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Chapter 1. Introduction
1.1. Fractal

Fractal is a component model developed initially by France Telecom and INRIA and later as an open
source project in the ObjectWeb consortium. The component model is defined by the Fractal Component
Model specification [BCS]. The specification defines a hierarchical component model, where a com-
ponent is specified in terms of its server and client (provided and required) interfaces and configurable
attributes. The model supports advanced features such as component sharing, mandatory/optional in-
terfaces, collection interfaces. The Fractal API is defined for three languages: Java, C, and CORBA
IDL. The reference implementation of Fractal, Julia, is developed in Java and supports Java Fractal
components.

The Fractal specification allows to use an Architecture Description Language (ADL), however, it does
not directly specify one. In the Fractal ADL project, an XML-based ADL for the Fractal component
model is defined to specify the initial architecture of an application. The features of this ADL language
include inheritance among component specifications, and also a mechanism to specify values of
components' attributes.

1.1.1. Basic assumptions

The Fractal component model specification is very flexible (and structured in several conformance
levels), consequently, many concrete component systems comply with it. To make the integration of
behavior protocols into Fractal possible, we take the following additional assumptions:

(1) In Fractal, every component has internal and external interfaces. We suppose that for every external
interface there exists an internal interface of the same type (and vice versa). In addition, an event on
an external interface immediately causes the complementary event on the corresponding internal inter-
face, and these two events happen atomically. In a similar way, an event on an internal interface imme-
diately causes the complementary event on the corresponding external interface (and the two events
happen atomically).

(2) Interfaces in Fractal are connected by bindings. We suppose that an event occurring on an interface
I causes immediately the complementary event on the interface I is bound to, and the two events
happen atomically, assuming I is bound to exactly one interface. If I is bound to more interfaces, the
events on those interfaces do not have to happen atomically.

1.2. Behavior protocols
The purpose of behavior protocols is to specify the behavior of software components, so that interesting
properties of their behavior can be verified.

The problem of behavior verification is undecidable in general. There are two ways to face it: (1) To
use behavior description languages which describe behavior of the software precisely and to put up
with the fact that the tools will never stop for some inputs (behavior descriptions). (2) To use behavior
description languages, which are not expressive enough to describe behavior of software precisely,
but the verification of the specifications is decidable. We have chosen the second approach. Therefore,
a behavior protocol should be seen rather as an approximation of a component's behavior. The most
important benefit of this approach is the existence of a fully automatic behavior verification procedure
(implemented in our behavior protocol checker).

The main difference between "full" description of a component behavior and a corresponding behavior
protocol is that the protocol describes only sequences of method calls on the component's interfaces,
abstracting from the values passed as method parameters and return values. Such a level of abstraction
is very suitable for verification tasks specific to software components.
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1.2.1. Behavior protocol basics

Figure 1.1. Example of a component application with behavior protocols

On Figure 1.1, there is an example of a component application consisting of two simple components.
The component Logger provides basic logging functionality, which is used by the component Client.
Therefore, Client's (required) log interface is bound to Logger's (provided) log interface.

Logger's log interface consists of three methods: open, which has to be called at the beginning of
the "logging session", log, which can be called several times after the open method was called (every
call of the log method causes writing of the string passed as the message parameter into a persistent
store), and the close method, which has to be called at the end of the "logging session".

In a classic software development process, description of a component's functionality (such as Logger)
has typically the form of a plain English text, which is not suitable for an automatized behavior veri-
fication. To fill this "semantic gap", we add a behavior protocol to the "classic" component interface
specification.

For example, the behavior protocol of Logger, consistent with the plain English specification above,
reads as follows:

?log.open;
?log.log*;
?log.close

This protocol consists of tokens denoting method calls (?log.open, ?log.log, and ?log.close)
and operators specifying the ordering of the method calls (; and *). Every of these tokens consists of
the question mark, denoting that the method call is absorbed by Logger, and the qualification of the
method within the component, consisting of the interface name and the method name (separated by
the dot sign). Finally, the ; binary operator stands for sequencing of method calls, while the * postfix
unary operator denotes zero or more repetitions of ?log.log. Therefore, this protocol indeed specifies
what was written informally above: the call of log.open is absorbed, then zero or more calls of
log.log are absorbed, and finally log.close is absorbed.

Now, let us focus on the behavior protocol of Client:

!log.open;
!log.log;

2
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!log.log;
!log.close

It differs from Logger in two ways: First, the method qualifications are preceded with the exclamation
mark, which stands for emitting a method call. Second, it specifies that Client calls log.log exactly
twice. It is correct, because Logger is ready to accept an arbitrary number of log.log calls, if they
occur after log.open and before log.close (which is the case).

In the rest of this chapter, we show an overview of verification tasks, which can be done with behavior
protocols. Detailed description of behavior protocols can be found in Chapter 2.

1.2.2. Static checking

Using the (static) behavior protocol checker, two important properties of component behavior can be
analyzed statically (i.e., at the development time): composition errors and behavior compliance.

To explain what a composition error is, let us assume that the behavior protocol of the Client com-
ponent from Figure 1.1 changed in the following way:

!log.log;
!log.log;
!log.close

I.e., Client does not call log.open at the beginning. However, Logger expects open to be called
as the first one. In general, an attempt of a component A to call a method of another component B in
a situation where the call is not expected by B (i.e., such a behavior of B is not specified in B's beha-
vior protocol) is called bad activity (of A). Bad activity is one of composition errors, as it results from
composition of components with incompatible behavior protocols. Other types of composition errors
are described in Section 2.4.2.

The basic idea of behavior compliance is that for a composite component C, the behavior of its "intern-
als" (determined by joint behavior of its subcomponents S1, ..., Sn) should be compliant with the be-
havior specified by C's protocol.

Figure 1.2. Example of a composite component with behavior protocols

On Figure 1.2, there is an example of an implementation of the Client component. Client consists
of two subcomponents - A and B, whose behavior protocols are also in Figure 1.2.

To check the compliance, the first task is to figure out the behavior of A and B being run simultaneously.
In this case, it is simple, as A and B do not communicate with each other, therefore the behavior of
Client's internals is

(
  !<A:log1-log>.open;
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  !<A:log1-log>.log;
  !<A:log1-log>.close
) | (
  !<B:log2-log>.log
)

There are several new constructs in this protocol. First, it does not specify behavior of a component,
but the behavior of a group of components. Therefore, to fully qualify a method, it is not more suitable
to use the local name of the interface. Instead, name of the binding is employed. For example,
<A:log1-log> identifies binding between the log1 interface of the A subcomponent and the log
interface of the supercomponent (from the context, Client is known to be the supercomponent here;
this is why its name is not used to prefix the log interface name).

Second, the | binary operator stands for parallel execution of two subprotocols. This is what is needed
to be expressed - the subcomponents A and B run independently on each other.

The behavior of internals of the Client component is not compliant with its protocol. There are two
reasons: (1) B can emit its call (!<B:log2-log>.log) before open is called by A or after close
is called by A, and (2) the calls of the log method emitted by A and B can occur in parallel. None of
these situations is permitted by the behavior protocol of Client.

The construction of the protocol describing behavior of Client's internals was shown only for illus-
tration. In practice, this is done automatically by the behavior protocol checker. Also, in the situation
when components in a group communicate with each other, it is not possible to use the parallel oper-
ator to specify the resulting behavior - more advanced operators have to be used instead (see Chapter 2).

1.2.3. Verifying behavior of primitive components

For a primitive component (i.e., a component that is directly implemented in Java instead of being
composed of several subcomponents), the behavior compliance (Section 1.2.2) cannot be verified by
the static checker (Section 1.2.2). The reason is that the static checker requires the behavior of both
the component and its internals (subcomponents/implementation) to be specified by behavior protocols,
and it can therefore verify the compliance for composite components only.

There are two ways to verify whether the implementation of a primitive component is compliant with
the protocol (or, as we say in this context, whether the component's behavior is bounded by the protocol):
run-time checking (Section 1.2.3.1) and code analysis (Section 1.2.3.2).

1.2.3.1. Run-time checking

The main motivation for developing the run-time checker is the run-time verification of a primitive
component. However, in principle, the run-time checker can be used also for a composite component.

The run-time checker keeps track of the method calls on external interfaces of a component at run-
time and checks whether the behavior of the component is bounded by its protocol.

The main disadvantage of this approach is that (unlike the static checking) it is not exhaustive: even
if the behavior of a primitive component is not bounded by the protocol, it may not become evident
for many runs of the component application monitored by the run-time checker.

More details on run-time checking and the differences between static and run-time checking are
presented in Section 2.5.

1.2.3.2. Code analysis

The checker for code analysis verifies whether the behavior of a primitive component is bounded by
the behavior protocol of the component. The verification is done statically (i.e., at the development
time) and is based on the analysis of the component code. It is exhaustive, i.e., if the behavior of the
component is not bounded by the protocols, it is always detected, if the analysis completes. On the
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other hand, the code analysis is an undecidable problem in general, i.e., the analysis may not stop for
some inputs. Even if it stops, it is a very time- and memory-consuming process: therefore, we provide
the developers with both run-time checker and the checker for code analysis, and they should be seen
as complementary to each other.

More details on code analysis of primitive components are presented in Chapter 3, Section 4.7.1 and
Section 4.7.2
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Chapter 2. Behavior protocols overview
2.1. Events and traces

Events are the keystone of behavior protocol semantics. Every event is atomic. We define two types
of events: requests and responses. Let m be the (fully qualified) name of a method. Then, m^ stands
for a request/call of m and m$ stands for a response/return from m.

Always, two components cooperate on an event: one component emits the event and another component
absorbs the event. To distinguish between those two roles, we use the prefix ! for emitting and ? for
absorbing. If m is a method name, the symbols ?m^, ?m$, !m^, !m$ are called event tokens. Recall
Figure 1.1 from Section 1.2.1. In the protocol of Client, !log.log^ would stand for emitting the
call of log.log, while ?log.log$ would stand for absorbing the return from log.log.

To specify that an event occurs as an internal event of a component C (i.e., it results from a communic-
ation of C's subcomponents), we use the # prefix.

To provide a way to specify a request and the corresponding response at once, we define abbreviations:
if m is a (fully qualified) name of a method, ?m is an abbreviation for the protocol (?m^ ; !m$)
(the whole method call from the point of view of the callee) and !m stands for (!m^ ; ?m$) (the
whole method call from the point of view of the caller). In fact, in the examples in Chapter 1, only
these abbreviations were used to specify the behavior, and usage of explicit requests and responses
was not necessary.

We also define two more complex abbreviations: if P is an arbitrary protocol, ?m{P} means that the
call request of m is absorbed, and while m is processed, the component behaves as specified by P; af-
terwards, the call response of m is emitted. In a similar way, !m{P} means that P specifies the behavior
of the caller between issuing the call of m and receiving the response of m.

The abbreviations not only serve as syntactic sugar, allowing to write readable behavior protocols, but
they also explicitly denote pairing of events (requests and corresponding responses). In certain situations,
such information is essential for the behavior protocol checker. This is why for certain types of inter-
faces, only an abbreviation can be used to specify the method call, and the use of explicit event spe-
cification is forbidden (see Section 4.5.1).

A computation of a component application is formally described by a trace - a finite sequence of event
tokens. Every protocol specifies a set of traces. Recall the protocol of Client from Figure 1.1:

!log.open;
!log.log;
!log.log;
!log.close

It specifies a single trace:

<!log.open^, ?log.open$,
!log.log^, ?log.log$,
!log.log^, ?log.log$,
!log.close^, ?log.close$>

For Logger, the situation is more complex:

?log.open;
?log.log*;
?log.close
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This protocol specifies an infinite number of traces, as it accepts arbitrary number of calls to log.log.
We show the first three shortest traces specified by the protocol:

<?log.open^, !log.open$, ?log.close^, !log.close$>

<?log.open^, !log.open$, ?log.log^, !log.log$, 
?log.close^, !log.close$>

<?log.open^, !log.open$, ?log.log^, !log.log$, 
?log.log^, !log.log$, ?log.close^, !log.close$>
...

The set of all traces specified by a protocol P is denoted as L(P).

2.2. Behavior protocol basic operators
For behavior protocols, the following basic operators are defined: sequencing (denoted by ;), repetition
(denoted by *), alternative (denoted by +), and-parallel (denoted by |), and or-parallel (denoted by
||). We illustrate the meaning of the operators (except the last one) on the following protocol of the
Client component from Figure 1.1:

!log.open;
(
   (!log.log | !log.log)
   +
   !log.log*
)
!log.close

Client, whose behavior is specified by this protocol, first calls log.open. Then, it either calls
log.log twice in parallel, or it calls log.log several times sequentially (or it does not call log.log
at all, as * stands for zero or more repetitions). At the end, it calls log.close.

Or-parallel is defined as follows: if P and Q are protocols, (P || Q) stands for (P + (P | Q)
+ Q).

2.3. Frame and architecture protocols
From the point of view of behavior, every component can be divided into two parts: frame and archi-
tecture. The frame of a component C consists of all interfaces which are provided or required by C to
"outside world" (the components which are external to C). The architecture of C consist of frames of
C's direct subcomponents and bindings between those frames (and also bindings between interfaces
of C's subcomponents and interfaces of C itself).

7

Behavior protocols overview



Figure 2.1. Example of a composite component with bindings among
subcomponents

On Figure 2.1, the frame of Client consists of the (only) log interface, while its architecture is
formed by the frames of A, B and the bindings <A:log1-log>, <B:log2-log>, <A:nt1-B:nt2>
(as explained in Section 1.2.2, in the context of the Client component <A:log1-log> stands for
the binding of the log1 interface of the A subcomponent to the log interface of Client itself; here,
we introduce <A:nt1-B:nt2> - the binding between interfaces of A and B subcomponents).

An architecture is always associated with a concrete frame (we also say that the architecture implements
this frame).

Following the definition of frame and architecture, we also distinguish between frame protocols and
architecture protocols. Frame protocol of a component C describes requests and responses on the
frame of C. The frame protocol is specified by the developer. The architecture protocol of C is auto-
matically constructed from the frame protocols of C's direct subcomponents by the behavior protocol
checker. It describes what is happening "inside" C.

In the architecture protocol of a component C, two types of events appear: events on the frame of C,
and events resulting from the communication of C's direct subcomponents (internal events). The first
type of events is denoted in the same way as in frame protocols. The # prefix is used (in both event
tokens and abbreviations) to denote internal events (Section 2.1).

For example, the architecture protocol of the Client component from Figure 2.1 reads as follows:

!<A:log1-log>.open;
#<A:nt1-B:nt2>.notify {
   !<B:log2-log>.log
}
!<A:log1-log>.log
!<A:log1-log>.close

Formally, the composition of subcomponent frame protocols resulting in the architecture protocol is
defined by the consent operator [AP05]. This operator is never used by the designer specifying the
frame protocols, it is only a formalization of the behavior composition which is done automatically
by the behavior protocol checker.

8
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2.4. Static checking

2.4.1. Protocol compliance

One of the behavior properties, which can be statically verified with our behavior protocol checker,
is compliance of an architecture protocol PA (of a component C) with the frame protocol PF (of C).
Informally, there are two conditions which have to be satisfied in order for PA to be compliant with
PF (let F be the frame of C): (1)PA specifies acceptance of any sequence of calls of the methods
provided by F that are dictated by PF. (2) For such sequences, PA specifies only such calls of the
methods required by F that are anticipated by PF.

Example of an architecture protocol not compliant with the frame protocol was already described in
Section 1.2.2. As a more elaborate example of compliant behavior, recall the architecture protocol of
Client from Figure 2.1 in Section 2.3...

!<A:log1-log>.open;
#<A:nt1-B:nt2>.notify {
   !<B:log2-log>.log
}
!<A:log1-log>.log
!<A:log1-log>.close

... and the corresponding frame protocol:

!log.open;
!log.log;
!log.log;
!log.close

The architecture protocol is compliant with the frame protocol, because if we abstract from the internal
events of Client (which are not important from the point of view of compliance), and from different
naming conventions (the architecture protocol uses binding names, the frame protocol uses interface
names), both the protocols specify the same set of traces (or, in this particular case, the same trace).

