
Artisan Technology Group is your source for quality
new and certified-used/pre-owned equipment

•	 FAST SHIPPING AND
DELIVERY

•	 TENS OF THOUSANDS OF
IN-STOCK ITEMS

•	 EQUIPMENT DEMOS

•	 HUNDREDS OF
MANUFACTURERS
SUPPORTED

•	 LEASING/MONTHLY
RENTALS

•	 ITAR CERTIFIED
SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS
Experienced engineers and technicians on staff
at our full-service, in-house repair center

WE BUY USED EQUIPMENT
Sell your excess, underutilized, and idle used equipment
We also offer credit for buy-backs and trade-ins
www.artisantg.com/WeBuyEquipment

 REMOTE INSPECTION
Remotely inspect equipment before purchasing with
our interactive website at www.instraview.com

LOOKING FOR MORE INFORMATION?
Visit us on the web at www.artisantg.com for more
information on price quotations, drivers, technical
specifications, manuals, and documentation

Contact us: (888) 88-SOURCE | sales@artisantg.com | www.artisantg.com

SMViewInstra

HP Standard Instrument Control
Library

User’s Guide for LynxOS

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

ii

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “commercial computer
software” as defined in DFARS 252.227-7013 (Oct 1988),
DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 2.101(a), or as “Restricted
computer software” as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Copyright © 1995, 1996, 1997 Hewlett-Packard Company. All Rights Reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

 iii

Printing History

Edition 1 — August 1997

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

iv

Conventions Used in This Manual
This manual uses the following typographical conventions:

Getting Started Italicized text is used for book titles and for
emphasis.

Dialog Box Bold text is used for the first instance of a word
that is defined in the glossary.

File Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

dir filename In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

File ⇒ Open The “⇒” is used in a shorthand notation to show
the location of features in the menu. For
example, “File ⇒ Open” means to select the
File menu and then select Open.

Sml | Med | Lrg Choices in computer font, separated with bars
(|), indicate that you should choose one of the
options.

Press Enter In this context, bold represents a key to press on
the keyboard.

Press Ctrl + O Represents a combination of keys on the
keyboard that you should press at the same time.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Contents

 Contents-1

1. Introduction

HP SICL Overview...3
HP SICL Features..3
HP SICL User..3

2. Using HP SICL

Compiling and Linking HP SICL Programs...7
Including the sicl.h Header File..8
Opening a Communications Session ..9

Device Sessions ...10
Addressing Device Sessions...10

Interface Sessions ..11
Addressing Interface Sessions..11

Commander Sessions...12
Addressing Commander Sessions ..12

Sending I/O Commands..13
Formatted I/O ..13

Formatted I/O Conversion..14
Formatted I/O Example..19
Format String..21
Formatted I/O Buffers ..21
Overview of Formatted I/O Routines...22

Non-Formatted I/O ..23
Non-formatted I/O Example...23

Using Asynchronous Events...25
SRQ Handlers ..25
Interrupt Handlers..25
Temporarily Disabling/Enabling Asynchronous Events26
Protecting I/O Calls Against Interrupts ...27
Interrupt Handler Example ..28

Using Error Handlers ..30
Error Handler Example..31

Using Locks ..33

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Contents-2

Lock Actions ... 34
Locking in a Multi-User Environment .. 34
Locking Example .. 35

3. Using HP SICL with HP-IB

Creating a Communications Session with HP-IB 39
Communicating with HP-IB Devices... 40

Addressing HP-IB Devices ... 40
HP SICL Function Support with HP-IB Device Sessions................. 41

HP-IB Device Session Interrupts ... 41
HP-IB Device Sessions and Service Requests............................. 42

HP-IB Device Session Example.. 42
Communicating with HP-IB Interfaces .. 44

Addressing HP-IB Interfaces .. 44
HP SICL Function Support with HP-IB Interface Sessions.............. 45

HP-IB Interface Session Interrupts .. 45
HP-IB Interface Sessions and Service Requests 45

HP-IB Interface Session Examples ... 46
Checking the Bus Status .. 46
Communicating with Devices via Interface Sessions 47

Communicating with HP-IB Commanders .. 51
Addressing HP-IB Commanders... 51
HP SICL Function Support with HP-IB Commander Sessions 52

HP-IB Commander Session Interrupts... 52
Summary of HP-IB Specific Functions .. 53

4. Using HP SICL with VXI

Creating a Communications Session with
VXI.. 57

Communicating with VXI Devices .. 58
Message-Based Devices .. 59

Addressing VXI Message-Based Devices 59
Message-Based Device Session Example.................................... 61

Register-Based Devices... 62
Addressing VXI Register-Based Devices 62
Programming Directly to the Registers.. 63
Register-Based Programming Example 65

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

 Contents-3

Communicating with VXI Interfaces..67
Addressing VXI Interface Sessions...67
VXI Interface Session Example ..68

Communicating with VME Devices...69
Declaring Resources ..70

E1482 VXI-MXI Resources...70
Mapping VME Memory ..71

Supported Access Modes ...72
Reading and Writing to the Device Registers72
Unmapping Memory Space ...72
VME Interrupts..72
VME Example ...73

HP SICL Function Support with VXI ..76
Device Sessions ...76

Message-Based Device Sessions..76
Register-Based Device Sessions ..76

Interface Sessions ..77
Using HP SICL Trigger Lines ..78

Routing VXI TTL Trigger Lines in a VXI/MXI System79
Routing External Trigger Lines on the E1482 VXI-MXI Extender Bus

Card ..81
Using i?blockcopy for DMA Transfers..82
Using VXI Specific Interrupts ..85

Processing VME Interrupts Example ..87
Summary of VXI Specific Functions ...88

A. The HP SICL Utilities

iclear ...91
ipeek..92
ipoke ...93
iread ..94
iwrite ...95

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Contents-4

B. Customizing Your VXI System

The VXI Resource Manager (ivxirm) .. 99
The VXI Configuration Files.. 100

The vximanuf.cf Configuration File.. 100
The vximodel.cf Configuration File.. 101
The dynamic.cf Configuration File ... 101
The vmedev.cf Configuration File .. 101
The irq.cf Configuration File .. 102
The cmdrsrvt.cf Configuration File... 102
The names.cf Configuration File... 102
The oride.cf Configuration File... 103
The ttltrig.cf Configuration File .. 103

The iproc Utility (Initialization and SYSRESET)................................ 104
Viewing the VXIbus System Configuration... 105
VXI Configuration Utilities.. 106

iproc... 107
ivxirm .. 109
ivxisc ... 111

C. Configuring HP SICL

Configuring HP SICL for VXI ... 117
Editing the Hardware Configuration File ... 118

To Edit the hwconfig.cf File... 118
About the Hardware Configuration File.. 119

Glossary

Index

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

1

Introduction

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2 Chapter 1

Introduction

Welcome to the HP Standard Instrument Control Library (SICL): User’s
Guide for LynxOS. This manual describes how to configure, and use SICL
on LynxOS.

This first chapter provides a brief overview of SICL. In addition, this guide
contains the following chapters:

n Chapter 2 - Using HP SICL describes the basics of SICL along with
some detailed example programs. You can find information on
communication sessions, addressing, error handling, and more.

n Chapter 3 - Using HP SICL with HP-IB describes communicating over
the HP-IB interface. Example programs are also provided.

n Chapter 4 - Using HP SICL with VXI describes communicating over
the VXIbus. Example programs are also provided.

This guide also contains the following appendices:

n Appendix A - The HP SICL Utilities describes the SICL utilities you
can use to read and write to devices or interfaces from the command line.

n Appendix B - Customizing Your VXI System explains how you can
customize your VXI system. VXI configuration utilities are documented
as well.

n Appendix C - Configuring HP SICL explains how to edit the hardware
configuration file and run the SICL configuration utility.

This guide also contains a Glossary of terms and their definitions, as well as
an Index.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 1 3

Introduction
HP SICL Overview

HP SICL Overview
SICL is a modular instrument communications library that works with a
variety of computer architectures, I/O interfaces, and operating systems.
Applications written in C or C++ using this library can be ported at the
source code level from one system to another without, or with very few,
changes.

SICL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with a
particular instrument on a given interface can also communicate with an
equivalent instrument on a different type of interface. This is possible
because the commands are independent of the specific communications
interface. SICL also provides commands to take advantage of the unique
features of each type of interface, thus giving the programmer complete
control over I/O communications.

The HP E6237A Pentium Real-Time Controller with SICL on LynxOS
supports the following interfaces:

n VXIbus (including multiple mainframe systems using the E1482B VXI-
MXI extender)

n HP-IB

HP SICL Features

SICL has several features that distinguish it from other I/O libraries:

n Portability
n Centralized error handling
n Formatted I/O
n Device, interface, and commander communications sessions
n Asynchronous event notification

HP SICL User

SICL is intended for instrument I/O and C/C++ programmers who are
familiar with the LynxOS operating system. This manual does not attempt
to teach the C programming language or instrument I/O concepts.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4 Chapter 1

Introduction
HP SICL Overview

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

2

Using HP SICL

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

6 Chapter 2

Using HP SICL

This chapter first describes how to use SICL and some of the basic features,
such as error handling and locking. Detailed example programs are also
provided to help you understand how these features work.

This chapter contains the following sections:

n Compiling and Linking HP SICL Programs

n Including the sicl.h Header File

n Opening a Communications Session

n Sending I/O Commands

n Using Asynchronous Events

n Using Error Handlers

n Using Locks

For specific details on SICL function calls, see the HP SICL Reference
Manual.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 7

Using HP SICL
Compiling and Linking HP SICL Programs

Compiling and Linking HP SICL Programs
You can create your SICL applications using ANSI C or C++ by following
the instructions described in the LynxOS documentation. When compiling
and linking a C program that uses SICL, use the -lsicl command line
option to link in the appropriate library. The following example creates the
executable file for the program called idn:

gcc -mthreads idn.c -o idn -lsicl

n The -o option creates an executable file called idn.

n The -lsicl option links in the SICL library (libsicl.a).

n The -mthreads option allows for multi-threaded execution.
(SICL requires the -mthreads option.)

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

8 Chapter 2

Using HP SICL
Including the sicl.h Header File

Including the sicl.h Header File
You must include the sicl.h header file at the beginning of every file that
contains SICL calls. This header file contains the SICL function prototypes
and the definitions for all SICL constants and error codes:

#include <sicl.h>

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 9

Using HP SICL
Opening a Communications Session

Opening a Communications Session
A communications session is a channel of communication with a particular
device, interface, or commander:

n A device session is used to communicate with a specific device
connected to an interface. A device is a unit that receives commands
from a controller. Typically a device is an instrument but could be a
computer, a plotter, or a printer.

n An interface session is used to communicate with a specified interface.
Interface sessions allow you to use interface specific functions (for
example, igpibsendcmd).

n A commander session is used to communicate with the interface
commander. Typically a commander session is used when a computer
connected to the interface is acting like a device.

There are two parts to opening a communication session with a specific
device, interface, or commander. First, you must create an instance of a
SICL session by declaring a variable of type INST. Then, once the variable
is declared, you can open the communication channel by using the SICL
iopen function:

INST id;
id = iopen (addr);

Where id is declared with the type INST and communicates to a device,
interface, or commander. The addr parameter is a string expression which
specifies a device or interface address, or the string cmdr for a commander
session. See the sections that follow for details on creating the different
types of communications sessions.

Your program may have several sessions open at the same time by creating
multiple INST identifiers with the iopen function. Use the SICL iclose
function to close a channel of communication.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

10 Chapter 2

Using HP SICL
Opening a Communications Session

Device Sessions

A device session allows you direct access to a device without worrying
about the type of interface to which it is connected. On HP-IB, for example,
you do not have to address a device to listen before sending data to it. This
insulation makes applications more robust and portable across interfaces,
and is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level of programming, best overall performance,
and best portability.

Addressing Device
Sessions

To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration.

The logical unit is an integer corresponding to the interface. The device
address generally consists of the symbolic name or logical unit and
an integer that corresponds to the device’s address. It may also include a
secondary address which is also an integer.

Note Secondary addressing is not supported on the VXI interface.

The following are valid device addresses:

7,23 Device at bus address 23 connected to an interface
card at logical unit 7.

7,23,1 Device at bus address 23, secondary address 1,
connected to an interface card at logical unit 7.

hpib,23 Device at bus address 23 and symbolic name hpib.

hpib2,23,1 Device at bus address 23, secondary address 1,
connected to a second HP-IB interface with symbolic
name hpib2.

vxi,128 Device at logical address 128 and symbolic name vxi.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 11

Using HP SICL
Opening a Communications Session

The following is an example of opening a device session with the HP-IB
device at bus address 23:

INST dmm;
dmm = iopen ("hpib,23");

More on addressing specific devices can be found in the interface-specific
chapter (for example, "Using HP SICL with HP-IB") later in this manual.

Interface Sessions

An interface session allows low-level control of the specified interface.
There is a full set of interface-specific SICL functions for programming
features that are specific to a particular interface type (HP-IB or VXI). This
gives you full control of the activities on a given interface, but does make
code less portable.

Addressing Interface
Sessions

To create an interface session, specify either the interface symbolic name
or logical unit in the addr parameter of the iopen function. The
interface symbolic name and logical unit are defined during the
system configuration.

The logical unit is an integer that corresponds to a specific interface.
The symbolic name is a string which uniquely describes the interface.

The following are valid interface addresses:

The following example opens an interface session with the HP-IB interface:

INST dmm;
dmm = iopen ("hpib");

More on addressing specific interfaces can be found in the interface-specific
chapter (for example, "Using HP SICL with HP-IB") later in this manual.

7 Interface card at logical unit 7.

hpib HP-IB interface with the symbolic name hpib.

hpib2 Second HP-IB interface with the symbolic name hpib2.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

12 Chapter 2

Using HP SICL
Opening a Communications Session

Commander Sessions

The commander session allows you to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on the interface. However, when the controller is no longer the active
controller, or passes control, commander sessions can be used to talk to the
controller. In this mode, your program is acting like a device on the interface
(non-controller).

Note Commander sessions are not supported on VXI.

Addressing
Commander
Sessions

To create a commander session, specify either the interface symbolic
name or logical unit followed by a comma and then the string cmdr in
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration. The following are valid
commander addresses:

The following is an example of creating a commander session with the HP-
IB interface:

INST cmdr;
cmdr = iopen("hpib,cmdr");

hpib,cmdr HP-IB commander session.

7,cmdr Commander session on interface at logical unit 7.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 13

Using HP SICL
Sending I/O Commands

Sending I/O Commands
Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using either formatted I/O or non-formatted I/O.

n Formatted I/O converts mixed types of data under the control of a format
string. The data is buffered, thus optimizing interface traffic. The
formatted I/O routines are geared towards instruments and are very
compact, but not fast.

n Non-formatted I/O sends or receives raw data to or from a device,
interface, or commander. With non-formatted I/O, no formatting or
conversion of the data is performed. Thus, if formatted data is required,
it must be done by the user.

See the following sections for a complete description and examples of using
formatted I/O and non-formatted I/O.

Formatted I/O

The SICL formatted I/O mechanism is similar to the C stdio mechanism.
SICL formatted I/O, however, is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible instruments.
The three main functions for formatted I/O are as follows:

n The iprintf function formats according to the format string and sends
data to the session specified by id:

iprintf (id, format [,arg1][,arg2][,...]);

n The iscanf function receives data from the session specified by id and
converts the data according to the format string:

iscanf(id, format [,arg1][,arg2][,...]);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

14 Chapter 2

Using HP SICL
Sending I/O Commands

n The ipromptf function formats data according to the writefmt string and
sends data to the session specified by id and then immediately receives
the data and converts it according to the readfmt string:

ipromptf(id, writefmt, readfmt [,arg1][,arg2][,...]);

See the HP SICL Reference Manual for more information on these
functions.

The formatted I/O functions are buffered. There are two non-buffered and
non-formatted I/O functions called iread and iwrite. See the "Non-
formatted I/O" section later in this chapter. These are raw I/O functions and
do not intermix with the formatted I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. They have
the same parameters as iread and iwrite, but read or write raw data to or
from the formatted I/O buffers. Refer to the "Formatted I/O Buffers" section
later in this chapter for more details.

