
Package ‘runjags’
March 26, 2013

Version 1.0.0-6

Date 2013-03-26

Title Interface utilities for MCMC models in Just Another Gibbs
Sampler (JAGS) using parallel and distributed computing methods

Author Matthew Denwood <matthew.denwood@glasgow.ac.uk>

Maintainer Matthew Denwood <matthew.denwood@glasgow.ac.uk>

Depends R (>= 2.14), coda (>= 0.16-1), lattice (>= 0.20-10), parallel

Imports coda, lattice, parallel, stats, utils

Suggests rjags

SystemRequirements jags (see http://mcmc-jags.sourceforge.net)

Description This package provides high-level interface utilities for
JAGS, either running locally (via the rjags package or using
multiple cores in parallel) or via distributed computing
clusters such as those provided by snow (a Simple Network Of
Workstations), Apple Xgrid distributed computing clusters (Mac
OS X 10.5-10.7 only), and possibly others via user specified
functions. The primary motivation is to facilitate running
relatively simple JAGS models to convergence, including
evaluating the performance of a model against simulated data,and compatibility with the Win-
BUGS syntax of model files with data and initial values lists. Runjags interface functions
also provide convenience wrappers for automatic control of model convergence assess-
ment and run length diagnostics,calculation of relevant summary statistics, generation of trace
and density plots, calculation of DIC, and automatic retrieval
of R objects as data and initial values. Running of arbitrary
R commands (not involving JAGS) over Xgrid is also supported.

License GPL

URL http://cran.r-project.org/web/packages/runjags/

NeedsCompilation no

1

http://cran.r-project.org/web/packages/runjags/

2 ask

Repository CRAN

Date/Publication 2013-03-26 14:43:36

R topics documented:
ask . 2
autorun.jags . 3
combine.mcmc . 9
dump.format . 11
findjags . 12
new_unique . 13
read.winbugs . 14
run.jags . 17
run.jags.study . 24
run.jagsfile . 27
runjags . 27
runjags-class . 29
testjags . 31
timestring . 32
xgrid.run . 33
xgrid.run.jags . 40

Index 45

ask Obtain Input from User With Error Handling

Description

A simple function to detect input from the user, and keep prompting until a response matching the
class of input required is given.

Usage

ask(prompt="?", type="logical", bounds=c(-Inf, Inf),
na.allow=FALSE)

Arguments

prompt what text string should be used to prompt the user? (character string)

type the class of object expected to be returned - "logical", "numeric", "integer",
"character". If the user input does not match this return, the prompt is repeated

bounds the lower and upper bounds of number to be returned. Ignored if type is "logical"
or "character"

na.allow if TRUE, allows the user to input "NA" for any type, which is returned as NA

autorun.jags 3

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

readline,

menu

Examples

Ask the user if they want to proceed
Not run:
ask("Do you want to start the program now?", type="logical")

End(Not run)

autorun.jags Run or Extend a User Specified Bayesian MCMC Model in JAGS with
Automatically Calculated Run Length and Convergence Diagnostics

Description

Runs or extends a user specified JAGS (similar to WinBUGS) model from within R, returning an
object of class runjags-class. Chain convergence over the first run of the simulation is assessed
using the Gelman and Rubin’s convergence diagnostic. If necessary, the simulation is extended
to improve chain convergence (up to a user-specified maximum time limit), before the required
sample size of the Markov chain is calculated using Raftery and Lewis’s diagnostic. The simulation
is extended to the required sample size dependant on autocorrelation and the number of chains.

This function is provided primarily for automated running of large simulated data studies, and is not
a replacement for manually assessing convergence and Monte Carlo error when parameter estimates
are being made from real data. For more complex models, the use of run.jags directly with manual
assessment of necessary run length may be preferable.

Requires Just Another Gibbs Sampler (JAGS), see http://www-fis.iarc.fr/~martyn/software/
jags/.

Usage

autorun.jags(model=stop("No model supplied"), monitor = NA, data=NA,
n.chains=NA, inits = NA, startburnin = 5000, startsample = 10000,
datalist=NA, initlist=NA, psrf.target = 1.05, normalise.mcmc = TRUE,
check.stochastic = TRUE, modules=c(""), factories=c(""),
raftery.options = list(), crash.retry=1, summarise = TRUE,
confidence=0.95, plots = summarise, thin.sample = FALSE, jags =
findjags(), silent.jags = FALSE, interactive=FALSE, max.time=Inf,
adaptive=list(type="burnin", length=200), thin = 1, monitor.deviance

http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/~martyn/software/jags/

4 autorun.jags

= FALSE, monitor.pd = FALSE, tempdir=TRUE, jags.refresh=0.1,
batch.jags=silent.jags, method=if (’rjags’ %in% .packages())
’rjags’ else ’interruptible’, method.options=list())

