
AN UHF FREQUENCY-MODULATED CONTINUOUS
WAVE WIND PROFILER - DEVELOPMENT AND

INITIAL RESULTS

A Thesis Presented

by

DAVID GARRIDO LOPEZ

Submitted to Universitat Politecnica de Catalunya

Escola Tecnica Superior d’Enginyeria de Telecomunicacio de Barcelona

in fulfillment of the requirements for the degree of

ENGINYERIA SUPERIOR DE TELECOMUNICACIO

January 2010

Electrical and Computer Engineering



AN UHF FREQUENCY-MODULATED CONTINUOUS
WAVE WIND PROFILER - DEVELOPMENT AND

INITIAL RESULTS

A Thesis Presented

by

DAVID GARRIDO LOPEZ

Approved as to style and content by:

Stephen J. Frasier, Professor
Electrical and Computer Engineering



To my mother and father for the struggles they have gone through in
their lives, and the support they have always given me.



ACKNOWLEDGMENTS

First of all I would like to thank Dr. Stephen Frasier for giving me the chance

to be here at MIRSL, and for all of the help he provided me. I have really learn a

lot from you. Being here at MIRSL has been an excellent experience that helped

me to improve my knowledge in some areas such as remote sensing, antennas, signal

processing or electronics. It also made me grow as an engineer, and experience other

ways of working and researching that I am sure will be useful in my future career.

Also I have to thank Jorge Salazar, Jorge Trabal and Rafael Medina, the support

and help they gave me. They were always willing to answer my questions, and that

was always very helpful. Ivona Kostadinova deserves a special consideration as well

because she introduced me to the radar and did the previous work with it which

helped me get to the point where I am now.

Finally, I want to thank my family for their support from a distance. Thanks to

them I did not feel alone, even with an ocean in between us.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. FMCW WIND PROFILER PRINCIPLES . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Atmospheric Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Clear Air Backscatter Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 FMCW Radar Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. SYSTEM HARDWARE DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Initial hardware configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 FMCW Radar Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 FMCW Radar Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Wind Profiler Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.2.1 Control and Transmit Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Calibration Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Receiver Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. DATA ACQUISITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 24DSI6LN Data Acquisition Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Data Acquisition Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Synchronization Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. SIGNAL PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Signal Processing Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Noise Floor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Minimum Detectable Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. ANTENNA ISOLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Antenna Isolation Tests With New Shrouds . . . . . . . . . . . . . . . . . . . . . . . . . 36

7. GRAPHICAL USER INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

APPENDICES

A. DATA ACQUISITION PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1 main.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 savedata.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B. SYNCHRONIZATION PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 pre processing david.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



C. SIGNAL PROCESSING PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1 windprof process david.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

D. GRAPHICAL USER INTERFACE PROGRAM . . . . . . . . . . . . . . . . . . 80

D.1 wgui fmcw create.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

D.2 wgui fmcw event.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D.3 get conf file.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.4 run windprofiler.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.5 reset.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

D.6 run daq.pro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



LIST OF TABLES

Table Page

3.1 Initial System specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Delay line specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



LIST OF FIGURES

Figure Page

2.1 Boundary layer structure (from [6]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Time versus frequency diagram(a); FM signal (b). . . . . . . . . . . . . . . . . . . . . 7

2.3 Difference on instantaneous frequencies on FMCW . . . . . . . . . . . . . . . . . . . 8

3.1 Wind Profiler old configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 audio amplifier issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Shroud fence built around the Wind Profiler antennas . . . . . . . . . . . . . . . . 14

3.4 Antenna isolation and achieved transmit leakage cancellation . . . . . . . . . . 15

3.5 New FMCW Wind Profiler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 Radar deployment in the laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Altera Cyclone II EP2C20 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 FPGA Control signals generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 Control and transmit subsystem box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 Receiver subsystem box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.11 Audio module filter ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 24DSI6LN Data Acquisition Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



5.1 Leakage and calibration signal processed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Noise floor estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Noise floor estimation results with estimation of leakage method . . . . . . . 33

5.4 Minimum detectable signal plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Minimum detectable signal after subtraction of the noise floor . . . . . . . . . 34

6.1 Tilson Farm deployment point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Received leakage without using shrouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Wind Profiler deployment with shrouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Received leakage using shrouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



CHAPTER 1

INTRODUCTION

1.1 Motivation

The measurement of winds and processes taking place in the atmosphere is a fun-

damental requirement in both research and operational meteorology. This project is

focused on the processes taking place in the lower troposphere called the atmospheric

boundary layer (ABL). The ABL is important meteorologically in terms of assessing

of convective instability. The entrainment zone at the top of the ABL acts as a lid on

rising (and cooling) air parcels due to temperature inversion. An external mechanism

such as geographically forced uplift, vigorous surface heating or dry lines, can break

the entrainment layer, allowing the capped air parcels to rise freely. As a result,

vigorous convection will begin producing severe thunderstorms.

ABL research and studies help (i) develop and improve existing numerical weather

prediction models, (ii) understand the transfer of heat, water vapor and momentum

between the Earth and the atmosphere, (iii) refine the analytical description of tur-

bulent processes and (iv) quantify the absorption and emission in the troposphere,

which is a major factor in shaping climate on Earth. The effect of the troposphere

on wave propagation has also been studied extensively for the purposes of improving

radio communications.

The main reason for FMCW radar development is the need for continuous mon-

itoring of the winds and fields in the atmosphere, improving in-situ measurements.

Conventional radar profiler technologies are usually able to make atmospheric mea-
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surements of the boundary layer, but preclude the lower part of the ABL, (around

150 meters). The Frequency Modulated Continuous Wave, Spaced Antenna (FMCW-

SA) Radar, that is being developed in University of Massachusetts - Amherst, at the

Microwave Sensing Laboratory (MIRSL), will allow measurements of the lower part

of the ABL.

The use of FMCW radars is introduced in order to improve the limitations of

pulsed radars. Pulsed radars are limited by the pulse-width and switching speed of the

transmit-receive switches because of the use of common antennas for both functions.

The pulsed nature of the radar dictates a higher transmitter power, and consequently

the need for switches that are both faster and high powered. FMCW radar alleviate

this problem by using separate antennas for transmit and receive, which also allows

use at short ranges. The problem in dual-antenna systems is parallax at low altitudes

due to the spatially separated antenna apertures, and some uncertainty in the actual

sampling volume.

The primary objective of this thesis is to explain the previous state of the radar,

providing a detailed account of it. Then to present the current state of the radar with

results and complete explanations to report conclusions.
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1.2 Summary of Chapters

Chapter 2 gives a introduction to the atmospheric boundary layer, explains its

structure and characteristics followed by clear-air backscatter theory. After that the

principles of FMCW radars are explained. Chapter 3 presents an overview of the

FMCW Wind Profiler, and the initial configuration and previous results of the radar

are explained and commented.

Chapter 4 depicts the Wind Profiler data acquisition by presenting the Data Ac-

quisition Card and programs. Chapter 5 explains the signal processing method used in

the Wind Profiler, and concludes by showing the radar’s minimum detectable signal.

In chapter 6 the new idea to improve the Wind Profiler antenna isolation is shown,

and the results obtained are provided. In chapter 7 the Graphical User Interface is

displayed. Finally, chapter 8 contains a brief summary of the research work presented

here, and conclusions and recommendations for future work are drawn.
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CHAPTER 2

FMCW WIND PROFILER PRINCIPLES

2.1 Atmospheric Boundary Layer

The boundary layer is the lowest 1-2 km of the atmosphere, the region most

directly influenced by the exchange of momentum, heat, and water vapor at the

earth’s surface. Turbulent motions on time scales of an hour or less dominate the flow

in this region, transporting atmospheric properties both horizontally and vertically

through its depth. The mean properties of the flow in this layer, the wind speed,

temperature, and humidity experience their sharpest gradients in the first 50-100

m, appropriately called the surface layer. Turbulent exchange in this shallow layer

controls the exchange of heat, mass, and momentum at the surface and thereby the

state of the whole boundary layer. It is hardly surprising we should have a lively

curiosity about this region.

There are two main types of boundary layer. The convective boundary layer where

heat from the Earth’s surface creates positive buoyancy flux and instabilities that lead

to turbulences, and the stably stratified nocturnal boundary layer, where negative

buoyancy flux decreases the turbulences and stable stratified conditions prevail. The

ABL can reach over 3 km during daytime while the usual height at night is between

50 m. to 300 m. Typical boundary layer structure is depicted in Figure(2.1).
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Figure 2.1: Boundary layer structure (from [6])

2.2 Clear Air Backscatter Theory

Backscattering occurs from refractive index irregularities in clear air and has a

relationship with the atmospheric structure and turbulence, as determined from ex-

perimental studies of angel echoes starting with Plank [1956] and Atlas [1959].

Radar backscattering from refractive index variation is able to provide helpful

information about the atmospheric structure. First radar outlines regions of increased

refractive index variability because of the enhanced backscattering. Second, the radar

backscatter contains quantitative information about the variability in the refractive

index field.

