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Abstract

Dynamic Meta Modeling (DMM) allows to expand meta modeling to
the semantics of a model. By transforming Eclipse Modeling Framework
(EMF) models to typed graphs, the results of this thesis allow to use the
Groove toolset to compute graph transition systems for the EMF models.
Using Groove and a corresponding ruleset, we can then check the tran-
sition system for interesting states. This thesis also presents the reverse
transformation from Groove to EMF which could be used to transform
these interesting states back and inspect them inside the Eclipse platform.
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1 Introduction

In software engineering today, the approach of Model Driven Architecture is
becoming ever more prominent. The need to have a way of software engineers
and customers to communicate has led to the specification of Visual Modeling
Languages, with Unified Modeling Language (UML) being the de facto industry
standard. Visual Modeling Languages allow to model a software in a way that
is well understood by both the software developers and their customers.

A problem of UML is that it has a well defined syntax, defined by a meta
model, but the semantics are provided only as a textual description. This
approach has the danger of leading to incosistencies or even contradictions,
because the description is too large to be checked manually and a textual rep-
resentation can not be checked automatically by a software system.

For this problem, Engels, Hausmann et al. [7] have introduced the method
Dynamic Meta Modeling (DMM) which allows to define the semantics of a
meta model in a formalized way. In DMM, the semantics of a meta model is
represented by a set of graph transformation rules typed over the meta model,
called the dynamic meta model. The syntax is represented by a model called
the static meta model. These rules can be applied to a model which is an
instance of the meta model resulting in a graph transformation system.

Meta models can be represented according to the Meta Object Facility
(MOF) standard [3]. Ecore, a part of the Eclipse Modeling Framework (EMF)
implements the Essential MOF standard and is used in this work to define meta
models. Using EMF, we can define model instances of these meta models which
can be used as static meta models in DMM.

Röhs [11] presented a graphical editor for DMM rules based on Graphical
Modeling Framework (GMF). This can be used to produce rulesets for DMM
graphs typed over EMF models, which constitute the dynamic part of the DMM
meta model.

When transformed to Groove rulesets, the dynamic model can be used by
the GRaphs for Object Oriented VErification (Groove) [8, 9, 10] toolset to
automatically compute the resulting transition system of a graph and a set
of transition rules. Groove can also be used to identify interesing states that
meet conditions defined in Groove rules, but it cannot read EMF models, so a
transformation from EMF models to Groove state graphs is necessary

This bachelor thesis presents such an implementation to transform EMF
models to Groove state graphs. Additionally, the Groove state graphs can be
transformed back to EMF for further inspection. This is done by implementing
an Eclipse plugin that consists of two transformation methods transforming
from EMF to Groove and back.

Figure 1 gives an overview: An EMF model is transformed to a Groove
start state that is then used together with a ruleset to compute a transition
system. Groove can identify states that meet defined conditions, which can
then be transformed back to EMF to inspect them. The transformations from
EMF to Groove and back are presented in this thesis.

First we will give a further introduction to DMM, EMF and Groove in Sec-
tion 2. Then the transformation from EMF to Groove is presented in Section 3
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Figure 1: Overview over a bidirectional transformation

and the reverse transformation in Section 4. In Section 5 we will show that
the bidirectional transformation works with a number of test cases. Section 6
concludes the paper and gives an outlook for future work.

2 Fundamentals

In this section we will look at the necessary technology for the transforma-
tions. Section 2.1 will give an overview over Dynamic Meta Modeling (DMM).
Section 2.2 will deal with the Eclipse Modeling Framework (EMF) technology,
showing how the ecore meta model is structured and how it helps us to gener-
ically access EMF models. Section 2.3 shows Groove toolset stores models as
graphs.

2.1 Dynamic Meta Modeling

DMM is a method to model the semantics of a model in its meta model addi-
tionally to the syntax. Normally, a meta model consists of a graphical represen-
tation for the syntax, which is on the one hand easy to comprehend and on the
other hand avoids misunderstandings. The semantics are often represented by
textual, informal annotations. These can fill hundreds of pages, as in the case
of UML. Since there is no way to automatically check these ambiguous texts
for errors, inconsistencies and double meanings are prone to be overlooked. An-
other way to model the semantics is by using a mathematical model. This is
formally defined, so we can mathematically check if it behaves we want and if
there are inconsistencies, but it is not easy to understand for people without a
technical background.
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DMM, on the other hand, combines the good sides of both by using a
graphical representation that is also a formal model for both the syntax and
the semantics of the model. This not only unifies the representation of syntax
and semantics, but also allows tools like Groove to check the graph for errors,
if we give it the right input format.

Let us look at flow networks [4] as an example. Flow networks are a formal
model, but they can also be represented graphically, as we will do in this thesis.
An example meta model for flow networks is shown in Figure 2. There is a con-
tainer class containing all others, which is called FlowNetwork. The nodes in
the network are represented by the abstract NodeElement class, which defines
a name and a height for use in algorithms like the Push Relabel Algorithm [6].
In the Push Relabel Algorithm, the nodes are lifted to a height h and can only
push flow along edges that have a lower height. A node is overflowing if there
is more flow entering it from incoming edges than leaving it through outgoing
edges. As long as there are overflowing nodes, the Push Relabel Algorithm
will either lift an overflowing node to a higher height than it’s neighbors or, if
possible, push as much flow along the outgoing edges as possible. When there
are no more overflowing nodes, a maximum flow has been computed [6]. There
are three classes inheriting from NodeElement, Source, Sink and Node. Source
and Sink represent the source and sink in the flow network. They are special
nodes, because they have only outgoing or incoming edges respectively and they
can not be overflowing. The outgoing edges of the source are referenced by the
sourceEdge association and the incoming of the sink by the sinkEdge associa-
tion. The Node class specifies the additional boolean attribute overflowing and
has both outgoing and incoming edges modeled by the associations outEdge
and inEdge. Edges have a capacity, a flow and can be satisfied. An edge is
satisfied if the flow is equal to the capacity. There can never be more flow
flowing over the edge than the capacity allows. The directed edges also have
associations “to” and “from” with the nodes they connect.

