User Manual for HOBO Project
Nicholas Lavanda
Senior Software Project CEN 4935
Instructor: Dr. J. Zalewski

April 15, 2010

Hardware Configuration

Working with the Onset HOBO micro weather station, this project’s objective is to use the
sensors to detect weather conditions, record this information in a database, and make it available
via the web . The Onset HOBO micro weather station consists of a data logger, a temperature
sensor, a relative humidity/pressure sensor, and two RF radio modules. Figure 1 shows the different

pieces of the HOBO micro weather station.

Pressure and Humidiry
Sidiof

==

Temparsturs Sansor

Rodie Meduls

Rodio Modele [Comneds fo cempuber]

Figure 1 — Onset HOBO micro weather station devices

The sensors connect directly to the data logger. Four sensors can be plugged into the data
logger at one time. They use a connection much like an Ethernet plug and plug into the data logger
next to the batteries. The remote RF radio module connects to the data logger through a custom
connection. The other RF radio module connects to a server through a serial port (RS 232). A

diagram of how these pieces are connected is shown in Figure 2.

Pressurs and Hemidity

Sensor

Temperaune Semssr

Radio Module

Rodio Module [Conmects fo comparter)

Figure 2 — Diagram of how Onset HOBO micro station devices connects to each other

2. HOBO Software Installation

In order to talk to the weather station one has to use Onset’s proprietary software. First
install the Onset Remote Site Manager. To install this program insert the installation CD and run
the setup.exe program, if it does not auto run. There is no advanced configuration needed for
this program, so just remember where you install it to so you can run the program later.

The next program that needs to be installed is Onset’s HOBOware software. To install
this software insert the HOBOware CD and run the setup.exe program, if it does not auto run.
HOBOware has no advanced configuration needed; just remember where it is installed to so it

can be run at a later time.

3. HOBO Software Configuration: HOBOWare
There are two choices for communication with the HOBO: HOBOware and Remote Site
Manager. For this project we will use both HOBOware and Remote Site Manager. First we need
to setup the data logger to record information from the sensors. In order to do this we will use
HOBOware. Start HOBOware by double clicking on the HOBOware icon. As a result, a screen

shown in Figure 3 appears.

M HOHEDware
Fis Device [Veow Tool Wendow beip

Figure 3 — HOBOware starting screen

Now at the top menu from Figure 3, go to device and select “Launch”. This will Launch Logger

screen shown in Figure 4.

Launch Logger @

Logger Type: HOBD LM 2-01 3 Temp/RHIEHE:d
Serial Mumber: 796486
Deployment # 40

Eattery Level: |17 7 5."
Description: | Building &

Channels to Log: (| Took
e 1) Tetrpersture 10K Thermistor L

E Scaling...
23 Relative Humidity (Reguires Temp Channel 1)

) [CABLE-4-20ma (4-20 ma Input Cable) | s | &2

|:| 47 |TMCx-HA Qvide-Range Temperature] | w

o) Logget's Battery Voltage v
Logging Interval: 0M9Hr 02iMin| 108 sec Maximum logging interval:
~ A8 hours 12 min 15 sec
Logging Duration: 1 Day, 08h S4m 40z This walue is based on the logging intensal
(Aoame. tiare wndil the and channel(z) selected above, it does not
logger memory {5 full) account for memorny used by ewents.
el dtints Mows (3) 2/11/05 3:18:50 PM GMT-05:00

| &t Interval () 201105 3:20:00 PM GMT-05:00

Delayed: () 211605 % pate |4:19:14 P i Time
Maximum delay: 194 days 4 hours 20 min 15 sec
Trigger: -I:' Puszh Logger Button for 3 Seconds

Loggerwill launch according to I I
Hel Cancel Status... Launch
the launch option selected above I [

Figure 4 — Launch Logger screen from HOBOware

On this screen under “Channels to Log” make sure all of the desired sensors that you want to log
are checked. It is recommended to select all of the sensors. Now select how often you would
like the data logger to log sensor information by changing the “Logging Interval”. For this project
we select 30 seconds. Once the Logging interval is selected we need to decide on a Launch
option. Select the radial next to “Now” to start logging information immediately. Once you have
done this, click on the “Launch” button at the bottom of the screen. Now the program will take
some time to configure the data logger. Once the data logger is launched, which is indicated by
the appearance of a status bar, you may close HOBOware, by selecting Exit menu choice from

the screen as shown in Figure 3.

4. HOBO Software Configuration: Onset Remote Site Manager
Now start up the Onset Remote Site Manager, by double clicking on the Remote Site Manager

icon. As a result a screen shown in Figure 5 should appear.

=, Remote Site Manager

1 Eile Operate Help
Remote Site Manager

| Contact Remote Site || Set Up Remote Site Profiles | Status Ready

- Auto-Readout Schedule
4 | [] Activate

Mame Connection Route B Location Frequency Successes Mext Readout

Figure 5 — Onset Remote Site Manager Start-up screen

Once the Remote Site Manager is running we need to create a remote site. In order to do this

click on the “Set up remote site profiles” button and a screen will appear, as shown in Figure 6.

m_Remoke Profiles

=101

Remote Sites | Add Ske |

| connect | Edt | oeiete |
P | Connection Route | Prefic{es) || Locakion | Auto-Readout Schedule

Figure 6 — Remote Profile page from Remote Site Manager program

From the Remote Profile Screen, as shown in Figure 6, select the “Add Site” tab. A screen like

Figure 7 will appear.

m; Remote Profiles =10

Remote Sites Add Site |

Connection Rouke: f-)'l Local Port
* mlame (10 Char Max.): Hobo
* COM Paort: ’B}l COM 1

Location (10 Char Max,)

— Aubo-Feadout Schedule

[+ Utilize schedule
DD HH: MM

Fead out new data every ELISTOM - vI o000
Skark Tire ﬁMMEDIP.TE vI 04/22/02 0500 FM

* Datafile path; Iﬁrl q Z:\Documents and Settingsihobo\DeskkopiHobolexample

| Set Up Email and FTP Data Transfers l

* Raquired feld

OK CANCEL

Figure 7 — Remote Site Manager software Add Site page

At this screen, as shown in Figure 7, you will need to give the site a name where it says “*
Name”. Then from the choices for “Connection Route” select “Local Port”. Now where it says “*
COM Port” select “COM 1” or which serial port that you have connected the radio module to.
The Auto-Readout Schedule will need to be setup in order for the program to auto readout. To
setup the auto readout select the checkbox next to “Utilize Schedule”. Next change the “Read
out new data every” and select “CUSTOM”. This will allow you to select how often you would
like it to sample in the column “DDD:HH:MM”. Change this value to 3 minutes. Now where it
says “* Datafile path” select where you would like to save the files containing the sensor data

that this software is generating. Once you have these parameters filled out click “OK” button.

