a response to a question.
Any response that is equivalent to the answer formula will be graded as correct. This
question type uses standard calculator notation. Students are given credit for any input
that is evaluated to be equivalent to the answer formula. For example, 4x+12 would be
equivalent to (x+3)4. (The students may enter a * for multiplication or use implicit
multiplication with variables.)

The calculator notation used is as follows:

186 WebAssign User’s Manual 4.0

9/2007

By default an icon, , with a link to the above information is
displayed for symbolic questions. This link can be suppressed at the assignment level by
using the Assignment Options in the Assignment Editor or at the class level using Class
Options.

The position of the help link can be controlled with the <SYMBOLIC> tag. By placing
the <SYMBOLIC> tag within the symbolic mode of the question, you can specify where
the symbolic formatting help link is placed, rather than at the end of the question.

 8.6.1 Creating a symbolic question
To create a symbolic question, choose Create from the Questions menu and perform the
following steps:

 1. Enter a name for the question and select Symbolic from the pulldown Mode
menu.

 2. Enter the question text in the Question field as you would a numeric question.
Be sure to specify which letter variable(s) the students are to use. Enter an
answer box, <_>, in the appropriate place for students to record their answer.
(The keystroke combination is less-than, underscore, greater-than.)

 3. In the Answer field, enter the variable to use followed by a colon and the
formula that is the answer to the question. For example,

 x: 2sin(x)/pi

 t: -9.8/2t^2

 r_1: 4/3 pi r_1**3

Notice that the carat, ^, is a legal character in a symbolic answer. Since the answer
key displays what is entered in the formula part of the answer, using the carat makes
the answer key look closer to the notation that the students are used to. However, you
cannot use the carat in an <eqn> tag.

 Creating Questions 187

 9/2007

Also notice that multiplication is implicit. You can enter 2sin(x) or 2*sin(x). They
will be interpreted the same.

Variable names must start with a letter, and may contain any alphanumeric character
and underscore, [a..z, A..Z, 0..9, _]. A single letter followed by an underscore and a
single alphanumeric character will preview properly as a subscripted variable in the
student previewer. So, for example, r_1 previews as r1, lambda previews as λ,
and V_m previews as Vm. r_1, lambda, and V_m are all valid variable names, but 4d
and x! are not. Note that variable names are case sensitive.

To use two or more variables in the formula, use the following format:

 var1, var2,···varn:formula

For example,

 x,y: sin(x)y/(3pi)

Note: It is recommended that you keep the number of variables to four or fewer in
order to avoid long computation times. If you must use more than four variables,
reducing the number of elements in the domain to two will help. (See section 8.6.4 for
information about changing the domain.)

188 WebAssign User’s Manual 4.0

9/2007

 4. Click Redisplay to update the display as it will appear to the students. The

students will not see the answer in brackets unless they are viewing the key.

 5. When editing is complete, click Save to insert the new question into the
database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.6.2 Using randomized variables
To incorporate variables into your symbolic questions, for example, to use randomized
numbers from the question, use the following format in the answer field. In this example,
the density, $D, is a randomized variable, and the student is asked to write a formula for
the mass of a rectangular block of height H, width W, and length L.

 H,W,L: <eqn $D>H W L

 Creating Questions 189

 9/2007

 8.6.3 Displaying a student symbolic response
Students often have difficulty interpreting their response when written in calculator
notation. To overcome this difficulty when writing complex formulas, it is recommended
that you offer your students a symbolic “preview” feature for displaying symbolic
formulas. This feature will allow your students to view the question properly using
standard mathematical symbols and formatting. Previewing is especially important for
built-up fractions and expressions containing square roots.

To implement the preview feature, enter the following in the answer box, next to the
appropriate answer,

 <eqn Symbolic::addPreviewer;''>

This code must be added for each symbolic answer box.

In the following example, the student is asked to write the formula for the distance
between two points in Cartesian coordinates.

The Question box contains

 What is the formula for the distance between the two

points (x₁,y₁) and

(x₂,y₂)? Use x_1 for x₁,

y_1 for y₁, etc.
<_>

and the Answer box has

 <eqn Symbolic::addPreviewer;''>

x_1,y_1,x_2,y_2:sqrt((x_2-x_1)^2+(y_2-y_1)^2)

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

The following screen shows the question with a correct response.

Clicking the previewer icon will show the entry displayed in proper mathematical style.

 8.6.4 Changing the domain with $DEFAULTVALS (advanced)
The formula the student enters is compared numerically at preset values, the domain,
against the formula saved in the Answer field of the question. The default domain is
[0.123456789012, 0.345678901234, 0.890123456789]. To change the domain, set
$DEFAULTVALS=[domain to use] using one of the following two methods:

190 WebAssign User’s Manual 4.0

9/2007

List the values of the domain

 <EQN $DEFAULTVALS=[0.1,0.2,0.3];"">x: x/(x-3)

Enter a range of integers to use

 <EQN $DEFAULTVALS=[6..9];"">x: x/(x-3)

Note that [6..9] is equivalent to [6,7,8,9]. It is recommended that you keep the domain to
four or fewer values in order to avoid long computation times.

It is also possible to provide different domains for each variable in a multi-variable
symbolic question. To do this, specify $DEFAULTVALS in one of the following ways.

To override all variables with the same values:

 <EQN $DEFAULTVALS=[3..5];"">x,y: 2pi/((x-2)(y-2))

To override one variable but leave the other alone:

 <EQN $DEFAULTVALS=[[3..5],[]];"">x,y: 2pi/((x-2)(y+2))

To override each variable with different values:

 <EQN $DEFAULTVALS=[[3..5],[6..9]];"">x,y: 2pi/((x-1)(y-4))

or

 <EQN $DEFAULTVALS=[[0.1,0.2,0.3],[6..9]];"">x,y: 2pi/((x-

1)(y-4))

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

 8.6.5 Changing the tolerance with $MAXERR (advanced)
The formula the student enters will be compared against the answer formula at each
element of the domain to determine if the formulae are equivalent. The default maximum
error that will be accepted for any range element for the two formulae to be considered
equivalent is 1E-3. To change this tolerance, use

 <EQN $MAXERR=value;"">var:formula

where value is the maximum error to be allowed. For example, you could set
$MAXERR=1E-2 to allow 0.333 to be considered equivalent to 1/3.

You can also set the maximum error equal to a percent of the answer formula,

 <EQN $MAXERR='1%';"">var:formula

being careful to enclose the percentage in single quotes.

 8.7 Algebraic Questions
Algebraic question format, like symbolic questions, allows students to enter a formula as
a response to a question. The benefit to the question writer is that you can use
syntax to produce the answer key and you can prevent the equivalent but unsimplified or
unfactored answers as being scored correct.

Students will not see the difference between symbolic and algebraic question types. They
may enter implicit multiplication or explicit with an asterisk, *. The same calculator
notation is used as for symbolic questions.

 Creating Questions 191

 9/2007

For algebraic questions, students will be given credit for any input that is equivalent to
the answer key. Their input will not be automatically evaluated as in symbolic. If you
want the evaluation of their input compared with the answer, you will add a {tab}
evalb(key = response). This statement will run an evaluation on $thisresponse and
then compare to the key.

 8.7.1 Creating an algebraic question
To create an algebraic question, choose Create from the Questions menu and perform
the following steps:

 1. Enter a name for the question and select Algebraic from the pulldown Mode
menu.

 2. Enter the question text in the Question field as you would a symbolic question.
Be sure to specify which letter variable(s) the students are to use if it is not
obvious. Enter an answer box, <_>, in the appropriate place for students to
record their answer. (The keystroke combination is less-than, underscore,
greater-than.) For example,

 Differentiate the following function.

f(x) = 5xsin(3x)

f'(x) = <_>

 3. In the Answer field, enter your variable(s) and the formula that is the
answer to the question. For the example above,

 x:diff(5*x*sin(3*x),x)

The command syntax for derivatives is diff(f(x),x) where f(x) is a function.
The comma,x indicates to take the derivative with respect to x.

For single variable answers, the variable declaration is not necessary. Also notice
that multiplication must be explicit in the answer key. The student does not need to
enter the *, but you must enter the * in the answer.

Variable names have the same rules as for symbolic questions.

192 WebAssign User’s Manual 4.0

9/2007

 8.7.2 Use of evalb
There are many important cases where you do want to evaluate the response of the
student. You can accomplish this by entering a {tab} evalb expression. For example, if
the answer includes a square root, WebAssign will need to evaluate this in order to understand
it.

In the example below, the student is asked for the 2 roots of a quadratic equation. The
answer will include a square root. The evalb statement will run an evaluation on
$thisresponse and compare it to the key.

 Creating Questions 193

 9/2007

 8.7.3 Accepting equations as an answer
Another use for evalb is to be able to accept any form of an equation. In symbolic mode,
the only way to ask for an equation is to give the student the 'y =' part and ask them to fill
in the rest. This forces a certain form of the equation, for example, slope-intercept. Using
algebraic mode, WebAssign can check that the answer key equation and the student's input are
equivalent. The entire equation is given as the key and the evalb statement solves both the
answer key equation and the student's response equation for y and then compares the
result.

The answer key expressions are explained in the table below.

Expression Explanation

f := x -> 2*x^2 + 3*x Defines the function f(x).

m := subs(x=4, diff(f(x),x)) Defines the slope of the tangent at x = 4.

194 WebAssign User’s Manual 4.0

9/2007

y - f(4) = m*(x-4) Defines the point-slope form of the tangent
line as the answer key.

evalb(simplify(solve(key,y) -

solve(response,y)) = 0)

Solves the answer key and student response
equations for y, takes the difference,
simplifies, and asks if this difference is zero.

 8.8 Essay Questions
Writing an essay question is similar to writing the other modes, except that WebAssign
creates a window for students to provide a written response, rather than a small answer
box. It is necessary to place at least one character in the Answer field, if not a complete
exemplar. This text is not displayed to your students until they see the key.

To write essay questions, choose Create from the Questions menu and perform the
following steps:

 1. Enter a name for the question and select Essay as the Mode of the question.

 2. Enter the question text in the Question field. Enter an answer box, <_>, in the
appropriate place for students to record their answer. (The keystroke
combination is less-than, underscore, greater-than.)

 3. Enter an exemplar answer to your question in the Answer field. If you do not
want to provide an exemplar answer, you can simply type ‘Essay’ or any text in
the Answer field. This text is not displayed to your students until they see the
key.

 4. Click Redisplay to update the display as it will appear to the students. The
students will not see the Key unless they are viewing the answer key.

 Creating Questions 195

 9/2007

 5. When editing is complete, click Save to insert the new question into the

database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

Note: Do not put more than one “hard” return in your answer to an essay question.
WebAssign assumes that every time there is a hard return there is a new answer to
another question. If you did not write a second question, then you should not put in
the “hard” return. If you wish to format the answer with line returns, just use the HTML
code
 to make the new line.

196 WebAssign User’s Manual 4.0

9/2007

Since WebAssign does not automatically grade essay questions, it does not actually
matter what answer you provide. However, when you grade an essay assignment, the
answer you type will be visible to help you compare an exemplary response with the
students’ answers. See 10.3 Scoring Essays and File Uploads.

The soft-wrap feature for the question editor allows you to enter longer answers, while
easily viewing the entire entry. However, the exemplar cannot contain any line breaks:
don’t press the Return or Enter key!

 8.9 File Upload Questions
If you would like your students to "hand in" an electronic file, you can use the file upload
question type. This question type is similar to an essay question. You must enter a <_>
tag for an answer box. Acceptable files have a preset limit of 100 K.

To write file upload questions, choose Create from the Questions menu and perform the
following steps:

 1. Enter a name for the question and select File upload as the Mode of the question.

 2. Enter the question text in the Question field. Enter an answer box, <_>, where
you want students to see a file upload entry box with a browse button. (The
keystroke combination is less-than, underscore, greater-than.)

 3. Enter text, at least one character, in the Answer field. This text is not displayed
to your students until they see the key.

 4. Click Redisplay on the left toolbar to update the display as it will appear to the
students. The students will not see the Key unless they are viewing the answer
key.

 5. When editing is complete, click Save to insert the new question into the
database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

Test/Preview for a file upload question does not allow you to actually upload a file. To
test that functionality, you should add the question to an assignment and schedule for
your practice class.

Since WebAssign does not automatically grade file upload questions, it does not actually
matter what answer you provide for the key. However, when you grade a file upload
assignment, the answer you type will be visible to help you score the students’ files. See
10.3 Scoring Essays and File Uploads.

 8.9.1 Specifying the file type
If you wish, you can limit the type and size of the file your students are trying to upload.
These limits are set using $ACCEPTFILETYPE for the file type and $FILEUPLOADMAX for
the maximum number of bytes. These limits will help you when you try to grade the
submission. If you do not know the file type that your students have used, you may have
trouble viewing it from your browser. You may have to modify your browser's
preferences by specifying the helper application for the file type you are expecting your
student to submit. Common file types are *.gif, *.jpg, *.doc, *.xls, *.pdf. After your
students submit their files, you will be able to grade their submissions just as you would
essay questions.

 Creating Questions 197

 9/2007

To accept only Word files, you would place the following code in the Answer field:

 <eqn $ACCEPTFILETYPE = ".doc";"">

If you would like to accept only Word, pdfs or ps files, you would place the following
code in the Answer field:

 <eqn $ACCEPTFILETYPE = ['.doc','.pdf','.ps'];''>

 8.9.2 Specifying the maximum file size
To change the default limit of the file from 100 K to 200 K (200 K = 200 * 1024 bytes/K
= 204800 bytes) use the code

 <eqn $FILEUPLOADMAX = 204800;"">

198 WebAssign User’s Manual 4.0

9/2007

 8.10 Poll Questions
One particularly useful type of question is a poll question, which is used primarily to
gather information from students, rather than to assess their learning directly. Poll
questions do not have a right or wrong answer. They can be used in any number of ways:

• To assess students’ opinions

• To receive feedback about an assignment

• To assess students’ confidence in their own responses

• To receive some answer from a student that can be used later in the assignment
as the basis for another question.

 8.10.1 Creating a poll multiple-choice question
To create a poll question, choose Create from the Questions menu and perform the
following steps:

 1. Enter a name for the question.

 2. Click Multi-Mode Options above the Question field.

 3. Click Poll. Notice that this changes the pulldown Mode menu to Multi-

Mode...P.

 4. Decide what kind of poll question you want to write. For this example we will
choose a multiple-choice question.

 5. Click the Multiple-Choice link in the Multi-Mode Options.

 6. Click OK.

The Mode menu shows Multi-Mode...PC.

 7. Enter the question text in the Question field.

 8. Enter the possible responses in the Answer field as you did for Multiple-choice
questions.

 9. Click Redisplay to update the display as it will appear to the students.

 Creating Questions 199

 9/2007

 10. When you have finished editing, click Save to add the new question to the

database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

The order of possible responses is not randomized for multiple-choice poll questions.

 8.10.2 Creating other types of poll questions
Although many polls and surveys use multiple choice questions, you may want to ask a
poll question—a question for which any answer is correct—in another mode. Any mode
can be made into a poll question just by using the Multi-Mode Options and selecting Poll
first and then the other mode.

200 WebAssign User’s Manual 4.0

9/2007

For example, if you want to ask how many hours do you work on homework each night,
you would do the following:

 1. Enter a name for the question.

 2. Click Multi-Mode Options above the Question field.

 3. Click Poll.

 4. Click Numerical.

 5. Click OK.

The Mode menu shows Multi-Mode...PN.

 6. Enter the question text in the Question field.

 7. Enter anything in the Answer field.

 8. Click Redisplay to update the display as it will appear to the students.

 8.11 Image Map Questions
An image map question allows students to point and click on a picture to indicate the
location of an object or to identify the name of a part in a drawing. You can use any
image you like as long as it fits on the page and you leave the image left justified. You
can store your images within WebAssign using the My Files tool. WebAssign has the
tools you need to specify one or more "correct" target areas on the image. To view an
example, search for a question with the Name "template.image map" and authored by
webassign.

To create an image map question, choose Create from the Questions menu and perform
the following steps:

 1. Enter a name for the question and select Image Map as the Mode of the
question.

 2. Enter the text for the question in the Question field and the text <_ src="

 3. Click My Files page tool.

 4. Check the box next to the image.

 5. Select ID Only from the pulldown menu.

 Creating Questions 201

 9/2007

 6. Click Go.

The image must be left justified, i.e. the default placement. Do not use any alignment
tags or indentation.

