
BroBot

Richard Landau, Sarah Patten, and Jacob

Stewart

Dept. of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450

Abstract — An original electrical and computer

engineering project combining aspects from several

different elements, BroBot combines computer vision

techniques, embedded design, and smartphone

application development in a practical way. This project

uses a small camera to watch an area, analyze it for

changes, and report the results along with the picture to

the user on his or her phone via a Bluetooth connection

for security and peace of mind.

Index Terms — Computer vision, security, Bluetooth,

digital cameras, programming

I. INTRODUCTION

Designed to aid students with their studies, BroBot

is a small, portable robot with the ability to offer his

user a previously-unknown sense of security when

studying alone in a public setting. When the user

requires a break from their studies for any reason, he

or she can simply set down BroBot, connect to him

from a smartphone, and go about business,

comfortable with the knowledge that his or her

belongings are only a glance away, and that BroBot’s

security system will notify both the users and

passersby upon any theft. BroBot’s camera feeds into

an STM32F407 microcontroller, which has code

running that analyzes the images for significant

changes in a short time frame, signaling a breach of

security. It includes an on-board alarm to scare off

thieves and alert nearby students who may be able to

help, as well as an RN-41 Bluetooth module

maintaining a connection to the user’s phone.

Pictures are constantly streamed over this link to the

phone, so the user need only turn on the phone to see

a recent image of the location. If BroBot senses a

security breach, the phone vibrates constantly until

disabled by the user, allowing him or her to rush back

to guard the location or indicate that it is a false alarm

from the phone.

A. Objectives

To achieve the ideas we wanted to, we needed to

create a detailed list of accomplishments we intended

for BroBot to do within the time frame of our project.

The list of objectives is as followed:

 Detect theft of an object

 Alert user when a theft has occurred

 Have an audible alert

 Be reliable and simple to use

 Have easily replaceable batteries

 Lightweight

 Portable

 Affordable

II. HARDWARE

At the heart of our project is the hardware. The

hardware is responsible for taking a picture of the

items, sending that picture to the user, receiving

instructions from the user, and doing all the needed

calculations on the images. The processor that we

use must be able to complete all the necessary tasks

while being a somewhat low powered

microcontroller. Along with a processor we need a

camera that can give us a photo that is easily stored

and/or easily manipulated. All of these different

components need to be easily tested so to ensure no

complications during the building phase of our

prototype. Therefore a strong emphasis of

development board prices influenced what processer

and module we decided to use.

Figure 1 shows the flow of information in the

system. The microcontroller deals with all

communications in the system, it receives

instructions from the user via the Bluetooth

connection. The processor also instructs and deals

with the camera. While the flow of information is

very simple is depends on the microcontroller to a

great degree, meaning the firmware on the

microcontroller needs to be written we great caution.

To bring our prototype to reality we need to have

some type of power system that will give a good

lifetime while being either replaceable or

rechargeable for a normal user. Overall, all of the

hardware decisions were made with the ideas of

simplicity and frugality.

Figure 1: Signal Flow

A. Camera

The main component which the entire hardware

was designed around was the camera. This was to

ensure that we could do all the necessary actions with

the images and still have enough power to do

everything else we want to do in the system. If it be

converting, storing, or sending the image to the user.

The camera needs to be able to interface with a

microcontroller easily and also take demands from a

microcontroller, preferably with using some type of

simple serial protocol. Along with the

aforementioned demands we need a small,

inexpensive camera to keep with the theme of our

project.

With all of these demands in mind we decided to

use uCAM-II Serial Camera Module. All

communications to this camera are done on a UART

8 bit data transmission, through the RX and TX pins.

The control on the camera is pretty versatile, and has

all the functionality desired. Through the

communication we are able to change the resolution

of the picture between four different formats, three

for RAWs and JPEG. The camera has the option of

four different RAW resolutions, and three JPEG

resolutions, and the ability to change the baud rate.

Since the picture itself is sent over the serial line a

lot of time is spent sending the picture. This problem

can be remedied by decreasing the picture size

coming out of the camera on the UART line. There

are 15 possible different image types and resolution

combinations, but JPEGS are the primary focus.

