Version 11.0

User’s Guide

AdeptVision VME

010010&404000&000&«&4"
BTN 2020 O.oti\ >
‘Oﬁtﬁ ¢ »0“ 520205052058 L2 0%%0 %0&‘0/
B 322 .&o&.«oof&%«o@%f
e s 0s] DRI 5865050620, 325N
22225 0&-“0000000000000& 2T 202N
$o052e 206000 D eOLeoCOLE0! § 200! PeRsPeP e P Lntats
5 SN civoa%oaoo%os STITIN
(3325253332 2R D22 R5225 300C0GOuCey” Qtt“%ttoto
> 0&0&»%0%0“0‘0 R OZROTIAITA 22N
o PRSseeeestets: SIS XD SR
SRR R0 20 N335 S aCos e e CaCosty et 52N
P332 S22 00%0600&0».000&00 p DI, 22\
RT3 PROZRI52282 202830000 Le% LISISTIIN
(Po% 1505 20O 2N 5053053 020 260050/ S0 S05 o 225352
BRI PRI AR T3 2\
2RI RIS 322235103 BB
2N 325 0625505 oocn?oc%o%%fo TP S22
O S o seoreses: IR R IEXTISTIN
(2RI 5?00%000%00 IR 0@10%00004,0\%0“00“ 5325
> -, 0 95202, 2D <) S5<DSS 2
(e s s e s
 Sessetests

2>
S22
S22 I523
EOSCoN L0500 00cos 225225202
=L RIRBIRIEPIII 22l
3 %un«#ﬁ@ﬁaﬂ%«nﬂn.#ﬂ:«»&anﬂmw&o«»%&o%%
.%.ﬁu.».w.»u»v%nﬁ«.ﬁw.www%ﬁﬁﬁvﬂ#&&%«.&.«;
DRI LBILR ST S\ e oty SIRHI
22225 P DN 1600 25CPeCeCr SS6C0
5.9 SIS 20252 SR A \ W\ 'Sg 200,

ERGR PRI

e

P ISSLS LR 2% >N,

2520520
BoReosotest
b2
; \
;‘Q« /4
205252

52325291
25 20508
>, <2 2
SR
52235252 2]
2922205
22527 2322220
5 SRS 252
Bosecesestes 222232 2932
P25 25205252 RIR2A2S 2 2]
ST 22 187280050800 Retn tas S22
S s S
5262529 000“60&0%006. £\ sﬁiﬁ&i&t@\\‘i% 52
1205050059508 A eSS ooy g
9505204 ‘f‘%“f\ 7222252421 S\ L2 S22
R0 SRS PSS! o\ AN R 2
St @.%&wmmﬁwx%f&%ﬂ.ﬁ* SRR
K252 o0 “‘%‘ 2059, N 0"‘1“% S LIS 2029,
VORI A0 A LNS RO f:bootdtét.tto S22
AR 5232 2] .0%0%&%&0 SRITREELL N SIS 232
O Dt tbC&OOOO%OOC.- SoS 0L GO0 st PO SPU o 0=, RIS 2232
PR e COCue Ko SRR S8 B TILIA T2 2 7
..wu.%.é.«»‘????»%»...%%@?.&&»?g,%ﬁ. ’
@%ﬂ%ﬁvmﬁ.ﬁgg.ﬁﬂ.«%? .@
\ v <
s
25

SN2
252 00‘0000000#00000@ 23252
252 SRR S35 X227
S o %wwawm..w@.u.«%mﬁmmmwmw /
-, 5520, SN 2 X <5 2059020,
S eess LS a oo eets e sestes 3
DO CRs e SeeLec st 10506 803050550, &4 > o0505C05 950!
IR GoesecesCectsl, 32322200220
2525504 00&%00&%0&&@ .06000000000000»000 2252205252,
X2 \%0‘00&&‘00�&; PI2525225252 ”ﬁu?&&t%&“&“t
R3] -ﬂt&t&t“’“&t“&‘q 532
&
<254 \"‘f 22059520, ﬁ..‘%“w
74 .“%‘ .‘%‘“‘& 25
0‘0“&0“000 RS
7 2RSS IS
LR

User’s Guide

AdeptVision VME

Version 11.0

PR T

2R3
SIS

>

July 1994

Part Number 00961-00430 Rev. A

150 Rose Orchard Way ¢ San Jose, CA 95134 « USA « Phone (408) 432-0888 « Fax (408) 432-8707
Otto-Hahn-Strasse 23 ¢ 44227 Dortmund « Germany ¢ Phone 0231/75 89 40 « Fax 0231/75 89 450
11, Voie la Cardon « 91126 Palaiseau * France ¢ Phone (1) 69.19.16.16 « Fax (1) 69.32.04.62

ccl

(3
)
wwi’

adept

technology, inc.

1-2, Aza Nakahara, Mitsuya-Cho ¢ Toyohashi-Shi 441-31 « Japan ¢ (0532) 65-2391 « Fax (0532) 65-2390

The information contained herein is the property of Adept Technology, Inc., and shall not be reproduced in
whole or in part without prior written approval of Adept Technology, Inc. The information herein is subject
to change without notice and should not be construed as a commitment by Adept Technology, Inc. This
manual is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in this document. Ciritical
evaluation of this manual by the user is welcomed. Your comments assist us in preparation of future
documentation. A form is provided at the back of the book for submitting your comments.

Copyrightd 1993, 1994 by Adept Technology, Inc. All rights reserved.

The Adept logo is a registered trademark of Adept Technology, Inc.

Adept, AdeptOne, AdeptThree, PackOne, HyperDrive,
A-Series, S-Series, Adept MC, Adept CC, Adept IC, Adept OC, Adept MV,
AdeptVision, VisionWare, AdeptMotion, MotionWare, AdeptForce, AlM,
V and V' are trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Printed in the United States of America

Table of ContentsTO C

Introduction 1
Compatibility e 2

How to Use This Manual 2
Organization 2
Before You Begin 3
Related Manuals. e 3
Safety . .. e 4
Reading and Training for Users and Operators. 4

System Safeguards 4

Notes, Cautions, and Warnings 5

How Can | Get Help? 5
Within the Continental United States 5
Service Calls e 6
Application Questions e 6

Training Information 6

Within Europe e 6
Outside Continental United States or Europe. 6
Adept Bulletin Board Service (BBS). 6
OQVEIVIEW . . . 7
1.1 Introduction e 8
1.2 What AdeptVision VME Is e 8
Physical Equipment. 8
Controller and Vision Processor e 10
Robot or Motion Device 10
Graphics Terminal. e 10

User Equipment e 10

1.3 What AdeptVision VME Does 11
1.4 Vision BasiCs 12
Pixel . . . e 12

The Camera lmaging Surface. 13
Resolution e 14

1.5 Summary of Software Tools 16
Boundary Analysis 16
RUIEIS . . o e 16

AdeptVision VME User’s Guide

Inspection Windows 16
FinderTools 16
Processing Windows. 16
Modeling e 16

1.6 Overview of Guidance Vision e 17
Frames e 17

1.7 Things to Consider When Designing Your Workcell 17
Consistent Environment. 17

Ease of Maintenance. 17
Safety ... 17
Lighting e 18
Installation 19
2.1 Setting Up the Hardware 20
Installing the Controller 20
Attaching Cameras and Strobes o 20
Strobe Compatibility 20

Cameras Supported by AdeptVisionVME 21
Panasonic GP-CD 40. 21
Panasonic GP-MF 702. 21

Sony XC-77 . . . e 21

Mounting Cameras. e 22

2.2 Setting Up the Software 22
Getting Started 25
3.1 VISyntax Conventions 26
3.2 Virtual Cameras 27
What Is a Virtual Camera?. 27

How Are Camera Numbers Assigned? 27

Why Use Virtual Cameras?. 28

3.3 Camera Calibration 28
Camera Calibration Results 28

3.4 Motion Devices and Calibration 30
Motion Device Calibration 30
Start-up Calibration 30
Camera Calibration 30

The Vision Transformation. 30

Fixed Mount Camera Transformation. 30
Robot-Mounted Camera Transformation 31

3.5 Loading Vision Calibration Data 31

Table of Contents

Teaching AdeptVisionto See 33
4.1 Introduction e e 34
Physical vs. Virtual Cameras e 34

The Pointof Origin e 35

4.2 VPICTURE—Gettinganimage 35
VPICTURE Syntax e e e e e e 36
VPICTURE Examples. e 36
Executing VPICTURE FromtheMenu 36

4.3 VDISPLAY—Displayingthelmage 37
VDISPLAY Syntax 37
VDISPLAY Examples e 37
Executing VDISPLAY Fromthe Menu 38

Using the Different Display Modes. 38

Live Modes e 38

Frame (Frozen) Modes 38

Graphics Mode 38

4.4 Binaryvs. Grayscale Modes 39
4.5 Switches and Parameters 41
4.6 Using Switches e 42
Enabling/Disabling Switches 42
Viewing Switch Settings 42
SWITCHExample 43
Image-Acquisition Switches. L 43

4.7 Using Parameters 44
Setting Parameters 44
Parameter Examples. 44
Image-Acquisition Parameters e 44

4.8 Examples of Switch and Parameter Settings 46
Boundary Analysis 55
5.1 Introduction 56
Switches and Parameters Used During Boundary Analysis. 56

5.2 Boundary Analysis Instructions L 57
VLOCATE . . . 58
VLOCATE Examples 58

The DO MonitorCommand 59
VFEATURE 59
Whatis VFEATURE? 59

Blob Allocation 61
VFEATURE Example 62
VQUEUE 63

AdeptVision VME User’s Guide

6

Vi

Vision Tools 65
6.1 Defining a Tool Area-of-Interest (AOl) 66
Frame Stores e 66
Virtual Frame Buffers 66
Areas-of-Interest 67
Defining an Image Buffer Region 68

6.2 LinearRulers 71
VRULERI Array e 71

Linear Ruler Example 72

6.3 ArcRUlers ... 74
Arc Ruler Example. e 74

6.4 RuUler TYPES 77
Standard Binary Rulers (type =0) 77

Raw Binary Rulers (type =—=1). e 77
Dynamic Binary Rulers (type ==2). 77
Graylevel Rulers (type =1). e 77

Fine Edge/Fine Pitch Rulers (type =2/3). 77

Ruler Speed and Accuracy e 78

6.5 FinderTools 78
VFIND.LINE Array e e e 79

Line Finder Tool Polarity 80
VFIND.LINE Example e 81

6.6 Processing Windows (VWINDOW) 82
VWINDOW Example e 83

6.7 Vision Tools: Inspection Windows (VWINDOWI) 84
6.8 Vision Tool Data Arrays 84
6.9 Windows, Windows, Windows 84
Vision Model Processing 85
7.1 Introduction 87
Why Use Prototype Recognition?. 87

Why Use Correlation?. e 87

Why Use OCR? e 88

7.2 Training Prototypes 88
Creating Prototypes e 88
Editing Prototypes e 90
Preview Window 92
Zoom BUttONS 92
Message WIindow e 92

Edit Buttons 92
Editing Operation DataBox 92

Table of Contents

Edge/Region Data Boxes 93
Edge/Region Radio Buttons. 93
Prototype Training Hints 93
Sub-Prototypes. 94
Prototype Parameters. 94
Setting Prototype Parameters. 94
Verify Percent 94

Effort Level 94

Min/Max Area 94

Limit Position 95

Edge Weights 95

ASSIgN Cameraso e 95

7.3 Using Prototypes 95
Recognizing a Prototype. 95
Prototype-Relative Inspection. 96
Prototype-Relative Part Acquisition 96

7.4 Performing Correlation Matches 97
Creating a Correlation Template. 97
Matching a Correlation Template. 97

7.5 Performing Optical Character Recognition 98
Trainingan OCR Font 98
FontPlanning e 99
Character Recognition 100
OCRExamples e 101

7.6 Prototype Model Switches and Parameters 102
7.7 Loading and Storing Vision Models 104
VSTORE 104
VLOAD . . e 105
Displaying Vision Models 105
Deleting Vision Models. 105
Renaming Vision Models. 106
Programming AdeptVision VME 107
8.1 Introduction 108
8.2 Application Development Strategy oL 108
8.3 Inspection Vision Example Program 109
8.4 Developingthe Program Code 111
Program Header and Variables Declarations 111

Set the Camera Environment 112

Acquire an Image and Start Processing. 113

Locate the Object and Begin Inspections. 113
Outputthe Results 119

Further Programming Considerations. 121

8.5 The Complete Inspection Vision Program 122

Vii

AdeptVision VME User’s Guide

10

B

viii

The Main Program -inspect.part 122
Subroutine - lineline. 128
Subroutine - init.program 130
Subroutine - write.vwin L 131
Guidance Vision 133
9.1 Introduction 134
9.2 Using a Fixed-Mount Camera i 134
9.3 4-Axis SCARA Robot with Camera Mounted on Link#2 138
9.4 5-Axis SCARA Robot with Camera Mounted on Link#2 143
9.5 Guidance Vision Program 145
The Sample Program e 146
9.6 Further Programming Considerations 155
ErrorHandling e 155
Generalizingthe Program. 155
Advanced Operations 157
10.1 Performing High-Speed Inspections 158
What is “High Speed?” 158
Using the Two Frame Store Areas it 159
Using VPICTURE With Different Frame Stores. 159
Using VDISPLAY With Different Frame Stores 160
Sample Code for a High-Speed Inspection. 160
The High-Speed Trigger. e e 162
10.2 Performing Frame-Relative Inspections 162
Blob-Relative Inspection 162
Prototype-Relative Inspection. 164
10.3 Frame-Relative Inspections Using VDEF.TRANS 165
10.4 Using a Vision-Guided Tracking Conveyor 166
Switches and Parameters 167
Setting Vision Switches. 167
Viewing Switch Settings 167
Setting Vision Parameters 167
Viewing Parameters e 167
Listof Switches 168
Listof Parameters 171
VFEATURE() Values 175
Viewing VFEATURE() Values 175
Establishing VFEATURE() Values. 175

11 [T]

|X

Lens Selection

Formula for Focal Length
Formula for Resolution.

Lighting Considerations

D.1 Types of Lighting
D.2 Lighting Strategies

Diffuse

Back

Directional

Structured
Strobe

D.3 Filtering and Special Effects

Polarizing Filters

Color Filters
Vision Window Menu

Using DEVICE With Vision

F.1 The DEVICE Instruction With Vision

Examples

Third-Party Suppliers

G.1 Third-Party Suppliers (U.S.)

G.2 Third-party Suppliers (Europe) . .

G.3 Third-Party Suppliers (Asia-Pacific)

Table of Contents

AdeptVision VME User’s Guide

List of Figures LO F

Impact and TrappingHazards

Figure 1-1 Typical AdeptVision VME System
Figure 1-2 Sample Object e e e e e
Figure 1-3 AGrayscalelmage. o e e e e e e e e e
Figure 1-4 ABinarylmage. e e e e e e
Figure 1-5 Resolution Factors e e e e
Figure 2-1 Initial Screen. L e e e e e e e e e
Figure 3-1 Sample Operation i i e e e e e e e
Figure 3-2 Physical/Virtual Camera Relationship
Figure 4-1 VPICTURE Options.« v v o e e e e e e e e e e e e e
Figure 4-2 Display Mode Options« v v v v s e e e e e
Figure 4-3 Sample Vision Matrix. o e e e e e e e
Figure 4-4 Binary Representation of Sample Matrix.
Figure 4-5 Grayscale Representation of Sample Matrix.
Figure 4-6 Sample Object e e e e e e e
Figure 4-7 Switch and Parameter Example.1.
Figure 4-8 Switch and Parameter Example.2.
Figure 4-9 Switch and Parameter Example3.
Figure 4-10 Switch and Parameter Example.4.
Figure 4-11 Switch and Parameter Example.5.
Figure 4-12 Switch and Parameter Example.6.
Figure 4-13 Switch and Parameter Example.7.
Figure 6-1 Rectangular Area of InterestShapes
Figure 6-2 Arc Shaped Area of Interest Shapes.
Figure 6-3 Sample Area-of-Interest. 000
Figure 6-4 Sample Image Buffer Regions.
Figure 6-5 Linear RulerExample. o 0 i e
Figure 6-6 Sample Gauge Face 0 e e e e e e e e e
Figure 6-7 ArcRulerExample L e e e e e
Figure 6-8 Ruler Types o o i e e e e e e e e e e e e e e e e
Figure 6-9 Line Finder SearchArea v v v v

Figure 6-10 Finder Tool Polarity.

12
13
13
15
23
26
27
36
38
39
39
40
46
47
48
49
50
51
52
53
67
68
69
70
73
74
76
78
79
80

Table of Contents

Figure 6-11 Line FinderExampleo 82
Figure 6-12 VWINDOW Example« o i v et e e e e e e 83
Figure 7-1 Prototype Editing Operations 90
Figure 7-2 Font Similarity Matrix oo e e e 98
Figure 8-1 ApplicationFlow Chart00 0. 110
Figure 8-2 Executing the VWINDOW Instruction 114
Figure 8-3 Executing a VFIND.LINE Instruction. 117
Figure 8-4 Executing a VFIND.ARC Instructian. 118
Figure 8-5 Calculating the Object Tail Location. 129
Figure 9-1 Fixed-Mount Camera (Vision Location) 136
Figure 9-2 Fixed-Mount Camera Vision Transformatian. 137
Figure 9-3 Link2 Coordinate Frame 00 139
Figure 9-4 Calculating the “Link2” Transformation. 140
Figure 9-5 Components of the Vision Location 142
Figure 9-6 Final Part Acquire Location o ... 143
Figure 9-7 Five-Axis Vision Transformation. 144
Figure 9-8 Example Program Setup 00 e e e e 145
Figure 10-1 Pin- Pong Frame Grabbing 159
Figure 10-2 Blob Relative Inspection 00 164
Figure C-1 Cameralmaging« « o e e e e e e e e e e 180
Figure C-2 CameraScale Factor.o 180

Xi

AdeptVision VME User’s Guide

List of Tables LOT

Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 5-3
Table 7-1
Table 7-2
Table A-1
Table A-2
Table B-1
Table C-1
Table D-1
Table F-1
Table F-2
Table G-1
Table G-2
Table G-3
Table G-4
Table G-5
Table G-6
Table G-7
Table G-8
Table G-9
Table G-10
Table G-11
Table G-12

Xii

Image-Acquisition SWItChES. 43
Image-Acquisition Parameters. 45
Boundary Analysis SWItChes. ... 56
Boundary Analysis Parameter. 57
VFEATURE Values and Interpretation ... 60
Prototype Model SWItChes. ... 102
Prototype Model Parameters.o 103
ViSION SWItChES. 168
ViSION Parameters. 171
VFEATURE() Values and Interpretation. ... 176
Camera Scale FaCtors 181
Types of Lighting. ... 183
DEVICE Input/Output FOormat. 192
Vision Memory AlloCation.o 192
Fiber Optic Lighting SUppliers........ ... 199
Lighting SUPPIErs. ... 200
Camera Equipment SUppliers. 201
Frame Splitter SUPPlIerS.o 201
Camera SUPPIELS. 201
Filter and Optics SUPPliers ... 202
LeNS SUPPIEIS. ... 202
Mounting Hardware SUppliers 204
Lighting SUPPIErs. ... 204
LeNS SUPPIEIS .. o 205
Filter and Optics SUPPIErSo 205
Lighting, Filter, and Optics Suppliers.............oooiiiii 208

Introduction

Compatibility e e e e e e e e e e e e
How to Use This Manual « i i v e e e e e e e e e e e e e

Organization e e e e e e e e e e e e e e e e e
Before YouBegin e
Related Manuals o e e e e e
Safety e e e e e e e
Reading and Training for Users and Operators.
System Safeguards L L e e e e

Notes, Cautions,and Warnings« « v v v v e e e e e e e
How Can | GetHelp? e s e e e e e e e e e

Within the Continental United States.
ServiceCalls e
Application Questions L L. Lo o
Training Informationo Lo

Within Europe e e e e e

Outside Continental United Statesor Europe.

Adept Bulletin Board Service (BBS)0

2 Introduction

Compatibility

This manual is for use with¥/systems equipped with the AdeptVision software and hardware
options. The system version must be 11.0 or later.

This manual is intended primarily for vision application programmers. If your system includes the
optional VisionWare or MotionWare with vision software, you do not need to read this manual.
However, many principles of machine vision and AdeptVision VME processing are covered in
greater detail here than in the VisionWare or MotionWare user’s guides, so a general review of this
manual may be useful.

How to Use This Manual

Organization

Material in this manual is presented in a step-by-step fashion. Each chapter expands on and relies
on information in the preceding chapters. If you are new to machine vision systems, this manual
will take you from the conceptual basis for machine vision to advanced programming techniques in
computer vision applications. Here is what you will find in each of the chapters:

Chapter 1 presents an overview of machine vision principles and introduces vocabulary and
concepts you will need when reading the other chapters.

Chapter 2 shows you how to physically set up the AdeptVision VME system hardware.

Chapter 3 shows you how to perform all the initialization tasks necessary to get your system
ready to start developing vision applications.

Chapter 4 introduces vision processing. It describes how to acquire and process an image.
You will learn to fine-tune the images you produce so your vision applications
run as efficiently and predictably as possible.

Chapter 5 describes the first vision processing strategy, boundary analysis. You will learn
where vision data is stored and how you can influence the data the vision system
gathers.

Chapter 6 describes the second vision processing strategy, vision tools. You will learn to use

rulers, finders, and inspection windows.

Chapter 7 describes the vision modeling process, including prototype recognition, optical
character recognition (OCR), and correlation templates.

Chapter 8 presents a sample program. You will learn how to combine the knowledge gained
in the previous chapters to program an inspection vision application.

Chapter 9 covers using the vision system to guide a motion device. You will learn how to
set up and calibrate cameras that will locate, acquire, and place parts. If you do
not have a motion device, you can skip this chapter.

How to Use This Manual 3

Chapter 10 discusses advanced topics in vision processing. High speed inspections, part-rela-
tive inspections, and conveyor operations are covered.

Before You Begin

AdeptVision VME is an extension of thet\bperating system and language. In order to use the
AdeptVision VME extension you must be familiar with the bastcdperating system and lan-
guage. In particular, this manual assumes that you:

. Are familiar with the Adept A-series graphical user interface.
. Can use the SEE program editor to create and edit programs.

e Are familiar with VV* programming, including control structures, data types, and subrou-
tine principles.

The V/+ operating system and graphical user interface are covered\ifi tperating System
User’s Guideand thev* Operating System Reference Guitlee V" language is covered in thNé
Language User's Guidand thev* Language Reference Guide

Related Manuals
There are several manuals you should have handy as you use this manual. They are:

TheRelease Notes for'V11.Q which contains late-breaking changes not in the manu-
als, a Summary of Changes, and a section on Upgrading Pre-11.0 code.

The V" Operating System User’s Guidehich covers operating system tasks such as
copying files, executing programs, and using the graphical interface.

The V" Operating System Reference Guidich details the operating system com-
mands (known as monitor commands).

The V' Language User’'s Guidand thev* Language Reference Guidehich contain a
complete description of the commands, instructions, functions, and other features avail-
able in the V/ language. These manuals are essential for advanced applications pro-
gramming.

The AdeptVision Reference Guidehich contains a complete description of the vision
enhancements to the"\language. This manual is a companion guide té\theptVision
VME User’s Guide.

Thelnstructions for Adept Utility Programspany of which are referenced in this man-
ual.

The Advanced Camera Calibration Program User’s Guiddjch details the camera
calibration procedures.

The Adept MV Controller User's Guide This manual contains information on install-
ing, maintaining, and configuring the physical controller hardware.

The user’s guide for your robot or motion device (if your system includes a motion
device). This manual contains information on installing, maintaining, and calibrating the
motion device.

Introduction

The manuals for any options you have purchased with the system (such as VisionWare),
or purchased separately to use with the system.

Safety

Reading and Training for Users and Operators

Adept systems may contain computer-controlled robot mechanisms that are capable of moving at
high speeds and exerting considerable force. Like all robot systems and most industrial equipment,
they must be treated with respect by the user and the operator.

This manual should be read by all personnel who operate or maintain Adept robot systems, or who
work within or near the robot workcell.

We also recommend you read #thmerican National Standard for Industrial Robot Systems -

Safety Requirementgublished by the Robotic Industries Association (RIA), in conjunction with

the American National Standards Institute. The publication, ANSI/RIA R15.06 - 1986, contains
guidelines for robot system installation, safeguarding, maintenance, testing, start-up, and operator
training. The document is available from the American National Standards Institute, #13THF, 11
West 42nd Street, New York, NY 10036-8002.

NOTE: This manual follows RIA definitions of “user” as the responsible person
or company and “operator’” as a person who starts, stops, or monitors robot
operation.

This manual assumes that the user has attended an Adept training course and has a basic working
knowledge of the robot system. The user should provide the necessary additional training for all
personnel who will be working with the system.

System Safeguards

Safeguards should be an integral part of robot workcell design, installation, operator training, and
operating procedures.

Adept robot systems have various communication features to aid in constructing system safeguards.
These include remote emergency stop circuitry, and digital input and output lines. These features
are described in the controller user’s guide.

Because Adept robots are computer-controlled, the program that is currently running the robot may
cause it to move unexpectedly. When the amtheéH POWERand the blue “Program Running”

lights on the optional Adept front panel are lit, the robot might move. When these lights are lit, no
one should enter the workcell, because they cannot predict when or where the robot might move.
TheLAMP TEST button allows this light to be periodically checked (see the controller user’s guide).

In addition, these systems can be programmed to control equipment or devices other than the robot.
As with the robot, the program controlling these devices may cause them to operate unexpectedly.

Itis critical that safeguards be in place to prevent personnel from entering the workcell when a pro-
gram is running. The bluBROGRAM RUNNINGIight on the front of the optional front panel indi-

cates the program is running. TleMP TEST button allows this light to be periodically checked.

WARNING: Entering the robot workcell when either tH&GH POWER or the
PROGRAM RUNNINGIight is on can result in severe injury.

Notes, Cautions, and Warnings 5

Adept Technology highly recommends the use of additional safety features such as light curtains,
safety gates, or safety floor mats to prevent entry to the workcell ARNePOWERIs enabled.

These devices may be connected using the system’s remote emergency stop circuitryAdss the
MV Controller User’s Guide

Impact! Trapping (Pinch) <
Points o 3

e <.

| B
\
1 \

Impact and Trapping Hazards

&

Notes, Cautions, and Warnings

There are two levels of special notation used in this manual. They are:

WARNING: If the actions indicated in a “WARNING” are not complied with,
injury or major equipment damage could result. A warning statement typically
describes the hazard, its possible effect, and the measures that must be taken to
reduce the hazard.

CAUTION: If the action specified in theCAUTION” is not complied with, dam-
age to your equipment could result.

NOTE: A “NOTE’ provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation.

How Can | Get Help?

Within the Continental United States

Adept Technology maintains a Customer Service Center at its headquarters in San Jose, CA. The
phone numberare:

Service Calls

(800) 232-3378 (24 hours per day, 7 days a week)
(408) 433-9462 FAX

Application Questions

(800) 232-3378 (Monday to Friday, 8:00 a.m. to 5:00 p.m., Pacific time)
(408) 434-6248 FAX

Introduction

Training Information

For information regarding Adept Training Courses in the USA, please call (408) 434-5024.

Within Europe

For European customers outside of France, Adept Technology maintains a Customer Service Cen-
ter in Dortmund, Germany. The phone numkses

(49) 231/75 89 40 from within Europe (Monday to Friday, 8:00 a.m. to 5:00 p.m., CET)
(49) 231/75 89 450 FAX

France

For customers in France, Adept Technology maintains a Customer Service Center in Paris, France.
The phone numbeiae:

(33) 1 69 19 16 16 (Monday to Friday, 8:30 a.m. to 5:30 p.m., CET)
(33) 169 32 04 62 FAX

Outside Continental United States or Europe

For service calls, application questions, and training information, call the Adept customer service
center in San Jose, California USA:

(408) 434-5000
(408) 433-9462 FAX (service requests)
(408) 434-6248 FAX (application questions)

NOTE: When calling with a controller related question, please have the serial
number of the controlletf your system includes an Adept robot, also have the
serial number of the robot. The serial numbers can be determined by using the 1D
command (see thé" Operating System User’s Gu)de

Adept Bulletin Board Service (BBS)

Adept maintains a bulletin board service for Adept customers. Adept posts application hints and
utilities to this bulletin board and users may post their own hints and application notes. There is no
charge for access to the bulletin board. The BBS number is (203) 264-5590. The first time you call
you will be able to set up an account right from the BBS. If you have any questions, call (800) 232-
3378 and ask about the BBS.

Overview

Introduction L e e e e e e e e e e e e e e e e e e e 8
What AdeptVision VME IS e e e e e e e e e 8
Physical Equipment. L. e e e e 8
Controller and Vision Processor v v v v v v v e e e e e 10
Robot or Motion Device v v v e e e e e e e e e e e e 10
Graphics Terminal e e e e e e 10
User Equipment e e e e e e e e e e e e e 10
What AdeptVision VME Does e e e e e e e e 11
VisSion BasiCsS e 12
Pixel e e e e e e e e e e e e e 12
The Camera lImaging Surface 13
Resolution e e e e e e e e e e e e e 14
Summary of Software Tools 16
Boundary Analysis 16
Rulers e e e e e e e e e e e e e e 16
Inspection Windows L. L e e 16
FinderTools o o e e e e e e e e e e e e e e e 16
Processing Windows Lo 16
Modeling e e e e e 16
Overview of Guidance Vision« « « v v i e e e e e e e e e 17
Frames e e e e e e e e e e e e e e e e e e e 17
Things to Consider When Designing Your Workecell 17
Consistent Environment. e e e e e e e e e 17
Ease of Maintenance v ot e e e e e e e e e e e 17
Safety e e e e e e e e e 17

Lighting o e e e e e 18

8 Chapter 1 - Overview

1.1 Introduction

This section presents an overview of machine vision. It gives a brief description of how a vision
system “sees”, and what equipment and software tools you have for extracting information about
what the vision system “sees”.

1.2 What AdeptVision VME Is

Physical Equipment
A basic AdeptVision VME system consists of:

* A controller equipped with a vision processor board
. A robot or motion device (optional)
e One or more cameras
. The A-series controller option that includes:
High-resolution color monitor
AT-compatible keyboard
Trackball (or other pointing device)

In addition, your system will probably contain special lighting equipment and camera mounting
equipment. This vision system is generally integrated with parts delivery systems and other user-
supplied equipment to form a workcell that performs the tasks you have designated for the system.
The major components an AdeptVision VME system may have are described below. Figure 1-1
shows a typical system.

What AdeptVision VME Is 9

USER EQUIPMENT
(E.g. Printer, Other
Controllers or
Computers)

User
Equipment

e

USER EQUIPMENT
(Eg. Conveyors, Part
Handlers, Sensors)

Figure 1-1 Typical AdeptVision VME System

10

Chapter 1 - Overview

Controller and Vision Processor

The controller contains the logic boards, system and vision processor boards, 1/0 boards, and cam-
era connector. This hardware system provides an environment for Ad&g@pafating System

and Language that allows you to direct and monitor vision operations. The hardware/software com-
bination is multitasking and contains everything necessary to control:

. Four physical cameras per vision system (32 virtual cameras)

. Strobe lights for two physical cameras (AdeptVision VME provides the connection for a
signal pulse for user-supplied strobe lights)

e A graphics monitor
. User-installed serial, digital, and (optionally) analog 1/0O devices

. User-supplied equipment such as conveyor belts (systems equipped with motion
devices)

Robot or Motion Device

Adept controllers may control robots or other motion devices. This manual describes vision guid-
ance for the standard Adept robots. The principles described for these robots can be generalized to
any other motion devices your system may be using.

Graphics Terminal

The graphics monitor displays all vision system input and output. The system supports multiple
windows; the monitor can display output from a camera, input from other cell control equipment,

as well as operator input and prompts. The graphics monitor is used along with the keyboard and
trackball to develop vision applications. This equipment can also be set up to function as the opera-
tor interface during execution of vision applications.

User Equipment

You can communicate with the controller using serial, digital, and analog I/O. The serial channels
support RS-232, RS422, and RS485 protocols which are generally used for printer output and com-
munication with other controllers or computers.

The digital output channels are used to switch the user-supplied current to external equipment. Sig-
naling a part feeder to place a part in the field-of-view is a sample digital output operation.

Digital input channels tell the controller that an event (such as a part being placed in the field-of-
view) has occurred, and that your program should either suspend or continue execution (or take any
other appropriate action).

The optional analog I/O channels allow you to read from, and write to, compatible analog 1/0
devices.

See theAdept MV Controller User’s Guid®r details on installing digital, serial, and analog 1/0
devices. See thé' Language Reference Guidescriptions ofo, SIG, andSIGNAL() for details on
programming digital 1/0O. See the description®0fACH, READ, GETC, WRITE, andDETACH for

details on programming serial I/O. See the descriptiors@iN andAlO.OUT for details on ana-

1.3

What AdeptVision VME Does 11

log I/0. See the description of the utility progr@@NFIG_Cin thelnstructions for Adept Utility
Programsfor details on the configuration of digital, analog, and serial I/O.

What AdeptVision VME Does

Quite simply, the AdeptVision VME system looks at something and then tells you what it knows
about that thing. The system has software tools that allow you to control how AdeptVision VME
looks at objects and what information it gathers about those objects. AdeptVision VME has three
primary information processing strategies:

. In the first strategy, boundary analysis, AdeptVision VME looks at the boundaries of
whatever is in the field-of-view and calculates information such as the perimeter, cen-
troid, and area of each bounded region.

. In the second strategy, vision tools, you place ruler, window, and finder tools in the field-
of-view, and AdeptVision VME returns information based on what it finds with those
tools.

. In the third strategy, vision model processing, AdeptVision VME compares each
bounded region in the field-of-view with known shapes or models you have placed in
memory, and attempts to identify the region. Prototype recognition, OCR, and image
correlation are the options in this mode of operation.

Each of these processing strategies can be used independently or in conjunction with the
other two.

Inspection vision systems will use the results of the various vision options to make quality, gauging,
and other measurements of objects in the field-of-view.

Guidance vision systems will use vision options to locate and acquire items in the field-of-view.

12 Chapter 1 - Overview

1.4 Vision Basics

Throughout this manual you will be seeing the object shown in Figure 1-2. We will use this sample
object to help explain the features of the AdeptVision VME system.

Figure 1-2 Sample Object

Pixel

The basic unit of a vision image is a pixel (picture element). It is the smallest unit of information a
vision system can return to you. The number of pixels the system can process determines the sys-
tem’s resolution and affects the computer processing time needed to analyze an image.

A pixel can be thought of as a single cell in a matrix that the camera overlays on the field-of-view.
The value that is placed in that cell will be a shade of gray that represents the intensity of the light
reflected from the corresponding area in the field-of-view (grayscale vision). Figure 1-3 shows how
a 22 x 16 pixel camera would see the object shown in Figure 1-2. (The dashed lines are shown for
reference; they are not actually “seen” by the system.)

Vision Basics 13

Figure 1-3 A Grayscale Image

In addition to grayscale processing, AdeptVision VME can process image data in binary mode. In
binary mode, all the cells with a value above a certain value will be seen as white and those below
that value will be seen as black. Figure 1-4 shows how the sample object would be seen in binary
mode. Chapter 4 discusses the features and uses of grayscale and binary modes in more detail.

Figure 1-4 A Binary Image

The Camera Imaging Surface

Video cameras used for machine vision replace the film used in a traditional camera with a light
sensitive electronic surface. When you instruct the system to acquire an image (“take a picture”),
the imaging surface is “exposed” for a short time and the “exposure” is read into the vision proces-
sor. The electronic surface is actually an array of photon detectors that store a charge based on the
amount of light hitting the detector. The more light that hits an individual detector, the larger the
stored charge and the higher the grayscale value that is read into the vision processor. When an
image is acquired, all the charges in the imaging surface are zeroed out, the surface is exposed for
1/10,000 to 1/30 of a second, and the value recorded in each cell (pixel) of the imaging surface is

14

Chapter 1 - Overview

read into the vision processor. The resulting matrix of values is analyzed to locate edges and
bounded regions. Vision tools can then be used to measure distances between edges, recognize
bounded regions, and extract other information about the image.

Resolution

The number of rows and columns in the camera imaging surface, the lens focal length, and the dis-
tance of an object from the camera will determine the final resolution of whatever you are viewing.
Figure 1-5 shows the relationship between focal length and viewing distance. In general, optimum
resolution will come when the object of interest fills as much of the field-of-view as possible while
still being in focus.

The image representation of our hypothetical 22 x 16 camera shows very poor resolution due to the
low density of pixels. The size of the arrays in cameras supported by AdeptVision VME typically
ranges from 501 x 485 pixels to 768 x 493 pixels. Appendix C details the steps to selecting the opti-
mum lens focal length, viewing distance, and camera imaging surface.

An important concept that is illustrated by Figure 1-5 is the relationship between a pixel’s dimen-
sions and the physical size of an object. A pixel will always haetative relationship to the size

of an object. It will have aabsoluterelationship only when you fix your viewing distance and lens
focal length, and then calibrate the vision system. The calibration process establishes an absolute
relationship between a pixel and the actual dimensions of the field-of-view. “Camera Calibration”
on page 28 discusses the utilities Adept makes available to establish this relationship.

15

Vision Basics

Vision System

Representation

Field of View

Figure 1-5 Resolution Factors

16

Chapter 1 - Overview

1.5 Summary of Software Tools

This section gives a brief overview of the vision tools provided by AdeptVision VME. These tools
are detailed in Chapters 5, 6, and 7.

Boundary Analysis

Boundary analysis locates objects in the field-of-view and returns information about those objects’
sizes, locations, perimeters, etc. Boundary analysis locates objects by looking for bounded areas (a
contiguous area of light or dark pixels in the binary image). These bounded areas are often called
“blobs”.

Rulers

Rulers are inspection tools you place in the vision image that return information based on the val-
ues found in the pixels the ruler crosses. Linear rulers return distances between features of an object
based on intensity changes (edges) in the field-of-view. Arc rulers return the angular distance
between object features. You can set the length, angle, and position of these rulers. Rulers work
with both grayscale and binary images. You can place multiple rulers in the field-of-view, inspect
multiple objects, and examine the relationship between multiple objects.

Inspection Windows

Inspection windows provide a quick way of obtaining basic graylevel, binary, or edge
statistics about specific areas of an image.

Finder Tools

These tools allow you to find points, lines, and arcs in an image. The data returned from finder tools
may provide all the information you need about an object, or it may provide the basis to perform
other inspections.

Processing Windows

In Chapter 5 you will learn the difference between processed and unprocessed images. In many
cases, you can speed up your applications by operating on unprocessed images or by processing
only a limited portion of the field-of-view. Processing windows allow you to process a limited area
of the field-of-view. (In contrast to inspection windows, processing windows do not return any data
about the image: they merely process a portion of an image for use by other vision tools.)

Modeling

Modeling allows you to store models of different objects in vision system memory and then com-
pare these models with objects in the field-of-view. The system will tell you if an object in the field-
of-view matches a model in vision system memory, how close the match is, and where the object is
in the field-of-view.