From this screen click “Connect” and a screen like Figure 8 will appear. This page is attempting

to connect to the data logger and it should connect if the parameters are correct.

- Etnutr T et Wy

bhl.nﬁ-%ub

ﬂﬂ%ﬁ%ﬂyﬁj 2O

Fleld2

Mokl MO0 Wiyt Logier
2 2001 Onet Comouter Comporation

Sord 1: sS4 M0 Parl 1 H2L001
Duplowsrend: 2% Mernory (k- 512
Cesriphon: Nowormbes Launch

Sats: Launthied and Q@ing dats every 3000
.

wm:m:;i';__.. L 0w

] b " '

Moo bty Py P

[Cmcimmnect how {iomerve babery pomrr) |

Figure 8 — Remote Connection page from Remote Site Manager

If the parameters are not correct the software will tell you that it is not connected. If this is the
case, edit your parameters to the correct ones. Once you have the remote site connected to,
close the screen. Now you will be back at a screen shown in Figure 6. Here you should see the
site you just created in the “Auto-Readout Schedule”. Click on the “activate” box and select the

correct remote site to activate to begin the automatic readout process.

5. Java-Based Updater: HOBO Builder

The HOBOware has no means of populating the database used for this project so a
custom application was made. Programmed in Java, HOBO Builder will connect to the database
and automatically keep it updated. The program flowchart is shown in Appendix A and its code
in Appendix B.

It is recommended that the HOBOBuilder.java file is stored in the location you choose
the Onset Remote Site Manager to save the sensor readout files. After the program has been
compiled it is launched from the command line console. The proper syntax being (an example is
shown in Figure 8):

java HOBOBuilder <update interval (seconds)> <sensor readout .txt file’s path>

B cawiNDoWS\system3Zicmd. exe -0 ﬂ

fMicrosoft Windows HXP [Version 5.1.26881
(C> Copyright 1?85-28801 Microsoft Corp.

:C:\Dncuments and Settings“\NicXcd c:“hoho
QC:~hobo>java HOBObuilder 38 readouts.txt.

Figure 8 — Launching the HOBO Builder java program.

Once launched the program can run automatically. Upon successful running the screen should

look similar to Figure 9.

l B Command Prampt - java HoboBuilder 30 hobo_3 b -0 ﬂ

3 Dirisy» T6.167.884,.728 hytes free

C:xDocuments and Settings“Hic“My Documents“FGCU DocssComputer Metwork Programmin
’g\pruject\src>jaua HoboBuilder 38 hobo_3.txt
;HOBO Builder Activated at 2018-82-18 22:38:36
I Press CTRL-C to end process.

f HOBO database Started: 2818-082-18 22:38:38
1817.9 28.57 58.8
1817.5 28.57 Lg.8
1817.5% 28.57 Lg.8
1817.6 28.57 5g.8
1817.6 28.57 58.8
1i817.6 28.57 58.2
1817.6 28.57 58.8
1817.7 28.57 58.8
1817.6 28.57 58.2

1817.6 28.57 58.8
2018-82-18 22:38:38

Figure 9 — Successful launch of HOBO Builder.

As one can see the program will connect to the hobo mySQL database on satnet and
enter the new readings. These new entries will be displayed in the console window
additionally. The update cycle can be halted by pressing “CTRL-C”. In addition, this
action will also quit the program.

6. Database Organization and Connections

HOBOD Salnet
Server Server

-
-

Wireless " .
Receiver :

? Internet

Client

o1 Client Client
: @ ;--Sensc-rs

_________ 1. Temperature
2. Pressure
3. Relative Humidty

Figure 10- Diagram of the Hardware used.

Figure 10 shows a diagram of how all the hardware involved in the project connects.
Data is collected by the sensors and stored on the data logger. The logger will then periodically
send the stored readings to the HOBO service via the logger’s wireless system. The data is then
stored in a text file on the HOBO Server via the HOBO software, and is then entered into the
database on the satnet server using the Java-Based updated design specifically for the project.
The data can then be viewed through the internet by clients by accessing the website located on

the satnet server.

6.1 Database Structure

The database used is a simple one with a single table, readouts, and is located on the
satnet server. This table contains four columns: dateTime, pressure, temperature and rh.
Figure 10 shows a description of the readouts table showing the field’s name, type, and

other attributes.

e ommm - Fomm - ommm ommm - +
| Field | Type | Mull | Eey | Default | Extra |
e ommm - Fomm - ommm ommm - +
dateTime	timestamp	YE3		WOLL	
pressure	double	YEF		NULL	
temperature	double	YEF		MULL	
rh	doukle	¥ES		WOLL	
- - +—— +——— et - +

Figure 11- Description of the Database
While not shown in Figure 11; dateTime is used a primary key to identify each entry as

unique.

In order to manually check the database, the user would have to have an account on the
satnet server with the proper privileges granted to use mySQL. After connecting to the
server, preferably via SSH for this case, one would use the following simple command to

access mySQL:
mysql

Once connected to mySQL the following command would be used to access the specific

database used for this project

use hobo;

With the database selected the user can now directly interact with it by viewing the

makeup of the table...
Describe readouts;
View entries already in...
Select * from readouts;
Add entries ...

Insert into readouts (dateTime,pressure,temperature,rh) values (vall,
val2,val3,val4);

Remove entries...

DELETE FROM readouts WHERE dateTime = dateToBeDeleted;

Update entries...

Update readouts SET columnName=someValue WHERE someColumn=somevalue;

There are more SQL commands to interact with the database but these provide the gist

of the desired function.

6.2 Database Connectivity

The database is connected to from two points: HoboBuilder (the Java program that
updates the database which is located on the server hosting the HOBO software and
hardware) and the website.

