UM10721

NXP Reader Library Peer to Peer User Manual based on
CLRC663 and PN512 Blueboard Reader projects

Rev. 1.1 — 24 July 2013 User manual
270111 COMPANY PUBLIC

Document information

Info Content

Keywords NXP Reader Library, NFC P2P, NFC tag, ISO18092 communication
protocol, LLCP, PN 512, RC663, ISO 18092 Passive Initiator

Abstract This document informs the reader about the architecture functionalities of

the NXP Reader Library Peer to Peer with stress on LLCP API layer

-

NXP Semiconductors

UM10721

Revision history

NXP Reader Library Peer to Peer User Manual

Rev Date Description
1.1 20130724
1.0 20130613

Change of descriptive title
First release

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10721

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

User manual
COMPANY PUBLIC

Rev. 1.1 — 24 July 2013 20f 76
270111

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

1. NXP Reader Libraries comparison

111

NXP Reader Libraries are C written software packages aimed to used in either
embedded or desktop applications for MCUs or PCs both enhanced by a contactless
reader. Depending on particular library the MCU or PC gets capability to handle various
RF cards, NFC tags and NFC Peers.

There are three NXP Reader libraries. Although altogether have some common
functionalities specially for handling the most common MIFARE cards, each of them
includes special enhancement for advanced contactless communication.

This document is focused on description of the NXP Reader Library NFC Peer to Peer,
thus from section 2 deals with explanation of this Library. In the section 4 there are parts
of sample code performing SNEP client using the functions of the NXP P2P Library.

NXP Reader Library Public

The basic NXP Reader Library [1][2] is dedicated for card readers. It supports multiple
RF protocols compliant to many contactless cards, in addition several common RF cards
are supported. Those cards may be directly handled using library APIs. Since there are
many bus interfaces and contactless readers supported the Reader Library may be used
either in desktop (PC with Pegoda Reader) or embedded (MCU with reader chip board)
application. This NXP Reader Library Public does not support SAM unit or the NFC Peer
to Peer communication.

Fig 1. NXP Reader Library Public

UM10721

User manual
COMPANY PUBLIC

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 30f 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

1.1.2 NXP Reader Library Export controlled

Comprehensive software APl enables the customer to create their own software stack for
their contactless reader. The library includes software representing cards, which may be
export controlled or common criteria certified. Therefore the whole software is export
controlled and subject to NDA with NXP. Library enables usage of SAM module which
enables encrypted communication between the host and reader chip (PCD). There must
be hardware support from SAM unit, of course.

UM10721

User manual
COMPANY PUBLIC

Note Crypto Rng (1) — SW Random Number Generator and Crypto Sym (2) modules in Common layer performing security
operations on MCU.

Note SamAV2 modul (3) in HAL layer. Driver for the SAM module. Backward compatibility with SamAV1.
Fig 2. NXP Reader Library Export Controlled

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 4 0f 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

2. General information about NXP Reader Library P2P

The main purpose and difference from the other NXP Reader Libraries is software
extension performing NFC P2P that is compliant with P2P defined by the NFC Forum.

The compatibility with NFC P2P is due to the P2P Library structure, which designed in
accordance with P2P part of Protocol Stack defined by NFC forum.

An embedded application implementing the P2P Library is capable to communicate with
another NFC P2P device (compliant to NFC Forum P2P concept), including connection
establishment and maintenance, data exchange in NDEF, up to the correct connection
cancelation. Apart from the P2P functionality it provides tools to create applications for
handling some MIFARE cards.

The Library is designed for the particular hardware platform: NXP LPC1227 board either
connected to PNEV512 Blueboard v1.4 or CLRC663 Blueboard v2.1. The Library
enables the hardware to be in a role of NFC P2P Passive Initiator. See section 2.2.3 for
further hardware restrictions.

2.1.1 Document structure

First of all we introduce general structure of the P2P Library dividing it vertically into
layers and further dividing particular layer into modules horizontally (see Fig 3). Particular
modules imply compatibility of the Library with reader chips, compliance with protocols
and ability to communicate with various PICCs.

The document provides overview of implementation Logical Link Control Protocol and
ISO18092 protocol which in accordance with NFC Forum are responsible for
performance of NFC P2P. The LLCP module description is emphasized in section 3.2
due to it is the uppermost layer and its APIs are designed for usage in developer’s
embedded application. The ISO18092 modul is described more sketchily just to get a
complete image of NFC P2P Protocol Stack within the P2P Library.

After those layers described, in the section 4 there is a simple SNEP client application
which performs sending NDEF message to a SNEP server (NFC mobile device with
android platform). The SNEP client implements functions of the LLCP layer described in
the section 3.2 to present usage of the library API functions. The SNEP client simply
sends NDEF message to android (SNEP server).

2.2 Layer Structure of the NXP Reader Library

The MCU implementing the Library is able to utilize several types of reader chips to
handle any of few types of MIFARE cards and NFC peer to peer communication. To
satisfy such versatile usage, architecture of the Library was designed with multi layered
structure (see Fig 3). Each layer is independent from the other layers.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 5 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

(1) Card command sets enabling handling with MIFARE cards
(2) NFC activity — Discovery Loop polling NFC tag detection
(3) NFC P2P package — Logical Link Control Protocol

(4) OSAL software timers

Fig 3. NXP Reader Library P2P

As seen on Fig 3 vertical structure of the NXP Reader Library is classified into following
layers:

o API layer

» MIFARE Cards command set

» NFC Activity

» NFC P2P package

e Logical Link Control Protocol (LLCP)

¢ Protocol abstraction layer (PAL)
e Hardware abstraction layer (HAL)
¢ Bus abstraction layer (BAL)
e Common layer

> Software timers and timer handlers

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 6 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

221

2211

22.1.2

2.2.1.3

222

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

API layer

The uppermost API layer is divided into three individual and independent modules (taking
place on one layer, vertically equal). Each provides different services which are designed
like APIs to be implemented into customer’s application (yellow).

Card command sets

This module ((1) in Fig 3) provides software implementation of certain commands of
MIFARE cards [4][5][6]. Commands enable to access memory and execute certain
operations on the particular card specified in datasheet of the card.

NFC Activity

This module ((2) in Fig 3) provides probing the RF field in loop with finding out the card
type of detected cards additional possibility to register and activate particular cards. This
procedure is called Discovery loop and it is deeper described in section 3.1.

NFC P2P Package

This module ((3) in Fig 3) provides complete software support for Logical link
management. The goal of the Link layer is to create, manage, maintain and correctly
disconnect the connection among peers. In result, multiple logical connections
between two or more peers can exist in the same time, but still using the 13,54MHz RF
link. The NFC forum specified Logical Link Control Protocol (LLCP)[3] as standard for the
NFC peer to peer communication. Thus LLCP is implemented in NXP Reader Library
P2P to process traffic on Logical Link. LLCP ensures sending and reception of separate
packets while being not “aware” the upper NDEF message entirety.

Since LLCP module is the most upper (among P2P related), LLCP APIs are expected to
be the most used from the Library at all. Those APIs are described in section 3.2. There
is a “hidden” part of the LLCP layer called MAC layer. According to LLCP specification [3]
from the NFC forum activation and deactivation procedures are related to the MAC layer.

Protocol Abstraction Layer

The Protocol Abstraction Layer implements the activation and control and data exchange
and other operations regarding the protocol of the contactless communication. Each
protocol is placed in separate own folder in the library folder structure
NxpRdbLib/comps/phpal<protocolName>.

Since this document is focused on NFC peer to peer communication, which is compliant
to 1SO18092 protocol, this one is deeper described in section 3.3.

The NXP Reader Library supports following 1ISO standard protocols:

1ISO14443-3A [7]: air interface communication at 13.56MHz for the cards of type A.
MIFARE Classic and Ultralight EV1 are based on this protocol.

1ISO14443-3B [7]: air interface communication at 13.56MHz for the cards of type B

1ISO14443-4 [7]: specifies a half-duplex block transmission protocol featuring the special
needs of a contactless environment and defines the activation and deactivation
sequence of the protocol. MIFARE DESFire EV1 card is based on this protocol.

1ISO14443-4A [7]: previous protocol for the cards of type A

MIFARE: needs to be included for any MIFARE card. Contains support for MIFARE
authentication, proximity check and data exchange between the PCD and PICC
according to protocols ISO/IEC14443-3A and ISO/IEC14443-4.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 7 of 76
270111

NXP Semiconductors UM10721

2.2.3

224

2.2.5

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

Felicia: compliant protocol [10], parts of it are also part of ISO 18092[9]

ISO18092 [9]: enables the NFC Data Exchange Protocol. ISO18092 protocol is
Request&Response based NFC communication protocol, which is in accordance with the
LLCP acknowledgement based approach. This library version supports only Passive
Initiator mode.

Hardware abstraction layer

The master devices which have no peripherals to perform any RF communication at all a
reader chip needs to be connected to them. The main goal of the reader chip is to
convert digital signal to analog which is transmitted and carries information via RF field.
Apart from modulator and demodulator the PCD includes many digital registers for
temporarily storing sent/received data and registers for PCD configuration, for key
storage for cards etc. In addition, the reader chip is able to execute just specified
commands. There are several different card readers which may differ one from another
in command set, peripheral modules, internal register addresses etc. Software of HAL
layer is kind of driver which enables the master device to exploit the utilities of the
connected reader chip. HAL layer is responsible for encapsulating and buffering raw data
coming from PAL layer to the form to be processed by particular reader chip correctly. It
also ensures reading of received data from the reader chip in correct order. There are
many different reader chips but the P2P Library supports only PN512 [12] and RC663
[11] reader chips. Only PN512 is able to perform NFC P2P Target mode, but this option
is not supported by this version of the P2P library.

Bus Abstraction Layer

The Bus Abstraction Layer ensures correct communication interface between the MCU

and the reader chip. The MCU sends to the reader chip commands and other command
related data like addresses and data bytes. The card reader can possibly to send some
register values or received data like the response to requests from the MCU.

The NXP Reader Library supports following communication interfaces:

Stub: Originally it was intended like component without functionality to ease
implementation of additional busses. Currently it supports SPI, 12C and RS232 interfaces
enabling connection to the Bluebord [13] or Xpresso board.

The reader chip can possibly send replies — mostly when MCU requests value of
particular register.

Common layer

The NXP Reader Library also includes utilities independent of any card and hardware
(card reader) — meaning they can be implemented regardless of reader chip. All of them
are encapsulated into the Common Layer

phTools: this part of common layer is able to perform binary operations related to CRC
and bit parity both for various lengths. CRC and parity check are used very rarely in
communication between MCU and the card reader.

Note: This has nothing to do with the communication between the reader chip and the
PICC or another NFC device. All the CRC checksum is done by both the sides
participating on NFC communication automatically.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 8 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

phKeyStore: is key handling software — storage, changing key format etc. But the NXP
Reader Library P2P supports only key storage utility. Only the NXP Reader Library
Export Controlled version supports full key storage functionalities.

phLog: software module enabling log files creation.

OSAL Utils: This module provides some basic utilities like dynamic memory allocation
and handles functions for LPC1227 timers. This module is described in section 3.4.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 9 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

3. Explanation of the Library modules for P2P

3.1

3.1.1

3.1.2

UM10721

User manual
COMPANY PUBLIC

Discovery Loop

Discovery loop is tool for detecting, activating various NFC tags and NFC peer devices.
Due to OSAL layer does not provide any thread creation, Discovery loop can run only in
single thread called from upper application without any possibility of interruption during
running, therefore the upper application (caller) is blocked till the Discovery Loop exits.
The Discovery loop can include ability to detect more tag types in the future.

Discovery Loop data parameter structure

Discovery loop can be controlled by values of the parameters from phacDiscLoop_Sw_DataParams_t
parameter component. Furthermore, while running the Discovery loop information about detected
and activated devices are hold by that structure.

Each parameter of the phacDiscLoop_Sw_DataParams_t structure is described in library file
NxpRdLib_PublicRelease/intfs/phacDiscLoop.h.

Generally the structure holds information regarding to:

guard time for each tag type. This timeout is applied after PCD is configured for
particular protocol. Only after the guard time Detection of that tag type is attempted.

number of polling loops for entire Discovery loop. Number of times the Discovery loop
procedure should look for cards before discovery loop gives up.

number of polling loops for each tag type separately.
mode to run Discovery loop: listen and poll or vice versa and additional pause mode.

permission for particular tag type detection within the Discovery loop. For all of the three tag
types the detection can be executed or skipped separately.

pointers to underlaying Protocol Abstraction Layer parameter components.
pointers to NFC tag type components: This components store information of detected tags.

bDetectionConfiguration: Or this variable with any of PHAC_DISCLOOP_CON_POLL_A,
PHAC_DISCLOOP_CON_POLL_B, PHAC_DISCLOOP_CON_POLL_F to allow detection of the particular
configuration for detection of various tag types.

uint8_t bState: Indicates the current state.

uintl16_t wTagsFound: Sets bit masks indicating tags that were found.

uint8_t bLoopMode: Holds the combination of poll, listen and pause mode for discover loop.
pErrHandlerCallback pErrHandler: Pointer to the user error handler function.

uintl6_t wPausePeriod: The delay to be used in pause mode.

Initialization of the parameter structure

This function initiates phacDiscLoop _Sw_DataParams_t parameter component (see
section 3.1.1) to zeros or default values. All the components that are passed as input
arguments to this function should be initialized before the call is made to start the
Discovery loop.

phStatus_t phacDiscLoop_Sw_Init(

phacDiscLoop_Sw_DataParams_t * pDataParams, [1n]
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 10 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

uintl6_t wSizeOfDataParans, [1n]
void * pHalDataParans, [In]
void * pOsal); [In]

*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t parameter component. Pointers
to PAL components are initialized to zero by this function. Only way is to set them
“manually” due to SetConfig() function does not provide this initialization neither.

wSizeOfDataParams: size of phacDiscLoop_Sw_DataParams_t data parameter component.
It is highly recommended to use standard C sifeof() function.

*pHalDataParams: pointer to the HAL component.
*pOsal: reference to the OS AL data parameters.
returnValues:

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.
3.1.3 Discovery Loop routine

NXP P2P Reader Library provides useful routine — Discovery Loop which performs
different NFC cards and tag types detection and also their activation. The procedure
implements detection of the NFC tags of types A, B, F and P2P, whether there is any tag
in the RF field or not. If any, it provides 1S014443 Activation of tag A and tag B type and
Anticollision for both the tag types and Attribute Request 1ISO18092 for tags type F and
P2P tags. Discovery loop is clarified by flow chart on Fig 4.

Since reader chips MFRC523 nor CLRC663 do not support listen nor pause mode
(passive), active — poll mode is switched on automatically.

If any NFC Tag type detected (in case of type A and B also activated) parameters of that
tag are obtained and saved into new tag component. Information about the detected tag
is retained within the structured tag component but they are replaced by a new tag object
as soon as that is activated.

If listen mode is not supported by the hardware or no RF field is detected, then listen
mode is automatically switched off and discovery procedure continues in polling mode.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 11 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

(5) It does not describe all the states within the Discovery loop.

Fig 4. Discovery loop flow chart.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 12 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.14

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

phStatus_t phacDiscLoop_Start(
void * pDataParams); [1n]
*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t parameter component.

Execution of the function is influenced by parameters of this component, especially
following ones:

->bNumPollLoops: number of times the Discovery loop should loop looking for tags before
Discovery loop gives up.

->bDetectionConfiguration: or this parameter with desired combination of
PHAC_DISCLOOP_CON_POLL_A, PHAC_DISCLOOP_CON_POLL_B, PHAC_DISCLOOP_CON_POLL_F to allow
detection of a particular tag type.

->wTagsFound: sets bit masks indicating tags that were detected. Whenever the function is
called, this flag is cleared and particular bits are set according to which tag types are currently
detected in the range of the RF field.

->sTypeATargetinfo.bTotalTagsFound_A: this parameter is refers to the number of
the tags A detected in the field. It is set to zero with each function call — Discovery loop
(NOT the partial loop detection within the Discovery loop) increased by one when any tag
is detected in the range of RF field.

->sTypeATargetinfo.bLoopLimit_A: this is upper limit for attempts to detect Tag A type
inside the phacDiscLoop_Sw_Int_DetectA() function (see section 3.1.5).

->sTypeATargetinfo.bActivatedTagNumber_A: number of activated Tags of type A
returnValues:

PH_ERR_INVALID_PARAMETER: invalid listen/poll/pause mode. If the HAL component does not
provide listen mode, the Discovery loop is automatically run in
poll mode with listen switched off and detection procedure
runs in poll mode, without termination the Discovery loop.

Unknown NFC Tag type, other than A/B/F
PH_ERR_SUCCESS: Operation successful.
Other: Depending on implementation and underlaying component.
Activate Card

Activates the given tag type with given index. This function should follow previous successful tag
detection, passing the tag type as the input argument. In case of tag type A according to detected
SAK the tag is additionally activated as 1ISO14443p4A or ISO18092 for P2P. This function is
implemented within the Discovery loop - phacDiscLoop_Start() function (see section 3.1.3).

Note: This function does not provide tags F activation since those are activated with the detection.