Overview of Guidance Vision 17

1.6 Overview of Guidance Vision

1.7

AdeptVision makes use of the tools just described both to inspect objects and to provide informa-
tion to the motion device about an object’s location.

Frames

All robot motion is based on frames of reference and location variables. Location variables
uniquely identify a point within a Cartesian space and the orientation of the robot tool at that point.
All robots and motion devices will have a primary reference frame. On Af=¥RA robots the

primary reference frame is centered at the base of the robot with the Z axis pointing straight up, the
X axis going front to back, and the Y axis going left to right.

The V* language provides several options for creating new frames of reference that are relative to
this primary reference frame. Relative reference frames can also be created with respect to other
relative reference frames. It is these relative reference frames that allow the vision system to guide
robot motions.

Depending on the camera mounting location, different relative reference frames will be used to

relate the camera field of view to the robot work space. Chapters 9 and 10 give the details of creat-
ing and using these frames.

Things to Consider When Designing Your Workcell

While designing your workcell, keep in mind the following considerations:

Consistent Environment

For your results to be consistent and predictable, the environment you operate the vision system in
must be as consistent and predictable as possible.

Avoid major changes in temperature and humidity. Mount the cameras so that a constant distance is
maintained from the camera to the object.

Isolate the cameras as much as possible from sources of vibration.

Ease of Maintenance

Periodic maintenance and repair of your system will be necessary. Design your workcell to allow
access to all the vision system components as well as any other equipment you may have installed.

Safety

If there is any moving equipment, such as part feeders or conveyor belts, design the workcell so that
all normal operations can take place without the operator coming into dangerous contact with the
moving equipment.

18 Chapter 1 - Overview

Lighting

Consistent lighting is critical to accurate, predictable vision operations. Appendix D lists the advan-
tages and disadvantages of various lighting systems. Before you select and install a lighting system,
experiment with different lighting setups and see which one provides you with the most consistent
results. These results should be checked throughout the duration of the shift in which the system
will be operated to see how changes in ambient light affect the system.

Creating an optimum and consistent lighting environment
when you design your workcell will save a great deal
of trouble later!

Installation

SettingUp the Hardware« e 20
Installing the Controller e 20
Attaching Camerasand Strobes 0000 20

Strobe Compatibilityo Lo 20
Cameras Supported by AdeptVisionVME 21
PanasonicGP-CD 40« o v v v e e e e e e 21
Panasonic GP-MF 702« . e e e e 21
Sony XC-77 . . . o v o e e e e e e e e e e e e e e e e e e 21
Mounting Cameras e e e e e e e e e e 22

Setting Up the Software e e 22

20

Chapter 2 - Installation

2.1 Setting Up the Hardware

Your vision system includes the following items:

. An Adept A-series controller equipped with:
A System Processor Board
Graphics Processor Board
Vision Processor Board (VIS) or Enhanced Vision Interface Board (EVI)
v+ Operating System and Language (Version 11.0 or later) with the Vision option
. Utility Programs Disk
. High-resolution color monitor
e AT compatible keyboard and pointing device

° One or more cameras

You may be installing the following options:

. Camera lenses, extension tubes

. Strobe lights or other area lighting

Optical filters

. Camera mounting hardware

. Robot or motion device

Installing the Controller

Your controller should be set up and configured before you install the peripheral vision system
equipment. SeAdept MV Controller User's Guidi®r details on setting up the controller. This
guide also shows where to connect the monitor, keyboard, and pointing device to the controller.

If you are using digital /O, pay particular attention to the controller user's guide’s instructions on
installing and configuring digital 1/0 in your workcell.

Attaching Cameras and Strobes

The Adept MV Controller User's Guidghows how to connect cameras and strobes and to set any
hardware options required by the various cameras and strobes.

Appendix G lists several manufacturers who supply strobe lighting (and general lighting) that is
compatible with AdeptVision systems.

Strobe Compatibility

Adept’s strobe signal is TTL compatible with a duration of 120 psec and an output of 80 - 120 mA
(positive going pulse). The stobe signal is normally set “active high”, but can be configured using
the DEVICE instruction (see Appendix F). Strobe lights have a latency between signal detection
and flash. This latency combined with the flash duration should not exceed 100 usec.

Setting Up the Hardware 21

Cameras Supported by AdeptVision VME

The cameras listed here can be used with AdeptVision VME. Not all features of all cameras are
supported by AdeptVision VME. The following highlights the main features of each camera:

Panasonic GP-CD 40

This low cost, medium-resolution camera has a resolution of 501 x 485 pixels. It can also be used as
an electronically shuttered camera (fixed at 1/1000 sec).

Nonshuttered cameras require about 1/30 of a second to acquire an image. This speed is too slow to
acquire unblurred images of moving parts. Shuttered cameras have shutter speeds of 1/1,000 to 1/
10,000 sec., allowing them to acquire clear images of moving parts without the use of strobe light-
ing. With shuttered cameras, the strobe signal is used to latch the external encoders of motion
devices simultaneously with image acquisition. Since the timing of a strobe signal used to record
encoder positions is different from the timing for a strobe light, cameras used in shuttered mode
cannot be used with strobe lights.

When you are using a shuttered camera, images must be acquired in field-acquire mode.

Panasonic GP-MF 702

This camera has a resolution of 649 x 491 pixels. This camera can be set up to use the “pixel clock”
output of the vision board. This camera uses an MOS array rather than a CCD array for the imaging
element. MOS arrays shift data from the imaging element to the vision processor differently from
CCD array cameras. Therefore, asynchronous strobe operation will not work.

Sony XC-77

This is an electronically shuttered camera with a resolution of 768 x 493 pixels. See the description
of the Panasonic GP-CD 40 camera for additional details on shuttered cameras. This camera can be
set to operate in standard, nonshuttered mode.

The Sony XC-77 provides both synchronous and asynchronous shuttered capability. When used in
asynchronous mode, the maximum number of images that can be acquired per second is 30 (60 is
the maximum in synchronous mode).

NOTE: When a camera is used in pixel-clocked, asynchronous, or shuttered
mode, the camera must be properly set up to operate in the selected mode. See
the camera instructions for details on setting up the camera for different operating
modes.

The following cameras are also compatible with AdeptVision VME:

. Hitachi KP-M1
. Panasonic GP-MF502
. Panasonic GP-MF552

Contact your Adept salesperson for details on the cameras sold directly by Adept. Contact Adept
Applications for current details on camera compatibility.

22 Chapter 2 - Installation

Mounting Cameras

Mount your cameras rigidly and dampened from vibration. Consistent vision results depend on
cameras that stay a constant distance from the objects being viewed. Cameras that can skew, change
position on their mounts, or lose focus due to vibration or contact will cause problems over the life

of your application.

Appendix G lists several suppliers of camera and lighting mounting hardware.

2.2 Setting Up the Software

Your vision system leaves the Adept factory with the operating system and vision software installed
on a floppy disk. (If your system has a hard drive, the operating system and vision software are also
installed on the hard drive [C:].)

To boot the system and bring up the vision monitor, turn on the monitor, place the system disk in
drive A, and turn on the controller. If the hard disk option is installed, just turn on the monitor and
controller.

After power is turned on, the system will go through a series of self-tests and then load the operat-
ing system. When the load procedure is complete, you will see a screen similar to Figure 2-1 show-
ing copyright information and the ID lines. The ID lines contain coded information about the
configuration of your system. See the ID command intheanguage Reference Guidier details

on the meaning of these lines.

Setting Up the Software 23

\N

adept

E Monitor

Adept V+

Copyright © 1984, 1985, 1986, 1987, 1989, 1990, 1991, 1992,
by Adept Technol ogy, Inc. Al rights reserved.

X/'Y/ Z] Thet a Robot Control Modul e

Sof tware: 11.0 81-1C1

Controller: 3302-5 0

Processor 1: 0.0 1-7 4M

Robot 1:: 100-0 O 8

Adept Vision: 11.0 500 1 1Mv

16- Jul - 93 09: 20: 32
N

Figure 2-1 Initial Screen

When your monitor looks like Figure 2-1, you are ready to begin vision operations and to load
vision application programs. See ¥&Operating System User’s Guiter details on installing
application software.

Getting Started

V+ Syntax Conventions o e e e e e e e e e e e e 26
Virtual Cameras v v v e 27
What Is a Virtual Camera?. v v v e e e e e e e e e e e e 27
How Are Camera Numbers Assigned?. 27
Why Use Virtual Cameras? v v v v i i e e e e e e 28
Camera Calibration &« & o o e e e e e e e e e e e e e e e e 28
Camera Calibration Results« « « v v v o e e e e 28
Motion Devices and Calibration 0 e e e 30
Motion Device Calibration« .« . e e e e e 30
Start-up Calibration e 30
Camera Calibration e e e e e e 30
The Vision Transformation« .« &« v v v v e e e e e e e 30
Fixed Mount Camera Transformation. 30
Robot-Mounted Camera Transformation. 31

Loading Vision CalibrationData 31

26 Chapter 3 - Getting Started

3.1 V+ Syntax Conventions

This manual details ¥ keywords (monitor commands, functions, and program instructions). These
operations are presented using the following syntax conventions (see Figure 3-1):

. Keywords are typed in capital letters and should be typed exactly as they are shown. For
exampleLOADshould be typed exactly as it appears.

. Arguments are shown in lowercase letters and should be replaced with arguments you
provide. For examplarive should be replaced with a drive letter you choose.

. Keywords and arguments shownbiold type are required; and those showrrég-
ular type are optional. If you omit an optional argument, the system will assume a
default value.

Bold lowercase indicates

a required user-

specified argument. Optional string of user-
specified arguments
(commas required
between arguments).

N

OPERATI ON (opt _arg), reqg_arg, opt_argl,...,opt_argn

All caps indicates a
required keyword;
type exactly as shown.

Bold meands this comma
is required.

Comma required if

o optional arguments are used.
Lowercase indicates an

optional user-specified argument.
Bold parentheses indicate that
parentheses are required.

Figure 3-1 Sample Operation

NOTE: For the sake of simplicity, the operations detailed in this manual do not
list all available options. See th¢" Language Reference Guidand the
AdeptVision Reference Guider a complete description of all keywords.

Remember, AdeptVision VME supplies an extension to the basic V+
programming language. The basic language elements such as control structures,
mathematical functions, etc., are detailed in \fieLanguage Reference Guide

and thev' Language User’s Guide

Virtual Cameras 27

3.2 Virtual Cameras

AdeptVision VME allows you to establish several virtual cameras for each of your physical cam-
eras (as long as the total number of virtual cameras does not exceed 32). One of the most important
things you will learn in the next three chapters is how to control what a camera sees. You may find
that you want to take several pictures of an object with each picture looking at the object in a differ-
ent way or from a different distance. Virtual cameras allow you to do this. For example, you might
want your first picture of an object to look at the perimeter shape and your second picture to look at
interior features of the object. By establishing two virtual cameras for the physical camera looking
at the object, you can take both types of pictures of the object.

What Is a Virtual Camera?

The controller allows you to attach four different cameras to each vision processor. These cameras
are the “physical’ cameras. Associated with each physical camera will be one or more virtual cam-
eras. A virtual camera is a single set of switches and parameters, calibration data, and a vision
queue (see Figure 3-2). Switches and parameters are introduced in the next two chapters. The
vision queue is introduced in Chapter 5. Calibration is discussed in the next section. A physical
camera can have up to 32 virtual cameras associated with it, but the total number of virtual cameras
associated witlll physical cameras can not exceed 32. Each physical camera must have at least
one virtual camera associated with it. If you have 4 physical camerasiera 1 could have eight

virtual cameras, camera 2 could have sixteen virtual cameras, camera 3 could have five virtual cam-
eras, and camera 4 could have three virtual cameras. Or they could have any combination of virtual
cameras that add up to 32 or less.

Physical Camera Virtual Camera

T T

switches

-+ parameters
vision queue
calibration data

Figure 3-2 Physical/Virtual Camera Relationship

How Are Camera Numbers Assigned?

The physical camera number is determined by the port the camera is plugged into on the vision pro-
cessor (se@dept MV Controller User's GuigleThe virtual camera number (and the physical cam-

era associated with it) is determined during camera calibration or when calibration data is loaded.
One of the first questions asked during camera calibration is what virtual camera number you want

28

3.3

Chapter 3 - Getting Started

associated with the physical camera you are calibrating. Your answer to this question determines
which virtual camera is being calibrated and which physical camera it will be associated with.

Why Use Virtual Cameras?

Switches and parameters can be set for an individual virtual camera. Calibration data and prototype
groups can also be defined for individual virtual cameras. Virtual cameras allow you to use the
same physical camera to look at the same image using different combinations of calibration, proto-
types, switches, and parameters simply by specifying different virtual cameras.

For example, you might be inspecting different areas of an object, each of which requires its own
switch/parameter settings. Or you might be presenting two (or more) different objects to the same
camera for inspection. If these objects are different distances from the camera (but still in focus),
you will need different camera calibration data for each object. Since camera calibration is estab-
lished for each virtual camera, you could use different virtual cameras calibrated for the different
distances to inspect the objects.

Unless noted, this manual assumes your system has only one camera and that virtual camera 1 has
been assigned to 8o all references to a camera mean virtual and physical camera 1.

Camera Calibration

Before you can begin executing vision programs, the system should be calibrated so it has some
basic information about the camera and its field-of-view. Two basic pieces of information it needs
are: the ratio of the width of a pixel to a millimeter in the field of view (x scale) and the ratio of the
height of a pixel to a millimeter in the field of view (y scale). For motion device related cameras,
you must also establish the relationship between the camera field-of-view and the motion device.
During camera calibration, you will need to focus the lens and adjust the lens aperture (f-stop).

There are two methods for calibrating your cameras. The first is to use the Adept utility,
“ADV_CAL". The second is to use the calibration option in the Adept AIM application programs
(VisionWare or MotionWare with vision). Instructions for usim@®¥_CAL” come with the option
package. Instructions for using the AIM calibration option are supplied MisienWare User’s
Guide.

Camera Calibration Results
Camera calibration establishes the following relationships:

e The number of camera pixels per millimeter of the field-of-view. To be able to produce
meaningful distance calculations, the system must know how many camera pixels are
needed to “see” a millimeter of distance in the field-of-view.

* An option perspective distortion correction, a set of transformations that allow the sys-
tem to account for fields-of-view that are not parallel to the camera imaging element.

. For motion device related cameras, the camera-to-robot transformation. In order to guide
the robot, the system must know the relationship between the camera position/orienta-
tion and the motion device end effector.

Camera Calibration 29

NOTE: Before you can begin the calibration procedures, the camera must be
installed in its permanent location. Once a camera has been calibrated, changing
camera location or camera lens focus will invalidate the calibration. When you
calibrate the camera, you establish a distance relationship between the camera
and the field-of-view and between the camera and the motion device. If the
distance changes, these relationships will no longer be valid. Changing the
camera lens or lens focus affects the size of the field-of-view and, therefore, the
distance relationship. Once you have calibrated a camera, you cannot alter the
lens focus (lens focus can be set during calibration).

Adept recommends that you tape or clamp your lens focusing ring after you have
focused the camera but before you begin calibration. This will help prevent
inadverdent focusing of the lens after calibration.

30

Chapter 3 - Getting Started

3.4 Motion Devices and Calibration

For systems with motion devices, three different types of calibration must be completed before an
AdeptVision VME system can be used. The three types of calibration are:

Motion Device Calibration

This calibration establishes the relationship between the robot’s encoders and the actual space the
robot works in. On Adept robots, this calibration is performed at the factory and will not need to be
repeated unless an encoder is replaced or other major repair is performed. For other motion devices,
this calibration is performed with the AdeptMotion VME utility SPEC.V2.

Start-up Calibration

When a motion device and its controller are first turned on, the device must relate its current loca-
tion to the motion device calibration data. This procedure is accomplished by entering the com-
mands:

ENABLE POWER
CALIBRATE

See the robot user’s guide AdeptMotion VME User’'s Guider more details.

Camera Calibration

The relationship between the camera field-of-view and the motion device must be established
before the vision system can be used to locate objects for the motion device. Seerth&uide

to the Advanced Camera Calibration Progréimat came with the calibration package for details on
the various calibration configurations.

The Vision Transformation

Guided vision is essentially the process of putting together several pieces of information to create a
transformation. A transformation defines a location a motion device can move to. You must be
familiar with the Adept transformation value before you can program motion device applications.
See the/" Language User’s Guidand thev* Language Reference Guidghe next two sections
summarize this transformation for fixe- mount and for robot arm-mounted cameras. Chapter 9 pre-
sents detailed information.

Fixed-Mount Camera Transformation

The transformation value to pick up an object using a fixed-mount camera has the following possi-
ble elements:

. The location, in world coordinates, of the origin of the vision reference frame. This loca-
tion is created by the camera calibration routine and stored in the “to.cam[]” array.

* The offset and rotation of the part relative to the vision reference frame. These values are
calculated using different vision tools (described in Chapters 5 - 7).

. The offset from the center of the quill flange to the center of the actual gripping location
(“TOOL transformation”). See the description of the TOOL program instruction in the
V' Language Reference Guitter details.

3.5

Loading Vision Calibration Data 31

Robot-Mounted Camera Transformation

The transformation value to pick up an object using an arm-mount camera has the following ele-
ments:

. The offset, in tool coordinates, from the origin of the vision reference frame to a location
on the robot that is fixed relative to the camera (this location varies depending on the
joint the camera is mounted on). This transformation is created by the camera calibration
routine and is stored in the “to.cam[]” array.

. The offset and rotation of the part relative to the vision reference frame. These values are
calculated using different vision tools (described in Chapters 5 - 7).

. The offset from the center of the quill flange to the center of the actual gripping location
(“TOOL transformation”). See the description of the TOOL program instruction in the
V' Language Reference Guitter details.

. The current position of the robot joint the camera was calibrated to. The robot joint that
the camera calibration transformation is based on moves. Therefore, the current position
of the robot joint must be recalculated each time a picture is taken at a new location. This
is a simple calculation that is described in Chapter 9.

The next four chapters will describe the tools and options available to calculate the necessary parts
of a vision transformation.

Loading Vision Calibration Data

After you have turned off the controller or zeroed system memory, calibration data is no longer
available and will have to be reloaded. There are two ways of loading calibration data to system
memory from a disk file. The first is to use the camera calibration program. The second is to call the
program “loadarea” from your application program. PiitvancedCamera Calibration Program

User’s Guidedescribes usingDV_CAL to load calibration data.

Loading calibration data by calling “loadarea” from an application program is shown in the pro-
gramming example in Chapter 8 and describddstructions for Adept Utility Programs

If you are using VisionWare or MotionWare with vision, the calibration data is automatically
loaded when VisionWare or MotionWare is started.

NOTE: In order for loaded calibration data to be valid, the physical camera
associated with the virtual camera must be in the same location and have the
same lens settings as when it was calibrated. If this is not the case, the system
will still return data, but the data may not be valid.

Teaching AdeptVision to See

Introduction L L e e e e e e e e e e e e 34
Physical vs. Virtual Cameras. v v v i e e 34
The Pointof Origin e e e e e e e e e e e 35

VPICTURE—Gettinganimage o v v v v v v v v v v 35
VPICTURE Syntax « v v v v i e e e e e e e e e e e e e e e e e 36

VPICTURE Examples o v v v 36
Executing VPICTURE FromtheMenu 36

VDISPLAY—Displayingthelmage 37

VDISPLAY Syntax« v v v v i e e e e e e e e e e e e e e 37
VDISPLAY Examples oo 37
Executing VDISPLAY FromtheMenu 38
Using the Different Display Modes. 38
Live Modes i e e e e e e e e 38
Frame (Frozen) Modeso 38
GraphicsMode e e e e e e 38

Binary vs. Grayscale Modeso e e e e e e e e e 39

Switchesand Parameters L . L e e e e e e e 41

Using Switches e e e e e e e e e e e 42
Enabling/Disabling Switches. 42
Viewing Switch Settings. L o 42

SWITCHExample o oo 43
Image-Acquisition Switches 0 o e e e 43

Using Parameters o i i e e e e e e e e e e e e e e e 44

Setting Parameters e e e e e e e 44
Parameter Exampleso oo 44
Image-Acquisition Parameters. 0 0 e e e e e 44

Examples of Switch and Parameter Settings 46

34

4.1

Chapter 4 - Teaching AdeptVision to See

Introduction

Your vision system should be installed and turned on (Chapter 2), and the camera should be cali-
brated and ready to start taking pictures (Chapter 3).

This chapter describes ways of getting the camera to “see” the critical features of an object. The
AdeptVision VME system provides several options for “filtering” the information supplied by the
camera so that the system analyzes only the features of an object that are important to you. Other
options help you produce the clearest, most usable image possible.

Chapters 5 - 7 show you how to gather information from the images that this chapter shows you
how to acquire. A thorough understanding of this chapter will help you make efficient, consistent
use of the information the system returns to you and the tools the system makes available to you.

Most of the options described in this chapter can be performed from the vision window pull-down
menus. This menu system provides you with an excellent development environment that allows you
to experiment with the system options before you begin programming vision applications. Use this
environment to become as familiar as possible with the effects of all the commands and options
before you begin programming. You will write more efficient and accurate programs when you
fully understand the vision processes.

Several of the instructions presented in the following chapters are in abbreviated form to minimize
confusion. As you become more familiar with the instructions, you will want to explore their full
capabilities. These instructions are detailed inAtieptVision Reference Guide.

Physical vs. Virtual Cameras

AdeptVision VME allows you to establish several virtual cameras for each of your physical cam-
eras (as long as the total number of virtual cameras does not exceed 32). One of the most important
things you will learn in the next three chapters is how to control what a camera sees. You may find
that you want to take several pictures of an object with each picture looking at the object in a differ-
ent way. Virtual cameras allow you to do this. For example, you might want your first picture of an
object to look at the perimeter shape and your second picture to look at interior features of the
object. By establishing two virtual cameras for the physical camera looking at the object, you can
take both types of pictures of the object. See “Why Use Virtual Cameras?” on page 28.

For the next two chapters, we assume your system has only one camera and that virtual camera 1
has been assigned to ib &ll references to a camera mean virtual and physical camera 1.

4.2

VPICTURE—Getting an Image 35

The Point of Origin

Many of the operations you will be learning specify coordinate points within the field of view.
These points will be given in Cartesian coordinates with the X/Y origin being at the lower left cor-
ner of the screen. This means that:

. In general, only positive numbers are meaningful. (When we introduce relative reference
frames, negative values for tool placement are useful, but they must resolve to a positive
value relative to the base vision reference frame.)

* The higher the number for the X coordinate, the further to the right on the screen the
point is.

. The higher the number for the Y coordinate, the higher on the screen the point is.

These coordinates are in millimeters that refer to the actual distances in the field-of-view, not the
dimensions of the monitor. This coordinate frame is referred to as the Vision Coordinate System.
Tools placed relative to this coordinate system are in “vision coordinates”.

NOTE: The V+ instructions GTYPE, GARC, etc., have their own coordinate
system that is based in screen pixels with the coordinate frame origin at the top
left of the vision window. The program instruction GTRANS will automatically
convert real-world millimeters to screen pixels so you can specify millimeters for
the “G” graphics instructions. The example program on page 131 shows how to
use the GTRANS program instruction.

VPICTURE—Getting an Image

The VPICTURE operation YPICTUREIs both a monitor command and a program instruction)
accomplishes two primary tasks:

The first is acquiring an image —getting the camera to transfer an electronic image to
the controller.

The second is processing that image—using the software to filter the image data and
gather information about the image.

When avPICTURE operation is performed, the vision system acquires an image into an image

buffer. If the processing option has been selected, the image data is examined and basic image data
is calculated. Depending on the setting of various vision switches described later in this chapter, the
level of data gathered can be controlled. Each time anm@TUREIs issued, the previous image

data is overwritter}.

The results of ¥ PICTURE operation can be displayed in several different ways. The way an image
is displayed depends on the selection made frorbisplay menu or with the/DISPLAY com-
mand (described in the next section).

1 See the full description ofPICTURE N theAdeptVision Reference Guifter details on storing

multiple images.

36 Chapter 4 - Teaching AdeptVision to See

VPICTURE Syntax

VPICTURE can be executed either from the monitor prompt or from within a vision program. The
simplified VPICTURE syntax is:

VPICTURKcam.virt) mode

cam.virt is replaced with the number of the virtual camera you want to take a picture
with. Camera 1 is the default value.

mode is replaced with:

-1 indicating that a new image should be acquired and processed immedi-
ately. This is the default value.

2 indicating that a quick frame grab should be made and boundary analy-
sis and prototype recognition should not be performed.

VPICTURE Examples
Acquire an image with virtual camera 3 and process it immediately:
VPICTURE(3)
Acquire an image with virtual camera 3 and hold it for later processing (quick frame grab):

VPICTURE(3) 2

Executing VPICTURE From the Menu
To execute a VPICTURE command from the menu:

1. Pull down th&Cam/Frame menu and drag to the number of the camera you want to
take a picture with (only the first 8 virtual cameras can be selected from the menu).

2. Pull down thePict menu and drag to the mode you want the picture taken in. The
results will be shown in the vision window.

" VISION

Cam/Frame | Display | Pict Ops Status Models Switches
Acquire: 2
Process: 0

Acquire and process: -1

Figure 4-1 VPICTURE Options

4.3

VDISPLAY—Displaying the Image 37

VDISPLAY—Displaying the Image

AdeptVision VME provides several ways of displaying an acquired image on the screen. You
choose a display mode depending on what image characteristics you are interested in, how time-
critical your application is, and what information you want relayed to an operator.

VDISPLAY Syntax

VDISPLAY is both a monitor command and a program instruction. The simpifie8PLAY syn-

tax is:

VDISPLAY mode, overlay

mode is replaced with:

-1

indicating a live grayscale image is to be displayed. This mode displays
a live video image that shows you exactly what the camera currently
sees (not the last picture that was acquired).

indicating a live thresholded (binary) image is to be displayed.

indicating that an acquired grayscale image is to be displayed. (Modes
1 to 4 take effect at the firsiPICTURE afterVDISPLAY is changed.)

indicating that an acquired binary or edge image is to be

displayed.

indicating that a graphical representation of a processed image, along
with any user-generated graphics, is to be displayed.

indicating that user-generated graphics should not be erased each time
VPICTUREIs executed. This mode is useful for graphs or data you want
to display continuously.

overlay (used with mode” = -1, 0, 1, and 2 only) is replaced with:

VDISPLAY Examples

0
1

indicating no user graphics are to be overlaid. This is the default value.

indicating that any user- or system-generated graphics are to be over-
laid on a frozen or live imagenpdes -1, 0, 1, and 2). (Imodes 3
and 4, user-generated graphics are automatically displayed.)

indicating user graphics are to be displayed and not erased during suc-
cessivevVPICTURE operations.

Display a live grayscale image with any user-generated graphics overlaid:

VDISPLAY -1,1

Display a graphical representation of the image, including user-generated graphics:

VDISPLAY 3

38

Chapter 4 - Teaching AdeptVision to See

Executing VDISPLAY From the Menu

Pull down theDisplay menu and select the display mode you want to use. If you select any of the
live or frame modes and want a graphics overlay, pull down the menu again and select an overlay. A
“00” indicates the option is selected.

= VISION

Cam/Frame | Display | Pict Ops Status Models Switches

Live grayscale: -1,0
Live binary: 0,0

Grayscale frame: 1,0
Binary frame: 2,0

[J Graphics only: 3

Static graphics: 4

Graphics overlay: *,1
Static overlay: *2

Figure 4-2 Display Mode Options

Using the Different Display Modes

Live Modes

Use the live modes for setting up your vision cell. These modes allow you to immediately see the
effects of changes to:

. Camera lens focus

e Cameralens aperture

. Lighting

. Objects in the field-of-view

. Changes to parameters such as gain, offset, and threshold

Frame (Frozen) Modes

An acquired image in a frame store is referred to as a “frozen” image. Use the frozen modes to see
the actual image the system is currently working with.

Graphics Mode

The live and frozen modes do not show you the actual edges the system has detected or the graphics
that represent the vision tools. To see the processed image, use display mode 3. To see the tool
graphics, use a graphics or graphics overlay mode.

Remember, displaying graphics requires processing time and is not essential to many vision opera-
tions. If your application is time critical, consider not displaying graphics.

Binary vs. Grayscale Modes 39

4.4 Binary vs. Grayscale Modes

To understand the relative advantages of grayscale and binary modes, it helps to understand what
information the camera returns to the controller and how the controller interprets that information.
Figure 4-3 shows a magnified section of an array of pixels that might be returned by a camera. In
each pixel of the matrix is the grayscale intensity value the camera has registered from the field-of-
view.

88 |82 |84 88|85 83|80 |93 102
88 |80 |78 80|80 78|73 |94 100
85|79 /80|78 |77 |74 |65|91 |99
38 35|40 /35|39 |74 |77 |70 |65
20 |25 |23 |28 |37 |69 |64 |60 |57
22 126 |22 |28 |40 |65 |64 |59 |34
24128 |24 130 |37 |60 | 58 | 56 | 66
2122|123 |27 |38 |60 67|65 67
23|22 |22 |25 |38 |59 |64 |67 |66

Figure 4-3 Sample Vision Matrix

When AdeptVision VME creates a binary image, each value in the matrix is compared with a
“threshold” value. All the pixels with a value above the threshold are considered white and all the
pixels below this value are considered black. Figure 4-4 shows the binary image that would result
from Figure 4-3 using a threshold value of 32. A binary line findet toolild be able to find two

lines in this image, the bottom and right edges (assuming the left and bottom edges represent the
edge of the field of view).

88 |82 |84 88|85 |83 |80 |93 |102
88 180 |78 80|80 |78 |73 |94 |100
85179180 |78 |77 |74 65|91 |99
3835|4035 |39 |74 |77 |70 |65
0 ¢l 37 | 69 | 64 |60 | 57
6 ¢l 40 | 65 |64 |59 |61
i Y IVl 37 | 60 | 58 | 56 | 66
38 |60 |67 |65 |67

38|59 |64 |67 |66

Figure 4-4 Binary Representation of Sample Matrix

L Line finders are described in Chapter 6.

40

Chapter 4 - Teaching AdeptVision to See

When grayscale vision tools are used, the software processes image data based on the difference in
intensity values found in the neighboring pixels. If the difference found exceeds an “edge strength
value”, the system considers the three-by-three area to be part of an edge. Figure 4-5 shows the four
edges a grayscale line finder could find if an edge strength value of 20 were applied to the image
data from Figure 4-3. (This illustration is somewhat idealized to help illustrate the point.)

88 |82 |84 |88 |85 |83 |80 |93 102
100
99
65
57
61
66
67
66

Figure 4-5 Grayscale Representation of Sample Matrix

By comparing these three figures we can make several generalizations about grayscale vs. binary

modes.

1.

Binary mode uses edge data based on only two states, black or white. Grayscale mode
uses edge data based on values in the range 0-127. Grayscale mode examines 3 x 3 sec-
tions of pixels when calculating edges. This means binary mode will require less pro-
cessing time.

Binary mode looks for edges based on an absolute intensity value. This means that if the
overall brightness of the image changes, binary mode may see the image differently (the
edges will move based on the increasing or decreasing brightness of the image). Gray-
scale mode looks for the relative difference between intensity values in an image. Thus,
if the overall brightness changes, the relative brightness should remain similar and the
system will see edges in the same place. In general, grayscale mode will be less affected
by ambient lighting changes than will binary mode.

Since grayscale mode looks for intensity differences, you will be able to identify edges
that occur in more than one brightness range. In the examples above, if there had been an
intensity change in the range of 80 to 110, binary mode would have considered the entire
area to be white and ignored the change. Grayscale mode would have perceived the
intensity difference and calculated an edge.

In the case of an object with several interior features, grayscale mode may be the only

way to recognize interior features. You may find, when inspecting a part, that the interior
features are not of interest and need to be filtered out, in which case binary mode might
be more appropriate.

Some additional considerations when deciding whether to use grayscale or binary mode are:

1.

A few AdeptVision VME tools can operate only on binary data. These will be described
in the following chapters.

4.5

Switches and Parameters 41

2. Allof the grayscale tools can be used even when the picture is processed in binary mode.

3. Grayscale tools can be more accurate than binary tools. Grayscale tools use an algorithm
that potentially allows them to locate features with subpixel accuracy.

Each time an image is acquired, both grayscale and binary data is stored. When making a decision
about which mode to process in, you are not limited to one mode or the other. You can inspect an
image both in binary and in grayscale mode, making use of the unique features of each mode to
make different inspections of the image.

Switches and Parameters

Before you can begin using the vision tools to inspect objects, you need to acquire a clear, accurate
image that displays the features you are interested in and filters out features you are not interested
in. AdeptVision VME has two classes of system variables that control the way it sees objects and
what information the system will gather about those objects. The two classes of variables are
switches and parameters.

When an image is processed, the effects of the switches and parameters are reflected in the data
returned by the vision system. For example, suppose you have a part that has several 6 mm and 13
mm holes, but you are interested only in the 13 mm holes. By setting a combination of switches and
parameters you can acquire an image that processes data about the 13 mm holes and ignores the 6
mm holes.

During the development of your applications, care should be taken to set the switches and parame-
ters so that your system produces clear images and processes only the minimum detail needed to
accomplish the desired vision task (processing unneeded data consumes processing time and may
slow down your applications).

All switches and parameters can be set within a program. This allows you to set the variables for
one image, take a picture, process the data, and then change the variables for the next picture or
image. Remember, each virtual camera has its own arrays of switches and parameters. This allows
you to use different virtual cameras to take pictures using different parameter, switch, and calibra-
tion settings, while using the same physical camera.

The switches and parameters can be broken into three main functional groups. The first group influ-
ences the way the system initially acquires the image. This group will be presented in this section.

The second group influences the types of processing the system performs and what information it
gathers about the objects it finds in the field-of-view. This group will be presented in Chapter 5.

The third group influences the model recognition processes. This group will be presented in Chap-
ter 7.

The entire group of switches and parameters is listed in Appendix A.

42

Chapter 4 - Teaching AdeptVision to See

4.6 Using Switches

Switches are software variables that can take on a binarylvahey are either on or off. Switches
are referred to as being enabled or disabled. There is an array of switch settings for each virtual
camera.

Enabling/Disabling Switches

Switches are set using tE8IABLE andDISABLE monitor commands or program instructions.
Their syntax is:

ENABLE switch [camera],...,switch[camera]

DISABLE switch [camera],...,switch[camera]
switch is replaced with any of the switches listed in Table 4-1 (or Appendix A).

camera is replaced with the number of the virtual camera you want to set the switch
for. The default value iall cameras. If you are using multiple cameras with
different switch/parameter settings, make sure you include a camera number
in each switcH.

These switches can be set by pulling downSkdtches menu in the vision window, dragging to

the switch you want to change, and releasing the mouse buttam” Aéxt to the switch name
indicates that the switch is enabled. The switch settings apply to whichever camera is selected in
theCam/Frame menu.

The current state of a switch can be read within a program wittM#ieCH() function.

Viewing Switch Settings

To see the status of all system switches, issue the comsvamdH from the system prompt. To
see the status of the switches from the vision window menu, pull dovwitehes menu.
Switches marked with &3 are enabled.

L This argument applies only to vision switches and parametérsystem switches and parame-
ters do not require this argument.

Using Switches 43

SWITCH Example

The following example will enable the binary switch for virtual camera 4 and then output its current
state:

ENABLE V.RECOGNITION[4]
IF SWITCH(V.RECOGNITION[4]) THEN
TYPE "V.RECOGNITION[4] is ON"
ELSE
TYPE "V.RECOGNITION[4] is OFF"
END

Image-Acquisition Switches

Table 4-1 provides a brief description of the switches that affect the way the system sees an object.
“Switches and Parameters Used During Boundary Analysis” on page 56 describes the switches that
influence what information the system gathers about an object. Complete information on each
switch is available in thAdeptVision Reference Guideppendix A summarizes all the switches
available to AdeptVision VME.

Table 4-1 Image-Acquisition Switches

Switch

Effects

V.BINARY If disabled, it will affect the operation of VPICTURE modes -1, 1, and 2 in the

following ways:
For VPICTURE modes 2 and 1, it will start a VEDGE operation immediate
following the completed acquisition into the virtual frame buffer.
For VPICTURE mode -1, a VEDGE operation is performed prior to processing
of the image. In this case, the VPICTURE instruction will not complete until
after the first stage of processing (the computation of run-lengths) is complete.
Therefore, the run-lengths are computed on the binary edge image which|is the
result of VEDGE (see Appendix B in thaleptVision Reference Guifter
details on how vision run-lengths are generated).

In each case above, the choice of edge operation to be performed (cross-gragdient or

Sobel) is determined by the value of the system parameter V.EDGE.TYPE. And

the edge strength threshold is given by the V.EDGE.STRENGTH system

parameter.

y

V.BACKLIGHT The system has no way of differentiating between background and object unless

you tell it which one is dark and which one is light. This switch tells the system
which intensity is background and which intensity is object. If the switch is set
incorrectly, the system will process the background rather than the object. Disable
the switch for a dark background and enable it for a light background. (Applies to

binary processing only.)

V.BOU

NDARIES Enables or disables boundary analysis. If this switch is disabled, perimeter, edge,
centroid, 2nd moment data, and hole data will not be gathered. This swisthe
enabledfor prototype recognition and OCR.

44 Chapter 4 - Teaching AdeptVision to See

4.7 Using Parameters

Parameters affect the vision system in much the same way switches do, except that parameters can
take on a range of values—not just on or off.

Setting Parameters
Parameters are set by entering the monitor command program instruction:
PARAMETERparam_name[cam.virt] = value

param_name is replaced with the name of the parameter you want to set.

cam.virt is replaced with the virtual camera number you want to set the parameter for.
The default isall cameras. If you are using multiple cameras with different
parameter settings, make sure you include a camera number with each
PARAMETER command.

value is replaced with the new value you want the parameter to have.
Parameter Examples
Output the entire parameter list to the scréen:
PARAMETER
Display the value of a single parametémMHRESHOLD for example):
PARAMETER V.THRESHOLD

To return the value of a parameter from within a program, useAtReMETER function:

TYPE "V.THRESHOLD is: ", PARAMETER(V.THRESHOLDI1])

Image-Acquisition Parameters

Table 4-2 describes briefly the parameters that primarily influence how AdeptVision VME sees
regions in the field-of-view. Complete information on each parameter is availableAdepgVi-

sion Reference Guidéppendix A gives a brief description of all the parameters available to
AdeptVision VME.

1 The parametebISP.CAMERA determines how many virtual cameras will have their arrays of
switches and parameters displayed.

Using Parameters 45

Table 4-2 Image-Acquisition Parameters

Parameter

Effects

V.FIRST.COL

Sets the first column (in pixels) that will be processed by the system. Us
speed processing time by ignoring unwanted areas to the left side of the
of view. Must be less than or equaMbAST.COL. (Note: the effect of the first
four parameters in this list is generally ignored by vision tools that use t
“area-of-interest” option. See section 6.1.)