autoextend.jags(runjags.object=stop("The output of a runjags function (with class ’runjags’) must be supplied"),
add.monitor=character(0), drop.monitor=character(0), drop.chain=numeric(0),

combine=length(c(add.monitor,drop.monitor,drop.chain))==0,
startburnin = 0, startsample = 10000, psrf.target = 1.05,
normalise.mcmc = TRUE, check.stochastic = TRUE, raftery.options =
list(), crash.retry=1, summarise = TRUE, confidence=0.95, plots =
summarise, thin.sample = FALSE, jags = findjags(), silent.jags =
FALSE, interactive=FALSE, max.time=Inf, adaptive=list(type=’burnin’, length=200),
thin = runjags.object$thin, tempdir=TRUE,
jags.refresh=0.1, batch.jags=silent.jags, method=NA,
method.options=NA)

Arguments

model either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. No default. The
model must be started with the string ’model{’ and ended with ’}’ on new lines.
Data must be similarly started with ’data{’, monitored variables with ’moni-
tor{’, and initial values as ’inits{’, and all ended with ’}’. If multiple models are
found, all but the first one are ignored with a warning. Multiple data blocks and
monitor blocks are combined, multiple inits blocks are used for different chains.
The model block may also contain automatically generated data and initial val-
ues variables using ’#data# variable’ and ’#inits# variable’, and more monitored
variables using ’#monitor# variable’. See read.winbugs for more details. No
default.

monitor a character vector of the names of variables to monitor. The special node names
’deviance’, ’pd’, ’pd.i’, ’popt’ and ’dic’ are used to monitor these model fit diag-
nostics (see the JAGS user manual for more information), but with the exception
of ’deviance’ these monitored nodes won’t appear as variables in the summary
statistics or plots. Note: multiple chains are required for calculation of ’pd.i’,
’pd’, ’popt’ and ’dic’.

data either a named list or a character string in the R dump format containing the
data. If left as NA, the model will be run without external data.

n.chains the number of chains to use with the simulation. More chains will improve
the sensitivity of the convergence diagnostic, but will cause the simulation to
run more slowly (although this may be improved by using a method such as
’parallel’ or ’snow’). The minimum (and default) number of chains is 2.

inits either a character vector with length equal to the number of chains the model
will be run using, or a list of named lists representing names and corresponding
values of inits for each chain. If a vector, each element of the vector must be
a character string in the R dump format representing the initial values for that

autorun.jags 5

chain, or NA. If not all initialising variables are specified, the unspecified vari-
ables are sampled from the prior distribution by JAGS. Values left as NA result
in all initial values for that chain being sampled from the prior distribution. The
special variables ’.RNG.seed’, ’.RNG.name’, and ’.RNG.state’ are allowed for
explicit control over random number generators in JAGS. Default NA.

runjags.object the model to be extended - the output of a run.jags (or autorun.jags or extend.jags
etc) function, with class ’runjags’. No default.

add.monitor a character vector of variables to add to the monitored variable list. All previ-
ously monitored variables are automatically included - although see the ’drop.monitor’
argument. Default no additional monitors.

drop.monitor a character vector of previously monitored variables to remove from the moni-
tored variable list for the extended model. Default none.

drop.chain a numeric vector of chains to remove from the extended model. Default none.

combine a logical flag indicating if results from the new JAGS run should be combined
with the previous chains. Default TRUE if not adding or removing variables or
chains, and FALSE otherwise.

startburnin the number of burnin iterations. Default 0.

startsample the total number of samples (including the chains supplied in runjags.object for
autoextend.jags) on which to assess convergence. If the runjags.object already
contains this number of samples then convergence will be assessed on this ob-
ject, otherwise the required number of additional samples will be obtained be-
fore combining the chains with the old chains. More samples will give a better
chance of allowing the chain to converge, but will take longer to achieve. Also
controls the length of the pilot chain used to assess the required sampling length.
The minimum is 4000 samples, which is the minimum required number of sam-
ples for a model with no autocorrelation and good convergence. Default 10000
iterations.

datalist an optional named list containing variables used as data, or alternatively a func-
tion (with no arguments) that returns a named list. If any variables are specified
in the model block using ’#data# <variable>’, the value for the corresponding
named variable is taken from datalist if present (or the result of datalist() if spec-
ified as a function which is useful for specifying randomly generated data), or
the parent environment, or finally the global environment if not found anywhere
else. Ignored if ’#data# <variable>’ is not used in the model block. Default NA.

initlist an optional named list containing variables used as initial values, or alternatively
a function (with a single argument representing the chain number) that returns a
named list. If any variables are specified in the model block using ’#inits# <vari-
able>’, the value for the corresponding named variable is taken from initlist if
present (or the result of datalist(chain.no) if specified as a function which allows
both randomly generated initial values and different values for each chain), or
the parent environment, or finally the global environment if not found anywhere
else. Ignored if ’#inits# <variable>’ is not used in the model block. Note: dif-
ferent chains are all given the same starting values if specified as a named list or
taken from any envirnoment; if different values are desired for each chain initlist
should be specified as a function. Default NA.