Activate card does not provide Anticollision resolution, whilst both Anticollision resolution either
Activation are implemented within the phacDiscLoop_Start()

phStatus_t phacDiscLoop_Sw_ActivateCard(

phacDiscLoop_Sw_DataParams_t *pDataParams, [1n]
uint8_t bTagType, [1n]
uint8_t bTaglndex); [In]
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 13 of 76
270111

NXP Semiconductors UM10721

3.1.5

3.1.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t parameter component. If the tag
type is activated successfully, the tag component is fulfilled with parameters of the
activated tag.

bTagType: PHAC_DISCLOOP_TYPEA ACTIVATE - activate of the tag type A.
PHAC_DISCLOOP_TYPEB_ACTIVATE - activate f the tag type B.

bTaglIndex: The tag which has to be activated. Only I3P3 of tag type A and B can have
three references — tag indexes, while all the others have just one component to be stored
within the to phacDiscLoop_Sw_DataParams_t structure.

returnValues:
PH_ERR_INVALID_PARAMETER: invalid value of bTagType

PH_ERR_INVALID DATA_PARAMS: bTaglndex is greater than number of previously found
(detected) tags A.

PH_ERR_SUCCESS: Operation successful.
Other: Depending on implementation and underlaying component.
Detect A

This function broadcasts Request A of 1ISO14443p3A by NFC. If there is present any tag
type A in a range of the RF field, then answer to request ARQ_A is received.

phStatus_t phacDiscLoop_Sw_Int DetectA(

phacDiscLoop_Sw DataParams_t * pDataParams); [1n]
*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t data parameter component.
If a tag type A is detected, then received Answer to Request type A ATQ_A is copied to
pDataParams->sTypeATargetInfo.aTypeA_13P3[0].aAtqa
returnValues:
PHAC_DISCLOOP_ERR_TYPEA_NO_TAG_FOUND: Answer to Request A not detected.
PH_ERR_COLLISION_ERROR: more tags type A in the RF field detected.
PH_ERR_SUCCESS: Operation successful.
Other: Depending on implementation and underlaying component.
Detect B

This function broadcasts Request B of 1ISO14443p3B by NFC. If there is present any tag
type B in a range of the RF field, then answer to request 8 bytes ID and 8 byte PM are
received.

phStatus_t phacDiscLoop_Sw_Int_DetectB(

phacDiscLoop_Sw_DataParams_t * pDataParams); [1n]
*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t data parameter component.
If a tag type B is detected, then received Answer to Request type A ATQ_B is copied to
pDataParams->sTypeBTargetInfo.al3P3B[].aPupi
returnValues:
PHAC_DISCLOOP_ERR_TYPEA NO_TAG_FOUND: Answer to Request B not detected.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 14 of 76
270111

NXP Semiconductors UM10721

3.1.7

3.2

3.2.1
3.2.11

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

PH_ERR_INTEGRITY_ERROR: more tags B in the RF field detected.
PH_ERR_SUCCESS: Operation successful.

Other: Depending on implementation and underlaying component.

Detect F

This function broadcasts Felica Request C. If there is present any tag type F in a range
of the RF field, then answer to request ATQ_B is received. Detects if there is any Type B
tag in the field.

phStatus_t phacDiscLoop_Sw_Int DetectF(
phacDiscLoop_Sw_DataParams_t * pDataParams); [In]
*pDataParams: pointer to phacDiscLoop_Sw_DataParams_t parameter component.

If a tag type F is detected successfully, then received Answer to Request type C is
copied to pDataParams->sTypeFTargetInfo.aTypeF[0].alDmPMm

returnValues:

PHAC_DISCLOOP_ERR_TYPEA NO_TAG_FOUND: tag type F not detected.
PH_ERR_COLLISION_ERROR: more tags type F in the RF field available.
PH_ERR_SUCCESS: Operation successful.

Other: Depending on implementation and underlaying component.

LLCP modul

In the P2P Library there is logical link implemented in full compliance with LLCP specified
by NFC forum.[3] The purpose of the LLCP is to create, manage, maintain and correctly
disconnect the connection among peers. In result, multiple logical connections
between two or more peers can exist in the same time, while still using the 13,54MHz RF
link. This has nothing to do with the anticollision nor the collision avoidance mechanism
(those are regarding to 1ISO14443 and 1SO18092 protocols). According to LLCP
specification it is possible to run up to 62 services (applications, peers) on LLCP link
connection. NXP Reader Library is limited to establish the LLCP link connection with
other 5 services in maximum. The LLCP ensures the transmission of data (or link)
packets separately (they are just numbered from O to 15 for internal purposes).

LLCP Library structures
LLCP parameter component - phinLIcp_Fri_DataParams_t

The LLCP basic and uppermost parameter component that holds pointers to buffers and
other LLCP related structures and underlaying parameter components. Since this
parameter component holds pointers to several different components, those data of
those parameter components are accessible via phinLlcp_Fri_DataParams_t. Therefore
there is one common input parameter for all the LLCP API functions. Within a particular
API there are handled only required data parameter components.

typedef struct {

uintl6_t wld;
phinLlcp_t * pLlcp;
phInLlIcp_sLinkParameters_t * pLinkParans;
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 15 of 76
270111

NXP Semiconductors UM10721

3.21.2

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

phinLlIcp_Transport_t * pLIcpSocketTable;
void * pTxBuffer;
uintl6_t wTxBufferlLength;
void * pRxBuffer;
uintl6_t wRxBufferlLength;

phHal sRemoteDevinformation_ t * pRemoteDevinfo;
void * pLowerDevice;
} phInLlcp_Fri_DataParams_t;

See section 4.1.5 and 4.1.6 that only content of *pRemoteDevInfo and *pLinkParans is
needed for “direct access”. Other data parameter components pointed by members of
parameter component do not need to be initialized to any particular values. They must be
only declared before initialization of the phInLIcp_Fri_DataParams_t parameter component.

*pLlcp: LLCP data parameter component

*pLinkParams: pointer to phlnLIcp_sLinkParameters_t data parameter component storing
the link parameters

*pLicpSocketTable: pointer to phinLlcp_Transport_t parameter component.

*pRemoteDevicelnfo: pointer to phHal _sRemoteDevinformation_t parameter component.
This structure holds information about device detected in the RF field. The P2P Library
assumes there is stored information taken from the remote’s Attribute Response. But
there is no P2P Library function to fill parameter component of this structure, therefore
must be done manually (see section 4.1.5). Once parameter component of this structure
passed to phinLIcp_Fri_Init() contains relevant link parameters, further link activation
procedure takes link parameters from this parameter component, otherwise PAX
exchange performed.

*pLlcp: pointer to the LLCP layer
*pLinkParams: pointer to the Link parameters.
*pLlcpSocketTable: pointer to the Socket table.
*pRemoteDevinfo: pointer to the Remote device information.
*nTxBuffer: pointer to the transmit buffer
wTxBufferLength: length of the transmit buffer
*pRxBuffer: pointer to the receive buffer
wRxBufferLength: length of the receive buffer
*nLowerDevice: pointer to the underlaying pal 118092mP1 PAL data parameter component
Link Parameters - phFriNfc_Llcp_sLinkParameters_t, phlnLlcp_sLinkParameters_t
This data parameter component holds information about remote.
typedef struct phFriNfc_Llcp_sLinkParameters {
uintlé t miu;
uintl6 t wks;

uint8_t Ito;
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 16 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

uint8_t option;
} phFriNfc_Llcp_sLinkParameters_t, phInLlcp_sLinkParameters_t;
miu: remote Maximum Information Unit MIU.
wks: remote Well-Known Services
Ito: remote Link TimeOut (in 1/100s)
option: remote Options
3.2.1.3 Buffer structure phNfc_sData_t
This structure holds the Data in the Buffer of the specified size.
typedef struct phNfc_sData_t {
uint8_ *huffer;
uint32_ length;
} phNfc_sData_t;
buffer: pointer to the buffer that stores the data
length: length of the buffer. Number of valid bytes in the buffer.

Pointer to this structure is taken as input argument in many API functions, so the
developer needs to define some instances of it.

3.2.2 Initialization of the LLCP layer

Initialize the LLCP FRI component. All the input parameters are pointers to dedicated
structures or buffers. The first input parameter is pointer to data parameter component to
be initialized. This function assigns given input arguments (pointers) to members of
parameter component phinLlcp_Fri_DataParams_t pointed by pDataParams. apart the

phStatus_t phlnLlcp_Fri_Init(

phInLIcp_Fri_DataParams_t * pDataParans, [1n]
uintl6_t wSizeOfDataParans, [In]
phinLlcp_t * pLlcp, [In]
phinLlcp_sLinkParameters_t * pLinkParanms, [In]
phinLlcp_Transport_t * pLlcpSocketTable, [In]
phHal_sRemoteDevInformation_t * pRemoteDevinfo, [In]
void * pTxBuffer, [In]
uintl6_t wTxBufferLength, [1n]
void * pRxBuffer, [1n]
uintl6_t wRxBufferLength, [1n]
void * pLowerDevice); [In]

*pDataParams: pointer to phinLIcp_Fri_DataParams_t parameter component to be
initiated.

wSizeOfDataParams: size of the parameter component — sizeof(wSizeOfDataParans).

Other input parameters are members of phinLlcp_Fri_DataParams_t (see section 3.2.1.1).

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 17 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.2.3

3.24

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

See section 4.1.5 and 4.1.6 that only content of *pRemoteDevinfo and *pLinkParans is
needed for “direct access”. Other data parameter components pointed by members of
parameter component do not need to be initialized to any particular values. They must be
only declared before initialization of the phInLlcp_Fri_DataParams_t parameter component.

returnValues:
PH_ERR_SUCCESS Operation successful.
Pending

Sometimes the current request cannot be performed in time, due to another operation is
running. For example the local intends to send disconnect request, but the link is
currently performing receiving from the remote. Thus the disconnect request is pending
means placed into “waiting queue”. The disconnect request shall be send as soon as the
link will perform sending operations. All the pending cases are managed internally, thus
the developer need not to care about it.

Callbacks

In the P2P Library provides notification to the application layer via callbacks when an
important event on LLCP layer occurs. The developer may build his own function,
declare it and set it like a callback. The developer’s defined callback function must fulfill
the function prototype for the particular callback type defined in the library. All the socket
related callbacks prototypes are in
NxpRdLib_PublicRelease/comps/phinLlcp/src/Fri/phFriNfc_LlcpTransport.h. But the
developer is totally free in building the body of the callback function. Except the callback
function must be declared right, it can be triggered at an event after set by the dedicated
function. In the sections 3.2.8 and 3.2.10 there are link and callback prototypes clarified
through following pattern:

Called at event: the event on LLCP that triggers the user CB function is called.

Set by: the user defined CB function address need to be passed like the input argument
to the certain function. In fact, the function address is assigned to internal library
parameter structure. From this time on, the user defined CB can be called when the
event occurs.

Function prototype: although the function body may be defined by the user, the function
header and return value need to agree with the CB function prototype defined by the P2P
library. Function may be a type void.

Input arguments: are explained one by one. In general, there are two input arguments
passed to the called CB. The first input argument passed to each CB is pContext -
pointer to application layer data of any type. The pointer needs to be passed to the
dedicated LLCP Link API or LLCP Transport Socket API function from section 3.2.7 or
3.2.9 respectively in the same time as pointer to CB function. The data may be later used
during the CB function execution. The second on third argument (if any) are information
passed by the caller of the CB — from within the P2P library, giving precious information
about the event related circumstances.

There are two types of callbacks in general. Link related callbacks and socket related
callbacks. The link callbacks are called when link status changes from activated to
deactivated or vice versa. The socket callbacks are triggered on dedicated socket
events.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 18 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

3.25 SYMM

3.2.6

UM10721

User manual
COMPANY PUBLIC

The NFC forum defines LTO to avoid infinite waiting for activity from a remote while the
remote is off without letting know. Therefore the P2P Library implements SYMM timer to
perform LTO. The SYMM timer is adjusted according to LTO of the remote received
during link activation phase. The LTO in P2P Library is implemented in compliance with
the NFC Forum LLCP. All the SYMM timer and SYMM exchange is managed internally,
thus the developer does not need to care about at all. The SYMM timer is reset with each
sent packet (regardless link or transport). If the SYMM timer expires during local link
receive state then link is deactivated (consequently disconnected). If the SYMM timer
expires while the local is something to send, then it local sends SYMM PDU.

Medium access control — MAC layer

The MAC layer is necessary for nearly all the LLCP layer link related functionalities
based on receiving/sending and LLC link activation/deactivation as well. Functions from
the section 3.2.7 providing LLC link activation must be run before the first LLCP PDU
sent/received.

The MAC layer parameter component LlcpMac needs to be fulfilled with information of the
NFC device or tag type detected in the RF field. But there is no function providing
passing of detected tag/device type to RemDevType in phNfc_sRemoteDevinformation_t
component, thus must be done manually. MAC layer can be initiated only for those
devices and tag types listed in Table 1, because they are capable of NFC P2P
communication. Furthermore, just in case P2P initiator or target (two bottom lines) the
MAC layer interface can be fully activated, consequently send and receive functionalities
are fully provided.

Table 1. Device and tag type for MAC layer
In NXP Reader Library P2P the MAC layer functionality is legal for following remote devices/tags

Tag/device type Identifier in the P2P Library
1ISO14443 type A tag phHal_elS014443_A _PICC
1ISO14443 type B tag phHal_elS014443 B _PICC
1SO18092 type F — P2P initiator phHal_eNfcIP1_Initiator
1SO18092 type F — P2P target phHal_eNfcIP1_Target

The LLC link layer activation procedure needs three functions to be called in following
order:

1. Reset: phinLIcp_Reset() section 3.2.7.1

2. Check: phinLIcp_ChkLIcp() section 3.2.7.2

3. Activation: phInLlcp_Activate() section 3.2.7.3

4. Send/Receive: LLCP packets: upper layer communication
5. Deactivation: phlnLIcp_Deactivate() section 3.2.7.4

Once the Activate successes, the LLC link is fully connected with undelaying PAL layer
(represented by 1ISO18092 Initiator). This needs to be done, to send any Afterward the
functions from section 3.2.9 can be called (socket creation, connect, listen etc.).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 19 of 76
270111

NXP Semiconductors UM10721

3.2.7
3.2.7.1

3.2.7.2

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

Internal MAC Send and Receive are used for all the LLCP PDUs (SYMM, CONNECT,
etc.) transaction between the LLCP layer and the PAL layer. This should be hidden for a
developer, who is expected to use APIs from section 3.2.9.

LLCP Link APIs
Reset LLCP link

This function makes initial configuration steps necessary for later LLC link activation
procedure. This reset function is prerequisite for correct execution of phinLlcp_Activate()
and phinLIcp_Deactivate().

phStatus_t phinLIcp_Reset(

void * pDataParams, [1n]
phinLlcp_LinkStatus _CB_t pflLink_CB, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

pfLink_CB: pointer to the user defined callback assigned to pfLinkCB in phFriNfc_Llcp_t
component. It is called from within phInLlcp_Activate()and phinLlcp_Deactivate() function
and refers to the change of the link status when activated or deactivated. Developer can
pass own phinLIcp_LinkStatus_CB_t function here. If none function to pass, then this
parameter must be NULL. The second input argument of the callback is passed by lower
layer caller and it refers about latest (updated) link status. See section 3.2.8.2.

*pContext: pointer to the content — input argument for the callback function.
returnValues:
NFCSTATUS_BUFFER_TO0_SMALL

Receive buffer is not large enough to support 131
bytes (128 + 2 + 1 == MIU + Header + Sequence)

- Transmit buffer too small to support maximal LLCP
frame size (Header + Sequence + MIU)

MIU in psLinkParams lower than 128 bytes

NFCSTATUS_INVALID_PARAMETER

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying
component.

Check

This function checks some Attribute Response from remote device then decides if the
MAC layer can be enabled for that device. The device should have been previously
detected in the Discovery loop. If the remote device type is NCF P2P Initiator or Target
type, then it enables the internal connection between LLCP layer and MAC layer
(necessary for Activation, Deactivation, Sending, Reception and Checking itself). In case
ISO14443A or 1SO14443B no internal MAC connection provided. In addition, General
Bytes from the Attribute Response matched to that remote device (received in Discovery
loop) are tested whether they equal to LLC Magic Number — 3 byte array 0x46, 0x66,
0x6D. If it equals, then the rest of data of the Attribute Response is later assigned as
remote link parameters rather than doing PAX exchange.

Note: This function requires the LLC link to be in correct state which is ensured by
previous run of phinLlcp_Reset() function.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 20 of 76
270111

NXP Semiconductors UM10721

3.2.7.3

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

phStatus_t phinLIcp_ChkLlIcp(

void * pDataParams, [In]
phinLlcp _Check CB_t pfCheck CB, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

pfCheck_CB: pointer to the callback function that will be called when check procedure is
complete. The accepted and called just for remote device type P2P Initiator or Target.

*pContext: pointer to the content — input argument for the callback function.

returnValues:

NFCSTATUS_INVALID_STATE - LLCP link is not in PHFRINFC_LLCP_STATE_RESET_INIT
state

NFCSTATUS_INVALID_DEVICE - Device type unable to perform NFC P2P

NFCSTATUS_FAILED - Attribute Response from remote device does not
agree with LLC Magic Number

PH_ERR_SUCCESS - Operation successful

Other - Depending on implementation and underlaying
component

Activate LLC link

This function provides basic LLC initial configuration, activates LLC link and MAC layer.
These are all prerequisite necessary for a later flawless communication via LLC link. The
LLC link state is changed from checked - PHFRINFC_LLCP_STATE_CHECKED to activated -
PHFRINFC_LLCP_STATE_ACTIVATION. Before this function run it is recommended to run
phinLlcp_Reset() function (see section 3.2.7.1), which preconfigures MAC layer (internal
callback) correctly.