Formatted I/O
Conversion

The formatted I/O functions convert data under the control of the format
string. The format string specifies how each argument is converted before it
is input or output. The typical format string syntax is as follows:

%[format flags][field width][.precision][,array size]
[argument modifier]conversion character

See iprintf, ipromptf, and iscanf in the HP SICL Reference Manual
for more information on how data is converted under the control of the
format string.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 15

Using HP SICL
Sending I/O Commands

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending
formatted I/O (iprintf and ipromptf). The following are supported
format flags:

The following example converts numb into a IEEE 488.2 floating point
number (NR2) and sends it to the session specified by id:

int numb = 61;
iprintf (id, "%@2d", numb);

Sends: 61.000000

Field Width. Field width is an optional integer that specifies the minimum
number of characters in the field. If the formatted data has fewer characters
than specified in the field width, it will be padded. The padded character is

Format Flag Description

@1 Converts to a IEEE 488.2 NR1 number.

@2 Converts to a IEEE 488.2 NR2 number.

@3 Converts to a IEEE 488.2 NR3 number.

@H Converts to a IEEE 488.2 hexadecimal number.

@Q Converts to a IEEE 488.2 octal number.

@B Converts to a IEEE 488.2 binary number.

+ Prefixes number with sign (+ or -).

- Left justifies result.

space Prefixes number with blank space if positive or with - if
negative.

Use alternate form. For o conversion, print a leading zero.
For x or X, a nonzero will have 0x or 0X as a prefix. For e,
E, f, g, or G, the result will always have one digit on the
right of the decimal point.

0 Left causes left pad character to be a zero for all numeric
conversion types.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

16 Chapter 2

Using HP SICL
Sending I/O Commands

dependent on various flags. You can use an asterisk (*) in place of the
integer to indicate that the integer is taken from the next argument.

The following example pads numb to six characters and sends it to the
session specified by id:

int numb = 61;
iprintf (id, "%6d", numb);

Pads to six characters: 61

.Precision. Precision is an optional integer that is preceded by a period.
When used with conversion characters e, E, and f, the number of digits to
the right of the decimal point is specified. For the d, i, o, u, x, and X
conversion characters, the minimum number of digits to appear is specified.
For the s, and S conversion characters, the precision specifies the maximum
number of characters to be read from the argument. This field is only used
when sending formatted I/O (iprintf and ipromptf). You can use an
asterisk (*) in place of the integer to indicate that the integer is taken from
the next argument.

The following example converts numb so that there are only two digits to the
right of the decimal point and sends it to the session specified by id:

float numb = 26.9345;
iprintf (id, "%.2f", numb);

Sends: 26.93

,Array Size. The comma operator is a format modifier which allows you to
read or write a comma-separated list of numbers (only valid with %d and %f
conversion characters). It is a comma followed by an integer. The integer
indicates the number of elements in the array argument. The comma
operator has the format of ,dd where dd is the number of elements to read
or write.

The following example specifies a comma separated list to be sent to the
session specified by id:

int list[5]={101,102,103,104,105};
iprintf (id, "%,5d", list);

Sends: 101,102,103,104,105

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 17

Using HP SICL
Sending I/O Commands

Argument Modifier. The meaning of the optional argument modifier h, l,
w, z, and Z is dependent on the conversion character:

Argument
 Modifier

Conversion
 Character

Description

h d, i Corresponding argument is a short integer.

h f Corresponding argument is a float for
iprintf or a pointer to a float for iscanf.

l d,i Corresponding argument is a long integer.

l b,B Corresponding argument is a pointer to a
block of long integers.

l f Corresponding argument is a double for
iprintf or a pointer to a double for
iscanf.

w b,B Corresponding argument is a pointer to a
block of short integers.

z b,B Corresponding argument is pointer to a
block of floats.

Z b,B Corresponding argument is a pointer to a
block of doubles.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

18 Chapter 2

Using HP SICL
Sending I/O Commands

Conversion Characters. The conversion characters for sending and
receiving formatted I/O are different. The following tables summarize the
conversion characters for each:

The following example sends an arbitrary block of data to the session
specified by the id parameter. The asterisk (*) is used to indicate that the
number is taken from the next argument:

long int size = 1024;
char data [1024];
 .
 .
iprintf (id, "%*b", size, data);

Sends 1024 characters of block data.

Output
Conversion
 Characters

Description

d, i Corresponding argument is an integer.

f Corresponding argument is a double.

b, B Corresponding argument is a pointer to an arbitrary block
of data.

c,C Corresponding argument is a character.

t Controls whether the END indicator is sent with each LF
character in the format string.

s,S Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument is an unsigned integer.

e,E,g,G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

F Corresponding argument is a pointer to a FILE descriptor
opened for reading.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 19

Using HP SICL
Sending I/O Commands

The following example reads characters up to the first white space character
from the session specified by the id parameter and puts the characters into
data:

char data[180];

iscanf (id, "%s", data);

Formatted I/O
Example

The following ANSI C example (located in /usr/sicl/examples)
illustrates using the formatted I/O functions. This example opens an HP-IB
communications session with a Multimeter and sends a comma operator to
send a comma separated list to the Multimeter. The lf conversion
characters are then used to receive a double back from the Multimeter.

Input
Conversion
Characters

Description

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character
sequence.

s,S,t Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an
unsigned integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

20 Chapter 2

Using HP SICL
Sending I/O Commands

/* formatio.c
 This example program makes a multimeter measurement
 with a comma separated list passed with formatted
 I/O and prints the results */
#include <sicl.h>
#include <stdio.h>

main()
{
 INST dvm;

 double res;
 double list[2] = {1,0.001};
 char buf[80];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen ("hpib,16");
 itimeout (dvm, 10000);

 /* Initialize dvm */
 iprintf (dvm, "*RST\n");

 /* Set up multimeter and send comma separated list */
 iprintf (dvm, "CALC:DBM:REF 50\n");
 iprintf (dvm, "MEAS:VOLT:AC? %,2lf\n", list);

 /* Read the results */
 iscanf (dvm,"%lf\n", &res);

 /* Print the results */
 printf ("Result is %f\n",res);

 /* Close the multimeter session */
 iclose (dvm);

}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 21

Using HP SICL
Sending I/O Commands

Format String The format string for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the output
buffer. All characters in the output buffer will be written with an END
indicator included with the last byte (the newline character). This means
that you can control at what point you want the data written. If no newline
character is included in the format string for an iprintf call, then the
converted characters are stored in the output buffer. It will require another
call to iprintf or a call to iflush to have those characters written.
iflush only sends the data queued in the buffer, and not the END indicator
as in iprintf. Note that newline characters output from an output
parameter do not cause a flush; only newlines in the format string do.

This can be very useful in queuing up data to send to a device. It can also
raise I/O performance by doing a few large writes instead of several smaller
writes. This behavior can be changed by the isetbuf and isetubuf
functions. See the next section, "Formatted I/O Buffers."

The format string for iscanf ignores most white-space characters.
Newlines (\n) and carriage returns (\r), however, are treated just like
normal characters in the format string, which must match the next non-
white-space character read.

Formatted I/O
Buffers

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the iprintf and the write portion of the
ipromptf functions. It queues characters to send so that they are sent in
large blocks, thus increasing performance. The write buffer automatically
flushes when it sends a newline character from the format string (see the %t
conversion character to change this feature). It also flushes immediately
after the write portion of the ipromptf function. It may occasionally be
flushed at other non-deterministic times, such as when the buffer fills.
When the write buffer flushes, it sends its contents.

The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. It queues the data received until it is needed by the
format string. The read buffer is automatically flushed before the write
portion of an ipromptf. Flushing the read buffer destroys the data in the

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

22 Chapter 2

Using HP SICL
Sending I/O Commands

buffer and guarantees that the next call to iscanf or ipromptf reads data
directly rather than data that was previously queued.

Note Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.

See the isetbuf function for other options for buffering data.

Overview of
Formatted I/O
Routines

The following set of functions are related to formatted I/O:

ifread Obtains raw data directly from the read formatted I/O buffer.
This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer.
This is the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data, converts this data via a format string, and
assigns the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf
and iscanf. The advantage of this function is that the
iprintf and iscanf parts are done together.

iflush Flushes the formatted I/O read and write buffers. A flush of
the read buffer means that any data in the buffer is lost. A
flush of the write buffer means that any data in the buffer is
written to the session’s target address.

isetbuf Sets the size of the formatted I/O read and the write buffers.
A size of zero (0) means no buffering. Note that if no
buffering is used, performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer. The
same buffer cannot be used for both reading and writing.
Also you should be careful in using buffers that are
automatically allocated.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 23

Using HP SICL
Sending I/O Commands

Non-Formatted I/O

There are two non-buffered, non-formatted I/O functions called iread and
iwrite. These are raw I/O functions and do not intermix with the
formatted I/O functions. If raw I/O must be mixed, use the ifread and
ifwrite functions. They have the same parameters as iread and iwrite,
but read or write raw data to or from the formatted I/O buffers.

The non-formatted I/O functions are described as follows:

n The iread function reads raw data from the device or interface specified
by the id parameter and stores the results in the location where buf is
pointing:

iread(id, buf, bufsize, reason, actualcnt);

n The iwrite function sends the data pointed to by buf to the interface or
device specified by the id parameter:

iwrite(id, buf, datalen, end, actualcnt);

See the HP SICL Reference Manual for more information on these
functions.

Non-formatted I/O
Example

The following example (located in /usr/sicl/examples) illustrates
using non-formatted I/O to communicate with a Multimeter over the HP-IB
interface The SICL non-formatted I/O functions iwrite and iread are
used for the communication. A similar example is used to illustrate
formatted I/O later in this chapter.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

24 Chapter 2

Using HP SICL
Sending I/O Commands

/* nonformatio.c
 This example program measures AC voltage on a multimeter
 and prints out the results */
#include <sicl.h>
#include <stdio.h>

main()
{
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen ("hpib,16");
 itimeout (dvm, 10000);

 /* Initialize dvm */
 iwrite (dvm, "*RST\n", 5, 1, NULL);

 /* Set up multimeter and take measurement */
 iwrite (dvm,"CALC:DBM:REF 50\n", 16, 1, NULL);
 iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, NULL);

 /* Print the results */
 printf("Result is %s\n", strres);

 /* Close the multimeter session */
 iclose(dvm);

}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 25

Using HP SICL
Using Asynchronous Events

Using Asynchronous Events
Asynchronous events are events that happen outside the control of your
application. These events include Service Requests (SRQ) and interrupts.
An SRQ is a notification that a device requires service. Any device can
generate an SRQ. Both devices and interfaces can generate interrupts.

By default, creating a session enables asynchronous events. However, the
library will not report any events to the application until the appropriate
handlers are installed in your program.

SRQ Handlers

The ionsrq function installs an SRQ handler. The currently installed SRQ
handler is called any time its corresponding device or interface generates an
SRQ. If an interface is unable to determine which device on the interface
generated the SRQ, all SRQ handlers assigned to that interface will be
called.

Therefore, an SRQ handler cannot assume that its corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, and have handlers installed, the handlers for each of
the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be called. First, the
interrupt handler must be installed. Second, the interrupt event or events
need to be enabled. The ionintr function installs an interrupt handler.
The isetintr function enables notification of the interrupt event or events.

An interrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler is installed and interrupt events are enabled
will the interrupt handler be called.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

26 Chapter 2

Using HP SICL
Using Asynchronous Events

Temporarily Disabling/Enabling Asynchronous Events

To temporarily prevent all SRQ and interrupt handlers from executing, use
the iintroff function. This disables all asynchronous handlers for all
sessions in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
by iintroff, use the iintron function. This enables all asynchronous
handlers for all sessions in the process, that had been previously enabled.

Note These functions do not affect the isetintr values or the handlers (ionsrq
or ionintr) in any way. See ionintr and ionsrq in the HP SICL
Reference Manual.

Default is on.

Note It is possible to overflow SICL’s interrupt queue if too many interrupts are
generated while notification is disabled.

Calls to iintroff/iintron may be nested, meaning that there must be an
equal number of on’s and off’s. This means that calling the iintron
function may not actually re-enable notification of interrupts.

Occasionally, you may want to suspend a process and wait until an event
occurs that causes a handler to execute. The iwaithdlr function causes the
process to suspend until either an enabled SRQ or interrupt condition occurs
and the related handler executes. Once the handler completes its operation,
this function returns and processing continues. For this function to work
properly, your application must turn interrupts off before enabling
asynchronous events (that is, use iintroff). The iwaithdlr function
behaves as if interrupts are enabled. Interrupts are still disabled after the
iwaithdlr function has completed. Only calls to iintron will re-enable
interrupts.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 27

Using HP SICL
Using Asynchronous Events

Note Interrupts must be disabled if you are using iwaithdlr. Use iintroff to
disable notification of interrupts.

The reason for disabling notification of interrupts is that the interrupt may
occur between the isetintr and iwaithdlr and, if you only expect one
interrupt, it might come before the iwaithdlr. The interrupt will then be
finished before iwaithdlr is called. In this case, iwaithdlr may have
nothing to wait for, and will wait until its timeout period is reached, if any.
This may or may not be the effect you desire.

For example:

...
iintroff ();
ionintr (vxi, trigger_handler);
isetintr (vxi, I_INTR_TRIG, I_TRIG_TTL0 | I_TRIG_TTL7);
...
ivxitrigon (vxi, I_TRIG_TTL0);
while (!done)

iwaithdlr (0);
iintron ();
...

Protecting I/O Calls Against Interrupts

In SICL, I/O calls like iread and iprintf are interrupted when the
process receives a signal. If your process is not expecting to receive signals,
such I/O side effects will probably be masked by system behavior such as
the reaction to unexpected signals: death of your process. If you are
expecting signals, you may not want them to abort SICL I/O operations.

This can be solved by blocking or ignoring any expected signals while doing
I/O activity. After I/O is complete, the original signal action can be restored.
The choice to block or ignore depends on the need of your application.
Ignored signals are not queued; blocked signals have a one-deep queue and
are acted on as soon as the block is removed.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

28 Chapter 2

Using HP SICL
Using Asynchronous Events

The following programming segment shows signal blocking. SIGALARM
and SIGINT are blocked during an iscanf call.

.

.
/* temporarily block 2 signals */
old_mask = sigblock(sigmask (SIGINT) | sigmask (SIGALRM));

/* call protected I/O function */
iscanf (id, "%f", &mydata);

/* restore original signal mask */
sigsetmask (old_mask);

Interrupt Handler Example

The following is an ANSI C example (located in /usr/sicl/examples)
that installs an interrupt handler and enables the interrupts on the VXI TTL
trigger lines. When the TTL trigger line is asserted, the installed interrupt
handler is called.

/* interrupts.c
 * This is an example of the interrupt handling in SICL. This
 * program installs an interrupt handler and enables the
 * interrupts on trigger and waits for the interrupt. */
#include <sicl.h>
#include <stdio.h>

int intr = 0;
void trigger_handler (INST id, long reason, long secval) {
 /* indicate that the interrupt happened */
 intr = 1; }
/* end of trigger_handler */

main ()
{
 INST id;
 /* start child process to fire trigger line */
 if (fork()==0)
 child();

 ionerror (I_ERROR_EXIT);

 id = iopen ("vxi");
 iintroff();

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 29

Using HP SICL
Using Asynchronous Events

 /* set the interrupt handler */
 ionintr (id, trigger_handler);

 /* what interrupts to handle (interrupt on ttl 0 or 7 firing)
*/
 isetintr (id, I_INTR_TRIG, I_TRIG_TTL0 | I_TRIG_TTL7);

 /* Wait for interrupt to happen (30 second timeout) */
 iwaithdlr (30000);

 if (intr == 1)
 printf ("Interrupt handler called.\n");
 else
 printf ("ERROR: Interrupt handler not called.\n");

 iclose (id);
}

child ()
{
 INST id;
 /* Let the parent get into iwaithdlr */
 sleep (2);

 ionerror (I_ERROR_EXIT);

 id = iopen ("vxi");

 /* pulse TTL0 */
 ivxitrigon (id, I_TRIG_TTL0);
 ivxitrigoff (id, I_TRIG_TTL0);

 iclose (id);
 exit (0);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

30 Chapter 2

Using HP SICL
Using Error Handlers

Using Error Handlers
When a SICL function call results in an error, it typically returns a special
value such as a NULL pointer, or a non-zero error code. SICL provides a
convenient mechanism for handling errors. SICL allows you to install an
error handler for all SICL functions within an application.