In order to connect to a database in Java a driver specific to the implantation of the
database must be loaded in the program. In this case the Connector/J MySQL JDBC driver is
used. In order to use this driver one must download and install the jar file from

www.MySQL.com. Once installed the driver is loaded in the program with the following

code (see Appendix C for more detailed code of the Java-based updater):

Class.forName(*'com.mysql . jdbc.Driver') .newlnstance();

Once loaded a connection can be established by adding the following line of code:

Connection con = DriverManager.getConnection(*"jdbc:mysql://hostname/DB
name', "user', "password™);

In order for these two lines of code to work the java.sql package must be imported.
To connect to the database via the website functions within PHP are used. The two
following lines of PHP code are used to connect to a mySQL database (see appendix E for

more detailed code of the website):

$conn = mySQL_connect($host, $dbuser, $dbpass) or die (“Error?);
MySQL_select_db($dbname);

Both the mySQL_connect() and mySQL_select_db() functions are built into PHP provided
mySQL is enabled in the php.ini. The values proceeded by a $ are variables in PHP that the
coder would have set up.

Once the connections are setup SQL statements are passed to them to query the

database. This passing is done with PHP’s mysql_query() function, for example:

$query = "SELECT * FROM readouts ORDER BY dateTime DESC";
$result = mysql_query($query);

In this case, the SQL statement was saved to a local variable first before passing, due to
the author’s preference. The function will return a return a ResultSet that contains the rows
in the database that satisfied the query; for this example that would be all entries and

sorting them by dateTime in descending order. Another example would be:

$query = "SELECT * FROM readouts WHERE $filter BETWEEN $low AND $high
ORDER BY dateTime DESC';
$result = mysql_query($query);

This time the results returned would be more specific. Sfilter would have retrieved from
a list box containing which column the user wants to filter the results by. Slow and Shigh
would also be retrieved from a user inputted value and be used to select entries which fall

between these two values.

6.3 Data Retrieval and Presentation

While the entry into the database is done with the Java-based updater something else
must be done in order to actually view this data in a meaningful manner. This is where the
website comes into play. The website is coded in mix of HTML and PHP, as html doesn’t
have the means to interact with the database on its own. PHP is scripting language used
guite often to interact with databases as it does it well and is open-source. Using various
commands (not going into specific as some examples are provided in the previous sections

and more can be found in Appendixes C-G) one is able to query the database and

7.

performing other general programming functions in PHP. The PHP just deals with getting
the information from the database for this website and then the data is displayed to the

user via HTML enhanced with a Cascading Style Sheet.

Website Design
7.1 Design Direction
After more thought was put into the website, it's been decided to scrap the
initial and current design. It did not look as intended and was becoming tacky and a bit
unprofessional looking (see Figure 12 for a screenshot). The way it was designed was
also making it difficult to continue, due to being originally designed not to use a CSS. The
converting to the use of this, and the over embedded frames and tables to get the

desired look gave the website very clunky code on the backend.

HOBO Weather Monitoring Station - Florida Gulf Coast University

Fiter Ermiks
The rawdouts hsted can be fkered via the Ellewng oo
Fiter by | &1 =

Filler it
Cunvent Weatler Station Semsar Beadingy

Tine Rtamp Preesme Temperabare £) Felamee Hossadey
200-12-11 134847 10182 2057 46.8
2009-12-11 13:48:17 10182 2057 56.8
20-12-11 124747 1084 2057 J3z
= 2009-12-11 13:47:17 10183 2057 J6.2
200-12-11 134647 1084 2057 J6.2
2009-12-11 13:46:17 10183 2057 56.8
200-12-11 124347 10183 2057 J6.8
2009-12-11 13:45:17 10183 2057 56.8
AR-12-11 1334447 1R 4 mT 2

Figure 12 - Old (Scrapped) Website Design.

The new design will take a much cleaner and professional look to it. It will also be built from
the ground up to use a CSS. The frames and tables will also be scrapped and a different
method will be used to create the layout of the website. This method consists of using the
formatting capabilities of a CSS and intelligent placing and design of the <div> tag. By doing
this, it will allow the creation of separate sections and when used properly can mimic the
design of a table but will be much more flexible. Figure 13 shows an example of this design
approach (note: colors chosen are used just to point out each different component more

easily).

Menu 3 LLLITE

Figure 13- Concept Example of <div>-based Design

This design, as stated before, looks much like a website designed with embedded tables or
frames but this example contains neither. In a way it is much simpler to design, albeit it
requires more manual work, as opposed to the table much automatic handling. In order to
pull this design off with tables one would have to embed tables within tables within tables
and then some; while the <div> method simply involves putting various <div> sections next
to each other The following HTML shows and example of the pick and blue sections seen in
Figure 13 above:

<div i1d="column400"'>

COLUMN 400 TEST
</div>
<div id="column200"">

COLUMN 200 TEST
</div>

The id="column400” points to an entry in the CSS which tells how to draw this specific
<div>. In way this may seem about as much work as a table in the end is much simpler. Take
the Header and the Menu for example. In order to do this with tables one would have to
create one table that has one column and 2 rows. The first row would be the header but
then to make the menu another table, with one row and six columns would have to be
created in the second row. To do this would <div> design, one would just put seven <div>
sections in, no thought into embedding needed, as they could just be listed like in the

example above.

7.2 Design Specifics
The design of the website will be simple and everything will go in a single main column.
Colors will be soft and clean and the overall design lean more towards a minimalistic

approach. Any page on the site will be accessible from any other page via a “menu” bar.

7.2.1 Home Page

HOBO Remote Weather Monitoring Station

At Flovida Gulf Coast Universicy

View sensor readings online.

_ SensorReadouts [
Tables | Graphs | Summary | About

L

Most Recent Sensor Readout

Time Stamp Pressure Temperature (° ©) Relative Humidity
2010-04-15 22:39:53 1020.2 16.66! 67.2

Welcome.

Welcome to the site. Hers you will find the final product of a project, done by
the author of this website, which deals with working with database usage and
connechvity,

Figure 14 - Index Page of Website

Figure 14 shows a screenshot of the home page, index.php. At the top you can see the
header which displays the name of the site. Below it is the menu. Both of these items will
on every page of the site.