There are two ways, how find out link parameters (LTO, MIU, WKS, OPT) of the remote device.
Remote link parameters should have been already known from the Discovery loop, since that
implements 1ISO18092 defined Attribute Request. The remote device sends Attribute Response
containing LLCP Magic Number (specified by NFC forum) together with link parameters in TLV
format. After parsing, first of all the version agreement is performed then the LTO timer is triggered.

However, if there is not LLCP Magic Number within Attribute Response and the local is NFC P2P
Initiator type, then in the activation procedure PAX PDU with local link parameters is sent to the
remote.

After LLC activated successfully the notification about change of the link status toward
service layer is done via user defined callback function Llcp->pfLink_CB() which is
passed like an input argument to phinLIcp_Reset().

The function does not create LLCP socket. It should be created by phlnLIcp_Transport_Socket().

Note: If deactivation callback is called, it indicates that activation procedure failed, thus
deactivation procedure has been automatically executed to revert steps done by unsuccessful
activation.

phStatus_t phlnLlcp_Activate(

void * pDataParams); [In]
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 21 0of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

*pDataParams: pointer to phFriNfc_Llc_t component.

returnValues:

NFCSTATUS_INVALID_STATE — LLCP not in state PHFRINFC_LLCP_STATE_CHECKED

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.
3.2.7.4 Deactivate LLC link

This function deactivates MAC interface and disconnects LLCP link. LLCP link
connection is canceled by sending DISC PDU via LLCP link (DSAP == 0x00, SSAP ==
0x00) as soon as local is ready for sending operation. If the send operation is pending,
then disconnect procedure is terminated. After deactivated successfully the notification
about change of the link status toward service layer is done via user defined callback
function Llcp->pfLink_CB() which is passed like an input argument to phinLIcp_Reset().

phStatus_t phlnLlcp_Deactivate(

void * pDataParams); [1n]
*pDataParams: pointer to phFriNfc_Llc_t component.
returnValues:

NFCSTATUS_INVALID_STATE - LLCP link state other than
PHFRINFC_LLCP_STATE_OPERATION_RECV or
PHFRINFC_LLCP_STATE_OPERATION_SEND.

NFCSTATUS_PENDING - DISC PDU not sent due to link send pending.

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying
component.

3.2.7.5 Send PDU packet via LLCP link

This function is used to send a given PDU via LLCP. Arguments need to be passed in
form header - sequence field - information field. The function can only be called on a
connection-oriented socket which is already in the connected state.

Note: In fact, this function this function is implemented by some another functions using
sending any PDU via LLCP link. To send data packed within via LLCP it is recommended
rather to use phlnLlcp_Transport_Send() (see section 3.2.9.10) which sends data within
the Information PDU frame and assembles Header and Sequence automatically from
given LLCP socket component parameters.

phStatus_t phlnLlcp_Send(

void * pDataParams, [In]
phinLlcp_sPacketHeader t * pHeader, [In]
phinLlcp_sPacketSequence t * pSequence, [1n]
phNfc_sData_t * pinfo, [1n]
phiInLlIcp_Send_CB_t pfSend_CB, [1n]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 22 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.2.7.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

*pHeader: pointer to the PDU packet header composed from SSAP, PTYPE and DSAP.
*pSequence: pointer to the PDU packet sequence field.
*pinfo: pointer to the PDU information field.

pfSend_CB: pointer to the callback of LLCP link structure that shall be called when
sending via LLCP link executed successfully.

*pContext: pointer to the content — input argument for the callback function.

returnValues:

NFCSTATUS_REJECTED - previous sending operation has not been finished yet
NFCSTATUS_PENDING - Previous receive operation has not been finished yet.
NFCSTATUS_INVALID_STATE - LLCP state other than

PHFRINFC_LLCP_STATE_OPERATION_RECV or
PHFRINFC_LLCP_STATE_OPERATION_SEND.

PH_ERR_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying
component.

Receive PDU packet on the LLC link

This function sets a given callback in the internal link structure resulting in the callback
shall be called if any transport reception on LLCP link occurs. Setting the callback by the
function is rejected until the previously set link reception callback called. This receive
occurs even before parsing the header of the packet.

Note: The link reception callback is mostly (dominantly) utilized for the library internal
purposes — receiving the transport packets and further parsed. Thus there is a high
probability, it is occupied by this internal receive callback function at any time after reset
sockets by phinLIcp_Transport_Reset() function.

phStatus_t phlnLlcp_Recv(

void * pDataParams, [1n]
phinLlcp_Recv_CB_t pfRecv_CB, [In]
void * pContext); [In]

*pDataParams: pointer to phinLIcp_Fri_DataParams_t parameter component.

pfRecv_CB: the receive callback to be called when any transport data on the LLCP link
received. Within the phInLlcp_Transport_Reset() function the internal library build-in
transport receive callback is assigned to this callback and is reassigned repeatedly
internally and the link callback keeps being captured by it unless manually set to another
callback.

*pContext: upper layer context to be used as input arguments in callback.
returnValues:

NFCSTATUS_REJECTED: previously assigned callback (most probably the internal library build-
in transport receive callback) has not been executed yet.

NFCSTATUS_SUCCESS - Operation successful.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 23 of 76
270111

NXP Semiconductors UM10721

3.2.8
3.28.1

3.2.8.2

3.2.8.3

3.284

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

LLCP link Callbacks
Link Check CB
Called at event: Incoming connection request (CONNECT PDU) from a client received.
Set by API: phinLIcp_ChkLIcp() section 3.2.7.2
Function prototype:
typedef void (*phFriNfc_Llcp_Check CB_t) (void *pContext,
NFCSTATUS status);

*pContext: pointer to user data passed to processed in the CB

status: refers to

Link Status CB

Called at event: Link status changed to activated or deactivated

Set by API: phinLIcp_Reset() section 3.2.7.1

typedef void (*phFriNfc_Llcp_LinkStatus_CB_t) (void *pContext,
phFriNfc_Llcp_eLinkStatus_t eLinkStatus);

*pContext: pointer to user data passed to processed in the CB

status: enum type referring to updated LLCP link status. Following enum values can
occur:

phFriNfc_LlcpMac_eLinkActivated

phFriNfc_LlcpMac_eLinkDeactivated

Link Send CB

Called at event: generic LLCP packet sent via LLCP link

Set by API phinLIcp_Send() section 3.2.7.5

Set by API: phinLlcp_Send()

typedef void (*phFriNfc_Llcp_Send CB t) (void *pContext,
NFCSTATUS stats);

*pContext: pointer to user data passed to processed in the CB

status:

Link Receive CB

Called at event: generic LLCP packet received via LLCP link

Note: This CB is occupied by internal library function.

Set by API phinLlcp_Receive() section 0

typedef void (*phFriNfc_Llcp Recv CB t) (void *pContext,
phNfc_sData_t *psData,
NFCSTATUS status);

*pContext: pointer to user data passed to processed in the CB

*psData: pointer received data

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 24 of 76
270111

NXP Semiconductors UM10721

3.2.9
3.29.1

3.2.9.2

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

status:
LLCP Transport Socket APIs
Create LLCP socket

This function creates a socket for a given LLCP link. Sockets can be of two types :
connection-oriented and connectionless. If the socket is connection-oriented, the caller
must provide a working buffer to the socket in order to handle incoming data. This buffer
must be large enough to fit the receive window (RW * MIU), the remaining space being
used as a linear buffer to store incoming data as a stream. Data will be readable later
using the phLibNfc_LlcpTransport_Recv() function (section 3.2.9.11).

Note: The options and working buffer are not required if the socket is used as a listening
socket, since it cannot be directly used for communication.

phStatus_t phlnLlcp_Transport_Socket(

void * pDataParams, [1n]
phinLlcp_Transport_eSocketType_t eType, [In]
phinLlcp_Transport_sSocketOptions_t * pOptions, [In]
phNfc_sData_t * pWorkingBuffer, [In]
phinLlcp_Transport_Socket t ** pLlcpSocket, [Out]
phinLlcp_TransportSocketErrCh_t pErr_Ch, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

eType: type of the socket to be created: connection-oriented or connectionless.
*pOptions: options to be used with the socket.

*pWorkingBuffer: working buffer to be used by the library.

**pLlcpSocket: pointer on the socket to be filled with a socket found on the socket table.

pErr_Cb: error callback function from application that shall be called whenever an error
on the socket occurs. The cases when the error callback function is called and error
callback type are described in section 3.2.10.1.

*pContext: pointer to application layer data to be used in the callback.

PH_ERR_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying
component.

Reset LLCP socket

This function transport structure and all the LLCP transport sockets to default states or
zero values. LLCP link structure must exist and should be reset before. Once reset
function is done, receiving of incoming LLCP packets from LLCP link is enabled.

phStatus_t phlnLlcp_Transport_Reset(
void * pDataParams); [In]
*pDataParams: pointer to phlnLIcp_Fri_DataParams_t parameter component.

returnValues:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 25 0of 76
270111

NXP Semiconductors UM10721

3.293

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

NFCSTATUS_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying
component.

Bind a socket to a local source SAP

This function binds a given LLCP transport socket with a SAP and service name
altogether. Only the LLCP socket mandatory - must have been already created and
passed like nonzero input argument. Binding is performed only if the socket is created
(after phinLlcp_Transport_Socket() or phInLIcp_Transport_Disconnect() function). SAP and
Service name are optional parameters (but must be passed as NULL at least).

The function provides custom SAP assignment and dynamic SAP assignment as well.
Depending on whether an existing service name is given or not, SAP value is assigned
among either advertised or unadvertised free SAPs. Thus the SAP assignment rules are
implemented in full compliance with LLCP 1.1[3] by NFC Forum - see Table 2.

Table 2. DSAP/SSAP values
DSAP/SSAP NFC Forum description

0 Link management
1 Designate well known service access point for the Service Discovery Protocol
2-15 Well-Known Service Access Points

Shall be assigned by the local LLC to services registered by the service
16-31 environment. These registrations shall be made available by the local SDP
instance for discovery and use by a remote LLC.

Shall be assigned by the local LLC as the result of an upper layer service request

32-63 and shall not be available for discovery using the SDP

phStatus_t phlnLIcp_Transport_Bind(

void * pDataParams, [In]
phinLlcp_Transport_Socket t * pLlcpSocket, [In]
uint8_t nSap, [1n]
phNfc_sData_t *psServiceName); [1n]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the LLCP transport socket.

nSap: local source SAP number to bind the given socket with. If this parameter is NULL, a
free SSAP is assigned dynamically respecting the intervals from Table 2.

*psServiceName: pointer to service hame, or NULL if no service name. If no service name
(NULL), nSAP is considered as unadvertised see impact on SAP value in Table 2.

returnValues:

NFCSTATUS_INVALID_STATE - Attempt to bind a socket not created yet or already
connected or bound.

NFCSTATUS_ALREADY _REGISTERED - Passed nSAP already bound to another socket.
NFCSTATUS_INVALID_PARAMETER - The given SAP out of valid range — see Table 2.
- The given service name already in use - bound with
another SAP.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 26 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

NFCSTATUS_INSUFFICIENT_RESOURCES No free SAP available.

NFCSTATUS_NOT_ENOUGH_MEMORY - Insufficient memory space to store the given
service hame.
NFCSTATUS_SUCCESS - Operation successful.

3.2.9.4 Connect

This function tries to connect given socket to a given SAP on the remote peer.
Connection is performed only for connection-oriented sockets that is not currently
connected. If the socket is not bound to a local SAP, it is implicitly bound to a free
unadvertised SAP (32-63). In accordance with the LLCP defined by NFC forum if MIUX,
RW and Service Name are different from default values, then those are also sent to the
remote.

phStatus_t phlnLlcp_Transport_Connect(

void * pDataParams, [1n]
phinLlcp_Transport_Socket t * pLlcpSocket, [In]
uint8_t nSap, [In]
phinLlcp_TransportSocketConnectCh_t pConnect_RspCh, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLIcpSocket: pointer to the LLCP transport socket.
nSap: the destination SAP to connect to. Must be in range from 2 to 63.

pConnect_RspCb: connect callback function to be called when the connection operation
is completed— CC frame from the remote received. The connection callback type is more
precisely described in section 3.2.10.3.

*pContext: pointer to application layer data to be used in the callback.
returnValkues:

NFCSTATUS _INVALID PARAMETER Non connection-oriented socket.

- nSap value out of valid range (2-63).
NFCSTATUS_INVALID_STATE

The socket already connected - neither bound nor
created.

- Socket has already service name assigned.

NFCSTATUS_PENDING - LLCP link send pending. Connection operation is in
progress, pConnect_RspCh() will be called upon
completion.

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying
component.

3.2.9.5 Connect by URI

This function tries to create connection between given socket and a remote service
designated by a given URI. If the socket is not bound to a local SAP, it is implicitly bound
to a free SAP.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 27 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.2.9.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

phStatus_t phlnLIcp_Transport_ConnectByUri(

void * pDataParams, [1n]
phinLlcp_Transport_Socket t * pLlcpSocket, [In]
phNfc_sData_t * psUri [In]
phinLlcp_TransportSocketConnectCh_t pConnect RspCh, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

*pLlcpSocket: pointer to the transport socket to be connected to the remote designated
by the given URI address.

*psUri: the URI corresponding to the destination SAP on remote to connect to. Length of
URI is limited to 255 bytes (characters).

pConnect_RspCb: connect callback function to be called when the connection operation
is completed- CC frame from the remote received. The connection callback type is more
precisely described in section 3.2.10.3.

*pContext: pointer to application layer data to be used in the callback.
returnValkues:

NFCSTATUS _INVALID PARAMETER Non connection-oriented socket.

- - The given socket already connected or pending connect.

- URI address longer than 255 characters

NFCSTATUS_PENDING - LLCP link send pending. Connection operation is in
progress, pConnect_RspCh() will be called upon
completion.

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying
component.

Listen to Connection Requests

This function makes a given socket listen to any incoming connection request from a
remote. This is prerequisite for establishing the LLCP connection initialized from a
remote. Listening is only allowed for connection-oriented sockets which are currently not
connected. The listening itself does not load a thread execution, because it is based on
callback. In fact, this function just sets a given callback.

The P2P library parses the incoming connection request and further ensures resolving of
following situations that may occur:

= Immediate respond with FRMR to a sender of the connection request when invalid
TLV data received.

= According to remote’s DSAP to find the socket that the connection request is
designated for.

= According to service name to find the socket that the connection request is designated
for.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 28 of 76
270111

NXP Semiconductors UM10721

3.2.9.7

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

The callback function shall be called when an incoming connection request from a
remote received and found out the socket requested for conenction. Then an application
layer may decide whether to accept phinLlcp_Transport_Accept() (section 3.2.9.7) or to
reject phinLlcp_Transport_Reject() (section 3.2.9.8) the incoming connection request for
that particular LLCP socket.

Note: This function should be called after socket bound by phInLlcp_Transport_Bind()
(section 3.2.9.3). Without local SAP bound, the socket is not LLCP addressable.

phStatus_t phlnLlcp_Transport_Listen(

void * pDataParams, [1n]
phinLlcp_Transport_Socket_t * pLlcpSocket, [In]
phinLlcp_TransportSocketListenCh_t pListen Ch, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the transport socket.

pListen_Ch: listen callback function to be called when the socket receives a connection
request. The second input argument refers to the socket requested to be connected (see
section 3.2.10.2).

*pContext: pointer to application data to be used in the callback.
returnValues:

NFCSTATUS _INVALID_PARAMETER Non connection-oriented socket.

This socket is already listening and it is pending.
NFCSTATUS_INVALID_STATE
PH_ERR_SUCCESS

Socket in other state than socket bound.

Operation successful.
Accept an incoming connection request

This function is used to accept an incoming connection request the client to accept an
incoming connection request. It must be used with the socket provided within the listen
callback. The socket is implicitly switched to the connected state when the function is
called.

phStatus_t phlnLlcp_Transport_Accept(

void * pDataParams, [1n]
phinLlcp_Transport_Socket_t * pLlcpSocket, [In]
phinLlcp_Transport_sSocketOptions_t * pOptions, [In]
phNfc_sData_t * psWorkingBuffer, [In]
phinLlcp_TransportSocketErrCh_t pErr_Ch, [In]
phinLlcp_TransportSocketAcceptCh_t pAccept RspCh, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLIcpSocket: pointer to the transport socket.

*pOptions: options to be used with the socket.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 29 of 76
270111

NXP Semiconductors UM10721

3.2.9.8

3.2.9.9

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

*nsWorkingBuffer: a working buffer to be used by the library.

pErr_Chb: error callback function from application that shall be called whenever an error
on the socket occurs. The cases when the error callback function is called and error
callback type are described in section 3.2.10.1.

pAccept_RspChb: accept connection callback function that shall be called when the
connection request from a remote accepted — CC PDU sent. The accept callback type is
more precisely described in section 3.2.10.3.

*pContext: pointer to application data to be used in the callback.
returnValues:
NFCSTATUS_INVALID_PARAMETER
NFCSTATUS_INVALID_STATE
PH_ERR_SUCCESS

Other

Non connection-oriented socket.