The radar backscattering from the clear air atmosphere, is caused by irregular

small-scale fluctuations in the radio refractive index produced by turbulent mixing

and is dependent on the atmospheric water vapor, temperature, and pressure. The

intensity of these fluctuations can be described by the structure constant C2
n. In

1969 Ottersen [10] was the first to derive the relationship between the radar volume

5



reflectivity and refractive index structure as

η(λ) ≈ 0.38C2
nλ

− 1
3 (2.1)

For a given radar λ, the radar reflectivity η of a region of refractive index fluctu-

ations is directly proportional to C2
n when the length scale of one-half of the radar

wavelength falls within the inertial subrange. The more violent the turbulent mixing

the larger the displacements, and the stronger the inhomogeneities will be. So, strong

turbulence and sharp mean gradients contribute to high C2
n values.

The radar backscatter can be originated by other sources such as Rayleigh scat-

tering, for example from birds and insects, the size of which should be much smaller

than the radar wavelength and is proportional to λ−4. In our application this kind of

scattering will be considered as undesired noise.

2.3 FMCW Radar Basics

FMCW is a common technique used on radars, that avoids the limitations of

pulsed radars. It consists on the transmission of a sinusoid whose frequency changes

over time, in our case linearly. Ideally the instantaneous frequency should augment

indefinitely with time, but in order to have a realistic system the frequency will

increase until a maximum value, and will start from the initial frequency once reached

that point. So, the instantaneous frequency will have a saw tooth shape as observed

in Figure(2.2).

The backscattered signal will be delayed by tdelay = 2R
c

, where c is the speed of

light and R is the range to target as shown in Figure(2.3). It will be also attenuated

and possibly Doppler-shifted in case the target was not stationary. The received

signal will be then mixed with a replica of the transmitted signal, a sinusoidal signal

6



Figure 2.2: Time versus frequency diagram(a); FM signal (b).

for every target will be produced. The frequency of which is called beat frequency

and depends on the range to target and the radar parameters. For stationary targets,

the relation is as follows

R =
cTp

2B
fb (2.2)

where R is the range to target, c is the speed of light, B is the chirp bandwidth and

Tp is the sweep time. Fast Fourier transform analysis is performed then in order to

convert frequency information to range. The range resolution of the system is

ΔR =
c

2B
(2.3)

Parameters such as B and Tp are configurable in an FMCW radar thus providing

flexibility to adapt to the most suitable mode, without change in the peak transmit

power for a given sensitivity.
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Figure 2.3: Difference on instantaneous frequencies on FMCW

To retrieve velocities, it is possible to determine Doppler velocities comparing the

changes of phase of two consecutive pulses received. The maximum unambiguous

velocity that can be measured is determined by the radar operating frequency and

the pulse repetition frequency as

vrmax =
λ

4
fp (2.4)

To maximize range resolution and sensitivity, both B and Tp should be as large as

possible. The value of Tp, however is constrained by the coherence time of the atmo-

spheric echo because the presented theory is based on the assumption that the target

produces constant-frequency sinusoidal echo during the sweep [12]. The maximum

range for FMCW radars is determined by the sweep time Tp and the sampling fre-

quency used in the A/D conversion. The latter gives us the maximum beat frequency

that can be detected without aliasing.

Rmax =
cTp

2B
Fbmax =

cTp

2B

fs

2
(2.5)
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CHAPTER 3

SYSTEM HARDWARE DESCRIPTION

3.1 System Overview

The current FMCW radar project started as an analog of the S-Band FMCW

boundary layer profiler developed in 2003 at University of Massachusetts at Amherst

[12]. The change from S-Band to UHF was proposed in order to reduce the Rayleigh

scattering from insects and birds which appeared to dominate the observed vertical

profile of the mean reflectivity at S-Band.

The current FMCW - Wind Profiler was started in the summer 2006 by the former

students Albert Genis during 2008 and Iva Kostadinova on 2008-2009. Many changes

have been introduced to the radar after upgrading and overcoming the different prob-

lems that were affecting the radar through several years.

The purpose of the next sections is to explain the latter hardware configuration

of the radar, and analyze the problems and changes that either were introduced or

are being introduced to solve them.

3.1.1 Initial hardware configuration

The FMCW wind profiler operates in the 900MHz ISM frequency band (902 - 928

MHz), with a center frequency of 915MHz. The chirp is generated by Direct Digital

Synthesizer (AD9858) with a bandwidth up to 25MHz and linear FM modulation. So

achieving a maximum range resolution of 6m.
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Parameter Value

Transmitter
Center frequency 915MHz
Peak Transmit power 30W
Transmitter type Solid State RF (SSRF)
Sweep bandwidth ≤25MHz
Sweep time 8.333ms
PRF 100Hz

Antennas
Type Four Parabolic dish
Gain 18dB
Polarization Linear
Front to Back Ratio 22dB

Table 3.1: Initial System specifications

The default mode of operation had a PRF of 100Hz, and a duty cycle of 83.3%,

Tp = 8.33ms. These parameters allow detection of vertical unambiguous velocity up

to ±8.25m/s which exceeds the range of usual turbulent velocities on the boundary

layer (3-5m/s).

All the signals needed to start the radar, such as those used to start and set

up the DDS and synchronize and clock the sampling are generated by an FPGA

Cyclone II from Altera, designed by Iva Kostadinova and David Garrido Lopez. The

parameters of the radar such as bandwidth, PRF and Tp are configurable. This allows

for adaptation to the resolution and scenario as necessary. When (2.3), (2.4) and (2.5)

are taken into account it is possible to calculate the optimal configuration.

The transmit amplifier is a compact solid state RF power amplifier providing a

30W output. The antennas are 4’ diameter antenna parabolas, with dipole antenna

feeds, 19 degree beamwidth and 18dB of gain. The antennas have a broad beam, in

order to employ a spaced antenna technique for estimating horizontal winds. That

broad antenna beamwidth has its problems. The main problem associated with it

is inadequate isolation between transmitter and receiver. The transmitter leakage
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received is powerful enough to saturate either the front-end of the receiver or the Data

Acquisition Board. To solve that problem an active cancellation loop was introduced,

using a vector modulator (AD8340) a replica of the leaked signal with opposite phase

is coupled to the receiver in order to cancel the leakage.

11



Figure 3.1: Wind Profiler old configuration
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3.1.2 FMCW Radar Previous Results

After testing and deploying the FMCW radar, it turned out that there were some

noise and sensitivity problems in the previous design that needed to be fixed. In this

section the main issues that impede detection and data collection from the FMCW

radar will be explained in a consistent way and possible solutions will be presented.

Audio Amplifiers

The main problem with the audio amplifier used in the old design is due to the

noise it generates itself. Looking through the specifications it was found that there

were about 50μV rms of noise introduced at the input of the amplifier such as shown

in Figure(3.2).

Due to the gain of the receiver it is necessary to make an audio filter/amplifier

with low noise components that do not increase the noise figure of our receiver that

much.

Figure 3.2: audio amplifier issue
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Antennas

The isolation of our antennas is not good enough, since currently there is 71dB

of isolation between transmitter and receiver. With that isolation the amount of

leakage received is of around -23 dBm which is a very high signal, so it was necessary

to attenuate 10dB in the front end of the receiver in order to not saturate the mixer.

That attenuation has bad effects on our SNR because we attenuate signal but not

noise, since the main noise comes from the audio amplifiers. Therefore, 10dB in SNR

were lost by the attenuation.

Figure 3.3: Shroud fence built around the Wind Profiler antennas

In an attempt to try to improve the isolation between the antennas and reduce the

leakage received, shrouds for the antennas were developed in order to reduce coupling.

The fence started at the ground level and reached 15 to 20 cm above the antennas.

The two antennas with shroud fence are depicted on Figure(3.3). The Wind Profiler

was tested again with the following results: The antenna isolation improved by 2

dB but the improvement in clutter rejection was insignificant. That suggested that

the main path for the clutter is not the backlobe but the antenna sidelobes. A new

redesign of the antennas or the shroud can effectively address this issue.
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Vector Modulator

The mission of the vector modulator was to try to cancel the leakage. The Vector

Modulator is a device capable of changing the attenuation and the phase of its input

signal. With that, theoretically it should be possible to generate an opposite signal of

the leakage received. But once used in the radar the cancellation achieved was fewer

than 13dB which was not enough. Also the cancellation achieved was not the same

throughout the entire bandwidth as it would be desired. The leakage power and the

best achieved cancellation are shown in Figure(3.4).

Figure 3.4: Antenna isolation and achieved transmit leakage cancellation

Later on it was discovered that the AO card has noise of approximately the two

LSB, which was being injected to our Vector modulator. Therefore, improving the de-

sign in order to avoid using the vector modulator will improve the noise characteristics

of our receiver.
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Proposed Solution

The low transmission power and the low antenna gain require a receiver with low

noise and very high gain. To achieve that the receiver will be redesigned avoiding the

use of the active cancellation loop. A new audio module will be created with low noise

components such as the Linear Technology, Ultralow Noise, Low Distortion, Audio

Op Amp, LT1115 [8]. The design will be totally customized for the FMCW Wind

Profiler’s needs. The front-end of the receiver will be customized too. Moreover,

a new Data Acquisition Board of 24 bits instead of 16 bits is required, and a new

modification of the FPGA design is needed. In Figure(3.5) the new FMCW-Wind

profiler block diagram is showed. Parts in color are modified from the previous design.
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Figure 3.5: New FMCW Wind Profiler block diagram
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3.1.3 FMCW Radar Current State

The FMCW Wind Profiler radar is still in a developing stage. A new audio module

is currently working with the radar, the front end has been customized, and the FPGA

has been modified to enhance the radar performance, having now a 100% duty cycle

chirp. For more information about it refer to [2]. The new Data Acquisition Board

arrived and it was integrated in the radar. Data acquisition programs were developed

for it, but there are synchronization issues that should be corrected in the future.