 7. Place the ID of the image after the quotation mark and finish the text with "> to
end the answer box tag. For example, change

 <_ src = "

to

 <_ src = "22">

 8. Click Redisplay.

The display now shows the question and a link to the Coordinates tool.

 9. Click the Coordinates link.

 10. Select rectangle, circle, or polygon depending on the shape needed for the target
area for a correct answer.

a. For a rectangle, click the upper left corner, then the lower right corner of the
rectangle.

b. For a circle, click the center of the circle, then a point for the radius of the circle.

c. For a polygon, click, in order, the vertices of the polygon. The vertices will be
connected by a straight line.

202 WebAssign User’s Manual 4.0

9/2007

 11. Click Draw Key to view the target area as it will appear in the answer key. The

target will be listed along with its coordinates.

 12. Define additional correct areas as in steps 7 and 8.

 13. Check the boxes next to the shapes and click Add Selected Key to Answer.

 14. The coordinates of all target areas will be displayed in the Answer field.

 Creating Questions 203

 9/2007

 15. Click Redisplay to update the display as it will appear to the students. The

target areas will be displayed to a student if the answer key is available.

 16. When editing is complete, click Save to insert the new question into the

database and assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 8.12 Matching Questions
A matching question allows students to select answers matching one column of answers
with another column. To view an example, search for a question with the name
template. matching and authored by webassign.

To create a matching question, choose Create from the Questions menu and perform the
following steps:

 1. Enter a name for the question and select Matching as the Mode of the question.

 2. Enter the question text in the Question field.

 3. Enter the pairs of answers in the Answer field separated by {tab}, e.g.

 Paris {tab} France

London {tab} Great Britain

Madrid {tab} Spain

Moscow {tab} Russia

Athens {tab} Greece

204 WebAssign User’s Manual 4.0

9/2007

Please note that the second element in each pair cannot contain HTML code. If you need
HTML, you can use the label explained in the next section.

 4. Click Redisplay to update the display as it will appear to the students. The
students will not see the various correct answers in brackets unless they are
viewing the key.

 5. When editing is complete, click Save to insert the question into the database and

assign a question ID number to the question.

The recommended procedure for developing a question is to click Redisplay or
Test/Preview, check that the question redisplays properly, and then click Save.
Always click Redisplay or Test/Preview right before you click Save.

 Creating Questions 205

 9/2007

 8.12.1 Extra distracters
If you would like to include extra distracters, enter them at the end of the Answer box
list, e.g.

 Paris {tab} France

London {tab} Great Britain

Madrid {tab} Spain

Moscow {tab} Russia

Athens {tab} Greece

Turkey

Italy

Belgium

 8.12.2 Matching with labels
To change the display of the matching question type you can set the $LABEL flag. The
options for the label flag are as follows:

 $LABEL='A'

 $LABEL='a'

 $LABEL='1'

Using the $LABEL flag is particularly useful if you want to have the students match
something to an image or to Display Math or to chemical formulas.

For example, if you enter the following into the answer box,

 <eqn $LABEL='a';''>water {tab} H₂O

benzene {tab} C₆H₆

sodium chloride {tab} NaCl

ethanol {tab} CH₃CH₂OH

carbon dioxide {tab} CO₂

CO

MgCl₂

H₂O₂

The eqn tag above takes up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

The question will display as follows:

206 WebAssign User’s Manual 4.0

9/2007

 8.13 Practice Questions
It is possible to add questions to a question that will be available to your students as
practice questions. Your students would see

When your students click the Practice link, a window with access to practice questions
pops up.

 Creating Questions 207

 9/2007

You can make any of your questions contain a Practice link. What you need first is a set
of question IDs or textbook question names that you want to show up as practice for the
given question. To add practice questions to one of your questions, perform the following
steps:

 1. Open one of your questions in the Question Editor.

 2. Determine the question IDs or the textbook question names of the questions you
want to show up as practice questions.

 3. Enter the following to the Question field

 <PRACTICE> qid='comma delimited list of question

IDs'</PRACTICE>

 or

 <PRACTICE>qid='textbook question name, textbook question

name, textbook question name, textbook question

name'</PRACTICE>

 or

 <PRACTICE>qid='part of textbook question name%'</PRACTICE>

 4. Click Duplicate then Save or just Save depending if you want your original
question changed.

Additional options for this technique can be found in the question named
template.practice and template.practice.textbook.

 8.14 Java Questions (Advanced)
Many teachers want to use simulations to illustrate key concepts. More and more Java
applets are being developed that can be used in WebAssign. Some questions require
students to modify the simulation and then answer a question about what they have done.
Other questions actually grade the resulting configuration of the application. This type of
question requires the use of special code to read the output of the simulation. Teachers
interested in this possibility should contact WebAssign for assistance.

See section 9.6 for instructions on how to use applets in WebAssign questions.

208 WebAssign User’s Manual 4.0

9/2007

 8.15 Multi-mode Questions
It is common in many textbooks to provide one scenario and then ask as many as three or
four questions about that scenario—with some questions requiring numerical answers and
others requiring a multiple-choice response or even a brief essay. WebAssign allows you
to ask questions such as these—questions with several parts and different modes of
questions.

Because writing multi-mode questions requires advanced formatting, only advanced users
may want to attempt writing these questions. Using different modes in one question is
discussed in Chapter 9, Advanced Question Editing.

An alternative to writing one question with several modes is to ask each part as a separate
question, repeating the scenario as part of each question. Using the “cut and paste”
functions of your computer, it is possible to duplicate the scenario in several questions
quickly. Of course, this could become cumbersome for students; for example, if a long
scenario appears in several questions or if students wonder if some element has been
changed from one question to another. Making thoughtful judgments and providing
specific instructions in class might help resolve any difficulty that could arise when using
this alternative method.

When considering how to create questions, also consider how to name each one. Because
each question—whether it was originally a single question or part of a question—is
entered into the database as a separate entity, it is important that each question be able to
stand alone, without any missing information or explanation.

 8.16 Question Editor Features

 8.16.1 Testing and previewing questions
Testing questions before students try them is important. Students will complain if their
“correct” answer is marked wrong. WebAssign provides an opportunity for you to try out
the question, to check the answer algorithm, and to see if the randomized values make
sense.

After you have entered a question, you can test or preview it. Click the Test/Preview link
at the top or bottom of the Question Editor. This test uses the information you have
entered in the Question Editor; it is not necessary to save the question first.

 Creating Questions 209

 9/2007

From the Question Previewer window, you can submit just as a student would. You can
click to show or hide the Score, Mark, Help/Hints, Key, and Solution. If you want to see
what another randomization would look, you can click Show another Randomization. If
you go back to the Question Editor window, change something, and then click the
Previewer window, you can click Reload from Editor.

You can get to the Previewer window from the View link next to any question on an
assignment, in High Detail of ClassView or in the results of a search.

You will find the Previewer window helpful if you want to see the code of a question.
Just click View next to the question and click the Code tab. If you do want to view the
question in the Question Editor, the Previewer has an Open in Editor link in place of the
Reload From Editor link.

210 WebAssign User’s Manual 4.0

9/2007

If a question has an array, the Previewer will also have a tab for the Array view.

 8.16.2 My Files or using figures and other files in questions
If you have a gif or jpeg image that you want to show up in a question, you can include
the HTML code for this image in the question text. For example, if you have a picture on
the web at

 http://myschool.edu/myfolder/classes/images/

hydrocarbon12.gif

you would put the following text into the question:

 Creating Questions 211

 9/2007

 <img src = "http://myschool.edu/myfolder/classes/images/

hydrocarbon12.gif" alt = "hydrocarbon" title =

"hydrocarbon">

If you have an image, but it is not available on the web, you can upload the image to your
own personal folder on the WebAssign server.

Similarly, if you want to create a link to an html page you have, you can upload the html
file to your personal folder.

In the following instructions, assume that you want to include the image
hydrocarbon12.gif in a question. Select Create from the Questions Menu or click edit in
the row of the question in which you want to include the image and perform the
following steps:

 1. Click the My Files tool at the top of the Question Editor. My Files is part of the
Page Tools.

My Files brings up a new window that gives you access to your private space in
WebAssign. From this window, you can import, remove, and move files, create folders,
and paste a selected file into the question, answer, or solution, as an image or a link.

 2. Click the Import File.

Importing allows you to browse your computer drives for the image you want to
import. Navigate to the location of your image, hydrocarbon12.gif. Click Open.

212 WebAssign User’s Manual 4.0

9/2007

 3. With hydrocarbon12.gif in the box, click Go

Your My Files page will show that you have the file stored in your WebAssign
directory. The Import File window will stay open in case you want to import
additional files.

 4. Close the Import File window.

 5. Click the name of the file to bring up the Properties window.

 6. Enter an alt and title for the image.

 7. Save and close the Properties window.

 8. Check the box next to the hydrocarbon12.gif file.

 Creating Questions 213

 9/2007

 9. Assuming you want this image to show up in the question box, click Go to paste
the selected file into the question as an image using the saved attributes.

The paste puts the following image tag into the question (the id number will be different
for you):

 <userimage(24324)>

The position of the image in your question depends on where you put the image tag. You
can center your image on the screen, if you like. To do this, put your image tag inside a
paragraph tag, e.g.

 <P ALIGN = CENTER><userimage(24324)></P>

Note that you do not need to re-upload an image to use it in other questions and you
do not need to enter the properties. Just use the My Files Page Tool and paste the
image as described in steps 8 and 9 above.

If you would like to change the size of your image, you can edit the

 <userimage(24324)>

to be

 <userimage(24324, width => '200', height => '200')>

Any attributes that would normally be used in an img tag can be set or changed this way.

 8.16.3 Hot keys
You can use "hot keys" to Save, Redisplay, or Preview a question without having to
reach for the mouse.

In Firefox, you would just type the following combinations. In Internet Explorer, you
would type the combination then hit "Enter". On the Macintosh, you would use the
Control key instead of the Alt key.

 Alt+S = Save

 Alt+P = Preview

 Alt+R = Redisplay

 9. ADVANCED QUESTION WRITING

Because WebAssign includes thousands of questions already published in many major
textbooks and formatted for your use, most teachers and casual users will never need to
write their own questions. However, for those who do write their own questions, there are
many features for writing intricate questions that make WebAssign a very powerful
assessment tool.

One of the strengths of WebAssign includes its ability to handle a variety of question
types. Additionally, any question can include many different question types, all within
the same question.

Several WebAssign features are particularly important for advanced questions:

• Variables in questions and answers

• Random values or text in a question, so students in a class may have different
versions of the same original question

• Creating answers with intermediate steps, such as intermediate values that need
to be calculated before they are combined into a final formula

• Advanced number formatting to preserve the original appearance of a question
and to guard against randomized questions that are trivial, impossible, or
implausible

• Including several parts in one question, so that you can use the same example to
ask several questions

• Using multimedia elements in a question, so that you can include sound, movies,
JavaScript, and Java applets to ask questions

• Post-processing student responses, so that two or more variations of the answer
can be considered correct answers for scoring or preserve one answer to evaluate
another

• WebAssign’s Math Display, so you can display mathematical functions as
images. This feature is useful for displaying built up fractions, radicals,
integrals, summations, partial derivatives, and matrices. The full power of
randomizing variables and numbers is retained in generating the mathematical
function. Functions are entered as plain text.

216 WebAssign User’s Manual 4.0

9/2007

• Math previewer, so students can preview their answer to symbolic questions; no
other application or plug-in required

• Arrays, so unique versions of a question can be pulled efficiently from a table of
values

The WebAssign-authored questions have been formatted to take full advantage of these
advanced features.

 9.1 Introduction to the <eqn> and the <EQN> Tags
Most questions can be written simply, as described in the previous chapter. There are
many situations, however, in which using variables in the question and the answers will
help you write a better question. A major example would be to randomize values in a
question, which is described in the next section.

Variables are initialized in special <eqn> tags. There are differences between <eqn> and
<EQN>, see section 9.1.3. Both tags take the same general form,

 <eqn Perl code>

Code Comment

< defines the beginning of the statement

eqn indicates that a string of Perl code to be executed will follow

A space must follow to separate eqn from the code to be executed.

Perl code is one or more Perl statements, separated by semicolons

> defines the end of the tag.

The Perl code contained within an <eqn> tag cannot include a greater-than sign, because
that sign is interpreted as the end of the <eqn> statement. If you would like to use a
greater-than logical symbol, you can invert your logic to avoid using this sign. For
example, ($height>12) is equivalent to (12<$height). Or you can use the alternate
form of the <eqn> tag.

The alternate form of the <eqn> tag takes the general form,

 <eqn> Perl code </eqn>

If you need to include HTML code in your Perl code, you must use this alternate form.

If the last statement inside an <eqn> tag is two quotes, "", called a NULL string, all the
statements are executed, but nothing is printed.

The following examples show what happens to <eqn> tags when the question is
displayed to the students. The <eqn> tags are assumed to be in the Question field of a
WebAssign question.

 Advanced Question Writing 217

 9/2007

Text in Question field Displays to student

<eqn $a = randnum(2,4,1)> pears 2 pears, 3 pears, or 4 pears

<eqn $a = randnum(2,4,1);$b = $a*$a> 4, 9, or 16

<eqn ($a < 0)?'right':'left'> right (if the variable $a is less
than zero)
left (if the variable $a is not
less than zero)

<eqn $a = sum($b,$c,$d);$e = sqrt($a);""> The variables $a and $e are
assigned, but nothing is
printed.

In summary, the entire <eqn> statement is replaced by the result of the last Perl
statement. In the question, the replacement value is shown in red. It is possible to make
the display black or any other color using Options on the Course Edit page; see section
4.1.2.

Some of the eqn tags above take up more than one line, but there should never be a
line return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

 9.1.1 Using multiple Perl statements in <eqn> tags
The answer to a numerical question often requires calculation of intermediate results,
which are then used to produce the final answer. WebAssign allows you to calculate
these intermediate results automatically, using Perl code in a series of statements. Several
intermediate calculations can be made, separated by semicolons, with only the final
calculation used as the answer. This often makes it easier to enter the formula for the
answer and to be able to read the answer algorithm later.

For example, suppose a question gives the angle in a right triangle but instead of giving
one of the sides, gives the circumference of a circle for which one side of the triangle is a
radius. The question then asks for another side of the triangle. You could write out all the
formulas and enter the answer as one Perl statement in an <eqn> tag. Or you could enter
one Perl statement to assign the value of the radius and a second Perl statement assigning
the answer in terms of the radius.

Text in Answer field Comment

<eqn $h = $C/(2*$pi)*tan(rad($th))> one Perl statement

<eqn $r = $C/(2*$pi); $h = $r*tan(rad($th))> multiple Perl statements

An example of a question with the answer coded with intermediate steps is provided in
section 9.3.9.

 9.1.2 Variable names in the <eqn> tag
The code included in the statement follows the conventions of the Perl programming
language, with all variable names beginning with a dollar sign ($). To make your
equations meaningful and clearly understood, select variable names that are consistent
with those used in your academic discipline—such as $p for price or $m for mass. Also,
the case of variables is important; $M is a different variable than $m.

218 WebAssign User’s Manual 4.0

9/2007

There are reserved variables that have special meaning. The reserved variable names
should not be used for your variable names. They are listed in Appendix D.

 9.1.3 Use of the <EQN> tag
The <EQN> tag used in the Question field is the same as the lower case <eqn> tag except
the result of the Perl code is written in black instead of red.

When using the lower case <eqn> tag in the Answer field, the answer is displayed with at
most three significant figures, but the exact, unrounded machine value is compared with
the student response for grading.

If the capital <EQN> tag is used in the Answer field of a question, the answer key will be
displayed to machine precision. The number used as the correct response will be the same
value that is displayed in the key. You may use a decform function with an <EQN> tag to
round the value used as the correct response to a certain number of decimal places. For
example, suppose the result of your calculation, $a, is 1.59154943091895. If you use
<EQN decform($a,1)>, the answer to this question will now be 1.6, and 1.6 will be
displayed in the key.