It is important to note that error handlers are per-process, not per-session.
That is, one handler will work for all sessions in a process. This allows your
application to ignore the return value and simply permits the error procedure
to detect errors and recover. The error handler is called before the function
that generated the error completes.

The function ionerror is used to install an error handler. It is defined as
follows:

int ionerror (proc);
void (*proc)();

Where:

void proc (id, error);
INST id;
int error;

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the
ionerror function:

This mechanism has substantial advantages over other I/O libraries, because
error handling code is located away from the center of your application.
This makes the application easier to read and understand.

I_ERROR_EXIT This value installs a special error handler which
will print a diagnostic message and then
terminate the process.

I_ERROR_NO_EXIT This value installs a special error handler which
will print a diagnostic message and then allow the
process to continue execution.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 31

Using HP SICL
Using Error Handlers

Error Handler Example

Typically, in an application, error handling code is intermixed with the I/O
code. However, with SICL error handling routines, no special error
handling code is inserted between the I/O calls. Instead, a single line at the
top (calling ionerror) installs an error handler that gets called any time a
SICL call results in an error.

In this example (located in /usr/sicl/examples) a standard, system-
defined error handler is installed that prints a diagnostic message and exits.

/* errhand.c
 This example demonstrates how a SICL error handler
 can be installed */
#include <sicl.h>
#include <stdio.h>

main ()
{
 INST dvm;
 double res;

 ionerror (I_ERROR_EXIT);
 dvm = iopen ("hpib,16");
 itimeout (dvm, 10000);
 iprintf (dvm, "%s\n", "MEAS:VOLT:DC?");

 iscanf (dvm, "%lf", &res);
 printf ("Result is %f\n", res);
 iclose (dvm);

 exit (0);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

32 Chapter 2

Using HP SICL
Using Error Handlers

The following is an ANSI C example (located in /usr/sicl/examples)
of writing and implementing your own error handler:

/* errhand2.c
 This program shows how you can install your own
 error handler */

#include <sicl.h>
#include <stdio.h>

void err_handler (INST id, int error) {
 fprintf (stderr, "Error: %s\n", igeterrstr (error));
 exit (1);
}

main ()
{
 INST dvm;
 double res;

 ionerror (err_handler);
 dvm = iopen ("hpib,16");
 itimeout (dvm, 10000);
 iprintf (dvm, "%s\n", "MEAS:VOLT:DC?");
 iscanf (dvm, "%lf", &res);
 printf ("Result is %f\n", res);
 iclose (dvm);

 exit (0);
}

Now, if any of the SICL functions result in an error, your error routine will
be called.

Note If an error occurs in iopen, the id that is passed to the error handler may not
be valid.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 33

Using HP SICL
Using Locks

Using Locks
Because SICL allows multiple sessions on the same device or interface, the
action of opening does not mean you have exclusive use. In some cases this
is not an issue, but should be a consideration if you are concerned with
program portability.

The SICL ilock function is used to lock an interface or device. The SICL
iunlock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or commander)
basis. If a session within a given process locks a device or interface, then
that device or interface can only be accessed from that session.

Locks can be nested. The device or interface only becomes unlocked when
the same number of unlocks are done as the number of locks. Doing an
unlock without a lock returns the error I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for
this device. Locking a commander (from a commander session) restricts
other commander sessions from accessing this commander.

Caution It is possible for an interface session to access an interface which is serving a
device locked from a device session. This interface access usually allows
the interface session to address or reset any device on the interface. In such
a case, data may be lost from the device session that was underway.

Not all SICL routines are affected by locks. Some routines that simply set or
return session parameters never touch the interface hardware and therefore
work without locks. Each function defined in the HP SICL Reference
Manual has a section, "Affected by functions," that lists the keyword LOCK
if the function is affected by locks. Functions without this keyword are not
affected.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

34 Chapter 2

Using HP SICL
Using Locks

Lock Actions

If a session tries to perform any SICL function that obeys locks on an
interface or device that is currently locked by another session, the default
action is to suspend the call until the lock is released or, if a timeout is set,
until it times out.

This action can be changed with the isetlockwait function (see the
HP SICL Reference Manual for a full description). If the isetlockwait
function is called with the flag parameter set to 0 (zero), the default action is
changed. Rather than causing SICL functions to suspend, an error will be
returned immediately.

To return to the default action, or to suspend and wait for an unlock, call the
isetlockwait function with the flag set to any non-zero value.

Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are being shared, it
is a good idea to use locking to help ensure exclusive use of a particular
device or set of devices. (However, as explained in the previous section,
"Using Locking," remember that an interface session can access a device
locked from a device session.) In general, it is not friendly behavior to lock
a device at the beginning of an application and unlock it at the end. This can
result in deadlock or long waits by others who want to use the resource.

The recommended way to use locking is per transaction. Per transaction
means that you lock before you set up the device, then unlock after all the
desired data has been acquired. When sharing a device, you cannot assume
the state of the device, so the beginning of each transaction should have any
setup needed to configure the device or devices to be used.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 2 35

Using HP SICL
Using Locks

Locking Example

The following example (located in /usr/sicl/examples) shows how
device locking can be used to grant exclusive access to a device by an
application. This example uses an HP 34401 Multimeter.

/* locking.c
 This example shows how device locking can be
 used to grant exclusive access to a device */

#include <sicl.h>
#include <stdio.h>

main()
{
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen ("hpib,16");
 itimeout (dvm, 10000);

 /* Lock the multimeter device to prevent access from
 other applications */
 ilock(dvm);

 /* Take a measurement */
 iwrite (dvm, "MEAS:VOLT:DC?\n", 14, 1, NULL);

 /* Read the results */
 iread (dvm, strres, 20, NULL, NULL);

 /* Release the multimeter device for use by others */
 iunlock(dvm);

 /* Print the results */
 printf("Result is %s\n", strres);

 /* Close the multimeter session */
 iclose(dvm);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

36 Chapter 2

Using HP SICL
Using Locks

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

3

Using HP SICL with HP-IB

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

38 Chapter 3

Using HP SICL with HP-IB

The HP-IB interface (Hewlett-Packard Interface Bus) is Hewlett-Packard’s
implementation of the IEEE 488.1 Bus. Other IEEE 488 versions include
GPIB (General Purpose Interface Bus) and IEEE Bus. GPIB and HP-IB are
both used in the discussions and examples in this chapter. The HP-IB
related SICL functions have the string GPIB embedded in the function name.

This chapter explains how to use SICL to communicate over HP-IB. This
chapter describes in detail how to open a communications session and
communicate with HP-IB devices, interfaces, or controllers.

This chapter contains the following sections:

n Creating a Communications Session with HP-IB

n Communicating with HP-IB Devices

n Communicating with HP-IB Interfaces

n Communicating with HP-IB Commanders

n Summary of HP-IB Specific Functions

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 39

Using HP SICL with HP-IB
Creating a Communications Session with HP-IB

Creating a Communications Session with
HP-IB
Once you have determined that your HP-IB system is set up and operating
correctly, you may want to start programming with the SICL functions.
First you must determine what type of communication session you need.
The three types of communications sessions are device, interface, and
commander.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

40 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Devices

Communicating with HP-IB Devices
The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing HP-IB Devices

To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration.

The following are example HP-IB addresses for device sessions:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are GPIB, gpib, HPIB, etc.

 SICL supports both primary and secondary addressing on HP-IB interfaces.

Remember that the primary address must be between 0 and 30 and that the
secondary address must be between 0 and 30. The primary and secondary
addresses correspond to the HP-IB primary and secondary addresses.

hpib,7 A device address corresponding to the device at primary
address 7 and symbolic name hpib.

hpib,3,2 A device address corresponding to the device at primary
address 3, secondary address 2, and symbolic name
hpib.

hpib,9,0 A device address corresponding to the device at primary
address 9, secondary address 0, and symbolic name
hpib.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 41

Using HP SICL with HP-IB
Communicating with HP-IB Devices

Note If you are using an HP-IB Command Module to communicate with VXI
devices, the secondary address must be specified to select a specific
instrument in the mainframe. Secondary addresses of 0, 1, 2,...31
correspond to VXI instruments at logical addresses of 0, 8, 16,...248,
respectively.

The following is an example of opening a device session with an HP-IB
device at bus address 16:

INST dmm;
dmm = iopen ("hpib,16");

HP SICL Function Support with HP-IB Device Sessions

The following describes how some SICL functions are implemented for
HP-IB device sessions.

HP-IB Device
Session Interrupts

There are no device-specific interrupts for the HP-IB interface.

iwrite Causes all devices to untalk and unlisten. It then sends
this controller’s talk address followed by unlisten and then
the listen address of the corresponding device session.
Then it sends the data over the bus.

iread Causes all devices to untalk and unlisten. It sends an
unlisten, then sends this controller’s listen address
followed by the talk address of the corresponding device
session. Then it reads the data from the bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger
(GET).

iclear Performs a GPIB selected device clear (SDC) on the
device corresponding to this session.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

42 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Devices

HP-IB Device
Sessions and
Service Requests

HP-IB device sessions support Service Requests (SRQ). On the HP-IB
interface, when one device issues an SRQ, the library will inform all HP-IB
device sessions that have SRQ handlers installed. (See ionsrq in the
HP SICL Reference Manual.) This is an artifact of how HP-IB handles the
SRQ line. The interface cannot distinguish which device requested service.
Therefore, the library acts as if all devices require service. Your SRQ
handler can retrieve the device’s status byte by using the ireadstb
function. It is good practice to ensure that a device isn’t requesting service
before leaving the SRQ handler. The easiest technique for this is to service
all devices from one handler.

The data transfer functions work only when the HP-IB interface is the Active
Controller. Passing control to another HP-IB device causes the interface to
lose active control.

HP-IB Device Session Example

The following example (located in /usr/sicl/examples) illustrates
communicating with an HP-IB device session. This example opens two
HP-IB communications sessions with VXI devices (through a VXI
Command Module). Then a scan list is sent to a switch, and measurements
are taken by the multimeter every time a switch is closed.

/* hpibdev.c
 This example program sends a scan list to a switch and while
 looping closes channels and takes measurements. */
#include <sicl.h>
#include <stdio.h>

main()
{
 INST dvm;
 INST sw;

 double res;
 int i;

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 43

Using HP SICL with HP-IB
Communicating with HP-IB Devices

 /* Open the multimeter and switch sessions */
 dvm = iopen ("hpib,9,3");
 sw = iopen ("hpib,9,14");
 itimeout (dvm, 10000);
 itimeout (sw, 10000);

 /*Set up trigger*/
 iprintf (sw, "TRIG:SOUR BUS\n");

 /*Set up scan list*/
 iprintf (sw,"SCAN (@100:103)\n");
 iprintf (sw,"INIT\n");

 for (i=1;i<=4;i++)
 {
 /* Take a measurement */
 iprintf (dvm,"MEAS:VOLT:DC?\n");

 /* Read the results */
 iscanf (dvm,"%lf",&res);

 /* Print the results */
 printf ("Result is %f\n",res);

 /*Trigger to close channel*/
 iprintf (sw, "TRIG\n");
 }
 /* Close the multimeter and switch sessions */
 iclose (dvm);
 iclose (sw);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

44 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

Communicating with HP-IB Interfaces
Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. This also implies that you
have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program can not be used on other interfaces
and, therefore, becomes less portable.

Addressing HP-IB Interfaces

To create an interface session on your HP-IB system, specify either the
interface symbolic name or logical unit in the addr parameter of the
iopen function. The interface symbolic name and logical unit are
defined during the system configuration.

The following are example HP-IB interface addresses:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are GPIB, gpib, HPIB, IEEE488, etc.

The following example opens a interface session with the HP-IB interface:

INST hpib;
hpib = iopen ("hpib");

hpib An interface symbolic name.

hpib2 An interface symbolic name.

7 An interface logical unit.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 45

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

HP SICL Function Support with HP-IB Interface
Sessions

The following describes how some SICL functions are implemented for
HP-IB interface sessions.

HP-IB Interface
Session Interrupts

There are specific interface session interrupts that can be used. See
isetintr in the HP SICL Reference Manual for information on the
interface session interrupts.

There are no interface specific interrupts for the HP-IB interface.

HP-IB Interface
Sessions and
Service Requests

HP-IB interface sessions support Service Requests (SRQ). On the HP-IB
interface, when one device issues an SRQ, the library will inform all HP-IB
interface sessions that have SRQ handlers installed. (See ionsrq in the
HP SICL Reference Manual.) It is good practice to ensure that a device isn’t

iwrite Sends the specified bytes directly to the interface
without performing any bus addressing. The iwrite
function always clears the ATN line before sending any
bytes, thus ensuring that the GPIB interface sends the
bytes as data, not command bytes.

iread Reads the data directly from the interface without
performing any bus addressing.

itrigger Performs a GPIB group execute trigger (GET) without
additional addressing. This function should be used
with the igpibsendcmd to send an UNL followed by
the device addresses. This will allow the itrigger
function to be used to trigger multiple GPIB devices
simultaneously.

Passing the I_TRIG_STD value to the ixtrig routine
also causes a broadcast GPIB group execute trigger
(GET). There are no other valid values for the ixtrig
function.

iclear Performs a GPIB interface clear (pulses IFC and REN),
which resets the interface.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

46 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

requesting service before leaving the SRQ handler. The easiest technique for
this is to service all devices from one handler.

HP-IB Interface Session Examples

Checking the Bus
Status

The following example (located in /usr/sicl/examples) program is an
ANSI C program that retrieves the HP-IB interface bus status information
and displays it for the user.

/* hpibstatus.c
 The following example retrieves and displays HPIB bus
 status information. */
#include <stdio.h>
#include <sicl.h>

main()
{
 INST id; /* session id */
 int rem; /* remote enable */
 int srq; /* service request */
 int ndac; /* not data accepted */
 int sysctlr; /* system controller */
 int actctlr; /* active controller */
 int talker; /* talker */
 int listener; /* listener */
 int addr; /* bus address */

 /* exit process if SICL error detected */
 ionerror(I_ERROR_EXIT);

 /* open HPIB interface session */
 id = iopen("hpib");
 itimeout (id, 10000);

 /* retrieve HPIB bus status */
 igpibbusstatus(id, I_GPIB_BUS_REM, &rem);
 igpibbusstatus(id, I_GPIB_BUS_SRQ, &srq);
 igpibbusstatus(id, I_GPIB_BUS_NDAC, &ndac);
 igpibbusstatus(id, I_GPIB_BUS_SYSCTLR, &sysctlr);
 igpibbusstatus(id, I_GPIB_BUS_ACTCTLR, &actctlr);
 igpibbusstatus(id, I_GPIB_BUS_TALKER, &talker);
 igpibbusstatus(id, I_GPIB_BUS_LISTENER, &listener);
 igpibbusstatus(id, I_GPIB_BUS_ADDR, &addr);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 47

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

 /* display bus status */
 printf("%-5s%-5s%-5s%-5s%-5s%-5s%-5s%-5s\n", "REM", "SRQ",
 "NDC", "SYS", "ACT", "TLK", "LTN", "ADDR");
 printf("%2d%5d%5d%5d%5d%5d%5d%6d\n", rem, srq, ndac,
 sysctlr, actctlr, talker, listener, addr);
 return 0;
}

Communicating
with Devices via
Interface Sessions

The following example program (located in /usr/sicl/examples) sets
up two HP-IB instruments over an interface session and has the instruments
communicate with each other.

The three main parts of this program are as follows:

n Read the data from the scope (get_data).

n Print some statistics about the data (massage_data).

n Have the scope send the data to a printer (print_data).