We have developed two different formal definitions of behavior compliance: pragmatic compliance,
published in [PV02], and consensual compliance, which uses the consent operator [AP05] and is im-
plemented in the current version of the behavior protocol checker.

2.4.2. Composition errors

Composition errors are communication errors, which result from composition of components with in-
compatible behavior. If the definition of the components is enhanced by behavior protocols, those
composition errors can be checked statically.

The first type of composition error is bad activity, which was demonstrated in Section 1.2.2. It occurs
when a component A tries to call a method of a component B in such a way which in not specified in
B's behavior protocol.

No activity (or deadlock) occurs when computation in a component application can not progress (none
of the components is able to emit an event), and at least one of the components has not finished its
computation (the application thus cannot stop correctly).

To show an example of no activity, let us modify the frame protocol of Client's A subcomponent
from Figure 2.1 in Section 2.3:

9
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!log1.open;
!log1.log;
!log1.close

Here, the B component will be "blocked", as it expects a call of the notify method on its nt2 interface
- this call is never emitted by A. After A makes all the calls specified in its behavior protocol, a no
activity error occurs.

An infinite activity (divergence) occurs when computation of a component application never stops,
but components are never blocked, i.e. always there is an event which can be both emitted and absorbed.

Figure 2.2. Example of infinite activity

An example of a component composition resulting in infinite activity can be found on Figure 2.2. Here,
the A and B components call forever the notify method on each other's ntp interface in turns.

More information on composition errors can be found in [AP05].

2.4.3. Incomplete bindings

We say that a component architecture has incomplete bindings, if there exists an interface (either
provided or required), which does not participate in any binding (we call such an interface an unbound
interface). The existence of an unbound interface is not necessarily a design error: this typically happens
when the designer reuses a component developed originally for different application and decides to
utilize only a part of the component's functionality. If the behavior of the components in the architecture
is specified using behavior protocols, it is possible to statically check whether the incomplete bindings
cause a problem.

An unbound provided interface can cause bad activity or no activity (Section 2.4.2). On the other hand,
an unbound required interface can cause a new type of composition error: unbound requires error.
Unbound requires error occurs when a component tries to call a method on its required interface, which
is unbound.

10
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Figure 2.3. Example of incomplete bindings

An example of a component application with one unbound required interface (the nt interface of the
A component) is shown on Figure 2.3. On the ch interface of A, the a or the b method can be called.
If b is called, A reacts by calling nt.notify. As the B component calls only ch.a, the A:nt.no-
tify method is never called and the fact that A:nt is unbound does not cause any problem. On the
other hand, if the behavior protocol of B was (!ch.b*), it would result in an unbound requires error.

More information on incomplete bindings can be found in [AP04].

2.5. Run-time checking
The run-time checker monitors the events on the external interfaces of a component (the trace) and
checks whether this trace is one of those specified by the frame protocol of the component. If not, it
is considered to be an error.

The main reason for using the run-time checker is verification of the composite components with dy-
namic architectures (which cannot be verified statically). Also, run-time checking is an alternative to
static checking in the situations when the architecture of a (composite) component is so complex that
the static checker cannot be used. Last but not least, run-time checker can be used to check the compli-
ance of a primitive component behavior with the frame protocol (this cannot be done using the static
protocol checker in principle, because there are no subcomponent frame protocols).

We show the functionality of the run-time checker on the example from Figure 1.1 in Section 1.2.1.
The frame protocol of Client specifies that the log.log method has to be called after log.open
has been called. If log.close were called instead at that moment, the run-time checker would detect
an error.

What exactly happens when such an error is detected depends on the configuration of the run-time
checker. Typically, the error is reported and logged within the runtime-checking framework. The run-
time checking framework may throw an exception in the calling thread to notify the application about
the erroneous call, or the application may continue without being affected. In either case, the run-time
checking of the component (whose frame protocol was violated) is stopped. It is not possible to con-
tinue run-time checking of the component in this case, as the behavior protocols formal model does
not support "error recovery".

The run-time checker also detects the violation of the frame protocol caused by the component's envir-
onment (the "outer world"). For example, if the frame protocol of Client were

!log.open;

11
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!log.open;
!log.close

(i.e., to start by calling log.open twice) and Client behaved in compliance with this protocol (so
that no protocol violation would be detected by the run-time checker for Client), error would be
reported for Logger, as its protocol does not allow to accept a call of the log.open method twice.

2.6. Code analysis
The purpose of code analysis of a primitive component is to check whether the component's behavior
is bounded by its frame protocol, that means checking whether the component can accept and emit
method calls on its frame interfaces only in sequences that are determined by its frame protocol. Main
advantage of code analysis over runtime checking is that all techniques of code analysis are exhaustive,
i.e. they check all the possible runs of the verified code. We decided to employ model checking, which
is one of the more popular techniques of software code analysis (see Chapter 3).

We show the idea of code analysis on the example from Figure 1.1 in Section 1.2.1. Assume that the
frame protocol of Client is defined in the same way as in Section 1.2.1, i.e. it is

!log.open;
!log.log;
!log.log;
!log.close

and that the implementation of Client in Java is (with only fragments presented)

public class Client
{
 private Logger log;

 public void run()
 {
  log.open();
  ...

  log.log("message 1");
  log.log("message 2");
  ...
  if (/*some condition*/) log.log("message 3");

  ...
  log.close();
 }

 public static void main(String[] args)
 {
  Logger log = new LoggerImpl();

  Client client = new Client();
  client.setLog(log);

  client.run();
 }
}

12
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It is clear from the example above that the implementation of Client is not bounded by the protocol,
as the implementation allows three invocations of log.log in some cases whereas the protocol allows
only two invocations.

Since the code analysis (via model checking) is an exhaustive verification technique, it will find the
error when it checks the run in which the condition in the if statement evaluates to true and (con-
sequently) log.log is called for the third time.
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Chapter 3. Model checking of software
components

Model checking [CGP] is a formal method of verification of finite state systems. The basic idea is that
a model checker checks whether the model of a target system satisfies the property expressed in some
property specification language. The checking is done by traversal of the state space that is generated
from the model.

Some model checkers accept as input the model manually created by the user, while others are able
to automatically extract the model from the source code. However, both approaches have severe
drawbacks. Manual construction of the model is a tedious and error-prone process. On the other hand,
automated extraction of the model faces the problem that the model is an abstraction and, therefore,
it may represent behavior not possible in the original program. Consequently, a model checker may
then find errors that are not present in the program (i.e., false negatives). Fortunately, there exist
model checkers that work directly with the implementation of a target system - Java Pathfinder is an
example of such a model checker.

Properties to be checked are usually expressed via temporal logic (CTL, LTL), or in the form of asser-
tions. Some model checkers are also able to check for a fixed set of special properties (deadlocks, un-
caught exceptions, etc).

The biggest problem of model checking with respect to practical use of this technique is the size of
the state space typical for software systems (the problem of state explosion). However, decomposition
of a software system into components helps to mitigate the problem. A component usually generates
smaller state space than the entire system and, therefore, can be checked with fewer requirements on
space and time.

In our case, we use model checking to check whether a primitive component is bounded by its frame
protocol or not. And since most implementation of the Fractal Component Model are Java-based (in-
cluding the reference implementation Julia), we decided to use the Java PathFinder model checker
(JPF) [JPF].

3.1. Environment
Although model checking of individual software components helps to mitigate the problem of state
explosion, a component cannot be checked in isolation because it does not form a complete program
(with the main method) required by JPF. Therefore, it is necessary to create an environment of the
target component and then check the whole program composed of the environment and the component.

The environment should be generated in a way that forces the model checker to verify all reasonable
control-flow paths in the component's implementation. For that purpose, the environment has to
(i) perform all reasonable sequences of method calls on server interfaces of a target component and
(ii) invoke each method several times, each time with different values of its parameters.

We employed a tool for automated generation of environment that was developed outside of the scope
of this project. As input, the tool accepts (i) the frame protocol of a target component as the behavior
specification of the environment and (ii) the name of a Java class that works as a container for sets of
values of method parameters. The environment is then generated from the inverted frame protocol
[AP05] of the target component, which is constructed from the frame protocol by replacing all the
accept events with emit events and vice versa. Our tool also performs several heuristic transformations
of the frame protocol - before creating the environment - in order to minimize the size of the state
space of the program composed from the component and environment [PP06].
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3.2. Java PathFinder
Java PathFinder is a software model checker for Java byte code, which works as a specialized Java
Virtual Machine (JPF VM). Unlike standard Java VM, the JPF VM executes the program in all possible
ways with respect to threads' instructions interleaving and values of input data. Using this approach,
the state space of the target program is generated on-the-fly, as JPF executes the program.

JPF integrates several methods for decreasing the state space size. Like majority of other model
checkers, it supports partial order reduction (POR) [CGP]. It is based on the idea that some instructions
(or sequences of instructions) are commutative when executed concurrently, i.e., they result in the
same state regardless of the order of their execution. Actually, JPF implements POR in a slightly indirect
way - it executes instructions of the current thread one after another till the current instruction is
scheduling relevant (e.g. it accesses a shared variable, starts/stops a thread, blocks a thread, etc) or a
value selection via the methods of the Verify class takes place.

Important feature of JPF is its extensibility via the publisher/listener design pattern, which allows to
observe the course of the state space traversal and to check for specific properties in each state. This
can be done at two abstraction levels: (i) virtual machine listeners provide low level VM information
for checking of complex properties, and (ii) state listeners used for basic checks requiring information
about visited states. This is especially useful, since by default, JPF checks the target program only for
deadlocks, uncaught exceptions and assertions.

JPF also provides the MJI (Model-Java Interface) abstraction, which allows to execute certain methods
in the underlying host VM instead of the JPF VM; this can be used to reduce the state space size. Use
of the MJI abstraction is especially required in the case of native methods, which cannot be executed
in the JPF VM.
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Chapter 4. New features developed
within this project
4.1. Protocol controller

In order to allow for the static and the runtime checking of a Fractal-based application, it is necessary
to have an in-memory representation of the application architecture and the protocols associated with
its particular components. For this purpose, we use the runtime representation of an application as it
is just before starting. At this point, all components are instantiated in memory (but not running), thus
their structure can be queried using content controllers and binding controllers. To associate a protocol
with every component, we have created a protocol controller with the following interface.

public interface ProtocolController {

  /**
   * Returns the frame protocol associated with a component.
   */
  String getFcProtocol();

  /**
   * Assigns a frame protocol to a component.
   */
  void setFcProtocol(String protocol);
}

We implemented this controller for Julia in the form of a mixin-class (org.object-
web.fractal.behprotocols.julia.ProtocolControllerMixin).

4.2. Environment controller
For the purpose of automated generation of environment for primitive Fractal components, it is necessary
to have an in-memory representation of the application architecture and other environment-related in-
formation - namely (i) the name of the Java class which works as a container for sets of values for
method parameters, (ii) optionally, Java code for user-defined stubs and drivers, (iii) simplified version
of component's frame protocol describing environment's behavior (also optional), and (iv) mapping
between names of Fractal interfaces and names of classes that work as stub implementations of the
interfaces. As in the case of static and runtime checking, we use the runtime representation of an ap-
plication just before starting. To associate environment-related information with every primitive
component, we have created an environment controller with the following interface.

public interface EnvironmentController {

  /**
   * Returns the name of a class with value sets.
   */
  String getFcValueSetsClass();

  /**
   * Assigns a name of the class with value sets to a component.
   */
  void setFcValueSetsClass(String valueSetsClass);
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  /**
   * Returns the Java code for user-defined stub.
   */
  String getFcUserStubCode();

  /** 
   * Assigns Java code for user-defined stub to a component.
   */
  void setFcUserStubCode(String userStubCode)

  /**
   * Returns the map of event names to Java code 
   * for user-defined drivers.
   */
  Map getFcUserDriversCode();

  /**
   * Assigns a map of event names to Java code 
   * for user-defined drivers to a component.
   */
  void setFcUserDriversCode(Map userDriversCode);

  /**
   * Returns the protocol describing the behavior
   * of the environment (not the inverted frame protocol).
   */
  String getFcProtocol();

  /**
   * Assigns a protocol describing the behavior 
   * of the environment to a component.
   */
  void setFcProtocol(String protocol);

  /**
   * Returns a map of Fractal interface names to names
   * of manually-created stub implementation classes.
   */
  Map getFcItfStubs();

  /**
   * Assigns a map of Fractal interface names to names
   * of manually-created stub implementation classes.
   */
  void setFcItfStubs(Map itfStubs);
}

We implemented this controller for Julia in the form of a mixin-class (org.object-
web.fractal.behprotocols.julia.EnvironmentControllerMixin).

4.3. Extensions to Fractal ADL
As discussed in Section 4.1 and Section 4.2, we associate a frame protocol with each component of
an application, and also some environment-related information with each primitive component of an
application. Thus, to enable the users to use Fractal ADL for describing the architecture of Fractal
applications, we had to extend the Fractal ADL syntax to accommodate the frame protocol and envir-
onment declarations.
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We have extended the Fractal ADL by adding elements protocol and environment as children
of definition and component elements. The following code shows an example of architecture
definition written in the extended ADL (the extensions are highlighted in bold).

<definition name="LoggerDemo">
  <component name="client">
    <interface name="log" role="client" signature="logger.Log"/>
    <content class="logger.ClientImpl"/>

<protocol value="!log.open;!log.log;!log.log;!log.close"/>

   <environment>
     <valuesets classname="logger.LoggerEnvValues"/>
   </environment>

  </component>
  <component name="logger">
    <interface name="log" role="server" signature="logger.Log"/>
    <content class="logger.LoggerImpl"/>

<protocol value="?log.open;?log.log*;?log.close"/>

   <environment>
     <valuesets classname="logger.LoggerEnvValues"/>
   </environment>

  </component>
  <binding client="client.log" server="logger.log"/>
</definition>

To be precise, we have changed the Fractal ADL DTD in the following way:

<!ELEMENT definition (interface*,component*,binding*,content?,
  attributes?,controller?,template-controller?,protocol?,
environment?)>

<!ATTLIST definition
  name CDATA #REQUIRED
  extends CDATA #IMPLIED
>

<!ELEMENT component (interface*,component*,binding*,content?,
  attributes?,controller?,template-controller?,protocol?,
environment?)>

<!ATTLIST component
  name CDATA #REQUIRED
  definition CDATA #IMPLIED
>

<!ELEMENT protocol EMPTY >
<!ATTLIST protocol
  value CDATA #REQUIRED
>

<!ELEMENT environment (valuesets,userstub?,userdriver*,protocol?,
   itfstub*)>
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<!ELEMENT valuesets EMPTY >
<!ATTLIST valuesets
  classname CDATA #REQUIRED
>

<!ELEMENT userstub EMPTY >
<!ATTLIST userstub
  file CDATA #REQUIRED
>

<!ELEMENT userdriver EMPTY >
<!ATTLIST userdriver
  event CDATA #REQUIRED
  file CDATA #REQUIRED
>

<!ELEMENT itfstub EMPTY >
<!ATTLIST itfstub
  name CDATA #REQUIRED
  classname CDATA #REQUIRED
>

The Fractal ADL framework has been built as a component-based application. This allows us to easily
extend it with new features (such as handling the protocol and environment elements). The
top-level architecture is shown in Figure 4.1. It divides responsibilities to the loader, which parses the
ADL, the compiler, which checks its validity and processes it, and to the backend which builds the
application being described by the input ADL. Our modification to the Factory are denoted by red
color; we have added interfaces for handling protocol and environment declarations to the
compiler and the backend component.