 9.2 Including Hints in Questions
You can include hints in a question you are coding. The hints are entered in the Answer
field and can give comments based on the answer the student has submitted.

 9.2.1 Hint for a simple question
You can warn students of a likely mistake within their answer if you define the hint in the
answer field. For example, to suggest that their answer is not the correct sign when it is
otherwise close to the correct answer.

 <eqn $HINT=(0<$thisresponse)?"Check the sign of your

answer.":""; -9.8>

Another example would be to suggest that the student’s answer looks as if they have used
the wrong formula.

 <eqn $area = $pi*$r*$r; $HINT = (abs(4*$area -

$thisresponse) < (0.02*$area))? "Did you remember to use

the radius and not the diameter?":""; $area>

These statements check a condition about the student response—is it positive or is it close
to 4 times the correct answer. If the condition is true, the $HINT variable is assigned a
value—the hint. If the condition is false, the $HINT variable is assigned the empty string,
"".

For example, if the student answers the question,

 What is the acceleration due to gravity? (Assume the

positive direction is upward.)

with a positive number, they could receive a hint as follows, if the answer has

 <eqn $HINT=(0<$thisresponse)?"Check the sign of your

answer.":""; -9.8>

 Advanced Question Writing 219

 9/2007

The eqn tags above take up more than one line, but there should never be a line
return in an eqn tag in the Answer field. The text will wrap, but never enter a line
return.

 9.2.2 Controlling placement of the hint
In the above example, the hint displays between the answer box and the unit. If you want
the hint to display after the units, you can use the <HINT> tag. Wherever you place the
<HINT> tag, the hint will display.

220 WebAssign User’s Manual 4.0

9/2007

 9.2.3 The $HINT variable
The WebAssign variable, $HINT, can only have one value in each section of a question.
Since $HINT is initialized between sections, you can give one hint per section. For
example, the following image shows a question with two numerical parts. Because a
<SECTION> tag is used, the two parts are in different sections and the hints can be
different.

It is also possible to concatenate the $HINT variable from separately defined messages.
For example, $msg1, $msg2, $msg3, etc., could be defined in the Question or Answer
field. In each section of the answer, you can include code similar to the following:

 <eqn $HINT = $msg1 . $msg2 . $msg3;$ans>

 9.3 Using Functions to Randomize and Format
You may randomize numbers and text in any question, so that students in your class may
receive different versions of the original question. This is particularly helpful for
numerical questions, where answers are generated by a formula. In this case, the logic
and method for solving the problem remain the same. But, students cannot share answers,
because their calculations are based on different numbers.

For example, in the following original question, three items could be randomized to
produce different versions of the original question:

 Advanced Question Writing 221

 9/2007

 tax rate

 price of the item purchased

 kind of item purchased

Original Question

 If the sales tax rate is 7.5% and you purchase a $5 item,

what is the sales tax paid?

Possible Alternate Forms

 If the sales tax rate is 4.0% and you purchase a $3 card,

what is the sales tax paid?

 If the sales tax rate is 6.5% and you purchase an $8 book,

what is the sales tax paid?

 If the sales tax rate is 8.0% and you purchase a $6

sandwich, what is the sales tax paid?

 9.3.1 Functions to randomize numbers and text
Random numbers or text can be added to a question with several functions unique to
WebAssign. These functions may be used to choose a random number, select a
replacement word from among alternatives, format randomized numbers, and otherwise
control the process of creating any question with random elements.

Functions used to create randomized questions include:

Function Explanation

randnum Selects a random number, according to ranges you specify in the syntax of your
statement. The range and increments must be integers.

decform Specifies the decimal format of any number to be displayed—for example, to
preserve significant digits or monetary units.

pickone Selects one item from a list that you specify.

picksame Provides another item corresponding to each value specified in a pickone function.

sum Calculates a sum of the numbers you specify.

scinot Formats a number in scientific notation for display in a browser.

sciform Formats a number to a specified number of significant digits, using E notation if
necessary.

Other functions are described in Appendix D.

In addition to these functions, any normal Perl function can be used to create, calculate,
and manipulate values in randomized questions. Some basic Perl operators and functions
are provided in Appendix D as a brief reference. More information is available in any
Perl user’s manual, for example, Learning Perl, 2nd Ed. by Randal L. Schwartz, 1997;
CGI Programming on the World Wide Web by Shishir Gundavaram, 1996; Programming
Perl, 2nd Ed. by Larry Wall and Tom Christiansen, 1996; and Perl 5 Desktop Reference
by Johan Vromans, 1996. All titles are published by O’Reilly Associates, Inc.,
Sebastopol, CA.

222 WebAssign User’s Manual 4.0

9/2007

 9.3.2 The randnum function
You can specify a random number for a variable using the randnum function. This
function is expressed as

 randnum(lo, hi, inc)

Code Explanation

randnum indicates a random number will be generated

lo an integer that specifies the low end of the range

hi an integer that specifies the high end of the range

inc an integer that specifies the increment by which the random number is
generated.

The number generated by the randnum function is always an integer.

The following table lists some examples.

Text in Question field Displays to student

<eqn $a = randnum(5,9,1)> 5, 6, 7, 8, or 9

<eqn $b = randnum(1000,1500,5)/1000> 1, 1.005, 1.01, 1.015, …1.5

 9.3.3 The decform function
You can specify the number of decimal places to be displayed in a number, randomized
or not, using the decform function. This simple function is expressed as

 decform(value,n)

where

 decform indicates that a decimal format will be applied to

the first argument

 value is a number or expression

 n specifies the number of decimal places to be preserved.

The following table lists some examples.

Text in Question field Displays to student

<eqn $d = decform(randnum(2,5,1)/10,2)> 0.20, 0.30, 0.40, or
0.50

<eqn $b = decform(randnum(1000,1500,5)/1000,3)> 1.000, 1.005, 1.010,
1.015, …1.500

 9.3.4 The pickone and picksame functions
You can randomly select one word, phrase, or other selection of text from a list you
specify by using the pickone function. The function uses this general form:

 Advanced Question Writing 223

 9/2007

 pickone(item1,item2,item3)

where

 pickone selects one item from a comma-delimited list you

provide

 (item1,item2,item3) is the list of possible selections.

Note: Items that include a space must be placed inside single or double quotes. Items
that contain an apostrophe must be placed inside double quotes. Items that contain
variables or HTML code must be placed inside double quotes.

Often, it is useful to randomize other words, formulas, or other items in the question,
based on the first one randomized in a pickone function. The picksame function allows
you to do this.

Suppose you begin with this original question:

 What is the nuclide symbol for a nucleus that contains 38

protons and 50 neutrons?

You might want to randomize the number of protons to add additional versions of the
question. To do that, you could use a pickone function to randomly select a number from
several alternatives:

 <eqn $p = pickone(38,17,14,3)> protons

This statement would randomly select 38, 17, 14, or 3 as the number of protons. The
number of neutrons must be changed to agree with the choice of number of protons. You
can write a corresponding picksame function, which follows the same general form as
pickone:

 <eqn $n = picksame(50,18,14,4)>

The picksame statement displays the value in the same position as the text selected
randomly by pickone. In this way, the resulting question can be selected to have a
possible nuclide for an answer. That is, there are nuclides with 38 protons and 50
neutrons, 17 protons and 18 neutrons, 14 protons and 14 neutrons, and 3 protons and 4
neutrons.

For example, the question,

 What is the nuclide symbol for a nucleus that contains

<eqn $p = pickone(38,17,14,3)> protons and <eqn $n =

picksame(50,18,14,4)> neutrons?,

generates four possible questions:

 What is the nuclide symbol for a nucleus that contains 38

protons and 50 neutrons?

 What is the nuclide symbol for a nucleus that contains 17

protons and 18 neutrons?

 What is the nuclide symbol for a nucleus that contains 14

protons and 14 neutrons?

 What is the nuclide symbol for a nucleus that contains 3

protons and 4 neutrons?

224 WebAssign User’s Manual 4.0

9/2007

Multiple pickone picksame functions in a question

If you want to use multiple pickone picksame functions in a question, it is important that
WebAssign knows which pickone function a picksame function is associated with. The
safest way to code is to assign variable names to the functions and enter the pairs within
the same eqn tag.

For example, if you needed 3 paired choices,

 <eqn $x = pickone(item1,item2,item3);$xa =

picksame(item1a,item2a,item3a)>

 <eqn $y = pickone(item4,item5,item6);$ya =

picksame(item4a,item5a,item6a)>

 <eqn $z = pickone(item7,item8,item9);$za =

picksame(item7a,item8a,item9a)>

Then when you need to use an item in one of the lists, you can use the variables, $x, $xa,
$y, $ya, $z, and $za.

If your randomization needs become more complex, you may want to use a 2-
dimensional array of data. An example of this technique can be found in the question
named template.array.

 9.3.5 The scinot function
The function, scinot(n1,n2), takes a number n1 and returns an HTML string for n1 in
scientific notation with n2 significant digits.

For example,

 <eqn scinot(23108,3)>

displays as 2.31 104

It is important to notice that result of scinot is not a number, but a string of text.

 9.3.6 The sigform function
The function, sigform(n1,n2), takes a number n1 and returns a number rounded to n2
significant digits. If it can display the number without e-notation, it does. If the number
cannot be displayed without e-notation, then e-notation is used.

For example,

<eqn sigform(23108,2)> displays as 23000

<eqn sigform(23000,3)> displays as 2.30e+04

 9.3.7 Writing a simple question with random values
To create a simple randomized question, follow these basic steps:

 1. Format your question with HTML tags.

Some basic HTML tags for formatting questions are provided in Appendix B.

 2. Determine the question mode—numerical, multiple-choice, etc.—and format
your question appropriately.

 3. Identify and randomize selected elements of your question, using <eqn> tags.

 Advanced Question Writing 225

 9/2007

 4. Express the correct answer(s) to the question, in terms of the variables defined in
the <eqn> tags.

 5. Preview your question.

 6. Save your question.

For example, to demonstrate how to write a simple randomized question (only one part),
consider this question from physics:

 A 1200-kg car is accelerating at 5 m/s2. What is the force

on the car?

Here are the essential steps to create a useful question with randomized variables:

 1. Format the question with HTML tags.

Place superscript tags <SUP> around the "2" to create the symbol to indicate seconds
squared:

 A 1200-kg car is accelerating at 5 m/s².

 What is the force on the car?

To make this example as clear as possible, we have used a “return,” so that the
question now appears on more than one line. This has no effect on formatting the
question; HTML does not recognize line returns. If you want a new line to begin,
you must use an HTML tag such as <P> or
, see Appendix B.

 2. Determine the question mode and format the question appropriately.

 a. Identify the question as Numerical and select that option.

 b. Place the answer box <_> in the appropriate location within the question.

 A 1200-kg car is accelerating at 5 m/s².

 What is the force on the car?
<_>

Our stylistic convention is to place a
 tag before the answer box, so that boxes
will be aligned on the left margin. This is done so students can find the boxes easily
and see whether they have answered all the questions at a glance.

 c. Place proper units for the correct answer after the box.

 A 1200-kg car is accelerating at 5 m/s².

 What is the force on the car?
<_> N

 3. Identify and randomize selected elements of the question, using <eqn> tags.

226 WebAssign User’s Manual 4.0

9/2007

Apply conventional variable names and reasonable value ranges.

 A <eqn $m = randnum(800,1500,100)> kg car is accelerating

at <eqn $a = decform(randnum(30,80,5)/10,1)>

m/s².

 What is the force on the car?
<_> N

 4. Express the correct answer using the solution formula: Force equals mass times
acceleration. (If there are several parts to a question, list correct answers, in
order, one on each line. This will be demonstrated in a later example.)

 <eqn $F = $m*$a>

The answer could also be recorded as <eqn $m*$a>, without the result being
assigned a variable name.

 5. Preview your question.

 a. Click Test/Preview to see the current version of your question. Click Show new
Randomization to see alternate versions produced by the randomization
process.

 b. Examine your question to make sure all elements are included, the answer

produced is correct, and randomization is working properly.

It is important to review your question using the Redisplay or Test/Preview function
before saving your question to the database. In some unusual circumstances, saving a
question that is not properly formatted could make the question impossible to see in
the Question Editor.

 6. Save your question.

Click Save to save your question to the database.

Changing the range of random numbers after a question has been included on a
scheduled assignment will give a different set of numbers to those who have already
responded; their answers will then be graded as wrong, even if they were right before.

 9.3.8 Additional considerations when randomizing numbers
Randomizing numbers in a question is an extremely useful feature, and one that is used
quite frequently. It is important to format numbers carefully, so that you can avoid some
potential problems. How you choose to format numbers depends largely upon the specific
question you are writing, but here are some issues to consider:

 Advanced Question Writing 227

 9/2007

Choosing numbers to randomize. Not all numbers in a problem need to be randomized;
the best strategy is to randomize the most important numbers in any question. The goal is
for most students—or most groups of students working together—to receive a uniquely
randomized question. For example, if you were to randomize two numbers in an original
question, one number with three possible random values and another with four possible
random values, there would be 12 versions of the question. This would probably be
adequate for a small class of students working individually or a larger class with students
working in small groups.

Preserving the appearance of numbers. It is a good idea to preserve the original
appearance of numbers, so we use this as our convention for questions in WebAssign. If
the original number is 1.5, we do not randomize using three significant figures such as
1.51, 1.67, etc. This is important for problems involving money, for example, so that the
computer will not display $1.20 as $1.2. An appropriate appearance of the numbers can
be preserved using the decform function.

Avoiding trivial, impossible, or impractical answers. When randomizing numbers,
select numerical ranges carefully so questions are neither trivially easy nor impossible to
solve. To reduce the chance of a trivial or impossible question, our convention is to
prevent the possibility of obtaining two identical numbers in the same problem. To
accomplish this, create separate, entirely exclusive ranges for the variables, and do not
allow the ranges to overlap.

There are times when two numbers are equal in an original question and need to remain
equal in randomized versions. In this case, it is important to write a question in a way that
maintains the original equality.

Avoiding implausible answers. It is also important to select numerical ranges that fit the
context of your academic discipline and question. Otherwise, answers can become
implausible, such as a random number for velocity that exceeds the speed of light or
fractions of a cent being paid.

 9.3.9 Questions with randomized numbers and answers with intermediate
steps

To create a question with in which the answer displays intermediate steps, follow these
basic steps:

 1. Format your question with HTML tags.

 2. Determine the question mode and format appropriately.

 3. Identify and randomize selected elements of the question.

 4. Express the correct answers using the solution formulas.

 5. Preview your question.

 6. Save your question.

For example, to demonstrate how to write a simple randomized question, consider this
initial question from physics:

 A 0.20 ohm bulb and a 0.40 ohm bulb are connected in series to a 12 volt power
supply.

 What is the power delivered to the first bulb?

 1. Format the question with HTML tags.

228 WebAssign User’s Manual 4.0

9/2007

Replace "ohm" with its symbol, a capital omega.

 A 0.20 W bulb and a 0.40 <font

face = Symbol>W bulb are connected in series to a

12-volt power supply.

 What is the power delivered to the first bulb?

Students using Unix or Linux workstations might not have symbol fonts available.
An alternate solution is to use a gif file for commonly used symbols. An alternate
form of the question, using this method, might replace the symbol Ω with an existing
gif file, called “omegacap.gif”. WebAssign has Greek and other symbol gifs stored
in the /images directory, see the Appendix C for the names.

 A 0.20 <img src = '/images/omegacap.gif' ALT = "capital

omega"> bulb and a 0.40 <img src = '/images/omegacap.gif'

ALT = "capital omega"> bulb are connected in series to a

12 volt power supply.

 What is the power delivered to the first bulb?

It is important, when using single- or double-quotes to use them in pairs. Unpaired
quotes can cause unpredictable behavior in browsers.

 2. Determine the question mode and format the question appropriately.

 a. Identify the question as Numerical and select that option.

 b. Place the answer box <_> in the appropriate location within the question.

 A 0.20 W bulb and a 0.40 <font

face = Symbol>W bulb are connected in series to a

12 volt power supply.

 What is the power delivered to the first bulb?
<_>

 c. Place proper units for the correct answer after the box.

 A 0.20 W bulb and a 0.40 <font

face = Symbol>W bulb are connected in series to a

12 volt power supply.