6 autorun.jags

psrf.target the value of the point estimate for the potential scale reduction factor of the
Gelman Rubin statistic below which the chains are deemed to have converged
(must be greater than 1). Default 1.05.

normalise.mcmc the Gelman Rubin statistic is based on the assumption that the posterior dis-
tribution of monitored variables is roughly normal. For very skewed posterior
distributions, it may help to log/logit transform the posterior before calculat-
ing the Gelman Rubin statistic. If normalise.mcmc == TRUE, the normality of
the untransformed and log/logit transformed posteriors are compared for each
monitored variable and the least skewed is used to calculate the Gelman Rubin
statistic (this may take some time for large numbers of monitored variables). If
FALSE, the data are left untransformed (this may give problems calculating the
statistic in extreme cases). Default TRUE.

check.stochastic

non-stochastic monitored variables will cause errors when calculating the Gelman-
Rubin statistic, if check.stochastic==TRUE then all monitored variables will be
checked to ensure they are stochastic beforehand. This has a small compu-
tational cost, which can be avoided by specifying check.stochastic==FALSE.
Default TRUE.

modules a character vector of external modules to be loaded into JAGS. More than 1
module can be used. Default none.

factories a character vector of factory modules to be loaded into JAGS. More than 1 fac-
tory can be used. Factories should be provided in the format ’<facname>(<factype>)’,
for example: factories=’mix::TemperedMix(sampler)’. Also ensure that any re-
quired modules are also specified (in this case ’mix’, for example). Default
none.

raftery.options

a named list which is passed as additional arguments to raftery.diag. Default
none (default arguments to raftery.diag are used).

crash.retry the number of times to re-attempt a simulation if the model returns an error.
Default 1 retry (simulation will be aborted after the second crash).

summarise should summary statistics be automatically calculated for the output chains?
Default TRUE.

confidence the prob argument to be passed to HPDinterval for calculation of confidence
intervals. Default 0.95 (95% confidence intervals).

plots should traceplots and density plots be produced for each monitored variable? If
TRUE, the object of class ’runjags’ returned will include elements ’trace’ and
’density’ which consist of a list of lattice objects, with a specific print func-
tion that can also be accessed using plot(results). The alternative is to use
plot(as.mcmc.list(results)) to look at the density and traceplots for each vari-
able using the traditional graphics system. See also runjags-class. Default
TRUE.

thin.sample option to thin the final MCMC chain(s) before calculating summary statistics
and returning the chains. Thinning very long chains allows summary statistics
to be calculated more quickly. If TRUE, the chain is thinned to as close to a
minimum of startsample iterations as possible (i.e. using a thinning interval
of floor(chain.length/thin.sample) since the value must be an integer) and any

autorun.jags 7

excess iterations discarded to ensure the chain length matches thin.sample. If
FALSE the chains are not thinned. A positive integer can also be specified as the
desired chain length after thinning; the chains will be thinned to as close to this
minimum value as possible. Default TRUE (thinned chains of length startsample
returned). This option does NOT carry out thinning in JAGS, therefore R must
have enough available memory to hold the chains BEFORE thinning. To avoid
this problem use the ’thin’ option instead.

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system.

silent.jags should the JAGS output be suppressed? (logical) If TRUE, no indication of the
progress of individual models is supplied. Default FALSE.

interactive option to allow the simulation to be interactive, in which case the user is asked if
the simulation should be extended when run length and convergence calculations
are performed and the extended simulation will take more than 1 minute. The
function will wait for a response before extending the simulations. If FALSE, the
simulation will be run until the chains have converged or until the next extension
would extend the simulation beyond ’max.time’. Default FALSE.

max.time the maximum time for which the function is allowed to extend the chains to im-
prove convergence, as a character string including units or as an integer in which
case units are taken as seconds. Ignored if interactive==TRUE. If the function
thinks that the next simulation extension to improve convergence will result in a
total time of greater than max.time, the extension is aborted. The time per iter-
ation is estimated from the first simulation. Acceptable units include ’seconds’,
’minutes’, ’hours’, ’days’, ’weeks’, or the first letter(s) of each. Default "1hr".

adaptive a list of advanced options controlling the length of the adaptive mode of each
simulation. Extended simulations do not require an adaptive phase, but JAGS
prints a warning if one is not performed. Reduce the length of the adpative phase
for very time consuming models. ’type’ must be one of ’adaptive’ or ’burnin’.