Socket in other state than socket bound.

Operation successful.

Depending on implementation and underlaying
component.

Reject a connection request

This function allows the client to reject an incoming connection request. It must be used
with the socket provided within the listen callback. The socket is implicitly closed when
the function is called.

phStatus_t phinLIcp_Transport Reject(

void * pDataParams, [In]
phinLlcp_Transport_Socket t * pLlcpSocket, [In]
phinLlcp_TransportSocketRejectCh_t pReject RspCh, [In]
void * pContext); [1n]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the transport socket.

pReject_RspCb: the callback to be called when reject operation is completed.
*pnContext: pointer to application data to be used in the callback.
returnValues:
NFCSTATUS_INVALID_PARAMETER
NFCSTATUS_INVALID_STATE
PH_ERR_SUCCESS

Other

Non connection-oriented socket.

Socket in other state than socket bound.

Operation successful.

Depending on implementation and underlaying
component.

Disconnect socket

This function disconnects currently previously connected connection-oriented socket by
sending DISC PDU on LLC link. Local and the remote SAP shall both be cleared from
the socket but the socket itself shall not not closed. Firstly, the socket state is changed to
disconnecting. If the socket send or receive data pending, then this pending are resolved
before socket disconnected. When the socket disconnected successfully (DM PDU

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 30 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

received and handled internally), then upper layer is notified by the socket disconnect
callback and the socket is left in disconnected state.

Note: As soon as the socket disconnected, both socket connected and socket
disconnected callbacks are set to NULL.

phStatus_t phlnLIcp_Transport_Disconnect(
void * pDataParams, [1n]
phinLlcp_Transport_Socket t * pLlcpSocket, [In]
phinLlcp_SocketDisconnectCh_t pDisconnect RspCh, [In]
void * pContext); [1n]
*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the transport socket to be disconnected.

pDisconnect_RspChb: the callback to be called when the disconnection operation is
completed. phinLlcp_Transport_Disconnect() function just puts address of this callback to
disconnectCB in socket. Actually, the callback is called by phInLIcp_Transport_Close()
function (see section 3.2.9.13).

*pContext: pointer to application data to be used in the callback.
returnValues:
NFCSTATUS_INVALID_PARAMETER
NFCSTATUS_INVALID_STATE
NFCSTATUS_PENDING
PH_ERR_SUCCESS

Non connection-oriented socket.

Socket in not connected state.

LLC link status in send pending state. Try later.

Operation successful.

Other Depending on implementation and underlaying
component.

3.2.9.10 Send data packed — connection oriented

This function provides sending data via connection-oriented LLCP transport socket,
which must be already in the connected state. To transmit the data the function performs
on LLCP layer sending the | PDU frame with header created according to DSAP and
SSAP from the socket.

phStatus_t phlnLIcp_Transport_Send(

void * pDataParanms, [1n]
phinLlcp_Transport_Socket_t * pLlcpSocket, [In]
phNfc_sData_t * pBuffer, [In]
phinLlcp_TransportSocketSendCh_t pSend_RspCh, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the LLCP transport socket, which the data to be sent via.

*pBuffer: buffer containing the data to send. Data are in the format of the phNfc_sData_t
structure, where n-1 bytes represents the data itself and one byte is length of the data.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 31 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.29.11

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

pSend_RspCh: callback to be called when the send operation is completed (see section
3.2.10.7).

*pContext: pointer to application data to be used in the callback.

returnValues:

NFCSTATUS_INVALID_PARAMETER - Socket is another than connection-oriented type.
- Socket is not in connected state.

- Data in psBuffer to be sent are longer than remote MIU
(of the receiver)

NFCSTATUS_INVALID_STATE - The socket is not in a valid state, or not of a valid type to
perform the requested operation.

NFCSTATUS_REJECTED - Socket is in send pending state.

NFCSTATUS_FAILED - Operation failed.

NFCSTATUS_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying
component.

Receive data from socket

This function is used to read received data from a given socket. It reads at most the size
of the reception buffer, but can also return less bytes if less bytes are available. If no data
is available, the function will be pending until more data comes, and the response will be
sent by the callback. This function can only be called on a connection-oriented socket.
When the data received successfully, RR frame is sent subsequently to the sender of the
received | PDU frame.

Note: Calling this function from APl does make the remote to send data.

phStatus_t phinLIcp_Transport Recv(

void * pDataParams, [1n]
phinLlcp_Transport_Socket_t * pLlcpSocket, [In]
phNfc_sData_t * pBuffer, [out]
phInLlcp_TransportSocketRecvCh_t pRecv_RspCh, [In]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.

*pLlcpSocket: pointer to the LLCP transport socket, which the received data to be read
from.

pRecv_RspChb: callback to be called as soon as receive operation is completed.

*pBuffer: buffer prepared for received data. Data are in the format of the phNfc_sData_t
structure, where n-1 bytes represents the data itself and one byte refers to the length of
the data.

pRecv_RspChb: callback function to be called when received data copied from socket
buffer to output pBuffer. If socket is in pending receive, this callback is stored to socket
component receive callback pLlcpSocket->pfSocketRecv_Ch.

*pContext: pointer to application data to be used in the callback.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 32 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

returnValues:
NFCSTATUS_SUCCESS - Operation successful.
NFCSTATUS_INVALID_PARAMETER
NFCSTATUS_REJECTED
NFCSTATUS_FAILED

Socket is another than connection-oriented type.

Socket is already in receive pending.

Operation failed.
- Socket not connected.
3.2.9.12 Send data - connectionless

This function provides sending data via connectionless LLCP transport socket, which
must be already in the connected state. To transmit the data the function performs on
LLCP layer sending the Ul PDU frame with header created according to DSAP and
SSAP from the socket.

phStatus_t phinLIcp_Transport_SendTo(

void * pDataParams, [In]
phinLlcp_Transport_Socket_t * pLlcpSocket, [In]
uint8_t nSap, [1n]
phNfc_sData_t * pBuffer, [1n]
phinLlcp_TransportSocketSendCb_t pSend_RspCh, [1n]
void * pContext); [In]

*pDataParams: pointer to phFriNfc_Llcp_t parameter component.
*pLlcpSocket: pointer to the LLCP transport socket, which the data to be sent via.
nSap: destination SAP that the data to be sent to.

*pBuffer: buffer containing the data to send. Data are in the format of the phNfc_sData_t
structure, where n-1 bytes represents the data itself and the one byte is length of the
data.

pSend_RspCh: callback to be called when the send operation is completed.

*pContext: pointer to application data to be used in the callback.

returnValues:

NFCSTATUS_SUCCESS - Operation successful.

NFCSTATUS_INVALID_PARAMETER - Socket is another than connectionless type.
- Socket is not bound.

- Data in psBuffer to be sent are longer than MIU of the
link.

- nSap out of range 2 - 63

NFCSTATUS_INVALID_STATE
NFCSTATUS_REJECTED

Socket not in connectionless state.

Socket is in send pending state.

Socket is in error status.

NFCSTATUS_FAILED Operation failed.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 33 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

3.2.9.13 Close one socket

3.29.14

3.2.10
3.2.10.1

UM10721

User manual
COMPANY PUBLIC

This function closes a given LLCP transport connection-oriented or connectionless
socket previously created by phFriNfc_LlcpTransport_Socket() function. If the socket was
connected, it is first disconnected, and then closed.

This function manages closing of given previously created socket whether connection
oriented or connectionless. If a socket has been already connected then disconnect from
LLC link by sending DICS PDU is performed automatically. If connection-oriented socked
has not been connected yet, it is closed by abort (Accept, Connect CBs are executed,
then set to NULL).

phStatus_t phlnLlcp_Transport_Close(
void * pDataParams [1n]
phiInLlcp_Transport_Socket_t * pLlIcpSocket); [In]
*pDataParams: pointer to phlnLIcp_Fri_DataParams_t parameter component.
*pLIcpSocket: pointer to the transport socket.

returnValues:

NFCSTATUS_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying
component.

Close all the sockets

This function closes all the created sockets independently of their current states. In
addition information from the pCachedServiceNane is entirely cleared.

phStatus_t phlnLlcp_Transport_CloseAll(
void * pDataParams); [In]
*pDataParams: pointer to phlnLIcp_Fri_DataParams_t parameter component.

returnValues:

NFCSTATUS_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying
component.

LLCP Socket Callbacks
Error CB

Called at event: Error on LLCP link occured. Origin of the error is passed like the second
input argument by the caller from within the library.

Set by: phInLIcp_Transport_Socket() or phinLIcp_Transport_Accept()

Function prototype:

typedef void (*pphFriNfc_LlIcpTransportSocketErrCh_t) (void* pContext,
uint8_t nErrCode);
*pContext: pointer to user data passed to processed in the CB

nErrCode: value tells, what is the error caused by.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 34 of 76
270111

NXP Semiconductors UM10721

3.2.10.2

3.2.10.3

3.2.10.4

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

PHFRINFC_LLCP_ERR_NOT_BUSY_CONDITION — RR acknowledgement received from the remote
after negative acknowledgement (RNR) received before.

PHFRINFC_LLCP_ERR_BUSY_CONDITION — negative acknowledgement (RNR PDU) from the
remote received.

PHFRINFC_LLCP_ERR_FRAME_REJECTED — the remote received an invalid packet and
subsequently sent FRMR frame.

PHFRINFC_LLCP_ERR_DISCONNECTED - disconnection request (DISC PDU) from the remote
received.

Listen CB

Called at event: Incoming connection request (CONNECT PDU) from a client received.
Set by: phinLlcp_Transport_Listen()

Function prototype:

void (*pphFriNfc_LlcpTransportSocketListenCh t) (void* pContext,

phFriNfc_LlcpTransport_Socket t *IncomingSocket);
*pContext: pointer to user data passed to processed in the CB

*IncomingSocket; pointer to socket that bound to the SAP or service name that the
remote is requesting to connect with.

Connect CB
Called at event: The local has just sent data packet (I PDU) to the remote.
Set by: phInLIcp_Transport_Connect()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketConnectCb_t) (void* pContext,
uint8_t nErrCode,
NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB
nError: error code defined by NFC forum LLCP Disconnect mode
status: refers to the status of connection procedure. Following values may be passed in

NFCSTATUS_SUCCESS: connection successful. Once the connection established, the data
transmission may be performed.

NFCSTATUS_ABORTED: socket closed by phinLlcp_Transport_Close() or as along with frame
reject.

NFCSTATUS_FAILED: the connection not confirmed on the remote side. Connection failed
and not created.

Disconnect CB
Called at event: The local has just sent data packet (I PDU) to the remote.
Set by: phInLIcp_Transport_Disconnect()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketDisconnectCh_t) (void* pContext,

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 35 of 76
270111

NXP Semiconductors UM10721

3.2.10.5

3.2.10.6

3.2.10.7

3.2.10.8

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB
status: refers to the status of disconnection procedure. Following values may be passed:
NFCSTATUS_SUCCESS: disconnection has been confirmed by the remote side.
Accept CB

Called at event: The local server has just confirmed (sent CC PDU) the connection
request (CONNECT PDU) from the remote client.

Set by: phinLIcp_Transport_Accept()

Function prototype:

void (*pphFriNfc_LlcpTransportSocketAcceptCh_t) (void* pContext,
NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB

status: refers the status of acceptance procedure of connection request. If the socket
has been connected successfully, status is O or NFCSTATUS_SUCCESS.

Reject CB
Called at event: The local has just received a data packet (I PDU) to the remote.
Set by: phInLIcp_Transport_Reject()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketRejectCh_t) (void* pContext,
NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB

status: refers the status of rejection procedure of disconnection request. If the DM has
been sent successfully, status is 0 or NFCSTATUS_SUCCESS.

Send CB
Called at event: The local has just sent data the packet (I PDU) to the remote.
Set by: phInLIcp_Transport_Send() or phinLIcp_Transport_SendTo()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketSendCh_t) (void* pContext,
NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB

status: refers the status of acceptance procedure of connection request. If the data (|
PDU frame) has been sent successfully via the socket, status is O or NFCSTATUS_SUCCESS.

Receive CB — connection oriented

Called at event: The local has just received a data packet (I PDU) from the remote in
connection oriented mode.

Set by: phInLIcp_Transport_Send(

Function prototype:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 36 of 76
270111

NXP Semiconductors UM10721

3.2.10.9

3.3

3.3.1

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

typedef void (*pphFriNfc_LlcpTransportSocketRecvCh_t) (void* pContext,
NFCSTATUS status);
*pContext: pointer to user data passed to processed in the CB

status: refers to the status of reception procedure. If the incoming packet has been
received without an error in accordance with LLCP, status is 0 or NFCSTATUS_SUCCESS.

Receive CB - connectionless

Receive from is notification about information packet has just been received from a
remote in connectionless mode.

Called at event: The local has just received data packet (Ul PDU) from the remote in
connectionless mode.

Set by:
Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketRecvFromCh_t) (void* pContext,
uint8_t ssap,
NFCSTATUS status);

*pContext: pointer to user data passed to processed in the CB

ssap: source SAP the data coming from

status: refers to the status of reception procedure. If the incoming packet has been
received without an error in accordance with LLCP, status is O or NFCSTATUS_SUCCESS.

Protocol layer - ISO18092 protocol commands

All the LLCP packets must be encapsulated regardless of their purpose on the Link layer
(data carrying packets and link maintenance packets as well). ISO18092 protocol
ensures encapsulating link layer packets into final binary format which is ready to be
transmitted via RF. NXP P2P Library version supports just Passive Initiator mode.

Since the LLCP is acknowledgement based communication, ISO18092 PAL exchange
function awaits response from another peer within defined time period. Thus an MCU
implementing the P2P Library sends ISO18092 request commands subsequently waits
for a response coming from Target. But the MCU is not able to listen to requests from
another Initiator. Wake Up Request and Response are not implemented in the P2P
Library.

For a developer implementing the LLCP APIs there is no way how to influence this layer.

The I1ISO18092 standard protocol parameters and values are mostly taken from NFC
Forum-TS-Digital Protocol-1.0.[14]

All the defines representing those parameter values are defined in the library folder
NxpRdLib_PublicRelease/comps/phpall18092mPl/src/Sw in file phpall18092mPIl_Sw_Int.

1ISO18092 PAL parameter component

PAL layer component uses phpal 118092mP1_Sw_DataParams_t parameter structure to store
important 1ISO18092 protocol attributes. The structure is defined in
NxpRdLib_PublicRelease/intfs/phpall18092mPI.h. Important members of the structure
are listed in Table 3. An instance of this structure is called 1ISO18092 PAL component.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 37 of 76
270111

NXP Semiconductors

3.3.2

UM10721

User manual
COMPANY PUBLIC

Table 3.

UM10721

NXP Reader Library Peer to Peer User Manual

Some parameters from ISO18092 Pal component

In the right column there are default values given by Initialization function (see section 3.3.2). Apart

from these parameters, there are few others for internal management.

parameter

pHalDataParams

description

Pointer to the HAL parameter component of
the underlaying HAL layer.

default init value

input parameter Init
(section 3.3.2)

input parameter

NFC ID3 NFC 1D 10 bytes long ATR_REQ (section 3.3.4)

DID Device identifier NULL

NAD enabled NAD enabler PH_OFF

NAD Node Address NULL

WT Waiting timeout for a target 14 ()

FSL Frame length 0 (means 64 bytes)

PNI Packet number NULL

DSi (El)i]\ﬂisacigrst%ngrf;c:tw; Parameter Select Request NULL (106kbit/s)

DRi Divisor Receive initiator NULL (106kbit/s)
Number of attempts to send a Request

bMaxRetryCount ~ despite no Response from a Target. The limit 2

is common for all the types of Requests.

Protocol initialization

This function is used to initialize phpal 118092mP1_Sw_DataParams_t parameter component.
Thus it should be called as the first among the 1SO18092 related functions (section 3.3).
It calls phpal 118092mP1_ResetProtocol () function and registers a pointer to a component of
the undelaying HAL layer.

phStatus_t phpal118092mP1_Sw_Init(

phpal118092mP1_Sw_DataParams_t * pDataParanms, [In]
uintl6_t wSizeOfDataParans, [In]
void * pHalDataParanms); [In]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

wSizeOfDataParams: size of the parameter component. It is highly recommended to
use built in C function sizeof(wSizeOfDataParams).

*pHalDataParams: pointer to the component of the underlaying hardware layer. This
component is bound to the used PCD.

returnValues:
PH_ERR_SUCCESS - Operation successful.

All information provided in this document is subject to legal disclaimers.

Rev. 1.1 — 24 July 2013
270111

© NXP B.V. 2013. All rights reserved.

38 of 76

NXP Semiconductors UM10721

3.3.3

3.34

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

Reset Protocol

This function reset values of given 1SO18092mPI PAL parameter component to zero or
default values.

Frame length FSL is set to 64 bytes.
phStatus_t phpal118092mP1_ResetProtocol(
void * pDataParams); [In]
*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.
returnValues:
PH_ERR_SUCCESS - Operation successful.
Attribute Request

This function performs ISO18092 Attribute Request command then listens to Attribute
Response from the Target. DID and NAD parameters from Target's Attribute Response
are verified whether they agree with Initiator side. Initiator timeout value is set according
to TO parameter from Attribute Response. After this function finishes successfully, in the
ISO18092 PAL parameter component there are stored parameters of NFC
communication.