Signal processing programs were developed for the FMCW radar, allowing the radar

to be tested in the laboratory. All information will be showed in the following sections.

3.2 Wind Profiler Subsystems

Figure(3.5) shows a simplified block diagram of the FMCW Wind Profiler. Apart

from this, there are also some other necessary components like several attenuators

to adapt the input power levels. The picture Figure(3.6) show the radar hardware

deployed in laboratory. Including the Wind Profiler boxes, computer, audio module,

and instrumentation.

Figure 3.6: Radar deployment in the laboratory
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3.2.1 Control and Transmit Subsystem

The communication between the operator and the Wind Profiler is made through

the serial interface between the computer and the Field Programable Gate Array

Board (Altera Cyclone II EP2C20 FPGA), Figure(3.7), that generates all the radar

signals required for its proper operation. The operator stores the necessary parameters

to configure the radar in a file .conf which will be sent via serial interface to the FPGA.

That file and its parameters can be modified at any time, making the radar flexible

to operate in different contexts.

Figure 3.7: Altera Cyclone II EP2C20 FPGA

The FPGA design was developed by Iva Kostadinova and David Garrido. The

design is characterized by generating all signals in total synchronization, giving no

room for timing skews that can lead to phase wrapping in the received data. A later

modification of the FPGA was developed by David Garrido, in which the duty cycle

of the Wind Profiler was enhanced to 100%, and the signals generated were modified
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to adjust to the last Wind Profiler configuration. For more information about the

FPGA modification design, refer to [2].

The transmitted chirp is generated by a 10-bit Digital Signal Synthesizer from

Analog Devices (AD9858 DDS). The DDS receives the needed parameters for fre-

quency sweep generation (see Figure(3.8)) from the control subsystem. The board

uses an external 800 Mhz clock referenced to the 10 Mhz FPGA clock. The analog

mixer mixes the clock signal with the chirp centered at 115 Mhz to produce the de-

sired product at 915 Mhz at the DDS output. The undesired mixing products are

filtered then, and the signal is amplified. A 4-way splitter is used to split the trans-

mitted signal to the three LO inputs of the receiver mixers and to the RF high power

amplifier. The high power amplifier is a linear power solid state RF amplifier from

OPHIRrf with a gain of 50 dB. Finally a 20 dB directional coupler delivers the output

of the amplifier to the antenna and couples part of it to the calibration loop.

Figure 3.8: FPGA Control signals generation
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Figure 3.9: Control and transmit subsystem box

3.2.2 Calibration Loop

The calibration loop allows continuous monitoring of the system performance and

gives a reference point with which to evaluate the radar sensitivity. The delay line

used is a bulk acoustic wave (BAW) delay line, with an effective delay of 2μs from

Teledyne Electronic Devices. The input of the delay line is an attenuated replica of

the transmitted signal. The output of it is coupled into the receiver chain through a

20 dB coupler. The delayed chirp produces a signal of a fixed frequency beat fb cor-

responding to a fixed range, different depending on the Wind Profiler’s configuration.

Some of the important specifications of the delay line are showed in Table 3.2. One of

the most important characteristics is the triple travel suppression, with a minimum

of 11 dB of suppression. That means that other fixed frequencies beat will appear at

3fb and 5fb.
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Parameter Value

Center frequency 915 MHz
Bandwidth 25 MHz
Time Delay 2.000 ± 0.012μs
Insertion Loss at 915 MHz 11.5 dB
Tripple Travel Suppression 11 dB min
Peak Power 100 mW

Table 3.2: Delay line specifications

3.2.3 Receiver Subsystem

The receiver subsystem consists of three identical RF paths for the three receiver

channels. The received signal is a mix of atmospheric echoes, clutter, and antenna

leakage. That leakage is orders of magnitude larger than the echoes, and it can easily

saturate the front end of the receiver. The calibration signal is also coupled to the

received signal in the front end.

Figure 3.10: Receiver subsystem box
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The first component of the chain is a low noise amplifier in order to ensure a good

noise figure. Doing that the noise figure of the system will primarily be the noise figure

of the first few components in the receiver chain. The coupler in the Wind Profiler

is a 20 dB coupler from Narda Microwave East with insertion loss of Lcoupler = 0.3

dB. The power level of the delay line signal which is coupled into the receiver through

the coupler should be such that no extra thermal noise from the transmitted signal

gets coupled into the receiver. The LNA is a Phoenix PA911C with a noise figure of

0.9 dB. The next component in the chain is a ceramic band pass filter (BPF) from

Lark Engineering with a bandwidth of 25 MHz and insertion loss of 2.5 dB.

The Wind Profiler utilizes a high power mixer from Mini Circuits (ZEM-4300MH+)

with a 1 dB compression point of +9 dBm. The mixer has a LO power level of +13

dBm. For reliable performance, the LO level should vary no more than ±3 dBm

from its specified value. For the Wind Profiler operating frequency range, the mixer

insertion loss varies from 6 to 8 dB depending on the LO input level.

The dynamic range of the Data Acquisition Card and the expected backscattered

power from the phenomena desired to be observed are the two parameters defining the

total gain that the receiver should have. The Data Acquisition Card in the new Wind

Profiler configuration is a 24-bit 24DSI6LN from General Standards. The specified

voltage range is ±10 V corresponding to a maximum input power of 30 dBm for a

single tone. The dynamic range of the DAQ is 110 dB setting its quantization noise

floor at -80 dBm.

The audio filter in the receiver chain is a bandpass active filter designed by David

Garrido. Its design is totally customized for the Wind Profiler. To design the filter

it was important to ensure that the audio filter significantly attenuates the leakage

signal, and there is a trade off between filter ringing and desired observable minimum

heights. Because one of the primary design goals of the Wind Profiler is to be able to
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observe boundary layer processes at low altitudes it is important to make the trade

off carefully. In Figure(3.11) the filter response to a signal composed of leakage plus

calibration signal can be observed.

Figure 3.11: Audio module filter ringing
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CHAPTER 4

DATA ACQUISITION

After identifying the problems encountered with the Wind Profiler, it was nec-

essary to proceed to modify the receiver and to create a new audio module totally

customized for the Wind Profiler, that will enhance its performance. The design was

done employing low-noise components to achieve a better performance, for example

the operational amplifier used was the LT1115 from Linear Technology [8], with a

typical voltage noise of 0.9nV/
√

Hz at 1 kHz.

With the 16-bit Power-DAQ PD2-MFS-4-500/16 from United Electronics Indus-

tries Inc. that the former Wind Profiler configuration used, the gain needed for that

audio module must be at least of 110 dB, and the order required was order 10. During

the Summer of 2009 some audio module prototypes were built. That work showed

that it was not possible to meet the specifications needed for the Wind Profiler. The

high gain and the high order of the audio module made it unstable and distorting. The

maximum gain achieved was approximately 85 dB, but the filter was still introducing

a great amount of distortion.

The solution was to improve the dynamic range of the receiver somehow, in order

to be able to relax the specifications of the audio module. To achieve that, a new

Data Acquisition Board was bought. The board is a four-channel low-noise 24-bit

delta sigma PC104-Plus from General Standards. With that new board the dynamic

range was improved from 16 bits to 24 bits, which means a theoretical improvement

of 24 dB.
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4.1 24DSI6LN Data Acquisition Board

The selected board for the new Wind Profiler configuration is the 24DSI6LN board

from General Standards. The board has 24 bits and 4 channels. It also has low-noise

features due to its Delta Sigma architecture. Delta Sigma architecture is based on the

technique of oversampling to reduce the noise in the band of interest, which also avoids

the use of high-precision circuits for the anti-alias filter. In Delta Sigma converters,

noise is further reduced at low frequencies, which is the band where the signal of

interest is, and it is increased at the higher frequencies, where it can be filtered. This

technique is known as noise shaping. That feature is also a disadvantage because due

to that oversampling the external input clock that can be used needs to be very fast,

specifically from 25’6 Mhz to 51’2 Mhz. With the former Wind Profiler the old DAQ

used a totally synchronized clock at the desired fs provided by the FPGA. Now a

high-speed clock is needed to do so, and the fastest clock the FPGA can provide is

at 10Mhz.

Figure 4.1: 24DSI6LN Data Acquisition Card
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The voltage range is the same as before, being ±10 V. The board also provides

its own anti-aliasing filtering which helps to relax the audio specifications even more.

The sampling clock can be generated internally, being able to chose from 2KSPS to

200KSPS with an accuracy of 25 PPM.

The sampling of multiple channel groups can be pre-synchronized through soft-

ware, or each group can be synchronized to an external hardware clock input. So, in

order to synchronize the DAQ with the transmitted chirps a synchronization signal

generated in the FPGA can be used for that purpose. An acquisition program was

developed using that external synchronization input signal feature. It was tested sim-

ulating software synchronization pulses and it worked properly. But when the real

synchronization input signal was used, it was not recognized by the DAQ. Currently

that problem is still pending to be solved, waiting for the DAQ developers to identify

the board’s problem. To be able to test the system an acquisition program without

using the external synchronization signal was developed. In order to synchronize the

data, software synchronization was used while the hardware synchronization is being

fixed.

4.2 Data Acquisition Program

The DAQ needs a C program (called “savedata.c”) to collect data. This program

configures the board according to the desired parameters, first doing a test and after

that acquiring data to a file until either the timeout specified when the program

started is reached, an error occurred, or when the program is stopped manually by

pressing “CTRL+C” in the keyboard.