thin the thinning interval to be used in JAGS. Increasing the thinning interval may
reduce autocorrelation, and therefore reduce the number of samples required, but
will increase the time required to run the simulation. Using this option thinning
is performed directly in JAGS, rather than on an existing MCMC object as with
thin.sample. Default 1.

monitor.deviance

this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

monitor.pd this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

tempdir option to use the temporary directory as specified by the system rather than cre-
ating files in the working directory. Any files created in the temporary directory
are removed when the function exits for any reason. Default TRUE.

jags.refresh the refresh interval (in seconds) for monitoring JAGS output using the ’interac-
tive’ and ’parallel’ methods (see the ’method’ argument). Longer refresh inter-
vals will use less processor time. Default 0.1 seconds.

batch.jags option to call JAGS in batch mode, rather than using input redirection. On JAGS
>= 3.0.0, this suppresses output of the status which may be useful in some situ-
ations. Default TRUE if silent.jags is TRUE, or FALSE otherwise.

8 autorun.jags

method the method with which to call JAGS; probably a character vector specifying one
of ’rjags’, ’simple’, ’interruptible’, ’parallel’, or ’snow’ (and see also xgrid.autoextend.jags).
The former runs JAGS using the rjags package, whereas other options do not re-
quire the rjags package and call JAGS as an external executable. ’simple’ runs
JAGS as a foreground process (the default behaviour for runjags < 0.9.6), ’in-
terruptible’ allows the JAGS process to be terminated immediately using the
interrupt signal, ’parallel’ runs each chain as a separate process on a separate
core, and ’snow’ uses a simple network of workstations (which may be passed
into the method.options list as ’cl’). The default for autorun.jags is to use ’rjags’
if the ’rjags’ package is load()ed, or the ’interactive’ method otherwise. The de-
fault for the autoextend.jags function is to use the same method as used for the
previous JAGS call.
Note that the parallel, snow and bgparallel methods all use separate JAGS in-
stances to speed up execution of models with multiple chains (at the expense
of using more RAM), but cannot be used to monitor pd/popt/pd.i (and therefore
DIC). If no .RNG.name is specified in the initial values, each chain is assigned a
different random number generator (.RNG.name) for up to 4 chains (the number
of different RNG available in JAGS), or using the lecuyer module for 5 or more
chains (requires rjags to be installed).
Starting with runjags version 1.0.0, there has been an attempt to abstract the
method used to call JAGS - as a result a user-specified function may also be
passed as the method. This function must call JAGS on a given batch script
contained within ’sim’ folders in the working directory, and either wait for JAGS
to output simulation results to file then return TRUE or return FALSE which
is assumed to mean that the JAGS processes are still running, in which case
the behaviour is as for ’background’. The return may also be a list including
the named element ’complete’ which refers to the same thing, as well as other
elements that are returned to the top level. If you are interested in developing
another method please feel free to contact the package author.

method.options an optional named list of argument to be passed to the method function (includ-
ing a user specified method function). Of the default arguments, only ’nsims’
indicating the number of separate simulations (for parallel, snow and bgparallel
methods) and ’cl’ specifying an existing snow cluster and/or ’remote.jags’ spec-
ifying the path to JAGS on the remote machines (for the snow method only) can
be used. Others are ignored with a warning.

Value

an object of class ’runjags’ (see runjags-class).

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags,

read.winbugs,

combine.mcmc 9

xgrid.autoextend.jags,

runjags-class

Examples

run a model to calculate the intercept and slope of the expression
y = m x + c, assuming normal observation errors for y:

Not run:
Simulate the data
N <- 100
X <- 1:N
Y <- rnorm(N, 2*X + 10, 1)

Model in the JAGS format
model <- "model {
for(i in 1 : N){
Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m * X[i]) + c;
}
m ~ dunif(-1000,1000);
c ~ dunif(-1000,1000);
precision ~ dexp(1);

#data# N, X, Y
}"

Run the model
results <- autorun.jags(model=model, monitor=c("m", "c", "precision"))

Analyse traceplots of the results to assess convergence:
plot(results, type="trace", layout=c(3,1))

Summary of monitored variables:
results

End(Not run)

combine.mcmc Combine Two or More MCMC Objects Into One Longer MCMC Ob-
ject

Description

Allows an MCMC object (with 1 or more chains) to be combined with another (or several other)
MCMC object(s) representing extensions of the same simulation, to produce one MCMC object
that contains the continuous combined Markov chains of the other MCMC objects. Alternatively, a
single MCMC list object can be converted into an MCMC object with one chain by combining all
chains from the MCMC list.