When the mouse hovers over a button on the menu, that buttons background color will
darken. As one can see in Figure 14, the button of the current page is further darkened and

disabled from being clicked on. The following code shows how the menu is created:

<div i1d="menu'>
<div 1d="mDBtn"'>
<div 1d="menuTxt"> <u> Home </u> </div>
</div>

<div 1d="menuSub'>
<div id="menuSens''> Sensor Readouts </div>

<div id="mSBtn" onclick="window. location.href="tables.php?page=1"">
<div 1d="menuTxtE"> Tables </div>
</div>

<div 1d="mSBtn" onclick="window.location.href="graphs.php®*>
<div 1d="menuTxtE"> Graphs </div>
</div>

<div 1d="mSBtn" onclick="window.location._href="summary.php”"'>
<div 1d="menuTxtE"> Summary </div>
</div>

</div>

<div 1d="mSBtn2" onclick="window.location.href="about.html"">
<div 1d="menuTxt"> About </div>
</div>
</div>

Below the menu, the most recent entry will be displayed. The following code shows

how:
<?php
$dbhost = "satnet.fgcu.edu”;
$dbuser = "nmlv2-;
$dbpass = "*";

$conn = mysgl_connect($dbhost, $dbuser, $dbpass) or die (“Error
connecting to mysql™);

$dbname = "hobo";
mysqgl_select_db($dbname);

$query = ""SELECT * FROM readouts ORDER BY dateTime DESC LIMIT 1';

$result = mysqgl _query($query);

$num=mysql_numrows($result);

$dateTime = "
if($result) {
while($row = mysql _fetch_assoc($result)) {
$dateTime=$row["'dateTime'];
$pressure=Srow["pressure’];
$temperature=$row['temperature'];
$rh=$row["'rh"];
}
}

echo "<div id=\"dbHeader\">";

echo " <div 1d=\"dbTimeCol\"> Time Stamp </div>"";

echo " <div id=\"dbPresCol\"> Pressure </div>"";

echo " <div id=\"dbTempCol\"> Temperature (° ©)
</div>"";

echo " <div 1d=\""dbRHColI\""> Relative Humidity </div>";

echo "'</div>";

if($dateTime!l=""") {
echo "'<div id=\""dbRowO\"">"";
echo " <div 1d=\"dbTimeCol\"> $dateTime </div>";
echo " <div id=\"dbPresCol\"> $pressure </div>";
echo " <div 1d=\"dbTempCol\'"'> $temperature </div>";
echo " <div 1d=\"dbRHColI\"> $rh </div>";
echo "'</div>";

} else {

echo "'<div id=\""dbRowO\'">";

echo '"‘Database empty.'';

echo ''</div>";

}

?>

Following that will just be headers and paragraphs of general information about the site.

7.2.2 Tables Page

Home [Tables

Filter Results.

Filter by: Prezzure

In the range of 10185

" Filter | | Reset |

to 10205

The readouts lsted can be filterad via the following form:

Sensor Readouts.

#1.234567 685104

Time Stamp Pressure Temperature (° C) Relative Humidity
2010-04-15 22:42:53 1020.2 18.66 £7.8

| 2010-04-15 22:42:23 1019.4 18.66] 67.2
2010-04-15 22:41: 53-‘, 1015.9 18.66 E7.2
2010-04-15 22:41:23 1019.4 15.68] &7.8
2010-04-15 22;40:53 1020 18.66 67,2
2010-04-15 22:40:23 1020.1 18.66 E7.2
2010-04-15 22:39:53 1020.2 18.66) 67.2
2010-04-15 22:39:23 10159 18.56 £7.2
2010-04-15 22:36:53; 1020.1 18,56, &7.8
N1 MN=Nd=1E 22 3T F2 1M 18 ££1 ET R

Figure 15- Screenshot of Tables Page.

Figure 15 is a screenshot of the tables page. Under the menu a form is placed to allow
the filtering of the results. The following code shows how:

<form id="reg" action="tables.php" method="get">

<div id="frmText">
The readouts listed can be filtered via the following form:
</div>

<input type="hidden" name="page'" value="1"" />

<div id="frmFields'">

Filter by:

<select class="field" name="'selType" i1d=""selType"

onchange=""Javascript:CheckDisplay()">

<option value="All">All</option>
<option value="'dateTime">Time Stamp</option>
<option value="pressure'>Pressure</option>
<option value=""temperature''>Temperature</option>
<option value="rh">Relative Humidity</option>

</select>

</div>

<div id="dbHidden" style="display:none">
In the range of
<input type="text" id=""txtLow" name=""txtLow" size="19"
maxlength="19" />
to
<input type=""text" id=""txtHigh" name="txtHigh" size="19"
maxlength="19" />
</div>

<div id="frmBtns'>
<input type="button" id="btnFilter" value="Filter"
onmousedown=""Javascript:Filter()" />
<input type="reset" id="btnReset" value="Reset" />

</div>
</form>

The hidden type of name page is there to allow the form to work with the pagination
code as the code requires that a page value be passed with the form. The div, dbHidden, is
only shown if the filter type is not set to all.

Below the form the actual data collected from the HOBO unit is displayed. Due to the

amount of possible entries the results are broken up by pagination. This makes it so that no

more than 300 entries are shown at once. The user can simply click the page numbers
above the table to see the rest of the entries. The code for this is too long for a meaningful
snippet, so refer to Appendix E for details.
7.2.3 Graph Page
Filter Results.

Select the range of dates of the readouts shown:
Bebeen and
| Show | | Resa
Pressure.

Refresh Graph

Barawetric Pressure [Dver Time
1200
1160
1129

1080

b e
e]
o2a
]
0]

B

Figure 16- Screenshot of Graph Page.

Figure 16 shows a screenshot of the graphing page. This page also contains a form to
filter the results shown but this one only accepts dates and times to limit. Under the form is
a button to refresh the graph below. The button will only refresh the one graph and not
affect the others or reload the page. The code to handle this is too long for a meaningful
snippet, so refer to Appendix D for more details.

