
US00564249 1A

Ulllted States Patent [19] [11] Patent Number: 5,642,491
Rose et al. [45] Date of Patent: Jun. 24, 1997

[54] METHOD FOR EXPANDING ADDRESSABLE 5,193,161 3/1993 Bealkowski et a1. 395/416
MEMORY RANGE 1N REALMODE 5,210,873 5/1993 Gay et a1. 395/650
PROCESSING To FACILITATE LOADING 5,255,379 10/1993 Melo 395/412
OF LARGE PROGRAMS INTO HIGH 5,303,378 4/1994 Cohen 395/700

MEMORY OTHER PUBLICATIONS

[75] Inventors: Robert Allen Rose, Delray Beach; Chappell, Geoff. DOS Internals, chapter 8, “Extended
Allen Chester Wynn, Lantana, both of Memory Access From Real Mode”. pp. 355-385. Jan. 1994.
F1 .

a Primary Examiner—Jack A. Lane

[73] Assignee: International Business Machines Assistant Examiner-Kevin Verbrugge _
Corporation, Armonk, NY, Attorney, Agent, or Firm—JefErey S. LaBaw; Dav1d H.

Judson

[21] Appl. No.2 309,862 [57] ABSTRACT

[22] Filed: SeP' 21’ 1994 Disclosed is a technique for overcoming the l-Mbyte mode
[51] Int. Cl.6 G06F 12/06 memory 199M109 aswciatcd with ‘Teal-19°93” opm'ion of
[52] ” 395/402, 395/570 certain Intel Corp. microprocessor architectures. This limi
[58] Fi d d of Search 3 95/1/00 425 tation can be overcome by altering the contents of a register

""""""""""" 570_ 364/206 port1on that is computationally meaningful only in “pro
’ ’ tected mode,” but which persists and exerts effects in real

. mode. By indirectly manipulating the contents of this reg
[56] References Clted ister portion in protected mode in a manner that avoids

U.S. PATENT DOCUMENTS disruption to the register during the switch back to real
4825 358 4,1989 Letwin 395,700 mode, access can be obtained, in real mode, to up to 4
5,027,273 6/1991 Letwin Gbytes °fv°1am° memory‘

5,134,580 7/1992 Bertram et a1. 5,144,551 9/1992 Cepulis 395/490 18 Claims, 1 Drawing Sheet

CREATE GLOBAL f12
DESCRIPTOR TABLE

1
SWITCH 1o /14

PROTECTED MODE

1
LOAD SEGMENT /16

REGISTER '

i
SWITCH TO
REAL MODE \ 18

i
ACCESS MEMORY usmc
DESIGNATED REGISTER \20

22

US. Patent Jun. 24, 1997 5,642,491

cREATE GLOBAL /12
DESCRIPTOR TABLE

D SWITCH TO /14
PROTECTED MoDE

Jr
LOAD SEGMENT fTs

REGISTER

J,
SWITCH To
REAL MODE \T8

ACCESS MEMORY USING
DESIGNATED REGISTER \20

@22

5,642,491
1

METHOD FOR EXPANDING ADDRESSABLE
MEMORY RANGE 1N REAL-MODE

PROCESSING TO FACILITATE LOADING
OF LARGE PROGRAMS INTO HIGH

MEMORY

FIELD OF THE INVENTION

This invention relates to methods and apparatus for oper
ating a computer system that utilizes a processor capable of
operation in so-called “protected” and “real” modes.