2.2 Eclipse Modeling Framework

The Eclipse Modeling Framework is a powerful framework developed for Eclipse.
Ecore models are the standard model format of EMF and can be generated from
Java code, XML data or UML diagrams. Java code generation from an ecore
model is supported as well. In this thesis, we will concentrate on the modeling
capacities. This subsection gives a short overview of the modeling concepts
behind EMF. More detailed descriptions can be found in chapter 5 of [5].

Ecore models are defined by a meta model, which is also defined in Ecore.
Figure 3 shows a simplified model of the Ecore meta model [5].

As we see, Ecore models mainly consist of four different types of objects [5]:� EClass models classes. They are identified by their name attribute and
can contain a number of references and attributes. Inheritance is modeled
by the eSuperTypes reference, where a number of other EClasses can be
referenced. In our example from Figure 2 Edge or Node are EClasses.� EAttributes are the attributes of an EClass. They are also identified
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Figure 2: Example core model modeling a flow network

Figure 3: The simplified Ecore Kernel [5]
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Figure 4: Ecore structural features [5]

by a name and have exactly one eAttributeType. name or height are
EAttributes.� EDataType models the attribute type of an EAttribute. It is identified
by a name. Data types can be primitive types like int or object types like
Integer [5]. EInt or EBoolean are EDatatypes in the example.� EReference models associations of EClasses. It has a name attribute as
identifier. The containment attribute defines if it is a containment ref-
ererence. Lower and upper bounds are defined by their attributes. An
EReference may have an EOpposite if the association is bidirectional and
must have an eReferenceType to define which type of EClass is referenced.
EReferences in the flow network example are sinkEdge or nodeContain-
ment.

Actually, there are a lot more meta attributes that EReferences and EAt-
tributes share, as Figure 4 [5] shows.

As we see the name attribute was actually inherited from ENamedElement,
which only defines this attribute. EClass and EDataType share the supertype
EClassifier, which is referenced by ETypedElement. This is because both ERef-

6



erences and EAttributes as some other classes in Ecore have an eType reference
which can references EClassifier. Most attributes EReferences and EAttributes
share are inherited from EStructuralFeature [5]:� changeable determines if the value of the feature may be externally set.� transient is true if the feature will not be serialized.� unique specifies for multiplicity-many features if a single value may only

occur once.� unsettable specified if the feature may be unset. If a feature is unset, it
has no value. If a feature is not unsettable, it will be set to the default if
an EObjects eUnset() method is called.� volatile defines that the feature has no storage directly associated. This
is usually the case if it can be derived from other features.� upperBound and lowerBound define the multiplicity of a feature.� required and many are conveniences and derived from the lower and upper
bounds.� defaultValueLiteral stores the default value of the feature as a String
and defaultValue is derived from this by converting the String to the
appropriate data type.

What sets EReferences and EAttributes apart are only a few meta attributes
[5]. EAttributes have a boolean iD that determines if the attribute can be used
to uniquely identify an EClass. This attribute will then be referenced by a
reference eIDAttribute from the EClass. ERferences have the containment and
container attributes. If containment is true, the referenced class is contained
by the refererencing class. A contained class may not contain their container
[5]. Container models the same relationship, but the other way around. In
Figure 2 EdgeContainment is an example of a containment reference. Finally
there is a boolean attribute resolveProxies which determines if EClasses from
other Resources should be loaded if necessary.

Data types in Ecore represent “simple” data [5]. These comprise of primitive
types like int, but also objects like String. This gives us the possibility to model
conceptually simple data as objects without operations, although there may be
operations in Java. Still, this is sensible to keep the models as simple as possible.
One exception from this are enumerated types which are illustrated in Figure 5
[5].

Enumerated types are defined by their literals, which are a concrete list
of values they can take. As we see the literals inherit from ENamedElement,
so they also have a name. Thus, we can use enumerations to define our own
distinct states for an attribute. The two different methods getEEnumLiteral()
return an EEnumLiteral either identified by name or value.

Another important feature of EMF for us are packages and factories. Pack-
ages contain related classes and data types and their metadata. Factories are
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Figure 5: Ecore Enumerations [5]

Figure 6: Ecore packages and factories [5]

used to create instances of these classes. Figure 6 [5] shows the relations between
these.

EPackages are identified by their namespace URI (nsURI). This URI must
be unique. They also have a name, but that may be not unique. As we see,
the packages consist of EClassifiers, referenced by the eClassifiers association.
Recall that EClasses or EDataTypes are EClassifiers (see Figure 4). A package
may also have subpackages, where the names of EClasses may be duplicates
of those in the main package. EPackages are stored in a package registry at
runtime which can be used to access the EPackages when needed. All that is
needed for this is the namespace URI. Each package has a unique EFactory
associated by the eFactoryInstance association. This EFactory can be used to
create instances of the modeled EClasses.

EClasses may also contain EOperations. These model operations, but no
semantic information is modeled or will be generated. DMM could be used
to actually model the behaviour of the operations. The transformation in this
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work does not transform EOperations, so we will not describe them further.
In this thesis, mainly the capabilities of EMF for accessing the meta models

generically are used. Using these techniques, we do not need to know the meta
model at compile time, but only at run time. As explained before, we can get
the metadata of a model by accessing the EPackage, which can be done using
the EPackage registry. The implementation of the bidirectional transformation
is designed to run as an Eclipse Plugin. We suppose that the model code of
the used packages has been generated by EMF. This is necessary to create
instances of the EClasses defined in the EPackage. EMF generates specialized
factories to create these EClasses, but also generic methods that delegate to
the specialized implementations. Using this generated code, we can then create
a model conforming to an arbitrary core model if we know the names of the
needed EClasses and EDataTypes. See Section 4 for details on how this was
implemented.