V.FIRST.LINE

Sets thefirst line (in pixels) that the system will process. Everything below
line will remain unprocessed. Must be less than or eqUALAST.LINE.

V.LAST.COL

Sets the last column (in pixels) that will be processed. Everything to the

of this column will remain unprocessed. Must be greater than or equal to

V.FIRST.COL.

V.LAST.LINE

Sets the last line (in pixels) that will be processed. Everything above thig
will remain unprocessed. Must be greater than or equaFtRST.LINE.

V.MAX.AREA

ed to
field

e

this

right

line

Sets a value for the largest object (in pixels) the system will process. Useful if
a large object is in the same field of view as the object you are interested in.

The setting o.SUBTRACT.HOLESaffects this parameter. Must be greater
than or equal t&.MIN.AREA.

V.MIN.AREA

Sets a value for the smallest object the system will attempt to process. U

seful

forignoring small objects you are not interested in and filtering out noise. Must

be greater than or equal¥oMIN.HOLE.AREA and less than or equal to
V.MAX.AREA. The setting o¥.SUBTRACT.HOLESiIs considered when
comparing area values.

V.MIN.HOLE.AREA

Sets a value for the smallest hole (in pixels) in an object that the system
process. Must be less than or equal.l0iIN.AREA.

V.THRESHOLD

Sets the intensity at which the system divides pixels into black or white.

V.2ND.THRESHOLD

Used with. THRESHOLDto establish a range of intensity that the system
see as black or white. For example, withHRESHOLD at 50 and
2ND.THRESHOLDat 70, all pixels between 50 and 70 would be seen as b

V.EDGE.STRENGTH

Sets the threshold at which the system recognizes an edge in grayscale

processing. If the variation in pixel intensity across a region exceeds this
parameter, an edge is recognized.

V.GAIN AdeptVision VME recognizes 128 degrees of intensit@AIN works with
V.OFFSETto maximize the use of these 128 valleSAIN scales the
incoming analog video signal.

V.OFFSET Works withv.GAIN to maximize the range of intensities that the system

recognizes in your objectg.OFFSETIs applied to the incoming video signal.

will

ill

lack.

46 Chapter 4 - Teaching AdeptVision to See

4.8 Examples of Switch and Parameter Settings

The examples in this section show the effects of changing switches and parameters. The examples
were taken with a VPICTURE () —1 instruction and with VDISPLAY mode set
to 3.

This is the object that is being placed in the field of view. This is the sample object that was intro-
duced in Chapter 1.

Figure 4-6 Sample Object

Examples of Switch and Parameter Settings 47

One of the first things you will notice about VDISPLAY mode 3 is that the object is rendered in
white and the background in black, regardless of the actual intensities of the object and back-
ground.

In “Switch and Parameter Example 1”7, the switches and parameters are set to obtain the best possi-
ble image. This image was obtained with the following switch and parameter settings:

Switches
[] | V.BINARY [] | V.BOUNDARIES [] | V.BACKLIGHT
Parameters
1 | V.FIRST.COL 1 | V.FIRST.LINE 640 | V.LAST.COL
480 | V.LAST.LINE 307,200| V.MAX.AREA 16 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 8 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 20 | VEDGE.STRENGTH
e ’ VISION | d
Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-7 Switch and Parameter Example 1

In the following examples, the switches or parameters that have been changed are marked with a
shadow.

NOTE: If you are experimenting with the sample object, remember that
parameter settings are sensitive to ambient lighting. Therefore, your parameter
settings may be different to obtain the same image.

48 Chapter 4 - Teaching AdeptVision to See

In “Switch and Parameter Example 2 BINARY is disabled, resulting in an edge image. When the
system processes this image, it will operate on the edges generated using the parameter
V.EDGE.STRENGTHrather than the binary image generated using the paratiBte*rESHOLD.

The settings for “Switch and Parameter Example 2" are:

Switches
V.BINARY [] | .BOUNDARIES [] | V.BACKLIGHT
Parameters
1 | V.FIRST.COL 1 | V.FIRST.LINE 640 | V.LAST.COL
480 | V.LAST.LINE 307,200| V.MAX.AREA 16 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 8 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 20 | V.EDGE.STRENGTH
m ’ VISION ‘ J

Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-8 Switch and Parameter Example 2

Examples of Switch and Parameter Settings 49

Changing the value GfEDGE.STRENGTHt0 40 causes the system to fail to recognize an edge at

the tail end of the object. The change in intensity values at the tail of the object does not exceed the
value of V.EDGE.STRENGTH so edges are not detected in that area. “Switch and Parameter
Example 3” shows the effects of changing this parameter.

The settings for “Switch and Parameter Example 3" are:

Switches
V.BINARY [] | V.BOUNDARIES [] | V.BACKLIGHT
Parameters
1 | V.FIRST.COL 1 | V.FIRST.LINE 640 | V.LAST.COL
480 | V.LAST.LINE 307,200| V.MAX.AREA 16 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 8 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 40 | V.EDGE.STRENGTH

" ’ VISION ‘ o |
Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-9 Switch and Parameter Example 3

50 Chapter 4 - Teaching AdeptVision to See

If the small polygon in the object is not of interest to you, instruct the system to ignore it by chang-
ing the value of the minimum hole size the system will process within an olbjetiN. AREA will

have to be raised to a value greater M&anN.HOLE.AREA.) “Switch and Parameter Example 4”
shows the effects of changing these two parameters. Raising these two parameters further would
cause the circular hole to be ignofe@l.BINARY has been reenabled for this example.)

The settings for “Switch and Parameter Example 4" are:

Switches
[] | V.BINARY [] | V.BOUNDARIES [] | V.BACKLIGHT
Parameters
1 | V.FIRST.COL 1 | V.FIRST.LINE 640 | V.LAST.COL
480 | V.LAST.LINE 307,200| V.MAX.AREA 650 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 625 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 20 | V.EDGE.STRENGTH
® ’ VISION ‘ IR |
Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-10 Switch and Parameter Example 4

1 These two values could be raised high enough to cause the system to ignore the object completely.

Examples of Switch and Parameter Settings 51

The effects of changing THRESHOLD are shown in “Switch and Parameter Example 5”. We have
lowered the threshold value to the point where the system does not see a sufficiently high intensity
in the pixels at the tail end of the object to consider them part of the object. Therefore, they are con-
sidered background, and an image like the one in “Switch and Parameter Example 5” is produced.
(Note that changing. THRESHOLDfor a binary image is similar to changigeEDGE.STRENGTH

for a gray-edge image see “Switch and Parameter Example 3”.)

The settings for “Switch and Parameter Example 5" are:

Switches

] V.BINARY] V.BOUNDARIES] V.BACKLIGHT
Parameters

1 V.FIRST.COL 1 V.FIRST.LINE 640 V.LAST.COL

480 V.LAST.LINE 307,200 | V.MAX.AREA 16 V.MIN.AREA

100 V.OFFSET 90 V.GAIN 8 V.MIN.HOLE.AREA

20 V.THRESHOLD 0 V.2ND.THRESH 20 V.EDGE.STRENGTH
. ’ VISION ‘ d
Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-11 Switch and Parameter Example 5

52 Chapter 4 - Teaching AdeptVision to See

You can limit the area of the field-of-view that is processed by changing the parameters that specify
the starting and ending columns and rows of pixels to process. This is useful if you are interested in
only a small area of the field-of-view, or if a portion of the field-of-view needs to be blocked off
because it interferes with processing the area you are interested in. “Switch and Parameter Example
6” shows how to limit the processed area. Remember, line settings are measured from the bottom of
the screen, and column settings are measured from the left side. These parameters apply only to the
VPICTURE and VWINDOW instructions. The areas-of-interest defined for the various vision tools
will over-ride any processing boundaries set with V.FIRST.COL, V.LAST.COL, etc.

The settings for Switch and Parameter Example 6 are:

Switches
[] | V.BINARY [] | V.BOUNDARIES [] | V.BACKLIGHT
Parameters
150 | V.FIRST.COL 200 | V.FIRST.LINE 360 | V.LAST.COL
350 | V.LAST.LINE 307,200| V.MAX.AREA 16 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 8 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 20 | V.EDGE.STRENGTH
o VISION o
Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-12 Switch and Parameter Example 6

Examples of Switch and Parameter Settings 53

“Switch and Parameter Example 7” shows the effect of disablBARCKLIGHT. What we have told

the system is that we now have light objects on a dark background. This causes the system to con-
sider areas of darkest intensity as background. In the image below, the processor considers the
object to be the background and vice versa. (RemembeBISPLAY mode 3, the object is ren-

dered as white and the background as black.) If your vision operation examines white labels on a
black conveyor belt, you will disable this switch. You may also find that some inspections can be
made more easily when the background/object intensities are reversed.

The settings for “Switch and Parameter Example 7” are:

Switches
[] | V.BINARY [] | V.BOUNDARIES V.BACKLIGHT
Parameters
1 | VFIRST.COL 1 | V.FIRST.LINE 640 | V.LAST.COL
480 | V.LAST.LINE 307,200 V.MAX.AREA 16 | V.MIN.AREA
100 | V.OFFSET 90 | V.GAIN 8 | V.MIN.HOLE.AREA
55 | V.THRESHOLD 0 | V.2ND.THRESH 20 | V.EDGE.STRENGTH

" | VISION L_]

Cam/Frame | Display Pict Ops Status Models Switches

Figure 4-13 Switch and Parameter Example 7

Boundary Analysis

Introduction L e e e e e e e e e e e e e e e e e e e 56
Switches and Parameters Used During Boundary Analysis 56
Boundary Analysis Instructions L Lo oo e 57
VLOCATE . . . o o e 58
VLOCATE Examples o o v it e e e e e 58

The DO Monitor Command & v v i e e e e e e e e e e e 59
VFEEATURE o e e e e e e e e e e e e e e e e e e e 59
Whatis VFEATURE?« o e e e e e e e e e e 59

Blob Allocation e e e e e e e 61
VFEATURE Example« v v v i i e e e 62

VQUEUE o o e e e e e e e e e e e e 63

56 Chapter 5 - Boundary Analysis

5.1 Introduction

Now that you know how to acquire and process an image, this chapter will show you how to get
some useful information from that image. This chapter will cover the first information processing
strategy that AdeptVision VME employs, boundary analysis (often called “blob analysis”).

Chapter 6 covers the second strategy, vision tools, and Chapter 7 covers the third information pro-
cessing strategy, vision model processing.

When the system processes an image, it explores the boundaries of all the regions in the field-of-
view and stores the information it gathers about each of those regions in a special vision queue.
Two operations are required to retrieve boundary information. The fW&GSATE which

retrieves a region’s data from the vision queue. The second opexENTURE, retrieves indi-

vidual data items. In many cases this data will tell you all you need to know about an object; you
will not have to use any other vision tools or model processing.

Before we look aVLOCATE andVFEATURE let's examine the switches and parameters that influ-
ence their performance.

Switches and Parameters Used During Boundary Analysis

In addition to the switches and parameters listed below, all the switches and parameters introduced
in Chapter 4 affecVLOCATE andVFEATURE. For example, one piece of information available
throughVFEATURE is the number of holes in a region. If we set the paranve.HOLE.AREA

so that it was larger than the size of the two holes in our sample object (see Example 4 on page 50),
thenVFEATURE will report that there are 0 holes in the sample object.

The switches and parameters listed in Table 5-1 and Table 5-2 determine what data (and in some
cases, the form of the data) the system gathers during boundary analysis of the regions within the
processed image.

Table 5-1 Boundary Analysis Switches

Switch Effects

V.BOUNDARIES Enables or disables boundary processing. If this switch is disabled, perimeter,
edge, centroid, 2nd moment data, and hole data will not be gathered. Must be
enabled for vision model processing.

V.SUBTRACT.HOLE When this switch is enabled, the area of holes within an object will be
subtracted from the area calculation. This switch affects the parameters
V.MIN.AREA, V.MAX.AREA, and V.MIN.HOLE.AREA.

V.CENTROID The centroid of an object is calculated if this switch is enabled. This switch
increases processing time and should be disabled if the centroid information
is not needed. (V.BOUNDARIES must be enabled.)

V.MIN.MAX.RADII The perimeter points closest to and furthest from the centroid of an object are
calculated when this switch is enabled. (V.BOUNDARIES and
V.CENTROID must be enabled.)

Boundary Analysis Instructions 57

Table 5-1 Boundary Analysis SwitchegContinued)

Switch

Effects

V.2ND.MOMENT

The 2nd moments of inertia and best fit ellipse are calculated when this

switch is enabled (V.CENTROID and V.BOUNDARIES must be enabled).

V.SUBTRACT.HOLES is ignored.

tting

seful
orms

V.PERIMETER The perimeter of an object is calculated if this switch is enabled.

V.HOLES If this switch is enabled, the statistics gathered for objects will also be
gathered for the holes in the objects.

V.SHOW.EDGES If this switch is enabled, the vision system will display the attempts at fi
primitive edges to an object.

V.SHOW.BOUNDS If this switch is enabled, the vision system will display the results of
attempting to fit lines and arcs during boundary analysis. This switch is u
during development as it allows you to see how the vision processor peri
boundary analysis.

V.FIT.ARCS Enabling this switch causes the system to attempt arc fitting during boundary
analysis. If arcs are unimportant in your images, processing time will be
improved by disabling this switch.

Table 5-2 Boundary Analysis Parameter
Parameter Default Range Effects
V.MAX.PIXEL.VAR 1.5 0 8 Sets the maximum pixel variation allowed

when the system fits a line or an arc to a
region boundary.

5.2 Boundary Analysis Instructions

In order to make boundary analysis data available, you must:

. Enable the system switahBOUNDARIES (along with any other switches required for
the data you are interested in).

. Acquire a processed image uswWigICTURE. (You can also acquire an unpro
cessed image and then uséveINDOW instruction to process a limited area of the
image. This procedure is described in section 6.6.)

. Remove a region’s data from the vision queue and make it availal&E T URE using
the VLOCATE instruction.

. UseVFEATURE to return the particular information you are interested in.

58

Chapter 5 - Boundary Analysis

We have already seen the syntax\f@tCTURE and how to set system switches. This section will
describeVLOCATE andVFEATURE, and describe theéQUEUE instruction that allows you to see
the status of the vision queue.

VLOCATE

When an image is processed, each region’s data is stored in a queieLHES is enabled, the data

about the holes in each object is also stored in this queue. To use the data, you must remove it from
the queue and make it available®EATURE. TheVLOCATE program instruction performs this
operation. The syntax f&LOCATE is:

VLOCATE (camera, mode, order) $var_name, trans_var

camera is replaced with the camera whose vision queue you wish to remove an
object from. (There is a queue of datadachvirtual camera.) The default
is camera 0, which makes the contents of the queues of all virtual cameras
available.

mode is replaced with:

0 causing the system to attempt to remove a region’s data from the queue
(referred to as “locating a region”). 0 is the default.

4 causing the system to attempt to remove a hole’s data from the vision
queue. Y.HOLES must be enabled. Hole data is available only for holes
in the most recentlyLOCATEd region.)

order is replaced witH:

1 causing the system to remove objects from the queue starting with the
largest object.

2 causing the system to remove objects from the queue starting with the
smallest object.

$var_name To remove an unrecognized region (known as a “blob”) from the queue,
replace $var_name " with “?” . To remove a hole’s datenpde = 4) leave
this parameter blank. (Until we cover prototype recognition in Chapter 7, all
regions will be unrecognized aty®’ will be used for $var_name ".)

trans_var Optional transformation variable to be assigned the location of the object.

VLOCATE Examples

If a successfu/PICTURE instruction has acquired and processed an image with at least one region
in it, the instruction:

VLOCATE (1, 0) $name, trans_var

will locate any object in the queue and make its region data available through
VFEATURE(). (If the object is recognized as a prototype, the prototype name will be returned.)

If the region located had at least one hole in it, the command:

1 see theAdeptVision Reference Guiflar details on default values farode andorder .

Boundary Analysis Instructions 59

VLOCATE (1,4)

will locate the first hole in the most recenttyOCATEd region and make its region data available
throughVFEATURE(). For a hole to be locatedHOLES must have been enabled when the image
was processed.

The DO Monitor Command

Most of the * operations covered in the rest of this manual are program instructions and do not
have a monitor command format. Program instructions can be executed only from within a program
and not directly from the system prompt. If you want to experiment with various program instruc-
tions without writing and executing a program, you can preface a program instruction with the
monitor command DO and execute it from the system prompt. For example, t0 aXeRCRTE

from the system prompt, enter the command:

DO VLOCATE (1,2) "?"

VFEATURE

Once an image has been acquired and processed VWRICAURE instruction, and a region or a
hole in a region has been removed from the queue WIIOECATE instruction, data on that object
is available through use of the functigREATURE.

What is VFEATURE?

VFEATURE is not a monitor command or a program instruction. It is a system function that returns
a value. As such, it can be used in most places you would use a variable. For example:

IF VFEATURE(10) > 975 THEN...

or

part_centerx = VFEATURE(42)

(A critical point to remember when usivMGEATURE is that it is a function that returns a value and
not an array of values. You cannot assign a valueEEATURE index. For example, the instruc-
tion VFEATURE(12) = 3.303 would produce an error.)

Table 5-3 lists the values available thro0nfEATURE as a result of boundary analysis. Additional
data is available after prototype recognition; this is covered in Chapter 7. The coviEAT&RE
table is printed in Appendix B.

1

60 Chapter 5 - Boundary Analysis
Table 5-3 VFEATURE Values and Interpretation
Index Information Unit Switch/Parameter effects
1 Whether an object was found or not TIF Returns — 1 for true or O for false.
(true/false)
2 Center X mm If V.CENTROID is enabled, the
value is the centroid of the region.
3 Center Y mm Otherwise, it is the center of the
bounding box of the region.
4 Center Z mm
5 Rotation about X °
6 Rotation about Y °
7 Rotation about Z °
10 Area of object pixels If V.SUBTRACT.HOLES is enabled,
the area of holes in the object is
subtracted from this calculation.
11-12 ID numbers # See the description MFEATURE in
the AdeptVision Reference Guifte
details on these two items.
13 Left limit of region’s bounding box mm
14 Right limit of region’s bounding box mm
15 Lower limit of region’s bounding box mm
16 Upper limit of region’s bounding box | mm
17 Number of holes in the object #
18 Time spent acquiring, processing, and| secs
recognizing an object
21 When an object is located, all the holes # Holes can be located within a
within the object are given a reference bounded region or within a hole in &
number. This value is the reference bounded region. These values keef
number of the current hole. (Also holds track of where you are in the locatin
true for “holes within holes.”) sequence. Holes are number
consecutively for each region.
22 Parent number of holes referenced in | #
VFEATURE(21)
40 Total area of all holes pixels V.HOLES must be enabled.
41 Outer perimeter of the object mm V.PERIMETER must be enabled|

Boundary Analysis Instructions 61

Table 5-3 VFEATURE Values and Interpretation (Continued)

Index Information Unit Switch/Parameter effects
42 Object centroid along X axis mm V.CENTROID must be enabled.
43 Object centroid along Y axis mm
44 The angle (relative to the vision ° V.CENTROID and
coordinate system) of a line drawn to the V.MIN.MAX.RADII must be
closest point on the object perimeter enabled.
from the centroid
45 The angle to the furthest point on the | °
object perimeter from the centroid
46 The shortest distance from an object’s| mm
centroid to a point on its perimeter
47 The greatest distance from an object'sy mm V.CENTROID and
centroid to a point on its perimeter V.MIN.MAX.RADII must be
enabled.
48 The angle of the object’s major axis ° V.CENTROID and
(axis of least inertia) V.2ND.MOMENTS must be enabled.
49 Major radius of the ellipse [along the | mm
axis reported in VFEATURE(48)]
50 Major radius of the ellipse mm
[perpendicular to the axis reported in
V.FEATURE(48)]

Blob Allocation

The number of blobs that can be stored in the various vision queues is dependent on vision memory.
AdeptVision VME sets the maximum vision memory that can be used by the vision queues, as well
as other objects that reside in vision memory. This default allocation can be changed to suit your
particular application with thBEVICE instruction. Appendix F lists the default allocations and

how to change them.

62 Chapter 5 - Boundary Analysis

VFEATURE Example

Here is an example of boundary analysis using the values returnérEBYURE. If we wanted to
know the perimeter of our sample object, the number of holes in that object, and the center of the
circular hole, the following program code would provide that information:

; Display the results of the next VPICTURE instruction in graphics mode
cam.virt =1
VDISPLAY (cam.virt) 3
; Make sure hole information is gathered
ENABLE V.HOLES [cam.virt]
ENABLE V.BOUNDARIES [cam.virt]
DISABLE V.DISJOINT [cam.virt]
ENABLE V.CENTROID [cam.virt]
; Make sure perimeter information is gathered
ENABLE V.PERIMETER
; Acquire and process an image
VPICTURE (cam.virt) -1
; Remove any object from the queue for "cam.virt"
VLOCATE (cam.virt) $name, trans_var
; Check for a successful VLOCATE (i.e., an object was found)
IF VFEATURE(1) THEN

; Display the perimeter of the object and the number of holes

TYPE "Object perimeter is: ", VFEATURE(41)
TYPE "The number of holes in the object is: ", VFEATURE(17)

; Locate the largest hole in the object
VLOCATE (cam.virt, 4, 1)
: Check for a successful VLOCATE
IF VFEATURE(1) THEN
; Display the coordinates of the center hole
TYPE "Center hole coordinates: ", VFEATURE(2), VFEATURE(3)

END
END

Name

?
?

aproto

Boundary Analysis Instructions 63

VQUEUE
The monitor commandQUEUE shows the status of the vision queue. The syntaX@uEUE is:
VQUEUE (cam.virt)

cam.virt is replaced with the camera number whose queue you wish to examine. The
default is O, indicating all cameras.

When you execute WQUEUE command, you will see a display similar to:

Verify Area X Y RZ Instance Camera
percent ID
0.0 177797 182.3 80.7 0.00 1 1
0.0 2904 151.7 89.0 0.00 2 1
85.4 36855 159.1 85.9 8.70 3 1
Name If a region has been recognized as a prototype, its name will appear in this col-

umn. Otherwise a “?” will appear indicating that information on an unidentified
region (“blob”) has been placed in the queue.

Verify percent A measure of how confident prototype recognition is.

Area Area of the region in raw pixels.

X, Y, Rz Region transformation components (position and rotation in the vision coordinate
system).

Instance ID Order of processing for the different objects (an arbitrary but sometimes useful
ID number).

Camera Camera the image was acquired with.

To determine the number of items remaining in a queue from within a program, use the real-valued
functionVQUEUE(). The following code will remove objects from the vision queue for virtual cam-
era 4 (if the 4 is omitted, the code will look through all queues):

WHILE VQUEUE(4) DO
VLOCATE(4)

; code executed for each region

TYPE "Number of objects left: ", VQUEUE(4)
END

Vision Tools

Defining a Tool Area-of-Interest (AOI) 66
Frame Stores o e e e e e e e e e e e e 66
Virtual FrameBuffers 0 oo 66
Areas-of-Interest L e e e e e e e e e 67
Defining an Image BufferRegion. 68
LinearRulers o o e e e e e 71
VRULERIArray . . . o o o e o e e e e e e e e e e e e e e e e e e e 71
Linear Ruler Example 72

Arc Rulers e e e e e e e e e e e e e 74
ArcRulerExampleo 74
Ruler Types« o o e e e e e e e e e e e e e e e e e e 77
Standard Binary Rulers (type=0) o0 77
Raw Binary Rulers (type ==1). o .o oo 77
Dynamic Binary Rulers (type =—=2).o 77
Graylevel Rulers (type =1) o o v i e e e e 77
Fine Edge/Fine Pitch Rulers (type =2/3). 77
Ruler Speed and Accuracy. o e e e e e e 78
Finder Tools« o 0 o e e e e e e 78
VFIND.LINE Array o v e e e e e e e e e e e e e e e e e e e 79
Line Finder Tool Polarity 80
VFIND.LINE Example o 81
Processing Windows (VWINDOW)« v v v v v v v .. 82
VWINDOW Example o e e e e 83
Vision Tools: Inspection Windows (VWINDOWI) 84
Vision Tool Data Arrays & & v v v e e e e e e e e e e e e e e 84

Windows, Windows, Windows« v v i e e e e e e e e e e 84

66

6.1

Chapter 6 - Vision Tools

This chapter covers the vision tools: rulers, finders, and windows.

Defining a Tool Area-of-Interest (AOI)

Vision tools operate within a specified area-of-interest. Since several different tools may be placed
in the same area, AdeptVision VME allows you to predefine areas-of-interest. These areas-of-inter-
est can then be used by multiple tools. Also, as we will see in Chapter 10, tools may be placed rela-
tive to reference frames generated by other tools. An area-of-interest definition allows you to easily
reposition groups of tools based on new image data.

An AOI is a relative Cartesian reference that must be combined with an absolute origin point before
it can be used. (The AOI also includes shape and orientation components.) The absolute origin to
which an AOI is relative is a “virtual frame buffer”. When you combine an AOI with a virtual frame
buffer you get an “image buffer region” that identifies the exact size, shape, orientation, and loca-
tion for a vision tool.

Frame Stores

A vision system has two physical frame stores. These physical frame stores are numbered 1 and 2.
For the standard vision processor, the frame store size is 1024 x 512 pixels. Systems with the
AdeptVision Enhanced VME Interface option have 1024 x 1024 frame stores. This frame size can
be further divided into virtual frame buffers as described next. Any frame store area not used as a
virtual frame buffer is used as a “scratch” area for tools such as Correlation Templates.

Virtual Frame Buffers

The standard vision system can be divided into 2, 4, 12, or 16 virtual frame buffers. A system con-
figured for 2 virtual frame buffers uses one 640 x 480 virtual frame buffer area in each physical
frame store. A system configured for 4 frame stores uses two 512 x 480 virtual frame buffers in
each physical frame store. A system configured for 12 frame stores uses six 360 x 240 virtual frame
buffers in each physical frame store. And a system configured for 16 frame stores uses eight 256 x
240 virtual frame buffers in each physical frame store.

On systems with the AdeptVision Enhanced VME Interface option, the physical frame stores are
twice as large so they may be divided into twice as many virtual frame buffers (four 640x 480 vir-
tual frame buffers—two for each physical frame store, etc.).

The DEVICE instruction allocates virtual frame buffers. See “Examples” on page 195 for details.
Figure 6-4 shows how physical frame stores are divided in the virtual frame buffers.

Defining a Tool Area-of-Interest (AOI) 67

Areas-of-Interest

Vision tools are placed within a virtual frame buffer based on a defined area-of-int€gspOls
are defined with th&DEF.AOI instruction and include a shape argument and several dimensional
arguments. The syntax feiDEF.AQI is:

VDEF.AOI aoi = shape, dim1, dim2, dim3, dim4, angl, ang2

aoi an integer that identifies the aoi being defined. This value must be a 4 to 6
digit integer. Counting from least significant to most significant (right to
left), the fourth through sixth digits are used as the AOI number and the first
through third digits are ignored. See “Defining an Image Buffer Region” on
page 68 for details on how the first through third digits are used.

shape defines the shape of the area-of-interest. The most common shapes are
shown in Figures 6-2 and 6-2. See #ueptVision Reference Guifler a
complete description of the shapes.

diml -dim4 define the size and location of the area-of-interest.
angl, ang2 define the angular measurements of the area-of-interest

Figure 6-2 shows the most common shapes for rectangular tools. Shape 1 is the normal shape for
rectangular areas such as windows, line finders, point finders, etc. Shape 2 is the normal shape for
rulers? Figure 6-2 shows the most common shapes for arc-shaped tools. Shape 5 is the normal
shape for arc finders, and shape 9 is the normal shape for circular inspection windows.

<. angl T .
Shape=1 \ . < dim3
-P---- dim4 <. angl

N

dim1, dim2

<. angl < dim3
Shape=2 1 . dim4 < angl
dim1, dim2 A
i diml1, dim2

Figure 6-1 Rectangular Area-of-Interest Shapes

! The illustration shows a shape with a positive valuaiim3 . Negative values are allowed, in
which case dim1 and dim2 will be on the opposite side of the rectangle.

68

Chapter 6 - Vision Tools

dim4
Shape =5
-~ dim1, dim2
dim3 dima4 dim3 dima4
Shape =9 angl
ang2

Figure 6-2 Arc-Shaped Area-of-Interest Shapes

Defining an Image Buffer Region

A image buffer region has the form:

AAAVVP

where “AAA” is the number of the area-of-interest (defined byVDEF.AQOI), “VV” is the virtual

frame buffer, and “P” is the number of the physical frame store. The combination of virtual frame
store and a physical frame store creates a “virtual frame buffer”, which is the term most often used
in Adept documentation.

If 000 is specified for the virtual frame buffer, the most recently acquired picture is used. Thus, a
virtual frame buffer needs to be specified only when you want to place a tool in an image other than
the one most recently acquired.

The next program example defines “aoil2”—a rectangular AOI that is centered at X = 150mm, Y =
150mm; is 90mm wide and 120mm high; and is rotated 45°.

shape =1

cx = 150

cy = 150

wd =120

ht = 90

rot = 45

aoil2 = 12000

VDEF.AOI aoil2 = shape, cx, cy, wd, ht, rot

Figure 6-3 shows the area-of-interest defined by the preceding code. The next program example
defines an image buffer region that uses “aoil2”.

Defining a Tool Area-of-Interest (AOI) 69

cy = 150 - |- -

VDEF.AOI 12000 = 1, 150, 150, 120, 90, 45

Figure 6-3 Sample Area-of-Interest

In order to use this AOI with a virtual frame buffer other than the one an image was most recently
acquired into, it must identify a virtual frame buffer. The following code combines virtual frame
buffer 21 with “aoil2” to create the image buffer region “ibr_rect”:

phy.fr=1
virt.fr = 20
ibr_rect = aoil2+virt.fr+phy.fr

“ibr_rect”, which now has the value 12021, can be used by any rectangular or line shaped tool that
needs to be placed at the defined location in virtual frame buffer 21. The first example in Figure 6-4
shows the definition of “ibr_rect”. (The example assumes a mm/pixel ratio of 1.)

The second example in Figure 6-4 shows how an AOI definition can be combined with different
virtual frame buffers to create different image buffer regions.

70 Chapter 6 - Vision Tools

512+ 512
- area-(,)_f—Li|nterest 12
VDEF.AOI 12000 =1, 150, 150, 120, 90, 45
480

—<— Vijrtual frame store 2

32 —~<— Physical frame store 1

Image buffer region 12021

320320+ 320 164+

L area-(?_f-llnterest 17
240 I VDEF.AOI 17000 = 1, 100, 150, 60, 120
L y|
—<—++— Virtual frame store 6
240 I
— > =< Physical frame store 2
32
1 7

Image buffer region 17022
Image buffer region 17062

Figure 6-4 Sample Image Buffer Regions

6.2

Linear Rulers 71

Linear Rulers

Linear rulers are vision tools that detect edges found along the length of the ruler and return the dis-
tances from the start of the ruler. Linear rulers can operate on binary or grayscale data, regardless of
the setting ofV.BINARY.

The simplified syntax for a line&RULERI is:
VRULERI (cam.virt, type) data[]] = ibr

cam.virt is replaced with the number of a virtual camera. The value of
V.EDGE.STRENGTHassociated with this virtual camera will be used by some
of the ruler types (see section 6.4 on page 77). The value of V.THRESHOLD
is used with dynamic binary rulers. The default value is camera 1.

type is replaced with the type of ruler you want to place on the image. The default
value is 0, indicating a run-length binary ruler. The different types of rulers
are explained in section 6.4.

data]] is replaced with a variable name for the array into which you want the ruler
data placed (seeRULERI array below).

ibr is replaced with the number of a defined image buffer region specifying a
rectangular AOI (see section 6.1).

VRULERI Array

When you have issuedvdlRULERI command, the edge transition data is placed in the array you
specified. The element values are:

data[0] The number of edges found along the ruler.

data[1] For binary rulers, the color of the pixel the ruler started on. For grayscale rulers,
whether or not the ruler was clipped by the field-of-view.

data[2] The distance from the starting point to the first transition.
data[3] The distance from the starting point to the second transition.

data[n] The distance from the starting point to the (n—1)th transition.

72 Chapter 6 - Vision Tools

Linear Ruler Example

This example code takes a picture of the sample object and reports how far it is from the round hole
in the object to the left edge of the object, measured along the X axis. We start similarly to the
VFEATURE example shown in Chapter 5:

;Display the results of the next VPICTURE in live mode
; with a graphics overlay.

cam.virt =1
VDISPLAY (cam.virt) -1, 1
;Make sure hole information is gathered.
ENABLE V.HOLES [cam.virt]
ENABLE V.BOUNDARIES [cam.virt]
DISABLE V.DISJOINT [cam.virt]
;Acquire and process an image.
VPICTURE (cam.virt) -1
;Locate any object (i.e, remove the object from the queue).
VLOCATE (cam.virt) $name
;Locate the round hole in the object
VLOCATE (cam.virt, 4, 1)
;Place a 50mm fine-edge linear ruler that starts at the center of the circular
;pbhole--VFEATURE(2) & VFEATURE(3)--and is rotated 180 deg with respect to the X

;ppaxis. Place the ruler data in the array testdata[].

VDEF.AOI 3000 = 2, VFEATURE(2), VFEATURE(3), 50, 0, 180
VRULERI (cam.virt, 2) testdata[] = 3011 :AOI 3, virt frame buffer 11

:Calculate the distance between the first and second transitions.
dist_horz = testdata[3]-testdata[2]
;Display the result, dist_horz.

TYPE "The distance is: ", dist_horz

Figure 6-5 illustrates the preceding code example.

Linear Rulers 73

" VISION J

Cam/Frame | Display | Pict Ops Status Models Switches

testdata[2]

testdata[3]

VFEATURE (2 & 3)

—— 50 mm

Figure 6-5 Linear Ruler Example

If (after executing the above code) you want to see all the values in the testdata array, issue this
command:

LISTR? testdata]]

and the monitor window will display values similar to these:

testdata[0] = 2
testdata[l] = 1
testdata[2] = 5.15576
testdata[3] = 46.256

L LISTR is a monitor command that lists real variables resident in system memory.

74 Chapter 6 - Vision Tools

6.3 Arc Rulers

In addition to linear rulers, AdeptVision VME allows you to place circular and arc shaped rulers.
Arc rulers return the angular distance between edges found along an arc. These rulers are particu-
larly useful for inspecting part features that are arranged radially around a part center. The syntax
for an arc ruler is:

VRULERI(cam.virt, type) data[]] = ibr

The parameters are the same as for a linear ruler, except the image buffer region must specify a cir-
cular AOI.

Arc Ruler Example

Let's examine the face of a circular gauge to see if the graduation marks are properly spaced. The
gauge we will examine is shown in Figure 6-6. We will assume that we know the ideal angular dis-
tance between the centers of any two graduation marks. We will also assume that the hole for the
gauge dial is correctly placed.

T/ | N\ °
PRESSURE
(kg/cnt)

Figure 6-6 Sample Gauge Face

The code that would examine the gauge follows.

;Specify the pass-fail limits

min_dist = 21
max_dist = 23

;Display the results of the next VPICTURE in live mode
;with a graphics overlay.

cam.virt=1
VDISPLAY (cam.virt) -1, 1

;Make sure hole information is gathered.

ENABLE V.HOLES [cam.virt]
ENABLE V.BOUNDARIES [cam.virt]
DISABLE V.DISJOINT [cam.virt]

Arc Rulers

ENABLE V.CENTROID [cam.virt]
;Set the minimum area parameters to filter "noise”

PARAMETER V.MIN.AREA [cam.virt] = 60
PARAMETER V.MIN.HOLE.AREA [cam.virt] = 50

;Acquire and process an image.

VPICTURE (cam.virt) -1
VWAIT

;Remove the largest object (the center hole) from the queue.
VLOCATE (cam.virt, 2, 1) "?", gauge_center
;Check for successful VLOCATE
IF NOT VFEATURE(1) THEN
GOTO 100
END

;Get the X/Y values of the gauge center

centx = VFEATURE(2)
centy = VFEATURE(3)

;Remove the topmost region from the queue. This will be one of the
; graduation marks.

VLOCATE (cam.virt, 2, 6) "?", mark_center
:Check for successful VLOCATE
IF NOT VFEATURE(1) THEN
GOTO 100
END

:Use the function DISTANCE to calculate the distance from the center
; of the gauge to the center of a mark.

arc_rad = DISTANCE(gauge_center,mark_center)
:Place an arc ruler

VDEF.AQI 4000 = 7, centx, centy, arc_rad, 0, 170, 200
VRULERI (cam.virt, 2) testdata[] = 4000

:Make sure the correct number of transitions were found
IF testdata[0] <> 10 GOTO 100
;Print the inspection data
FOR x=3TO 9 STEP 2
act_dist = testdata[x+1]-testdata[x]

pass = (act_dist > min_dist) AND (act_dist < max_dist)
TYPE /S, "Distance from mark ", INT(x/2), " to mark "

75

76 Chapter 6 - Vision Tools

TYPE INT(x/2)+1, "is ", act_dist
TYPE /S, "This inspection "
IF pass THEN
TYPE "passed.”
ELSE
TYPE “failed.”
END
END

100 TYPE "No object found, program stopped.”

Figure 6-7 shows the ruler and transition points resulting from the precediné code.

Arc Ruler

5
N

testdata[3]

Starting Point
arting Poin testdata[2]

PRESSURE Edge transitions stored
(kg/cnt) in testdata[] array

Figure 6-7 Arc Ruler Example

L This example could have been simplified by usingMRELERI parameter that specifies transi-
tions in only one direction (light-to-dark or dark-to-lijjatsee theAdeptVision
Reference Guide

Ruler Types 77

6.4 Ruler Types

VRULERI provided us with the first example of a vision operation that can be performed on an
unprocessed image (quick frame grab). There are several different types of rulers, some of which
work on a processed image and some of which work on the raw grayscale or binary image.

The argumenttype ” determines which type of ruler will be used.

Standard Binary Rulers (type= 0)

This is the default ruler type (it is also referred to as the run-length binary ruler). It operates on pro-
cessed image data (afté®PICTUREIN “mode = —1, or within avWINDOW processing window).

The effects of most system parameters are taken into account by this type of ruler. (For example, if
a ruler crosses a hole smaller than the size specifieMiN.HOLE.AREA, then it will not find the

edges of the hole.) If V.BINARY is enabled, edges are found in a binary image. Otherwise, they are
found in a binary edge image.

Raw Binary Rulers (type=-1)

This ruler operates on unprocessed data in the binary frame store. Most of the system parameters
will be ignored by this ruler. If V.BINARY is enabled, edges are found in a binary image. Other-
wise, they are found in a binary edge image.

Dynamic Binary Rulers (type =—2)

This ruler operates on data in the grayscale frame store. Edges are found based on the current value
of V.THRESHOLD andV.2ND.THRESH (as opposed to the setting of these parameters when the

image was acquired). As the ruler looks for edges in the grayscale frame store, the pixels it crosses
are thresholded according to the current parameter setting (but the data in the frame stores is not
changed). This ruler type allows you to specify different values for the threshold parameters for

each ruler you place.