/* hpibintr.c
 This program requires a 54601A digitizing oscilloscope
 (or compatible) and a printer capable of printing in HP
 RASTER GRAPHICS STANDARD (e.g. thinkjet).
 This program will tell the scope to take a reading on
 channel 1, then send the data back to this program.
 Then some simple statistics about the data is printed.
 The program then tells the scope to send the data
 directly to the printer, illustrating how the controller
 does not have to be directly involved in an HPIB
 transaction.*/

#include <stdio.h> /* used for printf() */
#include <stdlib.h> /* used for exit() */
#include <sicl.h> /* SICL header file */

/* defines */
#define INTF_ADDR "hpib"
#define SCOPE_ADDR INTF_ADDR ",7"

/* function prototypes */
void initialize (void);
void get_data (void);
void massage_data (void);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

48 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

void print_data (void);
void cleanup (void);
void srq_hdlr (INST id);

/* global data */
float pre[10];
INST scope;
INST intf;

void main() {
 ionerror(I_ERROR_EXIT);
 scope = iopen(SCOPE_ADDR);
 intf = iopen(INTF_ADDR);

 initialize();
 get_data();
 massage_data();
 print_data();
 cleanup();
 iclose(scope);
 iclose(intf);
}

void initialize() {
 /* initialize the hpib interface and scope */
 iclear(intf);
 itimeout(scope, 5000);
 itimeout(intf, 5000);
 iclear(scope);
 igpibllo(intf);
}

void get_data() {
 short readings[5000];
 int count;

 /* setup scope to accept waveform data */
 iprintf(scope, "*RST\n");
 iprintf(scope, ":AUTOSCALE\n");

 /* setup up the waveform source */
 iprintf(scope, ":WAVEFORM:FORMAT WORD\n");

 /* input waveform preamble to controller */
 iprintf(scope, ":DIGITIZE CHANNEL1\n");
 iprintf(scope, ":WAVEFORM:PREAMBLE?\n");

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 49

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

 iscanf(scope, "%,10f", pre);

 /* command scope to send data */
 iprintf(scope, ":WAVEFORM:DATA?\n");

 /* enter the data */
 count = 5000;
 iscanf(scope, "%#wb\n", &count, readings);
 printf ("received %d words\n", count); }

void massage_data() {
 float vdiv;
 float off;
 float sdiv;
 float delay;
 char id_str[50];

 vdiv = 32 * pre[7];
 off = (128 - pre[9]) * pre[7] + pre[8];
 sdiv = pre[2] * pre[4] / 10;
 delay = (pre[2] / 2 - pre[6]) * pre[4] + pre[5];

 /* retrieve the scope’s ID string */
 ipromptf(scope, "*IDN?\n", "%s", id_str);

 /* print the statistics about the data */
 printf("\nOscilloscope ID: %s\n", id_str);
 printf(" ---------- Current settings -----------\n");
 printf(" Volts/Div = %f V\n", vdiv);
 printf(" Offset = %f V\n", off);
 printf(" S/Div = %f S\n", sdiv);
 printf(" Delay = %f S\n", delay);
}

void print_data() {
 unsigned char status;
 char cmd[5];

 /* set up our SRQ handler to be called when the scope
 finishes printing */
 iintroff();
 ionsrq(scope, srq_hdlr);

 /* tell the scope to SRQ on ’operation complete’*/
 iprintf(scope, "*SRE 32; *ESE 1\n");

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

50 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

 /* tell the scope to print */
 iprintf(scope, ":print?; *OPC\n");

 /* tell scope to talk and printer to listen. The listen
 command is formed by adding 32 to the device address
 of the device to be a listener. The talk command is
 formed by adding 64 to the device address of the
 device to be a talker */
 cmd[0] = 63; /* 63 is unlisten */
 cmd[1] = 32+1; /* printer is at address 1, make it a listener
*/
 cmd[2] = 64+7; /* scope is at address 7, make it a talker
*/
 cmd[3] = ’\0’; /* terminate the string */

 igpibsendcmd(intf, cmd, 4);

 /* now, the ATN line must be set to FALSE */
 igpibatnctl(intf, 0);

 /* wait for SRQ before continuing program */
 status = 0;
 while(status == 0) {
 iwaithdlr(120000L);

 /* make sure it was the scope requesting service */
 ireadstb(scope, &status);
 status &= 64;
 }

 /* clear the status byte so the scope can assert SRQ again
 if needed. */
 iprintf(scope, "*CLS\n");
 iintron();
}
void cleanup() {
 /* give local control back to the scope */
 ilocal(scope);
}

void srq_hdlr(INST id) {
 /* this handler does nothing. we will use iwaithdlr() in
 the code above to determine when the handler
 gets called. */
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 51

Using HP SICL with HP-IB
Communicating with HP-IB Commanders

Communicating with HP-IB Commanders
Commander sessions are intended for use on HP-IB interfaces that are not
active controller. In this mode, a computer that is not the controller is acting
like a device on the HP-IB bus. In a commander session, the data transfer
routines work only when the HP-IB interface is not active controller.

Addressing HP-IB Commanders

To create a commander session on your HP-IB interface, specify either the
interface symbolic name or logical unit in the addr parameter
followed by a comma and the string cmdr in the iopen function. The
interface symbolic name and logical unit are defined during the
system configuration.

The following are example HP-IB addresses for commander sessions:

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are GPIB, gpib, HPIB, etc.

The following example opens a commander session the HP-IB interface:

INST hpib;
hpib = iopen ("hpib,cmdr");

hpib,cmdr A commander session with the hpib symbolic name.

hpib2,cmdr A commander session with the hpib2 symbolic name.

7,cmdr A commander session with the interface at logical unit 7.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

52 Chapter 3

Using HP SICL with HP-IB
Communicating with HP-IB Commanders

HP SICL Function Support with HP-IB Commander
Sessions

The following describes how some SICL functions are implemented for
HP-IB commander sessions.

HP-IB Commander
Session Interrupts

There are specific commander session interrupts that can be used. See
isetintr in the HP SICL Reference Manual for information on the
commander session interrupts.

iwrite If the interface has been addressed to talk, the data is
written directly to the interface. If the interface has not
been addressed to talk, it will wait to be addressed to talk
before writing the data.

iread If the interface has been addressed to listen, the data is
read directly from the interface. If the interface has not
been addressed to listen, it will wait to be addressed to
listen before reading the data.

isetstb Sets the status value that will be returned when this device
is SPOLLed. Bit 6 of the status byte has a special
meaning. If bit 6 is set, the SRQ line will be set. If bit 6 is
clear, the SRQ line will be cleared.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 3 53

Using HP SICL with HP-IB
Summary of HP-IB Specific Functions

Summary of HP-IB Specific Functions

Note Using these HP-IB interface specific functions means that the program can
not be used on other interfaces and, therefore, becomes less portable.

Function Name Action

igpibatnctl Sets or clears the ATN line

igpibbusaddr Change bus address

igpibbusstatus Return requested bus data

igpibgett1delay Retrieves the T1 delay setting on the GPIB
interface

igpibllo Sets bus in Local Lockout Mode

igpibpassctl Passes active control to specified address

igpibppoll Performs a parallel poll on the bus

igpibppollconfig Configures device for PPOLL response

igpibppollresp Sets PPOLL state

igpibrenctl Sets or clears the REN line

igpibsendcmd Sends data with ATN line set

igpibsett1delay Sets the T1 delay on the GPIB interface

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

54 Chapter 3

Using HP SICL with HP-IB
Summary of HP-IB Specific Functions

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

4

Using HP SICL with VXI

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

56 Chapter 4

Using HP SICL with VXI

This chapter explains how to use SICL to communicate over the VXIbus.
This chapter contains the following sections:

n Creating a Communications Session with VXI

n Communicating with VXI Devices

n Communicating with VXI Interfaces

n Communicating with VME Devices

n HP SICL Function Support with VXI

n Using HP SICL Trigger Lines

n Using i?blockcopy for DMA Transfers

n Using VXI Specific Interrupts

n Summary of VXI Specific Functions

For information on the specific SICL function calls, see the HP SICL
Reference Manual.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 57

Using HP SICL with VXI
Creating a Communications Session with VXI

Creating a Communications Session with
VXI
Before you start programming your VXI system, ensure that the system is
set up and operating correctly. See Appendix B, "Customizing Your VXI
System," later in this manual for configuration information.

To begin programming your VXI system, you must determine what type of
communication session you need. The two supported VXI communication
sessions are as follows:

Device sessions are the recommended method for communicating while
using SICL. They provide the highest level of programming, best overall
performance, and best portability.

Note Commander Sessions are not supported with VXI interfaces.

Device
Session

The device session allows you direct access to a device
without worrying about the type of interface to which it is
connected.

Interface
Session

An interface session allows direct low-level control of
the specified interface. This gives you full control of the
activities on a given interface, such as VXI.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

58 Chapter 4

Using HP SICL with VXI
Communicating with VXI Devices

Communicating with VXI Devices
If you are going to use SICL functions to communicate directly with VXI
devices, you must first be aware of the two different types of VXI devices:

Programming with message-based and register-based devices is discussed in
further detail later in this section.

Note You can program a VXIbus system that is mixed with both message-based
and register-based devices. To do this, open a communications session for
each device in your system and program as shown in the following sections.

Message-Based Message-based devices have their own processors
which allow them to interpret the high-level SCPI
(Standard Commands for Programmable
Instruments) commands. While using SICL, you
simply place the SCPI command within your SICL
output function call, and the message-based device
interprets the SCPI command.

Register-Based The register-based device typically does not have a
processor to interpret high-level commands; and
therefore, only accepts binary data. Use one of the
following methods to program register-based
instruments:

Register programming - Do register peeks and
pokes and program directly to the device’s registers
with the vxi interface.

HP Command Module - Use a Command Module to
interpret the high-level SCPI commands. The hpib
interface is used with a Command Module.

C-SCPI - Use C-SCPI to convert high-level SCPI
commands to register peeks and pokes.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 59

Using HP SICL with VXI
Communicating with VXI Devices

Message-Based Devices

Message-based devices have their own processors which allow them to
interpret the high-level SCPI commands. While using SICL, you simply
place the SCPI command within your SICL output function call and the
message-based device interprets the SCPI command. SICL functions used
for programming message-based devices include iread, iwrite,
iprintf, iscanf, and so forth.

Note If your message-based device has shared memory, you can access the
device’s shared memory by doing register peeks and pokes. See "Register-
Based Devices" later in this chapter for information on register
programming.

Addressing VXI
Message-Based
Devices

To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration.

The following are example addresses for VXI device sessions:

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address and specifies the
address in A16 space of the VXI device.

vxi,24 A device address corresponding to the device at primary
address 24 on the vxi interface.

vxi,128 A device address corresponding to the device at primary
address 128 on the vxi interface.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

60 Chapter 4

Using HP SICL with VXI
Communicating with VXI Devices

Note The previous examples use the default symbolic name specified during
the system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are VXI, MXI, mxi, etc.

SICL supports only primary addressing on the VXI device sessions.
Specifying a secondary address causes an error.

The following is an example of opening a device session with the VXI
device at logical address 64:

INST dmm;
dmm = iopen ("vxi,64");

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 61

Using HP SICL with VXI
Communicating with VXI Devices

Message-Based
Device Session
Example

The following example program (located in /usr/sicl/examples) opens
a communication session with a VXI message-based device and measures
the AC voltage. The measurement results are then printed.

/* vximesdev.c
 This example program measures AC voltage on a multimeter and
 prints out the results */
#include <sicl.h>
#include <stdio.h>

main() {
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen ("vxi,24");
 itimeout (dvm, 10000);

 /* Initialize dvm */
 iwrite (dvm, "*RST\n", 5, 1, NULL);

 /* Take measurement */
 iwrite (dvm, "MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, NULL);

 /* Print the results */
 printf("Result is %s\n", strres);

 /* Close the multimeter session */
 iclose(dvm);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

62 Chapter 4

Using HP SICL with VXI
Communicating with VXI Devices

Register-Based Devices

There are several methods you can use to communicate with register-based
devices:

Addressing VXI
Register-Based
Devices

To create a device session, specify either the interface symbolic name or
logical unit and a particular device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical unit
are defined during the system configuration.

The following are example addresses for VXI device sessions:

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address and specifies the
address in A16 space of the VXI device.

Register
Programming

Use the vxi interface to program directly to the device’s
registers with a series of register peeks and pokes. This
method can be very time-consuming and difficult,
however.

HP
Command
Module

When you use an HP Command Module to
communicate with VXI devices, you are actually
communicating over HP-IB. The Command Module
interprets the high-level SCPI commands for register-
based instruments and then sends out low-level
commands over the VXIbus backplane to the
instruments.

C-SCPI See the manual, HP E6237A Compiled SCPI for
LynxOS User’s Guide.

vxi,24 A device address corresponding to the device at primary
address 24 on the vxi interface.

vxi,128 A device address corresponding to the device at primary
address 128 on the vxi interface.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 63

Using HP SICL with VXI
Communicating with VXI Devices

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are VXI, MXI, mxi, etc.

SICL supports only primary addressing on the VXI device sessions.
Specifying a secondary address causes an error.

The following is an example of opening a device session with the VXI
device at logical address 64:

INST dmm;
dmm = iopen ("vxi,64");

Programming
Directly to the
Registers

When communicating with register-based devices, you must send a series of
peeks and pokes directly to the device’s registers. When sending a series of
peeks and pokes to the device’s registers, use the following process:

n Map memory space into your process space.

n Read the register’s contents using i?peek.

n Write to the device registers using i?poke.

n Unmap the memory space.

Mapping Memory Space for Register-Based Devices. When using SICL
to communicate directly to the device’s registers, you must map a memory
space into your process space. This can be done by using the SICL imap
function:

imap (id, map_space, pagestart, pagecnt, suggested);

This function maps space for the interface or device specified by the id
parameter. pagestart, pagecnt, and suggested are used to indicate the page
number, how many pages, and a suggested starting location, respectively.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

64 Chapter 4

Using HP SICL with VXI
Communicating with VXI Devices

map_space determines which memory location to map the space. The
following are valid map_space choices:

The following are example imap function calls:

/* Map to the VXI device vm starting at pagenumber 0 for 1 page
*/
base_address = imap (vm, I_MAP_VXIDEV, 0, 1, NULL);

/* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I_MAP_A32, 0x000, 0x100, NULL);

/* Map to A24 space while using E1489 (8 Mbytes) */
ptr = imap (id, I_MAP_A24, 0x00, 0x80, NULL);

/* Maps to a device’s A24 or A32 extended memory */
ptr=imap (id, I_MAP_EXTEND, 0, 1, 0);

/* Maps to a computer’s A24 or A32 shared memory */
ptr=imap (id, I_MAP_SHARED, 0, 1, 0);

I_MAP_A16 Maps in VXI A16 address space (device or interface
sessions, 64K byte pages).

I_MAP_A24 Maps in VXI A24 address space (device or interface
sessions, 64K byte pages).

I_MAP_A32 Maps in VXI A32 address space (device or interface
sessions, 64K byte pages).

I_MAP_VXIDEV Maps in VXI device registers (device session only, 64
bytes).

I_MAP_EXTEND Maps in VXI device extended memory address space
in A24 or A32 address space (device sessions only).

I_MAP_SHARED Maps in VXI A24/A32 memory that is physically
located on the computer (sometimes called local
shared memory, interface sessions only).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 65

Using HP SICL with VXI
Communicating with VXI Devices

Note If a request is made that cannot be granted due to hardware constraints, the
process will hang until the desired resources become available. To avoid
this, use the isetlockwait with the flag parameter set to 0, and thus
generate an error instead of waiting for the resources to become available.

Reading and Writing to the Device Registers. Once you have mapped the
memory space, use the SICL i?peek and i?poke functions to
communicate with the register-based instruments. With these functions, you
need to know which register you want to communicate with and the
register’s offset. See the instrument’s user’s manual for a description of the
registers and register locations.

The following is an example of using iwpeek:

id = iopen ("vxi,24");
addr = imap (id, I_MAP_VXIDEV, 0, 1, 0);
reg_data = iwpeek (addr + 4);

See the HP SICL Reference Manual for a complete description of the
i?peek and i?poke functions.

Unmapping Memory Space. It is good practice to use the iunmap function
to unmap the memory space when it is no longer needed.