2.3 Groove

Groove is a toolset that is designed to support model checking using graph
transition systems [8, 9]. It can automatically compute a transformation system
if it is supplied with a start state and a ruleset. As this thesis focuses on
transformation for EMF models to Groove start states, we will not explain the
format of the Groove rules here. Information about that can be found in the
Groove manual [10]. Groove consists of five tools [10]:� The Simulator is used to explore the graph, the resulting states and the

ruleset.� The Editor can be used to edit both start states and rules. The figures of
Groove graphs in this thesis were made with the Groove Editor.� The Generator computes the transition system of a graph from a start
state and a grammar.� The Imager can create pictures of graphs, rules and transition systems.� The Model Checker verifies properties over graph transition systems.

We will now give an introduction to the format of Groove start states, as
this is what the one side of the transformation produces and the other side
takes as its input. Groove graphs consist of nodes without labels and labeled,
directed edges. These graphs are stored in the Graph Exchange Language
(GXL) format, which is defined by an Extensible Markup Language (XML)
schema. As node labels are a wanted property, they are modeled by self edges
of the nodes. In the Editor and Simulator these are displayed as labels inside
the nodes. Figure 7 shows an example graph in the normal representation and
with explicitly shown self edges. We left out the FlowNetwork root element
and all attributes for simplification. As we see, displaying the self edges as
node labels greatly simplifies the graph, so we will use this representation in
the further sections of the thesis. We should keep in mind that all node labels
in Groove graphs are actually labelled self edges.
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Figure 7: Groove graph with and without self edges explicitly shown.

In Figure 7 we also see how objects will be modeled in Groove in the remain-
der of this thesis. Each object is represented by a node with labels according
to the object’s class and all its supertypes. Figure 8 shows how attributes
are modeled. They are represented by special nodes with self labels that be-
gin with a codeword indicating that the node represents a variable. At the
moment, Groove only supports integers (int:), floating point numbers (real:),
strings (string:) and booleans (bool:). The objects the attributes belong to are
connected by edges labeled with the attribute name.

Using graphs of this kind and according rules, Groove can compute the
transition system of a graph and also automatically check for conditions. This
can be used for model checking, i.e. to see if a petri net contains deadlocks.

3 Transforming EMF to Groove

This section presents the transformation of an EMF model to a Groove graph
or state. This transformation is necessary to be able to use Groove to compute
a transition system for the graph corresponding to the EMF model.

The transformation from an EMF model to a Groove start state is done
by the method emfToGxl. The API allows to call the method with a File, a
Resource or an EObject as the input parameter. If the method is called with
a File as parameter, a Resource is loaded from the file and the method for a
Resource is called. Then, since there is always a single root object in a model
Resource, this root EObject is loaded and the method with an EObject as input
parameter is called. Listing 1 shows the method in Pseudocode. Figure 9 shows
a model that could be used as an input for the method. It is based on the flow
network meta model from Figure 2.
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Figure 8: A Groove graph with attributes.

Figure 9: Model of a simple flow network

Listing 1: Main method of the conversion from EMF to Groove

1 GxlType emfToGxl ( EObject rootObject ) {
2 c r ea t e an empty Gxl graph ;
3 f o r ( a l l ob j e c t s r eachab l e from rootObject )
4 get packages from package r e g i s t r y ;
5 add a node with l a b e l s o f a l l n sUr i s
6 o f the packages ;
7 preProcessPackage ( L i s t o f nsUr i s ) ;
8 createEnumNodes ( package ) ;
9 f o r ( rootObject and a l l i t s an c e s t o r s )

10 addEObject ( eObject ) ;
11 f o r ( rootObject and a l l i t s an c e s t o r s )
12 addReferences ( eObject ) ;
13 }

The output Groove start state is shown in Figure 10.
Remember from Section 2.2 that all meta data is stored in packages, which
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Figure 10: Groove start state for the flow network

are identified by their namespace URIs. We generate a list of all namespace
URIs of packages that are referenced in the core model by going through all
classes and their references. The first node we create in the new GXL graph
is a special node indicating the namespace URIs of all packages referenced
in the core model. The node labels, which are actually labeled self edges,
see Section 2.3, are of a special format that identify them as system nodes
which will be ignored in the further transformation process. The labels begin
with “DMM NsUri ” followed by the actual namespace URI. In the reverse
transformation from a Groove graph to an EMF model, we will use this node
to load the necessary packages (see Section 4).

The packages are then preprocessed to resolve duplicate class names, see
Section 3.1. Next, nodes for all enum literals in the package are added, see
Section 3.2.

Now, we first create nodes for all EObjects in the model. At first, we
call addEObject() for the root EObject, adding a node with all appropriate
class edges and attributes. Using the EMF method eAllContents(), we get
all ancestors of rootObject as a TreeIterator. We iterate through all of these
EObjects and call addEObject() for each of it. Listing 2 shows how this method
works.

Listing 2: addEObject adds an EObject and the according attributes to the
graph

1 Str ing addEObject( EObject eObject ) {
2 newNode = a new node in the graph ;
3 eClass = eObject . eClass ( ) ;
4 className = eClass name from the c l a s s name Map ;
5 add a s e l f edge to newNode with className as l a b e l ;
6 f o r ( a l l super types o f eClass )
7 add a s e l f edge to newNode with super type ’ s
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8 c l a s s name as l a b e l ;
9 addAttr ibutes (newNode , eObject ) ;

10 add eObject to Map objectsDone ;
11 }

First we first create a new node representing the EObject, then we add
a self edge to this node for its eClass and all super types. At last we call
addAttributes for the new node, also passing the EObject as an argument. The
method addAttributes adds the attributes of an EObject as in Listing 3. Finally,
we add the eObject to a Map objectsDone<EObject,String>which stores what
node represents what EObject. We will need this information later to add the
references to the graph. The String returned by addEObject() is the node ID,
a string identifying all nodes in a GXL graph.