Table 1 was produced by taking a sample of 100

different pictures of each resolution. This information

is sent from the camera to the microcontroller via an

UART command. When a command to take a picture

is given, the camera sends an acknowledgement to

verify that it correctly understood what picture was

being asked for, and then the information is sent as a

constant string after the end of the communications.

Resolution Minimum

Value

(Average)

Maximum

Value

(Average)

Average

Value

160x120 2136 2786 2542

320x240 5324 8976 7523

640x480 11542 13480 12478

Table 1

To work properly with the android application we

decided to use the JPEG 320x240 resolution when we

are refreshing the picture for the user. While when

we are doing the actual item watching we are using

8-bit Gray Scale RAW images of size 80x60. The

justifications for this size are discussed in

“Interfacing and other considerations”.

When ordering the camera, there were a few

different options for the lens. The one that comes

with the camera normally is a 56 degree lens. The

other two options for the lens were an extra cost, and

the main desire was to be able to have an image that’s

viewable; it doesn’t have to be perfectly clear. Upon

testing the lens and sending images, the focal range

for the detection would need to be detected. If the

objects that are being watched were 0.3 meters away,

the camera would be able to gain a clear focus from

0.28 meters to 0.33. After the desired focus is found,

it can be secured with the lock nut.

The distance the camera needs to be from the items

is about 50 cm.

B. Bluetooth

Since we knew that we wanted to communicate

with the user via an android application we only had

two different options for a type of wireless; Bluetooth

and Wi-Fi. Keeping with the theme of simplicity we

went with Bluetooth, since most common phone

users have had prior experience with the technology.

We wanted to pick a Bluetooth module that was

simplistic and could be controlled via a serial line

from a microcontroller. We needed the module to

easily work with an android phone, and not have a lot

of hoops that the user would have to jump through.

Also to meet our ranges we went with a class 1

module, which has a range up to 100m.

Microchip’s RN-41 is the module that we picked to

use for our project. While there are quite a number

of very similar modules we decided upon the RN41

because of prior experience working with the

module, and its ease of use. This module is fully

contained with no need of external components and is

controlled via an UART line. To easily mesh with an

Android phone the module only needs to be powered

and connected to a serial line. Less than a second

after powering up, the module will go into a full

function mode where anything that is received on the

module, via a BT connection, will be sent on the

serial line. While anything sent on the Rx line of the

module will be sent on the BT connection, as long as

one is already established.

The module runs off 3.3 Volts and comes in a

surface mount package. So not to create unwanted

noise in the Bluetooth connection the antenna on the

module has to protrude off the board with nothing

below it. While in normal configuration and

connected the module pulls up to 160mA.

C. Microcontroller

Once those two major components were decided

upon we wanted to find a microcontroller that will

meet all of our prior image manipulation

requirements and have enough memory to store

multiple JPEG files. Because of the computation

power required we wanted to look for an ARM

processor that met our demands but also met out

price range. With this in mind we were somewhat

limited on what we could get, since a Beagle Bone or

a Raspberry-pi would be too expensive to reproduce

on a printed circuit board.

We decided to use STMicroelectronics’

STM32F407 microcontroller, which is a M4 cortex

ARM processor that has some DSP heritage while

sporting all of the pluses of ARM architecture. The

processor was created for use in small digital cameras

and portable music players, which is perfect for our

project since we need to be able to manipulate and

store pictures.

The STM32F407 has 1 megabyte of flash memory,

192Kbytes of RAM, and runs on 3.3V. The controller

comes with a built in interfaces of common serial

communication protocols including UART, I2C, SPI.

We decided to use the LQFP100 package for our

PCB, since that is the package that comes on the

development board, meaning the code would not

have to be changed when switching over. The

processor runs at a 168 MHz clock, which is fast

enough for what we want to accomplish. It also

comes with 2 DACs which will be used for our alarm

implementation.

D. Sound

A simple way to deter thefts is to implement a

simple alarm that will trigger when something is

stolen in front of the camera. All we need is a

speaker and something to produce a sine wave that

can be manipulated to sound like an alarm.

We use the 12-bit digital to analog converter that is

built inside the STM32F407 to create a sine wave.

The DAC runs off an internal timer that is controlled

via an interrupt in the software on the

microcontroller. By changing the timing we can

produce different frequencies, with this method we

only get one tone out of the DAC, but this is perfect

for an alarm system that isn’t meant to sound pleasant

to the ear. Normally alarm systems are in the higher

frequencies, therefore our alarm starts at about 1k Hz

and goes up to 2Hz, and will loop throughout that

range.