10 combine.mcmc

Usage

combine.mcmc(mcmc.objects=list(), thin=1, return.samples=NA,
collapse.chains=if(length(mcmc.objects)==1) TRUE else FALSE, vars=NA)

Arguments

mcmc.objects a list of MCMC or runjags objects, all with the same number of chains and
matching variable names, or a single MCMC object/list or runjags object. No
default.

thin an integer to use to thin the (final) MCMC object by, in addition to any thinning
already applied to the objects before being passed to combine.mcmc. Ignored
if return.samples is specified (!is.na). Default 1 (no additional thinning is per-
formed).

return.samples the number of samples to return after thinning. The chains will be thinned
to as close to this minimum value as possible, and any excess iterations dis-
carded. Supersedes thin if both are specified. Ignored if niter(mcmc.objects) <
return.samples. Default NA.

collapse.chains

option to combine all MCMC chains into a single MCMC chain with more it-
erations. Can be used for combining chains prior to calculating results in or-
der to reduce the Monte Carlo error of estimates. Default TRUE if a single
mcmc.object is provided, or FALSE otherwise.

vars an optional character vector of variable names to extract. If supplied, only vari-
able names in the MCMC object/list supplied with a partial match to anything
in ’vars’ will be summarised/plotted/extracted. Note that regular expressions
are not allowed, but the caret (^) token can be used to specify the match at the
start of a variable name, and a quoted vars will be matched exactly. Default NA
meaning all variables available are returned.

Value

An MCMC object if collapse.chains==TRUE or a list of MCMC objects is supplied, or an mcmc.list
object if given a list of (or single) mcmc.list or runjags objects (and collapse.chains==FALSE)

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags,

runjags-class

dump.format 11

dump.format Conversion Between a Named List and a Character String in the R
Dump Format

Description

Convert a named list of numeric vector(s) or array(s) of data or initial values to a character string in
the correct format to be read by JAGS as either data or initial values, using the run.jags function.

Usage

dump.format(namedlist=list(), checkvalid=TRUE)

list.format(data=character(), checkvalid=TRUE)

Arguments

namedlist a named list of numeric or integer (or something that can be coerced to numeric)
vectors, matrices or arrays. The name of each list item will be used as the name
of the resulting dump.format variables.

data a character string in the R dump format, such as that produced by dump.format.

checkvalid option to ensure that the object returned from the function does not contain any
values that would be invalid for import into JAGS, such as Inf, -Inf, character or
factor values etc.

Details

The ’dump.format’ function creates a character string of the supplied variables in the same way
that dump() would, except that the result is returned as a character string rather than written to
file. Additionally, dump.format() will look for any variable with the name ’.RNG.name’ and double
quote the value if not already double quoted (to ensure compatibility with JAGS).

Value

Either a character string in the R dump format (for dump.format), or a named list (for list.format).

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags, dump

12 findjags

Examples

A named list:
namedlist1 <- list(N=10, Count=c(4,2,7,0,6,9,1,4,12,1))

Conver to a character vector:
chardata <- dump.format(namedlist1)

And back to a named list:
namedlist2 <- list.format(chardata)

These should be the same:
stopifnot(identical(namedlist1, namedlist2))

findjags Attempt to Locate a JAGS Install

Description

Search the most likely locations for JAGS to be installed on the users system, based on the operating
system, and return the most likely path to try. Where multiple installs exist, findjags will attempt
to return the path to the install with the highest version number. For Unix systems, calling jags
using ’jags’ requires the jags binary to be in the search path, which may be specified in your user
’.Profile’ if necessary (the JAGS executable is also looked for in the default install location of
/usr/local/bin/jags if popen support is enabled).

Usage

findjags(ostype = .Platform$OS.type,
look_in = if(ostype=="windows") c("/Program Files/","/Windows/Program Files/","C:/Program Files/","C:/Windows/Program Files/","/") else NULL,
from.variable = ".jagspath")

Arguments

ostype the operating system type. There is probably no reason to want to change this...

look_in for Windows only, the path to a folder (or vector of folders) which contains
another folder with name containing ’JAGS’, where the JAGS executable(s) are
to be found. findjags() will attempt to find the highest version, assuming that the
version number is somewhere in the file path to the executable (as per default
installation).

from.variable a global variable that may contain the path to JAGS. This provides a ’set and for-
get’ solution if you have a non-standard JAGS install, by assigning the variable
".jagspath" (the default argument value) to the path to JAGS in your R profile
file (this will be read every time R starts).

new_unique 13

Value

A path or command for the most likely location of the desired JAGS executable on the system.
On unix this will always be ’jags’, on Windows for example "C:/Program Files/JAGS/bin/jags-
terminal.exe" or "C:/Program Files/JAGS/JAGS-1.0.0/bin/jags-terminal.exe"

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

testjags,

run.jags

new_unique Create a Unique Filename

Description

Search the current working directory for a file or directory matching the input name, and if it exists
suggest a new name by appending a counter to the input name. Alternatively, the function can ask
the user if the existing file should be overwritten, in which case the existing file will be erased if
the answer is ’yes’. The function also checks for write access permissions at the current working
directory.