Figure 4.1. Fractal ADL factory with support for a protocol and an environment

We have modified the compiler component by adding subcomponents for processing the protocol
and environment declarations and passing it to the backend. The Figure 4.2 shows the extended
compiler component.
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Figure 4.2. Fractal ADL compiler with support for a protocol and an environment

Fractal ADL allows for different backends. The choice of a backend influences how a resulting com-
ponent application is built. As for now, there are four different backends available: Fractal, static
Fractal, Java, and static Java. Fractal and static Fractal use Fractal API to instantiate and run components.
The difference between the standard and static variant is that the standard variant directly instantiates
and runs the components, while the static variant generates Java-code, which (when executed) performs
all the instantiation and execution steps. The Java and static Java backend work the same way, only
they do not use Fractal API to instantiate and run the components, they rather instantiate the components
as ordinary Java classes.

Our approach to behavior checking relies on having runtime information about components' structure
and protocols associated with them, which is not easily possible with the Java backends. The use of
the static Fractal backend does not make a good sense for static checking of protocol compliance.
Thus, we have decided to support only the standard Fractal backend.

We have extended the backend to handle a protocol element by calling setFcProtocol method
on the protocol controller associated with a respective component, and to handle an environment
element by calling setFcValueSetsClass, setFcUserStubCode, setFcUserDriver-
sCode, setFcProtocol and setFcItfStubs methods on the environment controller associated
with a respective component. The architecture of the extended backend is shown in Figure 4.3
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Figure 4.3. Fractal ADL backend with support for a protocol and an environment

4.4. Interceptors
While extending Fractal and Julia with support for runtime checking of compliance of component be-
havior with the specified protocol, we have encountered a number of issues, some of which have required
modifications to Julia. In this section, we describe the Fractal and Julia extensions we developed to
support the runtime checking.

In principle, runtime checking is achieved by introducing an interceptor for each business interface of
the component being checked; on each event (method entry or exit), this interceptor notifies the runtime-
check controller introduced into the controller part of the component. This controller creates an instance
of the runtime-checker backend with the specified protocol, and notifies the checker backend of each
such event. In case the checker detects that the event violates the protocol, the error is recorded; op-
tionally, the application may be notified by throwing a ProtocolViolationException. The
typical interaction among these parts is shown in the sequence diagram in Figure 4.4.
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Figure 4.4. Sequence diagram capturing interaction in the runtime-check
subsystem

4.4.1. Identity-aware interceptors

The Julia interceptor framework features several Interceptor generators. Of these, the SimpleCode-
Generator at the first sight seems to perform the task required by the runtime-checking extensions
- deliver a method call to a controller whenever a method call starts or completes, and also provides
the interface name. However, SimpleCodeGenerator can only provide the name of the language
type used by the interface, or a possibly configurable string, which can however only depend on the
language type of the interface, and cannot provide the concrete name of the interface. This difference
is particularly obvious when a component features multiple interfaces based on the same language
type. Furthermore, Julia originally did not provide a way to configure an interceptor (such as to provide
it with getter/setter methods to set configuration properties), as it was not possible to specify an interface
to be implemented by an interceptor, and it would not be possible to call such a method without the
use of reflection.

The first enhancement to Julia was to allow an interceptor generator to specify Java interfaces to be
implemented by the generated interceptor class. For a class generator, this had already been possible
by overriding the getImplementedInterfaces method specified in the ClassGenerator
interface. We have introduced the getImplementedInterfaces method also into the CodeGen-
erator interface, and extended InterceptorClassGenerator.getImplementedInter-
faces to merge requirements from all its subordinate CodeGenerator objects.

To handle this modification of the CodeGenerator interfaces, we have provided a default imple-
mentation of this newly introduced method into all the Julia classes implementing this interfaces,
SimpleCodeGenerator and MetaCodeGenerator. These extensions have been committed
to the Julia CVS repository and have been included in the recent release of the Fractal project (2.3.1).

The subsequent task was to use these extensions to introduce identity aware interceptors. Here, we
consider the identity of an interface to consist of its name, isClient value, contingency (mandat-
ory/optional), cardinality (singleton/collection), and signature type. While the runtime checking
framework is particularly interested only in the name and isClient value, we have decided to intro-
duce more general extensions, realized in the IdentityAwareInterceptor interface (see Fig-
ure 4.5). Here, an additional way to express the identity of an interface is via a reference to the interface
object, which allows to obtain the interface type via the getFcItfType method to access the addi-
tional attributes.
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Figure 4.5. Declaration of interface IdentityAwareInterceptor

public interface IdentityAwareInterceptor {
 public ComponentInterface getFcItfInstanceRef();
 public void setFcItfInstanceRef(ComponentInterface itfRef);
 public String getFcItfInstanceName();
 public void setFcItfInstanceName(String newItfInstanceName);
 public void setFcItfIsClient(boolean itfIsClient);
 public boolean getFcItfIsClient();
}

The interceptor code generator is responsible for providing implementations of these methods. In the
case of the RuntimeCheckInterceptorCodeGenerator provided in our framework, these
methods are generated via the ASM toolkit; the method implementations are simple accessor (getter/set-
ter) methods for the respective local private attributes.

Please note that we have been also considering an alternative approach: instead of generating the
methods for each interceptor class, these methods might also be inherited from a common base class.
However, the current Julia interceptor framework does not permit selecting the base class of an inter-
ceptor, and it is not feasible to make it configurable without significantly changing the structure of
component descriptors.

Additional issue related to the introduction of identity aware interceptors into Julia was assigning the
responsibility to initialize the interceptors. While it was originally considered that this task would be
done by the newly introduced RuntimeCheckController controller object, this approach would
not address interceptors associated with collection interfaces. For a collection interface, the interface
object is created by cloning a template interface object only at the time the particular interface name
is used for the first time. A new instance of the interceptor object is created (cloned) while cloning the
interface object. To properly handle this situation, the responsibility for initializing the interceptor
object must be assigned to the interface object.

In the newly introduced BasicIdentityAwareComponentInterface class, we have overridden
the setFcItfName method of the BasicComponentInterface class to call the setter method
of the interceptor object, if the interface has an interceptor and the interceptor implements the Iden-
tityAwareInterceptor interface. Hence, to properly handle collection interfaces, it is necessary
to use a customized interface object, using BasicIdentityAwareComponentInterface instead
of BasicComponentInterface as the base class. We show the relevant fragment of the config-
uration file in Figure 4.6

Figure 4.6. Fragments of the Julia configuration file related to interface objects.

(interface-class-generator
  (org.objectweb.fractal.julia.asm.InterfaceClassGenerator

org.objectweb.fractal.behprotocols.\
        julia.BasicIdentityAwareComponentInterface
  )
)

We would also like to document one technical aspect related to future extensions of Julia. In its initial
design, Julia was supposed to support reconfiguration of a single component instance, in particular,
optimizing/deoptimizing the component. This vision included also dynamically introducing/removing
interceptor objects; this would likely be done via the setFcItfImpl method of the ComponentInt-
erface interface. As such a reconfiguration is not used in Julia, we do not provide any special means
to handle it - i.e., to update the interface identity stored in the identity aware interceptors possibly in-
volved. Should a need arise to do so, it would be possible to modify Julia to support such a reconfig-
uration. Changes would have to be introduced into the setFcItfImpl method featured by interface
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objects; as the implementation of this method is generated by the InterfaceClassGenerator,
it would be necessary to modify the way it is generated. The method could either update the identity
directly, or it might call a method inherited from the interface object base class; introducing the
setItfImpl method into the base class would also make future extensions related to dynamic re-
configuration much easier.

4.4.2. Controllers: RuntimeCheck and LifeCycle

The key responsibility of the RuntimeCheckController is to manage the checker backend, to
collect events from the interceptors, and to pass these events to the checker backend. Furthermore, the
RuntimeCheckController may also collect information on the component execution, capturing
its execution trace and the list of method calls currently in progress; this information may be used by
a monitoring toolset. The interface of the RuntimeCheckController is shown in Figure 4.7. The
controller functionality is implemented in the BasicRuntimeCheckControllerMixin class.

Please note that the event tokens are internally stored as strings; the notation is the same as the one
used by the checker backend, i.e., the event token string starts either with an exclamation mark ("!")
for an event emitted or with a question mark ("?") for an event absorbed, followed by the name of
the interface, concatenated with a dot (".") with the name of the method, followed by a either the
character "^" to denote a method request, or by "$" to denote a method response. For a pair of events
forming a single procedure call, the initial character of the request ("?" or "!") is the opposite to the
initial character of the response. Both the operations getFcCurrentMethods() and getFcMeth-
odHistory() return an array of strings following this format.

The runtime checking subsystem is inherently tied with the lifecycle of the component being monitored.
When the component starts, monitoring has to start, with the protocol configured for the component.
When the component stops, it is necessary to verify that the protocol permits to stop at the given point
in the component's execution history, i.e., whether the corresponding automaton managed by the
checker backend is in an accepting state.

To properly address there requirements, we have put the responsibility to manage the lifecycle of the
RuntimeCheckController to the life-cycle controller; in Julia, this is realized via the class
RuntimeCheckLifeCycleMixin, to be included in the lifecycle controller object. The setFc-
Started() method of this mixin obtains the protocol configured for the component from the Pro-
tocolController, and uses this protocol to initialize the RuntimeCheckController. The
setFcStopped() method stops the runtime check controller, which verifies that the protocol permits
to stop.

Figure 4.7. Declaration of interface RuntimeCheckController

public interface RuntimeCheckController {
 public void enterFcMethod(String itfName, String methodName,
   boolean isClient, Object params[]);
 public void leaveFcMethod(String itfName, String methodName,
   boolean isClient, Object params[]);
 public String[] getFcCurrentMethods();
 public String[] getFcMethodHistory();
 public void startFcRtcheck(String protocol);
 public void stopFcRtcheck();
}

4.4.3. Handling protocol violations

An important issue to decide is what action should the runtime checking system take when it detects
a protocol violation. In such a situation, it is already known that the application violates the protocol
specified for the particular component, but that may not be a sufficient reason to terminate the applic-
ation. Instead, it may be useful to collect more information on this application failure, such as collecting
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the subsequent events observable on the interfaces of the faulty components. The default behavior is
to log and report the error (including the execution trace so far collected for the component, and also
the current stack trace); optionally, a runtime exception (ProtocolViolationException) may
be thrown to inform the application that the attempted call is not permitted by the protocol. Here,
please note that raising the exception prevents the method call from actually occurring when the erro-
neous event detected is a request event, but obviously cannot prevent the call in the case of a response
event. The error handling policy can be configured via JVM properties, described in the following
section.

4.4.4.Technical notes

The runtimecheck subsystem may be configured via the following JVM properties:

fractal.protocols.rt-
check.recorderrors (values:
true or false; default: true)

sets whether the runtime check controller should record all er-
roneous events.

fractal.protocols.rt-
check.recordtrace (values: -
1, 0 or a positive integer; default: -1)

sets how many recent events should be kept to aid with locating
the source of an error. Special values: -1 (unlimited storage)
and 0 (no events recorded).

fractal.protocols.rt-
check.stoponerror (values:
true or false; default: true)

sets whether runtime-checking should stop for a component
when a violation of the component's protocol is detected. If
false, the erroneous event is ignored and checking resumes from
the current position in the state-space.

fractal.protocols.rt-
check.throwerrors (values:
true or false; default: false)

sets whether an exception should be thrown when a protocol
violation is detected.

fractal.protocols.rt-
check.verbosity (values: 0, 1,
2 or 3; default: 1)

sets the level of output on stderr produced by the
runtimecheck subsystem. (0: no output, 1: only protocol viola-
tions, 2: report on controller initialization and successful com-
pletion, 3: report on event processing.)

4.5. Extensions to protocols

4.5.1. Multiple bindings

In Fractal, any interface can participate in more than one binding (if this is the case, we say that the
interface has multiple bindings). As behavior protocols were originally developed for a component
model, where every interface can have at most one binding, this alternative did not come into question
when the algorithm for architecture protocol construction was designed. Therefore, the algorithm had
to be revisited for Fractal.

Let C be a component whose subcomponents S1, ..., Sn have the frame protocols F1, ..., Fn. The
classical construction of C's architecture protocol (not considering multiple bindings) is done in two
steps. In the first step, the interface names in the frame protocols F1, ..., Fn are replaced by the binding
names (names of unbound interfaces remain unmodified). In the second step, the protocols are composed
using the consent operator.

The purpose of the first step of the algorithm is to ensure that the emission and absorption of any event
(specified in different frame protocols) is denoted by tokens which differ only in the prefix (? or !).
If this was not the case, the consent operator would not work correctly.

To guarantee proper functionality of the consent operator also in the presence of multiple bindings,
the first step of the algorithm has to be modified. The idea behind the modification is the following:
If a provided interface has multiple bindings and the protocol of its component denotes acceptance of
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a method call on the interface, the call will be absorbed from just one of those bindings. On the other
hand, if a required interface has multiple bindings and the protocol of its component denotes that a
method call can be emitted on the interface, the method will be called on all of the bindings (multicast).
As taking an assumption on the order of the calls would be too restrictive, the calls on those bindings
are considered to happen in parallel. Every particular ordering of the calls is compliant with this as-
sumption.

Formally, the protocols are transformed as follows:

(a) Names of unbound interfaces remain unmodified.

(b) Name of an interface which has exactly one binding is replaced with the name of that binding.

(c) If P is the name of a provided interface of a subcomponent Sk with multiple bindings <C1:I1-
Sk:P>, ..., <Cm:Im-Sk:P>, absorption of a method call on P in the frame protocol of Sk of the
form ?P.a is replaced with the protocol

?<C1:I1-Sk:P>.a + ... + ?<Cm:Im-Sk:P>.a

In a similar way, absorption of a method call of the form ?P.m{Q}, where Q is an arbitrary protocol,
is replaced with the protocol

?<C1:I1-Sk:P>.a{Q} + ... + ?<Cm:Im-Sk:P>.a{Q}

(d) If R is the name of a required interface of a subcomponent Sk with multiple bindings <Sk:R-
C1:I1>, ..., <Sk:R-Cm:Im>, emission of a method call on R in the frame protocol of Sk of the
form !R.a is replaced with the protocol

!<Sk:R-C1:I1>.a | ... | !<Sk:R-Cm:Im>.a

In a similar way, emission of a method call of the form !P.a{Q}, where Q is an arbitrary protocol,
is replaced with the protocol

!<Sk:R-C1:I1>.a{Q} | ... | !<Sk:R-Cm:Im>.a{Q}

(e) Explicit requests/responses on the interfaces with multiple bindings are forbidden.

Figure 4.8. Example of multiple bindings

We demonstrate the rules on the application shown on Figure 4.8. The frame protocol of B of the form
!J.x* (x is name of a method) will be transformed to

(!<B:J-C:K>.x | !<B:J-D:L>.x)*

The frame protocol of C of the form ?K.x* will be transformed to
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(?<A:I-C:K>.x + ?<B:J-C:K>.x)*

The rest of the protocols is transformed in the classical way.

4.5.2. Atomic actions

4.5.2.1. Overview

Atomic actions (AA) are a behavior protocols construct allowing cooperating components to synchron-
ize. They have been added to behavior protocols as a consequence of component synchronization
problems which arised during the work on specification of the Airport Internet Access Application
components. Although in some cases the behavior of a component may be described using behavior
protocols without AA, a version using AA are usually not only much easier to construct, but also more
readable afterwards. Furthermore, using AA, behavior protocols correspond with component imple-
mentation in a more straightforward way. As an example of a behavior protocol containing an atomic
action (enclosed in square brackets '[' and ']'), consider the following example:

?IDhcpController.Start^ ; !IListenerController.Start^ ; 
[?IListenerController.Start$, !IDhcpController.Start$]

4.5.2.2. Syntax

An atomic action may occur in a behavior protocol at positions where a single event and an abbreviation
may. Atomic action starts with '[' and ends with ']'. There is a coma-separated list of events (the use
of abbreviations is not allowed as their use doesn't make sense here) between '[' and ']'.