The direct memory access commands are used

while doing this alarm; this is to ensure a clear sound

coming out of the microcontroller. The DMA

enables the ability to manipulate memory without

using processor cycles; this is one of the main

features of the ARM architecture.

To make the signal coming out of the

microcontroller loud enough to audible we need an

amplifier before it reaches the speaker. Since we

wanted a low power amplifier we chose a Class-D

amplifier, which uses pulse width modulation to

amplify the signal, using MOSFETs in saturation

mode. Pulse width modulation coupled with a low

pass filter, the speaker in this system, is perfect for

what we want, a loud alarm where the sound quality

doesn’t need to be spot on.

We are using Texas Instrument’s TPA2005D1

since it is built with an 8 OHM speaker in mind and

also boasts low power consumption. This amplifier

can operate at a 3V-5V range while IC itself is very

small and doesn’t take up much space on a PCB. We

are using a single-ended input configuration with one

of the inputs going to ground and the other going to

the output of a potentiometer. The potentiometer is

used to control the volume of the alarm and can only

be changed from inside the box that holds the robot.

This is to ensure that only the user can change the

volume of the alarm.

E. Power

For this project there are two different voltage lines

that are needed, 3.3V and 5V. We wanted the power

supply of the system to either be rechargeable or

easily replaceable, something that an everyday person

can use and understand. For simplicity sake we went

with two linear regulators, one at 3.3 the other at 5V,

with 4 AA batteries as the source.

The linear regulators that we are using are from

Texas Instrument’s UA78 series, using the surface

mount package for the PCB. These have an output

current up to 500 mA and need no external

components, which makes using them very simple

and will integrate easily on our PCB.

F. Interfacing and other considerations

As stated earlier the STM32F407 is

communicating with the camera and Bluetooth

module using the UART peripheral on the

microcontroller. Both are using the same protocol

and the IO of the communication is handled in the

same way.

Since we know exactly how the camera will

respond to any request sent to it there is no need for

an interrupt to control the inputs. This makes

programming the communication very simple and

straight forward. We do not have the need to store the

returned message since the most of the messages are

just indications that something was sent.

This approach would not work for the Bluetooth

module, since we cannot predict when the application

will send a request to the microcontroller. Because

of this an interrupt is being used that will run

whenever anything is picked up on the UART line

from the Bluetooth module. This solution causes its

own problems where a call can happen anytime

something is going on in the program. While this

isn’t much of a problem for most of the operations

this is a huge problem if it happens while the

microcontroller is talking to the camera. To

circumvent this result we simply turn off this

interrupt while the microcontroller is talking to the

camera.

It should be noted that receiving the picture from

the camera took some testing to fully work. The

communication with the camera is a highly specific

process. Before anything can be communicated, the

processor has to sync with the camera. This syncing

doesn’t always happen on the first try, and can take

up to 60 tries, though the average number of times it

takes is between two and six. To handle this, a

variable was set up, ACKBOOL that acts as a

Boolean value, and becomes set once the syncing has

completed. There is a loop that continues trying to

sync, and once the camera responds with an ACK

that they received the request to sync, and it sends

another message to show its okay to sync, the loop is

broken out of and ACKBOOL is set. The processor

needs to respond with an acknowledgement after this

to solidify the syncing.

The communication is back and forth, so to get a

picture from the camera, there is a specific sequence

of requests and acknowledgements that need to be

sent. To talk to the camera and request for it to take a

JPEG image, a message must be sent to start the

initial request, then set the package size, then another

request that says get picture. After each of these

messages to the camera, the camera will be sending

back acknowledgements. Then when the camera is

finally ready to start sending the picture, it breaks

down the image into 512 byte packages, after each

package, the user must send back an

acknowledgement to verify the package was

received. At the end of the data that is received, the

processor must send a final acknowledgement. If this

isn’t sent, the camera will be waiting for it, and no

matter what else is sent after, if it isn’t the

acknowledgement, that camera won’t know what is

being sent, so nothing else will be able to happen.