Under the refresh button is the graph itself. There are three graphs (only one is shown
in the screenshot), one for each of the sensor types currently attached to the HOBO, and
each has its own refresh button. The graph is created by the PHPGraphLib package. This is
done by passing a array of data to the library which will return a PNG image file. The

following code snippet shows an example;

$sql=""SELECT dateTime, pressure FROM readouts WHERE dateTime BETWEEN
"$low"™ AND "$high®";
$result = mysql_query($sql);

if($result) {
while($row = mysql_fetch_assoc($result)) {
$dateTime=$row["'dateTime'];
$pressure=$row["'pressure'];
//ADD TO ARRAY
$dataArray[$dateTime]=$pressure;

}

}

$graph->addData($dataArray) ;
$graph->setTitle('Barametric Pressure Over Time");
$graph->setRange(1200,800);
$graph->setBars(false);

$graph->setLine(true);

$graph->createGraph();

7.2.4 Summary Page

HOBO Remote Weather Monitoring Station

At Flovida Gulf Coast University
View sensor reasdings online.
Sensor Readouts |
Home Tables | Graphs | Summary | About

i~

Summary Report of Readings

Taotal Mumber of Readings: 28B0
Time Period:
2010-04-14 22:456: 23 2010-04-15 22:45:53
Avg. Pressure: Avg. Temperature: Avg. RH
102015 18.62 B5.79
Max. Pressure: Max. Temperature: Max. RH
1021.80 19.42 59.20
Min. Pressure: Min. Temperature: Mirn. RH
1018.40 17.90 &2.80
Auther: Hichalas Lavanda. Agril 2010, Visit - Florids Gulf Coast University

Figure 17- Screenshot of the Summary page.

Figure 17 shows a screenshot of the summary report page. Below the menu the report is

made. The data is collected by one large SQL statement.

$query = "SELECT COUNT(*) AS numRead, AVG(pressure) AS avgPres,
AVG(temperature) AS avgTemp, AVG(rh) AS avgRH, MAX(pressure) AS maxPres,
MAX(temperature) AS maxTemp, MAX(rh) AS maxRH, MIN(pressure) AS minPres,
MIN(temperature) AS minTemp, MIN(rh) AS minRH, MIN(dateTime) AS minTS,
MAX(dateTime) AS maxTS FROM readouts';

$result = mysqgl _query($query);

if($result) {

while($row = mysql_fetch_assoc($result)) {
$numRe=$row[''numRead'] ;

$avgPr=$row["avgPres'];

$avgTe=$row["'avgTemp] ;

$avgRh=$row[avgRH"];
$maxPr=%$row["'maxPres'];
$maxTe=$Srow["'maxTemp']
$maxRh=$row["'maxRH"] ;
$minPr=$row["minPres"];
$minTe=$row["minTemp'];
$minRh=$row["'minRH"];
$MinTS=$row["'minTS"];
$maxTS=$row["'maxTS""];

Then the results are simply displayed using headers and paragraphs. Also at the bottom
the page on can see a footer. This footer is also on every page.

7.2.5 About Page

....................... e e
Home | Tables | Graphs | Summary
L]
Website.

This website was created as a part of a project to allow the sensor readings
of a HOBO Remote Weather Station to be viewabds over the web. The last
28B0 (24hrs) readings are available in the forms of a table, graph, and
SUMM&ry.

Project.

The goal of the project was to take the data collected by a HOBO Remote
Weather Station, which would normally only be accessible by the computer It
is connected te, and make it much more accessible

The methods chosen were to store the readings in a databasze, done by
writing a Java-based program which would automatically enter the readings
Into the database. Then this database would be sccessed by a website, i.e.
this site.

HADRMA Damcadkas MHaskhas: Chabiam

Figure 18- Screenshot of the about page.

Figure 18 shows a screenshot of the About page. This page just displays some
information about the site, project, equipment used, and author. This is done just using

simple headers and paragraphs.

Appendix A: Troubleshooting
Al. HOBO Configuration

Problem: Hobo Hardware is not being recognized by HOBOware.

Solution: Sometimes, usually after extended non-use, the software may have
difficulty detecting the hardware. This can generally be fixed with a combination
of unplugging/plugging connections and removing and reinserting batteries or
other power sources, much like a resetting a home router. If the hardware still
fails to be recognized then the problem likely lies with a dead power source or

faulty hardware.

Problem: Hobo Hardware is not being recognized by Onset Remote Manager.

Solution: If the “OK” light on the data logger is flashing and everything is
connected properly and the hardware is still not being detected by Onset
Remote Manager then the problem is likely with the settings placed on the
screen shown back in Figure 7. The “Connection Route” setting can have
problems sometimes. If “Local Port” does work then select the “Remote
Modem” option. Simply put, usually only one of this will work, so it may be

necessary to try the other if one does not work.

A2. HOBO Builder — Java based Updater

Problem: Console displays: “NULL POINTER: Could not find a entry in the
database that matched an entry in the <filename>. This likely means the file
passed does not match the original file used to create the database. This
program is not designed to handle this case"

Solution: The HOBO Builder software assumes that the readouts will always be
saved to the same file. If a file other than the one originally used to create the
database is used then the software will fail to update the database as it will find
no entries in the new readouts file which already exists in the database. The
prevents the program from finding a reference point on where to start the

update.

Appendix B: HOBO Builder Program Flowchart

Connect
to mySQL
Database

Fail

Success

Grab most
recent entry
from DB.

|
)l

Open
readout
Eail text file

Success

Grab most
recent entry
from file.

Timestamp of
DB entry <

Timestamp of
text file entrv.

Enter most
recent entries in

Wait until
next update
time

text file into DB.

A 4

Update database
most recent
entry for
comparison.

Appendix C: HoboBuilder.java

/**
* @(#)HoboBui lder. java

*

*

* @author Nicholas Lavanda

* @version 1.00 2009/10/7

* Reads the text file generated by the HOBOware software. The text file contains

* a log of the various sensor readings. This version can handle a HOBO unit that
* has Barometic Pressure, Temperature, and Relative humidity sensors and the unit
* must have all three, no less, no more. This data is then entered into a

* database, no duplicate entries.

*

* The user must determine the time inbetween the reads and enters via a command

* line parameter.

* NOTE: This program does handle the cases where the database is modifed by

* another source while running, specifically deletion of records in the database.
* 1f records are deleted or the entire database is empty during runtime the

* program will not catch and continue as if the database was in the same state

* as the last update.