In the P2P Library this function is implemented in the Discovery Loop to detect any of
NFC P2P tags either of types F or types A.

Note: This function does not allow to set either BSi or BRI attributes of the ISO18092
communication protocol since those are not supported by passive communication mode.
Setting of send and receive rates are provided by phpal 118092mP1_Psl() function.

phStatus_t phpal118092mP1_Atr(

void * pDataParams, [1n]
uint8_t * pNfcid3i, [In]
uint8_t bDid, [In]
uint8_t blLri, [In]
uint8_t bNadEnable, [In]
uint8_t bNad, [In]
uint8_t * pGi, [In]
uint8_t bGilength, [1n]
uint8_t * pAtrRes, [Out]
uint8_t * pAtrReslLength); [Out]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

*pNfcid3i: NFCID3 - randomly generated by application in case of 106kbit/s initial data
rate or NFCID2 from a target in case of 212 or 424kbit/s data rate. In the Discovery Loop
there is UID from phacDiscLoop_Sw_Int_DetectA() or ID+PM from
phacDiscLoop_Sw_Int_DetectF() used as NFCID2. The P2P Library does not provide
NFCID3 random generator.

bDid: Device Identifier. DID is used for multiple data transport protocol activation with
more than one target. Value must be in range from 0 to 14. Zero disables DID usage.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 39 of 76
270111

NXP Semiconductors UM10721

3.35

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

bLri: Length Reduction of the Transport Data on the Initiator side. Put into this parameter
one define from the third column of Table 4. If this LRI differs from one received from
Target Attribute Response, then smaller among them is used in the NFC communication.
Negotiated Length Reduction value retains as FSL in phpal 118092mP1_Sw_DataParams_t
parameter component.

Table 4. Table of Length Reduction values

The first column refers to LRi bits how they are placed in the Protocol Parameter Initiator byte or
FSL byte defined by 1ISO18092 standard.

The second column refers number of bytes that he Initiator shall send in the Transport Data field
within DEP.

In the third column there are identifiers from the P2P Library analogous to the previous columns.

G mmeemn
00 64 bytes PHPAL_118092HP1_FRAMESIZE_64
01 128 bytes PHPAL_1180921P1_FRAMESIZE 128
10 192 bytes PHPAL_1180921P1_FRAMESIZE_192
11 254 bytes PHPAL_1180921P1_FRAMESIZE_254

bNadEnable: Node Address enabler. Zero or PH_OFF disables NAD usage. PH_ON or any
nonzero value enables NAD.

bNad: Node Address used in DEP for logical addressing. This parameter is ignored if
bNadEnabled is equal to zero.

*pGi: optional General Information bytes sent by the Initiator.

bGiLength: number of General Information bytes sent by the Initiator. The upper limit is
48 bytes according [14] section 14.6.1.1. The value PHPAL_118092MP1_MAX_GI_LENGTH is
defined in NxpRdLib_PublicRelease/intfs in phpall18092mPI.h file.

*pAtrRes: pointer to Attribute Response from the Target.

*pAtrResLength: Attribute Response length.

returnValues:

PH_ERR_INVALID_PARAMETER — bDid, bLri or bGiLength value out of .valid range.
PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I0_TIMEOUT - Timeout for reply expired, e.g. target removal.
PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.
Parameter Selection

This function provides ISO18092 initiator defined Parameter Selection Request, then
listens to the Parameter Selection Response from the Target.

phStatus_t phpal118092mP1_Psl(

void * pDataParams, [1n]
uint8_t bDsi, [In]
uint8_t bDri, [In]
uint8_t bFsl); [In]
All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 40 of 76
270111

NXP Semiconductors UM10721

3.3.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

bDsi: Divisor Send (data rate Send by Target to Initiator). Only values from Table 5
(column P2P Library identifier) are legal.

Table 5. Table of Divisor Send/Receive

1SO18092 Bit rate 1SO18092
. . I . . .
1SO18092 b|.t QUratlon Kbit/s Divisor D P2P Library identifier
Divisor D
0 1 106 1 PHPAL_118092MP1_DATARATE_106
1 2 212 2 PHPAL_118092MP1_DATARATE_212
2 4 424 4 PHPAL_118092MP1_DATARATE_424

bDri: Divisor Receive (data Received by Initiator from Target). Only values from Table 5
(column P2P Library identifier) are legal.

bFsl: Frame Size of the Transport Data. Put into this parameter one P2P Library
identifier from the third column of Table 4 representing Length Reduction Initiator.

returnValues:

PH_ERR_INVALID_PARAMETER — bDsi, bDri or bFsl value out of .valid range.
PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I0_TIMEOUT - Timeout for reply expired, e.g. target removal.
PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.
Activate Card

This function just integrates Attribute request and Parameter Selection respectively.

void * pDataParams, [1n]
uint8_t * pNfcid3i, [In]
uint8_t bDid, [In]
uint8_t bNadEnable, [In]
uint8_t bNad, [In]
uint8_t bDsi, [In]
uint8_t bDri, [In]
uint8_t bFsl); [1n]
uint8_t * pGi, [1n]
uint8_t bGilength, [1n]
uint8_t * pAtrRes, [Out]
uint8_t * pAtrResLength); [Out]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

*pNfcid3i: NFCID3 - randomly generated in case of 106kbps initial data rate or NFCID2
in case of 212/424kbps data rate.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 41 of 76
270111

NXP Semiconductors UM10721

3.3.7

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

bDid: Device Identifier. DID is used for multiple data transport protocol activation with
more than one target. If zero, then DID shall be. Value must be in range from 0 to 14.

bDsi: Divisor Send (target to initiator). Only values from are allowed:
PHPAL_118092MP1_DATARATE_106

PHPAL_118092MP1_DATARATE_212

PHPAL_118092MP1_DATARATE_424

where last three number refers to data rate in kbit/s.

bDri: Divisor Receive (initiator to target). Only values from are allowed:
PHPAL_118092MP1_DATARATE_106

PHPAL_118092MP1_DATARATE_ 212

PHPAL_118092MP1_DATARATE_424

where last three number refers to data rate in kbit/s.

bFsl: Frame Length of the Transport Data. Put into this parameter one define from the
third column of Table 4.Frame Length table of values

bNadEnable: enable usage of Node Address. If equal to zero then NAD is disabled.

bNad: Node Address used in DEP for logical addressing. This parameter is ignored if
bNadEnabled is equal to zero.

*pGi: optional General Information bytes sent by the Initiator.

bGiLength: number of General Information bytes sent by the Initiator. Must be less or
equal to PHPAL_118092MP1_MAX_GI_LENGTH defined in NxpRdLib_PublicRelease/intfs in
phpall18092mPl.h file.

*pAtrRes: pointer to Attribute Response from the Target.

*pAtrResLength: Attribute Response length.

PH PH_ERR_INVALID_PARAMETER —bDid, bDsi, bDri or bFsl value out of .valid range.
PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I10_TIMEOUT - Timeout for reply expired, e.g. target removal.
PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.

Deselect

This function performs ISO18092 defined either Deselect Request or Release Request,
then waits for either Deselect Response or Release Response.

phStatus_t phpal118092mP1 Deselect(
void * pDataParams, [1n]
uint8_t bDeselectCommand); [1n]
*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

bDeselectCommand: Request to send, either PHPAL_118092MP1_DESELECT_DSL for Deselect
command or PHPAL_118092MP1_DESELECT RLS for Release command.

returnValues:

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 42 of 76
270111

NXP Semiconductors UM10721

3.3.8

3.3.9

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I10_TIMEOUT - Timeout for reply expired, e.g. target removal.
PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.
Presence check

This function performs presence check for current target whether it is still in the RF field
range. Firstly PCD sends 1SO18092 defined Supervisory Attention PDU, then listens to
Supervisory Attention Response from the Target.

This function performs 1ISO18092 defined Data Exchange Request, then waits for Data
Exchange Response. All the LLCP packets communicated between the initiator and the
target are transmitted by this function.

phStatus_t phpal118092mP1_PresCheck(

void * pDataParams); [1n]
*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.
returnValues:
PH_ERR_SUCCESS - Operation successful.
PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I0_TIMEOUT - Timeout for reply expired, e.g. target removal.

PHPAL_118092MP1_ERR_RECOVERY_FAILED - Recovery failed, target does not respond any
more.

PH_ERR_SUCCESS - Operation successful.

Other - Depending on implementation and underlaying component.

Exchange

This function performs 1ISO18092 defined Data Exchange Request, then waits for Data
Exchange Response. All the LLCP packets communicated between the initiator and the
target are transmitted by this function.

phStatus_t phpal118092mP1_Exchange(

void * pDataParams, [1n]
uintl6_t wOption, [1n]
uint8_t * pTxBuffer, [In]
uintl6_t wTxLength, [In]
uint8_t ** ppRxBuffer, [Out]
uintl6_t * pRxLength); [Out]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

wOption: option parameter for internal method how to send DEP frame sequence. OR
wOption parameter with any of above defines.

PH_EXCHANGE_BUFFERED BIT, PH EXCHANGE LEAVE BUFFER BIT are advanced buffer methods
related to HAL buffer.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 43 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

PH_EXCHANGE_TXCHAINING, PH_EXCHANGE_RXCHAINING, PH_EXCHANGE_RXCHAINING_BUFSIZE mean
ISO18092 frame chaining. But this does not need to be set. If the data to be exchanged
is more than Frame Size configured by phpal 118092mP1_Atr() Length Reduction or
phpal118092mP1_Psl(), this function performs the chaining automatically. In result frame of
any size is transmitted correctly.

PH_EXCHANGE_DEFAULT is sufficient to perform NFC P2P correctly.

For better explanation see NxpRdLib_PublicRelease/types/ph_Status.h.
*nTxBuffer: data to transmit from the initiator to target.

wTxLength: length of data to transmit.

*ppRxBuffer: pointer to received data.

*pRxLength: number of received data bytes.

returnValues:

PH_ERR_INVALID_PARAMETER — invalid flag bit in xOption used.
PH_ERR_PROTOCOL_ERROR - Received response is not ISO/IEC 18092 compliant.
PH_ERR_I0_TIMEOUT - Timeout for reply expired, e.g. target removal.

PHPAL_118092MP1_ERR_RECOVERY_FAILED - Recovery failed, target does not respond any
more.

PH_ERR_SUCCESS - Operation successful.
Other - Depending on implementation and underlaying component.
3.3.10 Get serial Number

This function retrieves the serial number NFCID3 from the PAL component. The serial
number must have been previously retrieved by phpal 118092mP1_Atr() function.

phStatus_t phpal118092mP1_GetSerialNo(
void * pDataParams, [In]
uint8_t * pNfcld30ut); [Out]
*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.
*pNfcld30ut: the latest NFCID3 registered into PAL pDataParams component.
returnValues:
PH_ERR_SUCCESS - Operation successful.
PH_ERR_USE_CONDITION — NFCID3 value is invalid.
3.3.11 Get protocol parameter

Developer may use this function to get parameter value of the 1ISO18092 PAL

component.

phStatus_t phpal118092mP1_GetConfig(
void * pDataParams, [1n]
uintl6_t wConfig, [In]
uintl6_t wvalue); [Out]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 44 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.3.12

3.4

3.4.1

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

wConfig: identifier of the parameter to be read from phpal 118092mP1_Sw_DataParams_t
parameter component. Parameters that can be read are listed in Table 6.

Table 6. P2P Library identifiers of the ISO18092 parameters

Parameter ;SC?;:;?]Z P2P Library identifier Maximal value
Packet number PNi PHPAL_118092MP1_CONFI1G_PACKETNO 3

Device ID DID PHPAL_118092MP1_CONFIG_DID 14

Node Address NAD PHPAL_118092MP1_CONFIG_NAD 255

Target Timeout ~ TO PHPAL_118092MP1_CONFIG_WT 14

Frame Length FSL PHPAL_118092MP1_CONFIG_FSL 3

Retry Count PHPAL_118092MP1_CONFIG_MAXRETRYCOUNT 5

wValue: value of the read parameter.

returnValues:

PH_ERR_UNSUPPORTED PARAMETER — unknown parameter wConfig or can not be modified.
PH_ERR_SUCCESS - Operation successful.

Set protocol parameter

Developer may use this function to set parameter value of the ISO18092 PAL
component. In addition, validity check of parameter value is done internally. The updated
value shall be afterward used in the communication protocol.

phStatus_t phpal118092mP1_SetConfig(

void * pDataParams, [1n]
uintl6_t wConfig, [In]
uintl6_t wvalue); [In]

*pDataParams: pointer to phpal 118092mP1_Sw_DataParams_t parameter component.

wConfig: identifier of the parameter to be set in phpal 118092mP1_Sw_DataParams_t
parameter component. Parameters that can be set are listed in Table 6.

wValue: value to be written into parameter. See value limits in Table 6 for each
parameter.

returnValues:

PH_ERR_INVALID PARAMETER — illegal value of parameter wvalue (maximal values in Table 6).
PH_ERR_UNSUPPORTED PARAMETER — unknown parameter wConfig or can not be modified.
PH_ERR_SUCCESS - Operation successful.

OSAL

OSAL module provides basic OS services like dynamic memory allocation and handling
hardware timers.

Allocate memory

This function allocates free memory from heap segment. If desired amount of free
memory found successfully, pointer to allocated memory is returned. In fact, the build in
C function malloc() from stdlib.h is called.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 45 of 76
270111

NXP Semiconductors UM10721

3.4.2

3.4.3

3.44

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

phStatus_t phOsal _GetMemory(

void * pDataParams, [In]
uint32_t dwLength, [In]
void ** phem); [Out]

*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.
dwLength:

*nMem: pointer to memory allocated.

returnValues:

PH_ERR_SUCCESS - Operation successful.

PH_ERR_RESOURCE_ERROR - Requested memory space allocation failed.

Free memory

This function frees previously allocated memory. In fact, the build in C function free() is
called.

phStatus_t phOsal_FreeMemory(
void * pDataParams, [1n]
void * ptr); [1n]
*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.
*ptr: pointer to memory to be freed.
returnValues:
PH_ERR_SUCCESS - Operation successful.
Timer services

There are two 32 bit hardware timers in the LPC1227 microcontroller. The OSAL module
provides utilization of HW timers in two ways: SW time delay and general timer usage

General Timer usade

The P2P Library uses 32 bit hardware timers of LCP1227 to cause forced time delay in
thread and one timer interrupt events.

The Discovery Loop performs time delay after setting the reader chip for particular NFC
protocol or for guard interval between detection of B and F tag type.

Before the LLCP link activation (section 3.2.7.3) there must be at least one hardware
timer free for the purpose of LLCP SYMM timer. The timer is released by link
deactivation — phlnLIcp_Deactivate (section 3.2.7.4).

Note: On the PAL and HAL layer while the initiator waits for the response from the
Target, instead of MCU timers there are internal hardware timers of attached reader chip
used for measuring the timeouts defined by particular NFC protocol.

Timer Init

This function is necessary prerequisite for any timer usage. Firstly it makes software
configurations. It initiates timer parameter component phOsal_Lpcl12xx_DataParams_t and
internal software timer structures aimed for storage of important information of particular

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 46 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

hardware timers. Once this function executed all the timers related can be run. After all
the software issues initiated, timer interrupts are enabled.

phStatus_t phOsal _Lpcl2xx_Timer_Init(
phOsal_Lpcl2xx_DataParams_t * pDataParams); [In]
returnValues:
PH_ERR_SUCCESS - Operation successful.
3.4.5 Timer Create

This function assigns an unused hardware timer of MCU LPC1227. Number of hardware
timers that can be assigned this way is limited to 2. If both the timers are currently in use,
then no timer is assigned. Once the timer created, it can be used for counting by
phOsal_Timer_Start() and phOsal_Timer_Stop(). Counterpart to this function is
phOsal_Timer_Delete (section 3.4.8), which releases the timer as free.

Internally, an array is maintained which stores timers along with information as to
whether the timer is available or not. This function searches a free timer that is available
and returns the timer ID.

Note: Timer 0 is used by the NXP P2P library as LLCP LTO timer.
phStatus_t phOsal_Timer_Create(
void * pDataParams, [1n]
uint32_t *timerld); [Out]
*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.

*timerld: ID of assigned timer. If no free timer has been found, then this parameter is
returned with value PH_OSALNFC_INVALID TIMER_ID equal to OXFFFF.

returnValues:
PH_OSAL _ERR_NO_FREE_TIMER - Both the timers are currently in use.
PH_ERR_SUCCESS - Operation successful.

3.4.6 Timer Start

Timer starts counting. When the timer expires after given time amount, then given
application callback function is executed. The counterpart to this function is

phOsal _Timer_Stop() function (section 3.4.7). The timer must be created by
phOsal_Timer_Create() (section 3.4.5) before started or stopped timer may be restarted.

phStatus_t phOsal Timer_Start(

void * pDataParams, [1n]
uint32_t dwTimerld, [In]
uint32_t dwRegTimeCnt, [In]
ppCallBck_t pApplication_callback, , [In]
void * pContext); , [In]

*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.
*timerld: valid timer ID as returned by phOsal _Timer_Create().

dwRegTimeCnt: required amount of time in MS, after which the timer expires.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 47 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

3.4.7

3.4.8

3.4.9

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

pApplication_callback: pointer to the callback function that will be called once timer
expires.