The process for requesting a RAW image is a lot

simpler. There are only two initial messages, each

receiving its appropriate acknowledgement, then after

the third one, the camera sends the picture, then it

sends the image data as the complete picture. Again

after receiving the image, the user must send a final

acknowledgement.

When it was being determined what types of

images should be used for the app and the computer

vision portion of the project we had to keep in

consideration the size of the file, the clarity, and the

functionality. It was desired to have the user of the

app receive JPEG images since they look nice to the

user and aren’t large files. For the computer vision

portion however, decoding JPEGs before getting to

the actual functionality of the computer vision was

taking up a lot of computing time and RAM space on

the processor, as well as having to store JPEGs, it

was decided that, if possible, it would be better to try

to use raw images. Since we don’t need any color

information, a gray scale image would be just as

useful as a full colored image. The size of the RAW

image will be as small as possible, so the 80x60

resolution is used. The file will always be the same

size at 4800 bytes of data. This resolution was used

because with a smaller resolution, the image

processing can run faster, which will allow for more

images to be processed, and a greater chance of

detecting an error in a timely manner.

So instead of just taking one picture and using it

for the computer vision and the app, there will be two

images taken. Every few seconds while BroBot is

watching study materials, he will take a new image to

check how much the scene has changed, and the

microprocessor will also be communicating with the

app. While it does this it will take and send JPEG

images at the users’ request, and at a determined time

interval.

When the user is communicating with the camera

to receive a JPEG image, one of the required

messages that are sent is “SET PACKAGE SIZE”.

This message determines how big of a package the

user would like to take each time, with the max being

512 bytes. Since the pictures don’t always have the

same size, modular arithmetic is done to figure out

where the last piece of data will end up. Even if this

isn’t the case, because the image is a JPEG, the last

two bytes are guaranteed to be FF D9, so we would

be able to find the end of the data.

When the user wants another picture, it has to go

through the long communication process again. This

is useful because the image will always be new.

There wouldn’t need to be any worry about the

camera storing the picture and sending the same one

multiple times, as it is the case for some cameras.

Our PCB is a two layer board; one side is used for

a ground plane while the other is used for most of the

routes that are needed. Along with the needed

modules we also put a section of 20 pins from the

microcontroller in case a need arrives for them, for

example test LEDs. A 5 pin ST-Link connector was

put on the PCB so the microcontroller can easily be

reprogrammed and tested using the development

board. Finally a 5 pin header connection was put on

the board so that the camera can be connected. This

has the only trace from the 5V linear regulator, along

with connecting the two UART pins from the

microcontroller. The power supply of 4 AA batteries

is held within a plastic battery holder with the leads

going to a two pin header on the PCB.

III. APPEARANCE

Designing the appearance of BroBot required us to

think about the way we wanted to transport him.

Initially we intended for him to be easily portable in a

backpack so students could easily bring him to the

library. With this methodology, he would need to be

small, lightweight, and easily portable. Initially we

wanted him to have a small body with an expandable

camera, almost like an old antenna or a telescope.

While this was a nifty idea, it wasn’t plausible. We

searched for something that fit the image we had in

our minds, but that proved to be more difficult than

we originally thought. Since this didn’t work, we

began going to craft stores to find inspiration for our

design. We knew in the end that we needed

something that would allow for the camera to be

adjusted to a position the user found desirable. After

browsing a few stores, with nothing jumping out at

us, the “neck” of our BroBot was found. It was a

maneuverable metal structure, with two ends that

could easily be used for mounting, as well as a

hollowed out center that would be perfect for hiding

the wiring from the camera.

The next thing that needed to be considered was

the physical body. What is desired for this is a small

box, just big enough to hold the PCB. We also need it

to be heavy enough so that the weight of the camera

mounted to the neck doesn’t cause it to tip over. We

did find a small plastic container that was the perfect

size, but it may be a little light when BroBot is fully

assembled. If this is the case, we will buy small metal

plates to help weigh it down. To make BroBot more

presentable, he will be cleaned and spiffed up. Along

with this, the camera will have a sheltering so that it

looks more presentable. On the bottom of the body,

there will be an on/off switch for the user. It will be

placed on the bottom so that a random passerby

wouldn’t be able to disable him. Along with this,

BroBot will have small rubber feet so that he is lifted

a few centimeters off the table.