Register-Based
Programming
Example

The following example program (located in /usr/sicl/examples) opens
a communication session with the register-based device connected to the
address entered by the user. The program then reads the Id and Device Type
registers. The register contents are then printed.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

66 Chapter 4

Using HP SICL with VXI
Communicating with VXI Devices

/* vxidev.c
 The following example prompts the user for an instrument
 address and then reads the id register and device type
 register. The contents of the register are then displayed. */
#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main ()
{
 char inst_addr[80];
 volatile char *base_addr;
 unsigned short id_reg, devtype_reg;
 INST id;

 /* get instrument address */
 puts ("Please enter the logical address of the register-based
 instrument, for example, vxi,24 : \n");
 gets (inst_addr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open communications session with instrument */
 id = iopen (inst_addr);
 itimeout (id, 10000);

 /* map into user memory space */
 base_addr = imap (id, I_MAP_VXIDEV, 0, 1, NULL);

 /* read registers */
 id_reg = iwpeek ((unsigned short *)(base_addr + 0x00));
 devtype_reg = iwpeek ((unsigned short *)(base_addr + 0x02));

 /* print results */
 printf ("Instrument at address %s\n", inst_addr);
 printf ("ID Register = 0x%4X\n Device Type Register =
 0x%4X\n", id_reg, devtype_reg);

 /* unmap memory space */
 iunmap (id, (char *)base_addr, I_MAP_VXIDEV, 0, 1);

 /* close session */
 iclose (id);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 67

Using HP SICL with VXI
Communicating with VXI Interfaces

Communicating with VXI Interfaces
Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. This also implies that you
have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program cannot be used on other interfaces,
and therefore, becomes less portable.

Addressing VXI Interface Sessions

To create an interface session on your VXI system, specify either the
interface symbolic name or logical unit in the addr parameter of the
iopen function. The interface symbolic name and logical unit are
defined during the system configuration.

The following is an example address for VXI interface sessions:

Note The above example uses the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must match the
logical unit or symbolic name specified in the system configuration.
Other possible interface names are VXI, MXI, mxi, etc.

The following example opens a interface session with the VXI interface:

INST vxi;
vxi = iopen ("vxi");

vxi An interface symbolic name.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

68 Chapter 4

Using HP SICL with VXI
Communicating with VXI Interfaces

VXI Interface Session Example

The following example program (located in /usr/sicl/examples) opens
a communication session with the VXI interface and uses the SICL interface
specific ivxirminfo function to get information about a specific VXI
device. This information comes from the VXI resource manager and is only
valid as of the last time the VXI resource manager was run.

/* vxiintr.c
 The following example gets information about a specific
 vxi device and prints it out. */
#include <stdio.h>
#include <sicl.h>

void main () {
 int laddr;
 struct vxiinfo info;
 INST id;

 /* get instrument logical address */
 printf ("Please enter the logical address of the register-
 based instrument, for example, 24 : \n");
 scanf ("%d", &laddr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open a vxi interface session */
 id = iopen ("vxi");
 itimeout (id, 10000);

 /* read VXI resource manager information for specified device
 */
 ivxirminfo (id, laddr, &info);

 /* print results */
 printf ("Instrument at address %d\n", laddr);
 printf ("Manufacturer’s Id = %s\n Model = %s\n",
 info.manuf_name, info.model_name);

 /* close session */
 iclose (id);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 69

Using HP SICL with VXI
Communicating with VME Devices

Communicating with VME Devices
Many people assume that since VXI is an extension of VME that VME
should be easy to use in a VXI system. Unfortunately, this is not true. Since
the VXI standard defines specific functionality that is often not implemented
or conflicts with design decisions made by VME card vendors, some of the
resources required to interface with VME cards may not be available.
Therefore, there are certain limitations and requirements when using VME
in a VXI system. Note that VME is not an officially supported interface for
SICL.

WARNING Physical damage may result by plugging some VME cards into a VXI
mainframe. Some VME devices make specific use of the P2 connector
on the backplane. This may conflict with the VXI definitions of these
pins and may cause physical damage to the VME card or VXI
mainframe. Verify that your VME card is compatible with the VXI
mainframe before inserting the card.

Use the following process when using VME devices in a VXI mainframe:

n Declaring Resources

n Mapping VME Memory

n Reading and Writing to Device Registers

n Unmapping Memory

Note These steps are not normally used with VXI devices.

Each of the above items are described in further detail in the following
subsections. An example program is also provided.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

70 Chapter 4

Using HP SICL with VXI
Communicating with VME Devices

Declaring Resources

The VXI Resource Manager does not reserve resources for VME devices.
Instead, a configuration file is used to reserve resources for VME devices in
a VXI system. Use /usr/sicl/etc/vxi1/vmedev.cf on your system to
reserve resources for VME devices. The VXI Resource Manager reads this
file to reserve the VME address space and VME IRQ lines. The VXI
Resource Manager then assigns the VXI devices around the already reserved
VME resources.

When you edit the vmedev.cf file, you need to specify the device name,
bus, slot number, address space, starting offset, size, and VME IRQ line.
The following is an example entry:

vmedev1 0 12 A24 0x400000 0x10000 3

For VME devices requiring A16 address space, the device’s address space
should be defined in the lower 75% of A16 address space (addresses below
0xC000). This is necessary because the upper 25% of A16 address space is
reserved for VXI devices.

For VME devices using A24 or A32 address space, use A24 or A32 address
ranges just higher than those used by your VXI devices. In a multiple
mainframe system, use address ranges for the VME devices in each
mainframe that are just higher than those used by the VXI devices in the
same mainframe. To determine what A24 or A32 address ranges are used by
your VXI devices, run the Resource Manager (ivxirm) without the VME
devices installed. This is done automatically when the mainframe is
powered on. Then edit the vmedev.cf file to specify the appropriate
address range. This will prevent the Resource Manager (ivxirm) from
assigning the address range used by the VME device to any VXI device.
(The A24 and A32 address range is software programmable for VXI
devices.) Power down the mainframe, add the VME devices to it, and then
power on the mainframe again.

E1482 VXI-MXI
Resources

When a VME device is accessed via an E1482 VXI-MXI Extender Bus, you
must declare the bus for a given VME device. The bus is declared as
described in the previous section in the vmedev.cf file. For devices in a
VXI/MXI system, use the logical address of the E1482 in the mainframe as
the bus.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 71

Using HP SICL with VXI
Communicating with VME Devices

Additionally, since VME devices mapped in A16 address space are required
to the use the lower 75% of A16 address space, the A16 Window Map
Register of the E1482 must be programmed. To program this register, you
must edit the /usr/sicl/etc/vxilu/oride.cf file on your LynxOS
system to open an A16 address window for the device. An entry to this file
changes the value SICL writes to the A16 window map register of the
E1482. The same is true for the A24 and A32 address space, which may
also require an entry in the oride.cf file.

The oride.cf file contains the logical address of the VXI-MXI Bus
Extender card, the offset value, and the value written to the register. See the
"Register Description" appendix of the E1482 user’s manual for information
on the value that should be placed in the oride.cf file. When using this
appendix, it is important to note that SICL normally has the CMODE bit
clear. The following is an example:

1 0xC 0x7800

Mapping VME Memory

SICL defaults to byte, word, and longword supervisory access to simplify
programming VXI systems. However, some VME cards use other modes of
access which are not supported in SICL. See the VME Specification for
information on these access modes.

Note Use care when mixing VXI and VME devices. You MUST know what
VME address space and offset within that address space that VME devices
use. VME devices cannot use the upper 16K of the A16 address space since
this area is reserved for VXI instruments.

Note When accessing VME or VXI devices via an embedded controller, current
versions of SICL use the "supervisory data" address modifiers 0x2D, 0x3D,
and 0x0D for A16, A24, and A32 accesses, respectively.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

72 Chapter 4

Using HP SICL with VXI
Communicating with VME Devices

Supported Access
Modes

The following table lists VME access modes supported on HP controllers:

Reading and Writing to the Device Registers

Once you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with the VME devices. With these
functions, you needed to know which register you want to communicate
with and the register’s offset. See the instrument’s user’s manual for a
description on the registers and register locations.

See the HP SICL Reference Manual for a complete description of the
i?peek and i?poke functions.

Unmapping Memory Space

If you want to unmap memory space when it is no longer needed, make sure
you use the SICL iunmap function. You need to know which register you
want to communicate with and the register’s offset. See the instrument's
user's manual for a description on the registers and register locations.

See the HP SICL Reference Manual for a complete description of the
iunmap function.

VME Interrupts

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK value will be used. However, if you configure VME
IRQ lines as VME Only, no VXI processing of the IACK value will be done.
That is, the IACK value will be passed to a SICL interrupt handler directly.
See isetintr in the HP SICL Reference Manual for information on the
VME interrupts.

 A16
D08 D16 D32

A24
D08 D16 D32

A32
D08 D16 D32

Supervisory data X X X X X X X X X

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 73

Using HP SICL with VXI
Communicating with VME Devices

VME Example

When you have a VME device that requires A16 address space that is
accessed via an E1482 VXI-MXI Extender Bus card, you need to make an
entry in the /usr/sicl/etc/vxilu/oride.cf file on your system to
open an A16 address window. The same is true for the A24 and A32 address
space, which may also require an entry in the oride.cf file. The following
is an example entry that opens a 512 byte window in A16 address space
starting at address 0x7000, with the E1482 at logical address 1:

1 0xC 0x6770

When you have a VME device that requires A24 or A32 address space, you
need to make an entry in the /usr/sicl/etc/vxilu/vmedev.cf file on
your LynxOS system to reserve the appropriate address range. The
following is an example entry for a VME device in slot 6 of a VXI
mainframe. The mainframe is accessed by an embedded controller or top-
level MXI bus. The device requires 4096 bytes of A24 address space
starting at address 0x400000 and uses IRQ line 3:

vmedev1 0 6 A24 0x400000 0x1000 3

Where vmedev1 is the name of the device, 0 is the logical address of the
device through which the VXI resource manager will access the bus, 6 is the
VXI slot number, A24 is the address space to map the VME registers,
0x400000 is the starting address, 0x1000 is the size, and 3 is the IRQ line.

Note If your VME device requires both A24 and A32 address space, you will need
to have an entry for each address space. Each line should use a different
device name (for example, vmedev1 and vmedev2).

Once you have made the appropriate entry into the vmedev.cf file you
must re-run the siclconf utility.

The following ANSI C example program (located in /usr/sicl/
examples) opens a VXI interface session and sets up an interrupt handler.
When the I_INTR_VME_IRQ1 interrupt occurs, the function defined in the
interrupt handler will be called. The program then writes to the registers,
causing the I_INTR_VME_IRQ1 interrupt to occur. Note that you must edit
this program to specify the starting address and register offset of your
specific VME device. This example program also requires the VME device

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

74 Chapter 4

Using HP SICL with VXI
Communicating with VME Devices

to be using I_INTR_VME_IRQ1 and the controller to be the handler for the
VME IRQ1.

/* vmedev.c
 This example program opens a VXI interface session and sets
 up an interrupt handler. When the specified interrupt occurs,
 the procedure defined in the interrupt handler is called. You
 must edit this program to specify starting address and register
 offset for your specific VME device. */
#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR "vxi"

void handler (INST id, long reason, long secval){
 printf ("Got the interrupt\n");
}

void main ()
{
 unsigned short reg;
 volatile char *base_addr;
 INST id;

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open an interface communications session */
 id = iopen (ADDR);
 itimeout (id, 10000);

 /* install interrupt handler */
 ionintr (id, handler);
 isetintr (id, I_INTR_VME_IRQ1, 1);

 /* map into user memory space */
 base_addr = imap (id, I_MAP_A24, 0x40, 1, NULL);

 /* read a register */
 reg = iwpeek((unsigned short *)(base_addr + 0x00));

 /* print results */
 printf ("The registers contents were as follows: 0x%4X\n", reg);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 75

Using HP SICL with VXI
Communicating with VME Devices

 /* turn interrupt notification off so that interrupts are not
 recognized before the iwaithdlr function is called */
 iintroff();

 /* write to a register causing interrupt */
 iwpoke ((unsigned short *)(base_addr + 0x00), reg);

 /* wait for interrupt */
 iwaithdlr (10000);

 /* turn interrupt notification on */
 iintron();

 /* unmap memory space */
 iunmap (id, base_addr, I_MAP_A24, 0x40, 1);

 /* close session */
 iclose (id);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

76 Chapter 4

Using HP SICL with VXI
HP SICL Function Support with VXI

HP SICL Function Support with VXI
This section describes how SICL functions are implemented for VXI
sessions.

Device Sessions

Message-Based
Device Sessions

The following describes how some SICL functions are implemented for VXI
device sessions (for message-based devices):

Register-Based
Device Sessions

Because register-based devices do not support the word serial protocol, and
other features of message-based devices, the following SICL functions are
not supported with register-based device sessions:

n Non-formatted I/O:
 iread
 iwrite
 itermchr

iwrite Sends the data to the (message-based) servant using
the word-serial write protocol and the Byte Available
word-serial command.

iread Reads the data from the (message-based) servant
using the word-serial read protocol and the Byte Request
word-serial command.

ireadstb (read status byte) Performs a VXI ReadSTB word-serial
command.

itrigger Sends a word-serial Trigger to the specified message-
based device.

iclear Sends a word-serial Clear to the specified message-
based device.

ionsrq Can be used to catch SRQs from message-based
devices.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 77

Using HP SICL with VXI
HP SICL Function Support with VXI

n Formatted I/O:
 iprintf
 iscanf
 ipromptf
 ifread
 ifwrite
 iflush
 isetbuf
 isetubuf

n Device/Interface Control:
 iclear
 ireadstb
 isetstb
 itrigger

n Service Requests:
 igetonsrq
 ionsrq

n Timeouts:
 igettimeout
 itimeout

n VXI Specific:
 ivxiws

All other functions will work with all VXI devices (message-based, register-
based, etc.)

Use the i?peek and i?poke functions to communicate with register-based
devices.

Interface Sessions

The following describes how some SICL functions are implemented for VXI
interface sessions:

iwrite and
iread

Not supported for VXI interface sessions and return the
I_ERR_NOTSUPP error.

iclear Causes the VXI interface to perform a SYSREST on
interface sessions. Note that this will cause all VXI
devices to reset, and automatically reruns the Resource
Manager.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

78 Chapter 4

Using HP SICL with VXI
Using HP SICL Trigger Lines

Using HP SICL Trigger Lines
The following table shows the relationship between SICL and Hewlett-
Packard controllers for the trigger lines and BNC connectors. These values
may be passed to the ivxitrig or isetintr function:

SICL HP VXI Controller

I_TRIG_TTL0 TTLTRG0*

I_TRIG_TTL1 TTLTRG1*

I_TRIG_TTL2 TTLTRG2*

I_TRIG_TTL3 TTLTRG3*

I_TRIG_TTL4 TTLTRG4*

I_TRIG_TTL5 TTLTRG5*

I_TRIG_TTL6 TTLTRG6*

I_TRIG_TTL7 TTLTRG7*

I_TRIG_ECL0 ECLTRG0

I_TRIG_ECL1 ECLTRG1

I_TRIG_ECL2 INVALID

I_TRIG_ECL3 INVALID

I_TRIG_EXT0 Trig IN

I_TRIG_EXT1 Trig OUT

I_TRIG_EXT2 INVALID

I_TRIG_EXT3 INVALID

I_TRIG_CLK0 INVALID

I_TRIG_CLK1 INVALID

I_TRIG_CLK2 INVALID

I_TRIG_CLK10 INVALID

I_TRIG_CLK100 INVALID

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 79

Using HP SICL with VXI
Using HP SICL Trigger Lines

The itrigger function, when used on a VXI interface session, generates
the same results as the ixtrig functions with the I_TRIG_STD value
passed to it.

The I_TRIG_STD value, when passed to the ixtrig function causes one or
more VXI trigger lines to fire. The trigger lines represented by
I_TRIG_STD are determined by the ivxitrigroute function. The
I_TRIG_STD value has no default value. Therefore, if it is not defined
before it is used, no action will be taken.

Routing VXI TTL Trigger Lines in a VXI/MXI System

When you have multiple mainframes connected via the MXIbus, the TTL
trigger lines are not routed from one mainframe to another. The INTXbus
does not allow multiple INTXbus devices to drive the same TTL trigger line.
If you need TTL trigger lines in the extended VXI mainframes, you need to
edit the ttltrig.cf configuration file to map the TTL trigger line to the
source logical address. See Appendix B, "Customizing Your VXI System,"
for information on editing this file.

The following example illustrates an entry in the ttltrig.cf file:

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

(Multiple trigger sources are still allowed on the same line within the same
mainframe.)