 What is the power delivered to the first bulb?
<_> W

 3. Identify and randomize selected elements of the question, using <eqn> tags.

Apply conventional variable names and reasonable value ranges.

 A <eqn $R1 = decform(randnum(1,3,1)/10,2)> <font face =

Symbol>W bulb and a <eqn $R2 =

decform(randnum(4,9,1)/10,2)> W

bulb are connected in series to a <eqn $V =

pickone(1.5,3,6,12)> volt power supply.

 What is the power delivered to the first bulb?
<_> W

Remember to select appropriate units and, as described in the section above, pay
particular attention to the following:

• Choosing which numbers to randomize

 Advanced Question Writing 229

 9/2007

• Preserving the appearance of numbers

• Avoiding trivial, impossible, or impractical questions

• Avoiding implausible answers

 4. Express the correct answer using the solution formula. Power is current squared
times resistance.

 <eqn $I = $V/($R1+$R2);$P = $I*$I*$R1>

This is one method of using multiple statements in Perl to calculate intermediate
results. Only the result of the last statement, the statement after the semicolon, is
displayed or used as the answer. Also, this example uses a common programmer's
convention of multiplying a number by itself, rather than using the power operation,
. $I*$I is equivalent to $I2, but the computer calculates the first faster.

Note: Perl and WebAssign require that you use two asterisks **, not a caret ^ for a
power in <eqn> tags. However, it is possible to use the carat in a symbolic answer,
see section 8.6 for more information.

 5. Preview your question.

 a. Click Redisplay to see the current version of your question.

230 WebAssign User’s Manual 4.0

9/2007

 b. Examine your question to make sure all elements are included and

randomization is working properly.

 6. Save your question.

Click Save to save your question to the database.

 9.4 Checking Significant Figures and Scientific Notation with sprintf
Often, a question will require that students perform a mathematical operation to the
correct number of significant figures and/or give a number in scientific notation. For such
a question, entering too many significant figures should be counted as incorrect. To grade
this type of question properly, you can use either the $SIGFIGS function described in
8.5.3 or a fill-in-the-blank answer box with the following sprintf function:

Suppose you have defined the variable $a = 5900, and you want the answer to be given
in scientific notation as 5.9E3, your answer tag would be

 <eqn $A = sprintf("%3.1E",$a);$A = ~s/\+0//;$A>

The 3.1 indicates that you will require three (3) spaces (one space each for the number 5,
the decimal point, and the number 9) with one number appearing after the decimal point.

 Advanced Question Writing 231

 9/2007

The letter e indicates that you require the number to be entered in exponential notation.
For integer notation, use the letter d instead of e, and for floating point notation, use the
letter f. The designation $a indicates the number upon which you wish to perform the
operation, in this case 5900. The last $A is not necessary, but can be added for clarity, so
that a quick glance shows what the answer is.

Since <eqn $A = sprintf("%3.1E",$a)> gives 5.9E+03, you must strip out the
characters +0 and print the answer as 5.9E3. This is accomplished by the second part of
the tag above, $A = ~s/\+0//. The format of this statement is the following: “~s”
which indicates a search and replace; followed by a “/”, the characters for which to
search; a second “/”, the characters with which to replace the found characters; and
ending with a third “/”. The “\” character is an escape character in Perl, and should
precede any characters in the search that have special meaning in programming, such as
the mathematical operators +, –,*, and /.

Tip: In the case of this example, we are searching for +0 and replacing it with nothing.
If you need to search for leading zeroes in a negative exponent, you must search for
the -0 and replace it with -. For example, to strip the zero out of 3.45E-06, the
statement would be ~s/\-0/\-/.

If the number is assigned to a variable, you must use a different variable name in the
answer tag. Note that in the answer tag above, $a is the initial variable, and the calculated
value in the answer tag is assigned to $A. Using the same name in both places causes
unusual behavior.

 9.5 Simple Multi-part and Multi-Mode Questions
Often, you will want to present one scenario and ask several questions about the scenario
you have described. Writing a question with several parts is a fairly simple process. In
WebAssign, there are two distinct types of multi-part questions, simple multi-part and
multi-mode. A simple multi-part question is one with all the parts numerical, or all fill-in-
the-blank, or all essay. If all the parts are numerical, the answer to the first part should be
placed on one line, with the answer to subsequent parts, in their original order, on
subsequent lines. If all the parts are fill-in-the-blank, the same is true. If all the parts are
essay, the same is true. These are simple multi-part questions.

However, if all the parts are multiple-choice, WebAssign cannot determine where the
parts begin and end, either in the Question field or in the Answer field. The question part
does not have an answer box; the answer part is on multiple lines. If all the parts are
multiple-select, the same is true. For this reason, when you write a question with multi-
parts and only one mode, but the mode is either multiple-choice or multiple-select, you
must treat it as multi-mode.

Multi-mode questions are very powerful. It is common in many textbooks, for example,
to provide one scenario and then ask as many as three or four questions—some with
numerical answers, some requiring a multiple-choice response, and even a brief essay to
make sure the student understands the concept being taught. WebAssign allows you to
ask these questions and calls them multi-mode questions.

 9.5.1 Writing a simple multi-part question
To create a question with several parts, but all parts are the same mode and not multiple-
choice or multiple select, follow these basic steps:

 1. Format your question with HTML tags.

232 WebAssign User’s Manual 4.0

9/2007

 2. Determine the question mode and format appropriately.

 3. Identify and randomize selected elements of the question.

 4. Express the correct answers using the solution formulas.

 5. Preview your question.

 6. Save your question.

For example, to demonstrate how to write a question with several parts, consider this
question from physics:

 A 0.20 ohm bulb and a 0.40 ohm bulb are connected in series to a 12 volt power
supply. What is the power delivered to the first bulb? (b) What is the power
delivered to the second bulb? (c) What is the total power delivered by the battery?

 1. Format the question with HTML tags.

 a. Complete basic formatting, as described in the previous example.

 b. Use HTML to divide subsections of the question. Our convention is to use <div
class='indent'> around the subsections and breaks
 between successive
parts of the question.

 2. Determine the question mode and format appropriately. As described in the
previous example, choose numerical from the pulldown mode menu and enter
the answer box <_> followed by the units.

  A 0.20 W bulb and a 0.40 <font face

= Symbol>W bulb are connected in series to a 12 volt

power supply. <div class='indent'>

 (a) What is the power delivered to the first bulb?
<_>

W

 (b) What is the power delivered to the second bulb?

<_> W

 (c) What is the total power delivered by the

battery?
<_> W</div>

 3. Identify and randomize selected elements of the question, using <eqn> tags, as
described in the previous example.

 A <eqn $R1 = decform(randnum(1,3,1)/10,2)> <font face =

Symbol>W bulb and a <eqn $R2 =

decform(randnum(4,9,1)/10,2)> W

bulb are connected in series to a <eqn $V =

pickone(1.5,3,6,12)> volt power supply. <div

class='indent'>

(a) What is the power delivered to the first bulb?
<_>

W

(b) What is the power delivered to the second bulb?

<_> W

(c) What is the total power delivered by the

battery?
<_> W</div>

 4. Express the correct answers, one on each line, using the solution formulas.

 <eqn $I = $V/($R1+$R2);$P1 = $I*$I*$R1>

<eqn $P2 = $I*$I*$R2>

<eqn $P1+$P2>

 Advanced Question Writing 233

 9/2007

Because answer lines are executed sequentially, any variables generated in the first
answer—for example, $I and $P1—will be available for succeeding ones.

 5. Preview your question.

 a. Click Test/Preview to see the current version of your question.

 b. Examine your question to make sure all elements are included and

randomization is working properly.

 6. Save your question.

Click Save to save your question to the database.

 9.5.2 Multi-Mode questions and <SECTION> tags
<SECTION> tags are used to mark the change from one mode to another in a multi-mode
question, both in the question and in the answer. If you want to change modes and have a
numerical part followed by a fill-in-the-blank part, WebAssign needs to know where the
mode changes in the question and in the answer. <SECTION> tags mark the division
between modes.

When you want to create a multi-mode question, do not select from the pulldown menu.
Instead click Multi-Mode Options and in the popup window that opens, click the modes
in the sequence they will be used. The label in the pulldown menu will reflect this
sequence with abbreviations, C for multiple-choice, S for multiple-select, E for essay, N
for numerical, B for fill-in-the-blank, M for matching, Q for symbolic, I for image map, F
for file-upload, J for Java, and P for poll.

The following example shows a question with one or more numerical (N) parts followed
by one or more fill-in-the-blank (B) parts, followed by a multiple-choice (C) part.

Remember that multi-part multiple-choice and multiple-select questions are multi-mode
questions. WebAssign cannot determine where the parts begin and end, either in the
Question field or in the Answer field. For this reason, when you write a multi-part
question with only multiple-choice parts, you will need <SECTION> tags separating the
parts and an entry in the Mode pulldown menu for each part, and similarly for multiple-
select.

234 WebAssign User’s Manual 4.0

9/2007

 9.5.3 Writing a multi-mode question
To create a question with several parts, follow these basic steps:

 1. Edit the question so that the parts are easily distinguished, add the HTML tags,
and identify and randomize selected elements as before.

 2. Determine each question mode and format appropriately.

 3. Insert <SECTION> tags to identify changes between modes in the question.

 4. Enter the correct answers with <SECTION> tags to identify changes between
modes.

 5. Preview your question.

 6. Save your question.

For example, to demonstrate how to write a question with several parts, consider this
question from physics:

 A 0.20 ohm bulb and a 0.40 ohm bulb are connected in series to a 12 volt power
supply. (a) What is the power delivered to the first bulb? (b) What is the power
delivered to the second bulb? (c) Which bulb is brighter? (d) What is the total
power delivered by the battery?

 1. Edit the question so that the parts are easily distinguished, add the HTML tags,
and identify and randomize selected elements as before.

 A <eqn $R1 = decform(randnum(1,3,1)/10,2)> <font face =

Symbol>W bulb and a <eqn $R2 =

decform(randnum(4,9,1)/10,2)> W

bulb are connected in series to a <eqn $V =

pickone(1.5,3,6,12)> volt power supply. <div

class='indent'>

(a) What is the power delivered to the first bulb?

(b) What is the power delivered to the second bulb?

(c) Which bulb is brighter?

(d) What is the total power delivered by the

battery?</div>

 2. Determine each question mode and format appropriately.

Parts a and b are numerical. Part c could be a fill-in-the-blank, essay, or multiple-
choice question. We will make it multiple-choice. Part d is numerical.

Click Multi-Mode Options.

 Advanced Question Writing 235

 9/2007

 Click Numerical, Multiple Choice, and Numerical in turn from the Multi-Mode
Options window.

The Mode menu will now display the various modes of your question, in order:
NCN, where “N” stands for “Numerical” and “C” stands for “Multiple-choice.”

Close the Multi-Mode Options window.

 3. Insert <SECTION> tags to identify breaks between modes in the question.

 A <eqn $R1 = decform(randnum(1,3,1)/10,2)> <font face =

Symbol>W bulb and a <eqn $R2 =

decform(randnum(4,9,1)/10,2)> W

bulb are connected in series to a <eqn $V =

randnum(12,18,3)>-volt power supply.

<div class='indent'>

(a) What is the power delivered to the first bulb?
<_>

W

(b) What is the power delivered to the second bulb?

<_> W

<SECTION>

(c) Which bulb is brighter?

<SECTION>

(d) What is the total power delivered by the

battery?
<_> W</div>

The <SECTION> tag must be used in two situations.

First, the tag is used when you change the mode of the question being asked—for
example, from multiple-choice to numerical to essay. This is important because
answers are entered and interpreted differently for each mode of question.

Second, the tag must be used to separate multiple-choice questions, even though the
mode does not change. This is necessary because multiple-choice answers take up
more than one line. Without section tags separating the two parts of the questions—
and the two sets of possible responses—WebAssign could not interpret which
responses were linked to the first part of the question and which were linked to the
second.

 4. Express the correct answers, as described in the previous example, and place
<SECTION> tags to identify breaks between modes in the answer.

 <eqn $I = $V/($R1+$R2);$P1 = $I*$I*$R1>

<eqn $I = $V/($R1+$R2);$P2 = $I*$I*$R2>

<SECTION>Bulb 1

Bulb 2

236 WebAssign User’s Manual 4.0

9/2007

Both are equally bright

<SECTION><eqn $P1+$P2>

There is no space after the <SECTION> tag and the next character.

 5. Preview your question.

 a. Click Test/Preview to see the current version of your question.

 Advanced Question Writing 237

 9/2007

 b. Examine your question to make sure all elements are included and
randomization is working properly.

 6. Save your question.

Click Save to save your question to the database.

 9.6 Using JavaScript in Questions

 9.6.1 Using JavaScript alone
It is possible to include JavaScript in WebAssign questions, using the HTML standard
tag, <SCRIPT LANGUAGE = "JavaScript">. JavaScript also can be written to
interact with a Java Applet. One important difference from writing JavaScript for other
applications is that a WebAssign tag, <EQN $numAnim>, should be included in the name
of every function and object created by the JavaScript. When WebAssign processes a
question to be sent to the user, this will be replaced by a number. This mechanism
ensures that different problems or different instances of the same problem do not address
the same functions or objects. The very first time this tag is used in a problem, it should
be incremented to get a new number for the particular question by using
<EQN ++$numAnim>. Here is an example of a question that uses JavaScript to provide a
hint:

 <SCRIPT LANGUAGE = "JavaScript">

var hintnumber_<EQN ++$numAnim> = 0;

function GiveHint_<EQN $numAnim>(){

 if(++hintnumber_<EQN $numAnim> == 1){

 alert("Hint: Think outside the box.");

 }

 else{if(hintnumber_<EQN $numAnim> == 2){

 alert("Hint: Does a side have to be a straight

line?")

 }

 else{

 alert("Enough hints already!")

 }

 }

}

</SCRIPT>

The Sphinx asks, "How many sides does a circle have?"

<_>

<A HREF = "JavaScript:GiveHint_<EQN $numAnim>()">Hint

This example pops-up an alert window that says “Hint: Think outside the box” the first
time Hint is clicked, “Hint: Does a side have to be a straight line?” the second, and
“Enough hints already” after this.

238 WebAssign User’s Manual 4.0

9/2007

 9.6.2 Using JavaScript with applets in WebAssign
Some WebAssign instructors are using Java applets in WebAssign questions. Here are
the steps for putting an applet into a WebAssign question:

 Advanced Question Writing 239

 9/2007

 1. Find the applet that you want to copy. Right click somewhere on the page, and
go to View Source. This will pop up a text box of code. This is the code you will
need to use.

 2. Copy the source into a text editor or even Microsoft Word. This is where you
will do much of the preliminary editing of the code. Switch to a font such as
Courier that will evenly space each character.

 3. Delete the <html> and <body> tags at the beginning and the </html> and
</body> tags at the end of the code. WebAssign takes care of formatting the
page for you.

 4. Delete the <head></head> tags and the text between except for the <script
language = "JavaScript"> part.

Here is an example of code copied from Wolfgang Christian's Physlet® site*

 http://webphysics.davidson.edu/physletprob/ch14_animator/d

efault.html

The code to be deleted from steps 3 and 4 is highlighted.

* Christian, Wolfgang and Belloni, Mario, Physlets: Teaching Physics with Interactive Curricular Material, (Prentice Hall, 2001).

240 WebAssign User’s Manual 4.0

9/2007

 5. Much of the code consists of lines such as

 document.animator.setDefault();

 6. These are JavaScript commands that tell the animator to do something. If you
are using a different applet, the word will not be "animator", but the format of
the script will be the same. You need to change the word "animator" in these
lines to <EQN $animator>, where the word following the dollar sign is up to
you, but the rest must have this exact format. Using Find and Replace to replace
the word animator with <EQN $animator> every time it appears, but only
between the <script language = "JavaScript"> and the </script> tags.

 Advanced Question Writing 241

 9/2007

 7. Next, you will need to change the codebase, name, and id within the
<applet></applet> tags. Leave the code and archive assignments alone.
Change the codebase to <EQN $PHYSLETPATH> if the applet is one of Wolfgang
Christian’s applets. If not, use the URL of the original web site as the codebase
(this may not be the same as the page from which you found the code). Change
both the name and id to <EQN $animator>, or whatever name you used above.
If a name and id are not both there, add the missing one. This is necessary so
that your Physlet works in both Internet Explorer and Mozilla based browsers.