The user defined function must satisfy the prototype of callback function:
void (*ppCallBck_t)(uint32_t Timerld, void *pContext);

*pContext: argument with which the call back function will be called.
returnValues:

PH_OSAL_ERR_INVALID TIMER — requesting non existing timer or the timer has not been
created before.

PH_ERR_SUCCESS - Operation successful.
Timer Stop

Stop the given timer. This function does not free the timer. It only disables the timer. Use
phOsal_Timer_Delete() to free the timer. The timer may be restarted by
phOsal_Timer_Start().

phStatus_t phOsal _Timer_Stop(
void * pDataParams, [1n]
uint32_t dwTimerld); [In]
*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.
*timerld: ID of the timer to be stopped.
returnValues:
PH_OSAL_ERR_INVALID_TIMER — Attempt to stop non existing timer.
PH_ERR_SUCCESS - Operation successful.
Timer Delete

This function returns the timer with given ID to the free timer pool. Content of the timer
component is completely forgotten (erased). In addition, if the timer is running , this
function stops it also therefore it does not need to be stopped by phOsal_Timer_Stop().
This function is counterpart to phOsal_Timer_Create() (section 3.4.5).

phStatus_t phOsal_Timer_Delete(
void * pDataParams, [1n]
uint32_t dwTimerld); [In]
*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.
*timerld: ID of the timer to be released to free timer pool.
returnValues:
PH_OSAL_ERR_INVALID_TIMER — attempt to delete non existing timer
PH_ERR_SUCCESS - Operation successful.
Timer Wait

This function freezes the thread for a given amount of time determined by both the value
and time unit. While the thread is being frozen nothing else is being executed within the
thread. This runs function differs from phOsal_Timer_Start(). The timer triggered by

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 48 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

phOsal_Timer_Start() function runs concurrently with the thread without affecting
execution of the thread (unless timer expiration).

Note: The NXP P2P Library uses always uses hardware timer 1 for thread wait delay
performed by this function. The hardware timer is not even checked whether free or
currently used for any other purpose.

phStatus_t phOsal_Timer_Wait(

void * pDataParams, [1n]
uint8_t bTimerDelayUnit, [In]
uintl6_t wbelay); [In]

*pDataParams: pointer to phOsal_Lpcl12xx_DataParams_t parameter component.

bTimerDelayUnit: time units. Identifier PH_0SAL_TIMER_UNIT_MS for milliseconds and
PH_OSAL_TIMER_UNIT_US for microseconds.

wDelay: amount of time. This parameter together with bTimerDelayUnit determines the
length of delay.

returnValues:
PH_ERR_SUCCESS - Operation successful.

4. Sample code

4.1
41.1

UM10721

User manual
COMPANY PUBLIC

The section 4.1 shows how the P2P Library APIs described in sections 3.2.7 and 3.2.9
can be implemented into functions of an application layer. There fragments of C code
taken from SnepClient.c.

Functions from section 4.1 are implemented into the SNEP client application. The SNEP
client performs only Put request [15]. It is fully described in section 4.1. The SENP server
may be performed by any NFC mobile device with Android platform (4.0 and later). In
result, after application runs a picture should be received and displayed on mobile
devices’ screen.

In the entire section 4 we will use several terms representing only two devices. One
device is board with LPC1227 with reader chip extension (Blueboard 2.1). Name we use
to point particular device depends on layer point of view s presented in Table 7.

Table 7. Two peers and their names as called in this section

point of view peer's name
hardware/device mobile device (with Android) LPC1227 (MCU)
SNEP client server

LLCP layer local remote
1ISO18092 initiator Target

Implementation of the LLCP API

Global variables

Firstly there will be introduced global variables that shall be used by the SNEP client and
underlaying LLCP layer. All the global variables from this section are declared in
src/SnepClient.c.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 49 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

4.1.2 Data structures used by the P2P library

Components (instances) of the data structures used by the P2P Library need to be
declared.

phNfc_sData_t sData;

phFriNfc_LlcpTransport_t LlcpTransport; /**< LLCP transport layer component */
phFriNfc_Llcp_sLinkParameters_t LinkParam; /**< LLCP link parameter */
phFriNfc_Llcp_t Llcp; /**< LLCP pointer */

phHal _sRemoteDevInformation_t Remotelnfo; /**< Remote Info component */

phLibNfc_Llcp_sSocketOptions t sOptions = {128, 1}; /**< LLCP options */
Working buffer shall be assigned to a socket.

phNfc_sData_t sWorkingBuffer = {bLLCP_WorkingBuffer,
sizeof(bLLCP WorkingBuffer)};

LLCP basic (uppermost) parameter component see section .
phinLlcp_Fri_DataParams_t InLIcpDataparams;
Component of the socket. Shall be used for socket client.
phFriNfc_LlcpTransport_Socket_t *pSocket_Client;

ISO18092 parameter component (see section).

phpal118092nP1_Sw DataParams_t pal118092mPI; /**< PAL MPI component */

OSAL component necessary for usage of the SYMM timer.
phOsal_Lpcl2xx_DataParams_t osal; /**< 0SAL component holder */
phacDiscLoop_Sw_DataParams_t discLoop; /**< Discovery loop component */

4.1.3 Buffers

SNEP buffers are not mentioned in this section but they are used in the SNEP client

application.

uint8_t bSnepRx[8]; /**< SNEP RX buffer */
uint8_t bSnepTx[128]; /**< SNEP TX buffer */
uint8_t bRxBuffer[256]; /**< LLCP TX buffer */
uint8_t bTxBuffer[256]; /**< LLCP RX buffer */

Working buffer is shall be assigned to socket communicating with the SNEP server via. It
is dedicated for temporary storage of incoming data. Pointer to the working buffer
structure needs to be passed as the fourth input parameter into
ph_InLlcp_Transport_Socket() (see section 3.2.9.1).

uint8_t bLLCP_WorkingBuffer[800]; /**< LLCP working buffer */

phNfc_sData t sWorkingBuffer = {bLLCP WorkingBuffer, sizeof(bLLCP_WorkingBuffer)};
4.1.4 Application layer LLCP flags

Application layer LLCP flags are used indicate a state that the LLCP layer is currently in.

This flag shall be modified at the beginning of the link initialization.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 50 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

4.1.5

4.1.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

uint8_t Llcp_running; /**< Flag indicating whether LLCP
is running OR not */

This flag is shall be modified by application connect CB function.

uint8_t SocketConnected; /**< Flag indicating socket
connection */

This flag shall be modified immediately after LLC link activation

uint8_t Link Activated = 0; /**< Flag indicating link
activation */

LLC link pre step actions

After initial hardware configurations the Discovery loop needs to detect whether there is
any NFC P2P device in the RF field. To perform detection it transmits Attribute Request,
then listens for any Attribute Response. In target’s Attribute Response there is
information about link parameters mentioned in [3] in section 6.2.3.1. During link
activation procedure the NXP P2P Library looks for this data in special structure
Remotelnfo. If there are some parameters, the Library activates the LLC link with those
parameters rather than doing PAX exchange.

Remotelnfo.SessionOpened = 1;
Remotelnfo.RemDevType = phNfc_eNfcIP1 Target;

Remotelnfo.RemoteDevinfo.NfcIP_Info.ATRInfo_Length =
(discLoop.sTypeFTargetinfo.sTypeF_P2P.bAtrResLength - 17);

memcpy(RemotelInfo.RemoteDevinfo.NfclP_Info.ATRInfo,
&discLoop.sTypeFTargetinfo.sTypeF_P2P.pAtrRes[17],
(discLoop.sTypeFTargetinfo.sTypeF P2P.bAtrResLength - 17));

Initializing the LLC link

Following sample code presents how to activate LLC link. After activation no transport
packet can be sent, because LLCP transport socket has not been connected to a DSAP.

phStatus_t NFC_LLCPInitialize(void) {
uint32_t DummyContext;
phStatus_t status = PH_ERR_SUCCESS;

LIcp_running = TRUE;

MIU is limit for maximal length of one LLCP frame. Consequently this determines
length of SNEP fragments.

128;
100;
LinkParam.wks = 0x0001;

LinkParam.option = 0x02;

LinkParam.miu

LinkParam. lto

This function initiates parameter component. It stores important pointers to
underlaying components.

status = phinLlcp Fri_Init(

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 51 of 76
270111

NXP Semiconductors UM10721

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

&InLlIcpDataparanms,
sizeof(InLIcpDataparams),
&licp,

&LinkParam,
&LlcpTransport,
&Remotelnfo,
bTxBuffer,
sizeof(bTxBuffer),
bRxBuffer,
sizeof(bRxBuffer),
&pal118092mPl);

Complete link activation consists of sequence of three functions phInLlcp_Reset(),
phinLIcp_ChkLlcp(), phInLlcp_Activate().

status = phinLlcp_Reset(
&InLIcpDataparams,
&LinkCB,
&DummyContext);

CHECK_SUCCESS(status);

This function resets the Transport layer — base of all the socket related functions.
status = phlnLlcp_Transport_Reset(&InLIcpDataparams);

CHECK_SUCCESS(status);

The OSAL component osal is necessary for usage of LLCP hardware timers which are
used by delay function and SYMM LLCP timer. The component must be assigned
before phinLlcp_Activate() function called.

Llcp.osal = &osal;

status = phinLlcp_ChkLIcp(
&InLlIcpDataparanms,
&CheckCb,
(void*) &DummyContext);
CHECK_SUCCESS(status);

status = phinLlcp_Activate(&InLIcpDataparams);
CHECK_SUCCESS(status);

if (status == NFCSTATUS_SUCCESS) {

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 52 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

Link_Activated = 1;
}

return status;

}

4.1.7 Establishing the LLCP connection

UM10721

User manual
COMPANY PUBLIC

All the data packets between the MCU and the mobile device are exchanged via LLCP
transport sockets. After the LLC link activation, such LLCP socket needs to be created by
phinLlcp_Transport_Socket() function for further LLCP communication.

Once the socket created it sends connection request to the mobile device. Into psUri
there is passed the string "urn:nfc:sn:snep” which means SNEP server service . The
string is sent together with the connection request saying that the local requests the

remote for providing SNEP server service.

static phStatus_t NFC_LLCPCreateClient(phFriNfc_LlcpTransport Socket t **ppSocket,
phNfc_sData_t *psUri) {

phStatus_t status = NFCSTATUS_SUCCESS;
uint32_t DummyContext;

status = phlnLlcp_Transport_Socket(
&InLIcpDataparanms,
phFriNfc_LlcpTransport_eConnectionOriented,
&sOptions,
&sWorkingBuffer,
ppSocket,
&ErrCh,
(void*) &DummyContext);
CHECK_SUCCESS(status);

This assignment totally redundant, because later phinLIcp_Transport_ConnectByUri()
function implements service discovery protocol within.

(*ppSocket)->socket_dSap = 1;
SocketConnected = FALSE;

status = phlnLlcp_Transport_ConnectByUri(
&InLIcpDataparanms,
*ppSocket,
psUri,
&ConnectCh,
(void*) &DummyContext);

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 53 of 76
270111

NXP Semiconductors UM10721

41.8

4.1.9

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

CHECK_SUCCESS(status);

Program flow may be halt by bodyless loop, until SocketConnected flag modified within
the connect CB function. LIcp_running allows passing through since link activation.

while('SocketConnected && Llcp_running);

return status;

}
Preparation of NDEF message

The sample application builds SNEP message and its header as well. It also
encapsulates NDEF message and header into a SNEP message. All the user needs to
do is to choose particular NDEF message before compilation as described in the next
section 4.1.9. The chosen NDEF message shall be transmitted to Android SNEP server.

Choosing a file as NDEF message

By default the software sends the picture of NXP loge in JPEG format. In the source
code of SNEP client project there are few files prepared tables in separate header files.

Table 8. Table of files that are part of sample application written as C headers
Information from the last two columns is necessary for choosing the right line from n_mess[] array —
see bellow.

Content Header name ND.EF message _File t_y_pe
identifier identifier
PNG image c_tablepng.h NDEF_TYPE_IMAGE NDEF_IMAGE_PNG
QR code of NXP logo c_tableQR.h NDEF_TYPE_IMAGE NDEF_IMAGE_PNG
Image of NXP logo c_tablenxp.h NDEF_TYPE_IMAGE NDEF_IMAGE_JPEG
Long text message c_tabletxt.h Tt LANG_EN

Because of lack of flash memory space in LPC1227 the developer is allowed to choose
just one file here, otherwise the compiler returns error “redefinition of ‘c_table™ due to
multiple declarations of the c_table[].

By doing some easy modifications in ndef_message.c file (explained below) the user can
choose among several predefined NDEF messages like text messages, URI links and
JPEG or PNG images. For example to choose picture of PNG uncomment the line
#include <c_tablepng.h> and comment all the other lines referring to ¢c_table[].

#include <c_tablepng.h>
//#include <c_tableQR.h>
//#include <c_tablenxp.h>
//#include <c_tabletxt.h>

Then choose the correct file type and format in ndef_message.c. Get this information
from Table 8 from the same row as the PNG image file. Uncomment the line with
NDEF_TYPE_IMAGE and NDEF_IMAGE_PGN and let other lines commented. Thanks to this option
correct NDEF head is built so an Android application can recognize type of the incoming
NDEF message.

NDEF_messages n_mess[]={

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 54 of 76
270111

NXP Semiconductors UM10721

4.1.10

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

/* type, parameter, string */
// {NDEF_TYPE_IMAGE,NDEF_IMAGE_JPEG,c_table, sizeof(c_table)},
{NDEF _TYPE_IMAGE,NDEF_IMAGE_PNG,c_table, sizeof(c_table)},
// {"T", LANG_NO, textl, sizeof(textl)},
/l {"T", LANG_EN, c_table, sizeof(c_table)},
/l {"T", LANG_EN, text6, sizeof(text6)},
// {"T", LANG_GR, text3, sizeof(text3)},
/l {"T", LANG_FR, text4, sizeof(textd)},
/7 {*U", NDEF_URI_WwWW, uri_11, sizeof(uri_11)},
/7 {*U", NDEF_URI_WWW, uri_12, sizeof(uri_12)},
/7 {*U", NDEF_URI_WWW, uri_13, sizeof(uri_13)},
/7 {*U", NDEF_URI_HTTP, uri_13, sizeof(uri_13)},
[/l {"U", NDEF_URI_TEL, uri_52, sizeof(uri_52)},
b

Each time you intend to send another NDEF message than previously, the source code
must be recompiled.

Sending a fragment of SNEP message

SNEP client uses LLCP Send API phinLIcp_Transport_Send() function which performs
sending a SENP fragment as | PDU frame to the SNEP server.

Routine for sending an | PDU frame via LLCP transport socket:
phStatus_t NFC_LLCPSend(phFriNfc_LlcpTransport_Socket t *pSocket,

uint8_t *buf, uint32_t len,
pphFriNfc_LlcpTransportSocketSendCh_t pSndCh)

static phNfc_sData_t sData;
phStatus_t status;

/* set the call-back function */

if(pSndCh == NULL) pSndCb = &SendCh;

sData.buffer = buf;
sData.length = len;
Using the LLCP API for sending via LLCP transport socket (see section 3.2.9.10):
status = phlnLlcp_Transport_Send(&InLlIcpDataparams, pSocket, &sData,
pSndCh, pSocket);
CHECK_SUCCESS(status);

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 55 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

return status;
}
4.1.11 Receiving of SNEP response

The SNEP client needs to receive SNEP messages from the SNEP server. Particularly
after sending the first SNEP fragment receiving of Continue SNEP message from the
SNEP server is expected. After sending the last fragment the SNEP Success is
expected. Any SNEP message/fragment in server — client communication it is | PDU from
the LLCP layer’s point of view.

Implementation of routine for receiving | PDU frame via LLCP transport socket may look
as one underneath.

phStatus_t NFC_LLCPRecv(
phFriNfc_LlcpTransport_Socket_t *pSocket,
phNfc_sData_t *psData,
uint8_t *buf,
uint32_t len,
pphFriNfc_LlcpTransportSocketSendCh_t pRecvCh)

phStatus_t status;

/* set the call-back function */

if(pRecvCh == NULL) pRecvCb = &RecvCbh;

psData->buffer = buf;

len;

psData->length

status = phlnLlcp_Transport Recv(
&InLlIcpDataparanms,
pSocket,
psData,
pRecvCh,
(void*)psData);
CHECK_SUCCESS(status);

return status;

}

In psData->buffer there is a SNEP response from the SNEP server. It can be compared
with codes of defined SNEP responses.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 56 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

41.12

4.2
4.2.1

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

Receiving of the LLCP | frame is a little different from as one would expect according
LLCP defined by the NFC forum. There is a bug in November 2012 Release NXP Reader
Library P2P which causes the receiving need to be subsequently followed by the
“Dummy send”. The bug is fixed in July 2013 release. Receiving works in the norma
way, just calling phinLlcp_Transport_Recv() shall be sufficient for receiving | PDU.