4.5.2.3. Semantics

Basically, an atomic action is treated as a single event, i.e., it is supposed to be "executed" in a single
step. An atomic action is in one of the two states - enabled or disabled. It can be executed in the enabled
state only. An atomic action is enabled in the current state if and only if for each accept event (an event
starting with '?') in the atomic action there exists a component in the composition able to emit the
corresponding request event in the current state. If there's not a component able to emit a request event
corresponding to an accept event of the atomic action, the atomic action is disabled. The corresponding
accept and request events yield, as in a common case, a tau action; consider the following protocol
fragment:

...[?ma^, !mc^]... (consent) ...!ma^... ->
    ...[#ma^, !mc^]...

The application of the consent operator to behavior protocols containing atomic actions may result in
a protocol containing the bad activity composition error. This situation arises in the following case:
The atomic action contains no accepting event (an event starting with '?'), i.e., it contains internal and
emitting events (events starting with '#' and '!', respectively) only, and there's an emit event in the
atomic action that is not accepted in the current state by any component in the composition.

4.5.2.4. Notes

For each two components combined via the consent operator there may be at most one event inside of
an atomic action that is also contained in the set of synchronization events for these two components.
This requirement reflects the fact that a component cannot perform more than one event (a simple
event or an atomic action) in a single step, which causes the consent operator not to be associative
when applying to behavior protocols containing atomic actions. In other words, the result of the com-
position depends on the order the components are composed together.
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4.6. Checker enhancements

4.6.1. Static checking

4.6.1.1. Incomplete bindings

The behavior protocol checker is able to detect incomplete bindings (Section 2.4.3). If a set of operations
of unbound interfaces is given to the checker, the methods on provides interfaces are supposed not to
be called and in the case a method of an unbound required interface is called the checker detects and
reports the unbound interface call error. This type of error is detected on the top level (i.e., the place
of the last use of consent) and the time requirements are therefore acceptable. There is no command
line option for turning the detection of unbound requirements off; instead, an empty set of these oper-
ation can be passed as the last parameter in order not to check for incomplete bindings.

4.6.1.2. Collection interfaces

In Fractal, a component type is a list of interface types. Every interface type specifies (in addition to
the name, signature, role, and contingency) also the cardinality of the interface type: singleton or col-
lection.

As the interfaces defined by a collection interface type are created lazily, their names are in general
not known at compile time. However, behavior protocols can specify only the traffic on the interfaces
with known names. Therefore, the checker supports only singleton interfaces and collection interfaces
with names known at compile time.

4.6.1.3. Multiple bindings

Handling multiple bindings basically means to replace interface names in frame protocols as described
in Section 4.5.1. This is implemented by parsing the frame protocols and replacing parts of the parse
trees.

4.6.1.4. Atomic actions

Atomic actions (Section 4.5.2) are handled by the checker as standard actions; the binding of an
atomic action has the same time requirements as the binding of standard actions (as there may be only
one single action inside an atomic action that can be bound on a single component binding).

4.6.1.5. Substantial performance improvements

Since its first version, a lot of new features have been added to the behavior protocol checker. They
include state space and parse tree visualization, consent operator, atomic actions, runtime checking
and the Fractal interface. Although the implementation of new features has required substantial changes
to the code of checker, resulting into a more complex and more time-consuming application, the per-
formance has actually improved, by implementing a new state representation and a faster state space
generation aglorithm.

As the checker uses on-the-fly state space generation, a suitable and efficient state representation for
storing information about visited states and for state comparison is needed. In the current version of
the behavior protocol checker, a state is represented as a bit-field. Management of such state identifiers
is easy and very fast, however the drawback of this representation is that (because of possible non-
determinism) it is not possible to determine the exact state identifier size in advance (sizes for different
states may even differ). Thus, there may be some unnecessary memory reallocation needed during
checker computation, but this is probably inherent for any "memory-reasonable" representation.

Since the generation of possible transitions from the current state is the far most time-consuming op-
eration of the compliance checking process, this operation is optimized for the best performance using
state pregeneration and by computing all the information not depending on the current states in advance.
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This optimization has further improved the performance of the checker without significant increase
in memory requirements.

For more information about the optimization included in the checker please refer to Section 5.1.3.

4.6.2. Run-time checking

The checker is able to check if the real-time behavior of a component conforms to its declared behavior
specified by its frame protocol. The runtime checker does not perform an exhaustive traversal through
the state space defined by the protocol (as in the case of static checking), but the state space traversal
is driven by the information about method calls provided by the component interface interceptors.
Should an event violating the frame protocol occur, i.e., the event is not among events allowed at this
particular point (with respect to the history of events), there are two options: (1) the application is
stopped or (2) an error message is printed to the output and the application continues, but no further
checking is performed (as there is no method known for recovering from such a state). At the end of
the application run, the checker provides information whether the component has successfullly satisfied
its frame protocol (i.e., whether an accepting state has been reached).

4.7. Cooperation of Java PathFinder with protocol
checker

As already said in Chapter 3, we use JPF for checking primitive Fractal components implemented in
Java against behavior protocols. However, it is not directly possible to use JPF for checking whether
a primitive component is bounded by a protocol, because JPF is, by default, able to check only prop-
erties like deadlocks and assertions. In order to solve this, we decided to use JPF in combination with
the protocol checker for code analysis. In other words, we decided to let JPF and the checker cooperate
on code analysis while traversing their own state spaces. Since JPF and the checker work at different
levels of abstraction, we had to define a mapping from the JPF state space into the state space of the
checker to make such cooperation possible. For more information on the mapping, please refer to
[PPK].

4.7.1. Checker for code analysis

We have modified the behavior protocol checker for static testing by adding several methods to make
the cooperation with JPF possible. In particular, the checker has been enriched by a method for noti-
fication of actions performed (method called and finished) in the JPF and uses this for coordination
of the state space traversal. Each time JPF moves along a transition corresponding to a method call or
return from a method call, it notifies the checker of this event. Checker moves along the corresponding
transition in its own state space. Should not such a transition exist within the checker's state space, an
error is reported to the user and the implementation is considered not to be bound by the protocol. To
treat all the combination of implementations and protocols correctly as well as to be able to handle
cycles, it is necessary to coordinate the traversal in the following way: Each time JPF would backtrack
within the state space because of being in an already visited state it asks the checker for permission.
Only in situations when both JPF and the checker would backtrack at this point when executed on
their own (i.e., if being in an already visited state), backtracking is allowed. Hence, the bounding relation
can be checked correctly.

4.7.2. Extensions to the Java PathFinder

The mapping between JPF and the checker needed for code analysis is implemented via a JPF listener
(i.e., via a plugin for JPF). During traversal of the JPF state space, the listener traces execution of all
invoke and return byte code instructions that correspond to methods of the provided and required in-
terfaces of a target component, and notifies the checker about such instructions. This way, the listener
instructs the checker what transition to take in its state space. The notification is done also during
backtracking in order to instruct the checker to also backtrack.
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Additionally, the JPF listener also notifies the checker when it reaches an end state. In that case, if the
protocol checker is not in an end state of its state space, an error is reported. This can happen, for ex-
ample, when JPF comes to the end of the main method in its state space, but the checker still expects
some more events to occur.

Communication between JPF and the checker during the checking of the Client component (see
Section 2.6) is shown on Figure 4.9. The left part shows the JPF state space and the right part shows
the state space of the checker; numbers determine the order of related activities in JPF and the checker.

Figure 4.9. Communication between JPF and Checker during traversal of state
spaces in the onward direction

While implementing the mapping between the JPF state space and the checkers' state space, we had
to make two modifications to the JPF source code. First, we had to modify the code responsible for
partial order reduction, so that a transition between states is terminated when an invoke or return in-
struction corresponding to a method of a frame interface of a target component is executed. Second,
we had to enhance the JPF search engine, which drives the traversal of the state space, so that JPF asks
the checker for a permission to backtrack - we call this coordination of backtracking. For motivation
of the changes to JPF, please see [PPK].
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Chapter 5. Implementation
5.1. Behavior protocol checker - static version

5.1.1. Implementation overview

The behavior protocol checker was implemented in Java (using sdk1.4.2_03, version 1.5 is not supported
since Java PathFinder doesn't support the 1.5 version bytecode) and a preliminary version has been a
part of the SOFA technology (see http://sofa.objectweb.org). The checker has been substantially en-
hanced; now the checking process is much more efficient in both memory and time requirements. A
rough structure of the behavior protocol checker is depicted on Figure 5.1. The protocols to be checked
are parsed by the parser (Builder) and the trees representing the protocol structure are built. Hence,
for illustration we will use the following protocols:

 ?a; !b
 ?a; !c

Figure 5.1. Basic structure of the checker

The parse trees representing these two protocols are on Figure 5.2. To find composition errors of a set
of n components connected together via their interfaces, protocols (their parse trees) of these components
are combined together using the (binary) consent operator (consent operator is applied (n-1) times -
each time one component is composed with the result created so far). Using consent operator for
component composition enables us to detect three types of errors: bad activity, no activity and infinite
activity. The resulting structure (i.e., the parse tree of the composed protocol) is used to generate the
state space. The consent operator itself can detect bad activity and no activity errors. As the infinite
activity is not a property of a single state, this error is detected within the traverser component of
compliance checker. The strategy used for traversing the state space is known as Depth First Search.
Should an error (bad-, no- or infinity-activity) be detected, the traversing is stopped and the checker
reports to the user the error type found and an error trace describing the problem found.
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Figure 5.2. Parse trees for ?a; !b and ?a; !c

As the state space of a more complicated protocol may be very large, the memory available for the
checking may become insufficient (state explosion problem). To solve this problem, i.e., to be able to
check compliance of such protocols, we use on-the-fly automata that are generated during the compu-
tation as needed. This greatly enhances the usability of the checker. The drawback of this method is
the lower speed of the checking compared to the "state space pregeneration" approach. To improve
the performance we use optimizations such as explicit automata, forward cutting, multinodes (for more
information see [PTA]).

5.1.2. Basic structure and interaction

The checker can be used as a standalone tool, and is also integrated into the Fractal environment. In-
teraction with the Fractal application is realized via the FractalStaticChecker class. The first
thing to be done here (after protocol transformation to handle multiple bindings) is parsing the input
protocols and building parse trees. While constructing the parse tree, the multinodes optimization is
applied: if there are more than two operands of the same binary operator (sequence, alternative, and-
parallel), where a subtree (Figure 5.3) should be build, the nodes are instead collapsed into a single
multinode (Figure 5.4).

Figure 5.3. Original parse tree

Figure 5.4. Multinode optimization

The resulting parse tree represents the same protocol as the original one. This optimization can be
easily performed at this point without any loss of parsing speed while saving both the time and the
space needed later during the checking. After composing all the input protocol parse trees via the
consent operator a composition and protocol compliance check can be performed.
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5.1.3. Optimizations

Before the protocol checking is performed, other optimization is done - building explicit (i.e., pregen-
erated) automata for small parse subtrees; this sometimes enhances the speed of the subsequent
checking.

Because cycles and forward edges may appear in the transition graph of the automaton, the use of a
global state cache improves the checking speed, since states may be visited and walked through more
than once. The problem arising with the use of such a global state cache is again caused by the size of
state space - in some cases it can be simply impossible for all the states visited so far to fit into the
cache because of the limited amount of memory available. The solution used here is to "forget" some
of the states being stored in the cache when the cache size exceeds a specified size. This of course
decreases the checking speed, but the performance is still better than in the case of not using the
global cache at all. The variant of the DFS algorithm with "forgetting" states from the global cache is
called Depth First Search with Replacement (DFSR).

5.1.4.The composition and conformance test

As mentioned above, a test basically means searching for an error state causing a compliance violation
of the given protocols. In the process of traversing the state space, the comparison of states is necessary.
Since the automaton (i.e., the states and transitions to other states) is generated on-the-fly, the compar-
ison of states via comparison of their references simply doesn't work. Therefore the approach of state
signatures representing the internal structure is used here. A state signature represents both the shape
(the structure) of the corresponding parse tree and the position in it. For example, the state of the
automaton representing the protocol ?a^;!a$;!b^;?b$ when the trace having been traversed is
?a^;!a$ has the signature 1100 denoting the path from the root node to the leaf !a$. The second
digit of the signature (1) expresses that the second action has been already performed. As the state of
each simple automaton (i.e., automaton accepting exactly one word (e.g., ?a^)) is represented by a
single bit, both state comparison based on these signatures and their management is very fast and
compact.

The position within the state space is represented by an instance of the class State (see Figure 5.5).
In general, for each node of the parse tree, we construct a finite automaton generating the language
represented by the corresponding subtree of the parse tree starting in this node. The state of such an
automaton consists of the states of the automata of the node's children nodes, enriched with information
from this node. The information added in the node depends on the node type. For example, for Al-
ternativeNode the piece of information would be the index of the subtree that represents the
branch being currently traversed (only one branch is traversed at a time in this case).
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Figure 5.5. The State class hierarchy

As mentioned above, there are various types of nodes within the parse tree. The node type corresponds
to the operator used in the protocol. The node class hierarchy is depicted on Figure 5.6. The node is
responsible for computing the transitions from the state of the automaton corresponding to that node,
testing the state for being accepting and providing the initial state of the automaton. The algorithms
for computing the transitions from the transitions of subautomaton (or subautomata in some cases) are
straightforward in most cases.

Figure 5.6. The TreeNode class hierarchy

5.1.5. Visualization

The program has also the ability to visualize both the protocol parse trees and their corresponding
automata. It generates the source file for the dot tool, a part of the GraphViz package (available at
http://www.graphviz.org/). Names of the files containing the description of a parse tree start

34

Implementation

http://www.graphviz.org/


with the prefix 'pt_', and names of files with automata description start with the prefix 'a_'. The
dot tool supports a large number of output formats; of these, EPS and VRML seem to be most useful.
The files consist of descriptions of nodes and transitions among them, while the placement of the nodes
and transitions is left up to the dot tool. For example, to obtain the parse tree diagram shown in Fig-
ure 5.7, the source file may have the form:

digraph G {
  size = "11,7";
  Intersection20 [label="^", fontname="Courier-Bold"];
 Intersection20 -> Complement1;
  Complement1 [label="-", fontname="Courier-Bold"];
 Complement1 -> Deterministic2;
  Deterministic2 [label="DET", fontname="Courier-Bold"];
 Deterministic2 -> Sequence3;
  Sequence3 [label=";", fontname="Courier-Bold"];
 Sequence3 -> Explicit4;
  Explicit4 [label="Exp0", fontname="Courier", shape=invhouse, 
             style=filled, fillcolor="grey85"];
 Sequence3 -> Repetition5;
  Repetition5 [label="*", fontname="Courier-Bold"];
 Repetition5 -> OrParallel6;
  OrParallel6 [label="||", fontname="Courier-Bold"];
 OrParallel6 -> Explicit7;
  Explicit7 [label="Exp1", fontname="Courier", shape=invhouse, 
             style=filled, fillcolor="grey85"];
 OrParallel6 -> Explicit8;
  Explicit8 [label="Exp2", fontname="Courier", shape=invhouse, 
             style=filled, fillcolor="grey85"];
 Sequence3 -> Explicit9;
  Explicit9 [label="Exp3", fontname="Courier", shape=invhouse,
             style=filled, fillcolor="grey85"];
 Intersection20 -> Adjustment10;
  Adjustment10 [label="/", fontname="Courier-Bold"];
 Adjustment10 -> Explicit11;
  Explicit11 [label="Exp4", fontname="Courier", shape=invhouse,
              style=filled, fillcolor="grey85"];
 Adjustment10 -> Explicit12;
  Explicit12 [label="Exp5", fontname="Courier", shape=invhouse, 
              style=filled, fillcolor="grey85"];
  label="Exp0: !da.open\nExp1: ?d.insert{!tr.begin;!da........