Your code should now resemble the following code, with the changes from steps 5 and 6
highlighted.

 8. At the very beginning of the code, add a line such as the following:

 <EQN $animator =

"animator_".$QUESTION_ID.'_'.($numphyslet++);''>

This defines the name of the applet for WebAssign and allows WebAssign to
recognize it. It also ensures that if you have more than one copy of this applet on a
page, they won't interfere with each other. If you have more than one applet in a
question, for instance, an animator and a datagraph, this first line will need to define
a couple of names:

242 WebAssign User’s Manual 4.0

9/2007

 <EQN $animator =

"animator_".$QUESTION_ID.'_'.($numphyslet++);

$dataGraph =

"dataGraph_".$QUESTION_ID.'_'.($numphyslet++);''>

 9. Change the names of the functions so that they include the name of the applet.
This ensures that if you have more than one copy of these functions on a page,
they won't interfere with each other. Usually we change the function name so
that it has the form name_<EQN $appletname>.

 10. Add a line of code after the applet that gives a way of beginning the applet.

 <a href = JavaScript:initApplet_<EQN $animator>()>Click

here to start.

 11. Add a line of code at the very beginning of your code that gives credit to the site
where you found the applet. Put the credit in the form <!--credit--> where
the surrounding brackets, dashes, and exclamation marks comment the credit
out. For instance, your credits could be

 <!--

http://webphysics.davidson.edu/physletprob/ch14_animator/d

efault.html-->

Your code should resemble the following code with the changes in steps 7-10
highlighted.

 Advanced Question Writing 243

 9/2007

 12. Copy the code from your editor into the Question field of a new WebAssign
question. At the end of the code you can add any questions you want to ask
about the applet and fill in the Answer field as usual.

Be careful not to add line breaks and spaces to the applet code as you make the
necessary changes. One extra space or line break can prevent the applet from
working properly.

WebAssign has copies of the Physlets on our server. For the Physlets, you can use
$PHYSLETPATH. That is

 CODEBASE = '<EQN $PHYSLETPATH>'

The following table lists the applets available from our servers. If you would like us to
include an applet, please contact us at support@webassign.net.

244 WebAssign User’s Manual 4.0

9/2007

APPLET CODEBASE and other information

Animator, Bar, BField, Blackbody, Circuit, DataGraph,
DataTable, Doppler, Efield, EMWave,
EnergyEignevalue, Faraday, Filters, Hydrogenic,
Molecular, Optics, Pipes, Poisson, QTime, Reflection,
Ripple, Slider, SPlotter, STools, Superposition

$PHYSLETPATH

http://webphysics.davidson.edu/applets
/applets.html

JME $APPLETPATH

Molecular Editor from Novartis AG

 9.7 Post-Processing Student Responses
There are situations in which you may want to use a student’s response after it is
submitted. This is particularly helpful in two cases: (1) You want to accept two or more
correct versions of an answer as correct; and (2) You want to preserve the answer from
one question in an assignment to evaluate the answer of a later question in the same
assignment.

Post-processing is performed by using the $thisresponse variable, which holds the
most recent response provided by the student.

 9.7.1 Forcing two or more correct answers into one for grading
Accepting two or more responses as a correct answer is most often needed in numerical
questions. For example, you may want to accept both positive and negative versions of
the answer. Because WebAssign will accept only one answer, you can convert the
student’s answer to the absolute value of what was entered and compare this to the
absolute value of the calculated answer.

Example: To demonstrate how to use post-processing to force several potential correct
answers into one that can be graded, consider this question:

 James had a mutual fund worth $1,000, which lost 20% of

its value. How much was his loss in dollars?

Although the question asks for the “loss”—which already implies the negative sign—
some students may try to express the answer as -200. If you do not intend to teach the
concept that “loss” means negative anyway, you may choose to accept either a negative
or positive value. Using post-processing, the absolute value function can be applied to the
student’s answer, so that both -200 and 200 will be transformed into one answer (200) for
grading:

 <eqn $thisresponse = abs($thisresponse);200>

This eqn tag does two things. First, it replaces the student’s original answer with the
absolute value and, second, it states the correct answer.

 9.7.2 Preserving one answer to evaluate another
You may find situations when you would like to preserve an initial student response for
use in later parts of the same question. This feature is especially useful when you ask
your students to enter data from a lab experiment, and then check to see if they analyze
the data correctly. In this case, the value of the $thisresponse variable is simply copied
into another named variable that can be used in subsequent calculations.

 Advanced Question Writing 245

 9/2007

Example: To demonstrate how to use post-processing to preserve an initial student
response for use in later questions, consider this question:

 Determine how fast your lab partner can walk between two

pieces of tape on the floor using a stopwatch.

 What is the distance between the two tapes?
<_> m

 How long does it take?
<_> s

 Based on your data, what is your lab partner’s walking

speed?
<_> m/s

Whatever response the student enters to the first two questions will be counted correct
and will then be used to generate the correct answer to the last question. This is done by
storing the value of $thisresponse to new variables, $d and $t, and using these new
variables to determine the answer to the third question. The answers will contain the
following eqn tags.

 <eqn $d = $thisresponse>

 <eqn $t = length($thisresponse)?$thisresponse:1>

 <eqn $s = $d/$t>

When WebAssign evaluates the answer, it sets the student’s first answer equal to $d for
the distance, and the second answer equal to $t for the time. The speed is determined by
evaluating $s = $d/$t. Because WebAssign will evaluate the speed when it first shows
the question to the student, a divide by zero error is reported if all variables are initially
zero. To prevent this error, the Perl expression for $t is set to 1 when $thisresponse is
initially zero.

If you want to check the values your students enter in the first two parts for
reasonableness, you could use an if then statement. For example, if you were willing to
accept answers to the distance question that are between 2 meters and 4 meters, you
would make the answer field for that question the following:

<eqn $thisresponse = ((2 <= $thisresponse) && ($thisresponse <= 4)) ? 3 :

$thisresponse; 3>

 9.8 Using Perl Modules and Functions

 9.8.1 Using functions from a Perl module
WebAssign has the following Perl modules installed and ready to use:

 Math::NumberCruncher

 Statistics::Distributions

 Math::MatrixReal

 Statistics::LineFit

 Statistics::Descriptive

If you find a Perl module with functions you need, let us know, support@webassign.net.
We will review and install the module for everyone's use.

To make use of the methods in a Perl module, add the following expression to your
question:

246 WebAssign User’s Manual 4.0

9/2007

 <eqn use Math::NumberCruncher;''>

where Math::NumberCruncher is an example of a Perl module.

From there all methods listed in the documentation for the Perl module, are available. For
example, you can calculate the mean of an array, since NumberCruncher includes this
function.

 <eqn $mean = Math::NumberCruncher::Mean(\@x)>

where @x is an array.

Similarly, you can calculate the mean of a set of numbers,

 <eqn $mean =

Math::NumberCruncher::Mean([x1,x2,x3,...,xn])>

 9.8.2 Writing your own functions
If you need a function that you cannot find in a Perl module at http://www.cpan.org/, you
can write your own subroutine and then include it in your question. Here are the steps for
including your own functions.

 1. Create or find a subroutine that defines the function(s) you need. Let’s assume the
name of the file with the subroutine is myfunction.pl. Make sure that the last
statement in the file is the null string, "", so that nothing prints when you include the
file.

 2. Copy your subroutine file (must be a text file) to your WebAssign file space using
Folders or My Files in the Question Editor.

 3. Create your question in the Question Editor.

 4. Enter <eqn include(ID of myfunction.pl)> somewhere in the question.

 The ID of the file is available from My Files when you paste the file, ID only, into the
question.

 5. Use the functions defined in the subroutine.

 9.9 Creating “Java” Type Questions
The WebAssign question mode “Java”allows you to use not only Java applets in the
Question field, but also other web based simulations. The simulation does not have to be
a Java applet. It could be Flash or other type of simulation.

The answer can be coded just like fill-in-the-blank or the simulation can grade itself. If
you fill in the answer field for a Java-mode question, the student will have to match the
text you enter. You can use $CASE and $SPACE as explained in section 8.4.2, to control
whether the case of the answer and spaces in the answer are used when the response is
compared to the correct answer. You can also use $REDUCE in the same way. This flag
replaces all duplicate spaces with one space in the student response before comparing
with the correct answer.

If you leave the answer field for the Java-mode part of the question blank, the simulation
must have the following methods:

 Advanced Question Writing 247

 9/2007

Method Explanation

isCorrect must return a 0 or 1

getResponse returns the value of the student's response in a format that
setResponse understands; cannot contain tabs or line breaks

setResponse returns the value that is necessary to send to the simulation to
reproduce the student's answers

computeFeedback future use

If you are using someone else's simulation, it must have similar methods, but they may be
named differently. You can then define the WebAssign variables, $isCorrect,
$computeFeedback, $getResponse, and $setResponse to be the methods the simulation
uses. For example, if the simulation has a method named isTrue, you would enter the
following in the Question field:

 <eqn $isCorrect = "isTrue";"">

If you override the setResponse method you must make sure that the argument to your
method is thisresponse. For example, if your simulation has a method named mySet, you
would enter the following in the Question field:

 <eqn $setResponse = "mySet(thisresponse)";"">

To write a Java-mode question using a Java applet:

 1. Write or find a Java applet.

 2. Enter the applet information in the question box.

For example, if the required methods were in the Diagrammer applet, the Question
field would have the following:

 <APPLET

ARCHIVE = "VectorDiagrammer.jar"

CODEBASE = "/userimages/username@institution/"

CODE = "wassps.vectorDiagrammer.VectorDiagrammer.class"

NAME = "Diagrammer_<EQN ++$numAnim>''

WIDTH = 400

HEIGHT = 300

HSPACE = 0

VSPACE = 0

ALIGN = middle>

<PARAM …>

<PARAM …>

</APPLET>

 3. Enter the text of what you want the student to do, if necessary.

For example,

 You are dragging a 20 kg box across a level floor by means of a

rope attached to the box. The rope is at a 30^o angle

from the horizontal and you are exerting a force of 100 N as you

walk at a constant pace towards the right. Below, draw the free-

body diagram for this situation.

 4. Do not enter anything in the answer field.

248 WebAssign User’s Manual 4.0

9/2007

If you want to use a Flash simulation, step 2 would look something like this:

 2. Enter the Flash information in the question box.

For example,

 Advanced Question Writing 249

 9/2007

 <OBJECT

CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

ID="mapcontrols"

WIDTH=100 HEIGHT=100

CODEBASE="http://active.macromedia.com/flash2/cabs/swflash.cab#ve

rsion=2,0,0,11">

 <PARAM NAME=…>

 <EMBED

NAME="mapcontrols"

MAYSCRIPT SRC="controls.swf"

WIDTH=100

HEIGHT=100

PLUGINSPAGE="http://www.macromedia.com/shockwave/download/index.c

gi?P1_Prod_Version=ShockwaveFlash">

 </OBJECT>

 9.10 Math Display
WebAssign allows you to display mathematical functions as images in proper
mathematical notation. The image is created by a special WebAssign tag. This tag is
useful for displaying built-up fractions, radicals, integrals, summations, partial
derivatives, and matrices. The image can contain randomized variables. The tag
automatically provides a text description (alt tag) of the mathematical expression for the
sight impaired.

Math Display is also available for displaying student answers to symbolic questions. No
other applications or plug-ins are required to implement WebAssign’s Math Display.

 9.10.1 Using Math Display
To write a question using Math Display, insert the symimage tag†

 <symimage(expression)>

at the appropriate location in your question. The expression, consisting of plain text, will
be used to create an image in proper mathematical notation. For example, to display the
solution of a quadratic equation,

 (-b ± sqrt(b^2-4ac))/(2a)

enter

 <symimage((-b +/- sqrt(b^2-4ac))/(2a))>

in the Question field. The following screen shows how the expression will display.

† Previous to the creation of the symimage tag, Math Display used a Symbolic::Image("expression") inside an eqn tag. The symimage tag
is the newer way to display properly formatted mathematical expressions. However, Symbolic::Image still works.

250 WebAssign User’s Manual 4.0

9/2007

Math Display automatically enters the plain text in the alt and title attribute of the image
tag and most browsers will display the text when the mouse rolls over the image.

Randomized variables can be used in a question with Math Display. For example,
suppose you ask a symbolic question for the inverse of the function

 f(x) = (4x - 1)/(2x + 3)

and you wish to randomize the coefficients of x in the function. Enter the following into
the question box.

 Find a formula for the inverse of the function.

<p>

<eqn> $a=randnum(4,10,2); $b=$a-1;""</eqn> <symimage(f(x)

= ($a x-1)/(2x+$b))>

<i>f</i> ⁻¹(<i>x</i>) = <_>

And enter the following in the answer box.

 x:(<eqn $b>x+1)/(<eqn $a>-2x)

The following screen shows how the question and answer display.

Text

Math Display considers alphanumeric characters as variables and renders them in italics.
For example,

 <symimage(answer = int_0^x (x^2 -1)/x dx)>

produces

If you would like to have text not rendered in italics, you can include it in a text()
treatment. For example,

 <symimage(text(answer) = int_0^x (x^2 -1)/x dx)>

produces

 Advanced Question Writing 251

 9/2007

Bold

To create characters in bold in a symimage, you use the html bold tag: …. For
example,

 <symimage(x/y)>

produces .

Underlined

To create underlined characters in a symimage, you use the html underline tag:
<u>…</u>. For example,

 <symimage(<u>f(x) = 2x + 15</u>)>

produces .

Size

To control the size of a symimage use the parameter n. For example,

 <symimage(sqrt(x/a), size => n)>

where n is an integer from 1 to 7. Size 1 is the smallest and 7 is the largest. The default
size, if no integer is entered, is 3. For example,

 <symimage(x^y, size => 6)>

produces

Vertical Alignment

The symimage can be aligned vertically using the top, middle, and bottom parameters.
The default alignment is middle. For example,

 <symimage((x^2-3x+12)/(x^2-3x+1), align => top)>

would align the top of the built-up fraction to the line of text. Examples are shown below:

The default alignment, if no alignment attribute is given, is 'middle'.

Padding

White space or padding can be placed around a symimage to keep it from being too close
to surrounding text. This style is particularly useful when symimages are used in multiple
choice answers. For example,

 <symimage(matrix(2,3,[x,y,z,a,b,c]), padding => 10)>

252 WebAssign User’s Manual 4.0

9/2007

adds 10 pixels of padding around the image as shown on the following image.

 9.10.2 Expressions available in Math Display
The following mathematical expressions can be used in the symimage tag.

 Advanced Question Writing 253

 9/2007

254 WebAssign User’s Manual 4.0

9/2007

 Advanced Question Writing 255

 9/2007

 9.10.3 Defining a variable for a Math Display image
When you use a symimage or Symbolic::Image, WebAssign creates the Math Display
image on our servers and the image can be accessed at a URL. This leads to the ability to
reference the image by using a variable name. If the following expression is in a question:

 <EQN $var = Symbolic::Image("x^2 + y^2");"">

nothing prints due to the last statement, the empty string, "". However, later in the
question, you can use $var wherever you want the Math Display image to appear. You
could also use $var in hints or solutions.

256 WebAssign User’s Manual 4.0

9/2007

 9.11 Images and HTML Shortcuts

 9.11.1 Creating images with the s tag
We have added a new tag to make including symbols in your questions easier. Rather
than entering a long tag or the &-notation of HTML entities we have provided a
simpler means to access our large collection of symbols and images found on our servers
and in HTML. The notation <s:symbol> will produce the named symbol when the
question is displayed. The symbol may be displayed using an image or an HTML entity;
the linking is done in the background on our server database.

For example, to display our symbol for pi, you could enter
 in your question. You can now enter a simpler
expression, <s:pi>. Many other symbols are available. You can see a complete list at

 http://www.webassign.net/info/symbols.html.

For example, if you enter

 <eqn

 $a=-15; sigform(randnum(-30,-18,1),2);

 $b=22; sigform(randnum(25,45,1),2);

 $ans= $a + $b;

"">

 For a certain reaction at constant pressure,

<s:Delta><i>H</i> = <eqn $a> kJ, and <eqn $b> kJ of

expansion work is done on the system. What is

<s:Delta><i>U</i> for this process?