Listing 3: Adding the attributes of an EObject to the according node

1 void addAttr ibutes (NodeType newNode , EObject eObject ) {
2 f o r ( a l l a t t r i b u t e s o f eObject ’ s EClass )
3 {
4 i f ( the a t t r i b u t e i s an enumeration )
5 addEnum(newNode , a t t r i b u t e ) ;
6 e l s e {
7 attr ibuteNode = a new node in the graph ;
8 add s e l f edge to attr ibuteNode con ta in ing
9 the a t t r i b u t e type and value ;

10 add edge from newNode to attr ibuteNode
11 with the a t t r i b u t e name as l a b e l ;
12 }
13 }
14 }

As we can see, we again use the meta data from the package in this method.
Here, we go through all attributes that eObject’s EClass has defined. This also
includes all attributes defined as volatile or derived (see Section 2.2), because
these can also be interesting for Groove and we do not want to compute them
on the Groove side by designing special rules for derived values. EMF also
returns all inherited attributes when getEAllAttributes() is called, which we
do in this method. If the current attribute in the loop is an enumeration, we
call the method addEnum(), which is described in Section 3.2. As explained
in Section 2.3, attributes in Groove are represented by nodes with self edges
specifying type and value, and an edge from the object to the attribute. So, in
line 7 we create a new node, in line 8 we add the type and value and in line 9
we add the edge from the eObject to the attribute. The type of the attribute
can be found out by getting the attribute from the eObject and inspecting its
EType. This is then transformed to a string according to Table 1. To this
string the value of the attribute is appended by getting it from the eObject and
transforming it to a String using the toString() method.

Figure 11 shows the graph after all objects were added. All EObjects have

13



Table 1: List of supported data types and their representations in the Groove
graph

Data type representation

EBigDecimal real
EBigInteger int
EBoolean bool
EBooleanObject bool
EByte int
EByteObject int
EChar string
ECharacterObject string
EDouble real
EDoubleObject real
EFloat real
EFloatObject real
EInt int
EIntegerObject int
ELong int
ELongObject int
EShort int
EShortObject int
EString string
EENum see Section 3.2
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Figure 11: A Groove graph after the EObjects have been added, but before the
EReferences are added.

been transformed by addEObject() and their respective attributes added to the
graph, but there are no references yet. So, as we have seen in 1, the next step
is to go through all EObjects again and add their references. This is done by
the method addReferences() shown in Listing 4.

Listing 4: Method adding the references to the graph

1 void addReferences ( EObject eObject ,
2 Map<EObject , S tr ing> objectsDone }
3 eClass = eObject ’ s EClass ;
4 f o r ( a l l Re f e r ence s de f in ed in eClass
5 and i t ’ s super types )
6 {
7 i f ( r e f e r e n c e i s ordered )
8 addOrderedReference ( eObject , r e f e r e n c e ) ;
9 e l s e

10 f o r ( a l l r e f e r en c ed EObjects )
11 add edge with l ab e l r e f e r e n c e name
12 from eObject ’ s node to r e f e r en c ed
13 EObject ’ s node ;
14 }

Here we again use EMF’s generic API. We use getEAllReferences on the
eObject’s EClass, getting all EReferences that are defined in the meta model
for the EClass and all super types. If the reference is ordered, we use the
method addOrderedReference which is documented in Section 3.3. Otherwise,
we can simply add an edge to the graph for each referenced EObject. Since we
stored in a Map which EObject is represented by which node, we know where
the edge has to go. The label of the edge is simply the reference name, which
we also get from the meta model. If there are no EObjects being referenced
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for a specific EReference, no edge is added. Now the transformation is done
and the GXL graph is returned. It is shown in Figure 10. This graph can
be loaded in Groove and with a corresponding ruleset a transition system can
be computed. The following subsections will show how special cases in EMF
models are transformed.

3.1 Duplicate Class Names

Since a core model may contain references to EClasses in other packages, or
subpackages, there is the possibility that the names of two EClasses from dif-
ferent packages are the same. In this case, simply using the EClass’ name
as the label of a self edge would lead to problems because the two classes
would be undistinguishible in the Groove graph. So, to avoid this problem,
we have to store more information in the self edges. We could use a schema
like “nsURI#EClassName”, which would be unambiguous, since the nsURI is
required by EMF to be unique, as are EClass names within one package (see
Section 2.2). But in this case the node labels would have very long names and
would be hard to work with in Groove, especially when designing rules. So
we want to store as little information as possible, but as much as necessary to
identify each class.

Our example core model does not contain any duplicate file names yet, so let
us add an EClass Node as in Figure 12. The package counting is a subpackage,
but could also be an external package. This EClass has the same name and
super types, so it would look the same in the output Groove state. It has
another incoming containment reference and an additional attribute “counter”
which could be used to distinguish it from the original Node EClass, but that
would not always be possible.

Since we want to be able to distinguish between these two classes easily
both in Groove and in the reverse transformation back to EMF, we will use
the method preProcessPackage() to define distinct names for all EClasses. The
same method will be used in the reverse transformation, so the resulting names
will also be the same, as we will see by analyzing the method in Listing 5.

Listing 5: Package preprocessor to resolve duplicate class names

1 BidiMap<URI , Str ing> preProcessPackage ( L i s t n sUr iL i s t ) {
2 classNameMap = new BidiMap<URI , Str ing >;
3 f o r ( a l l n sUr i s in n sUr iL i s t )
4 {
5 get the package that i s r e g i s t e r e d f o r nsUri ;
6 f o r ( a l l EClasses in package )
7 {
8 className = name o f cu r r en t EClass ;
9 i f (BidiMap conta in s className )

10 {
11 classPackageName = name o f cu r r en t EClass ’ package ;
12 className = classPackageName + className ;
13 }
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Figure 12: Flow network example containing a duplicate EClass name in a
subpackage

14 classNameMap . put ( ClassURI , className ) ;
15 }
16 }
17 return ClassNameMap ;
18 }

This method returns a bidirectional mapping between URIs and Strings
and is called with a List nsUriList. nsUriList is a list of namespace URIs of
all packages that are referenced in the core model. This can be found by going
through all EClasses in the package and getting the package for each, adding
it’s namespace URI to the list if it is not already in it. Since we assume that
the core model will not change between our transformations, the order that the
packages are found in is well-defined.