This program uses some other files that are not included in this document (main.h,

savedata.h between others). The main files “savedata.c” and “main.c” are provided

and commented in Appendix A. This code also uses some specific functions for this
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device. Further information about these functions can be found in the 24DSI6LN

linux driver manual [5].

The structure of the program is as follows. First the board is searched, identified

and selected. After that the device is opened, some data is collected in a brief test and

if the test is successful it proceeds to capture the real data. The board is configured

using the function dsi config board, then the file which will contain the data is created,

using as a filename the current time. After the file is created the program continuously

collects the data until it is terminated.

Before executing the program it is important to have started the driver. To start

the driver, login as a root user, change to the directory where the driver was installed

and execute the command “./start”. To verify that the device has been loaded ex-

ecute “lsmod”. The module name 24dsi should be included in the output if driver

was started properly. To collect data, the program needs to run while the radar is

operating, so, the programs that start the radar have to be executed before.

4.3 Synchronization Program

It is necessary to synchronize the collected data in order to know when a profile

starts and stops to allow proper processing of the data in order to extract range and

doppler information from it. As explained before, the synchronization via hardware

is still being developed. So, in the meantime, synchronization via software is done.

To do so an IDL program (called “pre processing david.pro”) was created for that

purpose. The main file “pre processing david.pro” is provided and commented in

Appendix B. This program also uses other files not included in this document such

as “readcol.pro”.

The structure of the program is as follows. First of all, the file containing the

data is opened and the data stored in columns is read and stored. Then the data is
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processed, erasing the header bits from every sample and converting the information

from hexadecimal to voltage values. After that a block size smaller than the number of

samples per profiler is created, and the synchronization of data starts. To synchronize

the data, the synchronization signal is also sampled, and so the program waits until

the synchronization channel have a transition from “0” to “1”. The synchronized

data will be stored in an .img file that will be used for processing later.

This way of synchronizing the data has its problems. The sampling clock used to

sample the data is generated inside the DAQ, because it is not possible to generate an

input clock for the DAQ fast enough to meet the DAQ requirements. That means that

the clock is not synchronized with the system. The synchronization via software relies

in sampling the synchronization signal. But, as the sample clock is not synchronized,

there will be a maximum error of ±1 sample. Because of that from now on the

only information extracted from the data will be range, because to obtain doppler

information good synchronization or a more complex data processing is needed. That

will be perfected when the Wind Profiler has been tested, and is in a later stage.
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CHAPTER 5

SIGNAL PROCESSING

After the acquisition of data, it is necessary to process it properly to extract the

required information. In the Wind Profiler, two different kinds of information can

be extracted from the data, range and doppler velocity. In the following pages only

range information will be plotted.

5.1 Signal Processing Program

To perform the data processing, a program in IDL called “windprof process david.pro”

was developed. The program is provided and commented in Appendix C. The struc-

ture of the program is as follows. At the beginning of the program the different

parameters needed for processing such as frequency sample, number of profile aver-

age and name of the files are configured. Then the synchronized data from the input

file is stored in arrays. A Fast Fourier Transform and the chosen profile average are

done. In the next step range and doppler velocity information are extracted and

written to a file.

Figure (5.1) shows a processed signal containing leakage and calibration signal. It

can be observed that there is no trace of leakage whatsoever and that three different

tones appear. The tones are due to the architecture of the BAW delay line. The

first tone correspond to the direct path of the delay line input signal through the

delay line, the other two tones correspond to triple and the quintuple path through

the delay line. The plot also shows that the noise floor is the limit for the Wind
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Profiler sensitivity. To improve the sensitivity a estimation of the noise floor can be

subtracted from the processed data.

Figure 5.1: Leakage and calibration signal processed

5.2 Noise Floor Estimation

In order to improve the sensitivity of the Wind Profiler, an estimation of the noise

floor can be subtracted from the data. The longer the profile average is, the greater

the improvement in sensitivity will be, specifically the theoretical improvement is

related to the following expression 10log(Nprofiles).

In a first attempt, it was proceed to estimate the noise floor in a traditional

way, capturing the output signal of the Wind Profiler when no input signal is being

introduced to the receiver. The receiver inputs were terminated at 50 Ohms, the

calibration loop input and the LO port of the mixer were also terminated at 50

Ohms. The noise floor estimation obtained was not good enough. At low frequencies

the big differences between the real noise floor and its estimation make sensitivity

improvement not possible. In Figure(5.2) the first noise floor estimation and its

result is showed. Blue line is the received signal, red line is the noise floor estimation,

and black line is the result when the estimated noise floor is subtracted to the signal.
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The results obtained were not as good as it was expected, the audio module output

Figure 5.2: Noise floor estimation results

noise floor is different depending on its input signal. Because of that it is necessary to

make an estimation of the leakage and introduce it in the receiver’s input in order to

obtain a good estimation of the noise floor. The commented method turned out to be

a valid procedure to estimate the noise floor. In Figure(5.3) the results obtained with

that method are shown. Now in this case the improvement of sensitivity is achieved

in all the bandwidth of interest and that improvement is also constant in throughout

the bandwidth.

5.3 Minimum Detectable Signal

After achieving the improvement of the Wind Profiler sensitivity thanks to the

good estimation of the noise floor, it is interesting to find out which is the minimum

signal that can be detected with the new noise floor level achieved. To do so, the cal-

ibration signal is attenuated until it is not detected, and the penultimate attenuation

before the Wind Profiler is unable to detect it will be the one used to calculate the

minimum detectable signal.
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Figure 5.3: Noise floor estimation results with estimation of leakage method

In Figure(5.4) the signal before subtracting the noise floor can be observed. In

it there is apparently no calibration signal. But, in Figure(5.5) after subtracting the

noise floor it is seen how the calibration signal is now detected. Two small tones

appear in the plot, showing the direct and the triple path through the BAW delay

line that it was desirable to detect.

This minimum detectable signal corresponds to a -150 dBm signal. That minimum

detectable signal is not good enough yet because only scatter from strong echoes such

as the ones occurring in rain and snow, or high C2
n occurring in hot humid weather can

be detected. In any case, the Wind Profiler is still being upgraded and that minimum

detectable signal will improve soon after the antenna isolation is improved, and with

that improvement the receiver will be optimized to adjust to that antenna isolation

improvement increasing gain in the front-end between other possible modifications to

enhance its performance.
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Figure 5.4: Minimum detectable signal plot

Figure 5.5: Minimum detectable signal after subtraction of the noise floor
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CHAPTER 6

ANTENNA ISOLATION

One of the main problems with the FMCW radars is related to the isolation

between the antennas. In FMCW radars, transmission and reception is done at

the same time using different antennas for transmission and reception, unlike pulsed

radars that transmit and receive at different times through the same antenna. Pulsed

radars have height limitation at low altitudes due to their pulsed architecture. FMCW

radars have very high resolution and small peak to average power, but the isolation

between the antennas is an important issue. In the Wind Profiler case, the isolation

between the antennas is 71 dB, but a great amount of leakage is still coupled to

the receiver thorough the side-lobes. That leakage is a limiting factor for the Wind

Profiler’s performance, not allowing the addition of enough gain in the front-end of

the receiver to avoid saturating the mixer, and requiring a complex audio module

with high order to filter the leakage and high gain to compensate for the low gain

in the front-end. So, improving the Wind Profiler’s antenna isolation will boost its

performance.

Improving the antenna isolation is complicated because the two antennas are next

to each other, and so far-field theory cannot be applied. Near-fields are difficult to

study and simulate. The solution chosen to improve the antenna isolation is the use

of new antenna shrouds created for that purpose. The design of the shrouds is based

on a NOAA design [11]. The metallic shrouds are 5 feet tall and they have openings

that are cut at 45 degrees.
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6.1 Antenna Isolation Tests With New Shrouds

In December 2009 the new shrouds were ready to be tested on the Wind Profiler.

Measurements of antenna isolation where conducted at Tilson Farm. There were

several sources of reflection at Tilson farm, like the van were all the Wind Profiler

equipment was set, a big oak tree at 30 meters from the deployment point, and a

trailer at 15 meters. See Figure(6.1) for more details.

Figure 6.1: Tilson Farm deployment point

The transmit antenna was set as far from the van as the antenna feed cables

allowed, in order to avoid reflections as much as possible. The receiver was set between

the transmitter and the van. With that deployment an antenna measurement was

done without using the shrouds. The leakage received is showed in Figure(6.2), being

-19 dBm.

After that, the antenna isolation was measured using the shrouds. Between the

edges of the antennas shrouds there was 0.61 meters of separation, and between the

van and the receiver antenna shroud edge there was a separation of 3 meters. The

openings of the antennas were not parallel to each other, to reduce the cross-talk

between the antennas. The deployment can be observed in Figure(6.3). The results
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Figure 6.2: Received leakage without using shrouds

of the test were successful, having -34 dBm of leakage in the receiver’s front-end, see

Figure(6.4). That means an improvement on isolation of -15 dB.