Graylevel Rulers type= 1)

This ruler operates on the grayscale frame store. It returns the graylevel value of each pixel the ruler
crosses. The values are placed indat[] array. The first value in the array is the number of
pixels found.

Fine Edge/Fine Pitch Rulers fype= 2/3)

These rulers operate on the grayscale frame store. They look for edges based on the setting of
V.EDGE.STRENGTH These rulers allow you to look for edges based on changes in intensity rather
than binary thresholded values. Unlike other ruler types, these rulers find edges with subpixel accu-
racy. See thddeptVision Reference Guifler more details.

Figure 6-8 shows a comparison of standard binary and raw binary rulers.

78 Chapter 6 - Vision Tools

With V.MIN.HOLE.AREA larger than the
size of the polygon hole, a standard ruler
would find these two edges.

» /’
A raw binary ruler, with appropriate

V.THRESHOLD settings, would
find these four edges.

Figure 6-8 Ruler Types

Ruler Speed and Accuracy

The absolute speed and accuracy of rulers will depend on your particular application. In general:

Ruler length and the number of transitions affect speed.
Raw binary rulers are the fastest.
Linear rulers are faster and more accurate than arc rulers.

Linear rulers are faster and more accurate when they are nearly vertical or horizontal to
the vision coordinate system.

Fine edge rulers are the most accurate.

6.5 Finder Tools

The finder tools allow you to locate lines, points, and arcs within the field-of-view. The finder tools
operate on raw grayscale data. This allows you to look for edges in an unpro

cessed image. In some cases the finder tools will tell you all you want to know about an image; in
other cases you will perform further processing based on what you discovered with the finder tool.

In all the finder tools you will specify an area-of-interest within which to search for the line, point,

or arc.

The behavior of all three finder tools is similar, so we will describe only the line finder,
VFIND.LINE, in detail. The syntax for the other finder tools is described iAtieptVision Refer-
ence GuideThe simplified syntax fOvFIND.LINE is:

Finder Tools 79

VFIND.LINE (cam.virt) data[] = ibr

cam.virt is replaced with a virtual camera number (EDGE.STRENGTHparameter
from this camera will be used by the line finder). The default value is 1.

data is replaced with a variable name for the data array into which you want the
results of the search placed. (The values placed in the array are described in
“VFIND.LINE Array” below.)

ibr is replaced with an image buffer region specifying a rectangular AOI (shape
1 is the most common shape).

Figure 6-9 shows a sampEIND.LINE area-of-interest.

VFIND.LINE Array
The array values returned to tEIND.LINE data array are:

data[0] TRUE if a line was fit,FALSE otherwise.

data[1] TRUE if any part of the search window fell off the screen.

data[2] X coordinate of a point on the line nearest to the search starting point.

data[3] Y coordinate of a point on the line nearest to the search starting point.

data[4] Angle of the fit line relative to the vision X axis (horizon).

data[5] Percentage of the line’s extent for which edge points were found.

data[6] Maximum distance between the fit line and the most distant edge point used to

compute the found line. The value is in pixels.

Guide Line

dim2 = k

25mm dim1 = 250 mm

dim2 = 200mm

Figure 6-9 Line Finder Search Area

Line Finder Tool Polarity

An important point to remember when using the line finder tool is that it locates dark-to-light tran-
sitions as viewed from the “dark side” of the tool. In Figure 6-9, the dark side is the side with the
heavy line. When a finder tool is displayed in the vision window, the dark side is the dark blue half

80

Chapter 6 - Vision Tools

of the tool search area. In order for the tool to find a line, a transition from dark-to-light must occur
within the window as viewed from the dark blue side of the tool. If only light-to-dark transitions

occur (as viewed from the dark blue side of the tool), a line will not be found. Figure 6-10 illus-
trates the polarity of a finder tool. In Example A, a dark-to-light transition occurs within the win-

dow, and the lower edge of the rectangle is found. In Example B, no dark-to-light transition takes
place so an edge is not found (the light-to-dark edge is ignored). In order to find an edge with the
tool in this position, the angle would have to be made 180° so the dark side of the tool would be in
the rectangle. In Example C, the first dark-to-light transition is found, and the remaining transitions
are ignored (the tool quits processing as soon as an edge is detected). In Example D, the first edge is
a light-to-dark transition, so it is ignored and the second edge (a dark-to-light transition) is found.

Example A Example B

Edges Found

= =

Example C Example D

Figure 6-10 Finder Tool Polarity

VFIND.LINE Example

This example locates the two straight edges of the sample object. Using the location and angle
information returned in the data arrays from each finder tool andtheg/functions, the intersec-

tion of the straight edges can be calculated with high accuracy. This type of strategy is particularly
useful on an object similar to our sample object, where the intensity changes at the intersection
point are low enough that the system will have trouble recognizing exactly where the point is.

Finder Tools

81

)

)

)

)

)

)

)

Select a live grayscale image with a graphics overlay
VDISPLAY -1, 1

Acquire and process an image with camera 1
VPICTURE (1)

Place two line finders

VDEF.AOI 2000 = 1, 80, 80, 30, 10, -205
VDEF.AOI 3000 = 1, 80, 50, 30, 10, 25
VFIND.LINE (1) datal[] = 2000
VFIND.LINE (1) data2[] = 3000

Pass the line finder data to a routine that calculates a line-to-line

ppintersection (a sample routine is shown in the description of VFIND.LINE

ppin the "AdeptVision Reference Guide" and a similar routine is shown in the
programming example in Chapter 8).

x1 = datal[2]
yl = datal[3]
angl = datal[4]
x2 = data2[2]
y2 = data2[3]
ang2 = data2[4]

IF datal[0] AND data2[0] THEN
CALL line_line(x1, y1, angl, x2, y2, ang2, X, y)
TYPE "The lines intersectatx =", x, "andy =", y, "."
ELSE
TYPE "One of the line finders failed."
END

Figure 6-11 shows the tool placement for the preceding example.

82 Chapter 6 - Vision Tools

{\/ VDEF.AOI 1000 = 1, 120,80, 30, 10, -205
VFIND.LINE(1,1)datal]]=1011

VDEF.AOI 2000 = 1, 120,50, 30, 10, 25
VFIND.LINE(1,1)datal]] = 2011

Figure 6-11 Line Finder Example

6.6 Processing Windows (VWINDOW)

In many cases, only a small section of the field-of-view will be of interest to you. You can reduce
processing time by using th&INDOW instruction to process only sections of the field-of-view
that have critical features.

More than one processing window can be placed on an image and windows can overlap. Using
multiple windows allows you to inspect different image areas using different combinations of
switches and parameters.

Once you have placed a window, you canWIsSBCATE, VFEATURE, and other vision tools just as
you would if you were working with a fully processed field-of-view. The difference is that the
results of these instructions will take into account only the portion of the image inside the window.

To use a processing window, you first acquire an unprocessed image by exeMRiIGTWRE
instruction in mode 2 (quick frame grab). You then issi@&#&NDOW instruction to process the
area you are interested in.

After aVWINDOW instruction, boundary analysis is performed on the area inside the window.
VLOCATE andVFEATURE can now be used to obtain data about the regions within the area of inter-
est window. Vision tools that operate on processed image data can also be used.

The simplified syntax for a rectangular processing window is:
VWINDOW ¢am. virt) ibr

cam.virt is replaced with a virtual camera whose switch and parameter settings will
be used during processing by the window tool.

ibr is replaced with the an image buffer region specifying a rectangular AOI.
Shapes 1 and 4 are the normal shapes for a processing window.

Processing Windows (VWINDOW) 83

VWINDOW Example

For this inspection we’ll use the point found by the WWND.LINE instructions in our previous
example (Figure 6-11). Using this point (x,y) we’ll place an area of interest window that just
encompasses the sample object.

w.width = 90
w.height = 60
VDEF.AOI 5000 = 1, x-w.width/2, y, w.width, w.height

VWINDOW (cam.virt) 5011

The above instruction results in the window illustrated in Figure 6-12. (In this case, for maximum
speed in locating the X, y position, you would use type #-1 line finders.)

w.width

A

Y

(x.y)

-«+«———— Ww.height

Figure 6-12 VWINDOW Example

84

6.7

Chapter 6 - Vision Tools

Vision Tools: Inspection Windows (VWINDOWI)

6.8

VWINDOWI returns graylevel or binary data about the portion of an image inside the inspection
window. The number of nonzero pixels, average graylevel, standard deviation of the graylevels,
object and background pixel counts, and number of edge points in the window are calculated with
this instruction.

VWINDOWB returns basic information about the binary image. SeAdeptVision Reference
Guide for details on these instructions.

Vision Tool Data Arrays

6.9

All the vision tools return data to the array you specify in the instruction line. A potential problem
arises with these arrays when your application is cycling through multiple inspections and placing
the data in the same array during each iteration of the cycle. The entire array is not overwritten dur-
ing each cycle. Only the currently generated values are overwritten.

For example, suppose you were inspecting parts with linear rulers and you expected to find six
edges in each part. If a defective part containing only four edges was inspected, the fifth and sixth
array cells would still hold the distance to the fifth and sixth edges left over from the previous
inspection. To detect this problem, check the array element that indicates how many edges were
detected before processing the ruler.

Windows, Windows, Windows

Documentation for AdeptVision VME uses the term “windows” in several contexts, which can lead
to confusion. These are the different windows AdeptVision VME uses:

Window used by itself refers to the windows that are open on the display screen. These are the win-
dows you can open and close, perform operations in, and view the results of vision operations in.

An inspectionwindow results from issuing ¥WINDOWI instruction. The information available
from this type of window is what is returned in the data array specified when the instruction was
issued.

A processing windowis the window resulting from issuingvavINDOW or VWINDOWB instruc-

tion. AVWINDOW instruction make¥FEATURE details available. Vision models can be processed
within this type of window, and rulers can be placed inside these windows/IRDOW instruc-

tion by itself returns no data. WWINDOWB instruction makes basic binary image data available
through a specified array.

Vision Model Processing

Introduction 87
Why Use Prototype Recognition? 87

Why Use Correlation? e 87

Why Use OCR? 88
Training Prototypes e 88
Creating Prototypes. e 88
Editing Prototypes. e 90
Preview Window 92
Zoom BULtONS 92
Message WIndow e 92

Edit Buttons 92
Editing Operation DataBox 92
Edge/Region Data Boxes 93
Edge/Region Radio Buttons. 93
Prototype Training Hints 93
Sub-Prototypes. 94
Prototype Parameters. e 94
Setting Prototype Parameters. 94
Verify Percent 94

Effort Level 94

Min/Max Area 94

Limit Position 95

Edge Weights 95

AsSSIgN Cameraso e 95

Using Prototypes e 95
Recognizing a Prototype. 95
Prototype-Relative Inspection. 96
Prototype-Relative Part Acquisition 96
Performing Correlation Matches 97
Creating a Correlation Template. 97
Matching a Correlation Template. 97
Performing Optical Character Recognition 98
Trainingan OCR Font 98
FontPlanning e 99
Character Recognition 100
OCRExamples e 101

Prototype Model Switches and Parameters 102

86 Chapter 7 - Vision Model Processing

Loading and Storing Vision Models 104
VSTORE e 104
VLOAD . . e 105
Displaying Vision Models 105
Deleting Vision Models 105

Renaming VisionModels. 106

7.1

Introduction 87

Introduction

Vision model processing has two major steps, training and recognition.

The first step, training, involves creating an idealized “vision model” of the object you want to rec-
ognize. After this model has been created, it can be stored in a disk file and called into vision mem-
ory when needed.

The second step, recognition, involves placing the vision models in memory, presenting actual
objects to the camera, and instructing the vision system to see if any of those objects match the
models stored in vision memory.

AdeptVision VME has three types of vision model processing: prototypes, optical character recog-
nition (OCR), and correlation.

Why Use Prototype Recognition?

The most common use for prototype recognition is identifying objects that enter the field of view in

a random fashion. A typical application would be a manufacturing operation where several differ-
ent objects are produced and then placed in random order and orientation on a conveyor for inspec-
tion or acquisition by a robot. You would use prototype recognition to identify each object and then
take appropriate action based on which object was identified. Prototyping is also the only way to
separate objects that are touching or overlapping and thus form a single region. It is also the only
way to recognize multiple disjoint regions that comprise a single object. Some things to remember
when using prototypes are:

. Prototype recognition is processing-intensive. If you have only a few simple objects, you
might be able to recognize them more efficiently with other vision tools.

. All vision tools can be applied to recognized objects,\AFEATURE data is available
for recognized objects.

. Prototype recognition enables you to recognize objects that are touching or slightly over-
lapping, or are formed from disjoint regions.

* When you train a prototype, it will have its own frame of reference which can be used to
place other inspection tools or as part of the vision transformation for guided vision.
(This procedure will be described in the next chapter.)

Why Use Correlation?

Correlation is similar to prototyping, but the training and recognition process is simpler. In correla-
tion, a “template” is created from a region of pixels in a processed image. This template is then
compared to a section of the field-of-view to see if the pixel pattern is repeated in that section. Cor-
relation is used when you want to know how well objects in the field-of-view match a template of
an ideal part. Correlation is “normalized” so that additive or multiplicative changes in lighting do
not affect the correlation results. Unlike prototype matching, correlation matches must have the
same orientation as the template.

88

7.2

Chapter 7 - Vision Model Processing

Why Use OCR?

Optical character recognition has two primary uses: text recognition and text verification. Text rec-
ognition identifies characters from a trained font. Text verification verifies that a string of expected
characters was in fact found in the field-of-view (verifying date and lot codes, for example).

Training Prototypes

Prototype training is the process of creating prototype models of objects that you want the system
to be able to recognize. During prototype training you will:

Present multiple instances of an object to the system for training. The system will aver-
age the data from these instances to create the vision model that it will use for recogni-
tion.

Name the prototype and specify the following parameters that will be used during proto-
type recognition:

The effort level the system should apply when attempting recognition.

The percent of the object boundary that must agree with the prototype before rec-
ognition will be considered successful.

Constraints on the object’s position and orientation that must be met for successful
recognition.

Creating Prototypes

The steps to create a prototype are:

1.

Set the switches and parameters to the settings that provide the best possible image. Data
provided by boundary analysis will be used to create the prototype model.

Make sure the correct calibration data is loaded for the cameras you will be using.
Changing camera settings or calibration after you train a prototype will invalidate
the prototype.

Select:

Models O Train

If no other prototypes are in vision memory, you will be prompted for a prototype name.
If other prototypes are loaded, you will be given the option to train additional instances
of loaded prototypes or to create a new prototype.

If the “Select the prototype...” pop-up window is presented, click on “<new prototype>".

In the “Type new name” pop-up window, enter a prototype name (using nofmvariv

able naming conventions), and click . (This name is for an individual prototype,
not the disk file for storing the prototypes. Multiple prototypes can be stored in a single
file. See “WSTORE” on page 104.)

A screen listing the 32 virtual cameras will be presented. Click on the numbers of the
virtual cameras you want to be able to recognize this prototype (the cameras must be cal-

Training Prototypes 89

ibrated). Click on Done | when you have finished selecting virtual cameras. Cameras
can be added or deleted during subsequent training sessions.

7. Place the object you want to train in the field of view and click onGie| button in the
training window.

8. Edit the prototype. (Editing is detailed in the next section.)
9. When you have completed editing of the prototype example, select:

Done O Use example.

10. The training window will display the default verify percentage (75%). Click on the per-
centage to change it. Click to accept the percentage displayed in the dialogue
box!

11. The training window will display the available effort levels. The suggested effort level
will be highlighted. Click on Ok | to accept the suggested effort level.

12. Select:

New example O New Example

and follow steps 5 through 7 to train at least five additional examples of the prototype.
Orient the part differently during each training session. After training each additional
example, the program will prompt you to:

a. Select a corner in the new example.

b. Select the corresponding corner in the existing prototype. ClitRone | when
you have selected the two corners.

c. The system will attempt to fit the new example to the existing prototype. If the
match is successful, a blue outline will be overlaid on the existing prototype. If the
outline and the prototype match, click . If the match is unsuccessful, you
will have to select different features (or additional features) to match, or abandon
the example.

13. When you have finished training examples, select:

Done O Done

14. The prototype model now exists only in vision memory. It must be stored to disk so it
can be retrieved for future use. Activate the monitor window and store the prototype
using the VSTORE command.

Editing Prototypes
If you are not in the prototype training window, select:

Models O Train

1 Verify percent and effort level are prototype parameters that will have meaning only when you
begin using prototypes. These two prototype parameters, along with the other prototype and sys-
tem parameters, are discussed later in this chapter.

90

Chapter 7 - Vision Model Processing

and click on the prototype you want to edit.
Select:

New Example O New Example

Place an example of the prototype in the field of view and click o button in the training
window. A graphic representation of the prototype example will be presented, showing arcs in pur-
ple, lines in yellow, and corners as white dots. During prototype editing, you will edit the bound-
aries fit by the system so they match your object as closely and simply as possible. The most
common editing tasks you will perform are:

. Removing extra corners
e Turning arcs into lines
. Deleting features that are unimportant or are part of the background

Figure 7-1 shows the prototype training window and its functional groups of features. The process
of editing a prototype using the training window is described below.

Preview Window

Training Prototypes

91

Editing Operation

Data Box

TRAINING

7

Location
Box ~— |

A

Current op.

DELETE CORNER |

Prev Op Next
/‘\ /\
@@ @®©@® o N\
Zoom Ix 2x 3x 4x Edge Region
Buttons Zoom Prev/Next
Message
Window
Edge Type Edge Length
Region Area # of Edges

Edge/Region Information

Data Boxes

Figure 7-1 Prototype Editing Operations

Edit
Buttons

Edge/Region
Select
Buttons

92

Chapter 7 - Vision Model Processing

Preview Window

This window shows a reduced view of the vision window. W@M.X is selected, the preview
window and the vision window show the same extent of view. W@=2x (or greater) is selected,
the objects in the vision window will be magnified, and a location box will appear in the preview
window showing the area of the vision window you are working on. You can move to a different
area of the vision window by clicking on this location box and dragging it to a new area.

Zoom Buttons

These buttons allow you to work with different levels of magnification of the prototype object. The
area you have zoomed to is shown in the Preview Box.

Message Window

This box will display information and error messages during the prototype training process.

Edit Buttons

There are two methods of editing a prototype: clicking on the object’s features with the pointing
device and using the Edit Buttons. The main difference between the two methods is that data
reported in the Edge/Region Information Windows is available only when using the Edit Buttons.
The editing operation that will be performed (using either method) is selected fr@péra-

tion menu in the vision window. The current operation is shown in the Editing Operation data box.

When you edit with the pointing device, the current operation will be performed on the line, arc, or
corner nearest the pointer click.

When you edit with the Edit Buttons:

The first time you click onPrev | agrNext | , an “X” will appear on one of the lines
or arcs of the prototype. If you click @mp , the operation indicated by the Editing
Operation Window will be performed.

If the Edge button is selected, the next time you clickPrev | | Next | , the “X”
will move to the previous or next line or arc in the region. Clicking@)p will per-

form the current operation.

If the Region button is selected, the next time you clic\kRmav \ \ Next | , the “X”
will move to the previous or next region in the vision window. Clicking(Op will
perform the current operation.

Editing Operation Data Box

This data box shows the editing operation that will be performed using the Edit Buttons, or by
clicking on the prototype. The edit operation is selected frorDfheration menu in the proto-
type window. The editing tasks are:

Delete Corner Delete the corner nearest to a mouse click, or the next corner in sequence

when| Op | is clicked.

Restore Corner Restore a corner deleted with a delete corner operation.

Training Prototypes 93

Arc <=> Line Convert a line to an arc, or an arc to a line.

Delete Region Delete the region nearest to the mouse click, or the region currently selected
with the Edit Buttons. (Can be performed only on the first prototype exam-

ple.)

Delete Edge Delete the edge currently selected with the Edit Buttons or the edge nearest
the mouse click. (Can be performed only on the first prototype example.)

Create Corner Place a corner at the mouse click or, is clicked, on the currently
selected line or arc. (Can be performed only on the first prototype example.)

Edge/Region Data Boxes
When you are editing using the Edit Buttons, these data boxes show:
. Edge type (line or arc)
. Region area in pixels
. Edge length (distance in pixels from one corner to the next)
. Number of edges in the region (holes are not included in this count)

This data will not be displayed if you are using the mouse to edit the prototype.

Edge/Region Radio Buttons

These buttons work in conjunction with the Edit Buttons. W@Edge is selected, pressing
| Prev |or| Next | will select the previous or next edge in a region.

When (@ Region is selected, pressirh@’rev \dKIext will select the previous or next region
within the field-of-view.

Prototype Training Hints

After you have completed prototype training, you can still train additional examples of a part or
change the prototype parameters (described later in this chapter). If you make any changes to an
existing prototype, you mustore the changesising the VSTORE command (if you use the same
file name, the existing disk file must be renamed or deleted).

When you train the first example, make the prototype as simple as possible. When you train addi-
tional examples, do as little editing as possible.

SubPrototypes

A region within a prototype can be designated as a subprototype. Sub-rototypes allow you to more
accurately determine the position and “goodness of fit” of a prototype based on the region selected
as a subprototype. See the descriptioWEF.SUBPROTOIN the AdeptVision Reference Guide

94

Chapter 7 - Vision Model Processing

Prototype Parameters

In addition to the parameters described above, each prototype has several prototype parameters
associated with it. System parameters are associated with a virtual camera and will be in effect for
any prototype recognized by that virtual camera. Prototype parameters are associated with a trained
prototype and will be in effect for that given prototype, regardless of the virtual camera that
acquired the image.

Setting Prototype Parameters
To change parameters for a given prototype (prototype parameters are described below):

1. Load the prototype into vision memory using ¥h&®AD command.
2. Activate the vision window and select:

Models [Train

3. Select the parameter you wish to set fromRhatotype Parameter menu. A dia-
logue box will be displayed that will allow you to change the parameter value. Repeat
for as many parameters as you want to change.

4. After you have made all changes, select the monitor window and store the prototype to
disk using thevSTOREcommand.

Verify Percent

This parameter sets the percentage of total boundary length (including holes) that must be common
to both the prototype model and the current region before recognition will be successful. This
parameter can be used in conjunction with the system paravitet.VER.DIST to control:

. objects incorrectly recognized as matching a prototype, and

. objects matching a prototype that are not recognized.

Effort Level

Effort level affects recognition accuracy and processing speed. Recognizing prototypes with few
distinguishing features as well as recognizing prototypes among multiple overlapping objects will
require higher effort levels and more processing time.

Min/Max Area

Changing the minimum area setting allows you to ignore noncritical features of an object.

Changing the maximum area setting allows you to isolate an area within a large object, or ignore
large, noncritical areas within the field-of-view.

Limit Position

These parameters allow you to constrain the location and rotation variance an object can have from
the prototype model and still be recognized.

Edge Weights

In some cases, accuracy of prototype recognition can be improved by weighting an object’s edges.
Important features of an object can be given a high weight and unimportant features can be given a

7.3

Using Prototypes 95

low weight. Edge weights work in conjunction with verify percent to determine how closely an
object must match the prototype model for successful recognition.

Assign Cameras

Any cameras you wilbe using to attempt recognition of a given prototype must be assigned to that
prototype.

Using Prototypes

In the previous section we learned how to create prototype objects. This section will show you how
to use those prototypes.

Recognizing a Prototype
In order for the system to recognize a prototype, the following steps need to be taken:

1. The prototype must be loaded into vision memory (usinytk@®D command).
2. The camera calibration that was in effect when the prototype was trained must be loaded.
3. The system switch@sBOUNDARIES andV.RECOGNITION must be enabled.

After an image containing prototype objects has been acquired, the individual prototypes can be
removed from the vision queue using YHeCATE instruction. The syntax farLOCATEIng a pro-
totype is:

VLOCATE (cam.virt, 2) "proto_name" , proto_loc

cam.virt is the virtual camera whose queue holds objects recognized as matching
the specified prototype. Default = 1.

2 indicates that a particular object is to be removed from the vision queue.

proto_name is the prototype you are looking for (must have been loaded to vision
memory).

proto_loc receives a transformation that defines the object’s location in the field-of-
view.

Once an object has been recognized and removed from the queue you will be able to retrieve all the
VFEATURE data available for blobs (unrecognized regions), as well as data available only from rec-
ognized prototypes. See Appendix B for additionsEATURE data.

In some cases, recognizing an object will be the only inspection you need to make. In other cases,
you may want to use rulers and other vision tools to make a more thorough inspection of the object.
Chapter 10 describes the use of prototype-relative inspections. This inspection strategy allows you
to place vision tools on the prototype regardless of its location and orientation in the field-of-view.

Prototype-Relative Inspection

You can US®EF.TRANS VFEATURE(2), VFEATURE(3), andvVFEATURE(7) to establish a reference
frame for all vision tools.

96 Chapter 7 - Vision Model Processing

Prototype-Relative Part Acquisition
If the objects you are acquiring:

. are similar and cannot be identified by blob recognition or by using a combination of
finder and ruler tools,

. do not have a strong elliptical character, or have features that define the object’s rotation,
. are touching or overlapping, or are formed by disjoint regions,

then prototyping may be the best way to define a reference frame for the objects.

Prototypes have their own reference frame based on the orientation of the part the first time it was
trained. When a prototype is recognize#tl @CATE operation), a reference frame based on the rec-
ognized object is returned. The following code will move to a recognized prototype (assuming the
robot is a four-axis SCARA—see Chapter 9 andAtleanced Camera Calibration Program

User’s Guidefor more information on guided vision operations):

cam.virt=1
ENABLE V.RECOGNITION [cam.virt];enable prototype recognition

; Acquire a processed image and locate the prototype.

VPICTURE (cam.virt) -1
VLOCATE (cam.virt, 2)"sample_object", proto.loc

; Use the prototype object location to acquire the recognized prototype

HERE #cur.loc

DECOMPOSE jt[1] = #cur.loc

SET link2 = HERE:INVERSE(TOOL):RZ(—jt[3]): TRANS(, jt[4])
SET obj.loc = link2:to.cam:proto.loc:grip.trans

MOVE obj.loc

Performing Correlation Matches 97

7.4 Performing Correlation Matches

A correlation template is simply an array of graylevel values recorded from the pixels in a specified
area of the field-of-view. When a correlation match is attempted, this array of graylevel values is
compared with the graylevel values in a given search area. The template and the search area can be
any size as long as the search area is larger than the template. Larger templates and search areas
will increase processing time for a template match.

Since changes in ambient lighting will alter the graylevel values recorded, template correlation is
“normalized” to account for changes in lighting from when the template was created to when a cor-
relation match is attempted. Lighting changes that uniformly affect the field-of-view will not affect
template matching.

Creating a Correlation Template
A correlation template is created with the program instruction:
VTRAIN.MODEL (cam.virt) $tmpl_nn, , ibr

cam.virt is the virtual camera to use.

$tmpl_nn is the name of the correlation template. Correlation template names begin
with “tmpl_" and end with a number between 1 and 50. Multiple templates
can be stored in a single disk file.

ibr is a defined image buffer region (see section 6.1).

Once a correlation template has been created, it can be stored, loaded, and compared with new cam-
era images. TheCORRELATEprogram instruction searches for a template match in an image. See
description olVCORRELATE in theAdeptVision Reference Guifter details on hierarchical and

binary correlation. These options speed up correlation searches.

Matching a Correlation Template

An area of the field-of-view is compared to a defined correlation template with the program instruc-
tion:

VCORRELATE am.virt) data[] = tmp.num, ibr
cam.virt is the number of the virtual camera to use.
data]] is an array name to receive the results of the correlation operation:

data[0] receives the correlation value of the best match found (1 is per-
fect correlation).

data[l] receives the x value of the area matching the template.
data[2] receives the y value of the area matching the template.
tmp.num is the number of a loaded correlation template.

ibr is a defined image buffer region (see section 6.1).

98

Chapter 7 - Vision Model Processing

7.5 Performing Optical Character Recognition

This section describes the optical character recognition capacities (OCR) of AdeptVision VME.

Training an OCR Font

Before characters can be recognized or verified, a sample of the font containing all characters that
might be encountered must be trained. As with all vision model processes, before models can be
built or recognized, the camera must be installed, adjusted, and calibrated. The system parameters
should be set to acquire the best image possible.

Before a font can be trained it must be defined with the program instruction:

VDEF.FONT (op) font.num, $chars, height , black?
op determines what action the instruction will initiate:
0 define a new or replace an existing font (default)
1 modify an existing font
font.num number of the font to be defined (or altered).
$chars list of characters in the font.
height typical height of the largest character (must be between 6 and 63 pixels).
black? boolean indicating whether the font is dark characters on a light back-

ground or light characters on a dark background. The defatRU&
(dark characters on a light background).

Fonts are trained with the program instruction:

VTRAIN.MODEL (cam.virt) $font, $font.chars, ibr

cam.virt virtual camera whose switches and parameters will be used when training
the font.

$font a defined font in the form “font_nn".

$font.chars the characters in the font sample, entered in the order they occur in the
sample.

ibr a defined image buffer region (see section 6.1).

Train the font 5 - 15 times, using samples that represent the range of examples the system might
encounter.

NOTE: Fonts are trained based on the binary image. Therefore, a constant,
optimized image must be used during training and recognition to obtain accurate,
consistent OCR results.

Performing Optical Character Recognition 99

Font Planning

After fonts have been defined and trained, but before sample characters can be recognized, the
vision system must plan a recognition strategy. Planning will take place the first time recognition is
attempted on an unplanned font, or when planning is specifically requested. Since font planning
can take a few minutes, we recommend you plan fonts before using them in an application. The
instruction to plan a font is:

VTRAIN.MODEL (cam.virt, 1) $font

As fonts are planned, each character planned is shown in the upper left corner of the vision window.
When planning is complete, a matrix showing the font characters vs. the found characters is dis-
played. A red square at the intersection of a font character and a sample character indicates a well
defined and trained character.

After a font is trained, a matrix showing the relative similarities among the characters in the font is
displayed. The rows of the matrix are marked with the characters in the font as are the columns. The
color of the intersecting cell indicates how similar the character in the row is to the character in the
column. Red indicates very high similarity, and the corner-to-corner diagonal cells should be red.
Orange and yellow indicate strong similarity and indicate one character may get interpreted as the
other. Greens indicate a moderate similarity—characters such as E and F or O and Q may regularly
show this similarity. As long as lighting remains consistent and the characters are clearly printed,
these characters will be correctly identified. Gray indicates little similarity—these characters are
unlikely to be confused with each other. Figure 7-2 shows a sample matrix. All the characters show
very high similarity with themselves. The F and E show a strong similarity that may cause confu-
sion. The M and N show a moderate similarity which should not be confusing as long as conditions
remain consistent.

If characters show an unacceptable similarity:

. Train additional instances of the font
. Improve the lighting conditions
. Optimize the image

. Train a new sample of the font

yellow indicates E | N
strong similarity

| H dark green indicates
M ..f moderate similarity

red indicates near
perfect similarity

Figure 7-2 Font Similarity Matrix

100 Chapter 7 - Vision Model Processing

Character Recognition

The VOCR instruction performs font recognition or verification. The syntax is:

VOCR (cam.virt, op

cam.virt

op

data]]

font_num
$expected

ibr

) data[]] ,= font_ num, $expected |, ibr
virtual camera number (default is 1)

0 = text verification (default)
3 = text recognition

text verification or recognition data.
Forop =0:

data[0] = number of character regions found and analyzed
data[l] = average score dbéxpected " characters verified
data[2] = minimum score dBexpected " characters verified

Forop = 3:

data[0] = number of character regions found and analyzed
data[l] = average score of two most likely values per region
data[2] = minimum score of two most likely values per region
data[3] & data[4] not used
data[5] = ASCII value of character most likely to match region
data[6] = score of most likely character
data[7] = ASCII value of character 2nd most likely to match region
data[8] = score of 2nd most likely character
data[9] - data[12] repeats data[5] - data[8] for the second analyzed
region, data[13] - data[16] for the third analyzed
region, etc.

number of a trained and loaded font
expected text foop =0

number of a defined image buffer region (see section 6.1)

Performing Optical Character Recognition 101

OCR Examples

The following code will output the characters found in the area defined by cx, cy, dx, and dy (font 1
must be trained and loaded).

VPICTURE (cam.virt)

VWAIT

VDEF.AQI 3000 = 1, cx, dx, cy, dy
VOCR (cam.virt,3) data[],= 1, 3000

;The first array value is the number of characters found
found = data[0]

;The ASCII values of the found characters are stored in every fourth array cell
;starting at 5

index.inc =4
;Output the characters
FOR x =5 TO (found*index.inc)+4 STEP index.inc
type $CHR(data[x]), " ", /S

END
TYPE

The following code will output the average verification score of characters from the string
$ver.string found in the area defined by cx, cy, dx, and dy:

VPICTURE (cam.virt)

VWAIT

VOCR(cam.virt,0) data[],= 1, $ver.string, 3000
TYPE "The average verification score is: ", data[1]

The VOCR instruction has several different options and returns extensive data on recognition and
verification processes. See the description of VOCR irAtheptVision Reference Guide.

102 Chapter 7 - Vision Model Processing

7.6 Prototype Model Switches and Parameters

The following tables list the switches and parameters that affect the prototype model process.

Table 7-1 Prototype Model Switches

Switch

Default

Effects

V.RECOGNITION

[

Disabling this switch will cause the system to behave as if no
prototypes have been defined. Must be enabled to perform
prototype recognition. (Not required for OCR or correlation.)

V.DISJOINT

A single object may appear to the vision system to be two separate

objects (e.g., a dark object with a white line down the middle wa
look like two objects). If you are attempting prototype recogniti
on this type of object, this switch will have to be enabled or the
object will not be recognized. Disable this switch when you are
doing prototype analysis. When doing region analysis, this swit
must be disabled for hole data to be gathered.

V.TOUCHING

If the objects you are attempting to recognize are touching eag
other, the system will see them as one object and fail to recogn
multiple touching objects. If you need to recognize touching

uld
n

not
ch

=2

ize

objects, enable this switch. This switch increases processing time

for object recognition. See thaleptVision Reference Guiftar
details on how V.TOUCHING, V.DISJOINT, and
V.OVERLAPPING interact.

V.OVERLAPPING

Enabling V.OVERLAPPING will improve recognition of objects
that are overlapping. This switch increases processing time for|
object recognition and should be disabled if objects do not ove
(V.TOUCHING is assumed to be enabled whenever this switch
enabled.)

ap.
s

V.SHOW.BOUNDS

If this switch is enabled, the vision system will display the resul
attempting to fit lines and arcs during prototype recognition. Th
switch is useful during development because it allows you to s¢
what the vision processor is going through during object
recognition. V.RECOGNITION must be enabled.

ts of
is
be

V.SHOW.RECOG

If this switch is enabled and an object is recognized, the silhou
of the recognized prototype will be overlaid on the object. The
“SHOW?” switches are time consuming and are generally turned
in the production environment.

ette

off

V.SHOW.VERIFY

Enabling this switch will cause the system to display all attempg
the system makes during prototype recognition. This switch is

ts

useful during development when you attempt to create prototypes

that produce the most accurate results in the least amount of ti

ne. It

should be disabled during normal operations.

Prototype Model Switches and Parameters

103

Table 7-2 Prototype Model Parameters

Parameter Default Range Effects

V.BORDER.DIST 0 0 Allows you to disable prototype recognition
100 processing on objects that are not entirely within the

field of view.

V.MAX.TIME 5 1 Sets the maximum time the vision system will spend
999 trying to recognize a prototype.

V.MAX.VER.DIST 3 1 Sets the pixel variance allowed for successful fitting
16 of image boundaries to the prototype model.

V.LAST.VER.DIST 0 0 Sets the pixel variance allowed for successful fitting
16 of image boundaries to the prototype model when

successfully recognized prototype is reverified. When
this switch is set to 0, the additional verification
process is defeated.

104

Chapter 7 - Vision Model Processing

7.7 Loading and Storing Vision Models

The vision processor board has its own memory that is separate from system processor memory.
Trained vision models reside in this memory axsIOREstores a vision model (or group of sim-

ilar models) to a disk fileVLOAD loads a vision model or group of models (stored with the
VSTOREcommand) from a disk file to vision memory.

VSTORE

VSTORE works the same way 8SOREexcept it will store vision models from the vision proces-
sor memory to a disk filé The syntax foVSTOREis:

VSTORHrive: file_spec =model_1,...,model_n

To store prototypes “goodpart”, “badpart”, and “okpart” to theHMRTSCMP.PTSn the B: drive,
enter the command:

VSTORE B:partscmp.pts = badpart, goodpart, okpart

To store correlation templates “tmpl_1" and “tmpl_2" to the Tl @ ATES.VSon the default drive,
enter the command:

VSTORE tplates = tmpl_1, tmpl_2
All correlation template names must have the form “tmpl_nn".
To store font “font_3” to the filEONTS.VSon the A: drive, enter the command:

VSTORE fonts = font_3

All font names must have the form “font_nn".
Only one type of vision model can be stored in a file. The instruction:

VSTORE models = a.proto, font_4, tmpl_5

will result in an error.

Remember, after training, vision models reside only in vision memory. They must be explicitly
stored to a disk file or they will be lost when the controller is turned off.

If the filespec does not contain a file extension, the default extension “.VS” is added when storing
vision models.

1 vsSTOREIs also a program instruction.

Loading and Storing Vision Models 105

VLOAD

In order to use vision models, you must load them to vision memory (rather than the system mem-
ory). VLOAD loads files from a disk file to vision memory; its syntax is similaraaD.!

VLOADdrive: file_spec

To load the disk file of vision model¥’MODELS.VS’ from the C: drive into vision system proces-
sor memory, issue the command:

VLOAD C:vmodels

“.VS” is automatically added if an extension is not specified.

Displaying Vision Models

Vision models in vision memory can be displayed and listed frorMibeels menu. To display a
graphic representation of a vision model:

1. SelectShow prototype, Show font or Show template from theModels menu.

2. A pop-up window will appear showing the names of all the selected vision models cur-
rently in vision memory. Click on the model you want to see, and the model will be dis-
played in the vision window. (Vision models must be loaded withv/th@AD command
before they can be displayed.)

To see an alphabetic listing of all the prototypes currently in vision memory, kidegroto-
types, List fonts, or List templates from theModels menu. A dialogue box will appear list-
ing all appropriate models in vision memory.

Deleting Vision Models
To delete a model from vision memory:

1. SelecDelete prototype, Delete font, or Delete template from theModels
menu.

2. Click on the model to be deleted from vision memory.

3. The system will prompt you to verify the deletion. Click des| to delete the proto-
type. Click o No | to abandon the operation.

The command/instruction:
VDELETE model_name
will also delete models from vision memory.

This operation removes a model from vision memory, not from the disk file it is stored on. To per-
manently delete a vision model, the disk file must be deleted withtBEETE command.

LvLoaD is also a program instruction.

106 Chapter 7 - Vision Model Processing

Renaming Vision Models
To rename a vision model:

1. SeleciRename prototypes, Rename fonts, or Rename templates from the
Models menu.

2. Alist of appropriate models in vision memory will be presented. Click on the model to
be renamed.

3. Type the new name in the dialogue box presented. Clickog| to change the name.

Click on[Prev | to abandon the change.