The URIs that will be stored in the bidirectional map are the class URIs of
the EClasses in the package. This is computed by reflectively getting the EClass’
package’s namespace URI and adding the EClass’ name as the URI fragment.
In our example, if the namespace of the main package is “de.upb.flownetwork”,
the class URI of the Node EClass will be “de.upb.flownetwork#Node”. Call-
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Figure 13: Groove graph with resolved class names. The node FlowNetwork
has been left out for clarity.

ing EClass.getPackage() on the Source EClass in the subpackage will return
“de.upb.flownetwork.counting”, so the EClass URI will be “de.upb.flownetwork.-
counting#Node”. Since the namespace URI of all packages must be unique and
there cannot be duplicate EClass names in the same package, the class URI is
a distinct identifier for each EClass.

As we said before, we do not want to use these long identifiers in our Groove
graph. For this reason we only use the class name when we add a class to
the map, which is done in the order we find them in the core model. If we
find a second class in the core model that has the same name, we prefix that
with the package name. This is the last part of the namespace URI, so it
would be flownetwork for classes in the main package and counting for classes
in the subpackage. Figure 13 shows the output graph of a simple flow network
containing both a Node object from the main package and one from the counting
package. As we see, the first Node class from the main package is labeled Sink.
The second Node class from the subpackage is labeled counting.Node to avoid
ambiguity.

3.2 Enumerations

Enumerations offer us the possibility to define our own states for a variable.
Let us change the example from Figure 2 to incorporate an enumeration. At
the moment, EClass Node has a boolean variable named “overflowing”. We will
now model this through an enumeration named flowState that has the three
literals “overflowing”, “flowing” and “empty”. As before, it is a derived value
that is calculated from the flow going in and out of the Node. If there is more
flow going in than out, than the node is overflowing. If there is as much flow
going in as out, it is flowing, and if there is no flow going in or out at all, it is
empty.

As explained in Section 2.2, an EEnum contains the EEnumLiterals and we
can get them by using the eLiterals reference, see Figure 5. Listing 6 shows the
method that was called at the beginning of the transformation (see Listing 1).
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Listing 6: Creating the enum literal nodes

1 Map<Str ing , NodeType> createEnumNodes
2 ( EPackage package ) {
3 enumMap = new Map<Str ing , NodeType>;
4 f o r ( a l l EEnums in package )
5 {
6 c r ea t e a node l ab e l ed with the EEnum ’ s name ;
7 f o r ( a l l EL i t e r a l s o f the EEnum)
8 {
9 c r ea t e a node l ab e l ed with

10 the EL i t e r a l s ’ s name ;
11 c r ea t e an edge from the EL i te ra l ’ s node to the
12 EEnum ’ s node l ab e l ed DMM EEnum;
13 enumMap . put ( l i tera lName , node ) ;
14 }
15 }
16 }

We create a node for each EEnum in the core model and nodes for each
ELiteral linked to their according EEnum by an Edge labeled “DMM EEnum”.
The literal nodes nodes are stored in a Map that links the ELiteral names to
nodes in the graph. Mind that we do this independently of the actual model.
That means we also add the nodes for EEnums and ELiterals that are not used
by any objects in the model. This allows Groove rules to add Objects with
these literals or to change the enumeration literal of an object to another one.
We do not actually need the EEnum nodes for the transformation, but they can
be used to identify to which EEnum a literal node belongs in Groove. When
we add the attributes to a node created for an actual EObject, if we find an
enumeration attribute we create an edge from the node representing that object
to the according literal node. If more than one EObject has the same ELiteral
as an attribute value, they will have edges to the same literal node. We can get
the value from the EObject reflectively just as with normal attributes, in this
case we will get an EEnumLiteral. We can then use the name of that literal to
find the according node in the enumMap. Figure 14 shows an example Groove
graph that has enumerated attributes.

3.3 Ordered References

As we saw in Listing 4, ordered references are transformed differently than non-
ordered references. In the case of non-ordered references, we just add an edge
between the nodes representing associated nodes. Even if there is more than
one object referenced, we will just add more edges, all labeled with the name of
the reference, but this does not preserve the order of the reference. Figure 15
shows an example of a flow network with multiple Nodes. The order of the
Nodes is a, b, c. Since the nodeContainment EReference is ordered, we will use
the methods described in this section.

The order of a single reference could be saved by using simple next-edges
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Figure 14: Example Groove graph with EEnumerations. Nodes without enu-
merations have been left out for clarity.

Figure 15: Flow network with three Nodes. The order of the Nodes is a, b, c.
Edges, source and sink have been left out.
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Figure 16: Excample Groove graph with simple next edges.

as in Figure 16. We labeled the edges “DMM next” to mark them as edges
used by the transformation system. This keeps the graph simple and allows to
determine the order of the referenced objects, but this will not work if there
are multiple references referencing the same objects.

If an object has multiple ordered references, there would be multiple next
edges. This problem could be solved by labeling them with “DMM next <reference
name>”. Still, this would not suffice for a well-defined order in all cases. If there
are two FlowNetwork objects referencing the same Nodes in a different order,
we could not distinguish the next nodes. This leads us to the solution presented
in Figure 17.

In this graph, there is a system edge labeled “DMM next” from the ref-
erencing FlowNetwork to the first next node, and from there on to the next
one and so on, sustained through a next node for each referenced object. These
next nodes are labeled “DMM next” and “DMM next <reference name>”. Also,
there is an edge labeled “DMM ordered reference” from each next node to the
corresponding object node. This mechanism allows us to find the order of the
referenced objects when transforming the graph back to EMF or in Groove
using rules. Also, we can use rules in Groove to add further nodes to the ref-
erence anywhere in the chain of objects. In this case we would add a node for
the object with the according edges and an according next node, updating the
edges of the other next nodes in the chain. The next node chain basically works
like a linked list with references to object nodes. The implementation of the
funcionality described in this section simply adds the next nodes and edges by
using EMF’s reflective capacities.

4 Transforming Groove to EMF

The transformation from Groove states to EMF models can be used for example
to inspect interesting states in the transition system computed by Groove inside
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Figure 17: Finished Groove graph of the example from Figure 15

of the Eclipse platform. The API consists of two different calls to the gxlToEMF
method. One method takes a File as input, loading a GXL graph from that
and calling the other. The gxlToEMF method that is called with a GXL graph
and a String is presented in Listing 7.