The obtained results are optimistic, -15 dB of improvement is a great result, having

into account that this measurement was still experimental. The next step will be to

obtain the maximum antenna isolation improvement that can be achieved. To do

so, several improvements can be made. The deployment point can be changed to

a place with fewer sources of reflection. Absorbers can be used in the edge of the

transmitter antenna shroud, avoiding refraction and diffraction at the shroud edge,

and so improving the isolation. Also the radar antennas need to be mounted on a

platform to maintain alightment and pointing. The shrouds openings should also

be covered with plastic, since these will enable the snow and water to slide off and

not attenuate the signals. The improvement achieved will allow more gain in the

receiver’s front-end and in the audio module translating to a better radar minimum

detectable signal.
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Figure 6.3: Wind Profiler deployment with shrouds

Figure 6.4: Received leakage using shrouds
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CHAPTER 7

GRAPHICAL USER INTERFACE

The operation of the Wind Profiler requires knowing how to start, configure and

manage all the different parts of the radar. For example start the Wind Profiler

sending to the FPGA the required parameters, start and stop the data collection,

and process and display the acquired data.

In order to make the Wind Profiler operation easier for future users, a graphical

user interface (GUI) was created using IDL. The purpose of it was to manage all

the Wind Profiler operations commented on above using a single window with a

friendly and easy to understand interface. During the Spring of 2009 the Wind Profiler

GUI was developed for the old configuration. To adapt the GUI to the new Wind

Profiler configuration only a few changes such as path and filename modifications will

be required when all the programs and files required for the new configuration are

definitive.

The GUI interface is presented in Figure(7.1). The GUI allows to modify the

Wind Profiler parameters directly from the interface instead of having know where

the .conf file is, open it and modify it manually. When “Radar Start” button is

pressed the parameters introduced in the left part of the GUI are stored and the Wind

Profiler is started using these parameters. It is started by executing the .c program

that processes these parameters and sends all the necessary information to the FPGA

through the serial port. When “Radar Stop” button is pressed the FPGA is reset and

with that the Wind Profiler stops. The buttons “Start Data Collection” and “Stop
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Figure 7.1: Graphical User Interface

Data Collection”, execute and kill the data acquisition program respectively. Finally

the “Display Data” button executes the data processing program with the specified

time average, and concurrently executes the real-time display program developed by

David Garrido to display the data while its being collected and processed. The GUI

files are provided and commented in Appendix D.

40



CHAPTER 8

CONCLUSIONS

8.1 Summary

This thesis has described the FMCW Wind Profiler state as of Fall 2009. The

previous configurations and problems have been explained and then solutions pro-

vided. Thanks to the previous work done with the radar, the sources of error can be

identified and the radar receiver was upgraded in order to improve its performance.

The receiver’s front end was modified, and the leakage cancellation loop used

before is now avoided. Also a new audio module was specifically designed. The

FPGA was modified too in order to achieve a 100% duty cycle to enhance the Wind

Profiler performance.

A new Data Acquisition Card is used now to increase the dynamic range of the

radar. New data acquisition and data processing programs are developed in order to

have an operative radar. Also a graphical user interface is created to make the Wind

Profiler operator tasks easy, including making all the required operations and needed

files in a single window easy to manage.

Finally, new antenna shrouds are used to improve the antennas isolation. Tests

have been done showing improvement that led to optimistic future results.
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8.2 Future work

The first thing that needs to be done to the Wind Profiler is to fix the synchroniza-

tion issue with the Data Acquisition Card. A proper synchronization will allow the

computation of proper doppler information without having to substantially increase

the complexity of the signal processing.

New antenna isolation measurements should be done with the shrouds. Mounting

the antennas and the shrouds in a platform to maintain alightment and pointing, and

making the system mobile. Also adding absorber to the transmitter’s shroud edge

could improve the antenna isolation. Then the receiver can be modified adding more

gain in the front-end to take advantage of the antenna isolation improvement, and so

reduction of the received leakage, optimizing the Wind Profiler’s performance.

After having checked the correct performance of the Wind Profiler, real data

should be acquired from field deployments. After processing the data collected the

performance of the radar can be checked, and modifications can be added in case the

data collected is not satisfactory.

Finally, when the Wind Profiler is ready, slight modifications to the graphical user

interface and to the real-time display programs can be performed to adapt them to

the new Wind Profiler configuration.

In a second phase, it is planned to use a space antenna technique [9] to be able to

analyze horizontal winds too. These techniques can obtain more rapid wind estimates

compared to Doppler beam swinging systems. By making all of the changes mentioned

previously, the Wind Profiler should be able to operate properly.
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APPENDIX A

DATA ACQUISITION PROGRAMS

A.1 main.c

// $Rev: 1814 $

// $Date: 2009-04-22 17:13:15 -0500 (Wed, 22 Apr 2009) $

// Program developed by David Garrido Lopez

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include "main.h"

#define TRIGGER_RATE 100

#define SAMPLE_RATE 60000L

#define CHANS_ENABLED 6

// variables ****************************

static int _continuous = 0;

static int _ignore_errors = 0;
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static int _index = 0;

static long _minute_limit = 0;

static __s32 _buffer_data[3600L];

/*****************************************

*

* Function: _parse_args

*

* Purpose:

*

* Parse the command line arguments.

*

* Arguments:

*

* argc The number of command line arguments given.

*

* argv The list of command line arguments given.

*

* Returned:

*

* >= 0 The number of errors encounterred.

*

**************************************/

static int _parse_args(int argc, char** argv)

{

char c;
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int errs = 0;

int i;

int j;

int k;

printf("USAGE: savedata <-c> <-C> <-m#> <-n#> <index>\n");

printf(" -c Continue testing until an error occurs.\n");

printf(" -C Continue testing even if errors occur.\n");

printf(" -m# Run for at most # minutes (a decimal number).\n");

printf(" index The index of the board to access.\n");

printf(" NOTE: Hit Ctrl-C to abort continuous testing.\n");

for (i = 1; i < argc; i++)

{

if (strcmp(argv[i], "-c") == 0)

{

_continuous = 1;

_ignore_errors = 0;

continue;

}

if (strcmp(argv[i], "-C") == 0)

{

_continuous = 1;

_ignore_errors = 1;

continue;

}
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if ((argv[i][0] == ’-’) && (argv[i][1] == ’m’) && (argv[i][2]))

{

j = sscanf(&argv[i][2], "%d%c", &k, &c);

if ((j == 1) && (k > 0))

{

_minute_limit = k;

continue;

}

errs = 1;

printf("ERROR: invalid argument: %s\n", argv[i]);

break;

}

j = sscanf(argv[i], "%d%c", &k, &c);

if ((j == 1) && (k >= 0))

{

_index = k;

continue;

}

else

{

errs = 1;

printf("ERROR: invalid board selection: %s\n", argv[i]);
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break;

}

}

return(errs);

}

/*******************************************

*

* Function: _perform_tests

*

* Purpose:

*

* Perform the appropriate testing.

*

* Arguments:

*

* fd The handle for the board to access.

*

* Returned:

*

* >= 0 The number of errors encounterred.

*

*******************************************/

static int _perform_tests(int fd)

{
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int errs = 0;

const char* psz;

struct tm* stm;

time_t tt;

time(&tt);

stm = localtime(&tt);

psz = asctime(stm);

gsc_label("Performing Operation");

printf("%s", psz);

errs += gsc_id_driver(fd, DSI_BASE_NAME); //Identify the driver

errs += dsi_id_board(fd, -1, NULL); //Identify the board

errs += save_data(fd);

return(errs);

}

/****************************************

*

* Function: main

*

* Purpose:

*

* Control the overall flow of the application.

*
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* Arguments:

*

* argc The number of command line arguments.

*

* argv The list of command line arguments.

*

* Returned:

*

* EXIT_SUCCESS We tested a device.

* EXIT_FAILURE We didn’t test a device.

*

*****************************************/

int main(int argc, char *argv[])

{

int errs;

time_t exec = time(NULL);

int fd = 0;

FILE* fd_file;

long hours;

long mins;

time_t now;

int qty;

int ret = EXIT_FAILURE;

long secs;

time_t t_limit;

time_t test;
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char datebuf[128];

char filename[128];

struct tm *today;

time_t starttime;

__s32 chans = 32;

int got;

gsc_label_init(26);

test = time(NULL);

printf("savedata - Capture and Save Data to Disk

By David Garrido(Version %s)\n", VERSION);

errs = _parse_args(argc, argv);

gsc_id_host();//Identify the host os and machine

t_limit = exec + (_minute_limit * 60);

qty = gsc_count_boards(DSI_BASE_NAME);

// Count the number of installed SI04

errs = gsc_select_1_board(qty, &_index);

//Select the board to utilize when more than one is present

if ((qty <= 0))

errs++;

gsc_label("Accessing Board Index");

printf("%d\n", _index);
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fd = gsc_dev_open(_index, DSI_BASE_NAME);

//Perform an open on the device with the specified index.

if (fd == -1)

{

errs = 1;

printf( "ERROR: Unable to access device %d.", _index);

}

if (errs == 0)

{

ret = EXIT_SUCCESS;

errs = _perform_tests(fd);///////////////////////////

}

gsc_dev_close(_index, fd);// test finished so we close

now = time(NULL);

secs = now - test;

hours = secs / 3600;

secs = secs % 3600;

mins = secs / 60;

secs = secs % 60;

printf(" (duration %ld:%ld:%02ld)\n", hours, mins, secs);

printf("Test done!\n");
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gsc_label("Prueba!!!!!!!!!!\n");

if ((_ignore_errors == 0) && (errs))

errs++;

if ((_minute_limit) && (now >= t_limit))

errs++;