BACKGROUND OF THE INVENTION

The “brain” of any personal computer is a microprocessor
chip, which performs the functions once associated with
dedicated hardware central-processing units. Microproces
sors are generally organized into two functional areas: the
arithmetic/logic unit (ALU) and the control section. The
control section obtains instructions from memory and con
verts them into electronic signals that effectuate the opera
tions they specify. These operations can involve the ALU or,
Via a bidirectional system bus, extend to every function and
device associated with the computer. '

A popular family of microprocessors used in personal
computers is manufactured by Intel Corporation, Santa
Clara, Calif. The internal architecture of these
microprocessors, known generally by the designation “x86,”
has undergone signi?cant evolution since the line was ?rst
introduced. The earliest x86 chips (the 8088, 8088-2, 8086
and 80186, hereafter collectively referred to as “8086” due
to their similar attributes) were relatively limited in capa
bility. 8086 microprocessors did not support “multitasking,”
i.e., the ability of a single computer to run more than one
application at a time or to run background operations while
other tasks are carried out. Also, the 8086 could only address
a single Megabyte (Mbyte) of random-access memory
(RAM)—adequate by then-prevailing standards but far too
limited to run today’ s software. The 8086 addressed memory
bytes in terms of their “real” or physical addresses in RAM.
Speci?cally, an address was speci?ed by a 32-bit pointer
having two components: a 16-bit “segment selector” that
speci?ed the starting address of a sequential series of bytes
(a “segment”) to be retrieved; and an effective address o?’set
specifying the displacement, in bytes, of a particular location
within the segment. A 20-bit physical address was derived
from these components by interpreting the 16-bit segment
selector value as a 20-bit s value having zeros in the in the
four least-signi?cant bits; the 16-bit offset value was then
added to this 20-bit segment base to produce a 20-bit value
designating the physical address. Each memory segment
could contain data, commands, command stacks, interrupts,
?ags or some combination thereof.

Later x86 versions (the 80386, 80486 and Pentium, here
after collectively referred to as “enhanced x86”) have sup
ported both multitasking and an expanded memory range
(up to 4 Gigabytes, or Gbytes), as well as a sophisticated
memory-protection scheme. To accommodate enlarged
memory and a broader instruction set, enhanced x86 rnicro
processors do not address physical locations in memory
directly. Instead, segment registers specify “virtual”
addresses that correspond only indirectly to particular loca
tions in physical memory. A memory-management scheme
“maps” virtual addresses to their physical counterparts using
one of a series of “descriptor tables,” which contain entries
that point to locations in physical memory. More
speci?cally, the 13 bits of the virtual (or “logical”) address,
called the “segment selector,” specify a location in a descrip

10

20

25

30

35

45

50

55

2
tor table that de?nes a memory segment in terms of its
physical location and length in bytes. This arrangement
facilitates relocation of segments to different portions of
memory by mere alteration of entries in the descriptor tables.

Each descriptor table is an array of 8-byte entries called
“descriptors.” The segment selector identi?es a segment
descriptor by specifying a particular descriptor table and a
descriptor Within that table. The descriptor, in turn, speci?es
the base or starting location of the segment in physical
memory. The use of different descriptor tables serves to
isolate simultaneously running programs from one another
while allowing them to access common resources in
memory. Programs running under an enhanced x86 micro
processor specify either a Global Descriptor Table (GDT),
which speci?es system-wide procedures and data that are
available to all active programs; or a Local Descriptor Table
(LDT) corresponding to the particular program being run.
Unlike the GDT, LDTs address memory locations that are
separately masked for each program.

Because of the popularity of the x86 architecture, a
substantial number of programs Written for the 8086 were in
widespread use when Intel introduced the 80286. In order to
permit this body of programs to operate on enhanced x86
architectures, Intel designed these architectures to run in two
modes. In “real address” or simply “real” mode, the micro
processor emulates the 8086, treating a memory address as
corresponding directly to a physical memory location within
the l-Mbyte limit. In “protected” mode, the microprocessor
treats an address as a segment selector, implementing the
memory-relocation and masking features that characterize
the enhanced x86 architecture. The microprocessor can be
switched from real mode to protected mode with a single
instruction.