Listing 7: Main method of the transformation from Groove to EMF.

1 Resource gxlToEMF(GraphType gxlgraph , URI outFileURI )
2 {
3 r e sou r ce = new Resource f o r outFileURI ;
4 nsURI = namespace URI from the f i r s t node
5 in gxlgraph ;
6 ePackage = package from the r e g i s t r y
7 i d e n t i f i e d by nsURI ;
8 BidiMap<URI , Str ing> classNameMap =
9 preProcessPackage ( ePackage ) ;

10 Map<NodeType , EObject> nodesDone = new Hashtable ;
11 f o r ( a l l nodes in the graph )
12 {
13 i f ( nodesDone does not conta in the node )
14 transformNode ( cu r r en t node ) ;
15 }
16 }

gxlToEMF will return a Resource containing all EObjects that are repre-
sented by nodes in the input graph. To create this resource in line 3, we need to
have a URI that defines where the Resource would be saved in a file. We will not
save it in a file but return it unsaved, the method calling gxlToEMF can simply
save the Resource to a file by doing resource.save() if needed. gxlToEMF first
acquires the meta data of the model we want to create by getting a package
from the package registry. Section 2.2 describes how the package registry in
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EMF works. We get the namespace URI of the package from the first node in
the graph, where it has been saved in the transformation from EMF to Groove.
This first node is well defined because the GXL format stores the nodes as a list.
Using this we can get the package from the registry. Next we preprocess the
package to have a Map linking class URIs and the strings representing the class
in the graph. This is done using the same function preProcessPackage as in the
EMF to Groove transformation, which is described in Section 3.1. Since we use
the same method on the same package, we will get the same mapping as in the
other transformation which allows us to unambigously identify an EClass by
the labels of a node in the graph. gxlToEMF also creates another Map nodes-
Done, which will be used to store which nodes have already been transformed
to which EObjects. Then, for all nodes in the graph transformNode is called if
the current node has not already been transformed. transformNode will recur-
sively add all nodes referenced by the node it is called with and add them to
the nodesDone map. Listing 8 shows how the method works.

Listing 8: Transformation of a single node into an EObject

1 EObject transformNode (NodeType node ,
2 bool addDirect ly ) {
3 eObject = getEObject ( node ) ;
4 i f ( addDirect ly == true )
5 add eObject to the r e sou r ce ;
6 nodesDone . put ( node , eObject ) ;
7 addAttr ibutes ( node ) ;
8 f o r ( a l l r e f e r e n c e s o f eObject )
9 addReference ( node , r e f e r e n c e ) ;

10 }
11 }

The input is a node and a boolean that tells the method if it should add
the node to the resource itself or if it will be added by the calling method. This
will be further explained when we show how referenced objects are added. We
use the reflective capabilities of EMF to get an EObject instance of the EClass
represented by the current node (see Listing 9). Then we add the object to the
resource as indicated by addDirectly. We also put the node in the nodesDone
Map, because an instance has been created and added to the resource or will
be added by the calling method. In both cases, we must not handle the same
node again, which is averted by adding it to the Map, as we will see in Listing
11. Next we set the attributes of the object, as shown in Listing 10. Lastly we
add the references the EObject may have, see Listing 11.

Listing 9: Find out which EClass is represented by a node and create an instance
of it.

1 getEObject (NodeType node ){
2 f o r ( a l l s e l f edges o f node )
3 {
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4 get EClass r ep r e s en ted by the l ab e l o f the
5 outer edge ;
6 r i gh tC l a s s = true ;
7 f o r ( a l l other s e l f edges o f node )
8 {
9 get EClass r ep r e s en ted by the l ab e l o f the

10 i nner edge ;
11 i f ( inner EClass i s not super type o f
12 outer EClass )
13 {
14 r i gh tC l a s s = f a l s e ;
15 break ;
16 }
17 }
18 i f ( r i gh tC l a s s = true ) ;
19 c r ea t e i n s t an c e o f r i gh tC l a s s ;
20 }
21 }

getEObject that is presented in Listing 9 is used to create an instance of
the EClass represented by a node. Since there is a self edge at the node not
only for the EClass of the represented object, but also for each of the inherited
EClasses, we have to find out which one is the right EClass. This is done by
two nested loops over all self edges of the node. Say we have a node with
the self labels “NodeElement” and “Sink”, as in Figure 10. Now assume we
first find the self edge “NodeElement”. We will get the EClass “NodeElement”
from the map created in preProcessPackage (see Section 3.1 and Section 4.1).
This is not the class of the object that the node represents but a super type
of it. But to find out that, we will have to go through all other nodes and
check if “NodeElement” is a super type of one of these, which is exactly what
we do in the inner loop. If we find an EClass inheriting from “NodeElement”
in one of the other self edges, we save that “NodeElement” is not the right
EClass by setting rightClass to false and break out of the inner loop. In our
example the only other self edge represents “Sink”, which is really inheriting
from “NodeElement”, so we will break the loop. Then we will look at the next
self edge and compare it to all other self edges again, until we have found the
EClass that is the “lowest” in the inheritance chain. In the example no other
self edge represents a class inheriting from “Sink”, so we will have rightClass be
true after we examined the self edge representing the “Sink” EClass. When we
have found the right EClass, we use the factory instance explained in Section 2.2
to create an instance EObject of that class and return this EObject. For this
the model code has to be generated and loaded as an Eclipse plugin, because
otherwise EMF would not be able to create an EObject of type EClass. The
newly created EObject has all attributes set to their default values and the
references will be unpopulated.