//We finish testing and we start adqiring data

if(!errs || (_ignore_errors == 0))

{

printf("Starting adquisition!!!!!!!!!!!!!!!!\n");

fd = gsc_dev_open(_index, DSI_BASE_NAME);

dsi_config_board(fd, -1, -1, SAMPLE_RATE);

errs += _channels_profiler(fd, &chans);

//Creating the file

printf("Creating the file where the data will be stored\n");

time(&starttime);

today = localtime(&starttime);

strftime(datebuf, 128, "%Y%m%d%H%M%S", today);

sprintf(filename, "%s.dat", datebuf);

fd_file =fopen(filename, "w+b");

if (fd_file == -1)

errs = 1;

else printf("file created\n");
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for(;;)

{

now = time(NULL);

//printf("FOR!!!!!");

errs = 0;

got = dsi_dsl_read(fd, _buffer_data, sizeof(_buffer_data)/CHANS_ENABLED);

if (got < 0)

{

errs = 1;

}

else if (got != sizeof(_buffer_data)/CHANS_ENABLED)

{

errs = 1;

printf( "FAIL <--- (got %ld samples, requested %ld)\n",

(long) got,(long) sizeof(_buffer_data)/CHANS_ENABLED);

}

else

{

errs = 0;

printf( "PASS (%ld samples)\n",(long) sizeof(_buffer_data)/CHANS_ENABLED);

}

errs = _save_data_profiler(fd_file, chans, _buffer_data,

sizeof(_buffer_data)/CHANS_ENABLED);

if ((_minute_limit) && (now >= t_limit))

break;
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if ((_ignore_errors == 0) && (errs))

break;

}

gsc_dev_close(_index, fd);

fclose(fd_file);

}

return(ret);

}

A.2 savedata.c

// $Rev: 1814 $

// $Date: 2009-04-22 17:13:15 -0500 (Wed, 22 Apr 2009) $

// Program developed by David Garrido Lopez

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include "main.h"

// #defines ****************************

#define _1M (1024L * 1024L)

#define TRIGGER_RATE 100

#define SAMPLE_RATE 60000L
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#define CHANS_ENABLED 6

// variables *************************

static __u32 _buffer[(SAMPLE_RATE * CHANS_ENABLED) / TRIGGER_RATE];

/*****************************************

*

* Function: _channels

*

* Purpose:

*

* Check to see how many channels the board has.

*

* Arguments:

*

* fd The handle for the board to access.

*

* chan Report the number of channels here.

*

* Returned:

*

* >= 0 The number of errors encounterred.

*

***********************************/
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static int _channels(int fd, __s32* chans)

{

int errs;

gsc_label("Input Channels");

errs = dsi_query(fd, DSI_QUERY_CHANNEL_QTY, chans);

if (errs == 0)

printf("%ld Channels\n", (long) chans[0]);

return(errs);

}

/******************************

*

* Function: _read_data

*

* Purpose:

*

* Read data into the buffer.

*

* Arguments:

*

* fd The handle for the board to access.

*

* Returned:

*
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* >= 0 The number of errors encounterred.

*

*****************************************/

static int _read_data(int fd)

{

int errs;

long get = sizeof(_buffer) / CHANS_ENABLED;

int got;

gsc_label("Reading");

got = dsi_dsl_read(fd, _buffer, get);

if (got < 0)

{

errs = 1;

}

else if (got != get)

{

errs = 1;

printf( "FAIL <--- (got %ld samples, requested %ld)\n",

(long) got,

(long) get);

}

else

{

errs = 0;
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printf( "PASS (%ld samples)\n",

(long) get);

}

return(errs);

}

/****************************************

*

* Function: _save_data

*

* Purpose:

*

* Save the read data to a text file.

*

* Arguments:

*

* fd The handle for the board to access.

*

* chan The number of channels.

*

* errs have there been any errors so far?

*

* Returned:

*

* >= 0 The number of errors encounterred.

*
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*************************************/

static int _save_data(int fd, int chan, int errs)

{

FILE* file;

int i;

long l;

const char* name = "data.txt";

long samples = sizeof(_buffer) / CHANS_ENABLED;

gsc_label("Saving");

for (;;)

{

if (errs)

{

printf("SKIPPED (errors)\n");

errs = 0;

break;

}

file = fopen(name, "w+b");

if (file == NULL)

{

printf("FAIL <--- (unable to create %s)\n", name);

errs = 1;

break;
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}

for (l = 0; l < samples; l++)

{

i = fprintf(file, " %08lX", (long) _buffer[l]);

if (i != 10)

{

printf("FAIL <--- (fprintf() failure to %s)\n", name);

errs = 1;

break;

}

if ((l % chan) == (chan - 1))

{

i = fprintf(file, "\r\n");

if (i != 2)

{

printf("FAIL <--- (fprintf() failure to %s)\n", name);;

errs = 1;

break;

}

}

}

fclose(file);
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if (errs == 0)

printf("PASS (%s)\n", name);

break;

}

return(errs);

}

/*************************************

*

* Function: save_data

*

* Purpose:

*

* Configure the board, then capture data to a file.

*

* Arguments:

*

* fd The handle for the board to access.

*

* Returned:

*

* >= 0 The number of errors encounterred.

*

****************************************/
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int save_data(int fd)

{

__s32 chans = 32;

int errs = 0;

gsc_label("Capture & Save");

printf("\n");

gsc_label_level_inc();

errs += dsi_config_board_profiler(fd, -1, -1, SAMPLE_RATE);

errs += _channels(fd, &chans);

errs += _read_data(fd);

errs += dsi_ain_buf_overflow(fd, -1, DSI_AIN_BUF_OVERFLOW_TEST, NULL);

errs += dsi_ain_buf_underflow(fd, -1, DSI_AIN_BUF_UNDERFLOW_TEST, NULL);

errs += _save_data(fd, chans, errs);

gsc_label_level_dec();

return(errs);

}

/*************************************

*

* Function: dsi_config_board_profiler

*

* Purpose:

*
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* Configure the given board using common FMCW defaults.

*

* Arguments:

*

* fd The handle to use to access the driver.

*

* index The index of the board to access. Ignore if < 0.

*

* fref This is the PLL Fref value, or -1 to use the default.

*

* fsamp This is the desired Fsamp rate, of -1 to use the default.

*

* Returned:

*

* >= 0 The number of errors encountered here.

*

****************************************/

int dsi_config_board_profiler(int fd, int index, __s32 fref, __s32 fsamp)

{

int errs = 0;

__s32 ndiv;

__s32 nrate; // Legacy

__s32 nref; // PLL

__s32 nvco; // PLL

errs += dsi_rx_io_mode (fd, index, GSC_IO_MODE_DMA, NULL);
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errs += dsi_rx_io_overflow (fd, index, DSI_IO_OVERFLOW_CHECK, NULL);

errs += dsi_rx_io_timeout (fd, index, 30, NULL);

errs += dsi_rx_io_underflow (fd, index, DSI_IO_UNDERFLOW_CHECK, NULL);

errs += dsi_initialize (fd, index);

errs += dsi_ain_mode (fd, index, DSI_AIN_MODE_DIFF, NULL);

errs += dsi_ain_range (fd, index, DSI_AIN_RANGE_10V, NULL);

errs += dsi_ain_buf_input (fd, index, DSI_AIN_BUF_INPUT_ENABLE, NULL);

errs += dsi_ain_buf_threshold (fd, index, 128L * 1024, NULL);

errs += dsi_sw_sync_mode (fd, index, DSI_SW_SYNC_MODE_CLR_BUF, NULL);

errs += dsi_channel_order (fd, index, DSI_CHANNEL_ORDER_SYNC, NULL);

errs += dsi_data_format (fd, index, DSI_DATA_FORMAT_OFF_BIN, NULL);

errs += dsi_data_width (fd, index, DSI_DATA_WIDTH_24, NULL);

errs += dsi_init_mode (fd, index, DSI_INIT_MODE_INITIATOR, NULL);

errs += dsi_external_clock_source (fd, index, DSI_EXT_CLK_SRC_GRP_0, NULL);

errs += dsi_fref_compute (fd, index, 0, &fref);

errs += dsi_channel_group_source_all (fd, index, DSI_CH_GRP_SRC_GEN_A, 1);

errs += dsi_fsamp_compute (fd, index, 0, 0, fref, &fsamp,

&nvco, &nref, &nrate, &ndiv);

errs += dsi_rate_gen_x_nvco_all (fd, index, nvco, 1);

errs += dsi_rate_gen_x_nref_all (fd, index, nref, 1);

errs += dsi_rate_gen_x_nrate_all (fd, index, nrate, 1);

errs += dsi_rate_gen_x_ndiv_all (fd, index, ndiv, 1);

errs += dsi_fsamp_report_all (fd, index, 1, &fref);

errs += dsi_xcvr_type (fd, index, DSI_XCVR_TYPE_LVDS, NULL);

errs += dsi_auto_calibrate (fd, index);

errs += dsi_ain_buf_clear_at_boundary(fd, index);

errs += dsi_ain_buf_overflow (fd, index, DSI_AIN_BUF_OVERFLOW_CLEAR, NULL);
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errs += dsi_ain_buf_underflow (fd, index, DSI_AIN_BUF_UNDERFLOW_CLEAR, NULL);

return(errs);

}

/***********************************

*

* Function: _save_data_profiler

*

* Purpose:

*

* Save the read data to a file, customized for te FMCW radar

*

* Arguments:

*

* Buffer The data to store

*

* chan The number of channels

*

* fd_file Th handle of the file where to store the data

*

* Returned:

*

* >= 0 The number of errors encountered here.