} 

This listing describes the nodes of a parse tree and relations between them; each node has an id (e.g.,
Sequence3) and a label (e.g., ";"). The transitions join a parent node with its children (e.g., "Sequence3
-> Explicit4", "Sequence3 -> Explicit9"). In the parse tree diagrams, the explicit automata are displayed
as gray pentagons and the protocols being represented by such subnodes are displayed at the bottom
of the graph. In automaton diagrams, the initial state is displayed as a rectangle and the accepting states
are gray circles with double border. Simple examples can be seen at Figure 5.7 and Figure 5.8. Note
that the automaton visualization of a more complex protocol may result into a figure having hundreds
or thousands of states, which will unfortunately not be of much help. Here, the VRML visualization
can be used as an output (note that a VRML browser able to handle complex files and hardware fast
enough to view the diagrams are needed in this case).
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Figure 5.7. Parse tree visualization

Figure 5.8. Automaton visualization

5.1.6. Further information

For detailed information about the classes details see the checker javadoc documentation
[javadoc/index.html].

5.2. Implementation of the runtime checker

5.2.1. Overview

The implementation of the runtime checker exploits a lot of functionality of the static checker imple-
mentation. The core part of the static checker, i.e., the on-the-fly generation of the transition graph,
can be reused without any changes. As the state space is not exhaustively traversed during the runtime
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check, but the traversal is driven by the information about method calls provided by the component
interceptors, only one transition at a point representing the event being performed is taken.

5.2.2. Atomic actions

Atomic actions need to be handled in a special way during the runtime checking. As only one event
may be executed in each step and a protocol containing an atomic action thus can't be satisfied at
runtime checking, each atomic action is replaced with a protocol consisting of atomic action events
combined using the and-parallel operator expressing the necessity that each of the atomic action events
has to be executed, but the order doesn't matter. The transformation is done during the protocol parsing
process, so it is invisible to the other parts of the system.

5.2.3. Implementation details

The runtime checker class provides two methods: a method for notification about the event being
performed and a method testing whether the current state is accepting (i.e., whether the protocol allows
the component to finish). The class also remembers the current state (the initial state is set in the con-
structor) and each time the notify method is called, this state is updated. Should an event not allowed
by the protocol occur, the notify method returns bad activity information.

5.3. Cooperation of Java PathFinder with protocol
checker

As already said in Section 4.7, the cooperation between JPF and the checker is implemented via (i) a
JPF listener that notifies the checker of invoke and return instructions corresponding to method calls
on frame interfaces of a checked component, and (ii) an enhanced JPF search engine that differs from
the standard search engine in that it asks the checker for a permission to backtrack when JPF comes
to an already visited state. In this section, we describe the modifications of JPF and the checker necessary
to successfully implement the JPF listener and the enhanced JPF search engine.

The main entry point is the JPFChecker class. Its check method accepts an instantiated root Fractal
component and then for each primitive component in the hierarchy (i) uses the environment generator
to generate an environment of the component from its frame protocol, (ii) configures JPF, and (iii)
runs JPF with the checker to check whether the component is bounded by its frame protocol.

5.3.1. Checker for code analysis

At the side of the checker, cooperation is implemented by the JPFTraverser class that is able to
accept notifications from JPF, and by the JPFCooperatingTraverser class that extends the
JPFTraverser with support for coordination of backtracking. The checker for code analysis works
in a way similar to the static checker - in each state it generates the list of all possible transitions and
moves along one of them. The only difference between the static version and this one is, that via noti-
fication of the transition taken in JPF state space, JPF chooses the transition to be taken and tells the
checker when to backtrack. The wantsBacktrack method of the JPFStaticChecker returns
true only in the cases when the checker is in an already visited state1. Each time JPF gets into an already
visited state, it asks the checker for a permission to backtrack. If the checker agrees, both JPF and
checker backtrack, otherwise the state space traversal goes on by visiting the JPF-already-visited states
again (and visiting unexplored states on the checker's side).

5.3.2. Extensions to the Java PathFinder

The JPF listener is represented by the ProtocolListener class which implements the Search-
Listener interface, a part of the JPF API. The checker receives notifications as method calls on its
JPFTraverser instance - the object is provided by the checker via a call of the getNotifee

1Note that JPF does not ask for a "permission" to backtrack in an end state, as there is no other way to go on.
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method of the JPFStaticChecker class. In addition to notifications, the listener also looks for
occurrences of end states in the JPF state space. If no end state is visited at all, a short warning is
printed at the end, alerting that there is probably an infinite loop in the code.

The extended JPF search engine is implemented by the JPFCheckerSearch class that implements
the SearchListener interface provided by JPF. It is based on the DFSearch class, also provided
by JPF, that represents the standard search engine based on DFS.

As for changes to the core of JPF, we modified the POR-related code so that a transition is terminated
when an invoke or return instruction corresponding to a frame interface method call is executed. We
implemented it by making such instructions scheduling relevant. The list of relevant methods of the
frame interfaces of a target component is stored as a static attribute of the JVM class that is a part of
JPF; it is provided to JPF before it is started in the check method of the JPFChecker class.

Besides the changes to the JPF core and the extensions related to cooperation, we used the MJI abstrac-
tion for re-implementation of several classes from the standard java.lang and java.io packages,
because those classes contain some native methods, and the MJI native peers for them are not distributed
with JPF. As the functionality provided by those classes is necessary for Fractal (and Julia) to work,
we had to re-implement the classes and provide corresponding MJI native peers in order to enable
checking of programs that use the Fractal API with Java PathFinder. In particular, we had to extend
JPF with support for class loaders and file I/O. Additionally, we also extended Java PathFinder with
support for modeling time.
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Chapter 6. User's manual
This chapter illustrates typical scenarios of using the protocol checker. The structure of this chapter
follows the two main ways a component application is being built (i.e., using Fractal ADL vs. building
an application directly) and how a protocol is associated with a component. The last part of the chapter
is dedicated to using the protocol checker as a standalone tool independent of the Fractal component
model.

6.1. Fractal ADL protocol checking

6.1.1. Getting started

The easiest way of checking the compliance of component frame protocols in Fractal is to augment
the Fractal ADL of an existing application to contain frame protocol definition. Recall the example
from Section 1.2.1 (shown in Figure 6.1).

Figure 6.1. Example of a component application with behavior protocols

The example consists of two components. The right one implements a logger. The left one implements
a client which uses the logger. The protocol of the Logger component prescribes that first the log
maintained by the logger has to be opened (by calling the method void open()), then arbitrary
number of log entries can be written (by calling the method void log(String message)).
Eventually, using the log is completed by closing the log (calling the method void close()).

The introduction of behavior protocols does not change how an application is implemented. Only the
Fractal ADL architecture definition (here, the file LoggerDemo.fractal) has to be augmented with the
protocol specification as shown below; the lines specificying the behavior are marked with bold font.
This file along with a sample implementation of the components can be found in directory ex-
amples/logger.

<definition name="LoggerDemo">
  <interface name="run" role="server" 
    signature="java.lang.Runnable"/>

  <component name="client">
    <interface name="log" role="client" signature="logger.Log"/>
    <interface name="run" role="server" 
      signature="java.lang.Runnable"/>
    <content class="logger.ClientImpl"/>

<protocol value="!log.open;!log.log;!log.log;!log.close"/>
  </component>
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  <component name="logger">
    <interface name="log" role="server" signature="logger.Log"/>
    <content class="logger.LoggerImpl"/>

<protocol value="?log.open;?log.log*;?log.close"/>
  </component>

  <binding client="client.log" server="logger.log"/>

  <binding client="this.run" server="client.run"/>
</definition>

Once having specified the behavior protocols of the components, the compliance of the components
can be checked easily by a special FractalADL launcher:

# java org.objectweb.fractal.behprotocols.staticchecker.Launcher \
  -check logger.LoggerDemo

Checking for compliance ... OK

The response indicates that the two components in our example have compliant behavior protocols.

6.1.2. Launcher

Checking of protocol compliance is realized by a special Fractal ADL application launcher:
java org.objectweb.fractal.behprotocols.staticchecker.Launcher [-check]
definition [itf]

The argument definition is the ADL file containing the definition of the component to be instantiated
and started. The argument itf is the name of the top-level component's Runnable interface, if it has
such. If not given, an interface named run is assumed.

By default, the component is run without checking of protocol compliance. The checking can be selected
with the -check switch. In this case, the component application is only instantiated (without being
started) and checked1. The results are printed out to the standard output. The meaning of the error reports
is explained in Section 6.3.1.

6.1.3. Configuring Julia

The protocol checker uses the runtime representation of components. At runtime, a protocol is associated
with a component using the protocol controller that holds the protocol. In order to use this settings, it
is necessary to customize the Fractal runtime to attach a protocol controller to newly created components.
The way a protocol controller is attached to a component is specific to a particular Fractal implement-
ation. In the case of Julia, this is achieved by modifying the Julia configuration (e.g., the julia.cfg file)
in the following way:

# Protocol Controller interface
(protocol-controller-itf
  (protocol-controller 
      org.objectweb.fractal.behprotocols.ProtocolController)
)

# Protocol Controller implementation
(protocol-controller-impl
  ((org.objectweb.fractal.julia.asm.MixinClassGenerator
    ProtocolControllerImpl

1Checking compliance on the tree of instantiated components allows us to uniformly support both applications built from ADL as well as ap-
plications built directly from code (as described in Section 6.2).
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    org.objectweb.fractal.julia.BasicControllerMixin
    org.objectweb.fractal.behprotocols.julia.ProtocolControllerMixin
  ))
)

# Protocol Controller added to "primitive" component kind
(primitive
  (
    'interface-class-generator
    (
      'component-itf
      'binding-controller-itf
      'super-controller-itf
      'lifecycle-controller-itf
      'name-controller-itf
      'protocol-controller-itf
    )
    (
      'component-impl
      'container-binding-controller-impl
      'super-controller-impl
      'lifecycle-controller-impl
      'name-controller-impl
      'protocol-controller-impl
    )
    (
      (org.objectweb.fractal.julia.asm.InterceptorClassGenerator
        org.objectweb.fractal.julia.asm.LifeCycleCodeGenerator
      )
    )
    org.objectweb.fractal.julia.asm.MergeClassGenerator
    'optimizationLevel
  )
)

6.2. Building application directly from code

6.2.1. Associating a protocol with a component instance

When an application is built directly from Java-code, protocols are assigned to components by calling
the method setFcProtocol on the protocol controller associated with a component. This is illustrated
in the following code snippet which shows how a protocol is set for the Logger component. Protocols
of the other components in the application are assigned in the same way (not shown in the example).

  ...

  Component boot=Fractal.getBootstrapComponent();
  GenericFactory cf=Fractal.getGenericFactory(boot);
  ...

  Component logger=cf.newFcInstance(loggerType, "primitive", ...);

  ProtocolController loggerProtoCont = 
   (ProtocolController) logger.getFcInterface("protocol-controller");

  loggerProtoCont.setFcProtocol("?log.open;?log.log*;?log.close");
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    ...

6.2.2. Checking instantiated components

The checking of protocol compliance is performed on an instantiated component application before it
is started (using its lifecycle-controller). The checker is invoked by calling static method check on
the class org.objectweb.fractal.behprotocols.staticchecker.ProtocolChecker.
The checker goes through a given component nesting hierarchy, and on each level of nesting, it checks
the compliance of a component's frame protocol with the architecture protocol constructed from the
frame protocols of the component's direct sub-components. The parameter passed to the checker is the
root component of the nesting hierarchy that is to be verified. Thus, in the example bellow, we pass
to the checker the application's top-level component.

    ...

    System.out.print("Checking for compliance ...");
    NestedCheckingResult res = ProtocolChecker.check(rootComp);

    if (res.getErrorType() != NestedCheckingResult.ERR_OK) {
      System.out.println(" Error:");
      System.out.println(res.toString());
    } else {
      System.out.println(" OK");
    }

    ...

The meaning of the output is described in detail in 5.3.

6.2.3. Configuring Julia

Again, as in the case of instantiating components using Fractal ADL, it is necessary to customize the
Fractal implementation used, in order to attach a protocol controller to newly created components. The
way a protocol controller is attached to a component is specific to a particular Fractal implementation.
In the case of Julia, this is achieved by modifying the Julia configuration (e.g., julia.cfg) as described
in 5.1.3.

6.3. Protocol checker user manual for the standalone
version

6.3.1. Getting Started

6.3.1.1. A sample component design

The following picture shows an example of a composite component DhcpServer. The DhcpServer
component contains two inner components - the IpAddressManager and the DhcpListener. The Dh-
cpServer works as a component implementation of a DHCP server, where the DhcpListener commu-
nicates with the network clients via the DHCP protocol and the IpAddressManager component is re-
sponsible for managing the IP addresses assigned to them. The key functionality (besides being a
DHCP server for the local network) is to notify other components of disconnected clients (after a client's
IP address is released) via the IDhcpCallback interface. The whole DhcpServer component can be
managed via the IManagement interface and optionally can use an external database of IP address/MAC
address mappings (the database is accesses via the IIpMacPermanentDb interface). Usage of an external
database is enabled by the UsePermanentIpDatabase method of the IManagement interface.
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Figure 6.2. DhcpServer composite component

The picture shows both provided (server) interfaces (shown as solid black rectangles) and required
(client) interfaces (shown as solid white rectangles) of the components and also bindings between
them. The bindings are shown as arrows going in the direction of method calls. Each arrow in the
picture actually represents a method call or method binding, so only the whole bunch of such arrows
leading from one interface to another represents the binding between the interfaces. It can be deduced
from the picture that the inner IpAddressManager component is bound the outer interfaces IManagement
(provided interface type), IIpMacPermanentDb (required interface type - this interface does not need
to be bound) and IDhcpCallback (required interface type) of the DhcpServer composite component.
The DhcpListener primitive component is bound to the IpAddressManager component via the IDh-
cpListenerCallback interface.

This example is a simplified version of the DhcpServer composite component from the Demo. The
components that are "missing" in this simple example are in fact considered to be inside the IpAddress-
Manager component presented here. At this level of abstraction, the IpAddressManager component
can be simply viewed as a black box with its provided and required interfaces and defined behavior,
and one does not need to worry about the real composite nature of the component implementation.

6.3.1.2. Writing protocols

First we want to check the compliance of the two inner components IpAddressManager and DhcpServer
together. The behavior protocols of these two components follow:
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Figure 6.3. IpAddressManager Behavior Protocol

(  
  (
    (
      ?IDhcpListenerCallback.RequestNewIpAddress 
      +
      ?IDhcpListenerCallback.RenewIpAddress
      +
      ?IDhcpListenerCallback.ReleaseIpAddress {
        (!IDhcpCallback.IpAddressInvalidated + NULL)
      }
    )*
    |
    (
      (!IDhcpCallback.IpAddressInvalidated + NULL)
    )*
  )
  +
  (
    (
      (
        (
          ?IDhcpListenerCallback.RequestNewIpAddress 
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*
      )
      |
      ?IManagement.UsePermanentIpDatabase^
    ) ; !IManagement.UsePermanentIpDatabase$ ; (
      (
         ( 
          ?IDhcpListenerCallback.RequestNewIpAddress {      
            !IIpMacPermanentDb.GetIpAddress
          }
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*     
       )
      |
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      ?IManagement.StopUsingPermanentIpDatabase^
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)

Figure 6.4. DhcpListener Behavior Protocol

(
  !IDhcpListenerCallback.RequestNewIpAddress 
  +
  !IDhcpListenerCallback.RenewIpAddress
  +
  !IDhcpListenerCallback.ReleaseIpAddress
)*

To check the compliance of these two protocols, we need to prepare an input file for the static behavior
checker. The file will contain both behavior protocols and a specification of actions (method calls) via
which the IpAddressManager (first protocol) and the DhcpListener (second protocol) components are
bound together. Because the components are bound together only by the IDhcpListenerCallback inter-
face, the RequestNewIpAddress, RenewIpAddress and ReleaseIpAddress methods from the IDh-
cpListenerCallback will be the only actions written in the behavior checker input file. In this step we
don't want to check for incomplete bindings, so the unbound operations in the input file will be empty.
The corresponding input file for the behavior checker may take the form:
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Figure 6.5. Static behavior checker input file

#DhcpListener
(
  !IDhcpListenerCallback.RequestNewIpAddress 
  +
  !IDhcpListenerCallback.RenewIpAddress
  +
  !IDhcpListenerCallback.ReleaseIpAddress
)*
#eop

      #synchro ops
      IDhcpListenerCallback.RequestNewIpAddress,
      IDhcpListenerCallback.RenewIpAddress,
      IDhcpListenerCallback.ReleaseIpAddress
      #eop

#IpAddressManager
(  
  (
    (
      ?IDhcpListenerCallback.RequestNewIpAddress 
      +
      ?IDhcpListenerCallback.RenewIpAddress
      +
      ?IDhcpListenerCallback.ReleaseIpAddress {
        (!IDhcpCallback.IpAddressInvalidated + NULL)
      }
    )*
    |
    (
      (!IDhcpCallback.IpAddressInvalidated + NULL)
    )*
  )
  +
  (
    (
      (
        (
          ?IDhcpListenerCallback.RequestNewIpAddress 
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*
      )
      |
      ?IManagement.UsePermanentIpDatabase^
    ) ; !IManagement.UsePermanentIpDatabase$ ; (
      (
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         ( 
          ?IDhcpListenerCallback.RequestNewIpAddress {      
            !IIpMacPermanentDb.GetIpAddress
          }
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*     
       )
      |
      ?IManagement.StopUsingPermanentIpDatabase^
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)
#eop

#unbound ops
#none
#eop

Lines beginning with the "#" sign are just comments. The only exception is "#eop", which means "End
Of a Protocol". This token serves as a delimiter and allows an input file to use advanced protocol
formating to improve readability. The file contains three types of sections. Each section is separated
by the "#eop" delimiters (or by the start or the end of a file). The first section type contains frame
protocols. The first protocol is a frame protocol of the architecture while the other protocols describe
the subcomponents' behavior. Between each two protocol sections there is a synchro-operation section.
This section type contains synchro-operations that represent all methods of the interfaces bound between
the two components). The third section type is the last section. This section enumerates all methods
of unbound interfaces, i.e., operations that should not be performed (if it is a provides interface) or
must not be performed (if it is a requires interface, otherwise causing an unbound-requires-called error).