Thus, the next thing we do (see Listing 8) is setting the attributes with the
method setAttributes, shown in Listing 10.
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Listing 10: Setting the attributes of an EObject

1 void s e tAt t r i bu t e s (NodeType node , EObject eObject )
2 {
3 f o r ( a l l ne ighbor ing nodes o f node )
4 {
5 i f ( the node r ep r e s en t s an a t t r i b u t e )
6 s e t the value o f the a t t r i b u t e to that
7 s to r ed in the node ;
8 }
9 }

This method goes through all neighboring nodes of the node representing the
EObject being currently processed. If it finds a node representing an attribute,
it sets the attribute accordingly. Since the attribute name is stored in the edge
leading to the attribute node and the value in the only self edge that node has,
this is no big deal. We parse the value from the self edge and use the generic
set method of EObject to set the attribute. See section Section 4.2 to see how
EEnums are handled in contrast to simple data types.

Now all that remains is polupating the references of the EObject. Listing
11 shows how this is done.

Listing 11: Populating the references of an EObject

1 void addReferences (NodeType node , EObject eObject )
2 {
3 f o r ( a l l r e f e r e n c e s o f the EClass o f eObject )
4 {
5 f o r ( a l l edges r ep r e s en t i n g the r e f e r e n c e )
6 {
7 i f ( the r e f e r en c ed node has not been
8 transformed )
9 transform the r e f e r en c ed node us ing

10 transformNode ;
11 e l s e get the r e f e r en c ed EObject from nodesDone ;
12 add the r e f e r en c ed EObject to the r e f e r e n c e
13 l i s t o f eObject .
14 }
15 }
16 }

From the meta data in the package, we get all EReferences defined for
the EClass of the current object. We then look for edges that are labeled
with the reference name and recursively transform all nodes that they lead to.
Here, ordered references have to be resolved as demonstrated in Section 4.3.
When transforming the referenced nodes, we set addDirectly to false for the
transformNode method, because we do not want the EObject to be added to
the resource directly. Instead, we add the returned EObject to the reference
list of our current EObject, populating the reference.
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With this step, the transformation of the node from Groove to an EObject
is done. transformNode adds the EObject to the resource if addDirectly is true
and returns it to the calling method. Since we do this for all nodes that have
not been recursively added (see Listing 7), we will have transformed the whole
graph at the end of method gxlToEMF. The following sections show how the
special cases shown in Section 2.2 are transformed back to EMF.

4.1 Resolving Duplicate Class Names in Groove Graphs

In the transformation from Groove to EMF, we use the same method prePro-
cessPackage as in the transformation from EMF to Groove. See Section 3.1
for how this preprocessor computes an unambiguous mapping from EClasses to
Strings. Since it produces a bidirectional Map, we can use this map without
modifications. The package namespace URI was saved in a node in the graph,
see Section 3. Under the condition that the package identified by that URI
registered in the package registry when we start the reverse transformation is
the same as that when we transformed the model from EMF to Groove, in other
words, the meta model has not changed, we will get the same mapping as in the
original transformation. This means we will transform the nodes identified by
their labeled self edges back to instances of the same EClass they were before.
Another prerequisite is that the rules applied by the Groove ruleset also used
the same mapping of Strings to EClasses. Remember that we will simply take
the EClass’ name if possible (see Section 3.1). Since there will only be relatively
few cases where duplicate class names actually occur, the need to use more than
the EClass’ name in Groove rules will occur very seldom.

4.2 Setting the Values of EEnum Attributes

Recall how we represented ELiterals in the Groove graph (Section 3.2). We
created a unique node for each ELiteral in the meta model. The nodes rep-
resenting eObjects with EEnum attributes were linked to the according literal
node. Now, in the transformation from Groove to EMF, we face the problem of
creating the right ELiteral instance and setting the EEnum attribute to that.
This is done by finding the edge representing the EEnum attribute and getting
the label of the node that it leads to. This node is the representation of the
right ELiteral. For example, if we look at Figure 14, Node a has the flowState
“overflowing”. This is represented by an edge labeled “flowState” leading to
the literal node labeled “overflowing”. Now, to transform Node a back, we look
for the flowState edge and find that it leads to a node labeled “overflowing”.
We then use the EFactory in EMF to create an instance of that ELiteral and
set the flowState EEnum to that instance.

4.3 Resolving Ordered References in Groove

Resolving the order of referenced objects from the structure we saved in the
Graph as in Section 3.3 is done by the method addOrderedReference shown in
Listing 12.
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Listing 12: Populating an Ordered Reference

1 void addOrderedReference (NodeType node ,
2 Reference r e f )
3 {
4 whi le ( ther e i s a next−node found )
5 {
6 l ook f o r the next next−node connected to node ;
7 node = next−node ;
8 transform the node that i s l i nked
9 by the next−node ;

10 add the EObject to the r e f e r e n c e l i s t ;
11 }
12 }

addOrderedReference is called with the node representing the current EOb-
ject and the ordered reference we are populating. Let us look at Figure 17
as an example. FlowNetwork will be the node we begin with, the ordered
EReference we are populating is nodeContainment. We will start by entering
the while-loop and looking for a next-node connected to FlowNetwork. This
node is identified as belonging to the nodeContainment reference by the label
“DMM next nodeContainment”. As there is one, we will set the current node
to be that next-node. Then we transform the node representing the Node a
and add it to the nodeContainment-list of FlowNetwork. The node represent-
ing Node a is found by looking for the edge labeled “DMM ordered reference”
going out from the next-node. We first check if the node has already been
transformed in the Map nodesDone and use the EObject stored there if possi-
ble. Then we look for the next next-node connected to the first next-node, find
that indicating Node b as the second object in the reference, and so on until
we do not find another next-node. Using this algorithm we add the referenced
EObjects in an ordered reference in the right order.

5 Testing the Transformations

A number of tests have been conducted to test if the transformation works
as expected. To test the system, we have designed test cases that cover the
modeling capabilities of EMF. The test cases are defined by EMF models that
contain specific model features like all supported kinds of attributes or different
references. To test if both transformations work, we first transform the models
to Groove states and then transform these back to EMF models. We are using
the EMF Compare [1] plugin to test the models for equality. Compare tries
to match the objects in the model to each other using a number of heuristics.
Since the models are instances of the same core model, which is also available
at runtime, Compare should have no problems with the matching. After that
a DiffModel is built, which contains all differences between the models. This
DiffModel is assumed to be empty by the tests. Additionally, the models are
validated before and after the transformations to find discrepancies between the
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core model and the instances.
We are also interested in the output Groove states, to investigate if the

transformation from EMF to Groove was successful. These graphs have to be
checked manually, because there is no way to automatically test the equivalence
of Groove states and EMF models without using the transformation itself. For
this reason, both the Groove states and the EMF models produced by the tests
are stored in an output directory for manual inspection. As the test cases
are deliberately small, manually checking the Groove states for correctness if
necessary is no big problem.