Usage

new_unique(name = NA, suffix = "", ask = FALSE,
prompt = "A file or directory with this name already exists. Overwrite?",
touch=FALSE, type=’file’)

Arguments

name the filename to be used (character string). A vector of character strings is also
permissible, in which case they will be pasted together. One or more missing
(NA) values can also be used, which will be replaced with a randomly generated
9 character alphanumeric string. Default NA.

suffix the file extension (including ’.’) to use (character string). If this does not start
with a ’.’, one will be prepended automatically. Default none.

ask if a file exists with the input name, should the function ask to overwrite the
file? (logical) If FALSE, a new filename is used instead and no files will be
over-written. Default FALSE.

prompt what text string should be used to prompt the user? (character string) Ignored is
ask==FALSE. A generic default is supplied.

14 read.winbugs

touch option to create (touch) the file/folder after generating the unique name, which
prevents other processes from sneaking in and creating a file with the same name
before the returned filename has had chance to be used. Default FALSE.

type if touch==TRUE, then type controls if a file or directory is created. One of ’file’,
’f’, ’directory’, or ’d’. Defult ’file’.

Value

A unique filename that is safe to use without fear of destroying existing files

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

ask

Examples

Create a file name that is unlikely to exist already,
with a .R extension.
new_unique(c("new_file", NA), ".R", ask=FALSE)

read.winbugs Extract Any Models, Data, Monitored Variables or Initial Values As
Character Vectors from a Winbugs Type Textfile

Description

Read a user specified WinBUGS type textfile or character variable and extract any models, data,
monitored variables or initial values as character vectors. Used by (auto)run.jags to interpret the
input file(s) or strings.

Usage

read.winbugs(path)

Arguments

path either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. May also be a vector
of paths to different text files, possibly separately containing the model, data and
intitial values. No default. The model must be started with the string ’model{’
and ended with ’}’ on new lines. Data must be similarly started with ’data{’,

read.winbugs 15

monitored variables with ’monitor{’, and initial values as ’inits{’, and all ended
with ’}’. Seperate variables in such blocks must be separated by a line break.
If multiple models are found, all but the first one are ignored with a warning.
Multiple data blocks and monitor blocks are combined, multiple inits blocks are
used for different chains. Monitors may also be given using the phrase ’#moni-
tor# variable’ within the model block, in which case ’variable’ is added to the list
of monitored variables found in the monitor block(s). The use of automatically
generated data and initial values is also supported using similar syntax, with
’#data# variable’ for automatically generated data variables or ’#inits# variable’
for automatically generated initial value variables in which case ’variable’ is
used as data or initial values with a value taken by run.jagsfile from datalist,
initlist or R objects as appropriate. ’#inits#’, ’#data#’ and ’#monitor#’ state-
ments can appear on the same line as model code, but no more than one of these
statements should be used on the same line. Examples of acceptable model syn-
tax are given below.

Value

A named list of ’model’ containing the model description, ’data’ containing the data given in the
data block(s), ’autodata’ containing data variables specified using ’#data#’ in the model block,
’inits’ containing the initial values given in the initial value block(s), ’autoinits’ containing initial
value variables specified using ’#inits#’ in the model block, and ’monitor’ containing the moni-
tored variables specified in the monitor blocks and by using ’#monitor#’ within the model block.
This function is specified primarily for WinBugs compatibility, so data blocks would normally con-
tain the data in a list format rather than the code format that is allowed in JAGS to perform data
transformations (see JAGS manual section 7.0.5). These JAGS format data blocks can be specified,
and the function will attempt to differentiate the two types of data from the presence of syntactical
cues such as square brackets, for loops, ’list’ and .Dim structural assignments. If none of these are
found, the data block is assumed to be a WinBugs type data block and is passed to JAGS as data.
This behaviour can be over-ridden by inserting ’#jagsdata#’ or ’#bugsdata#’ into the data block as
appropriate. More than one data block is allowed, and each will be differentiated independently.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags

Examples

Not run:

ALL SYNTAX GIVEN BELOW IS EQUIVALENT

Use a modified WinBUGS text file with manual inits and manual data and

16 read.winbugs

a seperate monitor block (requires least modification from a WinBUGS
file). For compatibility with WinBUGS, the use of list() to enclose
data and initial values is allowed and ignored, however all seperate
variables in the data and inits blocks must be seperated with a line
break (commas or semicolons before linebreaks are ignored). ’data{’
and ’inits{’ must also be added to WinBUGS textfiles so that the
function can seperate data from initial values. Iterative loops are
allowed in data blocks but not in init blocks. See also the differences
in JAGS versus WinBUGS syntax in the JAGS help file.