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

80 Chapter 4

Using HP SICL with VXI
Using HP SICL Trigger Lines

Where the first column is the TTL trigger line and the second column is the
logical address of the TTL trigger source. Therefore, in the example above,
all TTL trigger lines are sourced by the device at logical address 0. The
following is an example of what you would see when the VXI resource
manager runs:

VXI-MXI TTL Trigger Routing:

Name 0 1 2 3 4 5 6 7
---- - - - - - - - -
hpvximxi O O O O O O O O
 I - MXI->VXI
 O - VXI->MXI
 * - Not Routed

Now the following illustrates TTL trigger line 1 being sourced by the device
at logical address 129 in a second VXI mainframe:

ttltrig.cf file:

0 0
1 129
2 0
3 0
4 0
5 0
6 0
7 0

Resource manager output:

VXI-MXI TTL Trigger Routing:

Name 0 1 2 3 4 5 6 7
---- - - - - - - - -
hpvximxi O I O O O O O O
 I - MXI->VXI
 O - VXI->MXI
 * - Not Routed

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 81

Using HP SICL with VXI
Using HP SICL Trigger Lines

Routing External Trigger Lines on the E1482 VXI-MXI
Extender Bus Card

In order to use the external trigger ports on the HP E1482 VXI-MXI Bus
Extender card, you must route the external trigger lines to the TTL trigger
lines. This can be done by using the oride.cf configuration file. This file
contains values to be written to logical address space for register-based
instruments. This data is written to the address space after the VXI resource
manager runs, but before the system’s resources are released. See Appendix
B, "Customizing Your VXI System," for information on editing this file.

The following illustrates an entry in the oride.cf configuration file to
route Trig In to TTL TRG 1 and Trig Out to TTL TRG 0:

1 2E 0x0302

Where 1 is the logical address of the VXI-MXI Bus Extender card, 2E is the
offset value that corresponds to the MXIbus Trigger Configuration Register,
0x0302 is the value written to the register that will route Trig In to TTL
trig 1 and Trig Out to TTL trig 0:

Bits 15 - 8 enable the corresponding VXIbus TTL trigger lines (TTL TRG 7
- 0 respectively). And in the above table, TTL trigger lines 0 and 1 are
enabled. Bits 7 - 0 determine the direction in which the corresponding TTL
trigger lines are mapped to the front panel SMB connectors. If both bits are
set, then the corresponding trigger line is driven by trig in. If the TTL
trigger line is enabled (TTL TRG 15 - 8), and the corresponding bit (bits 7 -
0) is not set, then the corresponding trigger line is driven by trig out.

See the HP E1482 VXI-MXI Bus Extender User’s Manual for more
information about writing to the MXIbus Trigger Configuration Register.

Note Once you route the external trigger lines to use the TTL trigger lines, you
must also edit your program to trigger from the TTL trigger lines instead of
the external trigger lines.

Bits 15 - 8 Bits 7 - 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

82 Chapter 4

Using HP SICL with VXI
Using i?blockcopy for DMA Transfers

Using i?blockcopy for DMA Transfers
The VXI Controller has the capability for block copy DMA transfers. This
can be done using the SICL i?blockcopy functions. Use the following
process to access DMA transfers:

1. Use the SICL imap function to map the desired VXIbus address. Note
that I_MAP_SHARED is not supported for DMA transfers.

2. Use the SICL itimeout function to set up a timeout value.

3. Use the SICL i?blockcopy function to initiate the DMA transfer. Note
that the swap parameter is ignored.

The following example (located in /usr/sicl/examples) illustrates
using i?blockcopy for a DMA transfer:

Note SICL does not support overlapped DMA transfers, which means the
i?blockcopy functions will not return until the end of the DMA transfer.

/* blockcopy.c
 This example demonstrates how to use i?blockcopy to move
 data. The SICL blockcopy routines will attempt to use DMA,
 if one of the locations is A24 or A32 address space.
 If neither location is in A24 or A32 space the data
 will be move in the normal fashion.

 Usage:
 blockcopy -a &<symbolic_name>
 Return Value:
 none */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

static void error_usage(const char *);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 83

Using HP SICL with VXI
Using i?blockcopy for DMA Transfers

main(int argc, char *argv[]) {
 long o;
 INST id;
 static char *a24_buf;
 static char *shr_buf;
 unsigned long bufsize = 1024 * 2;
 char *addr = NULL;

 while ((o = getopt(argc, argv, "a:b:i:n:")) != EOF)
 switch (o) {
 case ’a’:
 addr = optarg;
 break;
 default:
 error_usage(argv[0]);
 break;
 }

 if (addr == NULL)
 error_usage(argv[0]);

 ionerror (I_ERROR_NO_EXIT);
 id = iopen (addr);

 /* NOTE: Shared memory is not supported.
 Use an array declared in the program or use malloc
 */

 shr_buf = malloc (0x80000);
 a24_buf = imap (id, I_MAP_A24, 0x20, 0x8, 0);

 printf("Memory to A24 (D16).\n\n");
 iwblockcopy (id,
 (unsigned short *)shr_buf,
 (unsigned short *)a24_buf,
 bufsize,
 0);

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

84 Chapter 4

Using HP SICL with VXI
Using i?blockcopy for DMA Transfers

 printf("A24 to memory (D16).\n\n");
 iwblockcopy (id,
 (unsigned short *)a24_buf,
 (unsigned short *)shr_buf,
 1,
 0
);

 printf("Memory to A24 (D32).\n\n");
 ilblockcopy (id,
 (unsigned long *)shr_buf,
 (unsigned long *)a24_buf,
 bufsize,
 0
);

 printf("A24 to memory (D32).\n\n");
 ilblockcopy (id,
 (unsigned long *)a24_buf,
 (unsigned long *)shr_buf,
 bufsize,
 0
);

}

static void error_usage(const char *progname)
{
 printf("Usage Error: %s &<options>\n", progname);
 printf("\t-a &<addr>:\tSICL address\n");
 exit(1);
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 85

Using HP SICL with VXI
Using VXI Specific Interrupts

Using VXI Specific Interrupts

Note SICL only supports interrupts on VXI/VME cards using Release on
Acknowledgment (ROAK). VXI/VME cards using Release on Register
Access (RORA) are not supported.

See the isetintr function in the HP SICL Reference Manual for a list of
VXI specific interrupts.

The following pseudo-code describes the actions performed by SICL when a
VME interrupt arrives and/or a VXI signal register write occurs.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

86 Chapter 4

Using HP SICL with VXI
Using VXI Specific Interrupts

VME Interrupt arrives:
 get iack value
 send I_INTR_VME_IRQ?
 is VME IRQ line configured VME only
 if yes then
 exit
 do lower 8 bits match logical address of one of our servants?
 if yes then
 /* iack is from one of our servants */
 call servant_signal_processing(iack)
 else
 /* iack is from a non-servant VXI device or VME device */
 send I_INTR_VXI_VME interrupt to interface sessions
Signal Register Write occurs:
 get value written to signal register
 send I_INTR_ANY_SIG
 do lower 8 bits match logical address of one of our servants?
 if yes then
 /* Signal is from one of our servants */
 call Servant_signal_processing(value)
 else
 /* Stray signal */
 send I_INTR_VXI_UKNSIG to interface sessions
servant_signal_processing (signal_value)
 /* Value is form one of our servants */
 is signal value a response signal?
 If yes then
 process response signal
 exit
 /* Signal is an event signal */
 is signal an RT or RF event?
 if yes then
 /* A request TRUE or request FALSE arrived */
 process request TRUE or request FALSE event
 generate SRQ if appropriate
 exit
 is signal an undefined command event?
 if yes then
 /* Undefined command event */
 process an undefined command event
 exit
 /* Signal is a user-defined or undefined event */
 send I_INTR_VXI_SIGNAL to device sessions for this device
 exit

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Chapter 4 87

Using HP SICL with VXI
Using VXI Specific Interrupts

Processing VME Interrupts Example

/* vmeintr.c
 This example uses SICL to cause a VME interrupt from an
 HP E1361 register-based relay card at logical address 136. */
#include &<sicl.h>

static void vmeint (INST, unsigned short);
static void int_setup (INST, unsigned long);
static void int_hndlr (INST, long, long);
int intr = 0;
main() {
 int o;
 INST id_intf1;
 unsigned long mask = 1;

 ionerror (I_ERROR_EXIT);
 iintroff ();
 id_intf1 = iopen ("vxi,136");
 int_setup (id_intf1, mask);
 vmeint (id_intf1, 136);
 /* wait for SRQ or interrupt condition */
 iwaithdlr (0);

 iintron ();
 iclose (id_intf1);
}
static void int_setup(INST id, unsigned long mask) {
 ionintr(id, int_hndlr);
 isetintr(id, I_INTR_VXI_SIGNAL, mask);
}
static void vmeint (INST id, unsigned short laddr) {
 int reg;
 volatile char *a16_ptr = 0;

 reg = 8;
 a16_ptr = imap (id, I_MAP_A16, 0, 1, 0);

 /* Cause relay card to interrupt: */
 *(unsigned short *)(a16_ptr + 0xc000 + laddr * 64 + reg) = 0x0;
}
static void int_hndlr (INST id, long reason, long sec) {
 printf ("VME interrupt: reason: 0x%x, sec: 0x%x\n",
 reason,sec);
 intr = 1;
}

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

88 Chapter 4

Using HP SICL with VXI
Summary of VXI Specific Functions

Summary of VXI Specific Functions

Note Using these VXI interface specific functions means that the program cannot
be used on other interfaces and, therefore, becomes less portable.

Function Name Action

ivxibusstatus Returns requested bus status information

ivxigettrigroute Returns the routing of the requested trigger line

ivxirminfo Returns information about VXI devices

ivxiservants Identifies active servants

ivxitrigoff De-asserts VXI trigger line(s)

ivxitrigon Asserts VXI trigger line(s)

ivxitrigroute Routes VXI trigger lines

ivxiwaitnormop Suspends until normal operation is established

ivxiws Sends a word-serial command to a device

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

A

The HP SICL Utilities

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

90 Appendix A

The HP SICL Utilities

This appendix describes the utilities that are shipped with SICL. The
following utilities are described in alphabetical order:

n iclear

n ipeek

n ipoke

n iread

n iwrite

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix A 91

The HP SICL Utilities
iclear

iclear

Syntax iclear [-t timeout] [-v] [-?] sym_name

Description iclear performs a device or interface defined clear operation on the device
or interface specified by the sym_name parameter. Sym_name is the SICL
address of the device or interface being addressed. If sym_name refers to a
device, then a device clear command will be sent to the device. If
sym_name refers to an interface, then the interface clear command will be
sent to that interface. The actual functions of the device clear or interface
clear are specific to the device or interface.

For example, executing iclear on an HP-IB device will result in the SDC
command being sent to that device. Executing iclear on an HP-IB
interface will result in the IFC and REN line being pulsed (if the interface is
system controller), and the interface hardware being reset.

The iclear command, when used on a VXI interface session causes a pulse
on the SYSRESET line which cancels the normal operation state until the
resource manager has reconfigured the VXI system. The iclear command,
when used on a VXI message-based device session sends a word-serial
Clear command to the specified device.

The parameter definitions follow.

Example iclear -t 1000 vxi

t timeout Times out after timeout milliseconds.

v Turns on verbose mode.

? Prints the usage of the iclear program.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

92 Appendix A

The HP SICL Utilities
ipeek

ipeek

Syntax ipeek [-v] [-?] [-b|-w|-l] sym_name map_space offset

Description ipeek is the SICL utility for examining memory locations on interfaces that
support mapping. The ipeek utility will print the contents of the specified
memory location in hexadecimal.

The sym_name is the SICL symbolic name of the interface. The interface
must support mapping, such as VXI.

The map_space is the map area that you would like to examine. Currently
the only interface supported is VXI. The valid map spaces are A16, A24,
A32, VXIDEV, EXTEND, and SHARED. See the imap function in the
HP SICL Reference Manual for a description of these mappings.

The offset is the offset, in bytes, from the beginning of the mapped space to
the location that is to be examined.

The parameter definitions follow.

Example ipeek vxi A16 0xC000 1

v Turns on verbose mode.

? Prints the usage of the ipeek program.

b Specifies that the register size is a byte (8 bits).

w Specifies that the register size is a word (16 bits, default).

l Specifies that the register size is a long (32 bits).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix A 93

The HP SICL Utilities
ipoke

ipoke

Syntax ipoke [-v] [-?] [-b|-w|-l] sym_name map_space offset value

Description ipoke is the SICL utility for writing to memory locations on interfaces that
support mapping. The ipoke utility will write the contents of the value
parameter to the specified memory location.

The sym_name is the SICL symbolic name of the interface. The interface
must support mapping, such as VXI.

The map_space is the map area that you would like to write to. Currently the
only interface supported is VXI. The valid map spaces are A16, A24, A32,
VXIDEV, EXTEND, and SHARED. See the imap function in the HP SICL
Reference Manual for a description of these mappings.

The offset is the offset, in bytes, from the beginning of the mapped space to
the location that is to be written.

The parameter definitions follow.

Example ipoke vxi A24 0x200000 1 0x0000

v Turns on verbose mode.

? Prints the usage of the ipoke program.

b Specifies that the register size is a byte (8 bits).

w Specifies that the register size is a word (16 bits, default).

l Specifies that the register size is a long (32 bits).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

94 Appendix A

The HP SICL Utilities
iread

iread

Syntax iread [-t timeout] [-c count] [-e end_char] [-v] [-?] sym_name

Description iread is the SICL utility for reading data from devices. The output of
iread goes to stdout. The read is terminated only when count number of
bytes is read, a timeout occurs, a byte is read with the END indicator, or the
termination character end_char is read. These conditions may occur in
combination.

The sym_name is the SICL symbolic name, or address, of the device that
was determined during the interface configuration. Note that iread is only
supported for device addresses.

The parameter definitions follow.

Example iread hpib,16

t timeout Specifies the timeout value in milliseconds.

c count Specifies the number of bytes to read.

e end_char Defines a termination character for the read.

v Turns on verbose mode.

? Prints the usage of the iread program.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix A 95

The HP SICL Utilities
iwrite

iwrite

Syntax iwrite [-s size] [-t timeout] [-e 0|1] [-v] [-?] sym_name

Description iwrite is the SICL utility for writing data to a device. The input of
iwrite comes from stdin. The write is terminated only when size number
of bytes is written or a timeout occurs.

The sym_name is the SICL symbolic name of the device. Note that
iwrite is only supported for device addresses.

The parameter definitions follow:

Example iwrite hpib,16

s size Specifies the number of bytes to read.

t timeout Specifies the timeout value in milliseconds

e 0|1 Set to non-zero if the END indicator should be given on
the last byte of the block, or zero if it should not. Note
that if this parameter is not specified, iwrite will
default to giving the END indicator on the last byte of
the block.

v Turns on verbose mode.

? Prints the usage of the iwrite program.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

96 Appendix A

The HP SICL Utilities
iwrite

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

B

Customizing Your VXI System

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

98 Appendix B

Customizing Your VXI System

When SICL is installed and configured, certain SICL utilities and
configuration files are copied onto your system. The VXI system is
configured using two SICL utilities and the VXI configuration files. These
utilities automatically run when the system boots. The following is a
summary of the VXIbus boot process utilities:

iproc This utility runs at system boot and performs various
system initialization functions. It uses the iproc.cf
configuration file to determine when the other
configuration utility, ivxirm, runs.

ivxirm This utility runs the resource manager which initializes
and configures the VXI mainframe resources. The
resource manager reads the VXI configuration files and
polls the VXI devices to determine their resources and
capabilities. This utility runs at mainframe initialization
unless otherwise specified in the iproc.cf
configuration file (default is to run at mainframe
initialization and when SYSRESET is detected).

configuration
 files

These files specify some site-dependent configuration
rules and any changes from the default.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 99

Customizing Your VXI System
The VXI Resource Manager (ivxirm)

The VXI Resource Manager (ivxirm)
The ivxirm utility is the resource manager which initializes and configures
the VXI mainframe resources. The resource manager reads the VXI
configuration files and polls the VXI devices to determine their resources
and capabilities. The commander servant hierarchy is set up and the
appropriate commands are sent to the VXI devices. The information is then
stored in the following directory on your system:

/usr/sicl/etc/vxilu/rsrcmgr.out

where lu is the logical unit of the VXI interface. The resource manager also
optionally prints this information to the standard output.

You can run this utility from the command line, or it generally runs at
mainframe initialization if specified in the iproc.cf configuration file
(default is to run when the system boots).