This operational ?exibility is important, because real
mode processing can prove necessary even outside the
context of older programs. In particular, before the operating
system and appropriate device drivers are loaded during
system startup, disk input/output operations are typically
performed in real mode. Routine memory operations (where
protection is unnecessary) are also performed more conve
niently in real mode, and even current operating software
sometimes requires real-mode operation. Unfortunately,
processing in real mode remains hampered by the l-Mbyte
address limit. For example, when the computer is initially
powered up, the microprocessor loads the computer’s oper
ating system into RAM from mass storage; however,
because modern operating systems occupy more than 1
Mbyte of memory, loading one in real mode is problematic
and requires special techniques to overcome the address
limit. conventionally, programmers circumvent this limit by
setting up a buffer of 64 ldlobytes (kbytes) in real-mode
addressable memory and transferring the operating system
in 64-kbyte fragments using routines provided as part of the
computer’s ?rmware. This method is quite slow, however,
because the transfer routines switch the microprocessor into
protected mode in order to copy the contents of the buifer
into high memory, then switch back to real mode to perform
the mass-storage retrieval operations that bring another
64-kbyte fragment into the buffer. Thus, the operating mode
must be switched twice each time the buifer contents are
transferred into high memory—a cumbersome procedure,
because mode-switching is very slow relative to other opera
tions.

SUMMARY OF THE INVENTION

The present invention relieves programmers of the
l-Mbyte real-mode memory limit by exploiting an unusual

5,642,491
3

artifact of enhanced x86 architectures. To understand the
approach of the invention, it is important to recognize that
the real-mode emulation offered by enhanced x86 architec
tures actually represents a variant of protected mode. It has
been found that the addressable-memory limitation can be
overcome by altering the contents of a register portion that
can be modi?ed only in protected mode. This register
portion speci?es an upper limit to the offset amount (64
kbytes in real mode) and cannot be directly accessed by
programmers. However, by implicitly modifying the con
tents of this register portion in protected mode in a manner
that avoids disruption to the register during the switch back
to real mode. the invention is able to ovenide the
addressable-memory limitation and permit access, in real
mode, of up to 4 Gbytes of RAM.

Accordingly, the method of the invention involves creat
ing a descriptor table (preferably, although not necessarily a
GDT) containing a single descriptor which, when accessed,
will modify the contents of the current segment register to
permit an offset limit of 4 Gbytes. The microprocessor is
switched from real mode into protected mode, the descriptor
is selected. and the microprocessor is switched back into real
mode. Using 32-bit instructions that employ the modi?ed
register, addresses up to FFFF__FFFFhex (or 4 Gbytes) can
be accessed. The method of the invention allows bulk
storage and retrieval operations to be accomplished very
quickly, since the microprocessor is switched only once into
protected mode; the memory operations are carried out in
real mode.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing discussion will be understood more readily
from the following detailed description of the invention,
when taken in conjunction with the single ?gure of the
drawing, which illustrates in ?ow-chart form the operation
of a representative embodiment of the invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present invention is best understood with particular
reference to the addressing, memory-management and pro
tection techniques utilized by enhanced x86 architectures.
Further descriptions of these subjects appear in PentiumTM
Processor User’s Manual (Intel 1994) and US. Pat. Nos.
5,027,273 and 5,144,551. The subject matter of US. Pat.
Nos. 5,027,273 and 5,144,551 is hereby incorporated by
reference.

Enhanced x86 microprocessors utilize 16 registers of
three different types and sizes. The general registers EAX,
EBX, ECX. EDX, ESP, EBP, E81 and EDI are each 32 bits
in length. The X registers EAX, EBX, ECX. EDX may be
accessed as a 16-bit register or two independent 8-bit
registers. In assembly language, the lower 16-bit portion of
the EAX register is designated AX; the designations AL and
AH denote the low and high eight bits of the AX register. and
represent bits 0-7 and bits 8-15 of the EAX register. The
general registers ESP, EBP, ESI and EDI may be accessed
only as l6-bit or 32-bit registers.
A second group of registers, EIP and EFLAGS, maintain

status and control information. The remaining six registers
ES. CS, SS. DS. FS and GS are l6-bit segment registers that
contain selectors (which specify descriptors) for purposes of
memory addressing. A segment selector identi?es a segment
descriptor by specifying a descriptor table and a particular
descriptor within that table. In addition. the selector speci?es
a privilege level associated with the requester. The SS and

10

15

20

25

30

35

50

55

65

4
CS registers perfonn speci?c tasks, the former referring to
the segment containing the command stack for the task
being executed, and the latter used to address the current
code segment. Other segment registers have no dedicated
uses and may be designated in instructions by the program
mer.