Entire receive routine looks like following:
Setting the receive busy status flags before reception itself.

status = NFC_LLCPRecv(pSocket Client, &sData, bSnepRx, sizeof(bSnepRx),
NULL);

status = NFC_LLCPSend(pSocket Client, NULL, NULL, &SendNULLCb);
Closing the connection

After data transmission complete the LLCP socket connection with SNEP server service
on the remote is no more needed for this purpose. The LLCP socket should be
disconnected in the correct way and then closed — socket component cleared. This
function shall be also when the any other than SNEP Continue or Success response
from the SENP server received.

phStatus_t NFC_LlcpClose(void) {
phStatus_t status = PH_ERR_SUCCESS;
uint32_t DummyContext;

status = phlnLlcp_Transport_Disconnect(
&InLlIcpDataparanms,
pSocket Client,
DisconnectCh,
(void*) &DummyContext);

status = phlnLlcp_Transport_Close(
&InLlIcpDataparanms,
pSocket Client);
CHECK_SUCCESS(status);

return status;

}
SNEP client

How it works

Briefly, SNEP client sends initial fragment of length 128 bytes. Then it is waiting for a
SNEP response from the server. Because in SNEP header it is declared longer SNEP
message than one fragment, the server should response with Continue SNEP message.
The SNEP client (MCU) can go on with sending rest of the SNEP message without

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 57 of 76
270111

NXP Semiconductors UM10721

4.2.2

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

getting any acknowledgements form the mobile device. As soon as entire SNEP
message transmitted, the SNEP client shall receive SNEP Success from the mobile
device. Or first sending shall be started only after socket connected.

The SNEP client is represented by the uppermost function SNEPClientDemo(). The entire
SNEP client source code is in SnepClient.c. SNEP client is implemented like state
machine with several states defined in SnepClient.h header file. For each state of the
SNEP client there is the specific function-handler managing the particular state. The
handlers are described in sections 4.2.6 - 4.2.13.

SNEP client parameter structure

The SNEP client uses one parameter structure SnepClientData_t defined in SnepClient.h
that holds state of the SNEP client and four flags. The flags should avoid the overlapping
of sending and receiving of SNEP fragments and responses.

SnepClientData_t consists of 6 members

->Hstate: states of the SNEP client valid values are defined by the HandleState_t
enum in SnepClient.h. The states are also included in the flowcharts in Fig
5 - Fig 11. Each flowchart begins in one particular (input) state and end at
one only or one among multiple possible output states.

->SafetyCnt: Safety Counter which should avoid infinite loops when an unintended
bhehaviour on the LLCP layer occurs

->hSendStart: Send start flag ensures the same SNEP is not sent repeatedly as the
SNEP client loops in a state. See implementation of this flag in
HandleSnepFirst()Fig 6 and HandleSendNext()Fig 9 functions.

Legal values:

SEND_START indicates that sending of the SNEP fragment or request has just
been started

SEND_NOT_START indicates that sending of a SNEP fragment or request has
not been started yet. This value is set inside the application callbacks
SendCh() and SendNULLCh().

->bSendFinish:Send finish flag ensures that sending is not started until previous sending
finished. See implementation of this flag in HandleSnepFirst()Fig 6 and
HandleSendNext () Fig 9 functions.

Legal values:

SEND_FINISHED indicates that sending of a SNEP fragment has just been
completed. This value is set inside the application callbacks SendCh() and
SendNULLCh().

SEND_NOT_FINISHED indicates that sending of a SNEP fragment is currently in
progress.

Note: This flag is implemented in the application layer (SNEP client) and it
is not directly influenced by the LLCP layer. Alternatively this could be
implemented by return value NFCSTATUS_REJECTED of
phinLlcp_Transport_Send() (see section 3.2.9.10)

->bRecvStart: Receive start flag ensures the receive procedure (see section 4.1.11) is
not when one SNEP response is already expected to be received. See

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 58 of 76
270111

NXP Semiconductors UM10721

4.2.3

4.2.3.1

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

implementation of this flag in HandleSendFirts(),Fig 6 HandleSendNext() Fig
9 and HandleRecv() Fig 7 functions.

Legal values:

RECV_START indicates that the SNEP client is ready to receive a SNEP
response.

RECV_NOT_START indicates that the application layer has not been set yet to
listen to SNEP responses. This value is set inside the application callbacks
RecvCh().

Note: This flag is implemented in the application layer (SNEP client) and it
is not directly influenced by the LLCP layer. Alternatively this could be
implemented by return value NFCSTATUS_REJECTED of
phinLlcp_Transport_Recv() (see section 3.2.9.11)

->bRecvFinish: Receive finish flag indicated that the SNEP client has already received
SNEP response from the SNEP server. See implementation in
HandleRecv() Fig 7 .

Legal values:
RECV_FINISHED indicates that the SNEP client has already received the

response from the server. This value is set inside the application callbacks
RecvCh().

RECV_NOT_FINISHED indicates that the SNEP client has not received the
response from the server yet.

Application callbacks

As mentioned in the entire document, the NXP P2P Library notifies upperlaying
application via callback functions. We define simple callback functions modifying binary
flag within. The flag shall indicate a state the application is currently in (see flags of the
implemented SNEP client in section 4.2.2). In send callback 4.2.3.1 and receive callback
4.2.3.2 and there are modified flags from dedicated SNEP client parameter structure
4.2.2. In connect callback and link status callback there are modified flags (section 4.1.4)
defined as global variables.

Application callback for send

The socket send callback function shall be called after the Library completes the sending
operation.

static void SendCb (void* pContext, phStatus_t status) {
sSnepClientData.bSendStart = SEND_NOT_START;
sSnepClientData.bSendFinish = SEND FINISHED;

}

Once bSendStart flag cleared, performing next send operation on the application layer
(see Fig 6 or Fig 9). Once bSendFinished flag is set, on the application layer (SNEP client)
there is one of two conditions fulfilled to perform listening to incoming SNEP responses
(see Fig 6 or Fig 9).

The socket send callback function needs to be passed as parameter to
ph_InLlcp_Transport_Send() (see section 3.2.9.10).

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 59 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

When send operation is completed by the NXP P2P Library the Send socket callback is
set to NULL thus need to be set with a next Transport Send API like input parameter (see
section 3.2.10.7)

4.2.3.2 Application callback for receive

The receive callback function shall be called as soon as | PDU frame receive (all the
SNEP messages/fragments are | PDUs). Modifying the receive flags enables performing
next receive operation on the application layer (see Fig 6 or Fig 9).

static void RecvCb (void* pContext, phStatus_t status) {
sSnepClientData.bRecvStart = RECV_NOT_START;
sSnepClientData.bRecvFinish = RECV_FINISHED;

}

Once hRecvStart flag cleared, on the application layer (SNEP client) there is one of two
conditions fulfilled to perform listening to incoming SNEP responses (see Fig 6 or Fig 9).

Once bRecvFinished flag is set, SNEP response can be tested (see Fig 7 and Fig 8).

The socket send callback function needs to be passed as parameter to
ph_InLlcp_Transport Recv() (see section 3.2.10.8).

When send operation is completed by the NXP P2P Library the socket receive socket
callback is set to NULL thus need to be set with a next Transport Send API like input
parameter (see section 3.2.10.7).

4.2.4 SNEP client pre step initialization

First of all at the beginning of the SNEPClientDemo() there is NFC_LLCPInitialize(void)
called which performs initialization of the LLCP layer and the LLC link activation (see
section 4.1.6). Afterward the first function of SNEP client state machine -
HandleSnepStart() (see section 4.2.6) can be run.

4.2.5 Generic state handler
phStatus_t SnepClientHandle(SnepClientData_t *pClientData);

The generic handler function that integrates all the particular handlers according to a
current SNEP state it runs a particular handler.

4.2.6 Start the SNEP client
phStatus_t HandleSnepStart(SnepClientData_t *pClientData);

This function connects the local to the remote on LLCP layer and concurrently the local
requests from the remote to provide SNEP server service specified by the string
“urn:nfc:sh:snep”. If the request accepted, the connection on LLCP layer is established
and on the application layer the local becomes the SNEP client connected to the SNEP
server. From this point the client is ready to send the PUT request — the first fragment of
SNEP message (see section 4.2.7).

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 60 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

4.2.7

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

(5N EP _START
N,

Set the Service Name |
{5M = "urninfessnisnep”)

— —r

| | NFC_LLCPCreateClient() I j
Y

-

; ey
N = :
i
(_SEND_FIHST) [ERROR)

Fig 5. Flowchart of the HandleSnepStart()

See implementation of the LLCP API functions in section 4.1.7. HandleSnepStart()
converts the service name string “urn:nfc:sh:snep” to the correct data type — see input
arguments of NFC_LLCP_CreateClient() in section 4.1.7.

Sending the first SNEP fragment
phStatus_t HandleSendFirst(SnepClientData_t *pClientData);

The first SNEP fragment is little different from the rest of the SNEP message. There is
encapsulated SNEP header and at the beginning of the SNEP payload there is NDEF
header of the NDEF message placed. Both the headers must be assembled. It is obvious
that, content of both the payloads depends on data intended to be transmitted — see
Choosing a file as NDEF message in section 4.1.9. Both the headers (length attribute)
depend on size of the chosen file, additionally the NDEF header carries the information
about type of the file. Therefore the first SNEP fragment is considered as special state of
the SNEP client state machine.

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Rev. 1.1 — 24 July 2013 61 of 76
270111

NXP Semiconductors UM10721

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

Fig 6. Flowchart of HandleSendFirst()

The HandleSendFirst() is designed be implemented in loop, so it is called repeatedly. In
the first run it passes only through the upper part of the diagram only which prepares the
SNEP message and sends the first fragment containing the PUT request. Since then the
upperpart is” locked” — shall not be executed when the handler called. Then it can be
called several times without executing the second part (after send_finished decision). As
soon as the sending operation on the LLCP layer completed, bSendFinish flag shall be set

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 62 of 76
270111

NXP Semiconductors UM10721

4.2.8

UM10721

User manual
COMPANY PUBLIC

NXP Reader Library Peer to Peer User Manual

by send application callback SendCh() (it is not in the picture) and send_finished decision
shall succeed. Assuming no error occurred during the LLCP send API at recv_started the
client shall run NO option in the first run immediately after send_finished YES. The client
shall get ready the reception on the LLCP (“DummySend” is clarified in section 4.1.11).
Since then the client’s state is set to receive — SNEP response from the server is
expected (see section 4.2.8).

Handling of the SENP response
phStatus_t HandleRecv(SnepClientData_t *pClientData);

As soon any SNEP Response from the SNEP server received, bRecvFinish flag is set to
RECV_FINISHED by the application receive callback RecvCh() is this handler parses the
response. Each software flow branch is matched with the particular SNEP response. If
everything on the client’s and server’s side goes correctly, then the client goes only twice
through the cases of this handler

= First time after sending Put request and subsequently receiving Continue
response

= Second time after sending the last fragment of the SNEP message and
subsequently receiving the Success response

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 63 of 76
270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

(1) The second part of the flowchart is in Fig 8

Fig 7. Flowchart of the HandleRecv() part 1

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 64 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

(1) The rest of the flowchart from (1)

Fig 8. Flowchart of the HandleRecv() part 2

4.2.9 Sending the rest of the SNEP message
phStatus_t HandleSendNext(SnepClientData_t *pClientData);

Once the Continue response from the SNEP server has been received the SNEP client
can send the rest of the SNEP message in sequence of 128 byte long SNEP fragments
(the last one may be shorter). This handler shall be called repeatedly in loop until the last
SNEP fragment sent. During sending the SNEP client does not expect any response
from the SNEP server thus the sending sequence shall not be interrupted. As soon as
the last fragment of the SNEP message has been transmitted, reception of the SNEP
Success response from the SNEP server is expected. Reception procedure of SNEP
response is the same as in HandleSendFirst() (see section 4.2.7).

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 65 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

Fig 9. Flowchart of the HandleSendNext()

The first decision send_finished - NO option avoids sending the same SNEP fragment
multiple times. YES option is run when sending of the SNEP fragment completed. The
second decision status goes OK when sending on the LLCP layer succeeded, otherwise
the sending canceled moreover the SNEP client disconnected and the program escapes
from SNEPClientDemo(). The decision point last fragment transmitted goes always over NO
branch but when the last fragment transmitted the client shall be set for listening to SNEP
response (same as in HandleSendFirst() 4.2.7).

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 66 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

4.2.10 SNEP transmission successful
phStatus_t HandleDone(SnepClientData_t *pClientData);

This handler is called as soon as the SNEP Success response from the SENP server
received. It indicates the reception of the entire SNEP message has been received on
the SNEP server side. At this moment the transmitted picture should be displayed on the
mobile device screen. The SNEP client shall be disconnected by HandleDisconnect()
handler (see Fig 10).

4.2.11 Disconnect from SNEP server

phStatus_t HandleDisconnect(SnepClientData_t *pClientData);

This handler closes the LLC link connection between the SNEP client and server on the
LLCP layer by calling the NFC_LIcpClose() function (see section 4.1.12). The SNEP client
shall reach this handler in all circumstances either SNEP entire message successfully
received on SNEP server side or transmission fail (indicated by any SNEP non Continue
or Success message) as shown in Fig 10.

Fig 10. Direct flow from states of the client to disconnect

HandleDisconnect() always disconnects SnepClientDemo() regardless the previous states
as shown in Fig 11.

Fig 11. Flowchart of the HandleDisconnect()

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 67 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

4.2.12 PUT request Rejected
phStatus_t HandleReject(SnepClientData_t *pClientData);

This handler manages situation when the SNEP Reject message from the SNEP server
received. In compliance with the SNEP specification [15] the SNEP Reject response
informs the client about server’s inability to receive the SNEP message declared in the
SNEP header. The SNEP client shall not send the rest of the SNEP message. Afterward
HandleDisconnect() handler (see section 4.2.11) closes the LLC link connection.

4.2.13 Error on LLCP layer
phStatus_t HandleError(SnepClientData_t *pClientData);

Error on LLCP layer has occurred — client creation, send or receive operation failed.

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

User manual Rev. 1.1 — 24 July 2013 68 of 76
COMPANY PUBLIC 270111

NXP Semiconductors UM10721

NXP Reader Library Peer to Peer User Manual

5. Abbreviations

Table 9. Abbreviations

Acronym Description

AL Application Layer

ACK Acknowledgement

ATQA Answer To Request, type A

BAL Bus Abstraction Layer

CB Callback

CC Connection Complete (in LLCP)

CRC Cyclic Redundancy Check

DEP Data Exchange Protocol

DID Device Identifier

DISC Disconnect (in LLCP)

DM Disconnected Mode (in LLCP)

EEPROM Electrically Erasable Programmable Read-Only Memory

FRMR Frame Reject (in LLCP)

GPIO General Purpose Input Output

HAL Hardware Abstraction Layer

| Information (in LLCP)

12C Inter-Interchanged Circuit

IC Integrated Circuit

LLC Logical Link Control

LLCP Logical Link Control Protocol

LTO Link Timeout (in LLCP)

MAC Medium Access Control (in LLCP)

MCU Microcontroller Unit

MF MIFARE

MIU Maximum Information Unit (in LLCP)

MIUX Maximum Information Unit Extension (in LLCP)

NAD Node Address

NAK Negative Acknowledgement

NDEF NFC Data Exchange Format

NFC Near Field Communication

NFCIP NFC Interface and Protocol

OPT Option link parameter (in LLCP)

PAL Protocol Abstraction Layer

PAX Parameter Exchange (in LLCP)

PCD Proximity Coupling Device (Contactless Reader)

PICC Proximity Integrated Circuit Card (Contactless Card)

PDU Protocol Data Unit (in LLCP)
UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
User manual Rev. 1.1 — 24 July 2013 69 of 76

COMPANY PUBLIC 270111

NXP Semiconductors

UM10721

NXP Reader Library Peer to Peer User Manual

Acronym
PTYPE
RNR
RR
SAM
SAP
DSAP
SSAP
SNEP
SPI
SYMM
uiD
uiD
WKS

UM10721

User manual
COMPANY PUBLIC

Description

PDU Type (in LLCP)

Receive Not Ready (in LLCP)
Receive Ready (in LLCP)
Secure Access Module

Service Access Point

Destination Service Access Point
Source Service Access Point
Simple NDEF Exchange Protocol
Serial Peripheral Interface
Symmetry token (in LLCP)
Unnumbered Information (in LLCP)

Unique Identifier

Well Known Services

All information provided in this document is subject to legal disclaimers.

Rev. 1.1 — 24 July 2013
270111

© NXP B.V. 2013. All rights reserved.