The monitor command:

VRENAME new_name = old_name

will also rename a vision model. Renaming a model in vision memory does not change the name in
the disk file the model is stored in. To permanently change a vision model’s name, the disk file must
be deleted with thEDELETE command and the models (if any) must be stored with §ST®©ORE
instruction.

Programming AdeptVision VME

Introduction L L e e e e e e e e e e e e 108
Application Development Strategy o000 o e 108
Inspection Vision Example Program 109
Developing the Program Code o o v i v i e e 111
Program Header and Variables Declarations. 111

Set the Camera Environment 112

Acquire an Image and Start Processing 113

Locate the Object and Begin Inspections. 113
Outputthe Results o o v v e 119

Further Programming Considerations 120
The Complete Inspection Vision Program 122
The Main Program - inspect.part. 122
Subroutine - linelline L L e e 128
Subroutine - init.program L L oL Lo e e 130

Subroutine - write.vwin L L s e e e e e e e e e e e e e 131

Chapter 8 - Programming AdeptVision VME

This chapter details the development of an AdeptVision VME program. The program includes
vision instructions that were presented in the last two chapters as well as biegvam instruc-
tions. As you go through this example, remember that we are not attempting to present the most
efficient vision inspection application. We are attempting to present examples of vision instructions

This chapter assumes that you are familiar with badipigramming. All the commands pre-
sented in this example are detailed inWid.anguage Reference GuidetheAdeptVision Refer-

This chapter develops a basic inspection application. Chapter 9 develops a robot guidance vision

108

8.1 Introduction
in a simple, straightforward context.
ence Guide.
application.

8.2

Application Development Strategy

We recommend that vision inspection applications be developed in the following sequence:

1. Install the controller and any other equipment you will be using to deliver or remove
parts.

2. Select a lighting strategy and install the lighting equipment (see Appendix D). Make the
lighting environment as consistent as possible.

3. Determine the lens requirements (see Appendix C). Install the cameras and lenses.
4. Optimize the camera image (select a live grayscale image):

Focus the lens.
Set the f-stop (aperture) for maximum contrast.

SetV.THRESHOLD (select a live binary image). The commamt/TOTHR will provide
suggested threshold levels.

5. Calibrate the cameras (see “Camera Calibration” on page 28).

6. Determine the part location strategy. If parts will always be in the same location, inspec-
tion tools can be placed relative to the vision coordinate system. If the parts will be pre-
sented to the camera in varying locations, inspection tools will have to be placed using a
“part-relative” strategy. The program in this chapter uses finder tools and boundary anal-
ysis data to determine tool locations. Additional part-relative strategies are discussed in
Chapter 10.

7. Determine which vision tools to use to make inspections.
8. Write the application code.
9. Debug the application.

10. Fine-tune the application.

Inspection Vision Example Program 109

8.3 Inspection Vision Example Program

The program detailed in this chapter will inspect the sample object that we have worked with in the
last several chapters. Here are the major steps the program will perform (see the flow chart in
Figure 8-1):

1.

A digital output signal will be sent to a conveyor belt. The belt will bring the object into
the field-of-view. When the object is in place, a digital input signal will be sent to the
system indicating the part is ready. When the part is in place, the digital output signal to
the belt will be turned off.

The first step after the part is in place will be to take a picture.

When the objects are placed on the conveyor belt, the tail will be facing forward. The
object’s location and rotation can vary, but must be within limits set by the placement of
two line finders we will use to locate the object. If the object is positioned outside the
allowed area, it will be sent back. If it is located, its centroid and rotation will be deter-
mined.

Based on the object’s location and orientation, we will process the image area that just
encompasses the object.

We will now make five inspections:

a. Check that the center of the circular and polygon-shaped holes are correctly spaced
from the object center (within £0.5mm).

b. Check the diameter of the circular hole. It should be 20mm (£1mm).
c. Check the angle of the slanted side of the polygon. It should be 25° (+£2°).

d. Check the arc on the top of the object. Its center should be centered between the
polygon and circular holes.

e. The surface of the object should have a constant gradation from the front to the
back. If this gradation exceeds a certain value, the part will be rejected.

If any inspection fails, a program will be called to remove the bad part and the conveyor
will bring in a new part and begin again. If the object passes all inspections, the conveyor
will move a new part into position and carry the inspected part out of the field of view.

110

Chapter 8 - Programming AdeptVision VME

Set
Environment

Y

Signal New

Y

Part

Y

Wait for
Part

!

Take
Picture

Call
return_part

Object
Located?

Set Processing
Window

{
Y

Hole Centers
Insp. Passed?

Circle
Insp. Passed?

Polygon
Insp. Passed?

no
Object Top
Insp. Passed?

Object Surface
Insp. Passed?

Figure 8-1 Application Flow Chart

Call
reject_part

A

Developing the Program Code 111

8.4 Developing the Program Code

Program Header and Variables Declarations

All programs should begin with a header that gives the program abstract, creation date, side effects,
input and output parameters, and any modifications that have been made. The header should be
similar to this:

.PROGRAM inspect.part(re_init)
; ABSTRACT: Inspect the sample object for defects in the round and
pbbpolygon shaped holes, the arc at the front of the object, and the

surface gradation.

 INPUT PARM: re_init
; pp

determine whether to call the system initialization
routine. 1 = re-initialize, 0 = no initialization

; OUTPUT PARM: None

; SIDE EFFECTS: The global variables 'num_parts' and 'avg_time'

; will be updated.

The next section of your program should contain the variable declarations *Thenyuage

allows you to declare variables dynamically, but these variables will be global to all programs. To
guarantee you do not inadvertently use the same variable name used globally by another program,
you should declare all variables used exclusively within your program to be automatic variables.

: Declare local variables

AUTO obj_width

AUTO cent_circlex, cent_circley
AUTO obj_centx, obj_centy
AUTO arc_centx, arc_centy
AUTO gvalue

AUTO grulerx, grulery

AUTO good_part

AUTO di.part_ready

AUTO cycle_time

AUTO do.belt

AUTO poly_angle, circ_diam
AUTO poly_dist, poly_act
AUTO rnd_dist, rnd_act
AUTO win_ibr, rul_ibr, Ifdr_ibr
AUTO afdr_ibr, grul_ibr
AUTO last, $msg[19], $err
AUTO i, lun

: Initialize known values

obj_length =0
obj_centx = 85
obj_centy = 60
obj_width = 82

;object width
;X, y center of circular object
;X, y center of the object
;X, y center of object arc
;acceptable graylevel variance
;starting point of g-level ruler
;boolean indicating status of part
;digital sig indicating part is ready
;average inspection cycle time
;digital sig for conveyor belt
;correct part dimensions

;define image buffer regions

;object center X (within 12mm)
;object center Y (within 12mm)
;object width

112 Chapter 8 - Programming AdeptVision VME

obj_hgt =50 ;object height

gvalue = 10 ;acceptable graylevel variance
poly_angle =25 ;correct angle of polygon edge
poly_dist =19 ;correct dist from object center
rnd_dist = 17 ; "

do.belt = 31 ;digital signal for conveyor belt
di.part_ready = 1032 ;digital signal for part ready

good_part = TRUE ;assume the part is good

circ_diam = 10 ;correct diameter of circular hole
cam=1 ;virtual camera used for inspections

Set the Camera Environment

An important principle to remember when programming AdeptVision VME is that when any pro-

gram makes changes to the switches and parameters associated with a given camera, those changes
are in effect for any further pictures taken by that camera, regardless of the program using the cam-
era. This means that all critical switches and parameters should be explicitly set at the beginning of
each program. Otherwise, changes made by other programs running during the same session as
your program may unexpectedly change critical switch/parameter settings, and cause your program

to behave erratically.

Disabling switches that aren’t needed for your program will improve processing time by reducing
the amount of data the system has to gather about each image.

; Set switches and parameters

ENABLE V.HOLES[cam] ;hole information is needed
ENABLE V.BINARY[cam] ;processing to be in binary mode
ENABLE V.BOUNDARIES[cam] ;region analysis will be done
ENABLE V.BACKLIGHT[cam] ;dark objects on a light background
DISABLE V.PERIMETER[cam] ;data not needed

DISABLE V.DISJOINT[cam] ;must be disabled to get hole data
DISABLE V.RECOGNITION[cam] ;nNo prototype recognition
DISABLE V.TOUCHING[cam] ;we have only one part
DISABLE V.OVERLAPPING[cam] ;

DISABLE V.2ND.MOMENTS[cam] ;data not needed

DISABLE V.STROBE[cam] ;strobes are not being used
DISABLE V.MIN.MAX.RADII[cam] ;data not needed

PARAMETER V.MIN.AREA[cam] = 101 Sfilter small areas

PARAMETER V.MIN.HOLE.AREA[cam] = 100 ;

When we execute the main program, we send in an indication of whether to reinitialize the camera
and cycle time variable€ALL the initialization program if the boolean is true (this routine is on
page 130).

; If necessary, initialize the cycle time variables and load camera calibration

IF re_init THEN
CALL init.program(cam)
END
; Set the display mode to a graphics mode so we can see the processed image

VDISPLAY (cam) 3

Developing the Program Code 113

Acquire an Image and Start Processing

We are now ready to start the application, and as with so many things in life, the first thing we do is
wait. In this case we are waiting for the object to come into position in the field-of-view. Digital
output signal 31 controls conveyor belt movement. Digital input signal 1032 has been configured to
sense when the object is in position. As soon as signal 1032 is detected, signal 31 should be turned
off, the system should begin timing the inspection operations, and the program should resume exe-
cution. (SeAdept MV Controller User's Guider details on installing digital 1/0.)

; Start conveyor belt
SIGNAL do.belt

; Wait for part ready signal (sig 1032) before beginning processing
WAIT SIG(di.part_ready)

SIGNAL -do.belt ;shut off conveyor belt
TIMER1=0 ;start timing operation

After the part-in-place signal has been received, we are ready to take a picture. Since we will be
reducing the processed area, we want to acquire an unprocessed image.

; Acquire an unprocessed image with camera 1

VPICTURE (cam) 2

Locate the Object and Begin Inspections

We now have an unprocessed image and are ready to check the location of the object. The program
“line.line()” makes this inspection. This program returns the coordinates of the object tail, the

object rotation, and a boolean indicating the object was found. See “Subroutine - line.line” on page
128 for details.

; Locate sample object, calculate the tail point and object's rotation

CALL line.line(tailx, taily, obj.rot, good_part)

The subroutine “return_part” takes the required steps when a part is rejected. Since the reject rou-
tine could have many options, it is left as a dummy call for you to complete.

; Call return program and get next part if point is not found

IF NOT good_part THEN
TYPE "The object was not found or was incorrectly positioned."
CALL return_part()

END ; if

We now know that the part is in place. We also know the location of the object tail and the rotation
of the object. We will use this data plus the dimensions of the object to set an area-of-interest win-
dow. TheVWINDOW instruction will define the image area to be processed and then process that
area (see Figure 8-2).

114 Chapter 8 - Programming AdeptVision VME

;Use the coordinates of the object tail to set a processing window

IF good_part THEN
win_ibr = 3000

;AOI 3

VDEF.AOI win_ibr = 1, tailx-obj_width/2, taily, obj_width+5,

obj_hgt+15, obj.rot
VWINDOW (cam) win_ibr

The height of the area-of-interest window is 15mm
larger than the height of the object (obj_hgt).

The width of the area-of-interest window is 5mm
wider than the object (obj_width).

The X center of the area-of-interest window

is obj_width/2 to the left of the found point.
The Y center of the area-of-interest window is
the same as the Y axis value of the found point.

Figure 8-2 Executing the VWINDOW Instruction

We now have an object in the vision queue, and we are ready to do inspections on that object.

The first thing we will do i3/LOCATE the object and check to be sure it has two holes. If it does
not, we reject the part. If the part is to be rejected, we call the program “reject_part” which will
activate the necessary machinery to remove the part and signal the conveyor belt to bring in the next

part.

; Remove the object from the vision queue and make its characteristics

available to the VFEATURE function.

VLOCATE (cam, 2) "?", obj.loc

; Check to see if a part was successfully located.

IF NOT VFEATURE(1) THEN

Developing the Program Code 115

TYPE "A hole was not located."
CALL reject_part()
good_part = FALSE
END
END ; if good_part

; Check that there are two holes in the part

IF good_part THEN
IF VFEATURE(17) <> 2 THEN
TYPE "The part has an incorrect number of holes."
CALL reject_part()
good_part = FALSE
END
END ; if good_part

The next inspection involves checking the distance from the centers of the circular and polygon
holes to the center of the object. The part will be rejected if these values differ by more than 0.5
millimeters from their ideal values.

; Remove the holes from the queue and check their centroids.
; Remove the largest hole (the circle) from the queue.

IF good_part THEN
VLOCATE (cam, 4, 1) , rnd.loc

: Save the circle's centroid X and Y values

cent_circlex = VFEATURE(2)
cent_circley = VFEATURE(3)

; The next hole removed will be the polygon
VLOCATE (cam, 4) , poly.loc
; Calculate the distance

rnd_act = DISTANCE(obj.loc,rnd.loc)
poly_act = DISTANCE(obj.loc,poly.loc)

; Compare the distances and reject part if they are not within .5mm of correct.

IF ABS(rnd_act-rnd_dist) > 0.5 THEN
TYPE "The round hole is out of alignment."
CALL reject_part()
good_part = FALSE

END; if ABS

IF ABS(poly_act-poly_dist) > 0.5 THEN
TYPE "The polygon hole is out of alignment."
CALL reject_part()
good_part = FALSE

END ; if ABS

END ; if good_part

116 Chapter 8 - Programming AdeptVision VME

If the part passes this inspection, we turn to the circular hole to see if its diameter agrees with the
correct value to within Imm. We will use a linear ruler to perform this inspection.

; Place a ruler that starts at the center of the circular hole and
goes past its edge.

IF good_part THEN
rul_ibr = 4000 :AOl 4
VDEF.AOI rul_ibr = 2, cent_circlex, cent_circley, 10, 0
VRULERI (cam, 0, 1) circ_hole[] = rul_ibr

; Check the value of the first transition (which will be the radius)
; against the required value.
IF circ_hole[0] == 0 THEN
TYPE "The radius of the circular hole could not be determined.”
ELSE
IF ABS((2*circ_hole[2])-circ_diam) > 1 THEN
TYPE "The circular hole is not the correct size."
CALL reject_part()
good_part = FALSE
END ; if ABS
END ; pif circ_hole[0]
END ; if good_part

We are now ready to inspect the polygon to see if the angle of the slanted face equals 25° (+2°). We
will use avVFIND.LINE tool to make this inspection. The center coordinates of the polygon are still
available througlVFEATURE so we can center\éFIND.LINE tool on these coordinates.

; Place a VFIND.LINE tool at the center of the polygon, and have it
look in the negative Y direction for an edge. Search from dark
to light (object to background).

IF good_part THEN
Ifdr_ibr = 501100 ;AOI 5
VDEF.AOI Ifdr_ibr = 1, VFEATURE(2), VFEATURE(3), 10, 10, obj.rot

VFIND.LINE (cam, 0) poly_hole[] = Ifdr_ibr
; Compare the actual value with the acceptable value

IF ABS(poly_hole[4]-poly_angle) > 2 THEN
TYPE "The poly shaped hole is incorrectly oriented.”
CALL reject_part()
good_part = FALSE
END ; if ABS
END ; if good_part

Developing the Program Code

Figure 8-3 Executing a VFIND.LINE Instruction

The time has come to inspect the location of the arc on the front of the object with respect to the
center line of the two holes. We will use the X,Y values of the object center to place the arc finder.
If the actual center of the object arc does not coincide with the midpoint between the two holes

117

(x1mm), the part will be rejected. We will use MEIND.ARC tool to see if the arc center is cen-

tered between the two holes in the object.

IF good_part THEN
; Calculate the X,Y center point for the arc finder

x = DX(obj.loc)
y = DY(obj.loc)

;Use the locations of the two holes to calculate the midpoint

arc.centx = (DX(rnd.loc)+DX(poly.loc))/2
arc.centy = (DY(rnd.loc)+DY/(poly.loc))/2

; Place an arc finder centered around the two holes and look from
; dark to light for an arc.

afdr_ibr = 6000 ;AOI 6

VDEF.AOI afdr_ibr = 5, x, y, obj_hgt/2, obj_hgt/2+5, 90+obj.rot,
270+obj.rot

VFIND.ARC (cam) arc_data[] = afdr_ibr

; Check to see if an arc was found

IF NOT arc_data[0] THEN

118 Chapter 8 - Programming AdeptVision VME

TYPE "The outer radius was not located."
CALL reject_part()
good_part = FALSE
END ; if not
END ; if good_part

; Calculate the center variance

IF good_part THEN

IF ((ABS(arc_data[2]-arc_centx) > 100) OR (ABS(arc_data[3]-arc_centy)
> 1)) THEN

TYPE "The outer radius is not correctly aligned with the two
holes."

CALL reject_part()
good_part = FALSE
END; if ABS
END ; if good_part

The origin of VFIND.ARC window is
at the center of the object . The rotation
is based on the object's rotation.

Figure 8-4 Executing a VFIND.ARC Instruction

We have at last come to the final inspection: looking at the surface gradation of the part to see that
there is a constant gradation from light to dark across the part. We will use a grayscale ruler to per-
form this operation. A graylevel ruler differs from a regular ruler in that it returns the graylevel
intensities for each pixel along the ruler rather than the transitions found along the ruler.

From the data array returned by the previous VFIND.ARC instruction, we know the center and
radius of the object arc. We also know the width of the object. With this information we can place a
ruler along the X axis and make sure it stays within the object.

Developing the Program Code 119

; Place a graylevel ruler along the width of the object, starting at
object tail and ending 5mm from the edge of the object.

IF good_part THEN
grul_ibr = 7000 ;AO1 7
VDEF.AOI grul_ibr = 1, tailx-5, taily, obj_width-10, 180+obj.rot
VRULERI (1, 1) gray_data[] = grul_ibr

; Calculate the graylevel changes every 25 pixels and compare them
; with the acceptable value (gvalue).

FORi=2TO (gray_data[0]-25) STEP 25
good_part = ABS(gray_data[i]-gray_datali+25]/gvalue) > 0.9
good_part = good_part AND (ABS((gray_data[i]-gray_data[i+25])/
gvalue < 1.1))
IF NOT good_part THEN
CALL reject_part()
TYPE "Graylevel ruler failed."
GOTO 90 ;exit on failure
END
END ifori=2
END ;pppif good_part

Output the Results

If the part has gotten to this stage, it has passed all its inspections and is ready to be moved on down
the line. We now read the cycle timer to see how long the cycle took and update the global variables
that keep track of cycle time. Then we ship the part to the next station.

; Read the timer
90 cycle_time = TIMER(1)
; Calculate the total time.

total_time = cycle_time+(avg_time*num_parts)
IF good_part THEN
num_parts = num_parts+1
END
IF num_parts == 0 THEN
avg_time =0
ELSE
avg_time = total_time/num_parts
END

Once we have gathered the data, we will output this information as text to the vision wirfdow. V
provides several “G” commands to control output to graphics windows. The GTYPE instruction is
used in the subroutine write.vwin to do this. Write.vwin is introduced in the next code segment, and
the code for the complete subroutine is shown at the end of this chapter. The other “G” commands
are covered in the* Language Reference Guide

120 Chapter 8 - Programming AdeptVision VME

; Output the data to the vision window.

$msg[0] = "Average Processing Time: "
$msg[1] = SENCODE(avg_time)
$msg[2] = "Number of units passed: "
$msg[3] = SENCODE(num_parts)

; Get the mm/pixel ratio and divide the screen into 20 lines

VGETCAL (cam) cal[]

hgt = cal[16]*480 ;Screen height in millimeters
inc = hgt/20

; Start at the first line and indent text one line

X =inc
y =inc

FORi=3TOO0OSTEP -1
: Write text results to vision window

CALL write.vwin(cam, X, y, $msg][i], $err)
y = y+inc
IF $err <> "™ THEN
TYPE $err ;Output error message
EXIT
END
END

Before we look at the next object, let's $tHRESHOLDIf it hasn’t been set recently. We’'ll use
timer 2 to decide when to change thresholds. In this case we will reset the threshold every half hour

(1,800 seconds).

; Read timer 2 to see how long it has been since the threshold was set.

If it exceeds 30 minutes, set V.THRESHOLD and restart timer 2.

ttime = TIMER(2)
IF ttime > 1800 THEN

VWAIT ;make sure the processor is idle

VAUTOTHR tarray][]
IF tarray[0] THEN
PARAMETER V.THRESHOLD = tarray[1]
END; if
TIMER2=0
END ; if

.END

One program cycle is now complete. The number of cycles executed can be controlled several
ways. AWHILE loop around the entire program could watch for operator input of a digital input
signal. A FOR loop with an operator input index could control an absolute number of cycles. Or, as

Developing the Program Code 121

is the case in this program, the program is executed with a —1 argument indicating the program
should loop until it is aborted.

Further Programming Considerations

The program presented here is not very robust and could be modified to make it much more “crash
proof.” For example, inspections can be done to eliminate the requirement that the part enter the
field of view within 12mm of the desired location. In Chapter 10 we will describe the use of frames
and prototype-relative processing that will allow you to inspect objects in any orientation.

The data arrays that are returned by the finder and ruler tools provide information with which to
make much more rigid inspections of the part. You will also find that the assumptions made about a
particular feature being in the expected place may not be warranted. Whevie®&AGE is done,
checkVFEATURE(1) to see if the locate was successful.

Also bear in mind that during each successive cycle, only the array values generated during the cur-
rent cycle will overwrite the values generated during the last cycle. So if you expect four transitions
from a ruler, and only three are generated, the array location that would normally hold the fourth
value will not be blank but will hold the fourth value from the previous cycle.

This program provides no opportunity for operator intervention when errors are generated. You will
want your programs to be much more fault tolerant. The simplest method is to placaaEN

clause around conditions that indicate errors and prompt for operator attention. In a more compli-
cated vein, the program could communicate with other cell devices or computers in an attempt to
nonfatally resolve errors.

As you build a more robust program, you will likely find that each inspection should be broken
down into its own subroutine. This will make the program more readable and maintainable.

122

Chapter 8 - Programming AdeptVision VME

8.5 The Complete Inspection Vision Program

The Main Program - inspect.part

.PROGRAM inspect.part(re_init)

; ABSTRACT: Inspect the sample object for defects in the round and

)
)
)
)
)

)

pbbpolygon shaped holes, the arc at the front of the object, and the
surface gradation.

; INPUT PARM: re_init determine whether to call the system initialization

routine. 1 = re-initialize, 0 = no initialization

; OUTPUT PARM: None

; SIDE EFFECTS: The global variables 'num_parts' and 'avg_time'

)

)

will be updated.

: Declare local variables

)

AUTO obj_width ;object width

AUTO cent_circlex, cent_circley;x, y center of circular object

AUTO obj_centx, obj_centy ;X, y center of the object

AUTO arc_centx, arc_centy ;X, y center of object arc

AUTO gvalue ;acceptable graylevel variance
AUTO good_part ;boolean indicating status of part
AUTO di.part_ready ;digital sig indicating part is ready
AUTO cycle_time ;average inspection cycle time
AUTO do.belt ;digital sig for conveyor belt
AUTO poly_angle, circ_diam ;correct part dimensions

AUTO poly_dist, poly_act ; "

AUTO rnd_dist, rnd_act ; "

AUTO win_ibr, rul_ibr, Ifdr_ibr;define areas-of-interest
AUTO afdr_ibr, grul_ibr

AUTO last, $msg[19], $err

AUTO i, lun

: Initialize known values

obj_length=0

obj_centx = 85 ;object center X (within 12mm)
obj_centy = 60 ;object center Y (within 12mm)
obj_width = 82 ;object width

obj_hgt =50 ;object height

gvalue = 10 ;acceptable graylevel variance
poly_angle = 25 ;correct angle of polygon edge
poly_dist =19 ;correct dist from object center
rnd_dist =17 ; "

do.belt =31 ;digital signal for conveyor belt
di.part_ready = 1032 ;digital signal for part ready
good_part = TRUE ;assume the part is good
circ_diam =10 :correct diameter of circular hole
cam=1 ;virtual camera used for inspections

; Set switches and parameters

The Complete Inspection Vision Program

ENABLE V.HOLES[cam] ;hole information is needed
ENABLE V.BINARY[cam] ;processing to be in binary mode
ENABLE V.BOUNDARIES[cam] ;region analysis will be done
ENABLE V.BACKLIGHT[cam] ;dark objects on a light background
DISABLE V.PERIMETER[cam] ;data not needed

DISABLE V.DISJOINT[cam] ;must be disabled to get hole data
DISABLE V.RECOGNITION[cam] ;no prototype recognition

DISABLE V.TOUCHING[cam] ;we have only one part

DISABLE V.OVERLAPPING[cam] ;
DISABLE V.2ND.MOMENTS[cam] ;data not needed

DISABLE V.STROBE[cam] ;strobes are not being used
DISABLE V.MIN.MAX.RADII[cam] ;data not needed
PARAMETER V.MIN.AREA[cam] = 101 filter small areas

PARAMETER V.MIN.HOLE.AREA[cam] = 100 ; "
; If necessary, initialize the cycle time variables and load camera calibration
IF re_init THEN
CALL init.program(cam)
END
; Set the display mode to a graphics mode so we can see the processed image.
VDISPLAY (cam) 3
; Start conveyor belt
SIGNAL do.belt
; Wait for part ready signal (sig 1032) before beginning processing
WAIT SIG(di.part_ready)
SIGNAL -do.belt ;shut off conveyor belt
TIMER1=0 ;start timing operation
; Acquire an unprocessed image with camera 1
VPICTURE (cam) 2
; Locate sample object, calculate the tail point and object's rotation
CALL line.line(tailx, taily, obj.rot, good_part)
; Call return program and get next part if point is not found
IF NOT good_part THEN
TYPE "The object was not found or was incorrectly positioned."
CALL return_part()
END ; if
;Use the coordinates of the object tail to set a processing window
IF good_part THEN
win_ibr = 3000 :AOI 3

VDEF.AOI win_ibr = 1, tailx-obj_width/2, taily, obj_width+5,
obj_hgt+15, obj.rot

123

124 Chapter 8 - Programming AdeptVision VME

VWINDOW (cam) win_ibr

; Remove the object from the vision queue and make its characteristics
; available to the VFEATURE function.

VLOCATE (cam, 2) "?", obj.loc
; Check to see if a part was successfully located.

IF NOT VFEATURE(1) THEN
TYPE "A hole was not located."
CALL reject_part()
good_part = FALSE
END
END ; if good_part

; Check that there are two holes in the part

IF good_part THEN
IF VFEATURE(17) <> 2 THEN
TYPE "The part has an incorrect number of holes."
CALL reject_part()
good_part = FALSE
END
END ; if good_part

; Remove the holes from the queue and check their centroids.
; Remove the largest hole (the circle) from the queue.

IF good_part THEN
VLOCATE (cam, 4, 1) , rnd.loc

: Save the circle's centroid X and Y values

cent_circlex = VFEATURE(2)
cent_circley = VFEATURE(3)

; The next hole removed will be the polygon
VLOCATE (cam, 4) , poly.loc
; Calculate the distance

rnd_act = DISTANCE(obj.loc,rnd.loc)
poly_act = DISTANCE(obj.loc,poly.loc)

; Compare the distances and reject part if they are not within .5mm of correct.

IF ABS(rnd_act-rnd_dist) > 0.5 THEN
TYPE "The round hole is out of alignment."
CALL reject_part()
good_part = FALSE

END; if ABS

IF ABS(poly_act-poly_dist) > 0.5 THEN
TYPE "The polygon hole is out of alignment."

The Complete Inspection Vision Program 125

CALL reject_part()
good_part = FALSE
END; if ABS

END ; if good_part

; Place a ruler that starts at the center of the circular hole and
; goes past its edge.

IF good_part THEN
rul_ibr = 4000 ;AOL 4
VDEF.AOI rul_ibr = 2, cent_circlex, cent_circley, 10, 0
VRULERI (cam, 0, 1) circ_hole[] = rul_ibr

; Check the value of the first transition (which will be the radius)
; against the required value.

IF circ_hole[0] == 0 THEN
TYPE "The radius of the circular hole could not be determined.”
ELSE
IF ABS((2*circ_hole[2])-circ_diam) > 1 THEN
TYPE "The circular hole is not the correct size."
CALL reject_part()
good_part = FALSE
END ;if ABS
END ; pif circ_hole[0]
END ; if good_part

; Place a VFIND.LINE tool at the center of the polygon, and have it
; look in the negative Y direction for an edge. Search from dark
; to light (object to background).

IF good_part THEN
Ifdr_ibr = 5000 :AOI 5
VDEF.AOI Ifdr_ibr = 1, VFEATURE(2), VFEATURE(3), 10, 10, obj.rot
VFIND.LINE (cam, 0) poly_hole[] = Ifdr_ibr

; Compare the actual value with the acceptable value
IF ABS(poly_hole[4]-poly_angle) > 2 THEN
TYPE "The poly shaped hole is incorrectly oriented."
CALL reject_part()
good_part = FALSE
END; if ABS
END ; if good_part
IF good_part THEN

; Calculate the X,Y center point for the arc finder

x = DX(obj.loc)
y = DY(obj.loc)

;Use the locations of the two holes to calculate the mid-point

arc.centx = (DX(rnd.loc)+DX(poly.loc))/2
arc.centy = (DY(rnd.loc)+DY (poly.loc))/2

126 Chapter 8 - Programming AdeptVision VME

; Place an arc finder centered around the two holes and look from
dark to light for an arc.

afdr_ibr = 6000 ;AOI 6

VDEF.AOI afdr_ibr = 5, x, y, obj_hgt/2, obj_hgt/2+5, 90+obj.rot,
270+obj. rot

VFIND.ARC (cam) arc_data[] = afdr_ibr

; Check to see if an arc was found

IF NOT arc_data[0] THEN
TYPE "The outer radius was not located."
CALL reject_part()
good_part = FALSE
END ; if not
END ; if good_part

; Calculate the center variance

IF good_part THEN
IF ((ABS(arc_data[2]-arc_centx) > 100) OR (ABS(arc_data[3]-arc_centy)
> 1)) THEN
TYPE "The outer radius is not correctly aligned with the two
holes."
CALL reject_part()
good_part = FALSE
END; if ABS
END ; if good_part

; Place a graylevel ruler along the width of the object, starting at
; object tail and ending 5mm from the edge of the object.

IF good_part THEN
grul_ibr = 7000 :AOL 7
VDEF.AOI grul_ibr = 1, tailx-5, taily, obj_width-10, 180+obj.rot
VRULERI (1, 1) gray_data[] = grul_ibr

; Calculate the graylevel changes every 25 pixels and compare them
; with the acceptable value (gvalue).

FORi=2TO (gray_data[0]-25) STEP 25
good_part = ABS(gray_data[i]-gray_datal[i+25]/gvalue) > 0.9
good_part = good_part AND (ABS((gray_data[i]-gray_data[i+25])/
gvalue < 1.1))
IF NOT good_part THEN
CALL reject_part()
TYPE "Graylevel ruler failed."
GOTO 90 ;exit on failure
END
END cfori=2
END ;pppif good_part

: Read the timer

90 cycle_time = TIMER(2)

The Complete Inspection Vision Program

; Calculate the total time.

total_time = cycle_time+(avg_time*num_parts)
IF good_part THEN
num_parts = num_parts+1
END
IF num_parts == 0 THEN
avg_time =0
ELSE
avg_time = total_time/num_parts
END

; Output the data to the vision window.

$msg[0] = "Average Processing Time: "
$msg[1] = SENCODE(avg_time)
$msg[2] = "Number of units passed: "
$msg[3] = SENCODE(num_parts)

; Get the mm/pixel ratio and divide the screen into 20 lines

VGETCAL (cam) cal[]
hgt = cal[16]*480 ;Screen height in millimeters
inc = hgt/20

; Start at the first line and indent text one line

X =inc
y =inc

FORi=3TOOSTEP -1
CALL write.vwin(cam, X, y, $msg][i], $err)
y=y+inc

IF $err <> "™ THEN
TYPE $err ;Output error message
EXIT
END
END

; Read timer 2 to see how long it has been since the threshold was set.

. If it exceeds 30 minutes, set V.THRESHOLD and restart timer 2.

ttime = TIMER(2)
IF ttime > 1800 THEN

VWAIT ;make sure the processor is idle

VAUTOTHR tarray[]
IF tarray[0] THEN
PARAMETER V.THRESHOLD = tarray[1]
END; if
TIMER2=0
END ; if

.END

127

128 Chapter 8 - Programming AdeptVision VME

Subroutine - line.line

.PROGRAM line.line(x, y, tool.ang, status)

)

; ABSTRACT: This program uses data from two line finder tools to calculate
; the intersection of two lines, and the angle of a line bisecting

; the intersection point (used to place other tools). The current frame

; store must have a valid image.

; INPUT PARM: None

; OUTPUT PARMS: x - x coordinate of the intersection point
; y - y coordinate of the intersection point

; tool.ang - angle of a line bisecting the intersection point
; status - success of operation

; SIDE EFFECTS: None

)

LOCAL ang.t, xt, yt, dxt, dyt ;top line data
LOCAL ang.b, xb, yb, dxb, dyb ;bottom line data
LOCAL obj.ang ;angle between sides of the object

LOCAL aoil, aoi2
status = TRUE ;assume lines are found
; Place the two line finders

aoil = 1001

aoi2 = 2001

VDEF.AQI aoil = 1, 110, 80, 40, 30, 150
VDEF.AQI ao0i2 = 1, 110, 50, 40, 30, 30
VFIND.LINE (1) top[] = aoil
VFIND.LINE (1) bottom[] = aoi2

: Check to see if both lines were found

IF NOT (top[0] AND bottom[0]) THEN
status = FALSE :return failure in status
GOTO 100

END

: Extract the line finder data

ang.t = top[4]
ang.b = bottom[4]
dxt = COS(ang.t)
dyt = SIN(ang.t)
dxb = COS(ang.b)
dyb = SIN(ang.b)
xt = top[2]

yt = top(3]

xb = bottom[2]

yb = bottom[3]

; Calculate the rotation of the object

The Complete Inspection Vision Program 129

obj.ang = ang.b+180-ang.t
tool.ang = ang.b-(obj.ang/2)

; Calculate the intersection point
numerator = (yb-yt)*dxb-(xb-xt)*dyb

IF ABS(dxt) > ABS(dyt) THEN
fract = dyt/dxt
f = numerator/(fract*dxb-dyb)
X = xt+f
y = yt+fract*f

ELSE
fract = dxt/dyt
f = numerator/(dxb-fract*dyb)
y = yt+f
X = xt+fract*f

END

100 ;Exit on failure

.END

Line Finder (top)

tool.ang = 9 ang.t

Computed Point

ang.b

obj.ang Line Finder (bottom)

Figure 8-5 Calculating the Object Tail Location

130 Chapter 8 - Programming AdeptVision VME

Subroutine - init.program

.PROGRAM init.program(cam)

; ABSTRACT: This program initializes the cycle time statistics and camera
; environment.

; INPUT PARMS: cam virtual camera being used

; OUTPUT PARMS: None
:GLOBAL VARS: to.cam, thresholds[], cam.cal[], $err

; SIDE EFFECTS: If the global variables avg_time, total_time, and num_parts
; are not defined, they are setto 0

)

num_parts =0
avg_time =0
total_time =0

; Load calibration data. load.area is supplied on the utility disk in the

; file LOADAREA.V2. See the "Instructions for Adept Utility Programs" for
; details on the calling sequence.

CALL load.area("area87.dat", cam, thresholds[], TRUE, to.cam, cam.cal[],
$err)

; Reset the timer used to determine when to recalculate V.THRESHOLD

TIMER (2) =0
; Set the binary threshold

VAUTOTHR thresholds]]
IF thresholds[0] THEN

PARAMETER V.THRESHOLD = thresholds[0]
ELSE

TYPE "A threshold could not be computed. Check the lens aperture
setting."

END

.END

The Complete Inspection Vision Program

Subroutine - write.vwin
.PROGRAM write.vwin(cam, x, y, $text, $err)

; ABSTRACT: This program demonstrates how to use the millimeter scaling mode of
; GTRANS to label an object in the vision window.

)

; INPUT PARM: cam virtual camera number (REAL variable)
; X,y location of text on vision screen (REAL variable)
; $text text containing (STRING variable)

OUTPUT PARM: $err string containing error messages
AUTO vlun
$err =" ;Assume no error

; Attach and open the vision window

ATTACH (vlun, 4) "GRAPHICS"
IF (IOSTAT(vlun) < 0) OR (vlun == -1) GOTO 100

FOPEN (vlun) "Vision";Open the vision window
IF IOSTAT(vlun) < 0 GOTO 100

; Select display mode, color, and graphics mode
VDISPLAY (cam) 1, 1 ;Display grayscale frame and graphics

GCOLOR(viun) 1 ;Select the color black
GTRANS (vlun, 1) ;Select millimeter scaling

; Output the text to the screen at the desired location
GTYPE(Vlun) x, y, $text, 3
; Detach from the logical unit (frees up the communications path)
DETACH (vlun)
: Check for errors
100 IF (IOSTAT(vlun) < 0) THEN
$err = SERROR(IOSTAT(vlun))
END
IF vlun == -1 THEN
$err = "All logical units are in use."

PAUSE
END

.END

131

Guidance Vision

Introduction L L o e e e e e e e e 134
Using a Fixed-Mount Camera v v v v v e e e e e 134
4-Axis SCARA Robot with Cameraon Link#2 138
5-Axis SCARA Robot with Cameraon Link #2 143
Guidance Vision Program o 0 e e e e e e e e 145

The Sample Program L e e e 146
Further Programming Considerations 155

ErrorHandling 155

Generalizing the Program Lo 155

134

9.1

Chapter 9 - Guidance Vision

Introduction

9.2

Before a camera can be used for inspection or guidance vision, the camera must be calibrated and
the calibration data must be transferred to the vision system. Cameras are normally calibrated using
the advanced camera calibration utility. SeeAHeanced Camera Calibration Program User’s
Guidefor details. Once you have calibrated a camera and stored the calibration data to a disk, the
calibration data can be loaded from disk usingtb&DAREA ultility program (on the Adept Utility

Disk #1). See the sample program on page 130 for an example. (Camera calibration data must be
reloaded each time the controller is turned off or system memory is zeroed. See “Loading Vision
Calibration Data” on page 31.)

One element of the camera-to-robot calibration relates the vision coordinate frame (see Figure 9-1)
to the world coordinate system of the robot. The vision system returns X and Y coordinates and RZ
rotation defining the location and orientation of an object with respect to the vision coordinate sys-
tem. This information is combined into a transformation value that represents an object’s location
in world coordinates. This section describes how to use the two most common camera mountings:
fixed-mount camera and cameras mounted on the second link of several common robot types.
Additional camera mountings are described in the camera calibration user’s guide.

Using a Fixed-Mount Camera

A fixed-mount camera is any camera that acquires images at a fixed location in the robot work-
space.