Contents of a textfile ’mymodel.bug’:

model{

for(i in 1:N){
Count[i] ~ dpois(mean)
}
mean ~ dgamma(0.01, 100)
}

data{
list(Count <- c(1,2,3,4,5,6,7,8,9,10),
N <- 10)

}
inits{
list(
mean <- 1)
}

inits{
list(
mean <- 100)
}

monitor{
mean
}

end text file

read.winbugs(’pathtofile/mymodel.bug’)

Use internal character variable, define monitors in the model,
use autodata and manual initial values:

string <- "
model{

for(i in 1:N){
Count[i] ~ dpois(mean) #data# Count, N
}

run.jags 17

mean ~ dgamma(0.01, 100)
#monitor# mean
}

inits{
mean <- 1
}

inits{
mean <- 100
}
"

read.winbugs(string)

Use autoinits and a mixture of manual and autodata:
string <- "
model{

for(i in 1:N){
Count[i] ~ dpois(mean) #data# Count
}
mean ~ dgamma(0.01, 100)
#monitor# mean
#inits# mean
}

data{

N <- 10

}
"

read.winbugs(string)

End(Not run)

run.jags Run or Extend a User Specified Bayesian MCMC Model in JAGS from
Within R

Description

Runs or extends a user specified JAGS model from within R, returning an object of class runjags-class.
Data and initial values can either be supplied in the R dump format (see dump.format() for an easy

18 run.jags

way to do this), or as a named list. A character vector of variables to monitor must also be supplied,
either to the monitor argument or inside the model code.

Requires Just Another Gibbs Sampler (JAGS), see http://www-fis.iarc.fr/~martyn/software/
jags/.

Usage

run.jags(model=stop("No model supplied"), monitor = NA, data=NA,
n.chains=NA, inits = NA, burnin = 5000, sample = 10000,
adapt=max(200-burnin, 0), datalist=NA, initlist=NA, jags =
findjags(), silent.jags = FALSE, summarise = TRUE, confidence=0.95,
plots = summarise, psrf.target = 1.05, normalise.mcmc = TRUE,
check.stochastic = TRUE, modules=c(""), factories=c(""), thin = 1,
monitor.deviance = FALSE, monitor.pd = FALSE, monitor.pd.i = FALSE,
monitor.popt = FALSE, check.conv = summarise, keep.jags.files =
FALSE, tempdir=TRUE, jags.refresh=0.1, batch.jags=silent.jags,
method=if (’rjags’ %in% .packages()) ’rjags’ else ’interruptible’,
method.options=list())

extend.jags(runjags.object=stop("The output of a runjags function (with class ’runjags’) must be supplied"),
add.monitor=character(0), drop.monitor=character(0), drop.chain=numeric(0),

combine=length(c(add.monitor,drop.monitor,drop.chain))==0, burnin =
0, sample = 10000, adapt=max(200-burnin, 0), jags = findjags(),
silent.jags = FALSE, summarise = TRUE, confidence=0.95, plots =
summarise, psrf.target = 1.05, normalise.mcmc = TRUE,
check.stochastic = TRUE, thin = runjags.object$thin, keep.jags.files
= FALSE, tempdir=TRUE, jags.refresh=0.1, batch.jags=silent.jags,
method=NA, method.options=NA)

results.jags(background.runjags.object=stop("An object produced by a background runjags method must be supplied"))

Arguments

model either a relative or absolute path to a textfile (including the file extension) con-
taining a model in the JAGS language and possibly monitored variable names,
data and/or initial values, or a character string of the same. No default. The
model must be started with the string ’model{’ and ended with ’}’ on new lines.
Data must be similarly started with ’data{’, monitored variables with ’moni-
tor{’, and initial values as ’inits{’, and all ended with ’}’. If multiple models are
found, all but the first one are ignored with a warning. Multiple data blocks and
monitor blocks are combined, multiple inits blocks are used for different chains.
The model block may also contain automatically generated data and initial val-
ues variables using ’#data# variable’ and ’#inits# variable’, and more monitored
variables using ’#monitor# variable’. See read.winbugs for more information.
No default.

http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/~martyn/software/jags/

run.jags 19

monitor a character vector of the names of variables to monitor. The special node names
’deviance’, ’pd’, ’pd.i’, ’popt’ and ’dic’ are used to monitor these model fit diag-
nostics (see the JAGS user manual for more information), but with the exception
of ’deviance’ these monitored nodes won’t appear as variables in the summary
statistics or plots. Note: multiple chains are required for calculation of ’pd.i’,
’pd’, ’popt’ and ’dic’. No default.