*/

import java.sql.*;

import java.io.*;

import java.util.*;

import java.text.SimpleDateFormat;

import java.text.DateFormat;

public class HoboBuilder {

private static boolean active;

public HoboBuilder() {}

public static void main(String [] args) throws SQLException {

String input = null;

String FileName =
SimpleDateFormat gFormat = new SimpleDateFormat(*'yyyy/MM/dd HH:mm:ss™);

jJava.sqgl.Timestamp recentEntry = null;
jJava.sql.Timestamp dateTime = null;
Double pressure;

Double temperature;

Double rh;
long sleepTime = 0;
int entryCount = 0;

Connection con = null;
Statement stmt = null;

boolean emptyDB = false;

// Check to see if the sleep time was provided. Exit if not.
if (args.length!=2) {

System.out.printIn(*'Usage: HoboBuilder <sleep time between updates
in seconds> <hobo file>");

System.exit(1);
} else {
fileName = args[1];
sleepTime = Long.parselLong(args[0]);

// Check to see if a long enough time has been given.

// While the HOBO software can be set to readout every second the
amount of time

// it actually takes to complete the readout will around 30 secs or
more.

it (sleepTime<30) {

System.out._printIn('\nUpdate Cycle must be greater than 30s
as that is the shortest time between readings on HOBO unit itself.");

System.exit(l);
3
// User input in seconds, convert to milliseconds.
sleepTime *= 1000;

// Notify that the HOBO Builder process has begun by outputting to
console.

System.out.printIn(""\nHOBO Builder Activated at \t\t" + timeStamp()
+ '"\n\t Press CTRL-C to end process.\n");

active=true;

//connect to database

try {
System.out._printin(""Attempting to connect to HOBO MySQL

server...\n");

“nmlv2T, "Y);

Class.forName(*'com.mysqgl . jdbc.Driver'™) _newlnstance();

con = DriverManager.getConnection(*"jdbc:mysql://satnet.fgcu.edu/hobo",

if(lcon.isClosed())

System.out._printIn(*"Successfully connected to MySQL server...\n");

stmt = con.createStatement();

} catch(Exception e) {

System.err_printin(""Exception: " + e.getMessage() + "\n");

System.out.printIn(**Connection to MySQL server failed. Exiting program.');

System.exit(1);

readouts™);

dateTime™);

entries in the

sSec sensor

// get the total amount of entries currently in the db
ResultSet rsCount = stmt.executeQuery(*'SELECT COUNT(*) as count FROM

rsCount.next();

entryCount = rsCount.getint(*'count™);

//grab most recent entry

ResultSet rs = stmt.executeQuery("'SELECT dateTime FROM readouts ORDER BY

rs.next();

/*to prevent a possible overload on the satnet servers the ammount of

* database is limited to 2880 entries or 24 hours worth of data at a 30

* reading interval
*/
if (entryCount>2880) {
// grab the first entry

jJava.sql.Timestamp initial = rs.getTimestamp(‘'dateTime™);

// skip ahead the (total numberof entry - 2880)th entry in the db
int toDelete = entryCount - 2880;
for (int i = toDelete; i1>0; i--)

rs.next();

// grab the (total numberof entry - 2880)th entry

recentEntry = rs._.getTimestamp(‘'dateTime');

//delete the entries from the inital date to the (total numberof
entry - 2880)th date

// to reduce the number of entries to 2880

stmt.executeUpdate("'DELETE FROM readouts WHERE dateTime BETWEEN \""
+ initial + "\" AND \""" + recentEntry + "\'""");

entryCount = 2880;

rs = stmt.executeQuery("'SELECT dateTime FROM readouts ORDER BY dateTime
DESC LIMIT 1');

it (rs.next())

recentEntry = rs.getTimestamp(‘'dateTime'); // the most recent entry

do {
//Notify that reading has begun by outputting to console.

System.out.printIn("Updating of HOBO database Started: \t" +
timeStamp());

try {

// Open the text file containing the HOBO read out
(hobo.txt).

BufferedReader in = new BufferedReader (new
FileReader(fileName));

// Scroll past the information not needed in hobo.txt
for (int i=0;i<5;i++)

input = in.readLine();

// Scroll past the the entries already in database
try {
do {

input = in.readLine();

//Parse the date and time from the string

StringTokenizer st = new
StringTokenizer(input, "\t");

String dateStr = st.nextToken();

String dateStrF = gFormat.format(new
jJjava.util._Date(dateStr));

dateTime = new
Java.sql .Timestamp((gFormat.parse(dateStrF)).getTime());

// 1T no entries in database then use first
in hobo.txt.

if (recentEntry==null) {
recentEntry = dateTime;
emptyDB = true;

break;

} while(recentEntry.after(dateTime));
} catch (NullPointerException e) {

System.out._printIn(C"\nNULL POINTER: Could not find a
entry in the database that " +

“"matched an entry in the \"" + fileName +
"\". This likely means the file passed " +

""does not match the orginal file used
to create the database. This program " +

"is not designed to handle
this case™);

System.exit(1);

// if at end of file, data base is up to date
// close

// else, new entries to be input

// parse and place into databse
if (Min.ready(Q)) {

System.out.printIn(*'Database is already up to
date.");

in.close();

// Close Connection to database
try {
if(con = null)
con.close();
} catch(SQLException e) {}
} else {

/ /
// Check to see if database is open
if(con.isClosed())

try {

System.out.printin(*Attempting to
connect to HOBO MySQL server...\n");

Class.forName(*'com.mysqgl . jdbc.Driver'™) ._newlnstance();

con =
DriverManager.getConnection("'jdbc:mysql://satnet.fgcu.edu/hobo™, "nmlv2", "");

if(Icon.isClosed())

System.out.printIn(*'Successful ly
connected to MySQL server...\n");

stmt = con.createStatement();

} catch(Exception e) {

System.err.printIn(""Exception: " +
e.getMessage() + "\n");

System.out.printIn(**Connection to MySQL
server failed. Exiting program.');

System.exit(1);

while(in.ready()) {

// 1If the database is empty dont refresh
input, use current.

if (lemptyDB) {
input = in.readLine();
¥
System.out.printin(” " + input);

//Parse the date and time from the string

StringTokenizer st = new
StringTokenizer(input, "\t");

String dateStr = st.nextToken();

String dateStrF = gFormat.format(new
jJjava.util _Date(dateStr));

dateTime = new
jJava.sql .Timestamp((gFormat.parse(dateStrF)).getTime());

//Parse the pressure from the string

pressure=Double.parseDouble(st.nextToken());

//Parse the temperature from the string

temperature=Double.parseDouble(st.nextToken());