 <_> kJ

one randomization of the question displays as follows:

 9.11.2 Creating HTML code with the h tag
We have also added a new tag to make certain frequently used HTML constructs easier to
enter and read. The tag, in general, is

 <h:element>easy to remember characters</h:element>

Within an h tag, defined variables are understood and no further <eqn> environment is
needed.

For example, <h:math>$a x_1^2</h:math> will display as if you had typed

 <eqn $a> <i>x</i>₁²

And <h:frac>n='x^2' d='x+$a'</h:frac> will display as if you had typed

 <table><tr><td style='border-bottom: 1px solid black; text-align:

center' nowrap align=center><i>x</i><sup style="font-size:

 Advanced Question Writing 257

 9/2007

0.8em">2</sup><nobr></td></tr><tr><td nowrap

align=center><i>x</i>+<eqn $a><nobr></td></tr></table>

For additional namespaces, see the table below and online at

 http://www.webassign.net/info/html_substitution.html

Tag Explanation Example

<h:math> Italicizes the variables and
handles superscripts and
subscripts.

<h:math>$a x_1^2</h:math>

Displays as

<h:frac> Creates a nicely aligned
built-up fraction if you
assign the numerator in
quotes to n and the
denominator in quotes to
d.

<h:frac>n='x^2' d='x+$a'</h:frac>

Displays as

<h:matrix> Displays a matrix in a
nicely aligned HTML
format. Use | to separate
columns and ; to indicate
the end of a row.

<h:matrix>

 a | b ;

 c | d

</h:matrix>

The above was entered to make the code
look as much like a matrix as possible; it is
not necessary. You can enter the statements
on a single line also:

<h:matrix>a|b; c|d</h:matrix>

Either expression displays as

258 WebAssign User’s Manual 4.0

9/2007

<h:determinant> Displays a determinant in a
nicely aligned HTML
format. Use | to separate
columns and ; to indicate
the end of a row.

<h:determinant>

 $a | b ;

 c | d

</h:determinant>

The above was entered to make the code
look as much like a determinant as possible;
it is not necessary. You can enter the
statements on a single line also:

<h:determinant>$a|b;

c|d</h:determinant>

Displays as

<h:sqrt> Displays a radical sign
stretching over the
argument.

<h:sqrt> x + 6 </h:sqrt>

Displays as

<h:longdiv> Displays a long division
problem properly.

<h:longdiv> x + 5 | x^2 + 6x + 5

</h:longdiv>

Displays as

<h:chemical> Displays the superscripts
and subscripts in chemical
names properly.

<h:chemical> H_2SO_4</h:chemical>

Displays as

<h:reaction> Extends the chemical
display to include
treatment for states of
matter and reaction
arrows.

<h:reaction>

Zn(s)+2HCl(aq)->ZnCl_2(aq)+H_2(g)

</h:reaction>

Displays as

<h:e-config> Displays the numbers after
the orbitals as superscripts
and italicizes the orbitals.

<h:e-config> 1s2 2s2 2p3 </h:e-

config>

Displays as

 APPENDIX B: HTML TAGS

This list is designed to be as concise as possible for use with WebAssign. It only contains those tags most often used
to style a question.

 B.1 General
Style HTML code Comments

Bold

Italic <i></i>

Underline <u></u>

Subscript

Superscript

Line Break
 a single carriage return

Paragraph <p> or <p></p>

Align Text <p align = left|center|right></p>

Div <div class='indent'></div> used to indent parts of questions, preferred
way to indent blocks of text, as it is
accessibility-compliant and thus more
understandable to screen readers.

Block Quote <blockquote></blockquote> used to indent parts of a question.

Horizontal Rule <hr>

Heading <hn></hn> levels n = 1to 6

Align Heading <hn align = left|center|right></hn>

Hide comment <!--text of comment-->

328 WebAssign User’s Manual 4.0

9/2007

 B.2 Fonts

Style HTML code Comments

Fonts The first font in the list that is present on the
user's system is used.

Font Size n ranges from 1-7

Change Font Size

Font Color color takes one of 16 named colors or the color
hex value.

Examples: color=black
color=#FF0000

 B.3 Links and Images

Action HTML code Comments

Display a link to a web
address

link name

Display a link that will open
in a new window

link

name

Display Image <img src = "url" title = "text describing

image" alt = "text describing image">

Image Alignment <img src = "url" align =

top|bottom|middle|left|right title = "text

describing image" alt = "text describing

image">

Dimensions <img src = "url" width = "x" height = "y"

title = "text describing image" alt =

"text describing image">

in pixels

 B.4 Lists

Type HTML code Comments

Unordered, bulleted List use before each list item

Ordered, numbered List use before each list item

 B.5 Tables

Item HTML code Comments

Define Table <table></table>

Table Border <table border = ?></table>

 Appendix B: HTML Tags 329

 9/2007

Cell Spacing <table cellspacing = ?>

Cell Padding <table cellpadding = ?>

Desired Width <table width = ?> in pixels

Width Percent <table width = %> percentage of page

Table Row <tr></tr>

Alignment <tr align = left|right|center

valign = top|middle|bottom>

Table Cell <td></td> must appear within table rows

Alignment <td align = left|right|center valign =

top|middle|bottom>

No linebreaks <td nowrap>

Columns to Span <td colspan = ?>

Rows to Span <td rowspan = ?>

Desired Width <td width = ?> in pixels

Width Percent <td width = %> percentage of table

Table Header <th></th> same as data, except bold centered

Alignment <th align = left|right|center

valign = top|middle|bottom>

No Linebreaks <th nowrap>

Columns to Span <th colspan = ?>

Rows to Span <th rowspan = ?>

Desired Width <th width = ?> in pixels

Width Percent <th width = %> percentage of table

Table Caption <caption></caption>

Alignment <caption align = top|bottom> above/below table

 B.6 HTML Special Characters

Symbol HTML code Comments

• ·

° °

µ µ

Nonbreaking
space

< <

> >

& &

330 WebAssign User’s Manual 4.0

9/2007

" "

® ®

© ©

 B.7 WebAssign Classes

Class HTML code Comments

indent <div class='indent'>The text you want

indented goes here.</div>
Used to indent part of your question
or something in your announcement
or in the description or instructions of
your assignments

Center <div class='center'>The text or image you

want centered goes here.</div>
Used to center part of your question
or something in your announcement,
or in the description or instructions of
your assignment.

 APPENDIX C: GREEK LETTERS AND SYMBOLS

Symbol
Name

Symbol Namespace Method Image Location and Filename Tag

Alpha <s:alpha> <img src="/images/alpha.gif" alt="alpha"

title="alpha">

Capital
Alpha

 <img src="/images/alphacap.gif" alt="capital alpha"

title="capital alpha">

Beta <s:beta>

Chi <s:chi>

Delta <s:delta> <img src="/images/delta.gif" alt="delta"

title="delta">

Capital Delta <s:Delta> <img src="/images/deltacap.gif" alt="capital delta"

title="capital delta">

Epsilon <s:epsilon> <img src="/images/epsilon.gif" alt="epsilon"

title="epsilon">

Eta <s:eta>

Gamma <s:gamma> <img src="/images/gamma.gif" alt="gamma"

title="gamma">

Capital
Gamma

 <s:Gamma> <img src="/images/gammacap.gif" alt="capital gamma"

title="capital gamma">

Iota <s:iota>

Kappa <s:kappa> <img src="/images/kappa.gif" alt="kappa"

title="kappa">

Lambda <s:lambda> <img src="/images/lambda.gif" alt="lambda"

title="lambda">

Capital
Lambda

 <s:Lambda> <img src="/images/lambdacap.gif" alt="capital lambda"

title="capital lambda">

Mu <s:mu>

332 WebAssign User’s Manual 4.0

9/2007

Nu <s:nu>

Omega <s:omega> <img src="/images/omega.gif" alt="omega"

title="omega">

Capital
Omega

 <s:Omega> <img src="/images/omegacap.gif" alt="capital omega"

title="capital omega">

Omegabold <s:omegabold> <img src="/images/omegabold.gif" alt="bold omega"

title="bold omega">

Omicron <s:omicron> <img src="/images/omicron.gif" alt="omicron"

title="omicron">

Phi <s:phi>

Capital Phi <s:Phi> <img src="/images/phicap.gif" alt="capital phi"

title="capital phi">

Pi <s:pi>

Capital Pi <s:Pi> <img src="/images/picap.gif" alt="capital pi"

title="capital pi">

Psi <s:psi>

Capital Psi <s:Psi> <img src="/images/psicap.gif" alt="capital psi"

title="capital psi">

Rho <s:rho>

Sigma <s:sigma> <img src="/images/sigma.gif" alt="sigma"

title="sigma">

Capital
Sigma

 <s:Sigma> <img src="/images/sigmacap.gif" alt="capital sigma"

title="capital sigma">

Tau <s:tau>

Theta <s:theta> <img src="/images/theta.gif" alt="theta"

title="theta">

Capital
Theta

 <s:Theta> <img src="/images/thetacap.gif" alt="capital theta"

title="capital theta">

Upsilon <s:upsilon> <img src="/images/upsilon.gif" alt="upsilon"

title="upsilon">

Capital
Upsilon

 <s:Upsilon> <img src="/images/upsiloncap.gif" alt="capital

upsilon" title="capital upsilon">

Xi <s:xi>

Capital Xi <s:Xi> <img src="/images/xicap.gif" alt="capital xi"

title="capital xi">

Zeta <s:zeta>

A bar <s:abar> <img src="/images/abar.gif" alt="line over a"

title="line over a">

H bar <s:hbar> <img src="/images/hbar.gif" alt="h bar" title="h

bar">

 Appendix C: Greek Letters and Symbols 333

 9/2007

D bar <s:dbar> <img src="/images/dbar.gif" alt="line over d"

title="line over d">

N bar <s:nbar> <img src="/images/nbar.gif" alt="line over n"

title="line over n">

P bar <s:pbar> <img src="/images/pbar.gif" alt="line over p"

title="line over p">

S bar <s:sbar> <img src="/images/sbar.gif" alt="line over s"

title="line over s">

U bar <s:ubar> <img src="/images/ubar.gif" alt="line over u"

title="line over u">

V bar <s:vbar> <img src="/images/vbar.gif" alt="line over v"

title="line over v">

K bar <s:Kbar> <img src="/images/cKbar.gif" alt="line over capital

K" title="line over capital K">

Nu bar <s:nubar> <img src="/images/nubar.gif" alt="line over nu"

title="line over nu">

Script l <s:scriptl> <img src="/images/scriptl.gif" alt="script lowercase

l" title="script lowercase l">

Script E <s:scriptE> <img src="/images/scriptE.gif" alt="script E"

title="script E">

Less than or
equal to

 <s:lessorequal> <img src="/images/lteq.gif" alt="less than or equal

to" title="less than or equal to">

Greater than
or equal to

 <s:greaterorequal> <img src="/images/gteq.gif" alt="greater than or

equal to" title="greater than or equal to">

Much less
than

 <s:muchlessthan> <img src="/images/ltlt.gif" alt="much less than"

title="much less than">

Much
greater than

 <s:muchgreaterthan> <img src="/images/gtgt.gif" alt="much greater than"

title="much greater than">

Not equal <s:notequal> <img src="/images/neq.gif" alt="not equal to"

title="not equal to">

Approximate <s:asymptotic> <img src="/images/apx.gif" alt="approximately"

title="approximately">

Approximate
equal

 <s:congruent> <img src="/images/apxeq.gif" alt="approximately equal

to" title="approximately equal to">

Identically
equal

 <s:equivalent> <img src="/images/exeq.gif" alt="equivalent"

title="equivalent">

Plus minus <s:plusminus> <img src="/images/plusminus.gif" alt="plus minus"

title="plus minus">

Minus plus <s:minusplus> <img src="/images/minusplus.gif" alt="minus plus"

title="minus plus">

Multiply <s:multiply> <img src="/images/multiply.gif" alt="times"

title="times">

334 WebAssign User’s Manual 4.0

9/2007

Proportional
sign

 <s:propto> <img src="/images/prop.gif" alt="proportional to"

title="proportional to">

Orthogonal <s:orthogonal> <img src="/images/orth.gif" alt="perpendicular to"

title="perpendicular to">

Integral <s:int> <img src="/images/integral.gif" alt="integral"

title="integral">

Closed
integral

 <s:lineint> <img src="/images/cintegral.gif" alt="contour

integral" title="contour integral">

Square root

 <img src="/images/sqrt.gif" alt="square root"

title="square root">

Infinity <s:infinity> <img src="/images/infinity.gif" alt="infinity"

title="infinity">

Right arrow <s:rightarrow> <img src="/images/rtarrow.gif" alt="right arrow"

title="right arrow">

Left arrow <s:leftarrow> <img src="/images/lftarrow.gif" alt="left arrow"

title="left arrow">

Double
arrow

 <s:leftrtarrow> <img src="/images/dblarrow.gif" alt="double headed

arrow" title="double headed arrow">

Partial
differential

 <s:partial> <img src="/images/partial.gif" alt="partial

derivative" title="partial derivative">

Cents <s:cents> <img src="/images/cents.gif" alt="cents"

title="cents">

 APPENDIX D: TAGS, FUNCTIONS, AND VARIABLES

 D.1 Special WebAssign Tags

 D.1.1 The <eqn> and <EQN> tags
The <eqn> and <EQN> tags are special tags developed for WebAssign. They take the form <eqn Perl code> or
<eqn> Perl code </eqn>; see section 9.1 for more detail. The list of functions available for the Perl code in an
<eqn> tag has been extended beyond just Perl. Examples of some commonly used expressions are listed in the
following table.

The result of an <eqn> tag in a question displays in red. The result of an <EQN> tag in a question displays in black.
The key for a numerical question that uses an <eqn> tag displays at most three significant figures. The key for a
numerical question that uses an <EQN> tag in the answer displays in machine precision. You can control the precision
of the key by using the <EQN> tag in combination with the decform function, see section 9.3.

 D.1.2 Functions used in <eqn> and <EQN> tags
Note: For all the trigonometric functions, avoid generating values of zero (except of 0 radians).
The computer will calculate machine precision values of 10-16. For example: sin(0) is 0 but sin(π)
will return 10-16.

Mathematical function Description

sin(expr)

cos(expr)

tan(expr)

csc(expr)

cot(expr)

sec(expr)

Returns the sine of expr where expr is in radians.
Returns the cosine of expr where expr is in radians.
Returns the tangent of expr where expr is in radians.
Returns the cosecant of expr where expr is in radians.
Returns the cotangent of expr where expr is in radians.
Returns the secant of expr where expr is in radians.

asin(expr)

acos(expr)

atan(expr)

acsc(expr)

acot(expr)

asec(expr)

Returns the arcsine of expr where expr is a number in the domain -1 to 1 and the range
is -π/2 to π/2.
Similarly for the other inverse trig functions.

336 WebAssign User’s Manual 4.0

9/2007

atan2(y,x) Returns the arctangent of y/x in the range -π to π.

** Raises one number to the power of another.

Ex: 5**3 = 125; $a**3

avg(n1,n2,n3...) Computes the average of a list of numbers.

canonicaldeg(n1)
†
 Changes angles to a value between –180 and 180.

Example: canonicaldeg (206) and canonicaldeg(566) both return –154

decform(n1,n2)
†

Specifies exactly how many decimal places to display, rounding if necessary.

Example: decform(20,2) returns 20.00

decform(3.2256,3) returns 3.23

deg(expr)
†

Returns the degrees where expr is in radians.

Example: deg($pi) returns 180

exp(expr) Returns e to the power of expr.

get_data() The get_data function provides a way to retrieve work done by a particular student on a
particular assignment. The special variables $DEPLOYMENT_ID and $STUDENT may
be used to retrieve answers entered by a student on the current assignment. Other
values may be substituted to get answers from other assignments or other students.

Example: $data = get_data(12345,'brian@webassign')

An array reference of responses is returned.

If work for a specific question is required an optional third argument containing the
question ID may be passed to get_data.

Example: get_data($DEPLOYMENT_ID, $STUDENT, qid)

where qid stands for a question ID number.

int(n1) Takes a number and returns the integer part.