A descriptor contains the 32-bit address in physical
memory of the associated segment; its limit (i.e., the size in
bytes), speci?ed by a 20-bit ?eld; a descriptor privilege level
against which the selector privilege level is compared; and
a series of settings that frn'ther de?ne the segment. For
purposes of the present invention, the important settings
include a “granularity” bit and bits that determine whether
the memory locations are “writeable” (i.e., available as free
storage space) or merely “readable” (protected against
overwriting). The granularity bit governs the manner in
which the 20-bit limit ?eld is interpreted. If the ?ag is not
set. the limit bits are read directly, and designate a segment
length of up to 1 Mbyte. If the granularity ?ag is set, the
microprocessor scales the limit ?eld by a factor of 212.
allowing the length to be speci?ed in units of 4 kbytes to a
maximum of 4 Gbytes.
As far as the user is concerned, segment registers contain

only segment selectors that specify descriptors. However,
the selector represents only the programmer-accessible
(“visible”) portion of the register. When. during program
execution, the microprocessor encounters an instruction
designating a memory segment, the segment register speci
?ed in the instruction (or the default register. usually DS) is
examined and its (visible) selector contents used as a pointer
to the proper descriptor. The microprocessor then copies the
contents of the descriptor, including the segment base
address and limit, into the programmer-inaccessible
(“invisible”) portion of the register. and utilizes the full
register contents to retrieve the designated segment from
RAM. Thus, the programmer is effectively insulated from
physical memory addresses, and instead is constrained to
designate more easily changed and managed descriptors.

In real mode. of course, the notion of selectors and
descriptors has is no meaning; the contents of the selection
registers directly designate physical memory addresses.
However, as noted previously, real-mode processing in
enhanced x86 architectures is actually an emulation. i.e., a
variation of protected-mode processing that simulates real
mode behavior. We have found that the limit value in the
invisible portion of the current segment register is used to
determine the extent of memory addressable by that register
in real mode. Ordinarily, in entering real mode from pro
tected mode. the programmer will have loaded registers SS.
DS, ES. FS and GS with selectors for descriptors having
limits of 64 kbytes, and transferred control to a segment with
a limit of 64 kbytes; the 64-kbyte limit is important to
real-mode operation, since it e?fectuates the 64-kbyte wrap
ping feature associated with true 8086 real mode. However,
since the limit also de?nes the ?eld of addressable
memory--a protected-mode property that persists during
real-mode emulation—-expanding the limit results in a cor
responding extension of the addressable ?eld. Because the
invisible portion of the segment registers has no meaning in
real mode, its values persist through sequential memory
access operations.
As mentioned previously, the limit is speci?ed by a 20-bit

value scaled in single- or 4-kbyte increments. By specifying
the maximum 20~bit range and setting the granularity bit, a
full 4 Gbytes can be addressed in real mode.

Refer to the ?gure, which illustrates the preferred manner
of introducing the necessary values into the invisible portion

5,642,491
5

of a desired segment register and preserving this value as the
microprocessor is switched to real mode. The process begins
at a ?rst block 10 and proceeds to the ?rst substantive
operation at block 12. In this preliminary step, a GDT is
created. The GDT contains a single descriptor having a base
address of zero and a size corresponding to the desired
addressable ?eld (preferably 4 Gbytes), further speci?ed as
readable and writeable. The next step, at block 14, occurs
during system operation (typically at startup). In step 14, the
microprocessor is switched into protected mode to enable
loading of an appropriate limit ?eld.
At block 16, the descriptor is designated, resulting in

loading of its contents into the invisible portion of the
designated (or default) register. The microprocessor is then
switched back to real mode, as shown at block 18. This latter
step is performed in a manner that does not disrupt the
contents of the register loaded in step 16; speci?cally, the
protect enable bit is cleared without reloading the default or
designated register. Using this register to access memory
locations in real mode, as shown at block 20, the entire range
of memory speci?ed in the invisible portion of the register
is available. The process concludes at step 22. Because the
value of the register limit ?eld differs from the 64-ldayte
limit that enables wrapping, the 64-kbyte limit should be
imposed prior to further real-mode processing. This is
accomplished, for example, by switching back to protected
mode and loading the register with a selector for a descriptor
containing a 64-kbyte limit value.