//Parse the relative humidity from the
string

rh=Double.parseDouble(st.nextToken());

* Delete old entries to make room for new
ones

*/
if (entryCount>2879) {
//get the oldest entry

ResultSet rs2 =
stmt.executeQuery("'SELECT dateTime FROM readouts ORDER BY dateTime LIMIT 1');

// date of the oldest entry
rs2.next();

jJava.sql.Timestamp victim =
rs2._getTimestamp(“'dateTime'™);

//remove the oldest entry

stmt.executeUpdate("'DELETE FROM
readouts WHERE dateTime = \""" + victim + "\'""");

entryCount--;

/ /
// Enter Parses into database

stmt.executeUpdate ("' INSERT INTO readouts (

dateTime, pressure, temperature, rh) VALUES (\""+ dateTime + "\'", "+ pressure+ ",
“+temperature+', “+rh+")');

entryCount++;

emptyDB=false;

//Update the time of the most recent entry.

recentEntry = dateTime;

// Close hobo.txt

in.close();

//Notify that reading has ended by outputting to
console.

System.out.printIn(*Update complete: \t\t\t" +
timeStamp());

// Close Connection to database
try {
if(con = null)

con.close();

} catch(SQLException e) {}
}

} catch (Exception e) {
System.out.printin(e);

// Wait until next check.
try {
Thread.sleep(sleepTime);
} catch(Exception e) {
System.out.printin(e);

}
Iwhile(active);

//Returns the current time and date
//
public static String timeStamp() {
jJava.util_Date readStamp = new java.util.Date();
SimpleDateFormat formatter = new SimpleDateFormat("'yyyy/MM/dd HH:mm:ss™);

return formatter.format(readStamp);

8. Appendix D: hobo.js — Form parameter editor
function Filter() {

if (trim(document.getElementByld("selType®).value) == "All'") {
SendPost();
} else if (trim(document.getElementByld("selType*®).value) == "dateTime") {
if (trim(document.getElementByld("txtLow").value) == """ &&
trim(document.getElementByld("txtHigh").value) == ") {

alert(""Please enter a range of values to filter.");
document.getElementByld("txtLow").focus();

} else {
CheckTSLow();
3
} else {
if (trim(document.getElementByld("txtLow").value) == """ &&
trim(document.getElementByld("txtHigh").value) == ") {

alert(""Please enter a range of values to filter.");
document.getElementByld("txtLow").focus();

} else {
CheckLow(Q);

}

}
}

function CheckLow() {
if (isNaN(document.getElementByld("txtLow") .value)) {
alert(“'Please insert a numerical value for the low range.");
document.getElementByld("txtLow").focus();

} else {
CheckHigh(Q);
}

}

function CheckHigh(Q) {
if (isNaN(document.getElementByld("txtHigh").value)) {
alert("'Please insert a numerical value for the high range.");
document.getElementByld("txtHigh") .focus(Q);

} else {
SendPost();
b

function CheckTSLow() {
var reTS = /Z(\d{2PH\V/Od{2H\/(\d{4}) Qd{2P:-Q\d{2H:-(\d{2})/;

if (TreTS.test((document.getElementByld("txtLow") .value)) ||
trim(document.getElementByld("txtLow®).value) == ") {
alert("Time stamp low range must be in the format of DD/MM/YYYY

HH:MM:SS™);
document.getElementByld("txtLow") .focus();
} else {
CheckTSHighQ;
}
}

function CheckTSHigh() {
var reTS = /Q\d{2DH\V Ad{2H\V/ \d{4}) Q\d{2}):\d{2}) - (\d{2})/;

if (YreTS.test((document.getElementByld("txtHigh").value)) ||
trim(document.getElementByld("txtHigh").value) == ") {
alert("Time stamp high range must be in the format of DD/MM/YYYY

HH:MM:SS*™);
document.getElementByld("txtHigh™) .focus(Q);
} else {
SendPost();
}
}

function SendPost() {

document.getElementByld("reg®™) .submit();

function FilterGraph() {
var count = O;

if (trim(document.getElementByld("txtLow").value) 1= ") {
count += CheckTSLowG();

}
if (trim(document.getElementByld("txtHigh").value) 1= ") {
count += CheckTSHighG(Q);

3

if (count==0) {
SendPost();

3

}

function CheckTSLowG() {
var reTS = /Q\d{2D\V A2V (\d{4}) Q\d{2}):\d{2}) - (\d{2})/;

if ('reTS.test((document.getElementByld("txtLow").value))) {
alert("Time stamp low range must be in the format of DD/MM/YYYY

HH:MM:=SS"™);
document.getElementByld("txtLow").focus();
return 1;
} else {
return O;
¥
b

function CheckTSHighG() {
var reTS = /Z(\d{H\V/OJ2H\V/\d{4}) QdL2PH:-A\d{2H:-(\d{2})/;

if (IreTS.test((document.getElementByld("txtHigh") .value))) {
alert("Time stamp high range must be in the format of DD/MM/YYYY

HH:MM:=SS™);
document.getElementByld("txtHigh") .focus(Q);
return 1;
} else {
return O;
¥
b
/[-

function CheckDisplay() {

if (document._getElementByld("selType®).value == "All'") {
document.getElementByld("divID").style.display="none";
} else {
document.getElementByld("divID").style.display=""";
}
}
e i et e L e P

function trim(str) {
return str.replace(/"\s\s*/, "")._replace(/\s\s*$/, "");
}

9. Appendix E — view.php — Displays results in text form.

<html>

<head>
<title> HOBO Weather Montitoring Station - Florida Gulf Coast Univerity </title>
<script type="text/javascript" src="hobo.js"></script>

</head>

<body>

<form id=""reg" action="view.php" method="get">

<div class="left">
The readouts listed can be filtered via the following form:

Filter by:

<select class="field" name="selType" id="selType" onchange="Javascript:CheckDisplay()'>
<option value="All">All</option>
<option value="dateTime">Time Stamp</option>
<option value="pressure">Pressure</option>
<option value="temperature'>Temperature</option>
<option value="rh">Relative Humidity</option>

</select>

<div id="divID" style="display:none'">
In the range of
<input type="text" id=""txtLow" name=""txtLow" size="19" maxlength="19" />
to
<input type="text" id="txtHigh" name="txtHigh" size="19" maxlength="19" />