6.3.1.3. Checking for compliance

After the protocols are completed, their compliance check can be performed. For the example above,
the command line would be:

java -jar checker.jar --action=testconsent -f architecture.bp

The output of this command should be:

OK

If the user wants more detailed information, the static behavior checker can be run with the verbose
option:

java -jar checker.jar --action=testconsent --verbose=1 -f architecture.bp

The output of the checker is then a bit more complex, as can be seen in the following listing. The im-
portant parts of the output, i.e., the number of states visited and the result of the protocol checking,
are highlighted in bold:
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Protocol Build: start
(!IDhcpListenerCallback.RequestNewIpAddress+!IDhcpListenerCallback.
RenewIpAddress+!IDhcpListenerCallback.ReleaseIpAddress)*
Protocol Build: finished
Synchroops: IDhcpListenerCallback.RequestNewIpAddress,IDhcpListener
Callback.RenewIpAddress,IDhcpListenerCallback.ReleaseIpAddress
Protocol Build: start
(((?IDhcpListenerCallback.RequestNewIpAddress+?IDhcpListenerCallbac
k.RenewIpAddress+?IDhcpListenerCallback.ReleaseIpAddress{(!IDhcpCal
lback.IpAddressInvalidated+NULL)})*|((!IDhcpCallback.IpAddressInval
idated+NULL))*)+((((?IDhcpListenerCallback.RequestNewIpAddress+?IDh
cpListenerCallback.RenewIpAddress+?IDhcpListenerCallback.ReleaseIpA
ddress{(!IDhcpCallback.IpAddressInvalidated+NULL)})*|((!IDhcpCallba
ck.IpAddressInvalidated+NULL))*)|?IManagement.UsePermanentIpDatabas
e^);!IManagement.UsePermanentIpDatabase$;(((?IDhcpListenerCallback.
RequestNewIpAddress{!IIpMacPermanentDb.GetIpAddress}+?IDhcpListener
Callback.RenewIpAddress+?IDhcpListenerCallback.ReleaseIpAddress{(!I
DhcpCallback.IpAddressInvalidated+NULL)})*|((!IDhcpCallback.IpAddre
ssInvalidated+NULL))*)|?IManagement.StopUsingPermanentIpDatabase^);
!IManagement.StopUsingPermanentIpDatabase$)*)
Protocol Build: finished
Synchroops:
Protocol Build: start

Protocol Build: finished
State space estimate: 824
Optimizing the parse tree for the composition test......done.
Cache created with capacity of 2112000 items.
Cache created with capacity of 2147483647 items.
1024
Stack size:51
1024
Stack size:51
1024
Stack size:51
1024
Stack size:51
1024
Stack size:51
1979 states visited.
Protocols are composition error free.
OK
Taken 1 seconds.

Now the user can create behavior protocol describing the composite component DhcpServer:
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Figure 6.6. DhcpServer composite component behavior protocol

(
  !IDhcpCallback.IpAddressInvalidated*
  |
  (
    ?IManagement.UsePermanentIpDatabase^ ; (
      !IIpMacPermanentDb.GetIpAddress*
      |
      (
        !IManagement.UsePermanentIpDatabase$ ; 
        ?IManagement.StopUsingPermanentIpDatabase^
      )
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)

For testing compliance of the frame and architecture protocols, the following input file is created:
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Figure 6.7. Input file for the behavior protocol checker

#DhcpServer frame protocol
(
    !IDhcpCallback.IpAddressInvalidated*
    |
    (
      ?IManagement.UsePermanentIpDatabase^ ; (
        !IIpMacPermanentDb.GetIpAddress*
        |
        (
          !IManagement.UsePermanentIpDatabase$ ; 
          ?IManagement.StopUsingPermanentIpDatabase^
        )
      ) ; !IManagement.StopUsingPermanentIpDatabase$
    )*
)
#eop

      #synchro ops between frame and architecture protocols
      IManagement.UsePermanentIpDatabase,
      IManagement.StopUsingPermanentIpDatabase,
      IIpMacPermanentDb.GetIpAddress,
      IDhcpCallback.IpAddressInvalidated
      #eop

#DhcpListener
(
  !IDhcpListenerCallback.RequestNewIpAddress 
  +
  !IDhcpListenerCallback.RenewIpAddress
  +
  !IDhcpListenerCallback.ReleaseIpAddress
)*
#eop

      #synchro ops
      IDhcpListenerCallback.RequestNewIpAddress,
      IDhcpListenerCallback.RenewIpAddress,
      IDhcpListenerCallback.ReleaseIpAddress
      #eop

#IpAddressManager
(  
  (
    (
      ?IDhcpListenerCallback.RequestNewIpAddress 
      +
      ?IDhcpListenerCallback.RenewIpAddress
      +
      ?IDhcpListenerCallback.ReleaseIpAddress {
        (!IDhcpCallback.IpAddressInvalidated + NULL)
      }
    )*
    |
    (
      (!IDhcpCallback.IpAddressInvalidated + NULL)
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    )*
  )
  +
  (
    (
      (
        (
          ?IDhcpListenerCallback.RequestNewIpAddress 
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*
      )
      |
      ?IManagement.UsePermanentIpDatabase^
    ) ; !IManagement.UsePermanentIpDatabase$ ; (
      (
         ( 
          ?IDhcpListenerCallback.RequestNewIpAddress {      
            !IIpMacPermanentDb.GetIpAddress
          }
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*     
       )
      |
      ?IManagement.StopUsingPermanentIpDatabase^
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)
#eop

#unbound ops
#none
#eop

Checker can be run using following command:

java -jar checker.jar --action=test -f compliance.bp

The checker would report a bad activity error in this case:

51

User's manual



Composition error detected - 
   bad activity (!IDhcpCallback.IpAddressInvalidated^):
(S0) #IDhcpListenerCallback.RequestNewIpAddress^
(S5) #IDhcpListenerCallback.RequestNewIpAddress$
(S6) #IManagement.UsePermanentIpDatabase^
(S7) #IDhcpCallback.IpAddressInvalidated^
(S14) #IDhcpListenerCallback.ReleaseIpAddress^
(S15) 

To find out the reason of the bad activity, we need to analyze the input protocols and the error trace
output. In the following listing, the lines in bold highlight the error trace in the protocol (note that
some actions are decomposed into separate request and response events - e.g., !m -> !m^; !m$). The
event causing the bad activity is emphasized in italics:
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Figure 6.8. Input file with highlighted error trace

#DhcpServer frame protocol
(
    (!IDhcpCallback.IpAddressInvalidated^; 
     ?IDhcpCallback.IpAddressInvalidated$)*
    |
    (

?IManagement.UsePermanentIpDatabase^ ; (
        !IIpMacPermanentDb.GetIpAddress*
        |
        (
          !IManagement.UsePermanentIpDatabase$ ; 
          ?IManagement.StopUsingPermanentIpDatabase^
        )
      ) ; !IManagement.StopUsingPermanentIpDatabase$
    )*
)
#eop

      #synchro ops between frame and architecture protocols
      IManagement.UsePermanentIpDatabase,
      IManagement.StopUsingPermanentIpDatabase,
      IIpMacPermanentDb.GetIpAddress,
      IDhcpCallback.IpAddressInvalidated
      #eop

#DhcpListener
(
(!IDhcpListenerCallback.RequestNewIpAddress^;

  ?IDhcpListenerCallback.RequestNewIpAddress$)
  +
  !IDhcpListenerCallback.RenewIpAddress
  +
  !IDhcpListenerCallback.ReleaseIpAddress
)*
#eop

      #synchro ops
      IDhcpListenerCallback.RequestNewIpAddress,
      IDhcpListenerCallback.RenewIpAddress,
      IDhcpListenerCallback.ReleaseIpAddress
      #eop

#IpAddressManager
(  
  (
    (
      ?IDhcpListenerCallback.RequestNewIpAddress 
      +
      ?IDhcpListenerCallback.RenewIpAddress
      +
      ?IDhcpListenerCallback.ReleaseIpAddress {
        (!IDhcpCallback.IpAddressInvalidated + NULL)
      }
    )*
    |
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    (
      (!IDhcpCallback.IpAddressInvalidated + NULL)
    )*
  )
  +
  (
    (
      (
        (

(?IDhcpListenerCallback.RequestNewIpAddress^;
          !IDhcpListenerCallback.RequestNewIpAddress$)
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +

?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          ( (?IDhcpCallback.IpAddressInvalidated^; 
             !IDhcpCallback.IpAddressInvalidated$) + NULL)
        )*
      )
      |
      ?IManagement.UsePermanentIpDatabase^
    ) ; !IManagement.UsePermanentIpDatabase$ ; (
      (
         ( 
          ?IDhcpListenerCallback.RequestNewIpAddress {      
            !IIpMacPermanentDb.GetIpAddress
          }
          +
          ?IDhcpListenerCallback.RenewIpAddress
          +
          ?IDhcpListenerCallback.ReleaseIpAddress {
            (!IDhcpCallback.IpAddressInvalidated + NULL)
          }
        )*
        |
        (
          (!IDhcpCallback.IpAddressInvalidated + NULL)
        )*     
       )
      |
      ?IManagement.StopUsingPermanentIpDatabase^
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)
#eop

#unbound ops
#none
#eop

After the protocol analysis, it can be seen that the event !IDhcpCallback.IpAddressInvalidated^ emitted
from the IpAddressManager component is already accepted by the only instance of its complementary
event ?IDhcpCallback.IpAddressInvalidated^ in the DhcpServer frame protocol. So another !IDhcp-
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Callback.IpAddressInvalidated^ event occurring inside of the ?IDhcpListenerCallback.ReleaseIpAddress
call cannot be accepted by the DhcpServer component. From this, it can be deduced that the frame
protocol of the DhcpServer component needs to be extended to accept two calls of IDhcpCallback.IpAd-
dressInvalidated^ in parallel:

Figure 6.9. DhcpServer composite component behavior protocol

(
!IDhcpCallback.IpAddressInvalidated*

  |
!IDhcpCallback.IpAddressInvalidated*

  |
  (
    ?IManagement.UsePermanentIpDatabase^ ; (
      !IIpMacPermanentDb.GetIpAddress*
      |
      (
        !IManagement.UsePermanentIpDatabase$ ; 
        ?IManagement.StopUsingPermanentIpDatabase^
      )
    ) ; !IManagement.StopUsingPermanentIpDatabase$
  )*
)

Now the compliance check can be rerun and after several seconds of computation the user obtains a
positive result.

In the case when a composition error is found, the checker can be run with visualization option to obtain
both the parse tree graph and state space transition graph:

java -jar checker.jar --action=visualizedot -f compliance.bp

The output of the visualization process is the dot format (see Section 6.3.3 for details). Note that
visualization only makes sense when the order of magnitude of the state space size does not exceed
hundreds, as larger state spaces are not handled properly by the dot tool.

6.3.1.4. Checking for incomplete bindings

If we consider the example from the Section 6.3.1.2 and Section 6.3.1.1, we know that IIpMacPerman-
entDb requires interface should be an optional interface and therefore does not need to be bound to
another interface. We denote the methods of this interface as unbound:

...
#unbound ops
IIpMacPermanentDb.GetIpAddress
#eop

After running the checker we obtain the error trace:

Composition error detected - missing binding 
for request '!IIpMacPermanentDb.GetIpAddress^':
(S0) #IDhcpListenerCallback.ReleaseIpAddress^
(S1) #IManagement.UsePermanentIpDatabase^
(S8) #IDhcpListenerCallback.ReleaseIpAddress$
(S9) #IDhcpCallback.IpAddressInvalidated^
(S16) #IDhcpListenerCallback.RenewIpAddress^
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(S17) #IDhcpCallback.IpAddressInvalidated$
(S22) #IDhcpCallback.IpAddressInvalidated^
(S23) #IDhcpListenerCallback.RenewIpAddress$
(S24) #IDhcpCallback.IpAddressInvalidated$
(S33) #IManagement.UsePermanentIpDatabase$
(S35) #IDhcpListenerCallback.RequestNewIpAddress^
(S40) 

From the error trace it can be seen that the error is caused by the IIpMacPermanentDb.GetIpAddress
method called on an unbound interface. The problem arises because as the provided IManagement
interface is bound, the highlighted #IManagement.UsePermanentIpDatabase$ event can be performed
to enable the use of the external IP/MAC address database. This implies that the IIpMacPermanentDb
required interface can be unbound only if the IManagement provided interface is also unbound:

...
#unbound ops
IManagement.StopUsingPermanentIpDatabase,
IManagement.UsePermanentIpDatabase,
IIpMacPermanentDb.GetIpAddress
#eop

Adding methods of IManagement interface into the list of unbound operations will result into a suc-
cessful compliance check.

6.3.2. Command line Reference

The checker can be used as a part of the SOFA and Fractal environments or as a standalone tool. This
section focuses on the latter case. The syntax of the command line when using the checker as a stan-
dalone tool is the following:

java -jar checker.jar (--action|-a)=<test|testconsent|visualizedot> [(--verbose|-v)=<0|1|2>] [--
nomultinodes|-m] [--noexplicit|-e] [--noforwardcut|-f] [--nobadactivity|-b] [--nonoactivity|-n] [(-
-ifiniteactivity|-i)=<no|notrace|yes>] [(--totalmem|-t)=<size>] [(--cachesize|-s)=<size>] <((--file|-
f)=<inputfile>) | (<protocol1> <provisions_1_2> <protocol2> [<provisions_2_3> <protocol3>,
...] <unbound_operations)>

The parameters have the following meaning:

[--action|-a]=test - the checker will perform the test for composition errors and consensual compliance
of an inverted frame protocol (<protocol1>) and the composition of the other protocols (the protocols
are composed from back to front - i.e., protocol_n and protocol_n-1 are composed first. In the case
the protocols are not consensually compliant or a composition error is detected, a counterexample (i.e.,
the trace that cannot performed by both of the two components behaving according to the first and the
second protocol respectively) is provided and an html file denoting the actual position within the pro-
tocols is created.

[--action|-a]=testconsent - the checker will perform the composition test only using the consent oper-
ator - i.e., the first protocol is not inverted in this case, but it is composed together with the other pro-
tocols. Again, the protocols are composed in a backward order.