The following code will locate a “blob” and then move the robot to the blob’s location:

.PROGRAM pickup.part.fix (); pickup part with fixed camera

ABSTRACT The following sample program is used to:

1) Move to a location outside the camera field of view

2) Locate a single part using blob recognition

3) Acquire the part with a single pneumatic gripper (vacuum or mechanical)
4) Raise the part 50 mm

» COMMENTS: In order for this program to run, a location called "pic.loc" must

already exist. When the robot is at pic.loc, the part must be in the
camera's field of view and not obstructed by the robot.

LOCAL obj.loc, part.loc, vis.loc, $ret

MOVE pic.loc ; Move to picture taking location
BREAK ; Stop robot

VPICTURE (1) -1 ; Take picture with camera 1
VLOCATE(1, 0) $name, vis.loc ; Find single object in field of view

; with Blob recognition
SET obj.loc = to.cam[1]:vis.loc:RZ(VFEATURE(48)); Determine the location
; and orientation of the
; part in world coordinates

; Transformation to.cam[1] is generated by the Advanced Camera Calibration

Utility Program and loaded by the utility LOADAREA.V2 on the Adept Utility
Disk

IF NOT DEFINED (grip.trans) THEN

; If itis necessary to reteach the "grip.trans” transformation, the existing

"grip.trans" transformation must be deleted at the system prompt by typing
DELETEL GRIP.TRANS before executing this program.

.END

Using a Fixed-Mount Camera 135

DETACH(0) ; Detach robot so pendant can be used

TYPE " Using the pendant, place the gripper on the part to pick it up”
TYPE " Once the robot is in position, Hit COMP/PWR on the pendant”
PROMPT " and hit return on the keyboard ", $ret

HERE obj.loc:grip.trans

ATTACH(0) ; Reattach robot

END

SET part.loc = obj.loc:grip.trans ;Complete transformation to pickup
;part. part.loc should have pitch of
;180. Check by typing LISTL part.loc

APPRO part.loc, 50 ; Approach part by 50 mm

BREAK ; Stop robot

MOVE part.loc ; Move to part

BREAK

CLOSEI ; Close gripper or turn on vacuum

DEPART 50 ; Move part up 50 mm

BREAK

The location variables in the preceding code are calculated as follows:

to.cam [1] is the camera calibration transformation for virtual camera 1.

vis.loc is the vision location returned by WMeOCATE instruction! The transformation
returned by boundary analysis has a rotation the same as the vision coordinate
frame. The axis of least inertia (returned by VFEATURE(48)) is used to calculate
the location orientation.

grip.trans is the grip transformation for the part. Since the vision system can calculate loca-

part.loc

tion data only in a two-dimensional plane, an additional transformation must be
defined to account for the Z component of the final world location (and possibly
the gripper rotation necessary for grasping a part).

CAUTION: A new grip transformation should be defined whenever new calibra-
tion data is computed. Failure to use a valid grip transformation could cause the
robot to run into the part or the work surface when moving to a location deter-
mined from a vision image.

is the compound transformation based on the vision location (vis.loc), the camera
calibration transformation (to.cam), and the grip transformation. This transfor-
mation represents the part location in world coordinates.

Figure 9-1 shows the components of the vision transformation, “to.cam”, “vis.loc”, and
“grip.trans”.

1 The vision location (vis.loc) can be created by any vision operation(s) that return information that
can be used to calculate a transformation representing the location of an object within the vision
coordinate system. The remainder of this chapter and the next chapter describe vision operations
that return location data.

136 Chapter 9 - Guidance Vision

Fixed Mount
Camera

Object
Location Grip Transformation

(grip.trans)
Vision Location \
Transformation .-~ N
(visdoc) k.

.
/ \~
.
-~
-~
-

Vision Coordinate
System

Camera Calibration
Transformation (to.cam)

Figure 9-1 Fixed-Mount Camera (Vision Location)

Using a Fixed-Mount Camera 137

Figure 9-2 shows all the components of the vision transformation, plus the resulting compound
transformation, “part.loc”.

Fixed Mount
Camera

Part Acquire Transformation,
Including Grip Trans
(part.loc)

Grip Transformation

rip.trans
Object (orip)

Location

Vision Location
Transformation .~

(vis.Ioc?’) \i"\

Camera Calibration
Transformation (to.cam)

Figure 9-2 Fixed-Mount Camera Vision Transformation

138

9.3

Chapter 9 - Guidance Vision

4-Axis SCARA Robot with Camera on Link #2

The instructions in this section will work for a camera mounted on SCARA, XY, XYZ, or XYZ-
Theta type robots. The strategies shown in this section can be extended to define a guided vision
application with the camera mounted on any axis of a motion device.

When you use a robot-mounted camera, the camera calibration transformation defines the location
of the vision coordinate frame relative to the robot link on which the camera is mounted. In order to
use location information from the vision system, you must know the relationship between the link
holding the camera and the robot world coordinate system.

For a camera mounted on the robot, we conceptually break down the robot into a series of “links”
connected by “joints”. Each link can be considered as having its own coordinate system. For exam-
ple, the world coordinate system is the same as the coordinate system of the base of the robot (link
#0). For AdepSCARATrobots, the origin of the world coordinate system is on the joint-1 axis at the
level of the robot base.

The “outer” link of an AdepSCARA robot is link #2. (Figure 9-3 shows the “link2” coordinate
frame.) We define the coordinate system for link #2 as follows:

. The origin is fixed relative to the outer link, at the center of the quill, at the height of the
quill flange when joint 3 is at its zero position.

. The Z axis points down.
. The X axis points away from joint #2, as if it is an extension of the outer link.

The following program shows how to locate and acquire a part with a camera mounted on link #2.

.PROGRAM pickup.part.lk2(); pickup part with link 2 camera

; ABS

TRACT: The following sample program is used to:

1) Move to a picture taking location

2) Locate a single part using blob recognition

3) Acquire the part with a single pneumatic gripper (vacuum or mechanical)
4) Raise the part 50 mm

» COMMENTS: In order for this program to run, a location called "pic.loc" must

already exist. When the robot is at pic.loc, the part must be in the
camera's field of view.

LOCAL jt[], link2, obj.loc, part.loc, vis.loc, $ret

MOVE pic.loc ; Move to picture taking location

BREAK ; Stop robot

DELAY 0.1 ; Let camera settle for 0.1 seconds
BREAK

HERE #pic.loc ; Create a precision point at pic.loc
VPICTURE (1) -1 ; Take picture with camera 1

VLOCATE(1, 0) $name, vis.loc ; Find single object in field of view

; with Blob recognition

DECOMPOSE jt[1]=#pic.loc ; Obtain joints values at #pic.loc for
; use in building part location transformation

SET link2=HERE:RZ(-jt[4]): TRANS(,,-jt[3]) ; Develop first part of object
; transformation
SET obj.loc = link2:to.cam[1]:vis.loc:RZ(VFEATURE(48)) ; Develop world
; location of object

Utility

.END

4-Axis SCARA Robot with Camera on Link #2

; Transformation to.cam[1] is generated by the Advanced Camera Calibration
; Utility Program and loaded by the utility LOADAREA.V2 on the Adept

; Disk

IF NOT DEFINED (grip.trans) THEN

; If itis necessary to reteach the "grip.trans" transformation, the
; existing "grip.trans" transformation must be deleted at the system prompt
; by typing DELETEL GRIP.TRANS before executing this program.

DETACH(0) ; Detach robot so pendant can be used

TYPE " Using the pendant, place the gripper on the part to pick it up”
TYPE " Once the robot is in position, Hit COMP/PWR on the pendant”
PROMPT " and Hit return on the Keyboard", $ret

HERE obj.loc:grip.trans
ATTACH(0) ; Reattach robot
END

SET part.loc = obj.loc:grip.trans; Complete transformation to pickup
; part. part.loc should have pitch of 180.
; Check by typing LISTL part.loc

APPRO part.loc, 50 ; Approach part by 50 mm

BREAK ; Stop robot

MOVE part.loc ; Move to part

BREAK

CLOSEI ; Close gripper or turn on vacuum
DEPART 50 ; Move part up 50 mm

BREAK

139

Figure 9-3 Link2 Coordinate Frame

140 Chapter 9 - Guidance Vision

Figure 9-4 shows the link transformation, “link2”, that was calculated by the preceding program
instructions. The program instructieMERE creates a transformation in world coordinates that rep-
resents the current tool tiRz(—jt[4]) removes any rotation of joint4 from the resulting transforma-
tion. TRANS(,,—jt[3]) removes any quill extension from the transformation. Note: the preceding
program and Figure 9-4 assume that a NULL TOOL is invoked. If a NULL TOOL is not used, then
the link transformation (last code line on page 138) should be changed to:

SET link2 = HERE:INVERSE(TOOL):RZ(-jt[4]): TRANS(,,-jt[3])

XININ

Outer Link

— +X
+Y‘___________ A
P iy : s)
| — RZ(t4)
Note: TOOL is set to E
NULL in this situation. '
' TRANS(,—it[3])

HERE

.
.
g
.
.
.
.
.
.
.
.
.
.
'y

Figure 9-4 Calculating the “Link2” Transformation

+Z

4-Axis SCARA Robot with Camera on Link #2 141

Since the camera calibration transformation was created based on the link2 coordinate frame, any-
time you use the camera calibration transformation (“to.cam” in this example), it must be applied to
the link2 coordinate frame.

Note that the value of “link2” must be computed from the robot’s location when the vision image is
acquired. Thus, the instructions above will have to be executed each time a picture is taken at a new
location.

Figure 9-5 shows how the remaining components of the location are calculated. “link2” was calcu-
lated as shown in Figure 9-4. “to.cam [1]” (created during camera calibration) is added to create a
transformation relating the vision coordinate system to the world coordinate system. “vis.loc”
(returned by a vision operation—nblob recognition in this case) is added to create a transformation
that represents the location of the found part in the XY plane of the vision coordinate system.
RZ(VFEATURE(48)) is added to give the orientation of the part. “grip.trans” is added to create a
transformation that offsets and/or rotates the gripper if the found object is to be acquired at a loca-
tion offset or rotated from the location returned by the vision operation.

142 Chapter 9 - Guidance Vision

XINNG

AR Vision Coordinate
o] Se Frame
’
’ ~§

vis.loc

Object
grip.trans Location

Figure 9-5 Components of the Vision Location

Figure 9-6 summarizes the transformations used when calculating the final part acquire location.

5-Axis SCARA Robot with Camera on Link #2 143

Camera Transformation
(to.cam)

Vision Location
Transformation

. v \ Location

Grip Transformation
(grip.trans)

Part Acquire Location,
Including Grip
Transformation (part.loc)

+X

Figure 9-6 Final Part Acquire Location

9.4 5-Axis SCARA Robot with Camera on Link #2

If a fifth axis is attached to an Adept SCARA Robot (AdeptOne and AdeptThree) we now have
another joint that must be accounted for when we calculate the "link2" coordinate frame. When a
fifth axis is mounted on the robot, the kinematic model automatically sets the null tool from the
normal position at the end of joint three (the tool flange) to the pivot point of the fifth axis. How-
ever, the fifth axis has an additional offset from the pivot point to the new tool flange that needs to
be nulled in the "link2" transformation. The dimension of this offset is 50mm. Starting at the end of
the robot the procedure is as follows: Find the current location of the end effector "HERE", null
any tool transformation currently in effect "INVERSE(TOOL)", null the offset along the negative
tool Z axis "TRANS(,,-50)", null the rotation of the fifth axis (rotation about the local Y axis)

"RY (-jt[5])", null the rotation of joint 4 (rotation about the local Z axis) "RZ(-jt[4])", null the height

of joint 3 "TRANS(,,-jt[3])". Use the "link2" transformation below when working with a fifth axis
and the camera mounted on link #2.

SET link2 = HERE:INVERSE(TOOL): TRANS(,,-50):RY (-jt[5]):RZ(-jt[4]): TRANS(,,-{t[3])

144 Chapter 9 - Guidance Vision

XININd

Outer Link

NOTE: TOOL is set to
NULL in this situation

\T +X

~

" RZ(-jtj4])

)

TRANS(,,—t[3])

Adjusted in
kinematics

A{”

Figure 9-7 Five-Axis Vision Transformation

Guidance Vision Program 145

9.5 Guidance Vision Program

This section details the development of an AdeptVision VME guidance vision program. The pro-
gram includes vision instructions that were presented in previous chapters as well ag @rer V

gram instructions. As you go through this example, remember that we are not attempting to present
the most efficient guidance vision application. We are attempting to present examples of vision
instructions in a simple, straightforward context.

This example assumes that you are familiar with badipigramming. All the commands pre-
sented in this example are detailed inWid.anguage Reference GuidetheAdeptVision Refer-
ence Guide.

The program listed below will pick up round parts from one conveyor belt and palletize them to pal-
lets on another conveyor belt. The parts will be randomly located on the conveyor belt. An arm-
mounted camera will be used to locate the parts and guide the robot to pick them up. Both conveyor
belts are “indexing” belts and will be started and stopped using digital I/O signals.

After each part is picked up, it will be presented to a fixed-mount upward-looking camera for
inspection. If the part passes inspection, it will be palletized. Otherwise, it will be taken to a scrap
bin.

The conveyor belt carrying the pallets holds the pallets rigidly in parallel with the robot X axis so
no X axis correction is necessary. The pallets are also rotationally rigid so no rotation correction is
necessary. There is some variance in the absolute Y location. This variance is calculated using a
fixed-mount downward-looking camera. Figure 9-8 shows the physical setup for this workcell.

Parts Conveyor Belt

=~
C000~AH 0O
\ (vZQOOOOOOOOO
Down-Facing Fixed Mount Camera g Up-Facing Fixed-Mount Camera
] B] 0 ik 0[0[000 4 00000
Hee Q 1LOOOY LOOOY
h LAO)ORdOOOOORADOOOCO

Arm-Mounted Camera Pallet Conveyor Belt

Figure 9-8 Example Program Setup

146 Chapter 9 - Guidance Vision

The Sample Program
.PROGRAM guided.vis.examp()

ABSTRACT This program implements a robot workcell that:
; 1) Allows teaching of workcell locations if necessary,
; 2) Visually locates parts brought into the workcell on an
; indexing conveyor,
; 3) Picks up the parts and presents them to a camera for inspection,
; 4) Discards the part if it fails, or palletizes it if it passes.
; The program will also load camera calibration files that have
; been previously stored on the default disk.

; INPUT PARMS: None
; OUTPUT PARMS: None

SIDE EFFECTS: The following global variables are set:
; pallet.loc - location of row 1, col 1 on the pallet
; pallet.frame - reference frame for the pallet
; inspect.loc - location robot presents part to up-mounted camera
; pic.loc - location robot takes picture of incoming part
; scrap.loc - location robot takes rejected parts
;arm.cam - number of the arm-mounted camera (locates parts)
; up.cam - number of the upward-looking camera (inspects parts)
; dwn.cam - number of the downward-looking camera (locates pallets)
; di.oper - input signal controlling main processing loop
; di.part.ready - input signal indicating a part is ready
; di.pallet.ready - input signal indicating a pallet is ready
; do.pal.belt - output signal driving the pallet conveyor
; do.part.belt - output signal driving the parts conveyor

AUTO row, col, max.rows, max.cols, row.dist, col.dist
AUTO passed, num.parts

AUTO $ans

AUTO gripz

AUTO i

: Initialize variables

arm.cam =1
dwn.cam = 2

up.cam =3

di.oper = 1001
di.part.ready = 1002
di.pallet.ready = 1003
do.pal.belt =5
do.part.belt = 6

passed = FALSE ;Assume the part failed inspection

row=1

col =

max.rows = 3 ;The pallet is 3x5
max.cols =5

row.dist = 50 ;Spacing of pallet locations
col.dist = 50

Guidance Vision Program

ENABLE UPPER
; Check to see if camera cal data is loaded - load if necessary
IF NOT DEFINED(to.cam[1]) THEN
CALL load.cam.cal()
END
; Should the operator create new robot locations?
DO
PROMPT "Do you want to teach new robot locations? ", $ans
UNTIL ($ans =="y") OR ($ans =="n")
IF $ans =="y" THEN
; Get the first pallet
SIGNAL do.pal.belt
TYPE "Waiting for pallet."
WAIT SIG(di.pallet.ready)
SIGNAL -do.pal.belt
; Teach the robot locations
CALL teach.pallet(max.rows, max.cols, pal.offset, gripz)
ELSE

; Bring in a new pallet and update the pallet location

CALL new.pallet(pal.offset, pal.correction)
SET cur.frame = SHIFT (pallet.frame BY ,pal.correction)

END

; Start up the workecell

TYPE /C1

PROMPT "Turn on the RUN switch and press ENTER when ready to begin.", $ans

WAIT SIG(di.oper)
WHILE SIG(di.oper) DO
; Move to the picture taking location and settle the robot
MOVE pic.loc
DELAY 0.2
BREAK
; Bring parts into the workcell
SIGNAL do.part.belt
TYPE "Waiting on a part."

WAIT SIG(di.part.ready)
SIGNAL -do.part.belt

147

148 Chapter 9 - Guidance Vision

;Create the variables for determining the link2 coordinate frame

HERE #pic.loc
DECOMPOSE jt[1] = #pic.loc
VPICTURE (arm.cam) -1, 0

; Make sure vision processor is idle, then determine how many parts are seen

VWAIT
num.parts = VQUEUE(arm.cam,"?")

; Locate the parts and palletize them

FOR i =1 TO num.parts
VLOCATE (arm.cam, 2) "?", vis.loc

; Calculate the object location in world coordinates

SET link2 = pic.loc:RZ(-jt[4]): TRANS(,,-jt[3])
SET part.loc = link2:to.cam[1]:vis.loc:TRANS(,,gripz,,180)

; Pick up the part

APPRO part.loc, 50
OPENI

SPEED 20

MOVE part.loc
CLOSEI

BREAK

DEPART 50

; Inspect the part
CALL inspect.part(passed)
; If the part passed, palletize it...

IF passed THEN

row.offset = row.dist*(row-1)

col.offset = col.dist*(col-1)

SET place.loc =
cur.frame:TRANS(row.offset,col.offset):pallet.loc

APPRO place.loc, 50

SPEED 20

MOVE place.loc

OPENI

DEPART 50

; Check the row and column count, increment or reset as necessary

IF row < max.rows THEN
row = row+1

ELSE
row=1
IF col < max.cols THEN
col = col+1

ELSE ;Bring in a new pallet

Guidance Vision Program 149

row=1
col=1
CALL new.pallet(pal.offset, pal.correction)
SET cur.frame = SHIFT(pallet.frame BY ,pal.correction)
END ;if row
END ;if col

; If the part failed, move it to the scrap location.
ELSE
APPROS scrap.loc, 50
MOVE scrap.loc
OPENI
DEPART 50
END ;if passed
;Get ready to take a new picture
MOVE pic.loc
END ;fori=1
END ;WHILE SIG(di.oper)

.END

150 Chapter 9 - Guidance Vision

.PROGRAM inspect.part(passed)

; ABSTRACT: This program uses an upward-looking camera to inspect a
; round part presented to the camera by a robot. An arc finder is used
; to check the radius of the part. The global variable up.cam identifies
; virtual camera being used.

)

; INPUT PARMS: None
OUTPUT PARMS: passed indicates whether or not the part passed
; SIDE EFFECTS: None

LOCAL x, Y, r.tool, r.search, up.limit, low.limit

X =100

y =100

r.tool = 25
r.search =75
up.limit = 24
low.limit = 26

; Move the part inspection location
MOVE inspect.loc

DELAY 0.5
BREAK

; Acquire an image and place the arc finder
VPICTURE (up.cam) 2
VDEF.AQI 3000 =5, x, y, r.tool, r.search, 0, 0
VFIND.ARC (up.cam, 5) data[] = 3000
; If an arc is found and the radius is within the limits, the part passes
passed = DATA[O]
IF passed THEN
passed = (data[4] > low.limit) AND (data[4] < up.limit)
END

.END

Guidance Vision Program

.PROGRAM load.cam.cal()

; ABSTRACT: This program loads the camera calibration data for three
cameras. The calibration files must have been created and stored

; on the default disk. Global variables arm.cam, dwn.cam, and up.cam
; must have been previously defined.

)

)

; INPUT PARM: None

)

; OUTPUT PARM: None

; SIDE EFFECTS: The array elements to.cam[1] - to.cam[3] are updated and three
; virtual cameras are readied for use.

)

LOCAL $arm.cal, $dwn.cal, $up.cal
LOCAL $arm.dat, $dwn.dat, $up.dat

; Get the calibration data file numbers

TYPE /C24, /U20

PROMPT "What is the calibration number for the arm-mounted camera? ",
$arm.dat

PROMPT "What is the calibration number for the down-mounted camera? ",
$dwn.dat

PROMPT "What is the calibration number for the up-mounted camera? ", $up.dat

$arm.cal = "area"+$arm.dat+".dat"
$dwn.cal = "area"+$dwn.dat+".dat"
$up.cam = "area"+$up.dat+".dat"

; Load the calibration files. See the "Instructions for Adept Utility Programs"
; for details on 'load.area’.

CALL load.area($arm.cal, arm.cam, VAL($arm.dat), TRUE, to.cam[1], arm.cam.
cal[], $error)

CALL load.area($dwn.cal, dwn.cam, VAL($dwn.dat), TRUE, to.cam[2], dwn.cam.
cal[], $error)

CALL load.area($up.cal, up.cam, VAL($up.dat), TRUE, to.cam[3], up.cam.cal[],
$error)

.END

151

152 Chapter 9 - Guidance Vision

.PROGRAM new.pallet(orig.offset, correction)

; ABSTRACT: This program monitors the proper digital I/O to bring a new

; pallet into the workcell. When a pallet is in place, a line finder

; calculates the new pallet correction factor.

; INPUT PARM: orig.offset the offset that was calculated when the pallet
; reference frame was originally taught.

; OUTPUT PARM: correction the difference between the location of the
; original pallet and the current pallet.

; Bring the pallet into the workcell

SIGNAL do.pal.belt
TYPE "Waiting for pallet."
WAIT SIG(di.pallet.ready)
SIGNAL -do.pal.belt

; Locate the edge of the current pallet and calculate the difference
; between it and the original pallet.

VDISPLAY (dwn.cam) -1, 1

VPICTURE (dwn.cam) 2

VDEF.AOI 2000 = 1, 100, 150, 50, 25, 180
VFIND.LINE (dwn.cam) data[] = 2000
correction = data[3]-orig.offset

.END

Guidance Vision Program

.PROGRAM teach.pallet(rows, cols, pal.offset, gripz)

; ABSTRACT: This program teaches all the locations required by the

; palletizing workcell. It creates a reference frame for the pallet and

; calculates the Z offset for parts being acquired based on arm-mounted
; camera data.

; INPUT PARMS: rows number of rows in the pallet

; cols number of columns in the pallet

; OUTPUT PARMS: pal.offset offset from the vertical edge of the field-
; of-view to the edge of a pallet.

; gripz the Z value for the grip transformation used to acquire

; parts based on arm-mounted camera data.

; SIDE EFFECTS: The following global locations are updated:
; pallet.loc - reference frame for the pallet

; pic.loc - picture taking location for acquiring a part

; inspect.loc - picture taking location for part inspection

; scrap.loc - part reject location

; pallet.frame - reference frame for the pallet

AUTO fr.origin, fr.posx, fr.posy ;pallet frame locations
AUTO $ans
AUTO jt[], data[]

; Get the three locations required to establish a pallet reference frame.

DETACH ()

TYPE /C24, /U20, "Create the pallet reference frame."

TYPE "Place the robot at the row 1, col 1 location on the pallet."
PROMPT "Press ENTER when ready. ", $ans

HERE fr.origin

TYPE /C2, "Place the robot on the row 1, col ", rows," location."
PROMPT "Press ENTER when ready. ", $ans
HERE fr.posx

TYPE /C2, "Place the robot in the row ", rows, " col ", cols," location."
PROMPT "Press ENTER when ready. ", $ans
HERE fr.posy

; Create the pallet frame
SET pallet.frame = FRAME(fr.origin,fr.posx,fr.posy,fr.origin)

; Return to the frame origin and create the row1, coll pallet location (relative
; to 'pallet.frame").

TYPE "Enable 'COMP' mode.";Make sure comp mode is selected
PROMPT "The robot will return to the frame origin. Press ENTER.", $ans
ATTACH ()

SPEED 20 ALWAYS :Slow down while in teach routine
DEPART 50

APPRO fr.origin, 50

MOVE fr.origin

BREAK

153

154 Chapter 9 - Guidance Vision

HERE pallet.frame:pallet.loc
DEPART 50
SPEED 100
DETACH ()

; Create the part acquire picture taking location

TYPE /C2, "Establish the part acquire picture taking location."
VPICTURE (arm.cam) 2

VDISPLAY -1,1

TYPE "Place the robot at the picture taking location."
PROMPT "Press ENTER when ready. ", $ans

HERE pic.loc

; Create the part inspect picture taking location

TYPE /C2, "Establish the part inspect picture taking location."
VPICTURE (up.cam) 2

VDISPLAY -1,1

TYPE "Place the robot at the picture taking location."
PROMPT "Press ENTER when ready. ", $ans

HERE inspect.loc

; Create the part reject location

TYPE /C2, "Establish the part reject location."
TYPE "Place the robot at the reject location."”
PROMPT "Press ENTER when ready. ", $ans
HERE scrap.loc

; Calculate the Z offset for the grip transformation
; (ANULL TOOL is assumed, and no grip offset from the center of the part is
; heeded.)

TYPE /C2, "Establish the nominal part pickup location."
TYPE "Place a sample part in the field of view and grip it with the robot."
PROMPT "Press ENTER when ready.", $ans

; The grip trans will be added to the transformation composed of the link2
: coordinate frame and the camera calibration location.

HERE #part.nom

DECOMPOSE jt[1] = #part.nom

SET link2 = HERE:RZ(-jt[4]): TRANS(,,-jt[3])
HERE link2:to.cam[1]:part.loc

ATTACH ()

;Extract the Z offset for the part
gripz = DZ(part.loc)
;Determine the nominal offset of the pallet

VPICTURE (dwn.cam)
VDEF.AQI 6000 = 1, 100, 150, 50, 25, 180
VFIND.LINE (2) data[] = 6000
pal.offset = data[3]
.END

Further Programming Considerations 155

9.6 Further Programming Considerations

Error Handling

In the interest of presenting clear examples, several necessary steps have been left out of this pro-
gram. The most basic missing steps are error handling and data validation. The data arrays returned
by the various vision tools include a boolean value that tells you whether the tool found anything.
This value should be checked before attempting to access any of the other data array values. This is
particularly important during multiple iterations of the program. When a tool instruction is pro-
cessed, the previously created array values are not deleted; they are overwritten with any new val-
ues generated. This means that if a tool fails, the only array value overwritten will be the one
indicating that the tool failed. The other array values will contain the values from the previous iter-
ation of the tool.

Location values should be checked to see if they can be reached by the motion device. It is possible
to create a transformation that the motion device cannot reach. The INRANGE function can be
used to check a location prior to issuing the move instruction to that location.

During the teaching phase of the program, the operator should have been given the opportunity to
verify the locations. For critical locations, teaching the location several times and then averaging
the components of each instance may be in order.

All I/O instructions should be checked with the IOSTAT function to make sure they were success-
ful. Since I/O failures are not fatal, if your program does not detect and deal with them, the program
will continue on as if the 1/O were successful.

Generalizing the Program

The above program has several constraints that could be alleviated to make it more versatile. The
first restriction is on the shape of the parts. The program assumes they are radially symmetrical so
the robot gripper can pick them up in any orientation. If the parts are not radially symmetrical, the
grip transformation would need to take into account any offset or rotation. The part pick up location
would also need to have the rotational component calculated. One method of finding this orienta-
tion is with the major ellipse axis data available through VFEATURE. If the part has been proto-
typed, the prototype reference frame can be used to calculate the part rotation.

The pallet is allowed to move only parallel to the robot Y axis. This restriction could be removed by
putting unique fiducial marks on the pallet and then using the vision system to calculate the pallet’s
orientation.

This example uses an “indexing” conveyor—the conveyor moves parts into position and then stops
until the assembly or palletizing operation is complete. heanguage User’s Guidprovides
details on setting up and calibrating a moving conveyor.

The inspection of the part was extremely simple. A realistic inspection would require additional
tools and possibly presenting the part to the camera in different orientations.

Advanced Operations

Performing High-Speed Inspections 158
What is “High Speed™ 158
Using the Two Frame Store Areas. v v v v v v i v e e e e e 159
Using VPICTURE With Different Frame Stores. 159
Using VDISPLAY With Different Frame Stores 160
Sample Code for a High-Speed Inspection. 160
The High-Speed Trigger.« v v e 162

Performing Frame-Relative Inspections 162
Blob-Relative Inspectiono 162
Prototype-Relative Inspection 164

Frame Relative Inspections Using VDEF.TRANS 165

Using a Vision Guided Tracking Conveyor 166

158 Chapter 10 - Advanced Operations

10.1 Performing High-Speed Inspections

What is “High Speed?”

The definition of high speed will vary considerably from application to application. Generally, an
operation that inspects parts on the order of several per second is considered a high-speed opera-
tion. The physical limit of AdeptVision VME is one picture every 16 milliseconds. The actual rates
you will be able to achieve depend on how complicated your inspections are, the level of operator
feedback required, and the accuracy of positioning of the inspected parts.

You will achieve the highest inspection rates when you follow these guidelines:

1.
2.

10.

11.

12.

13.

14.

15.

16.

Always acquire an unprocessed imagelCTURE mode 2).

If you are displaying the image, display a frozen image. If you are displaying graphics,
use the special mode described in the section below, “Using VDISPLAY With Different
Frame Stores.”

Enablev.BINARY so the edge operator is not performed at every picture.

Use both of AdeptVision VME’s frame stores to inspect alternating parts (the two frame
stores are described next).

Have the system gather the minimum data required to successfully inspect the part.

Use vision tools, such as raw binary or fine-edge rulers, that operate on unpro
cessed image data whenever possible.

Rulers are faster when they are rotated exactly 0°, 45°, 90°, 135°, 180° etc.

If an inspection needs to be performed on processed image data, perform the inspection
within as small an inspection window as practical.

Make the inspection tools as small as practical.

VWINDOW, VWINDOWB, andvVWINDOW!I tools that are oriented orthogonally are much
faster than rotated windows.

When using tools that return a variable number of elements to an array (such as
VRULERI), limit the number of array elements the tool looks for.

On tools that allow you to set the effort level, set the lowest level possible that still
achieves effective inspections.

Fixture the part as accurately as possible so processing time does not have to be
expended looking for the part.

Organize the sequence of inspections so the most likely sources of failure are checked
first. Terminate inspections as soon as a failure is detected.

A strobing device or a shuttered camera with a 1/1,000 shutter speed will be required for
high-speed inspections.

Image processing and acquisition is faster with field acquires than with full frame
acquires.

17. Make the object size only as large as necessary in the field of view so that required reso-

Performing High-Speed Inspections

lution is achieved.

18. Use low resolution virtual frame buffers whenever possible.

Using the Two Frame Store Areas

AdeptVision VME provides you with two frame store areas into which you can store two different
images. Each frame store area has two image buffers; raw grayscale data is stored in one buffer and
binary data is stored in the other. Using the two frame stores, you can acquire an image in one area
while you are processing the image in the other area. This operation is referred to as “ping-pong-

ing” (see Figure 10-1).

Frame Store #1

GrayScale
Value
Buffer

Binary
Value
Buffer

Using VPICTURE With Different Frame Stores

In order to use both frame store areas, we will need to examine more/sfidJRE syntax for a

high-speed inspection:

VPICTURE(cam.virt,
cam.virt
acq_ibr

pro_ibr

-¢— When an image
is being
acquired here...

...an image
is being

processed here. ——p»

When an image —p»

is being
acquired here...

...an image
is being
-4———processed here

159

Frame Store #2

GrayScale
Value
Buffer

Binary
Value
Buffer

Figure 10-1 Ping-Pong Frame Grabbing

FALSE, acq_ibr, pro_ibr) 2

andpro_ibr

frame stores.

is the virtual camera number to be used.
is the image buffer region into which the current picture will be acquired.

is the image buffer region that subsequent processing is to take place on. The
definitions ofacq_ibr

must specify different physical

160 Chapter 10 - Advanced Operations

Using VDISPLAY With Different Frame Stores

TheVDISPLAY instruction has a special mode to be used when both frame stores are being used in
a ping-pong fashion and you want to see system- or user-generated graphics. The problem with
using a graphics overlay in ping-pong frame grabbing is that before the graphics can be adequately
displayed, the system is acquiring another image and overwriting the existing graphics. Using the
special mode (5) allows you to instruct one frame area to not display an image, thus allowing the
other frame store exclusive access to the monitor. The next section shows how this special mode
would be used in a high-speed application.

Sample Code for a High-Speed Inspection

Let's write the code shell for high-speed inspection of parts on a moving belt. An operator-gener-
ated input signal (1030) will control program execution. The program will signal belt motion with

digital output signal 34. When the partis in place, a proximity switch will return digital input signal
1032.

: Declare local variables

AUTO first.frm, second.frm, cam1, cam2, vfb1, vfb2, aoi
AUTO do.belt, di.part_ready, di.begin

; Initialize variables

caml=1

cam2 =2

vfbl =11 ;default area-of-interest, frame store 1
vfb2 = 12 ;default area-of-interest, frame store 2
aoi = 10000 ;area-of-interest 10

do.belt =34

di.part_ready = 1032

di.run = 1030

; Define the AOls
VDEF.AOQIl aoi =1, 20, 20, 10, 5
first.frm = aoi+vfb1l :virtual frame buffer 11
second.frm = aoi+vfb2 :virtual frame buffer 12

; Set switches and parameters

ENABLE V.BINARY
ENABLE V.STROBE

; Set display mode to a grayscale frame store with graphics overlay
; and display only the image from camera 2

VDISPLAY (cam1) 5
VDISPLAY (cam2) 1, 1

; Walit for the ready signal and start the belt

WAIT SIG(di.run)
SIGNAL do.belt

Performing High-Speed Inspections 161

; Walit for the first part to be ready and then acquire
; the first image in a wait mode so we insure an image is present
; when we begin processing during the second image acquisition
DO
UNTIL SIG(di.part_ready)
VPICTURE (cam2, TRUE, second.frm, first.frm) 2
; Begin the ping-pong routine
DO
; Start a busy loop waiting for part to be ready
DO
UNTIL SIG(di.part_ready)
; Acquire an image with camera 1 and select frame store 2 for processing
VPICTURE (caml, 0, first.frm, second.frm) 2

; Inspect the part

VWINDOWB d2[] = second.frm
; Deal with results

; Walit for the next part

DO
UNTIL SIG(di.part_ready)

; Acquire an image with camera 2 and select frame store 1 for processing
VPICTURE (cam2, 0, second.frm, first.frm) 2
; Inspect the part

VWINDOWB d1[] = first.frm
: Deal with results

UNTIL NOT SIG(di.run)
; Inspect the final part

VWINDOWB d2[] = second.frm
: Deal with results

The actual time required for ping-pong inspection will be determined by the frame store requiring
the longest processing time. If your inspection operations take 75 milliseconds and acquisition
takes 33 milliseconds, processing on the newly acquired image will have to wait 42 milliseconds
while processing finishes on the other image.

162

10.2

Chapter 10 - Advanced Operations

The High-Speed Trigger

In the above example, image acquisition is started when the part-present sensor signals that a part is
ready. There is a small potential delay due to the way digital signals are monitoredDigial

signals are read once every major CPU cycle. Thus, a slight delay may be encountered before the
system actually registers the digital signal. To overcome this delay, a digital signal can be config-
ured as an “external” trigger. When the state of an external trigger changes, a system interrupt is
generated and the signal is registered immediately (within .02 ms).

Before you can use an external trigger, you must run the controller configuration@@NyIG_C
to specify the digital signal to monitor as an external trigger. Sdeagstrections for Adept Utility
Programsand the description 6fI0.WAIT in theAdeptVision Reference Guide

When you use a high-speed trigger, image acquisition becomes dependent on the state of the vision
switchV.IO.WAIT. If V.IO.WAIT[cam] is set to 1, image acquisition by camera “cam” will wait until

the state of the external trigger transitions before acquiring an image (the specific digital signal
used for the external trigger does not have to be specified).

Performing Frame-Relative Inspections

In many applications, the object’s being presented to the camera may be in random orientation.
Frame-relative inspections allow you to orient inspection tools with respect to the object’s actual
orientation. In frame relative inspections, a reference frame is generated based on an object’s loca-
tion in the field-of-view, and vision tools are placed relative to this reference frame rather than the
vision reference frame. If you are inspecting a line of similar objects, or objects that are easily dis-
tinguished with vision tools, you would use finder and ruler tools or boundary analysis data to cre-
ate the relative frame. If you are inspecting a line of multiple object types that need prototype
identification before they are inspected, you would use prototype-relative inspection.

The programming example in Chapter 8 presented a simple example of using line finders to place
frame-relative inspection tools. The main disadvantage of the strategy in the example program is
that the object’s location and rotation must be constrained. A more sophisticated strategy that
removes this constraint is to create a reference frame for the object and then place inspection tools
relative to the new reference frame. The following examples create reference frames based on an
object’s location, and then place inspection tools based on that reference frame.

Blob-Relative Inspection

When a blob is located, it will have a reference frame with the same orientation as the vision refer-
ence frame. The starting point of this reference frame is the centroid of the blob (seEkhe

TROID switch for additional details). If the blob has a strong elliptical character, you can identify
the change in orientation based onVWIFREATURE() data generated byV OCATE operation. Using
theVFEATURE() data and the origin of the blob reference frame, you can create a reference frame
unique to each found blob. Is that perfectly clear? Let's examine some sample code that places a
blob-relative ruler:

; Initialize the ruler location variables. These variables represent the
location of the ruler relative to the centroid and rotation of the blob.

ruler_ang = 45 ;Angle of the ruler, relative to object’s orientation

Performing Frame-Relative Inspections 163

xoffset = -8 ;x offset of the ruler start point
yoffset = 0 ;y offset of the ruler start point
length = 50 ;Length of the ruler

cam=1

; Enable gathering of centroid, perimeter, and min/max radii data

ENABLE V.BOUNDARIES
ENABLE V.CENTROID
ENABLE V.PERIMETER
ENABLE V.MIN.MAX.RADII

;Get the object's location variable with a VLOCATE instruction

VPICTURE (cam)
VWAIT
VLOCATE (cam, 2) "?", obj_loc

; Calculate the object rotation based on the angle of a line from the blob center
; to the furthest point on the blob. The major ellipse axis is not used

; because the positive direction of the X axis is not known without further

; calculations.

obj_rotation = VFEATURE(45)

; Rotate the reference frame by 'obj_rotation' and offset it by tool location
; offsets.

SET tool_loc = obj_loc:RZ(obj_rotation): TRANS(xoffset,yoffset)

; Using the orientation and starting point of the blob, place the frame
; relative ruler

VDEF.AQI 2000 = 2, DX(tool_loc), DY(tool_loc), length, 0,
ruler_ang+obj_rotation
VRULERI (cam) ruler_data[] = 2000

Figure 10-2 shows how the reference frame for the preceding code was calculated.

