
CMake build system
Distribute your software easily

Castagnède Cédric June 19th, 2012

Outline

1. Motivations of a build system

2. CMake build system

3. Test integration

4. Packaging

5. Release engineering @ Inria

June 19th, 2012 CMake build system - Castagnède Cédric - 2

Motivations of a build system

CMake build system - Castagnède Cédric June 19th, 2012 - 3

1

What problems do build system solve?

June 19th, 2012 CMake build system - Castagnède Cédric - 4

• For a developer:

• reduce the time spent in the cycle “edit / compile / test” cycle

• compile only what is necessary in the source code

• For a development team:

• generate packages

• run tests

• generate documentation

• For a user:

• install software easily

• have understandable error during install phase

• tune installation

Build a software: a lot of evil ways

June 19th, 2012 CMake build system - Castagnède Cédric - 5

Examples:

• “I will do a script to launch all my command and it will be ok”

• system-dependent, all path dependent, etc.

• high cost for developers and users

• “I will do a makefile with a make.inc, my software earns portability”

• costly for the user: manual configuration

• portable ≠ customizable

• Etc.

Features of a build system (1)

June 19th, 2012 CMake build system - Castagnède Cédric - 6

• automatic dependency management of source code

• compile only the modified sources files and thiers dependencies

• software portability:

• use native build environment

• determine available OS/compiler features : foo.h, libbar, strndup,

-Wall, etc.

• name correctly the library: .so / .dylib / .dll

• adaptability according user environment:

• auto-configuration of the project

• determine the availability and location of libraries, commands,

etc…

Features of a build system (2)

June 19th, 2012 CMake build system - Castagnède Cédric - 7

• customize installation:

• cross-compiling

• give some information: --help

• possibility to set information: --prefix, --libdir, --disable-shared,

etc.

• have some target: make all, make install…

• launch tests:

• without installation: link with generated library

• after an installation: link with installed library

• give a report of the build

CMake build system - Castagnède Cédric June 19th, 2012 - 8

CMake build system

2

Introduction

June 19th, 2012 CMake build system - Castagnède Cédric - 9

• Open-source, cross-platform build system (New BSD Licence)

• Develop by Kitware since 2001

• Using compiler-independent method

• Can be used with native build environments (Eclipse, Xcode, Visual

Studio…)

• Give some extensions to locate libraries, headers…

• Give some interfaces for generate a test suite and packaging

• Notable applications using CMake: KDE, Blender, LLVM, OGRE

Get and install CMake

June 19th, 2012 CMake build system - Castagnède Cédric - 10

• Get and install from web:

http://www.cmake.org/cmake/resources/software.html

>./configure --prefix=<path>

> make

> make install

• Or install form your distribution

• Be careful:

• about the version of CMake

• CMake is needed to build and install your software

http://www.cmake.org/cmake/resources/software.html

Manage a project with CMake

June 19th, 2012 CMake build system - Castagnède Cédric - 11

• CMakeLists.txt describes the project:

• list of source files,

• library to link with…

• CMakeLists.txt is:

• machine-independent

• common for all users

• CMakeCache.txt is:

• generated by calling: cmake <path_to_source>

• GUI: ccmake or cmake-gui

• machine-specific

cmake CMakeCache.txt

Makefile

CMakeLists.txt

Configuration, build and install step

June 19th, 2012 CMake build system - Castagnède Cédric - 12

• Two way o configure the project:

• In-source

• Possibility to choose makefile generator during configuration

• After configuration, build and install step can be launch

> cd <path_to_source>

> cmake . –DOPTION=<VALUE>

• Out-of-source

> cd <path_to_build>

> cmake <path-to_source>

 –DOPTION=<VALUE>

> cmake ../ -G “Unix Makefiles” or –G “Xcode” etc…

> make

> make install

Configuration with GUI

June 19th, 2012 CMake build system - Castagnède Cédric - 13

• ccmake <path_to_source> • cmake-gui <path_to_source>

Build and install step

June 19th, 2012 CMake build system - Castagnède Cédric - 14

• Some important variables to:

• control the build type:

• control the install directory

• activate the verbosity of makefiles

• produce shared or static library

• etc…

CMAKE_BUILD_TYPE=[Debug, Release]

CMAKE_INSTALL_PREFIX=[/usr/local, home/toto/my_project]

CMAKE_VERBOSE_MAKEFILE=ON

CMAKE_SHARED_LIBS=[OFF, ON]

A simple syntax (1)

June 19th, 2012 CMake build system - Castagnède Cédric - 15

• Look like script language

• note

• variable

• list

• Command

• Control structure

• Dynamic configuration

Describe what I have done

SET(VAR “toto”)

LIST(KEYWORD list iostream)

COMMAND(ARG1 ARG2)

IF(${VAR})

ENDIF()

FOREACH(VAR VAL1 VAL2)

ENDFOREACH()

CONFIGURE_FILE(config.h.in

 config.h)

#cmakedefine FOO_VER ${FOO_VER}

#cmakedefine @BUILD_SHARED_LIBS@

A simple syntax (2)

June 19th, 2012 CMake build system - Castagnède Cédric - 16

• Library detection

• Feature validation

FIND_PACKAGE(CUDA

 REQUIRED)

FIND_LIBRARY(MY_LIB lib

 PATH path)

INCLUDE(CheckCCompilerFlag)

CHECK_C_COMPILER_FLAG(flag

 HAVE_FLAG)

INCLUDE(CheckFunctionExists)

CHECK_FUNCTION_EXISTS(func

 HAVE_FUNC)

INCLUDE(CheckIncludeFile)

CHECK_INCLUDE_FILE(header

 HAVE_HEADER)

INCLUDE(CheckSourceCompiles)

CHECK_C_SOURCE_COMPILES(code

 VAR)

Exercise: helloworld-cmake (1)

June 19th, 2012 CMake build system - Castagnède Cédric - 17

helloworld-
cmake

CMakeLists
.txt

include

foo.h

lib

CMakeLists.txt foo.c

src

CMakeLists.txt main.c

Exercise: helloworld-cmake (2)

June 19th, 2012 CMake build system - Castagnède Cédric - 18

#include <foo.h>

int main(int ac, char *av[])

{

 print_message();

 return 0;

}

#include <foo.h>

void print_message(void) {

 printf("Hello World!\n");

}

#include <stdio.h>

void print_message(void);
CMAKE_MINIMUM_REQUIRED(VERSION 2.6)

PROJECT(helloworld C)

SET(SRC

 src/main.c

 include/foo.h

 lib/foo.c

)

ADD_EXECUTABLE(test ${SRC})

• The quickest way to compile the project

• Feature test are not here !

• “install” phase not defined…

Exercise: helloworld-cmake (3)

June 19th, 2012 CMake build system - Castagnède Cédric - 19

• TODO

CMAKE_MINIMUM_REQUIRED(VERSION 2.6)

ADD_LIBRARY(foo foo.c)

INSTALL(TARGETS foo

 DESTINATION lib)

CMAKE_MINIMUM_REQUIRED(VERSION 2.6)

ADD_EXECUTABLE(my_helloworld main.c)

TARGET_LINK_LIBRARIES(my_helloworld

foo)

INSTALL(TARGETS foo

 DESTINATION bin)

CMAKE_MINIMUM_REQUIRED(VERSION 3.6)

PROJECT(helloworld C)

INCLUDE(CheckIncludeFile)

CHECK_INCLUDE_FILE(stdio.h

 HAVE_STDIO)

IF(NOT HAVE_STDIO)

 MESSAGE(FATAL_ERROR "Looking

 for stdio.h - not found")

ENDIF()

INCLUDE(CheckFunctionExists)

CHECK_FUNCTION_EXISTS(printf

 HAVE_PRINTF)

IF(NOT HAVE_PRINTF)

 MESSAGE(FATAL_ERROR "Looking

 for printf - not found")

ENDIF()

INCLUDE_DIRECTORIES(include)

ADD_SUBDIRECTORY(lib)