70 of 76

NXP Semiconductors UM10721

6. References

NXP Reader Library Peer to Peer User Manual

[1]

(2]

3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Direct link to the NXP Reader Library Public Release
http://www.nxp.com/documents/software/200310.zip

User Manual NXP Reader Library User Manual based on CLRC663, BU-ID Doc.
No. 2574*' available on
http://www.nxp.com/demoboard/CLEV663B.html#documentation

Technical Specification Logical Link Control Protocol, NFCForum-TS-LLCP_1.1,
available on www.nxp.com/redirect/nfc-forum.org/specs/spec license

Data Sheet MF1S503X MIFARE Classic 1K - Mainstream contactless smart card
IC for fast and easy solution development, available on
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf

Data Sheet - MIFARE Ultralight ; MFOICU1, MIFARE Ultralight contactless single-
ticket IC, BU-ID Doc. No. 0286**, available on
http://www.nxp.com/documents/data _sheet/MFOICU1.pdf

Data Sheet - MIFARE DESFire; MF3ICDx21_41 81, MIFARE DESFire EV1
contactless multi-application IC, BU-ID Doc. No. 1340**, available on
http://www.nxp.com/documents/short _data sheet/MF3ICDX21 41 81 SDS.pdf

ISO/IEC Standard - ISO/IEC14443 Identification cards - Contactless integrated
circuit cards - Proximity cards

Data Sheet - ISO/IEC Standard - ISO 18092 Information technology -
Telecommunications and information exchange between systems - Near Field
Communication- Interface and Protocol (NFCIP-1)

Standard ECMA — Near Field Communication Interface and Protocol (NFCIP-1)
www.nxp.com/redirect/ecma-international.org/publications/files/ECMA-ST/
Ecma-340.pdf

Data Sheet - JIS Standard JIS X 6319 Specification of implementation for
integrated circuit(s) cards - Part 4: High Speed proximity cards

Data sheet - CLRC663; Contactless reader IC, BU-ID Doc. No. 1711**, available
on http://www.nxp.com/documents/data _sheet/ CLRC663.pdf

Data sheet — PN512; Transmission module, BU-ID Doc. No. 1112**, available on
http://www.nxp.com/documents/data_sheet/PN512.pdf

Application note — Quick Start Up GuideRC663 Blueboard, available on
http://www.nxp.com/demoboard/CLEV663B.html

Technical Specification-NFC Digital Protocol, NFC Forum-TS-DigitalProtocol-1.0,
available on www.nxp.com/redirect/nfc-forum.org/specs/spec license

Technical Specification — Simple NDEF Exchange Protocol, NFCForum-TS-
SNEP_1.0, available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

1 1

UM10721

User manual
COMPANY PUBLIC

** .. BU ID document version number

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

Rev. 1.1 — 24 July 2013 71 0f 76
270111

http://www.nxp.com/documents/software/200310.zip
http://www.nxp.com/demoboard/CLEV663B.html#documentation
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/redirect/ecma-international.org/publications/files/ECMA-ST/%0bEcma-340.pdf
http://www.nxp.com/redirect/ecma-international.org/publications/files/ECMA-ST/%0bEcma-340.pdf
http://www.nxp.com/documents/data_sheet/CLRC663.pdf
http://www.nxp.com/documents/data_sheet/PN512.pdf
http://www.nxp.com/demoboard/CLEV663B.html
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license

NXP Semiconductors

7. Legal information

UM10721

NXP Reader Library Peer to Peer User Manual

7.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP

UM10721

User manual
COMPANY PUBLIC

All information provided in this document is subject to legal disclaimers.

Rev. 1.1 — 24 July 2013
270111

Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

7.3 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481
does not convey an implied license under any patent right infringed by
implementation of any of those standards.

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

. This NXP Semiconductors IC is ISO/IEC 14443 Type
B software enabled and is licensed under Innovatron’s
r Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems
and/or end-user equipment.

RATP/Innovatron
Technology

7.4 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.
MIFARE Ultralight — is a trademark of NXP B.V.

© NXP B.V. 2013. All rights reserved.

72 of 76

NXP Semiconductors

8. List of figures

UM10721

NXP Reader Library Peer to Peer User Manual

All information provided in this document is subject to legal disclaimers.

Fig 1. NXP Reader Library Public............cccoienennne. 3
Fig 2. NXP Reader Library Export Controlled 4
Fig 3. NXP Reader Library P2Pccccciviiiiiiiinnnnnn. 6
Fig 4. Discovery loop flow chart.cccccvvvveeeenn. 12
Fig 5. Flowchart of the HandleSnepStart() 61
Fig 6. Flowchart of HandleSendFirst()cccovveeeeenne 62
Fig 7. Flowchart of the HandleRecv() part1................ 64
Fig 8. Flowchart of the HandleRecv() part 2 65
Fig 9. Flowchart of the HandleSendNext()ccceeennnee 66
Fig 10. Direct flow from states of the client to
ISCONNECT......vviiiiieeeiiiee e 67
Fig 11. Flowchart of the HandleDisconnect().....ccceeevn. 67
UM10721
User manual

COMPANY PUBLIC

Rev. 1.1 — 24 July 2013
270111

© NXP B.V. 2013. All rights reserved.

73 of 76

NXP Semiconductors

9. List of tables

UM10721

NXP Reader Library Peer to Peer User Manual

All information provided in this document is subject to legal disclaimers.

Table 1. Device and tag type for MAC layer 19
Table 2. DSAP/SSAP values..........cccccceeiiiine, 26
Table 3. Some parameters from 1SO18092 Pal
[oo] 00T 0 0] 01T o | S
Table 4. Table of Length Reduction values
Table 5. Table of Divisor Send/Receive................cuee....
Table 6. P2P Library identifiers of the 1ISO18092
PArAMELEIS ...t 45
Table 7. Two peers and their names as called in this
SECHON Leeiiiiiie et 49
Table 8. Table of files that are part of sample application
written as C headers
Table 9. Abbreviations.................
UM10721
User manual

COMPANY PUBLIC

Rev. 1.1 — 24 July 2013
270111

© NXP B.V. 2013. All rights reserved.

74 of 76

NXP Semiconductors

10. Contents

UM10721

NXP Reader Library Peer to Peer User Manual

1.
111
1.1.2

2.

211
2.2
221
2211
2212
2213
222
223
224
225

3.1
311
3.1.2
3.1.3
3.14
3.15
3.1.6
3.1.7
3.2
3.21
3.21.1

3.2.12

3.2.13
3.2.2
3.23
3.24
3.25
3.2.6
3.2.7
3.2.7.1
3.2.7.2
3.2.7.3
3.274
3.2.75
3.2.7.6

UM10721

User manual
COMPANY PUBLIC

NXP Reader Libraries comparison 3
NXP Reader Library Publicccccccceoviivnnnen.n. 3
NXP Reader Library Export controlled 4

General information about NXP Reader Library

P2P e 5
Document StrUCTUIE........cocvevveerrieiiee e 5
Layer Structure of the NXP Reader Library........ 5
APLIAYET ...
Card command SetS.........ccuueeieeeriiiiiiiiiee e
NFC ACHVILY ..vvvveiiee e
NFC P2P Package........c.cccceevvvvnneennn.

Protocol Abstraction Layer
Hardware abstraction layer
Bus Abstraction Layer.........cccoccceeieeeeeniiiiiieeen.
COMMON [AYEF ...

Explanation of the Library modules for P2P...10
Discovery LOOPcooouvieiiiieeeiiiiieee e 10
Discovery Loop data parameter structure 10

Initialization of the parameter structure
Discovery Loop routine
Activate Card.....................
Detect A.....oooeiiiiiiiinn.
DeteCt Boooviiiiiiiiieiiiiiiee
DeteCt Fu oo
LLCP modulccoccvvvrnnne

LLCP Library structures
LLCP parameter component -
phinLlcp_Fri_DataParams_t...........cccocviiienennnn. 15
Link Parameters -
phFriNfc_Llcp_sLinkParameters_t,
phinLlcp_sLinkParameters_t.........ccccocvvvvveneennnne
Buffer structure phNfc_sData_t
Initialization of the LLCP layer
Pending......ccoovieeieiiee e
Callbacks

Medium access control — MAC layer................ 19
LLCP Link APIs

ChecK...oooveieiiiicecceecene

Activate LLC link

Deactivate LLCIiNK ..., 22
Send PDU packet via LLCP link 22
Receive PDU packet on the LLC link 23

All information provided in this document is subject to legal disclaimers.

Rev. 1.1 — 24 July 2013
270111

3.2.8
3.281
3.2.8.2
3.2.83
3.28.4
3.2.9
3.29.1
3.29.2
3.293
3.294
3.2.95
3.2.9.6
3.2.9.7
3.298
3.29.9
3.2.9.10
3.29.11
3.2.9.12
3.2.9.13
3.2.9.14
3.2.10
3.2.10.1
3.2.10.2
3.2.10.3
3.2.10.4
3.2.10.5
3.2.10.6
3.2.10.7
3.2.10.8
3.2.10.9
3.3
33.1
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.4
34.1

LLCP link Callbackscccceeeeeeieiiieieieeeeee, 24
Link Check CB
Link Status CB
LINK SENA CB ...
Link Receive CB..........cccoeeeeeieieeee, 24
LLCP Transport Socket APIS.........c.cccoecvvnnen... 25
Create LLCP socket
Reset LLCP SOCKEL.......cooeeeviveeiiieeeeeeeeeiieeeeens
Bind a socket to a local source SAP................. 26
CONNECT....ciiiieceee e
Connect by URI
Listen to Connection Requests.............cccvuve..... 28
Accept an incoming connection request........... 29
Reject a connection request..........c.cccoecvveeeennn. 30
DisScoNNECt SOCKEceeveeeiiiiiiiieee e 30
Send data packed — connection oriented 31
Receive data from socket...........cccceeeeeieeennnnnn. 32
Send data - connectionless.........ccccccvvvvevevenenns 33
CloSe 0NE SOCKEL.......ccevvviiiieiiieiiieeeeeeeeeeeeeeeeeees
Close all the sockets
LLCP Socket Callbacks.........ccccoeeeeeevriiviineennenn. 34
Error CB ..oeeeee e,
LIStEN CB...coooeeeeeeeeeeeee,
CoNNECE CB ...
Disconnect CB
ACCEPLCB ..,
REJECE CB ...t
7= oL I O = SN
Receive CB - connection oriented 36
Receive CB - connectionless...............c.cceeen. 37

1SO18092 PAL parameter component 37
Protocol initialization
Reset Protocol..........ccccc........
Attribute Request...................
Parameter Selection
Activate Card.........cccceeeeeiii e,
Deselect

Presence check
EXChaNgecooooiiiiiiiiiee e
Get serial NUMbBErcocvvvvvvviviiiiiiiiiiiiiieieiens
Get protocol parameter........ccccoovcvvvvieeeeesiiinnns 44
Set protocol parameter

© NXP B.V. 2013. All rights reserved.

75 of 76

NXP Semiconductors

3.4.2
343
344
3.45
3.4.6
3.4.7
3.4.8
349

4.1
41.1
41.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.1.8
419
4.1.10
41.11
4.1.12
4.2
421
422
4.2.3
4231
4232
424
425
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10
4211
4.2.12
4.2.13

7.1
7.2
7.3
7.4

10.

Free memory.....ccccccciciiieieeees 46
TIMET SEIVICES.....cceievviieeeeeeeeeie e ees 46
TIMEr INMt .o 46
TIMEr Create ... eeeeeeeveiee e 47

Timer Start
Timer Stop
Timer Delete......cooovviiiiiiiiiiee e, 48
Timer Wait.......ooooiiiee e 48
Sample COAE i 49
Implementation of the LLCP API...........cc......... 49
Global variablescccoooiiiiiiiiiieeee 49
Data structures used by the P2P library........... 50
BUFfers. ..o
Application layer LLCP flags
LLC link pre step actions..........cccccceeeeivicivnneenn..
Initializing the LLC liNKcoooviiiiieneeeiiiiiiiee.
Establishing the LLCP connection
Preparation of NDEF messagecccuveeee...
Choosing a file as NDEF message
Sending a fragment of SNEP message............ 55
Receiving of SNEP response...............
Closing the connection........................
SNEP client ...
HOW it WOTKScoeiiiiiiiiiiiii e
SNEP client parameter structure.........
Application callbacks............ccccvveeeenn.
Application callback for send...............
Application callback for receive............cccuuve.....
SNEP client pre step initialization
Generic state handler..........................
Start the SNEP client
Sending the first SNEP fragment
Handling of the SENP response............cc........
Sending the rest of the SNEP message............ 65
SNEP transmission successful.............cccc.o...... 67
Disconnect from SNEP server.............cccccueeee... 67
PUT request Rejected...........occuuvieerieeiiiiiiieeen. 68
Error on LLCP layercceveeeiviiiiiieieeeiiiiiiieen. 68
ADbDBreviations ...
References..........cccceeuee.

Legal information
Definitionsccoovvvviiiiie
Disclaimers
LICENSES ..ccivivieeeeeeeeeeeee s
TrademarkScccoveiiiiieiie e

List Of figures. ...

List of tablescoocvviieieiii e

CONtENTS ..o

UM10721

NXP Reader Library Peer to Peer User Manual

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section ‘Legal information'.

© NXP B.V. 2013. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 24 July 2013
270111

Document identifier: UM10721

	1. NXP Reader Libraries comparison
	1.1.1 NXP Reader Library Public
	1.1.2 NXP Reader Library Export controlled

	2. General information about NXP Reader Library P2P
	2.1.1 Document structure
	2.2 Layer Structure of the NXP Reader Library
	2.2.1 API layer
	2.2.1.1 Card command sets
	2.2.1.2 NFC Activity
	2.2.1.3 NFC P2P Package

	2.2.2 Protocol Abstraction Layer
	2.2.3 Hardware abstraction layer
	2.2.4 Bus Abstraction Layer
	2.2.5 Common layer

	3. Explanation of the Library modules for P2P
	3.1 Discovery Loop
	3.1.1 Discovery Loop data parameter structure
	3.1.2 Initialization of the parameter structure
	3.1.3 Discovery Loop routine
	3.1.4 Activate Card
	3.1.5 Detect A
	3.1.6 Detect B
	3.1.7 Detect F

	3.2 LLCP modul
	3.2.1 LLCP Library structures
	3.2.1.1 LLCP parameter component - phlnLlcp_Fri_DataParams_t
	3.2.1.2 Link Parameters - phFriNfc_Llcp_sLinkParameters_t, phlnLlcp_sLinkParameters_t
	3.2.1.3 Buffer structure phNfc_sData_t

	3.2.2 Initialization of the LLCP layer
	3.2.3 Pending
	3.2.4 Callbacks
	3.2.5 SYMM
	3.2.6 Medium access control – MAC layer
	3.2.7 LLCP Link APIs
	3.2.7.1 Reset LLCP link
	3.2.7.2 Check
	3.2.7.3 Activate LLC link
	3.2.7.4 Deactivate LLC link
	3.2.7.5 Send PDU packet via LLCP link
	3.2.7.6 Receive PDU packet on the LLC link

	3.2.8 LLCP link Callbacks
	3.2.8.1 Link Check CB
	3.2.8.2 Link Status CB
	3.2.8.3 Link Send CB
	3.2.8.4 Link Receive CB

	3.2.9 LLCP Transport Socket APIs
	3.2.9.1 Create LLCP socket
	3.2.9.2 Reset LLCP socket
	3.2.9.3 Bind a socket to a local source SAP
	3.2.9.4 Connect
	3.2.9.5 Connect by URI
	3.2.9.6 Listen to Connection Requests
	3.2.9.7 Accept an incoming connection request
	3.2.9.8 Reject a connection request
	3.2.9.9 Disconnect socket
	3.2.9.10 Send data packed – connection oriented
	3.2.9.11 Receive data from socket
	3.2.9.12 Send data - connectionless
	3.2.9.13 Close one socket
	3.2.9.14 Close all the sockets

	3.2.10 LLCP Socket Callbacks
	3.2.10.1 Error CB
	3.2.10.2 Listen CB
	3.2.10.3 Connect CB
	3.2.10.4 Disconnect CB
	3.2.10.5 Accept CB
	3.2.10.6 Reject CB
	3.2.10.7 Send CB
	3.2.10.8 Receive CB – connection oriented
	3.2.10.9 Receive CB - connectionless

	3.3 Protocol layer - ISO18092 protocol commands
	3.3.1 ISO18092 PAL parameter component
	3.3.2 Protocol initialization
	3.3.3 Reset Protocol
	3.3.4 Attribute Request
	3.3.5 Parameter Selection
	3.3.6 Activate Card
	3.3.7 Deselect
	3.3.8 Presence check
	3.3.9 Exchange
	3.3.10 Get serial Number
	3.3.11 Get protocol parameter
	3.3.12 Set protocol parameter

	3.4 OSAL
	3.4.1 Allocate memory
	3.4.2 Free memory
	3.4.3 Timer services
	3.4.4 Timer Init
	3.4.5 Timer Create
	3.4.6 Timer Start
	3.4.7 Timer Stop
	3.4.8 Timer Delete
	3.4.9 Timer Wait

	4. Sample code
	4.1 Implementation of the LLCP API
	4.1.1 Global variables
	4.1.2 Data structures used by the P2P library
	4.1.3 Buffers
	4.1.4 Application layer LLCP flags
	4.1.5 LLC link pre step actions
	4.1.6 Initializing the LLC link
	4.1.7 Establishing the LLCP connection
	4.1.8 Preparation of NDEF message
	4.1.9 Choosing a file as NDEF message
	4.1.10 Sending a fragment of SNEP message
	4.1.11 Receiving of SNEP response
	4.1.12 Closing the connection

	4.2 SNEP client
	4.2.1 How it works
	4.2.2 SNEP client parameter structure
	4.2.3 Application callbacks
	4.2.3.1 Application callback for send
	4.2.3.2 Application callback for receive

	4.2.4 SNEP client pre step initialization
	4.2.5 Generic state handler
	4.2.6 Start the SNEP client
	4.2.7 Sending the first SNEP fragment
	4.2.8 Handling of the SENP response
	4.2.9 Sending the rest of the SNEP message
	4.2.10 SNEP transmission successful
	4.2.11 Disconnect from SNEP server
	4.2.12 PUT request Rejected
	4.2.13 Error on LLCP layer

	5. Abbreviations
	6. References
	7. Legal information
	7.1 Definitions
	7.2 Disclaimers
	7.3 Licenses
	7.4 Trademarks

	8. List of figures
	9. List of tables
	10. Contents