*

************************************/

65



int _save_data_profiler(FILE* fd_file, int chan, __s32 *buffer, long samples)

{

int i;

long l;

//long samples = sizeof(buffer)/CHANS_ENABLED;

int errs = 0;

printf("Number of samples per buffer %ld\n", samples);

gsc_label("Saving data\n");

for(l=0; l< samples; l++)

{

// Only ch0 and ch3 are included on the file to make it of a reasonable size

if((l % chan == 0)||(l % 3 == 0))

{

i = fprintf(fd_file, " %08lX", (long) buffer[l]);

if(i != 10)

{

printf("FAIL <-- (fprintf() failure)\n");

errs=1;

break;

}

}

if((l % chan) == (chan - 1))

{

i = fprintf(fd_file, "\r\n");

if(i != 2)

{
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printf("FAIL <-- (fprintf() failure *****)\n");

errs = 1;

break;

}

}

}

return(errs);

}

/**********************************

*

* Function: _channels_profiler

*

* Purpose:

*

* Check to see how many channels the board has.

*

* Arguments:

*

* fd The handle for the board to access.

*

* chan Report the number of channels here.

*

* Returned:

*
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* >= 0 The number of errors encounterred.

*

***************************************/

int _channels_profiler(int fd, __s32* chans)

{

int errs;

gsc_label("Input Channels");

errs = dsi_query(fd, DSI_QUERY_CHANNEL_QTY, chans);

if (errs == 0)

printf("%ld Channels\n", (long) chans[0]);

return(errs);

}
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APPENDIX B

SYNCHRONIZATION PROGRAM

B.1 pre processing david.pro

; Pre-processing

; Consist on synchronize the data and output a file with only data and

;a mark in every profile

;% channel 0 contains info and channel 3 contains sync

;% Save info with a mark every edge of sync signal

;% and save it in a new file dataMark.txt

;Developed by David Garrido

pro pre_processing_david, infile, ch, sync

number_channels = 6 ; currently the board has 6 channels

fs = 60000 ;define the frequency sample

PRF=100

outfile = infile + ’.img’ ; that should be modified later for ordinary data

print, outfile

lun = 1 ; our input file

lun_out = 2 ; our output file
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close, /all

on_ioerror, at_eof ;jump to at_eof in case of ioerror

;

;Read the adquired data, from the infile, organized in columns

;

;Default route: ’/Users/user/Desktop/noise floor/IDL/Default/test.dat’

print, ’before data’

lines_skipped = 0

; define the number of lines skipped at the beggining of the file

FMT=’A,A’

; the structure of the data is defined, choose between the available data!!!

readcol, infile, F=FMT, ch0, ch3, SKIPLINE=lines_skipped

;the columns are saved, we can discard data using X in the format instead of A.

ch0=strmid(ch0,2,6)

; the first 8 bits are discarded, they indicated the channel only

ch3=strmid(ch3,2,6)

print, ’Data read’

;

;Conversion from hexadecimal string to double

;

size_array=size(ch0)

size_array=size_array(1)

ch_info=dblarr(size_array)
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ReadS, ch3, ch_info, Format=’(Z)’

ch_sync=dblarr(size_array)

ReadS, ch0, ch_sync, Format=’(Z)’

ch0=’’

ch3=’’

;

;Now data should be transformed to real Voltage values.

;%1LSB equals the full escale (20V) divided by 1.1921uV (24 bits)

LSB = 20.0000000/(2.0000000^24.0000000)

ch_info=ch_info*LSB -10 ;transforming integer to real voltage value

ch_sync=ch_sync*LSB -10

ch_sync_max=max(ch_sync)

ch_sync_min=min(ch_sync)

ch_info_min=min(ch_info)

ch_info_max=max(ch_info)

ch_info_mean=mean(ch_info)

ch_sync_mean=mean(ch_sync)

print, ’ch_sync: ’, ch_sync_max, ch_sync_min, ch_sync_mean,

’ ch_info: ’, ch_info_max, ch_info_min, ch_info_mean

;

; Synchronize file and write the blocks to the file

;

openw,lun_out,outfile ; open the file/file descriptors

threshold = 1.65
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; 1.65 volts are chosen, sync signal ideally between 0 and 3.3V

Block_size=double(fs/PRF) - 2 ; It is needed to do that authomatically

;due to the no synchronization or jitter,

;the minimum block size will be fs/PRF-1 to be sure I put -2

writeu, lun_out, Block_size-200

; We indicate what size_block the file will have

;so processing will be faster

if ch_sync(0) lt threshold then aux=0 else aux=1

;aux indicate the logic level, so we look for 0 to 1 transitions

last_trig=0

for index =0L, size_array-1 do begin

; in that for we look for trigger,

;in order to synchronize data and save to the file

; last block should be discarded, to do so last_trig variable is used

if aux eq 0 then begin

if ch_sync(index) gt threshold then begin

aux=1

if last_trig gt 0 then begin

writeu, lun_out, ch_info[last_trig+110:last_trig+Block_size-1-90]

if index-last_trig lt Block_size then print, ’Sync error’

;make sure the block are really block_size long at least

endif

last_trig=index
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endif

endif else begin

if ch_sync(index) lt threshold then aux=0

endelse

endfor

print, ’Marked file created!!!!!!!!’

at_eof:

close,lun

close,lun_out

Block_size=’’

ch_sync=’’

ch_info=’’

print, ’File created.’

end

73



APPENDIX C

SIGNAL PROCESSING PROGRAM

C.1 windprof process david.pro

;Developed by David Garrido Lopez, UMass Amherst, MIRSL 2009

;That program process the data already saved into infile

;in blocks by pre_processing_david.pro

; Steps for FMCW Processing

; 1. read header, creating a structure

; 2. read profile and convert data to time domain using fft

; 3. remove temporal mean to get rid of stationary targets such as

; buildings and trees..

; 4. get power and average in time

pro windprof_process_david, infile

lun = 1

lun_out = 2

lun_noise = 3

close, lun, lun_out, lun_noise

lambda=3e8/915e6
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prof_avg = 10000

; here we decide how many profiles we’re gonna average

size_sample=8 ; A double has 8 bytes so does a sample

number_channels=1

; number of channels on the file to process (not on the board)

sample_freq=60000 ; sample frequency

outfile = infile + ’.fig’ ; that should be modified later for ordinary data

ch=0 ; By now only one channel

prf=100

on_ioerror, at_eof

openr, lun_noise,

’/Users/user/Desktop/noise floor/IDL/Default/noise_5min_ampnewfilter2.img.fig’

print, ’noise opened’

openw, lun_out, outfile

openr, lun ,infile

info=fstat(lun)

Block_size=double(0)

readu, lun, Block_size

total_samples = info.size/size_sample

total_profiles = (total_samples -1)/(Block_size*number_channels)

print, ’Total profiles in file: ’, total_profiles

; once it is known how many profiles there are on the file,

;it is proceed to process it
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f_frame=dblarr(Block_size, prof_avg)

rawdata = dblarr(number_channels,Block_size)

wsamples=Block_size

windw = rebin(hanning(wsamples), wsamples, prof_avg)

winfunc=dblarr(Block_size,prof_avg)

winfunc[0:wsamples-1,*]=windw

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;

;First noise mean, estimated from 10 minutes noise file

;

;;print, fstat(lun_noise)

pow1_noise=dblarr(199)

readu, lun_noise, pow1_noise

mean_noise=mean(pow1_noise[50:198])

; the mean is found substracting the first samples

;because at low frequencies there’s no noise due to the filter response

print, ’mean = ’, mean(pow1_noise), ’ maximum: ’, max(pow1_noise),

’ mean2: ’, mean(pow1_noise[50:198])

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

for avg_frame_index=0L, total_profiles/prof_avg-1 do begin ;big loop

for frame_index= 0L, prof_avg-1 do begin

readu,1,rawdata

rawdata=rawdata

f_frame[*,frame_index] = rawdata(ch,*)

endfor

f_frame=f_frame*winfunc
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c_frame=(fft(f_frame,dimension=1))[0:Block_size/2-1,*];

c_mean=total(c_frame,2)/prof_avg

c_frame1=c_frame-complex(rebin(real_part(c_mean),Block_size/2, $

prof_avg),rebin(imaginary(c_mean),Block_size/2, prof_avg))

pow=total(double(c_frame*conj(c_frame)), 2)/prof_avg

pow1=(total(double(c_frame1*conj(c_frame1)), 2)/prof_avg)

autocorr=total(c_frame[*,1:prof_avg-1]* $

conj(c_frame[*,0:prof_avg-2]),2) / (prof_avg-1)

autocorr_phase=atan(autocorr,/phase)

autocorr1=total(c_frame1[*,1:prof_avg-1]* $

conj(c_frame1[*,0:prof_avg-2]),2) / (prof_avg-1)

autocorr_phase1=atan(autocorr1,/phase)

;Get velocity

vel=autocorr_phase*(prf*lambda)/(4*!pi)

vel1=autocorr_phase1*(prf*lambda)/(4*!pi)

;Get coherence

rho=abs(autocorr)/pow

rho1=abs(autocorr1)/pow1

;powdb=10*alog10(pow)
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;powdb1=10*alog10(pow1)