Example: int(6.713) returns 6

jmol("") You can use the jmol function to open the jmol applet. The syntax is

<eqn jmol("filename")>

Where the file is in one of several possible formats. See http://jmol.sourceforge.net/.

linest(list1, list2) Calculates the least square fit of two lists and returns an array reference.

Example: Use Linest; $x = new Linest;
$V = $x->linest(\@array1,\@array2)

log(expr) Returns the natural logarithm (base e) of expr. The argument must be positive.

log10(expr) Returns the logarithm (base 10) of expr. The argument must be positive.

PearsonR(list1, list2) Returns the PearsonR statistic of 2 lists of numbers.

Example: PearsonR(\@array1,\@array2) where @array1 and @array2 have
been previously defined.

† WebAssign only, not a Perl function

 Appendix D: Tags, Functions, and Variables 337

 9/2007

pickone(list)†

Randomly picks one item from a comma delimited list.

Example: pickone("Earth’s", "Saturn’s", "Jupiter’s") or
pickone('over the hill', 'over the mountain', 'up the canyon')

The items in the list require single or double quotes if the list item is not a number,
double quotes if there are apostrophes. If something in the list must be evaluated like a
variable or HTML tag, you must use double quotes.

picksame(list)
†

Picks the same position item as the previous pickone from a comma delimited list.

Example: picksame(1,95.1,318)

 The items in the list require single or double quotes if there are spaces in a list item,
double quotes if there are apostrophes. If something in the list must be evaluated like a
variable or HTML tag, you must use double quotes.

rad(expr)
†

Returns radians where expr is in degrees.

Example: <eqn rad(180)> returns 3.14159265358979

randnum(x,y,s)
†

Takes integers and returns a random integer.

Example: <eqn randnum(10,20,2)>

Returns a number between 10 and 20 in possible increments of 2.

round(n1,n2)
†
 Returns the number, n1, to a specified number of decimal places, n2. Trailing zeros are

removed. If n2 is not included, 2 is assumed.

Example:
<eqn round(2.34567,3)> returns 2.346
<eqn round(2.345,5)> returns 2.345
<eqn round(2.345)> returns 2.35

scinot(n1,n2)
†
 Takes a number n1 and returns an HTML string for n1 in scientific notation with n2

significant digits.

Example: <eqn scinot(23108,3)> displays 2.31 X 104

commas(n1) Takes a number n1 and returns a text string for n1 with commas.

Example: <eqn $x=1e5*randnum(20,70,1); commas($x)> returns something
like 2,000,000

spaces(n1) Takes a number n1 and returns a text string for n1 with spaces instead of commas.

Example: <eqn spaces(990342)> returns 990 342

spell_number(integer) Returns the number written in words.

Example:
<eqn spell_number(45)> returns forty five
<eqn spell_number(-3180)> returns negative three thousand one
hundred eighty

sciform(n1,n2)
†
 Takes a number n1 and returns a number in E-notation with n2 significant digits after

the decimal point.

Example: <eqn $a=sciform(0.0002346789999,3)> returns 2.347e-04

338 WebAssign User’s Manual 4.0

9/2007

sigform(n1,n2)
†
 Takes a number n1 and returns a number for n1 with n2 significant digits, using E

notation if necessary.

Example:
sigform(23108,3) displays 23100
sigform(23000,3) displays 2.30e+04

sqrt(expr) Returns the square root of expr.

Example: sqrt(25) returns 5

stdev(n1,n2,n3...) Computes the standard deviation of a list of numbers.

sum(list)†

Returns the sum of a list of numbers or of a range of numbers.

Example: sum(1,3,5) and sum(1..5)
Returns 9 in the first case and 15 in the second.

max(list) Returns the maximum of a list of numbers.

min(list) Returns the minimum of a list of numbers.

gcd(list) Greatest Common Divisor

Example: <eqn gcd(55, 595, 10)> returns 5

lcm(list Least Common Multiple

Example: <eqn lcm(3, 7, 2, 14)> returns 42

ceil(n1) Returns the least integer greater than or equal to n1.

Example:
<eqn ceil(4.9)> returns 5
<eqn ceil(-4.9)> returns -4
<eqn ceil(341)> returns 341
<eqn ceil(23.1)> returns 24

floor(n1) Returns the largest integer less than or equal to n1.

Example:

<eqn floor(4.9)> returns 4
<eqn floor(-4.9> returns -5
<eqn floor(341)> returns 341
<eqn floor(23.1> returns 23

word_count(string)† Returns the number of words in a string.

Example: word_count($V) gives the number of words in the string $V.

contains('expr', 'expr2')

contains(['expr',

'expr2'])

Returns the number of times an expression, expr, is in the second expression, expr2. If
there is no second expression, the value in $thisresponse will be used.
Returns the number of times the list of expressions are found in $thisresponse.

sigfigs(n1)† Returns the number of significant digits in a number n1.

Example: <eqn sigfigs(34.5700)> returns 4

decfigs(n1)
†

Example: <eqn decfigs(3.456)> returns 0.001

 Appendix D: Tags, Functions, and Variables 339

 9/2007

combination(n,m) Returns the number of different sets of m items that can be picked from a domain of n
items.

Example: combination(4,2) returns 6

permutation(n,m) Returns the number of unique sets of m items that can be picked from a domain of n
items. ab is different from ba.

Example: permutation(4,2) returns 12

<eqn distr("cdf=normal,

mu=16, s=4, x=10")> or

<eqn distr("pdf=binomial,

n=10, p=0.5, x=3")

Returns the P-value corresponding to P(x<2) on N(16,4).

cdf is the cummulative density function and pdf is the probabilty density function.

cdf and pdf can be binomial, pareto, weibull, nbinomial, chi2, bernoulli, nbinomial,
snedecorf, gamma, studentt, exponential, normal, chi2, geometric, beta, poisson,
cauchy, uniform, lognormal, snormal.

The parameters needed for any distribution can be determined by redisplaying a
question with <eqn distr("cdf=name of distribution"> entered in it. The
error messages will inform you what is needed.

normd(μ,variance,nn) Returns a random point from a normal distribution with user-defined parameters as long
as you use nn>30 or so.

factorial(n) Returns the factorial of the number n.

Example: <eqn factorial(5)> returns 120

&beforeDue()† Returns the number of hours before the due date an assignment is submitted.

Example: <eqn &beforeDue()<24?$POINTS:$POINTS*1.5>

makes the value of a question 1.5 times more until 24 hours before the due date when
the value returns to its assigned weight.

Can also be used with arguments of days or minutes,

&beforeDue('days')

&beforeDue('minutes')

† WebAssign only, not a Perl function

 D.1.3 Additional WebAssign tags
WebAssign Tags Description

<SECTION> The <SECTION> tag is used to mark a change in the mode of a multi-mode question. It
marks the change in both the question part and the answer part, see section 9.5 for
more detail.

<SECTION NOBR> If NOBR is added to <SECTION> tag, <SECTION NOBR>, in the question, no
 tag
will be printed between modes.

<_> The answer box, <_> tag is used in the Question field to indicate where the entry box for
the student response should be placed, see section 8.4.

<SYMBOLIC> The position of the symbolic formatting help link can be controlled with the
<SYMBOLIC> tag. By placing the <SYMBOLIC> tag within the symbolic mode of the
question, you can specify the exact placement of the link, rather than the default at the
end of the question.

340 WebAssign User’s Manual 4.0

9/2007

<MARK> The position of the correct and wrong marks can be controlled with the <MARK> tag. By
placing the <MARK> tag, you can specify the exact placement of the marks, rather than
the default position.

<HINT> The position of a hint can be controlled with the <HINT> tag. By placing the <HINT> tag
within any section of a question, you can specify where the hint will appear. See section
9.2.

<SIGFIGS> If the <SIGFIGS> tag appears anywhere within a Numerical part of a question,
WebAssign will only place sigfigs icons wherever you have <SIGFIGS>. You can use
more than one <SIGFIGS> tag in a question.

<userimage(reference

number)>
Notation used by My Files to reference an image from an instructor's space in
WebAssign. The My Files tool enters the proper reference number. See section 8.15.2

<userfile(reference

number)>
Notation used by My Files to reference a link to a file from an instructor's space in
WebAssign. The My Files tool enters the proper reference number. See section 8.15.2

<symimage(expression)> The tag used by Math Display to make it simple to include properly formatted
mathematical notation as well as other technical symbols. See section 9.10

<INCORRECT> The tag used in multi-select question type answers to indicate when the incorrect
distracters begin. See section 8.3

<SUBMIT> The tag used if you want to add a submit button to the parts of a multi-part question. If
the question is on an assignment that requires submission by entire assignment, the
button moves the focus to the real submit buttons at the end of the assignment,
otherwise the button submits the question.

Example: <SUBMIT link="Click me to submit">

<PRACTICE> The tag used within a question to specify the questions that you would like to be
available for practice when a student is viewing the question. See section 8.12

<s:element>, <h:element> Namespace tags, see section 9.11

 D.2 WebAssign Reserved Variables
WebAssign provides the following variable names for you to use inside <eqn> tags. They will help you customize
WebAssign. These variable names are therefore reserved and should only be used for their assigned purpose. For
example, if you need a variable name for the number of rows of chairs in an auditorium, do not use $rows, a
reserved name; use, instead something similar to $num_rows or $ROWS. The current reserved variables and examples
of their use are listed in the following table.

Reserved Variable Description

 Appendix D: Tags, Functions, and Variables 341

 9/2007

$size Overrides the default size of an answer box. Can be used with numerical, fill-in-the-
blank, file-upload, or symbolic questions.

Once you define the value of $size in the Answer field of a question, it is the value
used for all answer boxes after that in that question. You can define $size for each
answer box. The default value of $size is 10 for numerical questions.

Example: If you ask what does “Je m'appelle Marie.” mean and want to give enough
room for the fill-in-the-blank answer, you would put in the Answer field of the Question
Editor
<eqn $size = 20;"">My name is Marie.

$rows Overrides the default row length (6) of essay boxes.

Example: <eqn $rows = 25;"">Essay answer

$cols Overrides the default column length (65) of essay boxes.

Example: <eqn $cols = 55;"">

$HINT Holds the text you want displayed as a hint, see section 9.2.

$ORDERED Orders multiple-choice or multiple-select options as specified and sets the correct
answer to $ORDERED. Allowed for multiple-choice and multiple-select questions only,
see section 8.2.2 and 8.3.2.

$Select_Option Overrides first option in multiple-choice pulldown questions. Allowed for multiple-choice
questions only; default text is '---Select---', see section 8.2.4.

$ACCEPTFILETYPE Limits file-upload questions to a particular extension. Allowed for file-upload questions
only, see section 8.8.

$FILEUPLOADMAX Overrides WebAssign's maximum file size. Allowed for file-upload questions only; size in
bytes, see section 8.8.

$MAXERR

$DEFAULTVALS
Override default error accepted and steps for evaluation symbolic functions. Allowed for
symbolic questions only. You must use <EQN> rather than <eqn> in the Answer field of
symbolic questions, see section 8.6.

$THIS_SCORE Overrides question scores.

$TOLERANCE

Can be used in a question to change the tolerance for the numerical parts of the
question.

Example: <eqn $TOLERANCE = 0.10;''> in the question field of a question will change
the tolerance for any numerical parts to 10%.

$SIGFIGS Displays an answer to the number of specified significant figures and checks the student
response for the correct number of significant figures. If the student response is within
the tolerance, but the number of significant figures is incorrect, the answer is marked
incorrect and the message “Check the number of significant figures.” is displayed.

Example <EQN $SIGFIGS=2; $ans> See section 8.5.3.

$DECFIGS Displays an answer to the specified precision and checks the student response for the
correct number of decimal places. If the student response is within the tolerance, but the
number of decimal places is incorrect, the answer is marked incorrect and the message
“Check the number of significant figures.” is displayed.

Example <eqn $DECFIGS=0.001; $ans> See section 8.5.4.

342 WebAssign User’s Manual 4.0

9/2007

$SIGFIGS_PARTIAL Defines, within a question, the partial credit given for answers within 2% of correct
answer but entered with an incorrect number of significant figures. The following
example would give 25% credit if a student entered something like 1.234.

Example <eqn $SIGFIGS=2; $SIGFIGS_PARTIAL='25%'; 1.2>

$CORRECTMARK

$WRONGMARK

Holds the text or image used for marking a question correct. Can be used in a question
only.
Holds the text or image used for marking a question wrong. Can be used in a question
only.

$numAnim Only specifically needed for Java questions when the applet itself is being graded.
Should be incremented ($numAnim++) in the applet name. <applet
name='my_applet_<EQN $numAnim++>'. Necessary to redraw the applet with
student’s responses on redisplay.

 D.3 WebAssign Flags
You can turn certain features on and off with flags. The WebAssign flags are listed in the following table. If you set
a flag equal to 1 in an eqn tag, the effect is described in the description column. Flags are used in questions.

Flags Description

$PULLDOWN Makes multiple-choice options a pulldown menu rather than radio buttons. Allowed for
multiple-choice questions only, See section 8.2.4 Multiple-choice pulldown menu.

$SET_POSITION Specifies the position of radio buttons, for alignment purposes when dealing with
multiple sets of blockquoted multiple-choices, or for having an image or footnote appear
below the final set of radio buttons, See section 8.2.5 Controlling the position of radio
button and 8.3.3 Controlling the position of check boxes.

$SET_EACH_POSITION Specifies the position of the radio buttons or check boxes for multiple- choice or
multiple-select questions. Allows you to arrange the choices in a table. See template
question named template.set_each_position.

$CASE Makes fill-in-the-blank questions case-sensitive. Allowed for fill-in-the-blank and Java
questions only, see section 8.4.2 Controlling case and space sensitivity.

$SPACE Makes fill-in-the-blank questions white-space-sensitive. Allowed for fill-in-the-blank and
Java questions only, see section 8.4.2 Controlling case and space sensitivity.

$REDUCE Removes multiple, preceding, and trailing spaces in a student's response. Allowed for
fill-in-the-blank and Java questions only.

 Any available Hints will be displayed even if the question is correct.

 D.4 WebAssign Internal Values
There are variables inside WebAssign that contain values that may be useful to you. For example, $pi, contains the
number, 3.14159265358979. $STUDENT contains the username of the currently logged in student. The following table
lists many of these internal values.

Internal Value Description

 Appendix D: Tags, Functions, and Variables 343

 9/2007

$thisresponse Holds the student's response on the associated answer box, see section 9.7.

Example: In the Answer field of the Question Editor, the following changes the student
response to a positive number and compares that to the answer. Thus, the question will
accept either a positive or negative answer.
<eqn $x1 = $thisresponse; $thisresponse = abs($thisresponse);$ans

= $d*$h>

$thisnum Holds the numerical part of the student’s response to a numerical with units question.
See section 8.5.5 and the template.units question.

$thisunit Holds the unit part of the student’s response to a numerical with units question. See
section 8.5.5 and the template.units question.

$thiskey Holds the randomized position of the correct choice for a multiple choice question. The
first position is zero.

Example: If a multiple choice question has the following choices:

d
b
c
a

and a is the correct answer, $thiskey will equal 3.

$thisanswer Holds the position of the multiple choice answer chosen by the student. Allows you to
give hints that depend on the choice the student makes. See the template question
named template.MChints2.

$CORRECT Boolean; it is true if the student’s response is correct, false otherwise.

$INCORRECT Does not hold an internal value. You can set the value of $INCORRECT and if a
student’s response is incorrect, the student will receive the points that $INCORRECT is
set to.

$POINTS Holds the number of points a particular question part is worth.

$pi Returns the value of pi.

$QUESTION_ID Holds the current question ID.

$QUESTION_NUM Holds the question number on the current assignment. Each answer box is counted in
order as it appears on the assignment.

$STUDENT Holds the current student's username. Most often used to give an individualized part of
a question to a student.

$FULLNAME Holds the current student’s full name.

$EMAIL Holds the email address of the current user. See template question 'template.email
checking.'

$ASSIGNMENT_ID Holds the current assignment id.

$DEPLOYMENT_ID Holds the current deployment id. The deployment id identifies the assignment after it is
scheduled in a class.

$RESPONSE_NUM Holds the number of submissions a student has already made. Used in weighting
questions on assignment.