Steps 14-20 can be implemented by suitable processor
instructions. For example, steps 14 and 18 are ordinarily
accomplished with a MOV CRO instruction, which sets or
resets the protect enable ?ag in the microprocessor’s CRO
register—an action interpreted as a command to switch
modes. Step 16 can be performed using the instruction MOV
[R1111]
where R] denotes any of the segment registers DS. ES. FS
or GS and [n] denotes a selector specifying the location of
the descriptor generated in step 12. Instructions that can
exploit the expanded addressing capacity provided by the
present invention are numerous; the primary restriction is
use in a 32-bit form to ensure adequate addressing capacity.
They include: MOV [R]:[G],[X]
where [G] denotes one of the 32-bit general registers and [X]
denotes the value to store. This instruction moves [X] to the
memory location speci?ed by the contents of [R] and offset
by the contents of [G], and is useful, for example, in loading
memory with an image retrieved from mass storage (e.g.,
from a system hard disk).

Another useful instruction is: REP MOVSD
This instruction, which repeats a speci?ed number of times,
transfers the contents of the RAM location speci?ed by
DSzESI (i.e., the address speci?ed in the DS register offset
by the contents of the ESI register) to the location speci?ed
by ESzEDI.

Another useful instruction is: STOSD
This instruction, which also repeats a speci?ed number of
times, stores the contents of the EAX register in the memory
location speci?ed by ESzEDI.
As noted previously, the results of steps 14-18 disable

64-kbyte wrapping. Therefore, the invention is best
employed in initialization operations (e.g., loading of the
operating system or other programs from mass storage) that
take place before execution of application programs actually
begins, or in conjunction with real-mode programs that do
not depend on wrapping.

It will therefore be seen that the foregoing represents a
highly e?icient and straightfowardly implemented approach

15

25

30

35

45

50

55

65

6
to expanding the memory-addressing capabilities of
enhanced x86 microprocessors in real mode. The terms and
expressions employed herein are used as terms of descrip
tion and not of limitation, and there is no intention, in the use
of such terms and expressions, of excluding any equivalents
of the features shown and described or portions thereof, but
it is recognized that various modi?cations are possible
within the scope of the invention claimed. For example,
although use of a GDT provides greatest operational
convenience, it is equally possible to load values into the
invisible portion of a segment register using an LDT and
appropriate loading instructions (as well known to those
skilled in the art).
What is claimed is:
1. A method of enlarging the addressable memory space

in a computer comprising a processor, an addressable
memory, an operating system and at least one segment
selection register to facilitate loading of the operating sys
tem into a high memory region of the addressable memory,
the processor being capable of switchably operating in a real
mode wherein the processor can address a limited range of
memory or a protected mode wherein the processor can
address a large range of memory including the high memory
region, the real mode being characterized by a numeric value
in the at least one segment-selection register that speci?es
the range of memory and that cannot be modi?ed when the
processor operates in the real mode, the method comprising:

a. in the protected mode, operating the processor to
replace the numeric value in said segment-selection
register with a different value specifying the large range
of memory;
switching the processor to the real mode without
modifying the value in said segment-selection register;
and

c. with the processor remaining in the real mode, access
ing memory locations using said segment-selection
register to store the operating system in the high
memory region of the addressable memory.

2. The method of claim 1 wherein, in the real mode, each
segment-selection register speci?es a physical memory
address.

3. The method of claim 1 wherein the memory contains at
least one table comprising a plurality of descriptors, each
descriptor specifying a segment base address and a memory
limit, and further comprising the steps of:

a. loading into a table a descriptor specifying a base
address of zero and a memory limit corresponding to
the large range of memory; and

b. operating the processor to select the descriptor using
said segment-selection register, thereby loading the
base address and the memory limit speci?ed in the
descriptor into said segment-selection register.