IV. COMPUTER VISION

For this component of the project a reliable,

portable, and compact program was needed. This led

us to choosing C as our programming language;

which was also beneficial because of the hardware

selection. Initially using JPEGs for the image

processing was the approach. A few different

methods of using JPEGs in computer vision were

looked into as possible methods of converting JPEGs.

The first option was to use OpenCV functionality to

do our image processing. Within its available

libraries, there are functions to change image types

and directly calculate the image difference. While

this was easy to implement, the file sizes that were

needed to be included were far too large for our

Figure 3: Item watching Flowchart

Figure 2: Computer Vision Flowchart

processor.

After testing it was determined that JPEGs weren’t

the optimal use for the computer vision. Rather, our

program would stick strictly to gray scale RAW

images, that way the values the images returned are

the actual luminosity of the pixels, and they could be

edited directly, rather than trying to convert until they

are the desired bits.

A. Algorithm

The program works by storing an initial picture of

the items to watch. This picture is constant and

unchanging and saved as a matrix of pixels. After

some interval of time, a new picture will be taken.

This picture will be compared to the original one by

comparing them pixel-by-pixel. As the differences of

each pixel are taken, the absolute value of that

difference will be used in a sum of the total

difference between the pictures. If this magnitude

exceeds a threshold, found by experimentation, it

means it is different enough to be considered an

entirely different picture. This could be due to fringe

cases like a change of brightness over time or

something new being added into the picture, but will

most often be the removal of an object. When this

value crosses the threshold, it will trigger the alarm

functionality on BroBot. To help deter the program

from sounding an alarm when the brightness may

gradually be changing, as if sitting by a window and

the sun begins shining more directly in the window,

the “original image” will be updated regularly by a

basic replacement function. After every five minutes

or so, we will assign the most recent image taken to

be the new “original image”. Some of these

operations will be done in the main function of our

code on our processor, though the majority will be

taken care of by an image watching algorithm. To

better understand Figure 2 can be referenced.

V. ANDROID APPLICATION

BroBot’s user interface is in the form of an

application for Android smartphones. This gives the

user the flexibility to move about and still issue

commands to and receive feedback from BroBot

while not in his immediate vicinity, although the user

will have to stay within a radius of about 100 meters

to maintain the connection. The application is coded

in Java, the native language of Android.

When the application is first started, the user is

presented with the welcome screen, shown here in

Figure 3.

Figure 3 BroBot's welcome screen

Once at this screen, the user will be prompted to

enable their Bluetooth if it is not already enabled.

Pressing the Connect displays a list of available

devices. Simply select BroBot to initialize a

connection and begin functionality. At this point, the

user will see pictures coming in from BroBot will

have the ability to enable the item watching software,

disable it, or silence the alarm. The display appears as

is shown in Figure 4.

Figure 4 BroBot's main screen

Many parts of the BroBot app must run

simultaneously, so for this reason it contains many

threads. Several threads are run to create and

maintain the Bluetooth connection with the module.

Reading and writing to a Bluetooth stream are

blocking calls, which would halt execution of the

entire program if not contained in separate threads.

Additionally, pictures are retrieved from BroBot by

sending a timed request for a picture every five

seconds. This too has its own thread to allow for

constant execution without stopping inputs to the user

interface.

BroBot communicates with the hardware using a

series of single byte commands. Commands to the

hardware have a different meaning based on what

byte is sent, and commands received reuse some of

these bytes to allow for up to 128 different

commands out and 128 commands in. We are only

using a small subset of these available commands,

shown in table P.

Direction from app Value Meaning

Outward 1 Start item watcher

Outward 2 Stop item watcher

Outward 3 Request new picture

Outward 4 Stop the alarm

Inward 0 Receiving a picture

Inward 1 Alarm was tripped

Inward 2 Watcher started

Inward 3 Watcher stopped

Inward 4 Alarm silenced

Table 2 BroBot's command table

BroBot uses a handshaking method with the

hardware to ensure that data was not lost over the

Bluetooth link. The user interface changes based on

what mode the app is currently in, but does so

carefully. When a mode is entered, the appropriate

command is sent to the hardware. The hardware

responds accordingly, and then sends a confirmation

command (seen in table 1) to the app. It is only upon

receiving this confirmation command that the user

interface is changed to reflect the new mode. While

this can cause a slight delay when the Bluetooth

buffer is fuller, it ensures that the app and hardware

are always coordinated.