Ex: <eqn 1/$RESPONSE_NUM> in the weighting box for a question would make the
weight of the question drop to 1/2, 1/3, etc. points on successive submissions.

344 WebAssign User’s Manual 4.0

9/2007

$THISBOXNAME Each answer box in an assignment has a name; this variable holds the full name of a
box.

Example: RN_355_1_0_83 is the box name for a random numerical box of question ID
355. It is the first part (0) of the first question (1) on the assignment and 83 is the
random seed.

$PHYSLETPATH

$APPLETPATH

Contains the default class path for Physlets and applets.

 D.5 If-then-else Perl Expressions
There are situations in which you may want to use a condition to define a variable. This
can be easily accomplished using an if-then-else Perl expression inside an <eqn> tag.

This Perl conditional operator is a trinary (or ternary) operator since it has three operands
and works like an if-then-else. As a trinary operator, its two parts separate three
expressions.

 CONDITION ? THEN : ELSE

If the CONDITION is true, only the THEN expression is evaluated, and the value of that
expression becomes the value of the entire expression. Otherwise, only the ELSE
expression is evaluated, and its value becomes the value of the entire expression.

Example: Suppose you wish to set $y equal to five (5) if $x is equal to or larger than zero,
but equal to zero if $x is negative.

There are three ways you can do this:

Case 1: expanded

 <eqn> if ($x >= 0) {$y = 5} else

{$y = 0} </eqn>

Case 2: shorter, embedded in an <eqn> tag, reverse logic

 <eqn if ($x < 0) {$y = 0} else {$y = 5}>

Case 3: compact

 <eqn $y = ($x < 0)?0:5>

TERMS OF USE

Introduction

Welcome to WebAssign. We hope our assessment service helps you
meet your educational goals and objectives. WebAssign is used by
students to enter their answers to class assignments and receive a
score and by instructors to provide assignments and communications
with their students. We provide this service to you subject to the
following Terms of Use (TOU).

By accessing and using our service, you are agreeing to your
acceptance, without limitation or qualification, these TOU. If you do
not agree with these TOU, you may not access or use WebAssign.

The WebAssign Service

WebAssign (the "Service") is an online homework delivery, grading,
and assessment service available to instructors through paid
subscription for specified classes and time durations. The purpose of
the Service is to provide instructors with a secure, accessible platform
in which to assign and grade homework in order to assess student
performance and comprehension. The Service can also be used for
quizzes and testing depending on the instructor's application of the
system.

The Service enables instructors to post of online class discussion,
internal communications, grades, schedule of class events, class
notes, and syllabi. We may offer other features in the future, or
change or eliminate current features at any time. All of the features of
the Service are subject to these TOU.

Use of Account

To use the Service, you will need a username, institution, and
password. Student usernames are provided to WebAssign by an
instructor, the institution name is determined by WebAssign, and the
initial password is provided by the instructor. You should change your
password before starting to use the Service to prevent unauthorized
access to your assignments. To facilitate communication and for
retrieval of a new password, we use email addresses.

You are solely responsible for maintaining the confidentiality of your
username and password. Furthermore, you are responsible for all
activities, charges, and liabilities associated with your account. You
must immediately notify WebAssign of any unauthorized use of your
account. In the event that you are a minor, WebAssign reserves the
right to provide access to your account to your parents, guardian or
other authorized adult, upon such adult's request.

Content

Any content that you upload or otherwise make available in the
Service remains your sole property or the property of your licensors.
If you mark any of your content public domain (Public Domain
Content) in the Service, you automatically grant and/or warrant that
the owner has granted WebAssign, the perpetual royalty-free, non-
exclusive right and license to use, reproduce, modify, publish,
distribute, perform, display, and transmit the Public Domain Content
through the Service. You also permit any other user of the Service,
subject to your restrictions, to access, view, store, and reproduce the
Public Domain Content to the same extent permitted herein.

Copyright

You acknowledge that the Service, any underlying technology used in
connection with the Service, and all software, material, information,
communications, text, graphics, links, electronic art, animations,
audio, video, photos, and other data (collectively, the "Content")
available within the Service are provided by WebAssign or third-party
providers and are protected by copyright. You may not store any
significant portion of any Content owned by, or licensed to
WebAssign in any form, whether archival files, computer-readable
files, or any other medium.

We encourage you to download and print a reasonable number of
copies of Content for noncommercial personal or educational use
only. You acknowledge that WebAssign and/or third-party providers
remain the owners of the Content and that you do not acquire any
intellectual property rights in such Content by downloading,
modifying, or printing the Content.

Internet Links

Some links on the Service lead to sites posted by independent site
owners. Because WebAssign has no control over these sites,
WebAssign is not responsible for such sites' accessibility via the
Internet and does not endorse products, services, or information
provided by such sites. As such, WebAssign shall not be responsible
or liable, directly or indirectly, for any damage or loss caused or
alleged to be caused by or in connection with, use or reliance on any
Content, goods, or services available on or through any other site.
Further, the inclusion of these links does not imply that the other sites
have given permission for inclusion of these links, or that there is any
relationship between WebAssign and the linked sites. WebAssign is
an independent operating company and reference to other
companies do not imply any partnership, joint venture, or other legal
connection where WebAssign would be responsible for the actions of
their respective owners.

Conduct

You may only access the Service for lawful purposes. You are solely
responsible for the knowledge of and adherence to any and all laws,
rules, and regulations pertaining to your use of the Service. You
agree that you will not:

 1. use the Service to commit a criminal offense or to encourage
conduct that would constitute a criminal offense or give rise to a civil
liability, or otherwise violate any local, state, Federal, or international
law or regulation, including, but not limited to, export control laws and
regulations;

 2. upload, post, e-mail, or otherwise transmit any unlawful,
threatening, libelous, harassing, defamatory, vulgar, obscene,
pornographic, profane, or otherwise objectionable content;

 3. disrupt the normal flow of communication or otherwise act in a
manner that negatively affects other users' ability to engage in real-
time exchanges; or

 4. interfere with or disrupt the service or servers or networks
connected to the services, or disobey any requirements, procedures,
policies, or regulations of networks connected to the Service.

Warranty Limitations

WEBASSIGN IS NOT RESPONSIBLE FOR ANY INFORMATION OR
CONTENT CONTAINED WITHIN WEBASSIGN AND MAKES NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THE
INFORMATION CONTAINED IN WEBASSIGN FOR ANY PURPOSE
OR AUDIENCE OR ABOUT ITS LEGITIMACY, LEGALITY,
VALIDITY, ACCURACY, CORRECTNESS, RELIABILITY, QUALITY,
STABILITY, COMPLETENESS, OR CURRENTNESS.

YOU AGREE THAT YOUR ACCESS TO WEBASSIGN AND YOUR
USE OF THE SERVICES IS AT YOUR OWN RISK. NEITHER
WEBASSIGN, NOR ITS OFFICERS, DIRECTORS, EMPLOYEES,
AFFILIATES, OR AGENTS WARRANT THAT THE SERVICES WILL
BE UNINTERRUPTED OR ERROR-FREE; NOR DO THEY MAKE
ANY WARRANTY AS TO THE RESULTS THAT MAY BE OBTAINED
FROM THE USE OF THE SERVICES OR AS TO THE ACCURACY,
RELIABILITY, SUITABILITY OR CONTENT OF THE SERVICES.

WEBASSIGN AND THE SERVICES ARE PROVIDED ON AN "AS
IS," "AS AVAILABLE" BASIS WITHOUT REPRESENTATIONS OR
WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR AUDIENCE, AND NON-INFRINGEMENT. IN NO EVENT WILL
WEBASSIGN OR ITS DIRECTORS, OFFICERS, EMPLOYEES,
AFFILIATES, OR AGENTS BE LIABLE TO YOU OR ANY THIRD
PARTY FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES (EVEN IF WEBASSIGN HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES), ARISING
OUT OF YOUR USE OF OR INABILITY TO ACCESS WEBASSIGN
OR USE THE SERVICES, INCLUDING WITHOUT LIMITATION,
LOSS OF REVENUE OR ANTICIPATED PROFITS, LOSS OF
GOODWILL, LOST BUSINESS, LOST DATA, COMPUTER FAILURE
OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
LOSSES THAT RESULT FROM MISTAKES, OMISSIONS,
INTERRUPTIONS, DELETIONS OF FILES, ERRORS, DEFECTS,
VIRUSES, DELAYS IN OPERATION OR TRANSMISSION, OR ANY
FAILURE OF PERFORMANCE, WHETHER OR NOT LIMITED TO
ACTS OF GOD, COMMUNICATIONS FAILURE, THEFT,
DESTRUCTION, OR UNAUTHORIZED ACCESS TO WEBASSIGN'S

9/2007

RECORDS, PROGRAMS, OR SERVICES. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, IN
SUCH STATES WEBASSIGN'S LIABILITY IS LIMITED TO THE
GREATEST EXTENT PERMITTED BY LAW.

Indemnification

You agree to indemnify and hold WebAssign, and its affiliates,
officers, agents, partners, and employees, harmless from any claim
or demand, including reasonable attorney's fees, made by any third
party due to or arising out of content you submit, post to, email, or
otherwise transmit through WebAssign, your use of the Service, your
connection to the Service, or your breach of the TOU.

Trademarks

WebAssign® is a registered service mark of North Carolina State
University under license to Advanced Instructional Systems, Inc.
(WebAssign). All other trademarks, service marks, trade dress, and
logos used in the Service are the trademarks, service marks, trade
dress, and logos of their respective owners.

Local Laws

WebAssign controls and operates the Service from its headquarters
in the United States and makes no representation that the Content is
appropriate or available for use in other locations. If you use the
Service from other locations, you are responsible for compliance with
applicable local laws, including, but not limited to, export and import
regulations of other countries. Unless otherwise explicitly stated, all
marketing or promotional materials found on the Service are solely
directed to individuals, companies, or other entities located in the
United States.

Modifications to the Service

WebAssign reserves the right at any time and from time to time to
modify or discontinue, temporarily or permanently, the Service with or
without notice. You agree that WebAssign will not be liable to you or
to any third party for any modification, suspension, or discontinuance
of the Service.

Termination

You may discontinue your participation in and access to the Service
at any time. The TOU will continue to apply to all past use of the
Service by you, even if you are no longer using them. You
acknowledge and agree that WebAssign may terminate or block your
use of all or part of the Service, without prior notice for any reason,
including, without limitation, if WebAssign believes you have engaged
in conduct prohibited by this TOU. You agree that upon termination or
discontinuance for any reason, we may delete all information related
to you on the Service and may bar your access to and use of the
Service.

General

By accessing the Service, you agree to the above stated TOU. This
Agreement is entered into in the State of North Carolina and shall be
construed in accordance with the laws of North Carolina, exclusive of
its choice of law rules. Each party to this TOU submits to the
exclusive jurisdiction of the state and federal courts having jurisdiction
in the State of North Carolina, and waives any jurisdictional, venue, or
inconvenient forum objections to such courts. In any action to enforce
this TOU, the prevailing party will be entitled to costs and attorney
fees. In the event that any provisions of this TOU are held to be
unenforceable, such provisions shall be limited or eliminated to the
minimum extent necessary so that this TOU shall otherwise remain in
full force and effect. This TOU and any posted guidelines or rules
applicable to certain services within the Service constitutes the entire
understanding between the parties pertaining to the subject matter
hereof, and any prior written or oral agreements between the parties
are expressly canceled.

If you have any questions about this Agreement, you may contact:

WebAssign
1730 Varsity Drive, Suite 200
Raleigh, NC 27606

	8. CREATING QUESTIONS
	8.1 Question Editor
	8.2 Multiple-Choice Questions
	8.2.1 Creating a multiple-choice question
	8.2.2 Ordered multiple-choice questions
	8.2.3 True or false questions
	8.2.4 Multiple-choice pulldown menus
	8.2.5 Controlling the position of radio buttons

	8.3 Multiple-Select Questions
	8.3.1 Creating a multiple-select question
	8.3.2 Ordered multiple-select questions
	8.3.3 Controlling the position of check boxes
	8.3.4 Random number of correct answers for multiple-select questions

	8.4 Fill-in-the-Blank Questions
	8.4.1 Creating a fill-in-the-blank question
	8.4.2 Controlling case and space sensitivity
	8.4.3 Rank-order questions

	8.5 Numerical Questions
	8.5.1 Creating a numerical question
	8.5.2 Changing the tolerance in a numerical question
	8.5.3 Significant figures using $SIGFIGS
	8.5.4 Significant figures using $DECFIGS
	8.5.5 Numerical questions with units

	8.6 Symbolic Questions
	8.6.1 Creating a symbolic question
	8.6.2 Using randomized variables
	8.6.3 Displaying a student symbolic response
	8.6.4 Changing the domain with $DEFAULTVALS (advanced)
	8.6.5 Changing the tolerance with $MAXERR (advanced)

	8.7 Algebraic Questions
	8.7.1 Creating an algebraic question
	8.7.2 Use of evalb
	8.7.3 Accepting equations as an answer

	8.8 Essay Questions
	8.9 File Upload Questions
	8.9.1 Specifying the file type
	8.9.2 Specifying the maximum file size

	8.10 Poll Questions
	8.10.1 Creating a poll multiple-choice question
	8.10.2 Creating other types of poll questions

	8.11 Image Map Questions
	8.12 Matching Questions
	8.12.1 Extra distracters
	8.12.2 Matching with labels

	8.13 Practice Questions
	8.14 Java Questions (Advanced)
	8.15 Multi-mode Questions
	8.16 Question Editor Features
	8.16.1 Testing and previewing questions
	8.16.2 My Files or using figures and other files in questions
	8.16.3 Hot keys

	9. ADVANCED QUESTION WRITING
	9.1 Introduction to the <eqn> and the <EQN> Tags
	9.1.1 Using multiple Perl statements in <eqn> tags
	9.1.2 Variable names in the <eqn> tag
	9.1.3 Use of the <EQN> tag

	9.2 Including Hints in Questions
	9.2.1 Hint for a simple question
	9.2.2 Controlling placement of the hint
	9.2.3 The $HINT variable

	9.3 Using Functions to Randomize and Format
	9.3.1 Functions to randomize numbers and text
	9.3.2 The randnum function
	9.3.3 The decform function
	9.3.4 The pickone and picksame functions
	9.3.5 The scinot function
	9.3.6 The sigform function
	9.3.7 Writing a simple question with random values
	9.3.8 Additional considerations when randomizing numbers
	9.3.9 Questions with randomized numbers and answers with intermediate steps

	9.4 Checking Significant Figures and Scientific Notation with sprintf
	9.5 Simple Multi-part and Multi-Mode Questions
	9.5.1 Writing a simple multi-part question
	9.5.2 Multi-Mode questions and <SECTION> tags
	9.5.3 Writing a multi-mode question

	9.6 Using JavaScript in Questions
	9.6.1 Using JavaScript alone
	9.6.2 Using JavaScript with applets in WebAssign

	9.7 Post-Processing Student Responses
	9.7.1 Forcing two or more correct answers into one for grading
	9.7.2 Preserving one answer to evaluate another

	9.8 Using Perl Modules and Functions
	9.8.1 Using functions from a Perl module
	9.8.2 Writing your own functions

	9.9 Creating “Java” Type Questions
	9.10 Math Display
	9.10.1 Using Math Display
	9.10.2 Expressions available in Math Display
	9.10.3 Defining a variable for a Math Display image

	9.11 Images and HTML Shortcuts
	9.11.1 Creating images with the s tag
	9.11.2 Creating HTML code with the h tag

	APPENDIX B: HTML TAGS
	B.1 General
	B.2 Fonts
	B.3 Links and Images
	B.4 Lists
	B.5 Tables
	B.6 HTML Special Characters
	B.7 WebAssign Classes

	APPENDIX C: GREEK LETTERS AND SYMBOLS
	APPENDIX D: TAGS, FUNCTIONS, AND VARIABLES
	D.1 Special WebAssign Tags
	D.1.1 The <eqn> and <EQN> tags
	D.1.2 Functions used in <eqn> and <EQN> tags
	D.1.3 Additional WebAssign tags

	D.2 WebAssign Reserved Variables
	D.3 WebAssign Flags
	D.4 WebAssign Internal Values
	D.5 If-then-else Perl Expressions

	TERMS OF USE