164 Chapter 10 - Advanced Operations

Blob centroid ;

Angle of line

to furthest point
of blob perimeter,
VFEATURE(45)

Tool offset from

Tool blob centroid, xoffset

reference frame,
tool.loc

Figure 10-2 Blob-Relative Inspection

Prototype-Relative Inspection

If the objects you are inspecting:

. Are similar and cannot be identified by blob recognition or by using a combination of

finder and ruler tools,

. Do not have a strong elliptical character, or have features that define the object’s rota-

tion,
. Are touching or overlapping,

then prototyping may be the best way to define a reference frame for the object.

Prototypes have their own reference frame based on the orientation of the part the first time it was
trained. When a prototype is recognizetlQCATE operation) a reference frame based on the rec-
ognized object is returned. The following code will place a prototype-relative ruler.

; Identify the offset and rotation of the tool relative to the prototype
reference frame.

xoffset = -5 ;ruler x offset from proto reference frame
yoffset = 30 ;ruler 'y "

ruler_ang = 320 ;ruler angle

length = 50 ;ruler length (relative to proto ref frame)
cam=1

ENABLE V.RECOGNITION ;enable prototype recognition
ENABLE V.CENTROID
; Acquire a processed image and locate the prototype.

VPICTURE (cam)
VLOCATE (cam, 2)"sample_object", proto.loc

; Create tool location variables based on the prototype reference frame.
; The X and Y values of the origin of the prototype reference frame are

Frame-Relative Inspections Using VDEF. TRANS 165

; returned in VFEATURE(2) and VFEATURE(3).

tool.x = VFEATURE(2)+xoffset
tool.y = VFEATURE(3)+yoffset

; The rotation of the object relative to the prototype frame of
; reference is contained in VFEATURE(7).Create a variable for this angle.

obj_ang = VFEATURE(7)
tool_ang = obj_ang+ruler_ang
; Issue a VRULERI instruction that uses the X and Y values from

; the location variable for the center of the ruler, and adds
; the object rotation to the angle of the ruler.

VDEF.AQI 2000 = 1, tool.x, tool.y, length, tool_ang
VRULERI (cam) data[] = 2000

Blob and prototype recognition is relatively processing-intensive and may be too slow for high-
speed inspections. The location and position data returned from vision tools operating in binary
mode or grayscale on an unprocessed image may provide you with a less processing-intensive way
of creating object-relative reference frames.

10.3 Frame-Relative Inspections Using VDEF.TRANS

The VDEF.TRANSInstruction will offset and rotate a defined AOI. The following code shows the
use of the VDEF. TRANS function for part relative tool placement in inspection vision. In this
example, the radius of the hole in a part is inspected.

: Declare local variables

AUTO shape, xoffset, yoffset, outer.r, inner.r, cam, circ_ibr
AUTO $name, data[10]

shape =9 ; donut shaped AOI

xoffset = -50 ; x-offset for center of arcfinder relative to part
yoffset = -75 ; y-offset for center of arcfinder relative to part
outer.r =45 ; outer radius

inner.r =15 ; inner radius

cam=1

circ_ibr = 2000

; Set switches and a parameters

ENABLE V.BOUNDARIES
ENABLE V.CENTROID
ENABLE V.MIN.MAX.RADII

: Define AOls
VDEF.AOQI circ_ibr = shape, xoffset, yoffset, outer.r, inner.r
; Locate the object using blob finding

VPICTURE (cam)
VWAIT
VLOCATE (cam) $name

166 Chapter 10 - Advanced Operations

; Define a vision transformation with centroid and angle of max radius.
VDEF.TRANS VFEATURE(42), VFEATURE(43), VFEATURE(45)

; Using the defined AOI which will now be part relative, use an arc finder
placed over the hole to extract the hole data

VFIND.ARC (cam) data[] = circ_ibr
; Type result for radius

TYPE "Hole Radius =", data[4]
: Zero the vision transformation

VDEF.TRANS
VDISPLAY (cam) 0, 1

10.4 Using a Vision-Guided Tracking Conveyor

An upstream, fixed-mount mounted camera can be used to locate parts on a moving conveyor belt.
The following basic steps must be taken to use vision with a moving conveyor:

. The conveyor must be mounted and calibrated to the robot (s¥é tamguage User’s
Guide.

. The camera must be mounted upstream of the robot with a field-of-view that will
encompass all the belt width that might have parts.

* The camera must be calibrated using the “object on moving belt...” option in the
Advanced Camera Calibration program (seefttheanced Camera Calibration Program
User’s Guidé.

. See the/" Language User’s Guidfr details on defining belt-relative locations.
. The part location must be taught dynamically with a program that:

1. Prompts for a part to be placed upstream of the camera

2. Starts the calibrated conveyor moving

3. When the part enters the field-of-view, either stops the conveyor and allows the
user to take a picture or relies on a digital signal to trigger the picture taking

4. Moves the conveyor until the part is in the robot workspaces

5. Stops the conveyor and prompts the user to manually grip the part (without mov-
ing it)

6. Records the location relative to the belt location and the camera transformation

Switches and Parameters

Setting Vision Switches

ENABLE switch [cam.virt],...,switch[cam.virt]

DISABLE switch [cam.virt],...,switch[cam.virt]
switch is replaced with any of the switches listed in Table A-1.

cam.virt is replaced with the number of the camera you want to set the switch for. The
default value isll cameras. If you are using multiple cameras with different
switch settings, make sure you include a camera number withsg@dicH
command.
Viewing Switch Settings

To see the settings for all switches (for the virtual cameras specified by the system pay&neter
PLAY.CAMERA), issue the command:

SWITCH

Setting Vision Parameters

PARAMETERparameter_name [cam.virt] = value
parameter_name is replaced with the name of the parameter you want to set.
cam.virt is replaced with the camera number you want to set the parameter for.

The default isall cameras. If you are using multiple cameras with dif-
ferent parameter settings, make sure you include a camera number
with eachPARAMETER command.

value is replaced with the new value you want the parameter to have.

Viewing Parameters
To output the parameter list to the screen, issue the command:

PARAMETER

168 AdeptVision VME User’s Guide

List of Switches

This table lists all the switches available to AdeptVision VME and a brief description of what they
do. Complete information on each switch is available inAttieptVision Reference Guide

Table A-1 Vision Switches

De-
Switch fault Effects

V.2ND.MOMENTS The 2nd moments of inertia and best-fit ellipse are calculated when
this switch is enabled (along with V.CENTROID and
V.BOUNDARIES). The data is reported in VFEATURE(48-50).
(V.SUBTRACT.HOLES is ignored.)

V.BACKLIGHT [] The system has no way of differentiating between background|and
object unless you tell it which one is dark and which one is ligh
This switch tells the system which intensity is background and
which intensity is object. If the switch is set incorrectly, the system
will process the background rather than the object. Disable the
switch for a dark background and enable it for a light background.
(Binary processing only.)

—

V.BINARY [] If disabled, it will affect the operation of VPICTURE modes -1,|1,

and 2 in the following ways:
For VPICTURE modes 2 and 1, it will start a VEDGE operation
immediately following the completed acquisition into the virtyal
frame buffer.
For VPICTURE mode -1, a VEDGE operation is performed
prior to processing of the image. In this case, the VPICTUR
instruction will not complete until after the first stage of
processing (the computation of run-lengths) is complete.
Therefore, the run-lengths are computed on the binary edge
image which is the result of VEDGE (see Appendix B in the
AdeptVision Reference Guifter details on how vision run-
lengths are generated).

In each case above, the choice of edge operation to be performed

(cross-gradient or Sobel) is determined by the value of the system

parameter V.EDGE.TYPE. And the edge strength threshold is given

by the V.EDGE.STRENGTH system parameter.

V.BOUNDARIES [] Enables or disables boundary processing. If this switch is disabled,
perimeter, edge, centroid, 2nd moments, and hole data will not be
gathered. Must be enabled for vision model processing.

V.CENTROID The centroid of an object is calculated if this switch is enabled. [This
information is then available in VFEATURE(42-43). This switch
increases processing time and should be disabled if the centrgid
information is not needed. (V.BOUNDARIES must be enabled.

Switches and Parameters 169

Table A-1 Vision Switches(Continued)

Switch fault Effects

V.DISJOINT [] A single object may appear to the vision system to be two separate
objects. (E.g., a dark object with a white line down the middle would
look like two objects.) If you are attempting prototype recognitipn
on this type of part, this switch will have to be enabled or the part
will not be recognized. Disable this switch when you are not daing
prototype analysis. When doing region analysis, this switch must be
disabled for hole data to be gathered.

V.DRY.RUN Allows you to see the placement of vision tools without having|the
tools actually perform any processing. Useful during development
when you are trying to position your tools. A graphics display mpde
must be selected.

V.EDGE.INFO Enabling this switch causes the system to gather statistics about
edges. These statistics will be available through the instruction
VEDGE.INFO.

V.FIT.ARCS [] Enabling this switch causes the system to not attempt to fit arc
during boundary analysis. If arcs are unimportant in your
application, processing time will be improved by disabling this
switch.

[2)

V.HOLES If this switch is enabled, the statistics gathered for objects will also
be gathered for the holes in the objects. The total number of holes in
a region is available in VFEATURE(40). After an individual hole
has been VLOCATEGQ, all its features are available through
VFEATURE.

V.MIN.MAX.RADII The points closest to and furthest from the centroid of an object are
calculated when this switch is enabled. The data is available in
VFEATURE(44-47). (V.BOUNDARIES and V.CENTROID must
be enabled.)

V.OVERLAPPING Enabling V.OVERLAPPING will improve recognition of parts that
are overlapping. This switch increases processing time for part
recognition and should be disabled if objects do not overlap.
(V.TOUCHING is assumed to be enabled whenever this switch
enabled.)

S

V.PERIMETER The perimeter of an object is available in VFEATURE(41) if thi
switch is enabled.

n

V.RECOGNITION [] Disabling this switch will cause the system to behave as if no
prototypes have been defined. Must be enabled to perform prototype
recognition.

170 AdeptVision VME User’s Guide

Table A-1 Vision Switches(Continued)

Switch

fault

Effects

V.SHOW.BOUNDS

If this switch is enabled, the vision system will display the resul
fitting lines and arcs during boundary analysis. This switch is ug
during development as it allows you to see how the vision proce
performs boundary analysis. (All the “SHOW?” switches require
graphics display mode or overlay.)

ts of
eful

ssor
a

V.SHOW.EDGES

If this switch is enabled, the vision system will display the prim
edges fit to an object’s boundary.

tive

V.SHOW.GRIP

If robot gripper positions have been defined for a prototype, enal
this switch causes the system to show the effects of clear-grip

bling
tests.

V.SHOW.RECOG

If this switch is enabled and a part is recognized, the silhouette ¢
prototype model will be overlaid on the part.

f the

V.SHOW.VERIFY

Enabling this switch will cause the system to display all attempt
system makes during prototype recognition. This switch is use
during development when you attempt to create prototypes tha
produce the most accurate results in the least amount of time.
should be disabled during normal operations.

s the
ul

t
It

V.STROBE

Whenever a VPICTURE instruction is issued and this switch ig
enabled, a strobe signal is sent to the strobe port of the camera
the picture.

aking

V.SUBTRACT.HOLE

When this switch is enabled, the area of holes within an objec
be subtracted from the area calculation (reported in VQUEUE
VFEATURE(10). (See Appendix B for VFEATURE information.
This switch affects the performance of V.MIN.AREA,
V.MAX.AREA, and V.MIN.HOLE.AREA.

will
and

V.TOUCHING

If the objects you are attempting to recognize are touching eag
other, the system will see them as one object and may fail to
recognize multiple touching objects. If objects in the field of vie
touch, and you need to recognize all of them, enable this switch,
switch may increase processing time for part recognition. See
AdeptVision Reference Guifler details on how V.TOUCHING,
V.DISJOINT, and V.OVERLAPPING interact.

W
This
the

VISION

Disabling this switch will cause the system to behave as if the vi

sion

option is not installed.

List of Parameters

This table lists all the parameters available to AdeptVision VME and a brief description of what
they do. Complete information on each parameter is available AdingtVision Reference Guide

Switches and Parameters 171

Table A-2 Vision Parameters

Parameter

De-fault

Range

Effects

DISPLAY.CAMERA

4

1

32

Sets the number of camera values that will be displa
when a PARAMETER or SWITCH command is issue

yed
2d.

V.2ND.THRESH

127

Used with V.THRESHOLD to establish a range of

intensities that the system will see as black or white.
With V.THRESHOLD at 50 and 2ND.THRESHOLD 3
70, all pixels between 50 and 70 would be seen as d

ark.

V.BORDER.DIST

0*

100

Allows you to disable prototype recognition processi
on objects that are not entirely within the field-of-viey

ng
V.

V.EDGE.STRENGTH

20

127

Sets the threshold at which the system recognizes an

edge in grayscale processing. If the variation in pixe
intensity in a local area exceeds this parameter, an €
is recognized.

dge

V.EDGE.TYPE

A cross-gradient edge detector is used when this
parameter is set to 1 and a Sobel edge detector is u
when it is set to 2.

V.FIRST.COL

l)\'

640

Sets the first column that will be processed by a

VPICTURE or VWINDOW instruction. Used to speed

processing time by ignoring unwanted areas of the ¢
side of the field of view. Must be less than V.LAST.CC

oft
L.

V.FIRST.LINE

1*

480

Sets the first line that will be processed by a VPICTU
or VWINDOW instruction. Used to speed processing
time by ignoring unwanted areas at the bottom of the
field of view. Must be less than V.LAST.LINE.

RE

1%

V.GAIN

128

256

AdeptVision VME recognizes 128 degrees of intensi
V.GAIN works with V.OFFSET to maximize the use @
these 128 values.

V.IO.WAIT

When this parameter is set to 1, image acquisition W
wait until the digital input channel configured as an
external trigger transitions.

V.LAST.COL

640*

640

Sets the last column that will be processed. Everythin
the right of this column will remain unprocessed. Mu
be greater than or equal to V.FIRST.COL.

gto
st

V.LAST.LINE

480*

480

Sets the last line that will be processed. Everything ah
this line will remain unprocessed. Must be less than
equal to V.FIRST.LINE.

ove

* Measurements are in pixels

172

AdeptVision VME User’s Guide

Table A-2 Vision Parameters(Continued)

Parameter

De-fault

Range

Effects

V.LAST.VER.DIST

O*

0
16

Sets the degree of accuracy for boundary-to-prototy,
model fitting required when a successfully recognize
prototype is reverified. When this switch is set to O, t
additional verification process is defeated.

V.MAX.AREA

307,200
*

1
1,048,576

Sets a value for the largest object the system will atte

e
d
he

mpt

to process. Useful if a large object is in the same field of

view as the object you are interested in. The setting
V.SUBTRACT.HOLES affects this parameter. Must b
greater than or equal to V.MIN.AREA.

V.MAX.PIXEL.VAR

1.5*%

Sets the maximum pixel variation allowed when the
system fits a line or an arc to a region. When set to
lines and arcs are not fit to the boundary, saving tim
when only centroids, perimeters, etc., are needed.

e

L

V.MAX.TIME

999

Sets the maximum time the vision system will spend
trying to recognize a region.

V.MAX.VER.DIST

3*

16

Sets the degree of accuracy of boundary-to-prototyp
model fitting required for a successful prototype
recognition.

V.MIN.AREA

16*

1
1,048,576

Sets a value for the smallest object the system will
attempt to process. Useful for ignoring small objects y

ou

are notinterested in and for filtering noise. The setting of

V.SUBTRACT.HOLES is considered when comparin
area values. Must be greater than or equal to
V.MIN.HOLE.AREA and less than or equal to
V.MAX.AREA.

g

V.MIN.HOLE.AREA

8*

1
1,048,576

Sets a value for the smallest hole in an object that th
system will process. The setting of
V.SUBTRACT.HOLES is considered when comparin
area values. Must be smaller than or equal to
V.MIN.AREA.

V.OFFSET

255

255

AdeptVision VME recognizes 128 degrees of intensi
V.GAIN works with V.OFFSET to maximize the use @
these 128 values.

—

V.THRESHOLD

63

127

Sets the intensity at which the system sees a pixel a

either black or white.

* Measurements are in pixels

Switches and Parameters 173

VFEATURE() Values

Viewing VFEATURE() Values

VFEATURE() is not a monitor command or a program instruction. It is a system function that
returns a value. As such, it can be used in most places you would use a variable. For example:

IF VFEATURE(10) > 975 THEN...

or

part_centerx = VFEATURE(42)

(A critical point to remember when usivMGEATURE is that it is a function that returns a value and
not an array of values. You cannot assign a value/leEATURE() index. For example, the instruc-
tion:

VFEATURE(12) = 3.303
would not be accepted by thé \gystem.)

Establishing VFEATURE() Values

VFEATURE() values are established as the result of a successful VLOCAYEHBW instruction.
You cannot directly view or set these values. Before attempting any accessRATARE() value,
your program should contain an instruction to check the success of thieaSATE or VSHOW
instruction. Here is an example:

IF VFEATURE(1) THEN

{ strategy when object found }
ELSE

{ strategy when no object found }

END

176

AdeptVision VME User’s Guide

Table B-1 VFEATURE() Values and Interpretation

D

[

of

ed

Index Information Unit Switch/Parameter Effects
1 Whether the last VLOCATE instruction| T/F As long as &LOCATE operation
was successful or not successfully removes objects from th
vision queue or ¥SHOW operation
successfully displays a prototype, thi
value will be returned as true (-1) an
information about that object will be
available througlFEATURE access.
2 Center X mm After & LOCATE:
With V.CENTROID enabled, the
location components are the centroid
3 Center Y the region.
4 Center Z With _V.CENTROID disabled, the
location components are the center of
5 Rotation about X ° the bounding box of the region.
: The reference frame is relative to the
6 Rotation about Y vision reference frame.
: After aVSHOW:
! Rotation about Z The location components are the
prototype’s centroid.
The reference frame values are the
prototype’s reference frame.
8 Encoder offset See th& Language User’s Guide
9 Percentage of boundary that matched | % After VLOCATE:
during prototype recognition (will be O % of prototype verified.
for unrecognized regions) After VSHOW:
recognition % specified during trainin
10 Area of object raw If V.SUBTRACT.HOLESIs enabled, the
pixels | area of holes in the object is subtract
from this calculation.
11 ID numbers # V.DISJOINT, V.TOUCHING, and
V.OVERLAPPINGWill influence the
12 number of objects processed.
13 Left limit of region bounding box mm AftarLOCATE:
- — - - Bounding box is relative to vision
14 Right limit of region bounding box reference frame.
15 Lower limit of region bounding box After VSHOW. _
Bounding box is relative to prototype
16 Upper limit of region bounding box reference frame.
17 Number of holes in the region # V.HOLES must be enabled.

VFEATURE() Values 177

Table B-1 VFEATURE() Values and Interpretation (Continued)

n

Ce.

=

.

D

Index Information Unit Switch/Parameter Effects
18 Time secs Time spent acquiring, processing, a
recognizing an object.
Time for first region includes all time
from V.PICTURE (or VWINDOW) until
placing in queue. For remaining
regions, time is from when one regiof
is placed in the queue until the next
object is queued.
19 Not currently used
20 First clear grip Returns number of first clear grip if
grips have been defined with
V.DEF.GRIR
21 When an object is located, all the holes # Holes can be located within a bound
within the object are given a reference region or within a hole in a bounded
number. This value is the reference region. These values keep track of
number of the current hole. (Also holds where you are in the locating sequen
true for “holes within holes.”) Holes are numbered consecutively fd
each region.
22 Parent number of holes referenced in | #
VFEATURE(21)
23 Number of the virtual camera that located#
this object
24 Effort level assigned during training for Prototype must have been recognize
prototype recognition, 1 to 4 After VSHOW only.
25 Color of prototype when trained; 0 =
black, 1 = white
26 Number of samples taught during #
prototype training
27 Number of bounds in the prototype or | # In prototypes, holes are included. In
region regions, they are not.
28 Maximum area assigned to a prototype pixels | AfterVSHOW only.
during training
29 Minimum area assigned to a prototype
during training
30 Indicates the virtual cameras associatedbit Bit field indicating the virtual cameras
31 with the prototype field associated with a prototype.
After VSHOW only.
32 Indicates the range of edge numbers | # After VSHOW only.
33 for a prototype

178 AdeptVision VME User’s Guide
Table B-1 VFEATURE() Values and Interpretation (Continued)
Index Information Unit Switch/Parameter Effects
34 X constraint of prototype mm Aft&ISHOW only.
X (Prototype parameters defined during
35 y constraint of prototype prototype training)
36 angular constraint of proto
37-39 Not currently used
40 Total area of all holes pixels Calculation is influenced by
V.MIN.HOLE.AREA.
41 Outer perimeter of the object mm | V.PERIMETERmMuSst be enabled.
42 Object centroid along X axis mm | V.CENTROID must be enabled.
- X - V.SUBTRACT.HOLESIs ignored.
43 Object centroid along Y axis
44 The angle (relative to the object’s ° V.CENTROID andV.MIN.MAX.RADII
centroid) of a line drawn to the closest must be enabled.
point on the object perimeter
48 The direction of the object’s major axig. ° V.CENTROID andV.2ND.MOMENTS
The ellipse is centered at the region’s must be enabled.
centroid (axis of least inertia). This is the
major axis of the best-fit ellipse.
49 Major radius of the ellipse defined in | mm
VFEATURE(48)
50 Minor radius of the ellipse defined in

V.FEATURE(48)

Lens Selection

The following formulas are useful for selecting a camera lens. The optimum lens focal length
depends on the desired measurement resolution, the width or height of the camera field-of-view,
and the distance from the work surface to the camera.

Figure C-1 shows how an image is produced on the imaging element of the camera. A relationship
exists between the camera-to-object distance, the size of the field-of-view, and the lens focal length.
The size of the camera imaging element determines a scaling factor to be applied to this relation-
ship. The relationship is given in the following formula.

Formula for Focal Length
f=s(CtH
where:
f =lens focal length in millimeters
S = camera scale factor (see Table C-1)
C = camera height (distance from front of lens to work surface)
H = height of camera field-of-view (same unitsG@s)

Figure C-2 illustrates these relationships and the meaning of the camera scale factor. In the two
examples in this illustration, the field-of-view width and the camera-to-object distance remain con-
stant while two cameras with different size imaging surfaces are used. In order to keep the image
within the imaging surface on both cameras, different focal length lenses must be used. By applying
the correct camera scale factor for each camera (based on the imaging surface size), the correct lens
focal length can be determined.

180 AdeptVision VME User’s Guide

Camera Imaging
Surface

Field-of-View

Figure C-1 Camera Imaging

Field-of- V|ew -
Camera l Lens -
~ _Imaging Surface -
| J
- f1—><7 C—»

¥
\
I

~“Camera 2 ~
Imaging Surface - -

f = S(C+W) IR

Figure C-2 Camera Scale Factor

Lens Selection 181

The following formula shows the relationship between resolution and image size for AdeptVision
systems.

Formula for Resolution
r = (H+480)
where:
I' = resolution (height of one pixel)

H = height of field-of-view (same units a)

Table C-1 Camera Scale Factors

Camera Scale Factor
Panasonic GP-CD 40 4.8
Panasonic GP-MF 702 6.6

Sony XC-77 6.6

When choosing the size of the field-of-view, there is always a trade-off between image size and
image resolution. When the image is large, more objects or features can be captured in each picture,
which reduces the number of pictures required for the application. However, image resolution is
reduced as the image size is increased, and resolution is the key to accurately locating and measur-
ing image features. On the other hand, processing time increases as larger areas of the image are
processed.

The following steps will help you decide on a lens and camera-to-object distance:

1. Determine the minimum required resolution (smallest feature that must be resolved
accurately). We recommend that a factor of 5 to 10 be applied to this minimum resolu-
tion to guarantee consistent resdits.

2. Based on the required resolution, determine the maximum field-of-view size. If the max-
imum available field-of-view is too small to view the entire object you are inspecting,
you will have to:

a. Use more than one camera to make the inspection.

b. Move different areas of the part into the field-of-view and make multiple inspec-
tions.

c. Accept a lower minimum resolution.

3. Using the upper and lower limits of the camera-to-object distances, determine the range
of possible lenses.

L This factor is sometimes referred to as the Part Tolerance Measurement Ratio (PTMR).

182 AdeptVision VME User’s Guide

For example, suppose you are using a medium-resolution camera. Your measurement accuracy
needs to be within 0.1 mm, and the camera can be mounted 60 to 100 mm away from the object.

1. Using 1/4 pixel accuracy, apply a factor of 10 to the desired resolution and calculate the
available field-of-view height:

r = (0.1+ 10(4)(480) = 9.2

2. Calculate the lens focal length at the minimum distance:
f=4.8(60+ 19.2 = 15

3. Calculate the lens focal length at the maximum distance:
f =4.8(100+ 19.2 = 25

4. Your application will achieve the desired resolution using lenses with focal lengths
between 15 and 25 mm. If a 16 mm lens is selected, the proper viewing distance is:
16 = 4.9C+19.2

C = (16+ 4.919.2 = 64

NOTE: The effective focal length of a given lens can be lengthened by adding
extension tubes. However, extension tubes may introduce image distortion.

These calculations do not take into account any error introduced by
manufacturing inaccuracies in the camera. In general, higher resolution cameras
are better constructed and should be used when resolution tolerances are tight.

Lighting Considerations

D.1 Types of Lighting

Table D-1 Types of Lighting

Type

Advantages

Disadvantages

Incandescent

Inexpensive, can be cycled

Short life (for AC lamps), heat, incong
lumen output as wattage degrades

Fluorescent

Efficient, cool, large areas, low
cost

Can not be cycled, flickers, not high
intensity, large in size

Tungsten-Halogen

High output, compact

Heat

Strobes High power, freezes motion Expensive, lumen output may not be
repeatable, must be synchronized with
camera, potential health hazards

Lasers Bright points and lines Federally regulated, speckles, fragile,

potential eye hazards

Laser diodes

Bright points and lines, small,

can be easily pulsed, rugged

Federally regulated, requires collection

optics, potential eye hazards

D.2 Lighting Strategies

istent

Light is reflected from a surface at the opposite angle it struck the surface. By making use of this
principle, lighting strategies make use of the various properties of light sources and reflective
materials to maximize important image detail, minimize unimportant details, and eliminate noise.

Diffuse

Diffuse lighting illuminates a surface with light that strikes the surface from as many different
angles as possible, thus minimizing shadows, reflections, and the need for critically placed light

sources.

184

D.3

AdeptVision VME User’s Guide

Fluorescent lighting is the most diffuse of the lighting types listed in Table D-1. Diffuser plates and
reflecting panels produce a more diffuse light. True diffuse lighting requires a parabolic shaped
reflector.

Applications with high-contrast, complicated objects, spherical objects, highly reflective objects, or
objects that require multiple inspections of interior features are candidates for diffuse lighting.

Back

In backlighting, the light source (usually a diffuse source) is placed below the object to be
inspected.

Backlighting will effectively light objects whose silhouettes are the critical feature. This is particu-
larly effective if the objects are highly reflective or have highly variable surfaces.

Directional

Incandescent floods, ring lights, and fiber lights mounted above or to the side of an object provide
directional lighting.

This lighting is the simplest to install, but effective vision operations depend on this type of light
source remaining constant. If the light source dims, the object will appear different to the camera. If
the angle changes, shadows may be added that will be interpreted as features of the object.

This type of lighting will be most effective with simple objects or objects where specific, highly
identifiable features are being inspected. Highly reflective surfaces or objects with variable surface
brightness will be difficult to inspect with this type of lighting.

Structured

In structured lighting, a highly collimated light source is applied to the object. The angle of the light
is coincident with camera axis. Ring lights and lasers are sources of collimated light.

This type of lighting allows the vision system to perceive three-dimensional features, such as depth
changes in the surface plane or holes in the object. Reflective surfaces are not amenable to struc-
tured lighting.

Strobe

Strobe lighting is required in high-speed applications (multiple images per second) or when the
speed of moving objects exceeds one pixel every 17 milliseconds.

Strobes cast harsh shadows.

Filtering and Special Effects

In many cases specific lighting problems can be solved by placing an optical filter on the camera
lens. The two most common filters used for black and white cameras are polarizing filters and color
filters.

Lighting Considerations 185

Polarizing Filters

Reflected light is highly polarized (the light waves have a predominate orientation about the wave
axis). A polarizing filter can be adjusted so that light waves with a predominate orientation are fil-
tered. If reflected glare from an object is a problem, a polarizing filter may minimize the problem.

A polarizing filter will reduce the overall scene brightness so more intense lighting sources will be
needed with this type of filter.

By adjusting the orientation of polarizing filters on both the light source and lens, you can signifi-
cantly reduce ambient light and reduce shiny (specular) reflections.

Color Filters

Color filters allow you to reduce or eliminate different colors of light that reach the camera. Color
filters may enable the system to ignore annoying object features that are a given color, or ignore
non-significant differences in an object that develop due to differences in the colors of the feature.

Color filtration is difficult and should be attempted only when other avenues have been exhausted.

Vision Window Menu

Cam/frame

[IFrame #11 | Select the frame store for the next image acquire.

" #12

[] camera #1 | Select the camera to use for the next image acquire. This option selects a physical/
virtual camera pair. You cannot select different physical/virtual camera pairs using this

" #2 | menu option.

" #3

" #4

Dis-
play

O Live grayscale: -1,0 | Display the live video input from the selected camera.

Live binary: 0,0 | Display the live thresholded image from the selected camera.

Grayscale frame: 1,0 | Display the image in the selected grayscale frame store.

Binary frame: 2,0 | Display the image in the selected binary frame store.
Graphics only: 3 Display a processed image and any tool or user graphics.
Static graphics: 4 Don't erase graphics with each picture operation.

[] Graphics overlay:*,1 | Display tool and user graphics over live video or frame image.

Static overlay: *2 | Overlay graphics; don't erase with each picture operation.

188 AdeptVision VME User’s Guide

Pic

t

Acquire: 2 | Acquire an unprocessed image (quick frame grab).

Process: 0 | Process image in frame store selected ffdam/frame menu.

Acquire & process: - Acquire & process an image (frame selected f@am/frame menu).
1

Op

S

Histogram Display histogram showing frequency of each graylevel value.

Auto-threshold

Copy frame 11 to 12

Convolve 3x3 average: 1

5x5 average: 7

user def.: 17

Subtract grayscale, 11 -12

binary,

Add grayscale, 11+12

binary,

Average grayscale,

Binary threshold

Gray. edges, gradient

" " Sobel
Morph. erode: 1
" dilate: 2

user def.: 9

Generate recommended values for V.THRESHOLD.
Copy image data between the two frame stores.

Perform a convolve operation on the selected frame store. See the
description of VCONVOLVE in thé\deptVision Reference Guitte
details on image convolutions.

Subtract the grayscale or binary values in physical frame store 1 from
the physical frame store 2. See the description of VSUBTRACT for
details on image subtraction.

Add the grayscale or binary values in physical frame store 1 to the
physical frame store 2. See the description of VADD for details on
image addition.

Average graylevels in the two frame stores.
Show edges found based on the value of V.THRESHOLD.

Show edges found based on the value of V.EDGE.STRENGTH using
either the standard gradient operator or the Sobel operator. See the
description of V.EDGE.TYPE.

Perform a morphological operation on the selected image. See the
description of VMORPH in thédeptVision Reference Guifta
details on morphological operations.

Sta-
tus

Status

Abort processing

Mod-
els

Train prototype

List prototypes

Show prototype

Rename proto-
type

Delete prototype

List fonts

Show font

Rename font

Delete font

List templates

Show template

Rename template

Delete template

Vision Window Menu

Display the status of the vision system.

Abort any active vision processing (prototype planning, for example).

Initiate training of a new or existing prototype model.
List all prototypes currently in vision memory.
Display a prototype model.

Rename a prototype model (not a file of prototypes).

Delete a prototype of vision memory (not from disk).

List all fonts currently in vision memory.*
Display a loaded font.
Rename a font (not a file of fonts).

Delete a font from vision memory (not from disk).

List correlation templates in vision memory.*
Display a template currently in vision memory
Rename a template (not a file of templates).

Delete a template from vision memory (not from disk).

*See the description of VLOAD for details on loading vision models to vision memory.

189

190 AdeptVision VME User’s Guide

The Switches menu shows all the vision switches. Al

next to the switch indicates the switch

is enabled for the selected camera (selected und&atinéframe menu).

Switch-
es

BINARY

BOUNDARIES

FIT.ARCS

RECOGNITION

BACKLIGHT

N I O O N A O

DISJOINT

TOUCHING

OVERLAPPING

SUB-
TRACT.HOLE

STROBE

CENTROID

2ND.MOMENTS

PERIMETER

MIN.MAX.RADII

HOLES

EDGE.INFO

SHOW.BOUNDS

SHOW.EDGES

[l SHOW.GRIP

[] SHOW.RECOG

[l SHOW.VERIFY

Select binary or edge processing.

Enable/disable boundary analysis.

Enable/disable arc fitting during boundary analysis.
Enable/disable prototype recognition.

Select light background or dark background.
Enable/disable prototype recognition of disjoint regions.

Enable/disable prototype recognition of touching objects.
Enable/disable prototype recognition of overlapping objects.

Subtract hole area(s) for calculated region areas.

Enable/disable sending of strobe signal at image acquisition.
Enable/disable calculation of centroid data.

Enable/disable calculation of 2nd moment data.
Enable/disable calculation of region perimeters.
Enable/disable calculation of region min. and max. radii.
Enable/disable calculation of VFEATURE() data on holes.
Enable/disable calculation of edge data (see VEDGE.INFO).
Show boundaries calculated during boundary analysis.
Show edges calculated when an image is processed.

Show the effects of clear grip tests (see VDEFGRIP).
Show prototype silhouettes on top of recognized prototypes.

Show all attempts at prototype recognition.

Vision Window Menu 191

192 AdeptVision VME User’s Guide

Using DEVICE With Vision

The V' DEVICE instruction can be used to:

. Reconfigure frame store sizes and memory allocations
. Read/modify camera interface registérs.
. Read/modify camera model paramet’ers.

. Read/modify vision constants.

CAUTION: WhenDEVICE is used to change frame store sizes or memory allo-
cations, all models (prototypes, templates, fonts), AOI definitionsVaRANS
transformations are deleted and vision is re-enabled.

F.1 The DEVICE Instruction With Vision

The format for usin@EVICE with the vision system is:

DEVICE(type, unit, status , command, arg ,value) input[], output[]
type Must be 4 (to select vision).
unit Set to 0.
status Real variable that will be assigned an error code by the vision system. 1 =

success, any other value = failure (use $ERROR to display error text).

command 1 = read/modify frame store sizes and memory allocations
2 = read/modify camera interface regisfers
3 = read/modify camera model parame]ters
4 = read/modify vision constarlts

arg 0 = reset to defaults
1 =read current values
2 = write the values fromifiput[]

cam.virt Selects the virtual camera affected whearfimand' is 2.
Selects the camera model number affected wheminand' is 3.
Ignored when €ommand’ is 1 or 4.

'For Adept-internal use only.

194 AdeptVision VME User’s Guide

input[] Array of data values wheratg ” is 2. This should not be specified when
“arg "is 0 or 1.

output[] Array of data that is filled by the vision system when “arg” is 1.

The “input[] " and “output[] " arrays always have the same format. So, if settings are read
(*arg " = 1), then they can later be writteraf ” = 2) using the same array.

When ‘command’ = 1, the ‘input[] " and “output[] ” arrays have the format shown in
Table F-1:

Table F-1 DEVICE Input/Output Format

Index Contents

0 The number of elements that follow: 9

1 Number of the virtual frame store size in the range 1 to 4:
1=> 256x240

2=> 320x240

3=>512x480

4=> 640x480

5=> reserved

6=>1024x1024 (Enhanced Vision Interface only)

Blobs allocation in Kb

Object data structures allocation in Kb

Run lengths allocation in Kb

Bounds-in-box allocation in Kb

Unmatched bounds allocation in Kb

Allocation of AOIs in Kb

Allocation of VTRANS in Kb

|l N|O|O| B~ W|IDN

Allocation of user LUTs in Kb

Elements 2 through 7 are memory allocations in units of kilobytes. These values should be in the

range specified in Table F-2. If a value outside the range is specified, the closest in-range value is
used. If a given value is 0, then the default allocation is used. By doubling the allocation size, the

number of items would double. A few of the default allocations differ depending on the image size.
Table F-2 applies to a 512x480 image setup.

Table F-2 Vision Memory Allocation

Allowed Rangein | Default . Approx. # Bytes
Kb Kb ltemSize items Used
Blobs alloc: 410 32 28 32 87b 28000

Objects alloc: 4 to 800 14 116 663 76908

Using DEVICE With Vision

Table F-2 Vision Memory Allocation (Continued)

195

AIIoweiI;ange in D(T<f3ult ltemSize Apitper%);. # I?J);tgj
Run-lengths alloc: 4t0 126 125 4 31250 125000
Bnds-in-box alloc: 1to 40 4 7L 3976
Unmatched alloc: 2to 56 30 2 2500 30000
AOIs alloc: 1to 100 g 28 214 5992
VTRANS alloc: 1to 100 1 48 20 960
User LUT alloc: 1to 33 1 258 B 774

NOTE: If the total of the above allocations does not leave at least 190Kb of free
space, an error is returned.

Examples

The following code will change the number of virtual frame stores to six 320 x 240 frame stores
(twelve 320 x 240 frame stores with the Enhanced Vision Interface). Make sure all vision models
have been saved before running this code:

; Get the current configuration

DEVICE(4, 0, error, 1, 1), vis_config([]
IF error <>1 GOTO 100

; Alter element 1 of the output array
vis_config[1] = 2
; Write the new configuration

DEVICE(4, 0, error, 1, 2) vis_config[]
IF error <>1 GOTO 100

100 ; Handle errors

The following code will change the space allocated for blobs to 24Kb and the allocation for object
data structures to 500Kb. Make sure all vision models have been saved before running this code:

; Get the current configuration

DEVICE(4, 0, error, 1, 1), vis_config[]
IF error <>1 GOTO 100

; Alter elements 2 and 3 of the output array

vis_config[2] = 24
vis_config[3] = 500

; Write the new configuration

196 AdeptVision VME User’s Guide

DEVICE(4, 0, error, 1, 2) vis_config[]
IF error <>1 GOTO 100

100 ; Handle errors

Using DEVICE With Vision 197

(left blank for future additions)

198 AdeptVision VME User’s Guide

(left blank for future additions)

Using DEVICE With Vision 199

(left blank for future additions)

Third

-Party Suppliers

G.1 Third-Party Suppliers (U.S.)

Table G-1 Fiber Optic Lighting Suppliers

Manufacturer

Product Line

Dolan-Jenner Industries, Inc.
P.O. Box 1020

Blueberry Hill Industrial Park
Woburn, MA 10801
Phone: (617) 935-7444

Fax:

(617) 938-721

Fiber-Lite illuminators; annular, single-head, an
dual-head fiber optic cables.