All tests are written as JUnit 4 plugin tests [2], so they can be used to con-
tinually test the transformation if changes in the algorithms are implemented.
Also, new tests can easily be implemented, as the main function of the test is
independent of the input.

Now we will look at the tests individually. A special core model was used
for the tests to ease identification of problems. The relevant parts of the model
will be described and shown in the following sections.

5.1 Testing the Transformation of Attributes

In the testing of attributes, we differ between simple attributes and enumera-
tions. Figure 18 shows the classes used in these test. The class AttrClass con-
tains EAttributes of all supported EDataTypes (see Table 1) excluding EEnums.
The attribute longDerived of type ELong is a derived value. This should make
no difference in the transformation, but is tested for completeness. We test
the transformation of these simple attributes using a model that contains two
AttrClass objects. In one, the attributes all have their default values, in the
other they all have non-default values. Again, the transformation should make
no difference between this.

For EEnums, we have the class EnumClass with the attribute ENumAttr of
type EEnum. EEnum is an enumeration with the literals LitA, LitB and LitC.
Here we have two test models defined. In one, there is only one EEnumClass,
in the other there are five, two with LitA, two with LitB and one with LitC
as the value of EnumAttr. With these tests, the transformation of EEnums is
completely tested.

5.2 Testing the Transformation of References

We test both ordered and non-ordered references in different tests. Containment
references are tested in all tests, as the class Container is a root class contain-
ing all other classes, as customary in EMF core models. Figure 19 shows which
classes are used in the tests of references. For reference test purposes, there
is another class referenceClass that has different non containment references.
Ordered references are tested using the classes orderedClass and singleOrdered.
Container and referenceClass both have ordered references to these, for ordered-
Class it is a multiplicity-many reference, for singleOrdered it is a reference with
the upper bound set to one. In the transformation, there should be next-nodes
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Figure 18: Test model classes used for attribute testing

Figure 19: Test model classes used for reference testing
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Figure 20: Test model classes used for testing of duplicate class names

created for the references that are ordered and many, but not for those that are
ordered but not many.

There are five test models for references:� manyOrderedOne uses the containment reference from Container to ref-
erence one orderedClass.� manyOrderedFive uses the ordered reference from Container to ordered-
Class referencing five objects in order.� singleOrderedCont uses the ordered single reference from Container to
singleOrdered.� twoOrderedRefs has two classes, Container and orderedContainer2, refer-
encing the same orderedClasses in different orders.� references tests non containment references using referenceClass.

5.3 Testing Duplicate Class Names

Figure 20 shows the classes used for the testing of duplicate class names.
There are three classes doubleClass, all contained by Container. One dou-
bleClass is a direct content of the emf2groovetest package, one is in a sub-
package called subpackage and one is cross-referenced in a package doublePack-
age. The classes in the emf2groovetest package are also inheriting the label
attribute from namedElement, which is not shown for clarity. We use a model
with one of these classes each and one with five each. The transformations
should transform these to Groove as doubleClass, subpackage.doubleClass and
doublePackage.doubleClass, respectively. After the transformation back to an
EMF model, the labels can be used to identify which doubleClass should be
from which package.
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5.4 Other Tests

There are two other test models. One tests inheritance using a class inheritClass
that inherits from most other classes in the core model. Inheritance is also tested
implicitly in the other tests, as all classes inherit their label attribute from
namedElement, but this test does an explicit test with ten inheritances for the
same object. Additionally, there is one “big” test model containing multiple
objects of every class defined in the core model to test if the functionality tested
with specialized test cases also works in the “big picture” of the whole model.

At the time this thesis was written, all tests returned positive results. They
can also be used to test the transformation should changes in the implementa-
tion be made.

6 Conclusion and Outlook

To enable software developers to use graphical and at the same time formal
models, Engels, Hausmann et al. developed Dynamic Meta Modeling (DMM)
[7]. Using a DMM rule editor presented by Röhs [11] and a transformation of
these to Groove rules, we can use the Groove toolset to inspect the transition
system of models. What was missing was an automatic transformation from
Eclipse Modeling Framework models to Groove states. Additionally, we would
like to transform states identified by Groove as matching conditions that make
them interesting to us back to EMF.

This thesis presented the bidirectional transformation between EMF models
and Groove states necessary for that. We transform the EMF models to GXL
graphs that can be read by Groove using the information from the ecore meta
model. We support all attribute types that are supported by Groove, resolution
of duplicate class names and ordered references. Using the generated code of
the ecore model, we transform the state graphs output by Groove back to EMF
models, so they can be inspected in the EMF editors again. Using a series
of JUnit tests, we showed that the transformations work as expected for all
supported EMF features. The bidirectional transformation presented in this
thesis fills the gap in the connection of EMF and Groove that was present
before.

We will now give an outlook on what the transformations could be used for.
We could conceive an automatic DMM debugger using EMF models for the
static and dynamic parts of the meta model. These are then transformed to
Groove using the transformation from this thesis and an appropriate transfor-
mation for DMM rulesets. Using the ruleset, Groove can compute the transition
system of the model and identify interesting states. These are then shown to
the user and transformed back to EMF if he decides to do so, using the back-
wards transformation presented in this thesis. Figure 1 in Section 1 gives an
overview over the static parts of this debugger.

What remains for the work on this transformation is to implement a graphi-
cal user interface. At the moment, the transformation runs as an Eclipse plugin
but only provides a programming API that can be used by other Java programs
to perform transformations from EMF to Groove or Groove to EMF.
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DMM Dynamic Meta Modeling
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MOF Meta Object Facility
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XML Extensible Markup Language
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