Just as with sending and receiving commands,

pictures can sometimes be slower than the software

through the buffer. Because of this, a picture coming

in runs the risk of being parsed and displayed before

all of the bytes are there. To deal with this, upon

receiving the command that a picture is incoming, the

app expects the size of the picture in bytes to come

next. It constantly checks the buffer and adds the

bytes until the entire size (represented by five

individual bytes) is stored. At this point, it continues

to take data from the buffer up to the size of the

picture that is now known. Only once the entire byte

sequence is stored properly does it pass the array to

the method that converts the array to a displayable

picture.

VI. TESTING

Our prototype has been tested thoroughly to ensure

that it will work correctly. We tested each system

separately first before putting them together. The

Bluetooth module was the first piece of hardware that

we tested. To do this we first downloaded an android

application that acts as a Bluetooth terminal, so that

we can receive characters and send characters on the

connection. A simple program was used that sent the

values 0-127 of the ASCII table. Once complete an

‘A’ would be sent on the terminal to see if the

module received correctly and that the UART

communication was working. The camera testing

had to go later in development since it was difficult

to move the picture from the microcontroller onto a

desktop computer to see the images. The siren was

implemented before a speaker was acquired;

therefore an oscilloscope was used to observe the

waveform coming from the DAC. Once the speaker

was acquired further testing was done to adjust the

volume of the alarm so not to hurt the ears of people

near BroBot. It was determined from testing that a

potentiometer would be the best way to have full

control over the volume of the alarm. This is desired

because if, for example, the user was in a no talking

area of a library then they need a way to not create

unwanted noise.

To test the item watcher algorithm the program

was first written on a desktop computer. Images that

replicated the same resolution where used in this

program to make sure the decoding was working as

well as the actual item watching process. Once that

was refined the program was moved onto the

microcontroller, where most of the debugging of the

project was completed. Once on the microcontroller

we then tweaked the threshold value to our liking,

this value might need to be changed in the future but

is very accessible.

The application’s testing had to be done once the

hardware system was ready. This was because the

application can’t do anything without the hardware to

talk to. The first item that was tackled was producing

a picture on the phone’s screen. Figure 4 shows the

first picture that was successfully sent from the

camera to the application. Once that hurdle was

overcome the rest of the interaction between the

microcontroller and the application was finalized and

tested. Some bugs still occur though very

infrequently.

Once the application and the microcontroller

interfacing worked the focus was then shifted onto

getting the item watching software to work in

conjunction with everything else. When the item

watching subsystem worked to a degree the program

was then fine-tuned to increase speed and accuracy.

VII. CONCLUSION

With BroBot, our team was able to combine many

aspects of electrical and computer engineering

seamlessly in one project to provide a practical,

marketable product. Not only did it give us

substantial hands-on experience in the sub-fields we

chose to work on, but also gave us a feel for working

in the industry, where having to integrate many

different components is commonplace. It gave us the

chance to operate as a real engineering team by

meeting several times a week, distributing labor

appropriately based on workloads and skill sets, and

having deadlines and responsibilities that each of us

must be held accountable for. It also gave us

firsthand experience with the engineering lifecycle,

as it was our first real experience from taking an idea

from nothing, planning and researching it, and taking

it to production all on a fixed schedule.

VIII. REFERENCES

LinkSprite Technologies technical staff, LinkSprite JPEG

Color Camera Serial UART Interface User Manual,

2012.

Roving Networks technical staff, RN41/RN41N Class

1 Bluetooth Module, Roving Networks, 2013.

STMicroelectronics technical staff, STM32F407VG

Datasheet, STMicroelectronics, 2013.

Richard Landau is a

senior receiving his

bachelor of science in

Computer Engineering. He

is starting as a software

engineer at Northrop

Grumman upon

graduation.

Sarah Patten is majoring

in computer engineering,

receiving a BS in May. A

few years after graduation

she intends on attending

graduate school for

artificial intelligence.

Jacob Stewart is a 22 year

old senior Electrical

Engineering Student

graduating this May.

Jacob enjoys many aspects

of electrical engineering

including working with

embedded systems and

semiconductor physics.