9

Fostec, Inc.

273 Genesee St.
Auburn, NY 13021
Phone: (315) 255-2791

Fax:

(315) 255-26¢

Optical fiber bundles (medium quality, good prigG

5

General Fiber Optics, Inc.
98 Commercial Road
Cedar Grove, NJ 07009
Phone: (201) 239-3400

Fax:

(201) 239-427

Fiber optic arrays, flexible image guides,
illumination bundles, fiber optic cables

8

Lumitex, Inc. Woven, fiber optic light pads (provide cool, diffuse
11941 Abbey Road, Bldg. H light from a thin pad).

Cleveland, OH 44133-9908 Available in custom sizes.

Phone: (216) 237-5483 Fax: (216) 237-5743

Moritex Corp. DC Fiberlight, fiber bundles

6440 Lusk Blvd.

San Diego, CA 92121

Phone: (619) 453-7905 Fax: (619) 453-7907

Volpi Manufacturing USA Fiber optic light sources and cables in various

26 Aurelius Ave. shapes including single and dual head, annular and
Auburn, NY 13021 linear

Phone: (315) 255-1737 Fax: (315) 255-1202

202 AdeptVision VME User’s Guide

Table G-2 Lighting Suppliers

Manufacturer

Product Line

Aristo Grid Lamp Products, Inc.
65 Harbor Road P.O. Box 769
Port Washington, NY 14445

Mic-O-Lite ring lights

Phone: (516) 484-6141 Fax: (516) 484-6992

Cool-Lux Lighting Industries, Inc. Mini-Cool lights
5723 Auckland Ave.

N. Hollywood, CA 91602-2207

Phone: (818) 761-8181 Fax: (818) 761-3202

E. G. & G. Electro Optics Strobe lights
35 Congress Street

Salem, MA 01970

Phone: (508) 745-3200 Fax: (508) 745-0894

Honeywell Microswitch / Visitronic Industrial light sources that provide direct, diffused,
11 West Spring St., Freeport, IL 61032 collimated, patterned, or fiber optic illumination.
Phone: (815) 235-6600 Fax: (815) 235-5574NEMA-12 lighting, halogen DC lamps.

Magnatek (formerly Triad) High frequency electronic ballasts for fluorescent
1124 East Franklin St. lights

Huntington, IN 46750

Phone: (219) 356-7100 Fax: (219) 356-3148

Stocker & Yale, Inc. Lite Mite ring lights

Route 128 & Brimbal Ave. P.O. Box 494

Beverly, MA 01915

Phone: (508) 927-3940 Fax: (508) 927-87%6

Vision Engineering Laboratories, Inc. Standard and custom strobe lights, power supplies
1360 72nd St. North and systems for machine vision

Largo, FL 34647

Phone: (813) 545-0018 Fax: (813) 545-0525

Lasiris, Inc. Laser based structured light generators. Single line
3549 Ashby (1-33 lines), concentric, and special patterns are

Saint-Laurent
Quebeck, Canada H3R 2K3
Phone: (514) 335-1005 Fax: (514) 335-4576

available

Third-Party Suppliers 203

Table G-3 Camera Equipment Suppliers

Manufacturer Product Line

Bogen “Magic Arms’—flexible fixturing for cameras,

565 East Crescent Ave., P.O. Box 506 lighting, parts, etc.

Ramsey, NJ 07446 “Copy stands— Camera mounting stand with
Phone: (201) 818-9500 Fax: (201) 818-9177vertical stage.

Desoutter, Inc. Mechanical columns, clamps, and other machirje
11845 Brookfield Ave. vision mounting hardware

Livonia, Ml 48150
Phone: (313) 522-7010 Fax: (313) 522-1466

R.K. Industries Phoenix Mechano modular mounting systems, steel
7330 Executive Way and aluminum, round and square tube and clamp
Frederick, Maryland 21701 systems

Phone: (301) 696-9400 Fax: (301) 696-9494

Worksmart Systems, Inc. Modular mounting systems for cameras, monitgrs,
33 Ship Avenue terminals, etc., aluminum tubing and clamps

Medford, MA 02155
Phone: (617) 396-0650 Fax: (617) 391-9150

Intercon 1, Inc. Standard and custom camera cables, junction bpxes
Box 1C

Merrifield, MN 56465

Phone: (800) 237-9676 Fax: (218) 765-3900

Table G-4 Frame Splitter Suppliers

Manufacturer Product Line
American Sound Frame splitter combines two camera inputs into ¢one
1800 Russel St. for higher sped—part number AD1470A

Covington, KY 41014
Phone: (606) 261-9024 Fax: Same as phon

[¢)

Table G-5 Camera Suppliers

Manufacturer Product Line

Sony Corporation of America Sony XC-77RR (shuttered) camsra&ompatible
10833 Valley View Street with AdeptVision AGS EMUX.

P.O. Box 6016

Cypress, California 90630-0016
Phone: (714) 220-9100 Fax: (714) 229-4298

204

AdeptVision VME User’s Guide

Table G-6 Filter and Optics Suppliers

Manufacturer

Product Line

Aerotech World Headquarters

101 Zeta Drive, Pittsburgh, PA 15238
(412) 963-7417

Phone: (412) 963-7459 Fax:

Electro-optical components; mirrors, lasers,
positioning stages
0

Ealing Electro-Optics

22 Pleasant St., South Natick, MA 01760

Electro-optical components; optical benches,

prisms, filters, light sources, lasers, lenses, mirrors

Phone: (800) 343-4912 Fax: (508) 429-7893

Edmund Scientific Scientific and optical supplies; prisms, lenses,
101 E. Glouster Pike optical bench hardware

Barrington, NJ 08007

Phone: (609) 573-6260 Fax: (609) 573-6295

Melles Griot

1170 Kettering St., Irvine, CA 92714

Phone: (800) 835-2626 Fax:

(714) 261-754

optical benches, polarizers
9

Filters, lasers, prisms, optics, positioning device

Newport Corp.

18235 Mt. Baldy Circle
Fountain Valley, CA 92728
Phone: (714) 965-5406 Fax:

(714) 963-201

Electro-optical components for machine vision,

6

filters, lasers, structured lighting, optical benchgs

Spirotone, Inc.

P.O. Box 8051, Pittshurgh, PA 15216-8051

Phone: (412) 571-3770 Fax:

(412) 571-371

sheets, lighting
(7

Photographic supplies, lenses, filters, polarizing

Tiffin Manufacturing

90 Oser Ave.

Hauppauge, NY 11788-3886
Phone: (516) 273-2500 Fax:

(516) 273-25¢

Filters, lenses

Table G-7 Lens Suppliers

Manufacturer

Product Line

Chugai International Corp.
20695 S. Western Ave., 116
Torrance, CA 90501

C-mount lenses, extension tubes, range finders
35mm format lenses

Phone: (213) 618-8615 Fax: (213) 618-9963

D. O. Industries, Inc. Flat field enlarger lenses, custom lenses, optica
317 E. Chestnut St. systems. Zoom 6000, Dyotar, and Fujinon high
E. Rochester, NY 14445 quality C-mount lenses.

Phone: (716) 385-4920 Fax: (716) 359-4999

Third-Party Suppliers 205

Table G-7 Lens Suppliers(Continued)

Manufacturer

Product Line

ESCO Products, Inc.
171 Oak Ridge Road
Oak Ridge, New Jersey 07438
Phone: (201) 697-3700 Fax:

(201) 697-301

Custom-made lenses, prisms, filters, beamsplitters,

and machining services

1

Infinity Photo-Optical Company
706 Mohawk Drive, Suite 15
Boulder, CO 80303-2648

Phone: (303) 499-6262 Fax:

(303) 499-10¢

InfiniProbe microscope

K2, long distance microscope

CFM, continuous focus microscope
9HDF, high depth of field macro system

Nikon, Inc. Instrument Group
623 Stewart Ave
Garden City, NY 11530

Phone: (516) 547-4200 Fax:

(516) 547-02¢

Precision 35mm format lenses

9

R.O.l. Industries

15192 Triton Lane,

Huntington Beach, CA 92649
Phone: (714) 895-1880 Fax:

(714) 373-117

OVP, optical video probe
VDZ, video direct zoom
Right angle probes

0

Schneider Corp.

400 Crossroads Park Drive

Woodbury, NY 11797

Phone: (516) 496-8500
(800) 645-7239

Fax: (516) 496-8524

High-quality C-mount lenses with very low
distortion

Toyo Optics
580 W. Lambert Rd., Suite H
Brea, CA 92621

Phone: (714) 529-4688 Fax:

(714) 529-57¢

Cosmicar C-mount lenses, extension tubes, an
accessories

6

206 AdeptVision VME User’s Guide

G.2 Third-party Suppliers (Europe)

Table G-8 Mounting Hardware Suppliers

Manufacturer

Product Line

Lino Manfrotto & Co.
Zona Industriale di Campese
36061 Bassano del Grappa, Italy

Phone: 424-808043 Fax: 424-808402

“Magic Arms” - flexible fixturing for cameras,
lighting, parts, etc.

Phoenix Mechano Ltd.

Unit 2, Pasadena Close

Pump Lane Trading Estate

Hayes, Middlesex UB3 3NQ, England

Phone: 01-848-1937 Fax: 01-5737-114

Rose + Krieger
Flurweg 1, Postfach 1265
4952 Porta Westfalica, Germany

Phone: 0571/50406-0 Fax: 0571/504068-

Modular mounting systems, steel and aluminur
round and square tube and clamp systems.

Table G-9 Lighting Suppliers

Manufacturer

Product Line

R.Y.F. Optical Instruments

Markt Tassig

Markt Platz 7

CH-2540 Grenchen, Switzerland

Lite Mite ring lights

\Volpi AG
Wiesenstrasse 33
CH-8952 Schlieren, Switzerland

Phone: 01/730-9761 Fax: 01/730-9044

Fiber optic illuminators in various shapes includi
ring and linear

9

Third-Party Suppliers 207

Table G-10 Lens Suppliers

Manufacturer

Product Line

Chugai Boyeki (Deutschland) GmbH
Willstatter Strasse 1

D-4000 Dusseldorf 11, Germany
Phone: 0211-596370

Chugai Boyeki (U.K.), Ltd.

Computar House

6 Garrick Industrial Centre

Garrick Road, London NW 9 6AQ, England
Phone: 01-202-3434 Fax: 01-202-3387

Chugai Boyeki (U.K.), Ltd—Milano Branch
Via Carolina Romani 1/11
20091 Bresso (M), Italy
Phone: 02-66300941

Fax: 02-66300808

C-mount lenses, extension tubes, range
finders, 35mm format lenses

Joseph Schneider Optische Werke Kreuznach GmbH

Ringstrasse 132
6550-D Bad Kreuznach, Germany
Phone: 671-601287 Fax: 671-601109

High-quality C-mount lenses with very low
distortion

Table G-11 Filter and Optics Suppliers

Manufacturer

Product Line

Aerotech Gmbh
Neumeyerstr 90
D-8500 Nurnberg 10
Germany

Phone: (911)521031 Fax: (911) 521235
Aerotech Ltd. (Aerotech)

3 Jupiter House

Calleva Park, Aldermaston

Berkshire RG74QW, United Kingdom

Phone: (07356)77274 Fax: (07356) 5022

Electro-optical components; filters, mirrors,
positioning stages.

A.R.ILE.S. (Aerotech)
44 Bis Blvd., Felix Faure
92320 Chatillon, France
Phone: (1) 46-57-41-71
Fax: (1) 46-56-69-39

Electro-optical components; filters, mirrors,
positioning stages.

208 AdeptVision VME User’s Guide

Table G-11 Filter and Optics Suppliers (Continued)

Manufacturer

Product Line

Ealing Electro-Optics plc
Greycaine Road

Watford WD2 4PW, England

Phone: (0923) 242261

Electro-optical components; light benches, prisn
filters, light sources, mirrors

Fotonica S.A. (Aerotech)
Pinat, 6-BIS

L-28006, Madrid, Spain
Phone: (1) 2627763

Fax:

(1) 2627762

Electro-optical components; filters, mirrors,
positioning stages.

Melles Griot, Ltd—England
1 Frederick St. Aldershot
Hampshire GU11 1LQ, En
Phone: (0252) 334411

Melles Grid—France

gland
Fax:

10 Rue Ampere, P.A.B.A. Nord
78180 Montigny-le-Bretonneux, France

Phone: (1) 34 60 5252

Melles Grid—Germany
Postfach 130181

Fax:

D-6100 Darmstadt, Germany

Phone: (06151) 86331

Melles Grid—Netherlands
Edisionstraat 98

Fax:

6900 AG Zevenaar, Netherlands

Phone: (08360) 33041

Fax:

(0252) 33441

(1) 30 45 489

(06151) 8235

(08360) 2818]

Mirrors, prisms, filters, polarizers, lasers, optica
benches, component holders, positioning devic

O

Medilas AG (Aerotech)
Lerzenstrasse 11

CH-8953 Dietikon, Switzerland

Phone: (1) 7411111

Fax:

(1) 7414505

Electro-optical components; filters, mirrors,
positioning stages.

Third-Party Suppliers 209

Table G-11 Filter and Optics Suppliers (Continued)

Manufacturer

Product Line

Newport GmiH—-Germany
Bleichstrasse 26

D-6100 Darmstadt, Germany

Phone: 06151/26116

Newport, Ltd—England
Pembroke House
Thompsons Close

Fax:

06151/22639

Harpenden, Herts, AL5 4ES, England

Phone: 0582 / 769995

Fax:

0582 / 7626545

Newport Instruments @& —Switzerland

Giessenstrasse 15

CH-8952 Schlieren, Switzerland

Phone: 01-740-2283

Fax:

01-740-2503

Electro-optical components for machine vision,
filters, lasers, structured lighting, optical benche

(%)

Oriel Scientific, Ltd—England

1 Mole Business Park

Leatherhead, Surrey England KT22 7AU

Phone: (0372)378822

Oriel SARL
Les Ulis, France
Phone: (1) 69.07.20.20

Fax:

(1) 69.07.23.5

7

Lenses, filters, polarizers, mirrors, prisms, beam
splitters, fiber optics

OT-LAS S.R.L. (Aerotech)

Via Po, 7a

I1-50013 Campi Bisenzio
Firenze, ltaly

Phone: (55)892475

Fax:

(55) 893291

Electro-optical components; filters, mirrors,
positioning stages.

210 AdeptVision VME User’s Guide

G.3 Third-Party Suppliers (Asia-Pacific)

Table G-12 Lighting, Filter, and Optics Suppliers

Manufacturer

Product Line

Barnin Enterprises Co., Ltd. (Oriel Scientific, Lt¢
P.O. Box 87-594
Taipei, Taiwan (R.O.C.)
Phone: 02-760-5513

Fax: 02-763-1231

JLenses, filters, polarizers, mirrors, prisms, beam
splitters, fiber optics

Dolan-Jenner Europe BV
Bas Straat 4

5402AG Uden, Netherlands
Phone: 04-132-639-30

Fiber optic light sources and cables

E.G.&G. Ireland, Ltd.
Electro-Optics Division
Bay D3/4

Shannon Industrial Estate
County Clare, Ireland
Phone: 353-61-62577

Fax: 353-61-6239

Strobe lights

Harvin Agencies (Oriel Scientific, Ltd.)
6-3 1090/B/4

Raj Bhavan Road

Soma Jiguda

Hyderabad-500 482 AP, India

Phone: 36858

Lenses, filters, polarizers, mirrors, prisms, beam
splitters, fiber optics

Ing. Volker Hippe

auf der Platte 32

D-6000 Frankfurt/Main 50, Germany
Phone: 069-545470

Line stripe projectors

Keehwa Enterprise Corp. (Oriel Scientific, Ltd.)
Ha Nam Bldg., Suite 906

44-27 Yedeudo-Dong

Yeoung Dung Po-Ku (Oriel Scientific, Ltd.)
Seoul, Korea

Phone: 783-7396 Fax: (02) 784-3935

Lenses, filters, polarizers, mirrors, prisms, beam
splitters, fiber optics

Table G-12 Lighting, Filter, and

Third-Party Suppliers 211

Optics Suppliers (Continued)

Manufacturer

Product Line

Leonix Corp. (Oriel Scientific, Ltd.)
Mutsumi Building
4-5-21 Kohjimachi
Chiyoda-Ku

Tokyo 102, Japan
Phone: 03-239-3090

Fax: 03-239-3191

Lenses, filters, polarizers, mirrors, prisms, bean
splitters, fiber optics

Melles Grid—Japan
Towa Bldg. 3F, 2-16-3 Shibuya
Shibuya-ku, Tokyo, Japan
Phone: (03) 407-3613

A
J

Fax: (03) 486-092
Melles Grid—Taiwan

#2, Industrial E. Road Il

Science-Based Industrial Park

Hsinchu, Taiwan, R.O.C.
Phone: (35) 775-111 Fax: (35) 776-182
Melles Grid—Singapore

105 Sims Avenue

#03-12 Chancerlodge Complex

Singapore 1438
Phone: 743-5884 Fax: 743-4524
Melles Grid—Hong Kong
3/F, Room 6

Hilton Center, Tower A
Shatin, Hong Kong
Phone: (852) 691-4921

Fax: (852) 603-02§

Mirrors, prisms, filters, polarizers, lasers, optical
benches, component holders, positioning device

5

2S

Marubun Corporation (Newport Corp.)
8-1 Nihombashi Odemmacho
Chuo-Ku, Tokyo, 103 Japan

Phone: 03-648-8115 Fax: 03-648-9398

Electro-optical components for machine vision,
filters, lasers, structured lighting, optical benche

(%)

Moritex Corp.

Fiber Optics Department
Sakuragoaka-cho, 8-9 Shibuya-ku
Meisei Bldg., Tokyo 150, Japan

Phone: 03-476-1021 Fax: 03-476-1698

DC Fiber light, fiber optic cables

Quentron Optics Pty. Ltd. (Oriel Scientific, Ltd.)
Laser Court, 75A Angas St.
Adelaide 5001, South Australia

Phone: (08) 223-6224 Fax: (08) 223-5289

Lenses, filters, polarizers, mirrors, prisms, bean
splitters, fiber optics

Spectra Physics Pty., Ltd. (Newport Corp.)
2-4 Jesmond Road
Croydon, Victoria, Australia

Phone: 03-723-6600 Fax: 03-725-4822

Electro-optical components for machine vision,
filters, lasers, structured lighting, optical benche

212 AdeptVision VME User’s Guide

Table G-12 Lighting, Filter, and Optics Suppliers (Continued)

Manufacturer

Product Line

Superbin Co., Ltd. (Newport Corp.)
5F-3, 792, Tun Hua South Road
P.O. Box 59555
Taipei, Taiwan 106
Phone: 02-733-3920

Fax: 02-732-5443

Electro-optical components for machine vision,
filters, lasers, structured lighting, optical benches

Teltec Semiconductor Pacific, Ltd. (Oriel
Scientific, Ltd.)

Room 604, Che San Bldg.

10 Pottinger St.

Central Hong Kong

Phone: (5) 214213

Fax: (5) 8106090

Lenses, filters, polarizers, mirrors, prisms, beam
splitters, fiber optics

Wooyang Trading Co. (Newport Corp.)
C.P.O. Box 8200

Room No. 201 Keum-Sam Building
17-1 Yoido-dong Deung Po-Ku

Seoul, Korea
Phone: 02-783-6722

Fax: 02-785-6271

Electro-optical components for machine vision,
filters, lasers, structured lighting, optical benches

Index I X

A
Acquiring an image 35
Acquiring an unprocessed image36
AdeptVision Reference Guide3
ADV_CAL 28
Advanced Camera Calibration
Package 29

Advanced Camera Calibration Program User’s

Guide 3

AIO.IN 11
AlO.OUT 11
AOI

and image buffer gion 70
AOI (see Area-of-interest)
Arc rulers 74
AREACAL 28

using to load calibration data31
Area-of-interest 66—70

shapes 68
Arm-mounted camera 138
Arm-mounted camera calibration31
Assign careras

prototype @rameter 95
ATTACH 10
Attaching cameras and strobe20

B

Back lighting 184
Binary

defined 13
Binary image

example 13
Blob analysis 56
Blob recognition 58
Blobs

allocating 61
Boundary analysis 56

defined 16

switches used with 56

C
CALIBRATE 30
Calibrating a camera 28, 30

Calibration
arm-mounted camera 31
fixed-mount camera 30
transformation 135
Calibration data
loading 31
Camera
calibrating 30
Camera calibration 28, 30
and VisionWare 28
Camera calibration programs28
Camera image surfacel4
Camera resolution 179
Camera scale factors181
Cameras
high-resolution 21
medium-resolution camera2l
motion device related 30
Panasonic GP-MF 70221
pixel-clocked 21
shuttered 21
Sony XC-77/RR 21
supported by Adept 21
using fixed-mount with a robot 134
Color filters 185
Command syntax 26
Compatibility 2
CONFIG 11
Controller
description 10
installation 20
Correlation 87, 97
creating template 97
naming templates 97
and DEVICE 196
Correlaton template
matching 97
Customer service assistance
phone numbers 5, 6

D
Deleting prototypes 105

214 AdeptVision VME User’s Guide

Deleting vision models 105
DETACH 11
DEVICE 61, 191-194

and virtual frame stores 191
Diffuse lighting 183
Digital /O 10
Directional lighting 184
DISABLE 42, 167
Disabling switches 42
Display

vision window menu 38, 187
Display modes

frozen 38

graphics 38

live 38
DISPLAY.CAMERA 171
DO 59
Dynamic binary rulers 77

E

Edge weights

prototype mrameter 95
Editing prototypes 90
Effort level

prototype rameter 94
ENABLE 42, 167
Enabling swtiches 42
External trigger 162

F

Field-of-view

calculating 179
Finder tools 78-82

defined 16

searchpolarity 80
Fine edge rulers 77
Fixed-mount camera

calibration 30

with a robot 134
Focal length

formula for 179
FONT_

OCR font name convention98
Fonts

deleting 105

displaying 105

loading 105

naming convention 98

planning 99

renaming 106

storing 104

training OCR fonts 98
Frame buffers 159
Frame relative inspections162
Frame store areas159
Frame stores 66

virtual 66
Frames

reference 17
F-stop 28

G
GETC 10
Graphics display mode 38
Gray level rulers 77
Grayscale
defined 12
Grayscale image
example 13
Grip transformation 135
grip.trans (location variable) 135
Guided vision
arm-mounted camera 138
fixed-mount camera 134
guided.vis.examp() 146

H
High power 4
High-speed inspections 158
guidelines 158
High-speed trigger 162

I
ID 23
Image buffer region 70
init.program() 130
inspect.part() 122, 150
Inspection window 84
defined 16
Instructions for Adept Utility Programs 3
10 10

J
Joint
camera rounted on robot joint 138

L
Lens

and resolution 179
selecting 179
Lens focal length 179
Lighting
back 184
considerations 18
diffuse 183
directional 184
strobe 184
structured 184
Lighting suppliers 200
Limit position
prototype @rameter 95
line.line() 128
Linear rulers 71
Live display mode 38
load.cam.cal() 151
Loading calibration data 31

M

Manuals

related 3
Medium-resolution camera 21
Memory

vision

allocating 61

Min/max area

prototype @rameter 94
mm/pixel ratio 28
Modeling

image correlation 16

OCR 16

prototype 16
Models

vision window menu 105, 189
Monitor commands

DO 59

VQUEUE 63
Motion devices

and cameras 30

N
new.pallet() 152

@]
OCR 98
recognizing characters 101
verifying text 101
OCR fonts
defining 98

Index 215

naming convention 98

planning 99
training 98
Ops

vision window menu 188
Optical character recognition (OCR)88, 98
Origin

point of 35

P
Panasonic GP-CD 4021
Panasonic GP-MF 70221
PARAMETER 44
Parameters 44-45

and virtual cameras 44

listof 171

setting 44, 167

V.2ND.THRESHOLD 45

V.EDGE.STRENGTH 40, 45

V.FIRST.COL 45

V.FIRST.LINE 45

V.GAIN 45

V.LAST.COL 45

V.LAST.LINE 45

V.MAX.AREA 45

V.MAX.PIXELVAR 57

V.MIN.AREA 45

V.MIN.HOLE.AREA 45

V.OFFSET 45

V.THRESHOLD 39, 45

viewing 167

vision model 102
Parameters and switche#41-53, 102-103,

167-173

Part location
part.loc (location variable) 135
with camera mounted on link #2141
Physical vs. virtual cameras27, 34
Pict
vision window menu 188
Vision window menu option 36
Pict Menu 36
Ping-pong frame grabbing 159
Pixel
defined 12
Pixel-clocked camera 21
Planning fonts 99
Polarizing filters 185

POWER

216 AdeptVision VME User’s Guide

enabling robot power 30
Processing window 84
Program Instructions

VDISPLAY 37

VPICTURE 35
Program instructions

DISABLE 42

ENABLE 42

executing from system prompt59

VDEF.AOI 66

VFIND.LINE 79

VLOCATE 58

VRULERI 71,74

VWINDOW 82

VWINDOWI 84
Prototype parameters94

assign cameras 95

edge weights 95

effort level 94

limit position 95

min/max area 94

verify percent 94

Prototype parameters vs. systeargmeters

94
Prototype recognition
reverifying 103
Prototype training 88-95
Prototypes
and guided vision 96
creating 88
deleting 105
displaying 105
editing 90
loading 105
recognizing 95
reference frame 96
renaming 106
storing 104
using 95
Prototypes and camera calibratioi38
Prototyping 87

Q
Quick frame grab 36

R
Raw binary rulers 77
READ 10
Recognizing prototypes 95
Reference frames 17

from prototypes 96
Related manuals 3
Renaming prototypes 106
Renaming vision models 106
Resolution

calculating 179

defined 14

formula for 181
Robotic Industries Association4
Robotic safety 4
Robot-mounted camera calibratior81
Rulers 71-78

defined 16

dynamic binary 77

fine edge 77

gray level 77

raw binary 77

speed and accuracy/8

standard binary 77

S
Safety 4
SCARA robot
arm-mounted camera 138
Serial I/0 10
Shuttered camera 21
SIG 10
SIGNAL 10
Sony XC-77/RR 21
Standard binary rulers 77
Status
vision window menu 189
Strobe lighting 184
Strobe lights
compatibility 20
Sub-prototypes 94
Switches 42-43
image acquisition 43
listof 168
setting 167
V.2ND.MOMENT 57
V.BACKLIGHT 43
V.BINARY 43
V.BOUNDARIES 43, 56
V.CENTROID 56
V.FIT. ARCS 57
V.MIN.MAX.RADII 57
V.PERIMETER 57
V.SHOW.BOUNDS 57
V.SHOW.EDGES 57

V.SUBTRACT.HOLE 56
viewing 167

vision model 102

vision window menu 42, 190

Switches and parameters41-53, 102-103,

167-173
Syntax
command 26

System parameters vs. prototype parameters

94
System safeguards4

T

teach.pallet() 153

Templates
correlation 97
deleting 105
displaying 105
loading 105

matching correlation templates97

naming correlation 97
renaming 106

storing 104
Terminal 10
TMPL_

Index

V.CENTROID 56, 168
V.DISJOINT 102, 169
V.DRY.RUN 169
V.EDGE.INFO 169

217

V.EDGE.STRENGTH 40, 45, 48, 49, 171

V.EDGE.TYPE 171
V.FIRST.COL 45,171
V.FIRST.LINE 45,171
V.FIT.ARCS 57, 169
V.GAIN 45,171

V.HOLES 57, 169
V.IO.WAIT 172
V.LAST.COL 45,172
V.LAST.LINE 45,172
V.LAST.VER.DIST 103, 172
V.MAX.AREA 45,172
V.MAX.PIXEL.VAR 57,172
V.MAX.TIME 103, 172
V.MAX.VER.DIST 103
V.MAX.VER.DIST 172
V.MIN.AREA 45, 50, 172

V.MIN.HOLE.AREA 45, 50, 173

V.MIN.MAX.RADII 57, 169
V.OFFSET 45, 173
V.OVERLAPPING 102, 169

correlation template naming convention V.PERIMETER 57, 169

97

to.cam (location variable) 135
Training OCR fonts 98
Transformation

calibration 135

grip 135

part location 135

vision location 135

u
Using prototypes 95
Utility Programs
instructions for use 3

\
v 172
V' Language Reference Guide3
V' Language User's Guide 3
V.2ND.MOMENT 57, 168
V.2ND.THRESHOLD 45, 171
V.BACKLIGHT 53, 168
V.BINARY 43, 48, 168
V.BORDER.DIST 103,171
V.BOUNDARIES 43, 56, 168

V.RECOGNITION 102, 169

V.SHOW.BOUNDS 57,102,170

V.SHOW.EDGES 57, 170
V.SHOW.GRIP 170
V.SHOW.RECOG 102, 170
V.SHOW.VERIFY 102,170
V.STROBE 170
V.SUBTRACT.HOLE 56, 170

V.THRESHOLD 39, 45, 48, 51, 173

V.TOUCHING 102,170
VCORRELATE 97
VDEF.AOI 66
VDEF.FONT 98
VDELETE 105
VDISPLAY 37,47

with the twoframe stores 160
Verify percent

prototype parameter 94
VFEATURE()

setting values 175

values 60

viewing values 175
VFEATURE() 59-62, 175-178
VFIND.LINE 79

218 AdeptVision VME User’s Guide

Virtual cameras 27

assigning a number 27
Virtual frame stores 66

defining 191

and DEVICE 191
Virtual vs. physical cameras34
VISION

vision switch 170
Vision

location 135

vis.loc (location variable) 135

Vision coordinate system 35
Vision display modes

using different 38
Vision memory

allocation 61

setting allocation 191
Vision memory vs. system memoryl04
Vision models

displaying 105

renaming 106
Vision queue 63
Vision tools

arc rulers 74

defining area-of-interest for 66

finder tools 78

linear rulers 71
Vision transformation 30
Vision window

selecting display mode 37
Vision window menu

Cam/frame 187

Display 187

Models 189

Ops 188

Pict 188

Status 189

Switches 190
VisionWare 28
VLOAD 105
VLOCATE 58

with prototypes 95
VPICTURE 35

and VWINDOW 82

with different frame stores 159

with external trigger 162

VQUEUE 63
VRENAME 106
VRULERI 71,74
VSTORE 104
VTRAIN.MODEL 98, 99
correlation template 97
VWINDOW 82
and VPICTURE 82
VWINDOWI 84

W

Window 84
Windows

defined 16

different types 84
Workcell

design 17
WRITE 11
write.vwin() 131

X
X/Y ratio 28

Adept User’'s Manual
Comment Form

We have provided this form to allow you to make comments about this manual, to point out any
mistakes you may find, or tofef suggestions about information you want to see added to the
manual. We review and revise user’'s manuals on a regular basis, and any comments or feedback
you send us will be given serious consideration. Thank you for your input.

NAME DATE

COMPANY

ADDRESS

PHONE

MANUAL TITLE:

PART NUMBER: PUBLICATION DATE:

COMMENTS:

MAIL TO:Adept Technology, Inc.
Technical Publications Dept.
150 Rose Orchard Way
San Jose, CA 95134

FAX: 408-432-8707

00961-00430, Rev. A

	CLICK HERE TO RETURN TO V+ MANUALS MENU
	Introduction
	Compatibility
	How to Use This Manual
	Organization
	Before You Begin
	Related Manuals
	Safety
	Reading and Training for Users and Operators
	System Safeguards

	Notes, Cautions, and Warnings
	How Can I Get Help?
	Within the Continental United States
	Service Calls
	Application Questions
	Training Information

	Within Europe
	France

	Outside Continental United States or Europe
	Adept Bulletin Board Service (BBS)

	Chapter 1 Overview
	1.1 Introduction
	1.2 What AdeptVision�VME Is
	Physical Equipment
	Controller and Vision Processor
	Robot or Motion Device
	Graphics Terminal
	User Equipment

	1.3 What AdeptVision�VME Does
	1.4 Vision Basics
	Pixel
	The Camera Imaging Surface
	Resolution

	1.5 Summary of Software Tools
	Boundary Analysis
	Rulers
	Inspection Windows
	Finder Tools
	Processing Windows
	Modeling

	1.6 Overview of Guidance Vision
	Frames

	1.7 Things to Consider When Designing Your Workcel...
	Consistent Environment
	Ease of Maintenance
	Safety
	Lighting

	Chapter 2 Installation
	2.1 Setting Up the Hardware
	Installing the Controller
	Attaching Cameras and Strobes
	Strobe Compatibility

	Cameras Supported by AdeptVision�VME
	Panasonic GP-CD 40
	Panasonic GP-MF 702
	Sony XC-77

	Mounting Cameras

	2.2 Setting Up the Software

	Chapter 3 Getting Started
	3.1 V+ Syntax Conventions
	3.2 Virtual Cameras
	What Is a Virtual Camera?
	How Are Camera Numbers Assigned?
	Why Use Virtual Cameras?

	3.3 Camera Calibration
	Camera Calibration Results

	3.4 Motion Devices and Calibration
	Motion Device Calibration
	Start-up Calibration
	Camera Calibration
	The Vision Transformation
	Fixed-Mount Camera Transformation
	Robot-Mounted Camera Transformation

	3.5 Loading Vision Calibration Data

	Chapter 4 Teaching AdeptVision to See
	4.1 Introduction
	Physical vs. Virtual Cameras
	The Point of Origin

	4.2 VPICTURE—Getting an Image
	VPICTURE Syntax
	VPICTURE Examples

	Executing VPICTURE From the Menu

	4.3 VDISPLAY—Displaying the Image
	VDISPLAY Syntax
	VDISPLAY Examples

	Executing VDISPLAY From the Menu
	Using the Different Display Modes
	Live Modes
	Frame (Frozen) Modes
	Graphics Mode

	4.4 Binary vs. Grayscale Modes
	4.5 Switches and Parameters
	4.6 Using Switches
	Enabling/Disabling Switches
	Viewing Switch Settings
	SWITCH Example

	Image-Acquisition Switches

	4.7 Using Parameters
	Setting Parameters
	Parameter Examples

	Image-Acquisition Parameters

	4.8 Examples of Switch and Parameter Settings

	Chapter 5 Boundary Analysis
	5.1 Introduction
	Switches and Parameters Used During Boundary Analy...

	5.2 Boundary Analysis Instructions
	VLOCATE
	VLOCATE Examples

	The DO Monitor Command
	VFEATURE
	What is VFEATURE?
	Blob Allocation
	VFEATURE Example

	VQUEUE

	Chapter 6 Vision Tools
	6.1 Defining a Tool Area-of-Interest (AOI)
	Frame Stores
	Virtual Frame Buffers

	Areas-of-Interest
	Defining an Image Buffer Region

	6.2 Linear Rulers
	VRULERI Array
	Linear Ruler Example

	6.3 Arc Rulers
	Arc Ruler Example

	6.4 Ruler Types
	Standard Binary Rulers (type = 0)
	Raw Binary Rulers (type = –1)
	Dynamic Binary Rulers (type = –2)
	Graylevel Rulers (type = 1)
	Fine Edge/Fine Pitch Rulers (type = 2/3)
	Ruler Speed and Accuracy

	6.5 Finder Tools
	VFIND.LINE Array
	Line Finder Tool Polarity
	VFIND.LINE Example

	6.6 Processing Windows (VWINDOW)
	VWINDOW Example

	6.7 Vision Tools: Inspection Windows (VWINDOWI)
	6.8 Vision Tool Data Arrays
	6.9 Windows, Windows, Windows

	Chapter 7 Vision Model Processing
	7.1 Introduction
	Why Use Prototype Recognition?
	Why Use Correlation?
	Why Use OCR?

	7.2 Training Prototypes
	Creating Prototypes
	Editing Prototypes
	Preview Window
	Zoom Buttons
	Message Window
	Edit Buttons
	Editing Operation Data Box
	Edge/Region Data Boxes
	Edge/Region Radio Buttons
	Prototype Training Hints
	SubPrototypes
	Prototype Parameters
	Setting Prototype Parameters
	Verify Percent
	Effort Level
	Min/Max Area
	Limit Position
	Edge Weights
	Assign Cameras

	7.3 Using Prototypes
	Recognizing a Prototype
	Prototype-Relative Inspection
	Prototype-Relative Part Acquisition

	7.4 Performing Correlation Matches
	Creating a Correlation Template
	Matching a Correlation Template

	7.5 Performing Optical Character Recognition
	Training an OCR Font
	Font Planning
	Character Recognition
	OCR Examples

	7.6 Prototype Model Switches and Parameters
	7.7 Loading and Storing Vision Models
	VSTORE
	VLOAD
	Displaying Vision Models
	Deleting Vision Models
	Renaming Vision Models

	Chapter 8 Programming AdeptVision VME
	8.1 Introduction
	8.2 Application Development Strategy
	8.3 Inspection Vision Example Program
	8.4 Developing the Program Code
	Program Header and Variables Declarations
	Set the Camera Environment
	Acquire an Image and Start Processing
	Locate the Object and Begin Inspections
	Output the Results

	Further Programming Considerations

	8.5 The Complete Inspection Vision Program
	The Main Program - inspect.part
	Subroutine - line.line
	Subroutine - init.program
	Subroutine - write.vwin

	Chapter 9 Guidance Vision
	9.1 Introduction
	9.2 Using a Fixed-Mount Camera
	9.3 4-Axis SCARA Robot with Camera on Link #2
	9.4 5-Axis SCARA Robot with Camera on Link #2
	9.5 Guidance Vision Program
	The Sample Program

	9.6 Further Programming Considerations
	Error Handling
	Generalizing the Program

	Chapter 10 Advanced Operations
	10.1 Performing High-Speed Inspections
	What is “High Speed?”
	Using the Two Frame Store Areas
	Using VPICTURE With Different Frame Stores
	Using VDISPLAY With Different Frame Stores
	Sample Code for a High-Speed Inspection
	The High-Speed Trigger

	10.2 Performing Frame-Relative Inspections
	Blob-Relative Inspection
	Prototype-Relative Inspection

	10.3 Frame-Relative Inspections Using VDEF.TRANS
	10.4 Using a Vision-Guided Tracking Conveyor

	Appendix A Switches and Parameters
	Setting Vision Switches
	Viewing Switch Settings
	Setting Vision Parameters
	Viewing Parameters
	List of Switches
	List of Parameters

	Appendix B VFEATURE() Values
	Viewing VFEATURE() Values
	Establishing VFEATURE() Values

	Appendix C Lens Selection
	Formula for Focal Length
	Formula for Resolution

	Appendix D Lighting Considerations
	D.1 Types of Lighting
	D.2 Lighting Strategies
	Diffuse
	Back
	Directional
	Structured
	Strobe

	D.3 Filtering and Special Effects
	Polarizing Filters
	Color Filters

	Appendix E Vision Window Menu
	Appendix F Using DEVICE With Vision
	F.1 The DEVICE Instruction With Vision
	Examples

	Appendix G Third-Party Suppliers
	G.1 Third-Party Suppliers (U.S.)
	G.2 Third-party Suppliers (Europe)
	G.3 Third-Party Suppliers (Asia-Pacific)

	Index