[--action|-a]=visualizedot - the checker will create the files for the dot visualization tool, representing
the parse trees and the automaton that would be used in the compliance check. In this case, the first
protocol is supposed to be the frame protocol, and is therefore inverted before visualization.

[--verbose|-v]=level - there are 3 levels of verbosity: 0 (not verbose, default), 1 (normal verbose mode),
2 (extremely verbose mode - useful for debugging). The program will, according to given verbose
level, print out information about each step of the compliance test or visualization process, and at the
end also prints out the length of the test in milliseconds.
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[--nomultinodes|-m] - disables the multinode optimization performed while parsing the input protocols.
Option can be useful for benchmarking reasons.

[--noexplicit|-e] - disables the conversion of subautomata to the very fast explicit automata. Option
can be useful for benchmarking purposes.

[--noforwardcut|-f] - disables the forward cutting optimization which eliminates those transitions in
the resulting automaton, that would be discarded by the use of restriction operator. Option can be
useful for benchmarking purposes. Note that when using the consent operator for finding composition
errors, forward cutting is not applied, since the consensual compliance is not based on the subset relation.

[--totalmem|-t]=size - specifies in MB the size of memory available for the checker data structures.
Note that the checker needs additional 10 - 15 MB of memory for the code and the basic data structure
(that cannot be optimized) and that the java virtual machine may allocate more memory if available.
To restrict the memory allocated, use the -Xmx option of java virtual machine. The default value is
60.

[--cachesize|-s]=size - specifies in MB the size of memory dedicated for the state cache. This number
cannot be higher than the total memory amount. The default value is 48.

[--file|-f]=inputfile - reads the protocols from the file specified. Each protocol and set of synchro op-
erations has to be ended by an #eop token at the beginning of a new line. The protocols can be formated
using standard whitespace character for better readability.

protocol<n> - n-th protocol (the first is a frame protocol)

provisions<n> - synchronization operations for n-th and (n+1)-th protocols

unbound_operations - all operation of unbound interfaces (used for detection of incomplete bindings)

6.3.3. Visualization

As mentioned above, the checker is able to create a visualization of the parse trees and the automata
that are used for compliance checking. The program produces input files for the dot visualization tool
that is a part of the GraphViz package (see http://www.research.att.com/sw/tools/graphviz). The dot
tool supports multiple format output (for example EPS, PNG or VRML) and is thus very flexible.

If the switch --action=visualizedot is given to the checker, the program creates several files - those
with names starting with 'pt_' contains parse trees description and those with names starting with 'a_'
contain automata transition graph.

For simplicity of the graphs, the nodes of a parse tree are not labeled with the operator names, but with
the following symbols instead:

adjustment operator/

alternative operator+

and parallel operator|

complement operator-

composition operator&

consent operator%

determinization operatorDET

explicit automaton is used here, corresponding protocol is printed below the parse
tree

EXPx

intersection operator^

or parallel operator||

repetition operator*
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restriction operator\

sequence operator;

The subtrees of the parse tree that are replaced in the consequence of Explicit Automata Optimization
with explicit automata for the compliance test are shown as gray pentagons and the corresponding
protocol (i.e., the expression generating the language being accepted by this automaton) is printed out
below the parse tree as the graph legend.

6.3.4. Example of protocol input file

# Hash sign '#' denotes comments
#
# As the first protocol is a frame protocol, 
# the checker should be launched with the option --action=test
#

#the frame protocol
(?aIN.m || ?bIN.m)*
#eop

# events which the components communicate through
  aIN.m,
  bIN.m
#eop

#another protocol
(
  (?aIN.m {
    (?b.s {!aOUT.m}; ?b.u) 
    + 
    (!a.s;!aOUT.m;!a.u)
  })
  +
  (?b.s {?aIN.m^}; ?b.u^; !aOUT.m; !aIN.m$; !b.u$)
  +
  (?b.s; ?aIN.m {?b.u^; !aOUT.m}; !b.u$)
  +
  (?b.s; ?b.u)
)*
#eop

#events
  aOUT.m,
  a.s,
  a.u,
  b.s,
  b.u
#eop

#another protocol
(
  (?bIN.m {
    (?a.s {!bOUT.m}; ?a.u) 
    + 
    (!b.s; !bOUT.m; !b.u)
  })
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  +
  (?a.s {?bIN.m^}; ?a.u; (!b.s; !bOUT.m; !b.u))
  +
  (?a.s; ?a.u)
)*
#eop

#events
  bOUT.m
#eop

#another protocol
(?aOUT.m + ?bOUT.m)*
#eop

#there are no unbound operations, close the empty list with #eop
#eop

Note that you should get a bad activity error when checking these protocols.

6.4. Fractal extensions: Run-time checker

6.4.1. Getting started

Runtime checking is integrated into Fractal by the means of the runtime-check controller. The runtime-
check controller closely cooperates with the protocol controller and with runtime-check interceptors,
which notify the controller as method requests and responses pass through the component membrane.
The runtime-check controller is responsible for initializing the interceptors, obtaining the protocol set
in the protocol controller, and creating an instance of the runtime-checker backend implementation.

The easiest way to apply runtime-checking to an application is to start the application augmented with
behavior protocol specifications in the same way as described in Section 6.1.1; the only additional
step required is to activate the runtime-check controller framework, which is achieved by modifying
the controller descriptors used for primitive and composite components (please see Section 6.4.2).

We demonstrate this on a modified version of the Fractal ADL HelloWorld example, augmented with
simple behavior protocols. This example is available in the examples/helloworldadl directory.
The example can be started via the protocol-aware Fractal ADL launcher, org.object-
web.fractal.behprotocols.staticchecker.Launcher.

The Ant build-file provided with this example allows us to start the demo simply by issuing the com-
mand:

ant execute

The program output includes the (in this configuration) verbose output from the runtime-checking
framework, which reports on the protocols applied to the components and the results of the checking.
Configuring the behavior and the level of output of the runtime-check framework will be discussed in
detail in Section 6.4.3.

6.4.2. Julia configuration

To activate the runtime-checking framework, is is necessary to extend the controller descriptor of both
primitive and composite components with the definition of the runtime check controller (implemented
by the BasicRuntimeCheckControllerMixin class.). The modified controller descriptor
definitions are provided in the file julia-rtcheck.cfg. Besides introducing the new controller,
this file also extends the definition of the lifecycle controller. This additional functionality, implemented
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in the RuntimeCheckLifeCycleMixin class, initializes the runtime check controller at the time
the component starts and notifies the runtime check controller when the component stops. To properly
handle identity-aware interceptors, the configuration file also introduces a new base-class for the inter-
ceptor objects, BasicIdentityAwareComponentInterface. The key elements of the config-
uration file are shown in Figure 6.10.
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Figure 6.10. Controller descriptor extensions defined in julia-rtcheck.cfg

(interface-class-generator
  (org.objectweb.fractal.julia.asm.InterfaceClassGenerator
    org.objectweb.fractal.behprotocols.julia. \
      BasicIdentityAwareComponentInterface
  )
)

# Runtimecheck Controller

(runtimecheck-controller-itf
  (runtimecheck-controller org.objectweb.fractal.behprotocols. \
     RuntimeCheckController)
)

# Runtimecheck Controller implementation

(runtimecheck-controller-impl
 ((org.objectweb.fractal.julia.asm.MixinClassGenerator
   RuntimecheckControllerImpl
   org.objectweb.fractal.julia.BasicControllerMixin
   org.objectweb.fractal.julia.control.name. \
     UseNameControllerMixin
   org.objectweb.fractal.behprotocols.julia. \
     BasicRuntimeCheckControllerMixin
 ))
)

(lifecycle-controller-impl
  ((org.objectweb.fractal.julia.asm.MixinClassGenerator
    LifeCycleControllerImpl
    org.objectweb.fractal.julia.BasicControllerMixin
    org.objectweb.fractal.julia.UseComponentMixin
    org.objectweb.fractal.julia.control.lifecycle. \
      BasicLifeCycleCoordinatorMixin
    org.objectweb.fractal.julia.control.lifecycle. \
      BasicLifeCycleControllerMixin
    # to check that mandatory client interfaces are bound in startFc:
    org.objectweb.fractal.julia.control.lifecycle.TypeLifeCycleMixin
    # to notify the encapsulated component 
    # (if present) when its state changes:
    org.objectweb.fractal.julia.control.lifecycle.
      ContainerLifeCycleMixin
    ##### extensions for runtimecheck controller interaction
    # require a reference to ProtocolController
    org.objectweb.fractal.behprotocols.julia.
      UseProtocolControllerMixin
    # require a reference to RuntimeCheckController
    org.objectweb.fractal.behprotocols.julia.
      UseRuntimeCheckControllerMixin
    # do the interaction
    org.objectweb.fractal.behprotocols.julia.
      RuntimeCheckLifeCycleMixin
  ))
)
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(primitive
  (
    'interface-class-generator
    (
      'component-itf
      'binding-controller-itf
      'super-controller-itf
      'lifecycle-controller-itf
      'name-controller-itf
      'protocol-controller-itf
      'runtimecheck-controller-itf
    )
    (
      'component-impl
      'container-binding-controller-impl
      'super-controller-impl
      'lifecycle-controller-impl
      'name-controller-impl
      'protocol-controller-impl
      'runtimecheck-controller-impl
    )
    (
      (org.objectweb.fractal.julia.asm.InterceptorClassGenerator
        org.objectweb.fractal.julia.asm.LifeCycleCodeGenerator
        org.objectweb.fractal.behprotocols.julia. \
   RuntimeCheckInterceptorCodeGenerator
      )
    )
    org.objectweb.fractal.julia.asm.MergeClassGenerator
    'optimizationLevel
  )
)

6.4.3. Running a runtime-checked application

To make a Fractal application subject to runtime checking, the only step to be taken is to include the
customized Julia configuration file in the list of configuration files to be processed. The command
below shows how the HelloWorld example is launched from Ant (except for setting the classpath).
The most significant difference is the additional configuration file added to the julia.config
system property; in addition, the verbosity of the runtime-check framework is increased for demonstra-
tion purposes.

java -Dfractal.provider=org.objectweb.fractal.julia.Julia \
  -Djulia.loader=org.objectweb.fractal.julia.loader.DynamicLoader \
  -Djulia.config=etc/julia.cfg,etc/julia-rtcheck.cfg \
-Dfractal.protocols.rtcheck.verbosity=2 \

  org.objectweb.fractal.behprotocols.adl.Launcher \
  WrappedHelloWorld r

The runtime-check framework can be configured via properties; the properties are fractal.proto-
cols.rtcheck.recordtrace, fractal.protocols.rtcheck.stoponerror,
fractal.protocols.rtcheck.throwerrors, fractal.protocols.rtcheck.re-
corderrors, and fractal.protocols.rtcheck.verbosity. The properties control
whether the runtimecheck framework records the complete trace of the component execution, what
behavior is desired when an error occurs (throw a ProtocolViolationException, log the error
and continue execution), whether the component should log all errors encountered, and what level of
verbosity is desired. The properties and their default values are described in detail in Section 4.4.4.
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We demonstrate the runtime-check framework on an example based on the Fractal ADL HelloWorld
demo. We have augmented the demo with behavior protocol specifications; in addition, we have
"wrapped" the client and server components into composite components clientWrapper
and serverWrapper. The ADL of this demo, available in the file WrappedHello-
World.fractal, is also shown in Figure 6.11.

Figure 6.11. ADL specification of the HelloWorld demo

<definition name="WrappedHelloWorld">
  <interface name="r" role="server"
    signature="java.lang.Runnable"/>
  <component name="clientWrapper">
    <interface name="r" role="server"
      signature="java.lang.Runnable"/>
    <interface name="s" role="client" signature="Service"/>
    <component name="client">
      <interface name="r" role="server"
        signature="java.lang.Runnable"/>
      <interface name="s" role="client" signature="Service"/>
      <content class="ClientImpl"/>
      <protocol value="?r.run{!s.print}*"/>
    </component>
    <binding client="this.r" server="client.r"/>
    <binding client="client.s" server="this.s"/>
    <protocol value="?r.run{!s.print}*"/>
  </component>
  <component name="serverWrapper">
    <interface name="s" role="server" signature="Service"/>
    <component name="server">
      <interface name="s" role="server" signature="Service"/>
      <content class="ServerImpl"/>
      <attributes signature="ServiceAttributes">
        <attribute name="header" value="-> "/>
        <attribute name="count" value="1"/>
      </attributes>
      <controller desc="primitive"/>
      <protocol value="?s.print*"/>
    <binding client="this.s" server="server.s"/>
    <protocol value="?s.print*"/>
  </component>
  <binding client="this.r" server="clientWrapper.r"/>
  <binding client="clientWrapper.s" server="serverWrapper.s"/>
  <protocol value="?r.run;?r.run*"/>
</definition>

By running the HelloWorld example with the command ant execute, we obtain the following
output:

CLIENT created
SERVER created
starting checker for component client with protocol
  ?r.run{!s.print}*
starting checker for component server with protocol 
  ?s.print*
starting checker for component WrappedHelloWorld with protocol
  ?r.run;?r.run*
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starting checker for component clientWrapper with protocol
  ?r.run{!s.print}*
starting checker for component serverWrapper with protocol
  ?s.print*
Server: print method called
    at ServerImpl.print(ServerImpl.java:35)
    at org.objectweb.fractal.julia.generated.C3b8aff70_0. \
         print(INTERCEPTOR[Service])
    at org.objectweb.fractal.julia.generated.C41c1ff86_0. \
         print(INTERCEPTOR[Service])
    at org.objectweb.fractal.julia.generated.C2deafae5_0. \
         print(INTERCEPTOR[Service])
    at org.objectweb.fractal.julia.generated.Ca0b05a1f_0. \
         print(INTERFACE[Service])
    at org.objectweb.fractal.julia.generated.C9ec05a0f_0. \
         print(INTERCEPTOR[Service])
    at ClientImpl.run(ClientImpl.java:35)
    at org.objectweb.fractal.julia.generated.C600cae0c_0. \
         run(INTERCEPTOR[Runnable])
    at org.objectweb.fractal.julia.generated.C78281da2_0. \
         run(INTERCEPTOR[Runnable])
    at org.objectweb.fractal.julia.generated.C78281da2_0. \
         run(INTERCEPTOR[Runnable])
    at org.objectweb.fractal.julia.generated.C6a0cd3b_0. \
         run(INTERFACE[Runnable])
    at org.objectweb.fractal.behprotocols.adl.Launcher. \
         main(Launcher.java:105)
Server: begin printing...
-> hello world
Server: print done.
rtcheck: client: protocol satisfied
rtcheck: server: protocol satisfied
rtcheck: WrappedHelloWorld: protocol satisfied
rtcheck: clientWrapper: protocol satisfied
rtcheck: serverWrapper: protocol satisfied

A variation of this example featuring incorrect protocols is available in the file WrappedHello-
WorldIncorrect.fractal. The runtime-check framework can in principle detect two kinds of
errors: bad activity (event occurring when not permitted by the protocol), and incorrect end (component
stops when not permitted by the protocol). The first kind of error is demonstrated on the clientWrap-
per component. The erroneous protocol ?r.run{?r.run;!s.print}* asks for a nested call of
r.run before issuing s.print. The error is reported by a ProtocolViolationException.
The second kind of error can be observed in the top-level component (WrappedHelloWorldIncorrect),
where the erroneous protocol ?r.run;?r.run;?r.run* requires that the method r.run is called
at least twice. The error is reported at the time the demo stops by printing message "protocol
does not permit to stop here".