Additionally, there is another utility that can be used to review the system
resources. The ivxisc utility reads the rsrcmgr.out file and prints a
human readable display of the current configuration. See the ivxirm and
ivxisc utilities later in this appendix for a description on using these
utilities.

Note If you manually re-run the resource manager and get a GENERIC I/O
error, you need to terminate the iproc daemon, and execute the following
command:

 /usr/sicl/bin/iclear vxi

Generally, there is no need to manually run the resource manager.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

100 Appendix B

Customizing Your VXI System
The VXI Configuration Files

The VXI Configuration Files
In general, the resource manager follows a set of rules defined by the VXI
Standard when configuring the system. However, the VXI standard does not
define some aspects of configuration and sometimes you need to make
changes to the default.

The VXI configuration files specify some site-dependent configuration rules
and any changes from the default. These files reside in the following
directories on your system. Each file is explained in the following sections.

The vximanuf.cf Configuration File

The vximanuf.cf file contains a database that cross references the VXI
manufacturer id numbers and the name of the manufacturer. The ivxirm
utility reads the manufacturer id number from the VXI device. The ivxisc
utility then uses that number and this file to print out the name of the
manufacturer. If you add a new VXI device that is not currently in the file,
you may want to add an entry to the file.

File Name LynxOS Directory Location

vximanuf.cf /usr/sicl/etc

vximodel.cf /usr/sicl/etc

dynamic.cf /usr/sicl/etc/vxi1

vmedev.cf /usr/sicl/etc/vxi1

irq.cf /usr/sicl/etc/vxi1

cmdrsrvt.cf /usr/sicl/etc/vxi1

names.cf /usr/sicl/etc/vxi1

oride.cf /usr/sicl/etc/vxi1

ttltrig.cf /usr/sicl/etc/vxi1

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 101

Customizing Your VXI System
The VXI Configuration Files

The vximodel.cf Configuration File

The vximodel.cf file contains a database that lists a cross reference of
manufacturer id, model id, and VXI device names. The ivxirm utility reads
the model id number from the VXI device and the ivxisc utility uses that
information and this file to print out the VXI device model. If you add a new
VXI device to your system that is not currently in this database, you may
want to add an entry to this file.

The dynamic.cf Configuration File

The dynamic.cf file contains a list of VXI devices to be dynamically
configured. You only need to add entries to this file if you want to override
the default dynamic configuration assignment by the resource manager.
Normally, if you have a dynamically configurable device and the logical
address is set at 255, the resource manager will assign the first available
address. However, if a dynamically configurable device has an entry in this
file, the resource manager will assign the address listed in the file.

The vmedev.cf Configuration File

The vmedev.cf file contains a list of VME devices that use resources in the
VXI mainframe. Since the resource manager is unable to detect VME
devices, the resource manager uses this information to determine such things
as the slot number, where the VME device is located (A16, A32, or A24),
how much memory it uses, and what interrupt lines it uses. Additionally, the
resource manager verifies that the same resources aren’t allocated to more
than one device. See "Communicating with VME Devices" in Chapter 4,
“Using HP SICL with VXI,” for more information on setting up VME
devices in your VXI mainframe. This file is also used by the ivxisc utility
to print out information about the devices.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

102 Appendix B

Customizing Your VXI System
The VXI Configuration Files

The irq.cf Configuration File

The irq.cf file is a database that maps specific interrupt lines to VXI
interrupt handlers. If you have non-programmable interrupters and you want
the interrupters to be recognized by a VXI interrupt handler, you must make
an entry in this file. Additionally, if you have programmable interrupters
and you want them to be recognized by a device other than what’s assigned
by the resource manager (the commander of that device), you can make an
entry in this file to override the default. Keep in mind that not all VXI
devices need to use interrupt lines and not all interrupt lines need to be
assigned. Note that any interrupt lines assigned in this file cannot also be
assigned in the vmedev.cf configuration file.

The cmdrsrvt.cf Configuration File

The cmdrsrvt.cf file contains a commander/servant hierarchy other than
the default for the VXI system. The resource manager will set up the
commander/servant hierarchy according to the commander’s logical
addresses and the servant area switch. However, you can use this file to
override the default according to the commander’s switch settings. This file
should only contain changes from the normal.

The names.cf Configuration File

The names.cf file is a database that contains a list of symbolic names to
assign VXI devices that have been configured. The ivxirm utility reads
the model id number from the VXI device and the ivxisc utility uses that
information and this file to print out the VXI device symbolic name. If you
add a new VXI device to your system that is not currently in the database,
you may want to add an entry to this file.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 103

Customizing Your VXI System
The VXI Configuration Files

The oride.cf Configuration File

The oride.cf file contains values to be written to logical address space for
register-based instruments. This data is written to A16 address space after
the resource manager runs, but before the system’s resources are released.
This can be used for custom configuration of register-based instruments
every time the resource manager runs. It can also be used to program
extender devices like the VXI/MXI Bus Extender card. See "Routing
External Trigger Lines on the E1482 VXI-MXI Extender Bus Card" in
Chapter 4, "Using HP SICL with VXI," for an example of using this file.

The ttltrig.cf Configuration File

The ttltrig.cf file contains the mapping of VXI devices to TTL trigger
lines for extended VXI/MXI systems. If you have an extended VXI/MXI
system and you want your TTL trigger lines to be recognized, you must map
the TTL trigger line to the source logical address in this file. This file can
only be used for extended VXI/MXI systems. See "Routing VXI TTL
Trigger Lines in a VXI System" in Chapter 4, “Using HP SICL with VXI,”
for an example of using this file.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

104 Appendix B

Customizing Your VXI System
The iproc Utility (Initialization and SYSRESET)

The iproc Utility (Initialization and
SYSRESET)
SICL installs a program called iproc. This program uses the iproc.cf file
to determine how your system is initialized. The iproc.cf file determines
when the ivxirm program runs and with what options. Additionally, the
iproc.cf file specifies what action is taken when your VXI system
encounters a SYSRESET.

If you have a VXI backplane, the iproc program is run at system boot time.
This program becomes a daemon and monitors the VXI backplane for
SYSRESET. The iproc.cf file tells iproc what to do if a SYSRESET
occurs. Usually you want the resource manager to run and configure your
system (since the SYSRESET has invalidated the configuration).

The iproc.cf file is stored in the following directories on your system:

/usr/sicl/etc

The following is an example of the /usr/sicl/etc/iproc.cf file:

#
For E623x support, Sample shown using SICL symbolic name
as ’vxi’
#
boot echo "SICL: Instrument I/O Initialization"

boot ivxirm -I vxi

When a SYSRESET occurs, rerun the resource manager
(delay 5 sec). The resource manager MUST be run in
the background (ie. last character should be a ’&’).

sysreset vxi ivxirm -t 5

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 105

Customizing Your VXI System
Viewing the VXIbus System Configuration

Viewing the VXIbus System Configuration
You can use the SICL ivxisc utility to read the current system
configuration and print a human readable display by running the following
command at the prompt:

ivxisc

See "VXI Configuration Utilities" later in this appendix for information on
using this utility.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

106 Appendix B

Customizing Your VXI System
VXI Configuration Utilities

VXI Configuration Utilities
The following SICL utilities are available to help you configure your VXI
system:

n iproc

n ivxirm

n ivxisc

The utilities are located in the following directory on your system:

/usr/sicl/bin

Each of these utilities is described in detail in the sections that follow.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 107

Customizing Your VXI System
VXI Configuration Utilities

iproc

Description iproc is designed to run at system boot time from /etc/rc on your
system. It performs various SICL system initialization functions. In
addition, it is configurable by the system administrator to execute programs
at boot time or on certain asynchronous events, such as VXI SYSRESET.
This configuration is done by editing the file iproc.cf, which is read only
when the iproc daemon begins execution. It consists of lines beginning
with keywords which determine the actions of the iproc program. The
iproc.cf file is located in the following directory on your system:

/usr/sicl/etc

The format of the configuration lines is as follows:

keyword action

or

keyword interface name action

Note Without a keyword in iproc.cf that allows or requires iproc to continue
execution, such as sysreset or monitor, iproc will halt execution and
exit.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

108 Appendix B

Customizing Your VXI System
VXI Configuration Utilities

The functions of the keywords are described below:

boot This keyword will execute the action
when the iproc daemon begins
execution. The normal time for iproc
to run is when the system boots.

sysreset interface_name This keyword will execute the action on
the interface_name when a VXI
SYSRESET interrupt is detected by the
iproc daemon. This function is
primarily used to ensure that the VXI
resource manager, ivxirm, will be run
in response to a VXI SYSRESET. This
requires iproc to continue execution.

monitor This keyword allows the iproc daemon
to continue execution if sysreset is not
used. This is useful during debugging
activities.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 109

Customizing Your VXI System
VXI Configuration Utilities

ivxirm

Syntax ivxirm [-diptvDILMS] [arguments ...]

Description The ivxirm (the resource manager) initializes the VXI and MXI buses by
reading several configuration files and by polling the VXI devices to
determine their resources and capabilities. Then, using a set of rules
governing VXI configuration, it defines the relationships between
commanders and servants and writes this information to the rsrcmgr.out
configuration file. The resource manager also optionally prints this
information to the standard output. The resource manager is usually run
automatically at system power-on.

The command line argument definitions follow:

d The next argument contains the name of the directory for the static and
operating configuration files. This defaults to /usr/sicl/etc/vxilu on
your system, where lu is the logical unit number of the VXI interface.

i Ignore static configuration files. The static configuration files contain a set
of rules for the resource manager to use during configuration. With this
option, the resource manager ignores the static configuration files and
follows only the standard VXI configuration rules.

p Print the results of the configuration using the ivxisc program.

t n Delay n seconds before starting. To support the VXI Standard, set the
delay to five seconds to allow instruments to complete their self test. If you
do not set this option, the default value is no delay.

v Print a verbose output of the resource manager’s actions. This is useful for
debugging the mainframe configuration.

D The next argument specifies the directory that contains the ivxisc
program. This defaults to /usr/sicl/bin on your system.

I The next argument contains the name of the VXI interface that the resource
manager will use to access the VXI bus. This argument is provided mainly
for controllers which can connect to multiple, separate VXI systems
through multiple VXI or MXI interfaces. This defaults to vxi.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

110 Appendix B

Customizing Your VXI System
VXI Configuration Utilities

The resource manager first accesses the configuration files as directed by the
argument above. It then determines resource and capability information
from the VXI devices in the mainframe or multi-mainframe hierarchy. The
resource manager then determines the proper configuration according to the
rules defined by the configuration files and the standard VXI configuration
methods. It then sends appropriate commands to the VXI devices. The
configuration is optionally printed. Finally, the configuration information is
stored in the rsrcmgr.out file for use by other programs. The
rsrcmgr.out file contains binary data, not ASCII text.

In the case of multiframe (extended) VXI systems using VXI-MXI bus
extenders, the resource manager will set up logical address windows, A16/
A24/A32 windows, and interrupt routing registers prior to establishing the
commander-servant hierarchy and initiating normal operation.

The VXI configuration files specify the site-dependent configuration rule
changes. See "The VXI Configuration Files" earlier in this appendix for a
description of the file contents.

Note ivxirm is normally run automatically from the iproc daemon. It cannot be
run a second time (manually) without asserting the VXI SYSRESET
(iclear command) or cycling power on the mainframe.

Example ivxirm -p

L Send all messages to a file named rsrcmgr.err in the directory for static
and operating configuration files.

M Set the limits for allocation of A24 and A32 memory space to the
maximum addresses for that space. The default limits will be set so that
the upper and lower one-eighth of A24 and A32 space will not be
allocated.

S The next argument contains the name of the program to use to print the
VXI configuration. This defaults to the ivxisc program.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 111

Customizing Your VXI System
VXI Configuration Utilities

ivxisc

Syntax ivxisc [-sdvfphmi] [directory]

Description The ivxisc command reads the operating configuration file,
/usr/sicl/etc/vxilu/rsrcmgr.out on your LynxOS system (where
lu is the logical unit of the VXI interface) and prints a human readable
display of the current configuration. This display includes slot number
tables for each VXI bus in the configuration and logical address tables for
each MXI bus, a device table, VME device information, a list of failed
devices, a protocol support table, the commander servant hierarchy, an A24/
A32 memory map and an interrupt line allocation table.

The default command (no arguments) prints all tables.

Parameters:

Example For the VXI interface at logical unit (lu) 0:

ivxisc /usr/sicl/etc/vxi0

A sample output follows.

s Prints bus/slot tables.

d Prints device table.

v Prints VME device table.

f Prints failed device table.

p Prints protocol table.

h Prints hierarchy.

m Prints memory map.

i Prints IRQ table.

directory Operating file directory on your system.
(default: /usr/sicl/etc/vxilu)

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

112 Appendix B

Customizing Your VXI System
VXI Configuration Utilities

ivxisc Output example:

VXI Current Configuration:

VXI Bus: 0
 Device Logical Addresses: 0 2 24 56
Slots: 0 1 2 3 4 5 6 7 8 9 10 11 12
 -- -- -- -- -- -- -- -- -- -- -- -- --
Empty O O O O O O O O O O
Single Device X X X
Multiple Devices
VME
Failed

VXI Device Table:

Name LADD Slot Bus Manufacturer Model
---- ---- ---- --- --------------- -----
dev1 0 0 0 Hewlett-Packard E623x Pentium VXI Controller w/Slot 0
relaymux 2 ? 0 Hewlett-Packard E1345 16 ch. 3W relay mux
dev2 24 8 0 Hewlett-Packard E1413A/B/C 64 ch. 100 Khz Scanning A/D
dev3 56 6 0 Hewlett-Packard E1415A 64 ch. Closed Loop Controller

 ? - slot number unknown

VME Device Table:

Name Bus Slot Space Size
---- --- ---- ----- ----
No VME cards configured.

Failed Devices:

Name Bus Slot Manufacturer Model
---- --- ---- ------------ -----
No FAILED devices detected.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix B 113

Customizing Your VXI System
VXI Configuration Utilities

ivxisc Output example (cont.):

Protocol Support (Msg Based Devices):

Name CMDR SIG MSTR INT FHS SMP RG EG ERR PI PH TRG I4 I LW ELW 1.3
---- ---- --- ---- --- --- --- -- -- --- -- -- --- -- - -- --- ---
dev1 X X X X X X X

Commander/Servant Hierarchy;

 dev1
 relaymux
 dev2
 dev3

Memory Map:

A24 Device Name
--- -----------
0x400000 - 0x7fffff dev1
0x200000 - 0x23ffff dev2
0x240000 - 0x27ffff dev3

A32 Device Name
--- -----------
No devices mapped into A32 space.

Interrupt Request Lines:

 Handler Interrupter
Name 1 2 3 4 5 6 7 1 2 3 4 5 6 7
---- - - - - - - - - - - - - - -
dev1 X X X X X X X
relaymux
dev2
dev3

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

114 Appendix B

Customizing Your VXI System
VXI Configuration Utilities

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

C

Configuring HP SICL

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

116 Appendix C

Configuring HP SICL

This appendix explains how to configure SICL. It includes procedures to
edit the hwconfig.cf file, which contains the configuration details for
SICL interfaces, and how to run the siclconf utility for rebuilding the
kernel.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix C 117

Configuring HP SICL
Configuring HP SICL for VXI

Configuring HP SICL for VXI
HP SICL is preconfigured for VXI at the factory. If you need to reconfigure
SICL, use the following procedure.

The VXI configuration is done by running the siclconf utility, as
explained in this section. The siclconf utility rebuilds the kernel. The
following steps explain how to run this utility to configure VXI and rebuild
SICL into the kernel.

1. Log in as root on the Lynx system.

2. Edit the /usr/sicl/etc/hwconfig.cf file.

3. Run the siclconf utility using the following command to build a new
kernel:

/usr/sicl/bin/siclconf

4. To use the new kernel, reboot the Lynx system using the following
command:

/etc/reboot -aN

5. Additional information is located in the README file
/usr/sicl/lib/README.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

118 Appendix C

Configuring HP SICL
Editing the Hardware Configuration File

Editing the Hardware Configuration File
The hardware configuration file, hwconfig.cf, contains the configuration
details for SICL interfaces, and is used by the siclconf utility for
rebuilding the kernel.

To Edit the hwconfig.cf File

This configuration involves editing the hwconfig.cf file to specify your
I/O interfaces, building the kernel, and rebooting the system.