;writeu,lun_out,pow,vel,rho,c_mean

writeu,lun_out,pow1,vel1,rho1,c_mean

endfor

;;print, fstat(lun_out)

size_pow1=size(pow1)

noise_avg=28500 ;58400

std=mean_noise/sqrt(noise_avg)

pow1_plot=pow1

xant=1e-6

for index=0L, size_pow1(3)-1 do begin

x=pow1(index)-pow1_noise(index)*0.80

if x lt 0 then begin

;x=abs(x)

;if xant-x le 0 then x=xant+x*0.1 else x=xant-x*0.1

endif

pow1_plot(index)=x

xant=x

endfor

;window, 0

;plot, rawdata

window, 4

plot, 10*alog10(pow1_plot)+30, xtitle=’samples’, ytitle=’Power(dBm)’
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for index2=0L, size_pow1(3)-1 do begin

if pow1_plot(index2) lt pow1_noise(index2)-4*std then pow1_plot(index2)=1e-10

endfor

;oplot, 10*alog10(pow1_plot)+30, COLOR=1500

oplot, 10*alog10(pow1) + 30, COLOR=’00FFFF’x

oplot, 10*alog10(pow1_noise) + 30, COLOR=’FFFF00’x

print, ’std: ’, std

at_eof:

close,lun

close,lun_out

close, lun_noise

print, ’File created.’

end

79



APPENDIX D

GRAPHICAL USER INTERFACE PROGRAM

D.1 wgui fmcw create.pro

; David Garrido Lopez

; MIRSL Lab @ UMass Amherst

;

; GUI For FMCW Boundary layer radar

;

PRO wgui_fmcw_create

COMMON SHARE1, hdr, display, datafile, lun

display=1

;datafile=’fmcw.conf’

;hdr = header_w()

base = widget_base(title=’UMass FMCW Radar GUI v1.0’, /row)

;

; Positioner settings

;
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b0 = widget_base(base, /frame, /column)

t0 = widget_label(b0, value="-- Radar Settings --")

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Center frequency: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’centr_freq’, value=’115’)

t2 = widget_label(b1, value=’[Mhz]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Bandwidth: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’bw’, value=’25’)

t2 = widget_label(b1, value=’[Mhz]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Chirp lenght: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’chirp_time’, value=’8.3333’)

t2 = widget_label(b1, value=’[mseg]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’PRF: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’prf_time’, value=’100’)

t2 = widget_label(b1, value=’[Hz]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’AO sampling freq: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’AO_freq’, value=’40’)
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t2 = widget_label(b1, value=’[Khz]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Sample frequency: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’samp_freq’, value=’61’)

t2 = widget_label(b1, value=’[Khz]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Scans per profile: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’scans_profile’, value=’610’)

t2 = widget_label(b1, value=’[]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Total profile: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’profile’, value=’180000’)

t2 = widget_label(b1, value=’[]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Scans per frame: ’)

t2 = widget_text(b1, /editable, xsize=8, uname=’scans_frame’, value=’30500’)

t2 = widget_label(b1, value=’[]’)

b1 = widget_base(b0, /row)

t2 = widget_label(b1, value=’Number of channels:’)

t2 = widget_text(b1, /editable, xsize=8, uname=’channels’, value=’3’)

t2 = widget_label(b1, value=’[channels]’)
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;

; Radar buttons

;

b1 = widget_base(base, /frame, /column)

t0 = widget_label(b1, value=’-- Radar configuration --’)

b2 = widget_button(b1, value=’Radar Start’, uname="radar_start", $

uvalue="radar_start")

b2 = widget_button(b1, value=’Radar Stop’, uname="radar_stop", $

uvalue="radar_stop")

t2 = widget_label(b1, value="-- Data collection --")

b2 = widget_button(b1, value=’Start Data Collection’, uname="data_start", $

uvalue="data_start")

b2 = widget_button(b1, value=’Stop Data Collection’, uname="data_stop", $

uvalue="data_stop")

;b1 = widget_base(base, /frame, /column)

t2 = widget_label(b1, value="-- Display Data --")

b2 = widget_base(b1, /row)

t2 = widget_label(b2, value=’Time Average: ’)

t2 = widget_text(b2, /editable, xsize=8, uname=’time_avg’, value=’61’)

t2 = widget_label(b2, value=’[s]’)
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b2 = widget_button(b1, value=’Display Data ’, uname="display_data", $

uvalue="display_data")

setenv, ’INIT=1’

widget_control, base, /realize

xmanager, ’wgui_fmcw’, base

END

D.2 wgui fmcw event.pro

; David Garrido Lopez

; MIRSL Lab @ UMass Amherst

;

; GUI For FMCW Boundary Layer Radar

;

PRO wgui_fmcw_event, ev

COMMON SHARE1, hdr, display, datafile, lun

value=0L

widget_control, ev.id, get_uvalue=value

case (value) of

"radar_stop": begin
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print, "radar stop!"

close,1 ;For testing purposes, debug etc etc

close,2 ;For testing purposes, debug etc etc

reset

return

end

"radar_start": begin

print, ’radar start!’

get_conf_file, ev ; create the .conf file

run_windprofiler ; executes windprofiler.c and inits radar (fpga)

return

end

"data_stop": begin

print, ’data acquisition stop!’

spawn, ’sudo killall -s TERM fmcwsa’

return

end

"data_start": begin

print, ’data acquisition start!’

run_daq ; inits data acquisition

return

end

"display_data": begin
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print, ’displaying data!’

windprof_oldaq

windprof_oldaqdisp

return

end

else: return

endcase

return

END

D.3 get conf file.pro

pro get_conf_file, ev

;

; Creating the fmcw.conf file

;

openw,1,’/Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last/fmcw_prueba.conf’

;specify the concrete rute!!!!!!!

openw,2,’/Users/user/Desktop/PFC/IDL/FMCW/RunDaq/fmcw_prueba.conf’

;specify the concrete rute!!!!!!!

id = widget_info(ev.top, find_by_uname=’centr_freq’)

widget_control, id, get_value=centr_freq
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printf,1,’Center Frequency (MHz) :’,centr_freq

printf,2,’Center Frequency (MHz) :’,centr_freq

id = widget_info(ev.top, find_by_uname=’bw’)

widget_control, id, get_value=bw

printf,1,’Bandwidth (MHz) :’,bw

printf,2,’Bandwidth (MHz) :’,bw

id = widget_info(ev.top, find_by_uname=’chirp_time’)

widget_control, id, get_value=chirp_time

printf,1,’Chirp Length(ms) :’,chirp_time

printf,2,’Chirp Length(ms) :’,chirp_time

id = widget_info(ev.top, find_by_uname=’prf_time’)

widget_control, id, get_value=prf_time

printf,1,’PRF (Hz) :’,prf_time

printf,2,’PRF (Hz) :’,prf_time

id = widget_info(ev.top, find_by_uname=’AO_freq’)

widget_control, id, get_value=AO_freq

printf,1,’AO Sample Frequeny(kHz) :’,AO_freq

printf,2,’AO Sample Frequeny(kHz) :’,AO_freq

id = widget_info(ev.top, find_by_uname=’samp_freq’)

widget_control, id, get_value=samp_freq

printf,1,’Sample Frequency (kHz) :’,samp_freq

printf,2,’Sample Frequency (kHz) :’,samp_freq

id = widget_info(ev.top, find_by_uname=’scans_profile’)

widget_control, id, get_value=scans_profile

printf,1,’Scans per Profile :’,scans_profile

printf,2,’Scans per Profile :’,scans_profile

id = widget_info(ev.top, find_by_uname=’profile’)
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widget_control, id, get_value=profile

printf,1,’Total Profiles :’,profile

printf,2,’Total Profiles :’,profile

id = widget_info(ev.top, find_by_uname=’scans_frame’)

widget_control, id, get_value=scans_frame

printf,1,’Scans Per Frame :’,scans_frame

printf,2,’Scans Per Frame :’,scans_frame

id = widget_info(ev.top, find_by_uname=’channels’)

widget_control, id, get_value=channels

printf,1,’Number of Channels :’,channels

printf,2,’Number of Channels :’,channels

close,1

close,2

end

D.4 run windprofiler.pro

pro run_windprofiler

;

; Compile and execute windprofiler.c, that inits the radar!

;

spawn, ’g++ -o /Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last/windprofiler

/Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last/windprofiler.c’

print, ’windprofiler compiled’

spawn, ’sudo ./Users/user/Desktop/PFC/IDL/FMCW
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/WindProfiler_Last/windprofiler fmcw.conf’

print, ’windprofiler executed’

end

D.5 reset.pro

pro reset

;

; Compile and execute reset.c, which stops radar!

;

spawn, ’g++ -o /Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last

/reset /Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last/reset.c’

print, ’reset compiled’

spawn, ’sudo ./Users/user/Desktop/PFC/IDL/FMCW/WindProfiler_Last/reset ’

print, ’reset executed’

end

D.6 run daq.pro

pro run_Daq

;

; Compile and execute fmcwsa.c, that inits the data acquisition!
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;

spawn, ’g++ -o /Users/user/Desktop/PFC/IDL/FMCW/RunDaq/fmcwsa /Users

/user/Desktop/PFC/IDL/FMCW/RunDaq/fmcwsa.c’

print, ’fmcwsa compiled’

spawn, ’sudo ./Users/user/Desktop/PFC/IDL/FMCW/RunDaq/fmcwsa fmcw.conf’

print, ’fmcwsa executed’

end
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