ADD_SUBDIRECTORY(src)

CMake build system - Castagnède Cédric June 19th, 2012 - 20

Test integration

3

About CTest

June 19th, 2012 CMake build system - Castagnède Cédric - 21

• CTest comes with CMake

• It can be use without CMake

• It allows to:

• automate updating form a repository

• configuration and build

• execute unit or regression tests

• execute advanced tests (coverage, purify, valgrind…)

• Results can be submit to a CDash server

Introduction to CTest

June 19th, 2012 CMake build system - Castagnède Cédric - 22

• Modify CMakeLists.txt in the top directory:

• tests/CMakeLists.txt looks like:

PROJECT(FOO)

INCLUDE(CTest)

INCLUDE_DIRECTORIES(tests)

ENABLE_TESTING()

ADD_EXECUTABLE(example example.cpp)

ADD_TEST(test1 example)

Using CTest

June 19th, 2012 CMake build system - Castagnède Cédric - 23

• Get the list of tests

• Launch tests

• Get log files

> ctest -N

> make test

> ctest

> ctest –I Start,End,Stride

LastTest.log LastTestsFailed.log

CMake build system - Castagnède Cédric June 19th, 2012 - 24

Packaging

4

about CPack

June 19th, 2012 CMake build system - Castagnède Cédric - 25

• CPack comes with CMake

• It can be use without CMake

• It allows to:

• generate a source distribution

• generate different binary package

Introduction to CPack without CMake

June 19th, 2012 CMake build system - Castagnède Cédric - 26

• Write a file named CPackConfig.cmake or

CPackSourceConfig.cmake that looks like:

• Generate package :

SET(CPACK_GENERATOR “TGZ")

SET(CPACK_PACKAGE_NAME “MY_SOFT”)

SET(CPACK_PACKAGE_VERSION_MAJOR “1")

SET(CPACK_PACKAGE_VERSION_MINOR “2")

SET(CPACK_PACKAGE_VERSION_PATCH “0")

SET(CPACK_PACKAGE_DESCRIPTION_FILE “${SOURCE_DIRECTORY}/COPYRIGHT")

SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY “Summary”)

SET(CPACK_INSTALLED_DIRECTORIES “${SOURCE_DIRECTORY};/")

SET(CPACK_INSTALL_CMAKE_PROJECTS “”)

SET(CPACK_PACKAGE_FILE_NAME “my-soft")

SET(CPACK_PACKAGE_VENDOR “Inria”)

> cpack –D OPTION=VALUE

Introduction to CPack with CMake

June 19th, 2012 CMake build system - Castagnède Cédric - 27

• Add in your CMakeLists.txt

• Generate package :

INCLUDE(InstallRequiredSystemLibraries)

SET(CPACK_GENERATOR “TGZ")

…

SET(CPACK_PACKAGE_VENDOR “Inria”)

INCLUDE(Cpack)

> make && cpack

> make && make package

> make && make package_source

CMake build system - Castagnède Cédric June 19th, 2012 - 28

Release engineering @ Inria

5

Some platform to help you

June 19th, 2012 CMake build system - Castagnède Cédric - 29

• Continuous integration:

• Hydra: local platform | status: OK

contact: sed-bordeaux@inria.fr

• CI@Inria: national platform | status: standby

contact: sed-lille@inria.fr

• CDash: national platform | status: OK

contact: http://cdash.inria.fr/CDash/

• Porting:

• PIPOL: national platform | status: ON (OFF soon???)

contact: http://pipol.inria.fr/

http://cdash.inria.fr/CDash/
http://pipol.inria.fr/

To conclude

CMake build system - Castagnède Cédric June 19th, 2012 - 30

6

Some conclusions

• About build system

• manage the relationship: developer(s) / user(s)

• About CMake / CTest / CPack

• easy-to-develop

• multi-platform

• warning: reinventing the wheel, and making it square

June 19th, 2012 CMake build system - Castagnède Cédric - 31

Thank you

Inria Bordeaux – Sud-Ouest

http://sed.bordeaux.inria.fr