1. Log in as root on the system to be configured.

2. Edit the /usr/sicl/etc/hwconfig.cf file to reflect the I/O
hardware you want to use. You need to have one entry for each I/O
interface in the system. The default hwconfig.cf file is located in the
/usr/sicl/defaults directory.

Note You must ensure that all addresses and interrupt lines (IRQs) are unique and
do not conflict with an address or IRQ line used by any other card in the
system.

3. Run the SICL configuration utility by entering the following command at
the prompt:

/usr/sicl/bin/siclconf

The siclconf utility will configure your system, and rebuild the kernel.

4. Once the SICL configuration utility finishes, you need to reboot the
system. Enter the following command at the prompt:

/etc/reboot -aN

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Appendix C 119

Configuring HP SICL
Editing the Hardware Configuration File

About the Hardware Configuration File

Each line in the hwconfig.cf file corresponds to an interface card that will
be used for instrument I/O. There is only one line for each interface card in
the system. This file only needs to be edited if you are not running the I/O
setup utility. You can view the default hwconfig.cf file in the directory
/usr/sicl/defaults .

The format of each line is as follows:

lu symname cardname location [card specific values]

Where:

Card-specific information is described below for each possible card. In each
case, the values specified are numbers and may be represented in either
hexadecimal (using 0x...), octal (using 0...), binary (using 0b...), or
decimal (default).

lu Logical unit number of the card (0<lu<10000). Each
interface card must have a unique logical unit number.
The actual value used is not important, but you must
remember this number in order to address the card in
your application properly.

symname A symbolic name for your card. Each card must have a
unique symbolic name. This name may be used instead
of the logical unit number to address an interface. The
default symbolic name for your HP-IB interface should
be hpib.

cardname The specific name of the card. This is used to determine
which driver to use.

location The location of the card.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

120 Appendix C

Configuring HP SICL
Editing the Hardware Configuration File

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Glossary

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

122 Glossary

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

bus error
An action that occurs when access to a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

bus error handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this system.

controller
A computer used to communicate with a remote device such as an
instrument. In the communications between the controller and the device
the controller is in charge of, and controls the flow of communication
(i.e. does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with a device.

device
A unit that receives commands from a controller. Typically a device is
an instrument but could also be a computer acting in a non-controller
role, or another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Glossary 123

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and
controllers, including mechanical, electrical, and protocol connections.

interface driver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

interface session
A session that communicates and controls parameters affecting an entire
interface.

interrupts
Asynchronous events requiring attention out of the normal flow of
control of a program.

lock
A state that prohibits other users from accessing a resource, such as a
device or interface.

logical unit
A logical unit is a number associated an interface. A logical unit, in
SICL, uniquely identifies an interface. Each interface on the controller
must have a unique logical unit. The logical unit is specified during the
system configuration.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

124 Glossary

mapping
An operation that returns a pointer to a specified section of an address
space as well as makes the specified range of addresses accessible to the
requester.

non-controller role
A computer acting as a device communicating with a controller.

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system that
allows multiple programs to execute simultaneously, each in a separate
process environment. A single-process system is a computer system that
allows only a single program to execute at a given point in time.

register
An address location that controls or monitors hardware.

session
An instance of a communications channel with a device. A session is
established when the channel is opened with the iopen function and is
closed with a corresponding call to iclose.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to a single interface. This name uniquely
identifies the interface on this controller. If there is more than one
interface on the controller, each interface must have a unique symbolic
name. The symbolic name is specified during the system configuration.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Glossary 125

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads that each have
access to the same data space within the process. However, each thread
has its own stack and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing a single
processor).

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

126 Glossary

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-2

A
Active Controller, 42, 45, 51
Address
cmdr, 51
HP-IB interface symbolic name, 11,

44
Primary, 40
Secondary, 40
Symbolic name

HP-IB, 11, 44
HP-IB interface, 10
VXI, 67

VXI interface symbolic name, 67
Addressing

Commander sessions, 12
Device sessions, 10
HP-IB commander sessions, 51
HP-IB device sessions, 40
HP-IB interface sessions, 44
Interface sessions, 11
VXI interface sessions, 67
VXI message-based device sessions,

59
VXI register-based device sessions,

62
Argument modifier, 17
Array size, 16
Asynchronous events, 25

Interrupts, 25
SRQs, 25

B
blockcopy.c example, 82
Buffers, flushing, 21

C
cardname, 119
cmdr string, 12, 51
cmdrsrvt.cf file, 102
Comma operator, 16
Command Module, 58, 62
Commander sessions, 12

Addressing, 12
HP-IB addressing, 51

HP-IB communicating, 51
VXI not supported, 57

Commander/Servant hierarchy, 102
Commands, word-serial, 76
Communication sessions, 9

HP-IB, 39
VXI, 57

Compiling SICL programs, 7
Configuration
ivxisc utility, 105, 111
SICL, 117
siclconf utility, 117
View current VXI system

configuration, 105, 111
VXI system, 98
VXI Utilities, 106

Configuration files
cmdrsrvt.cf, 102
dynamic.cf, 101
hwconfig.cf, 118, 119
iproc.cf, 104
irq.cf, 102
names.cf, 102
oride.cf, 71, 73, 81, 103
ttltrig.cf, 79, 103
vmedev.cf, 70, 73, 101
VXI, 100–??
VXI/MXI, ??–103
vximanuf.cf, 100
vximodel.cf, 101

D
Device registers, reading and writing,

65, 72
Device sessions, 10

Addressing, 10
HP-IB, 40
HP-IB addressing, 40
HP-IB example, 42
VME devices, 69
VXI, 57
VXI addressing, 59, 62
VXI communicating, 58
VXI example, 61, 65
VXI register programming, 63

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-3

Disable events, 26
DMA transfers, 82
dynamic.cf file, 101
Dynamically configured devices, 101

E
E1482 external trigger lines, 81
E1489 trigger lines, 78
Enable

Error handler, 30
Events, 25, 26
Interrupt events, 25
Interrupt handler, 25
SRQ handlers, 25

END indicator, 21
errhand.c example, 31
errhand2.c example, 32
Error handlers, 30

Creating your own, 32
Example, 31

Error routines, 30
I_ERROR_EXIT, 30
I_ERROR_NO_EXIT, 30

Events
Asynchronous, 25
Disable, 26
Enable, 25, 26
Interrupts, 25
SRQs, 25

Examples
blockcopy.c, 82
errhand.c, 31
errhand2.c, 32
formatio.c, 19
hpibdev.c, 42
hpibintr.c, 47
hpibstatus.c, 46
interrupts.c, 28
locking.c, 35
nonformatio.c, 24
vmedev.c, 74
vmeintr.c, 87
vxiintr.c, 68
vximesdev.c, 61
vxiregdev.c, 66

External trigger lines
Routing, 81

F
Field width, 15
Flushing buffers, 21
Format flags, 15
Format string, 21
formatio.c example, 19
Formatted I/O, 13

Argument modifier, 17
Array size, 16
Buffers, 21
Comma operator, 16
Conversion, 14
Example, 19
Field width, 15
Format flags, 15
Format string, 21
Precision, 16
Routines, 22

Functions
HP-IB specific, 53
VXI specific, 88

G
GET in HP-IB device sessions, 41
GET in HP-IB interface sessions, 45
GPIB, See HP-IB

H
Handlers

Error, 30
Interrupts, 25
SRQs, 25
Wait for, 26

Header files
sicl.h, 8

HP SICL utilities, 90
HP-IB

Addressing commander sessions, 51
Addressing device sessions, 40
Addressing interface sessions, 44
Communicating with commanders, 51

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-4

Communicating with interfaces, 44
Device session example, 42
Device sessions, 40
Interface session example, 46, 47
Primary address, 40
Secondary address, 40
SICL functions, list of, 53
Symbolic name, 11, 44

HP-IB commander sessions
Interrupts, 52
iread, 52
isetstb, 52
iwrite, 52

HP-IB device sessions
iclear, 41
Interrupts, 41
iread, 41
ireadstb, 41
itrigger, 41
iwrite, 41
Service requests, 42

HP-IB interface sessions
iclear, 45
Interrupts, 45
iread, 45
itrigger, 45
iwrite, 45
ixtrig, 45
Service requests, 45

hpibdev.c example, 42
hpibintr.c example, 47
hpibstatus.c example, 46
hwconfig.cf file, 118, 119

I
I_ERR_NOLOCK, 33
I_ERROR_EXIT, 30
I_ERROR_NO_EXIT, 30
iblockcopy

DMA transfers, 82
iclear

HP-IB device sessions, 41
HP-IB interface sessions, 45
VXI device sessions, 76
VXI interface sessions, 77

iclear utility, 91
IEEE 488, See HP-IB
IFC in HP-IB interface sessions, 45
iflush, 22
ifread, 22, 23
ifwrite, 22, 23
iintroff, 26
iintron, 26
ilock, 33
imap, 63
INST, 9
Interface sessions, 11

Addressing, 11
HP-IB addressing, 44
HP-IB communicating, 44
HP-IB example, 46, 47
VXI, 57
VXI addressing, 67
VXI communicating, 67
VXI example, 68

Interrupt handlers, 25
Example, 28

Interrupts
HP-IB commander sessions, 52
HP-IB device sessions, 41
HP-IB interface sessions, 45
Signals, 27
VXI, 85

interrupts.c example, 28
ionerror, 30
ionintr, 25, 26
ionsrq, 25, 26

VXI device sessions, 76
ipeek, 65, 72
ipeek utility, 92
ipoke, 65, 72
ipoke utility, 93
iprintf, 13, 22
iproc utility, 104, 107
iproc.cf file, 104
ipromptf, 14, 22
iread, 23

HP-IB commander sessions, 52
HP-IB device sessions, 41
HP-IB interface sessions, 45

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-5

VXI device sessions, 76
VXI interface sessions, 77

iread utility, 94
ireadstb

HP-IB device sessions, 41
VXI device sessions, 76

IRQ lines, 102
irq.cf file, 102
iscanf, 13, 22
isetbuf, 22
isetintr, 25, 26, 45, 78
isetstb

HP-IB commander sessions, 52
isetubuf, 22
itrigger, 79

HP-IB device sessions, 41
HP-IB interface sessions, 45
VXI device sessions, 76

iunlock, 33
iunmap, 65, 72
ivxibusstatus, 88
ivxigettrigroute, 88
ivxirm utility, 99, 109
ivxirminfo, 88
ivxisc utility, 105, 111
ivxiservants, 88
ivxitrig, 78
ivxitrigoff, 88
ivxitrigon, 88
ivxitrigroute, 88
ivxiwaitnormop, 88
ivxiws, 88
iwaithdlr, 26
iwrite, 23

HP-IB commander sessions, 52
HP-IB device sessions, 41
HP-IB interface sessions, 45
VXI device sessions, 76
VXI interface sessions, 77

iwrite utility, 95
ixtrig

HP-IB interface sessions, 45
VXI interface sessions, 79

L
Linking SICL programs, 7
location, 119
Locking, 33

Example, 35
Lock actions, 34
Multi-user environment, 34

locking.c example, 35
Locks, functions affected by, 33
Logical address, VXI, 59, 62
lu, 119

M
Manufacturer id, VXI, 100
Mapping memory

32-bit access, 64
Register-based devices, 63
VME devices, 71, 73

Masking signals, 27
Memory space, unmapping, 65, 72
Message-Based devices, 58, 59

Programming example, 61
SICL functions, 76

Model number, VXI, 101
Multi-user environment, locking, 34
MXI triggering, 103

N
names.cf file, 102
Newline character, 21
nonformatio.c example, 24
Non-formatted I/O, 23

Example, 23
Notification of interrupts, 25

O
Opening a session, 9
oride.cf file, 103

Example, 81

P
Pass Control, 42, 45
Precision, 16

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-6

Primary address, 40, 59, 62
Programming to Registers, 63

R
Register-Based devices, 58, 62
oride.cf file, 103
Programming, 62, 63, 65

Mapping memory space, 63
Reading from, 72
Writing to, 72

Programming example, 65
SICL functions, 76

Resource Manager, 98, 99, 109
Routing external trigger lines, 81
Routing TTL trigger lines, 79

S
Secondary address, 40

VXI not supported, 63
Service request

HP-IB device sessions, 42
HP-IB interface sessions, 45

Sessions
Addressing HP-IB commanders, 51
Addressing HP-IB devices, 40
Addressing HP-IB interfaces, 44
Addressing VXI interfaces, 67
Addressing VXI message-based

devices, 59
Addressing VXI register-based

devices, 62
Commander, 12
Device, 10
HP-IB, 39
HP-IB device, 40
Interface, 11
Opening, 9
Types of, 9
VXI, 57
VXI device, 57
VXI interface, 57

SICL
Configuration, 117
Features, 3

Overview, 3
User, 3

sicl.h header file, 8
siclconf utility, 73, 117
Signals

blocking/ignoring, 27
SRQ handlers, 25
SRQ, See Service request
Symbolic name, 10

Configuration file, 102
HP-IB interface, 11, 44
VXI interface, 59, 67
VXI/MXI interface, 62

symname, 119

T
Trigger lines

E1489, 78
VXI, 78

TTL trigger lines
Routing, 79
ttltrig.cf file, 103

ttltrig.cf file, 103
Example, 79

U
Unmapping memory space, 65, 72
Utilities
iclear, 91
ipeek, 92
ipoke, 93
iproc, 104, 107
iread, 94
ivxirm, 99, 109
ivxisc, 105, 111
iwrite, 95
siclconf, 73, 117
VXI configuration, 106

V
VME

Communicating with devices, 69
VME devices, 70, 101

Example, 73

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Index-7

Mapping memory, 71, 73
VME interrupts example, 87
vmedev.c example, 74
vmedev.cf file, 101
vmeintr.c example, 87
VXI

Addressing interface sessions, 67
Addressing message-based device

sessions, 59
Addressing register-based device

sessions, 62
Commander/Servant hierarchy, 102
Communication sessions, 57
Configuration, 98, 99
Configuration files, 100–103
Configuration Utilities, 106
Device sessions, 57
Dynamically configured devices, 101
Interface sessions, 57
Interrupts, 85
IRQ lines, 102
Manufacturer id, 100
Mapping memory space, 63, 71
Message-Based devices, 58, 59
Message-Based programming

Example, 61
SICL functions, 76

Model number, 101
Register programming, 63
Register-Based devices, 58, 62
Register-Based programming

Example, 65
SICL functions, 76

Resource Manager, 99, 109
SICL functions, 88
siclconf utility, 117
Symbolic name, 67, 102
Trigger lines, 103
Unmapping memory space, 65, 72
VME devices, 69

VXI device sessions
Example, 61, 65
iclear, 76
ionsrq, 76
iread, 76

ireadstb, 76
itrigger, 76
iwrite, 76

VXI interface sessions
Example, 68
iclear, 77
iread, 77
iwrite, 77

VXI/MXI
Configuration

Viewing current, 105, 111
Mapping memory space, 73
Routing external trigger lines, 81
Routing TTL trigger lines, 79

vxiintr.c example, 68
vximanuf.cf file, 100
vximesdev.c example, 61
vximodel.cf file, 101
vxiregdev.c example, 66

W
Wait for handlers, 26

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com

Artisan Technology Group is your source for quality
new and certified-used/pre-owned equipment

•	 FAST SHIPPING AND
DELIVERY

•	 TENS OF THOUSANDS OF
IN-STOCK ITEMS

•	 EQUIPMENT DEMOS

•	 HUNDREDS OF
MANUFACTURERS
SUPPORTED

•	 LEASING/MONTHLY
RENTALS

•	 ITAR CERTIFIED
SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS
Experienced engineers and technicians on staff
at our full-service, in-house repair center

WE BUY USED EQUIPMENT
Sell your excess, underutilized, and idle used equipment
We also offer credit for buy-backs and trade-ins
www.artisantg.com/WeBuyEquipment

 REMOTE INSPECTION
Remotely inspect equipment before purchasing with
our interactive website at www.instraview.com

LOOKING FOR MORE INFORMATION?
Visit us on the web at www.artisantg.com for more
information on price quotations, drivers, technical
specifications, manuals, and documentation

Contact us: (888) 88-SOURCE | sales@artisantg.com | www.artisantg.com

SMViewInstra