4. The method of claim 3 wherein the table is a Global
Descriptor Table.

5. The method of claim 3 wherein the table is a Local
Descriptor Table.

6. The method of claim 1 wherein the large range of
memory corresponds to all memory in the computer system.

7. The method of claim 1 wherein the large range of
memory is 4 Gbytes.

8. The method of claim 1 wherein memory is accessed by
instructions. ’

9. The method of claim 8 wherein the instructions com
prise load instructions.

10. The method of claim 9 wherein the instructions
expressly reference the segment-selection register.

5,642,491
7

11. The method of claim 10 wherein the load instructions
comprise move instructions.

12. A computer program product for use with a computer
comprising a processor, an addressable memory, an operat
ing system and at least one segment-selection register to
facilitate loading of the operating system into a high
memory region of the addressable memory, the processor
being capable of operating in a real mode in which the
processor can address a limited range of memory, or a
protected mode in which the processor can address a large
range of memory including the high memory region. the real
mode being characterized by a numeric value in the at least
one segment-selection register that speci?es the range of
memory and which cannot be modi?ed when the processor
operates in the real mode, said computer program product
comprising:

a computer usable medium having computer readable
program code means embodied in said medium for
causing the computer system to enlarge the addressable
memory space to facilitate loading of the operating
system. the computer readable program code means
comprising:
program code means for causing the processor, when in

the protected mode, to replace the numeric value in
the segment-selection register with a diiferent value
specifying the large range of memory;

program code means for causing the processor to
switch to the real mode without modifying the value
in the segment-selection register; and

program code means, operative while the processor
remains in the real mode, for accessing memory loca
tions using the segment-selection register to store the
operating system in the high memory region of the
addressable memory.

13. The computer program product as de?ned in claim 12,
wherein the memory contains at least one table comprising
a plurality of descriptors, each descriptor specifying a seg
ment base address and a memory limit, and wherein the
computer program further comprises:

a means for causing the computer system to load into a
table a descriptor specifying a base address of zero and
a memory limit corresponding to the large range of
memory; and

a means for causing the processor to select the descriptor
using the segment-selection register, thereby loading
the base address and the memory limit speci?ed in the
descriptor into the segment-selection register.

14. The computer program product as de?ned in claim 12
wherein the large range of memory corresponds to all
memory in the computer system.

15

25

30

35

45

8
15. In a computer system having a processor operable in

real mode or protected mode, a disk memory, an addressable
memory, and at least one segment-selection register, a
method of loading a program from disk memory into a high
memory region of the addressable memory during system
initialization, wherein the program is substantially larger in
size than a ?rst range of addressable memory accessible by
the processor operating in real mode, the method compris
ing:

(a) with the processor operating in protected mode. setting
a value in the segment-selection register to specify a
second range of addressable memory that is substan
tially larger than the ?rst range of addressable memory
and that includes the high memory region, wherein the
value is otherwise write-protected when the processor
operates in the real mode; and

(b) with the processor operating in real mode, accessing
memory locations using the segment-selection register
to locate the program in the high memory region.

16. The method as described in claim 15 wherein the
program is a protected mode operating system.

17. A computer, comprising:
a processor selectively operable in real mode or protected
mode;

an addressable memory having a high memory region for
receiving a program to be loaded from disk memory
during system initialization, the program being sub
stantially larger in size than a ?rst range of addressable
memory accessible by the processor operating in real
mode;

at least one segment-selection register;

means, operative while the processor is in protected
mode, for setting a value in the segment-selection
register to specify a second range of addressable
memory that is substantially larger than the ?rst range
of addressable memory and that includes the high
memory region, wherein the value is otherwise write
protected when the processor operates in the real mode;
and

means, operative while the processor is in real mode, for
accessing memory locations using the segment
selection register to locate the program in the high
memory region.

18. The computer as described in claim 17 wherein the
program is a protected mode operating system.