By experimenting with configuration of the runtime-check framework via properties, the various ways
to handle an error can be observed. The alternative ADL file WrappedHelloWorldIncor-
rect.fractal may be easily launched with the command

ant -Drun.parameters="WrappedHelloWorldIncorrect r" execute
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6.4.4. Case Study: Applying runtime-checker on the Airport
internet lounge demo

To demonstrate the runtime-checking on a non-trivial case study, we have used the implementation
of the airport internet lounge demo described in the Demo description
[http://kraken.cs.cas.cz/ft/doc/demo/Demo-Description.pdf]; technical details of the implementation
are described in the separate document Demo - implementation notes
[http://kraken.cs.cas.cz/ft/doc/demo/ftdemo.html]. We assigned runtime protocols to all demo compon-
ents. There are minor differences between protocols for static and runtime checking.

In the runtime protocols, we had to remove the numbered suffixes from method names (e.g., TokenIn-
validated_1 or TokenInvalidated_2) for methods where they were required for static checking. The
suffixes are used to distinguish processing of several parallel calls of the same method. As they all
represent a single method in the implementation, the Julia interceptor will know only the method name
without a suffix when passing it to the runtime checker. As the core of the runtime checker is the same
as the core of the static checker, which does not interpret the method suffixes (i.e., TokenInvalidated_1
and TokenInvalidated_2 are simply two different methods for the static checker core), the runtime
checker would not be able to match a method name from the interceptor (without suffix) to a method
name from a static behavior protocol (with suffix). This is the reason why we had to remove the suffixes
and to create the separate runtime protocols.

Another feature used in static procotols are atomic actions. In the protocols for demo components,
they are used to specify the synchronization behavior for some methods and to distinguish the initial-
ization stage and "running" stage of components, as these two behaviors are much more easy to describe
and comprehend with atomic actions. As an atomic action requires that all the methods it contains are
processed at the same time (note that this is stronger than just a "simple" parallel operator). However,
the runtime checker is not multithreaded, and all method callbacks from the Julia interceptors are
processed in a sequential order. This means that is makes no sense to use the atomic actions in runtime
protocols. Our solution was to replace all atomic actions with other "standard" behavior protocol
constructs.

The Fractal implementation demo is in fact a set of "independent" components that are only connected
to communicate with each other. However, as the components are designed to serve to the users of the
system, none of them is able to work autonomously. In order to function, the components must receive
requests from the "outer" world (their environment). The three components responsible for such
communication are the DhcpServer component (more precisely, one of its subcomponents, the Dh-
cpListener), the Arbitrator and the AccountDatabase. To simulate the environment of these components,
we created the Simulator component. It implements a simple hard-wired test of all the "client" accessible
methods of the demo components - i.e., it emulates requests accepted from 3 virtual clients passed to
the Arbitrator component (via a virtual web server) and also calls several methods on the DhcpListener
component simulating the DHCP protocol packets coming from clients. Here is the main part of the
Simulator run method:

iArbitratorLifetimeController.Start();

byte[] mac1=new byte[] { 0, 0, 0, 0, 0, 0 };
byte[] mac2=new byte[] { 0, 0, 0, 0, 0, 1 };
byte[] mac3=new byte[] { 0, 0, 0, 0, 0, 2 };

InetAddress addr1=dhcpListener.RequestNewIpAddress(mac1);

iLogin.LoginWithAccountId(addr1,"","");

InetAddress addr2=dhcpListener.RequestNewIpAddress(mac2);
InetAddress addr3=dhcpListener.RequestNewIpAddress(mac3);
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iLogin.LoginWithFlyTicketId(addr3,"");
iLogin.LoginWithFrequentFlyerId(addr2,"");

dhcpListener.RenewIpAddress(mac1,addr1);

dhcpListener.RenewIpAddress(mac1,addr1);

dhcpListener.ReleaseIpAddress(mac1,addr1);
iLogin.Logout(addr3);
dhcpListener.ReleaseIpAddress(mac3,addr3);

iLogin.Logout(addr2);
dhcpListener.ReleaseIpAddress(mac2,addr2);

The whole architecture used in the case study is shown in Figure 6.12.

Figure 6.12. Architecture of the demo

To run the demo (with runtime checking), simply go to the demo-proto directory and type ant
check-runtime. The most important part of the checking output is the following (full listing can
be found in a separate document [TXT] [http://kraken.cs.cas.cz/ft/doc/demo/Listing-check-runtime.txt]):

# ant check-runtime
...
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     [java] rtcheck: CardCenter: protocol satisfied
     [java] rtcheck: AccountDatabase: protocol satisfied
     [java] rtcheck: Firewall: protocol satisfied
     [java] rtcheck: Arbitrator: protocol satisfied
     [java] rtcheck: FlyTicketClassifier: protocol satisfied
     [java] rtcheck: AfDbConnection: protocol satisfied
     [java] rtcheck: CsaDbConnection: protocol satisfied
     [java] rtcheck: FrequentFlyerDatabase: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: DhcpListener: protocol satisfied
     [java] rtcheck: TransientIpDb: protocol satisfied
     [java] rtcheck: IpAddressManager: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: FlyTicketDatabase: protocol satisfied
     [java] rtcheck: DhcpServer: protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied

BUILD SUCCESSFUL
Total time: 17 seconds

In order to demonstrate the runtime checker we prepared another version of the FlyTicketClassifier
that does not call the IAfFlyTicketDb.GetFlyTicketsByFrequentFlyerId method as it should (the beha-
vior protocol describing its correct behavior remains the same as in the previous example - with correct
implementation of FlyTicketClassifier component). The runtime checker will then detect the incorrect
component implementation. To run the demo with the faulty FlyTicketClassifier, go to the demo-
proto directory and type ant check-runtime-fail. The output of the checking is the following
(especially note the "rtcheck: FlyTicketClassifier: checker is already stopped due to error(s) found"
message of the runtime checker) - full listing is in a separate file [TXT]
[http://kraken.cs.cas.cz/ft/doc/demo/Listing-check-runtime-fail.txt]:

# ant check-runtime-fail
...
     [java] rtcheck: CardCenter: protocol satisfied
     [java] rtcheck: AccountDatabase: protocol satisfied
     [java] rtcheck: Firewall: protocol satisfied
     [java] rtcheck: Arbitrator: protocol satisfied
     [java] rtcheck: FlyTicketClassifier: checker is already 
              stopped due to error(s) found.
     [java] Erroneous events [1] recorded for component
              FlyTicketClassifier
     [java] !IFlyTicketDb:GetFlyTicketsByFrequentFlyerId$
     [java] Trace [5 of 5] recorded for component 
              FlyTicketClassifier
     [java] ?IFlyTicketAuth:CreateToken^
     [java] !IFlyTicketAuth:CreateToken$
     [java] ?IFlyTicketDb:GetFlyTicketsByFrequentFlyerId^
     [java] !ICsaFlyTicketDb:GetFlyTicketsByFrequentFlyerId^
     [java] ?ICsaFlyTicketDb:GetFlyTicketsByFrequentFlyerId$
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     [java] rtcheck: AfDbConnection: protocol satisfied
     [java] rtcheck: CsaDbConnection: protocol satisfied
     [java] rtcheck: FrequentFlyerDatabase: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: DhcpListener: protocol satisfied
     [java] rtcheck: TransientIpDb: protocol satisfied
     [java] rtcheck: IpAddressManager: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: ValidityChecker: protocol satisfied
     [java] rtcheck: Timer: protocol satisfied
     [java] rtcheck: FlyTicketDatabase: protocol satisfied
     [java] rtcheck: DhcpServer: protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied
     [java] rtcheck: org.objectweb.dsrg.behprotocols.demo.Token: 
              protocol satisfied

BUILD SUCCESSFUL
Total time: 17 seconds

In this demo, we have intentionally made the FlyTicketClassifier component non-compliant with its
protocol. This is reported as the ProtocolViolationException along with the trace that lead
to the protocol violation. The other protocols were satisfied, as reported in the output.

6.5. Code analysis of primitive components

6.5.1. Getting started

Code analysis of primitive Fractal components is performed by the Java PathFinder model checker
(JPF) in cooperation with the protocol checker for code analysis. The tool accepts a program composed
from a target primitive component and its environment as input, and traverses both the state space
determined by the program and the state space determined by the protocol.

The easiest way to apply code analysis to an application is to start the application augmented with
behavior protocol specifications (Section 6.1.1) and also with necessary information for the environment
generator (Section 6.5.3).

6.5.2. Julia configuration

The environment generator must at runtime get for a component being checked the information stored
in the ADL definition of the component. This includes the data provided by the protocol and environment
controllers, i.e., the frame protocol of the component, the name of the class with value sets, etc.
Therefore, an environment controller has to be attached to each component in a similar way as it is
done for protocol controller. Specifically, it is necessary to extend the Julia configuration (i.e., the ju-
lia.cfg file) in the following way:

# Protocol Controller interface
...

# Protocol Controller implementation
...

68

User's manual



# Environment Controller interface
(environment-controller-itf
  (environment-controller 
      org.objectweb.fractal.behprotocols.EnvironmentController)
)

# Environment Controller implementation
(environment-controller-impl
  ((org.objectweb.fractal.julia.asm.MixinClassGenerator
    EnvironmentControllerImpl
    org.objectweb.fractal.julia.BasicControllerMixin
    org.objectweb.fractal.behprotocols.julia.
      EnvironmentControllerMixin
  ))
)

# Environment Controller added to "primitive" component kind
(primitive
  (
    'interface-class-generator
    (
      'component-itf
      'binding-controller-itf
      'super-controller-itf
      'lifecycle-controller-itf
      'name-controller-itf
      'protocol-controller-itf
      'environment-controller-itf
    )
    (
      'component-impl
      'container-binding-controller-impl
      'super-controller-impl
      'lifecycle-controller-impl
      'name-controller-impl
      'protocol-controller-impl
      'environment-controller-impl
    )
    (
      (org.objectweb.fractal.julia.asm.InterceptorClassGenerator
        org.objectweb.fractal.julia.asm.LifeCycleCodeGenerator
      )
    )
    org.objectweb.fractal.julia.asm.MergeClassGenerator
    'optimizationLevel
  )
)

6.5.3. Running the check of primitive components

To make a Fractal application subject to code analysis of primitive components, it is necessary to (i)
configure Julia in a proper way and (ii) define a frame protocol and environment-specific information
(like name of a class with value sets, etc) for each primitive component in ADL.
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We demonstrate the code-checking framework on a sample component application involving the
Client and Logger components (Section 1.2.1). Complete implementation of the example can be
found in the examples/logger directory.

As for Julia, it is necessary to add a configuration file that supports both the protocol and environment
controllers (Section 6.5.2) to the julia.config system property and to turn on storing generated
classes to a temporary directory via the julia.loader.gen.dir system property. Storing classes
generated by Julia on disk is necessary for model checking of Fractal components with Java
PathFinder to work. More specifically, it is because of our re-implementation of Java classloaders for
JPF via its MJI abstraction (Section 5.3.2), which assumes that classes generated by Julia are stored
on disk and not only in memory.

The ADL of the example, available also in the file LoggerDemo.fractal, is the following:

<definition name="logger.LoggerDemo">
  <interface name="run" role="server"
    signature="java.lang.Runnable"/>

  <component name="client">
    <interface name="log" role="client" signature="logger.Log"/>
    <interface name="run" role="server" 
      signature="java.lang.Runnable"/>
    <content class="logger.ClientImpl"/>
    <protocol value="?run.run { !log.open; !log.log; !log.log; 
      !log.close }"/>

    <environment>
      <valuesets classname="logger.LoggerEnvValues"/>
    </environment>

  </component>

  <component name="logger">
    <interface name="log" role="server" signature="logger.Log"/>
    <content class="logger.LoggerImpl"/>
    <protocol value="?log.open; ?log.log * ; ?log.close"/>

    <environment>
      <valuesets classname="logger.LoggerEnvValues"/>
    </environment>

  </component>

  <binding client="client.log" server="logger.log"/>

  <binding client="this.run" server="client.run"/>

  <protocol value="?run.run"/>
</definition>

The classname attribute of the valuesets element denotes the class that provides sets of values
to be used as method parameters by the generated environment. In our example, the logger.Logger-
EnvValues class is used for this purpose.

The process of code checking can be started with the command ant check-code, which first creates
(or cleans) the temporary directory where the class files generated by both Julia and the environment
generator are stored, and then starts the Fractal ADL launcher with the following command:
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java -Dfractal.provider=org.objectweb.fractal.julia.Julia \
 -Djulia.loader=org.objectweb.fractal.julia.loader.DynamicLoader \
 -Djulia.config=etc/julia.cfg,../../output/dist/etc/julia-proto.cfg \
-Djulia.loader.gen.dir=tmp \
-Xmx256M
org.objectweb.fractal.behprotocols.adl.Launcher \
    -checkjpf tmp logger.LoggerDemo

Notice that it is necessary to pass the Launcher class two additional arguments: -checkjpf, which
turns code checking with JPF on, and the path to the directory for generated class files (tmp in the
example), followed by the definition of the target component.

When checking the Logger example (via the ant check-code command), the output may take the
following form:

...
    [java] Checking implementation of primitive components with JPF
    [java] Checking component client ...
    [java] Component client ... OK (tmp/client_Output.txt)
    [java] Checking component logger ...
    [java] Component logger ... OK (tmp/logger_Output.txt)
...

There are two lines of text printed for each primitive component in the hierarchy. First, the text
Checking component <component's name> ... is printed before the checking of the
component actually starts. Then, after the checking of the component is completed, the text Component
<component's name> ... [OK|ERROR] (<name of file with details>) is
printed. The OK message is printed only if no errors were found during checking, otherwise the ERROR
message is printed. In both cases, the name of file with details is displayed in brackets next to the
OK/ERROR message. We decided to store detailed output (like error traces, number of states, etc) in
a separate file, as the output can be quite complex.

6.5.4. Case Study: Applying code analysis on the Airport internet
lounge demo

To demonstrate the code-checking framework on a non-trivial case study, we have used the same ap-
plication as for demonstration of the runtime-checking framework, i.e., the implementation of the airport
internet lounge demo. For the purpose of code analysis, we had to define certain environment-related
information for each primitive component in ADL.

More specifically, we had to define the so-called user stub for each primitive component, and in the
case of the DhcpListener component, we also had to define several so-called user drivers. All
these definitions are stored inside the environment element in addition to the valuesets
subelement. Moreover, we also had to provide a simplified version of component's frame protocol as
a specification of environment's behavior for several primitive components (e.g. Arbitrator) in
order to make checking of these components feasible with respect to CPU time and memory require-
ments. In such a case, the environment is generated from the simplified frame protocol of the target
component, but checking is still done against the original frame protocol.

The purpose of user stubs and user drivers is to extend the generated environment of a component with
the functionality of the Simulator class (Section 6.4.4), since we check the primitive components
one-by-one, and therefore it is not possible to use the Simulator class in the same way as in the
case of runtime checking.

The userstub element contains the file attribute which denotes the file with Java code that initial-
izes certain fields of the Simulator class, which are used by some components from the Demo. As
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these components assume that the fields of the Simulator class are set to meaningful values at
runtime, it is necessary to initialize those fields also for the purpose of code analysis with the Java
PathFinder.

The userdriver element contains the event attribute, which denotes a protocol event, and the
file attribute which denotes the file with Java code that is used to indirectly invoke the event. The
concept of user drivers is useful especially for components which invoke some methods on their required
interfaces as a reaction to some outer world events - an example of such a component is the Dh-
cpListener component.

Files representing user stubs and drivers for the Demo are available in the demo-env/stubs and
demo-env/drivers directories, respectively.

In addition to defining environment-related information in ADL and providing user-defined stubs and
drivers, we had to create stub implementations of several components from the Demo, which are ref-
erenced by fields of the Simulator component. All these stub implementations belong to the
org.objectweb.dsrg.behprotocols.demo.env package. Main purpose of these manually
created stubs is to bring down the requirements on CPU time and memory that are necessary for code
checking of primitive components with Java PathFinder. Moreover, we had to create a special imple-
mentation of the Simulator component for code analysis also for the purpose of reducing time and
space requirements of the checking process; therefore, there are two versions of the Simulator component
- one for runtime checking (in the SimulatorRun.source file) and one for code analysis (in the
SimulatorJpf.source file), the proper one being selected during compilation and copied to the
Simulator.java file.
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