</div>

<input type="button" id="btnFilter" value="Filter" onmousedown="Javascript:Filter(Q)"
/>

<input type="reset" id="btnReset" value='"Reset" />
</form>

<?php
$dbhost "localhost”;
$dbuser "root";

$dbpass ;

$conn = mysql_connect($dbhost, $dbuser, $dbpass) or die ("Error connecting to
mysql©);

$dbname = “"hobo";
mysql_select_db($dbname);
?>

<?php

$filter="";

it (isset($_CGET["selType™]))
$filter = $_GET["selType"];

if (isset($ _GET["txtLow"]))
$low = $ GET["txtLow];

it (isset($_CGET["txtHigh"]))
$high = $ GET["txtHigh"];

it ($filter=="A11" || $filter==") {
$query = "SELECT * FROM readouts ORDER BY dateTime DESC";
} else if ($filter=="dateTime") {
$query = "SELECT * FROM readouts WHERE $filter BETWEEN "$low" AND "$high" ORDER BY
dateTime DESC";
} else {
$query = "SELECT * FROM readouts WHERE $filter BETWEEN $low AND $high ORDER BY
dateTime DESC";
3
$result = mysql_query($query);
$num=mysql_numrows($result);

$i=0;
echo ""<h3> Current Weather Station Sensor Readings</h3>";

echo "<table>";
echo "<tr><td width=20%> Time Stamp </td><td width=20%> Pressure
</td><td width=20%> Temperature (° C)</td><td width=20%> Relative
Humidity </td> </tr>";
while ($i < $num) {
$dateTime=mysql_result($result,$i, "dateTime");
$pressure=mysql_result($result,$i,"pressure™);
$temperature=mysqgl_result($result,$i,"temperature™);
$rh=mysql_result($result,$i," " rh");

echo "<tr align=\"right\"> <td> $dateTime </td><td> $pressure </td><td>
$temperature </td><td> $rh </td> </tr>";;
$i++;

echo "</table>"
>

</body>
</html>

10. Appendix F — graph.php — Displays results in graph form.

<html>

<head>
<title> HOBO Weather Montitoring Station - Florida Gulf Coast Univerity </title>
<script type="text/javascript" src="hobo.js"></script>

</head>

<body>

<form id=""reg" action=''graph.php" method="get">

<div class="left">
Select date range of readouts shown:

 Between

<input type="text" id="txtLow" name="txtLow" size="19" maxlength="19" />
and

<input type="text" id=""txtHigh" name="txtHigh" size="19" maxlength="19" />

<input type="button" id="btnShow" value="Show'" onmousedown="Javascript:FilterGraph()"
/>

<input type="reset" id="btnClear" value="Clear" />
</form>

<?php
$low = ™3
$high = "*;

if (isset($_CGET["txtLow"]))
$low = $ GET["txtLow"];

ifT (isset($_CET["txtHigh"]))
$high = $_GET["txtHigh'];

echo "<div></div>";

echo "'<div></div>";

echo "'<div></div>";

echo "<div align=\"right\'"> Graphs
generated by PHPGraphLib. </div>";
?>

11. Appendix G — summary.php — Displays summary report.
<html>
<head>
<title> HOBO Weather Montitoring Station - Florida Gulf Coast Univerity </title>

</head>

<body>

<?php
$dbhost "localhost”;
$dbuser "root";

$dbpass ;

$conn = mysql_connect($dbhost, $dbuser, $dbpass) or die ("Error connecting to
mysql*®);

$dbname = “"hobo";
mysql_select_db($dbname);
?>

<?php
$query = "SELECT COUNT(*) AS numRead, AVG(pressure) AS avgPres, AVG(temperature) AS
avgTemp, AVG(rh) AS avgRH, MAX(pressure) AS maxPres, MAX(temperature) AS maxTemp, MAX(rh)
AS maxRH, MIN(pressure) AS minPres, MIN(temperature) AS minTemp, MIN(rh) AS minRH,
MIN(dateTime) AS minTS, MAX(dateTime) AS maxTS FROM readouts';

$result = mysql_query($query);

if($result) {
while($row = mysql_fetch_assoc($result)) {
$numRe=$row["'numRead'"] ;
$avgPr=$row[''avgPres'];
$avgTe=$row["'avgTemp"];
$avgRh=$row['avgRH"] ;
$maxPr=$row["'maxPres'];
$maxTe=$row[''maxTemp'];
$maxRh=$row["'maxRH"] ;
$minPr=$row["minPres'];
$minTe=$row['minTemp'];
$minRh=$row['minRH"] ;
$MinTS=$row["'minTS"];
$maxTS=$row["'maxTS"];
3
¥

echo ""<h3> Summary Report of Readings</h3>";

echo "'<table>";

echo ‘"<tr><td width=20%> Total Number of Readings: </td><td> $numRe
</td></tr>";

echo "<tr><td width=20%> Time Period: </td><td colspan=2> $minTS -- $maxTS
</td></tr>";

echo "<tr><td> </td></tr>";

echo "<tr><td width=20%> Avg. Pressure </td><td width=20%> Avg. Temperature
</td><td width=20%> Avg. RH </td></tr>";

echo "<tr><td width=20%> " . sprintf ("%5.2f", S$avgPr) . "</td><td width=20%>
sprintf ("%5.2fF", S$avgTe) . " </td><td width=20%>" . sprintf ('%5.2f", S$avgRh)
</td></tr>";

echo "<tr><td width=20%> Max. Pressure </td><td width=20%> Max. Temperature
</td><td width=20%> Max. RH </td></tr>";

echo "<tr><td width=20%> " . sprintf ("%5.2f", $maxPr) . "</td><td width=20%>
sprintf ("%5.2fF", $maxTe) . " </td><td width=20%>" . sprintf ("'%5.2Ff", $maxRh)
</td></tr>";

echo "<tr><td width=20%> Min. Pressure </td><td width=20%> Min. Temperature
</td><td width=20%> Min. RH </td></tr>";

echo "<tr><td width=20%> " . sprintf ("%5.2f", $minPr) . "</td><td width=20%>
sprintf ("%5.2F", $minTe) . " </td><td width=20%>" . sprintf ("'%5.2f", $minRh) . '
</td></tr>";

echo "</table>";

?>

</body>
</html>