data a character string in the R dump format (or a named list) containing the data. If
left as NA, no external data is used in the model. Default NA.

n.chains the number of chains to use with the simulation. More chains will improve
the sensitivity of the convergence diagnostic, but will cause the simulation to
run more slowly (although this may be improved by using a method such as
’parallel’ or ’snow’). The minimum (and default) number of chains is 2.

inits either a character vector with length equal to the number of chains the model
will be run using, or a list of named lists representing names and corresponding
values of inits for each chain. If a vector, each element of the vector must be
a character string in the R dump format representing the initial values for that
chain, or NA. If not all initialising variables are specified, the unspecified vari-
ables are sampled from the prior distribution by JAGS. Values left as NA result
in all initial values for that chain being sampled from the prior distribution. The
special variables ’.RNG.seed’, ’.RNG.name’, and ’.RNG.state’ are allowed for
explicit control over random number generators in JAGS. Default NA.

runjags.object the model to be extended - the output of a run.jags (or autorun.jags or extend.jags
etc) function, with class ’runjags’. No default.

background.runjags.object

the output of a run.jags (or extend.jags) function call using a background JAGS
method, with class ’runjags.bginfo’. No default.

add.monitor a character vector of variables to add to the monitored variable list. All previ-
ously monitored variables are automatically included - although see the ’drop.monitor’
argument. Default no additional monitors.

drop.monitor a character vector of previously monitored variables to remove from the moni-
tored variable list for the extended model. Default none.

drop.chain a numeric vector of chains to remove from the extended model. Default none.

combine a logical flag indicating if results from the new JAGS run should be combined
with the previous chains. Default TRUE if not adding or removing variables or
chains, and FALSE otherwise.

burnin the number of burnin iterations (not sampled) to use (numeric). Default 5000
iterations.

sample the number of sampling iterations to use (numeric). Default 10000 iterations.

adapt advanced option to control the length of the adaptive phase directly, which is
otherwise half the length of the burnin period. Default is 0, unless burnin is less
than 200 in which case 100 adapitve iterations are used.

datalist an optional named list containing variables used as data, or alternatively a func-
tion (with no arguments) that returns a named list. If any variables are speci-
fied in the model block using ’#data# variable’, the value for the corresponding

20 run.jags

named variable is taken from datalist if present (or the result of datalist() if spec-
ified as a function which is useful for specifying randomly generated data), or
the parent environment, or finally the global environment if not found anywhere
else. Ignored if ’#data# variable’ is not used in the model block. Default NA.

initlist an optional named list containing variables used as initial values, or alternatively
a function (with a single argument representing the chain number) that returns
a named list. If any variables are specified in the model block using ’#inits#
variable’, the value for the corresponding named variable is taken from initlist if
present (or the result of datalist(chain.no) if specified as a function which allows
both randomly generated initial values and different values for each chain), or
the parent environment, or finally the global environment if not found anywhere
else. Ignored if ’#inits# variable’ is not used in the model block. Note: differ-
ent chains are all given the same starting values if specified as a named list or
taken from any envirnoment; if different values are desired for each chain initlist
should be specified as a function. Default NA.

jags the system call or path for activating JAGS. Default calls findjags() to attempt to
locate JAGS on your system.

silent.jags should the JAGS output be suppressed? (logical) If TRUE, no indication of the
progress of individual models is supplied. Default FALSE.

summarise should summary statistics be assessed after the model has completed? Default
TRUE.

confidence the prob argument to be passed to HPDinterval for calculation of confidence
intervals. Default 0.95 (95% confidence intervals).

plots should traceplots and density plots be produced for each monitored variable? If
TRUE, the returned list will include elements ’trace’ and ’density’ which consist
of a list of lattice objects accessible using the plot method for the runjags-class.
The alternative is to use (for example) plot(as.mcmc.list(results)) to look at the
density and traceplots for each variable using the traditional graphics system.
Default follows the summarise argument (which is required to be TRUE for
plots to be produced).

psrf.target the value of the point estimate for the potential scale reduction factor of the
Gelman Rubin statistic below which the chains are deemed to have converged
(must be greater than 1). Ignored if check.conv==FALSE. Default 1.05.

normalise.mcmc the Gelman Rubin statistic is based on the assumption that the posterior dis-
tribution of monitored variables is roughly normal. For very skewed posterior
distributions, it may help to log/logit transform the posterior before calculat-
ing the Gelman Rubin statistic. If normalise.mcmc == TRUE, the normality of
the untransformed and log/logit transformed posteriors are compared for each
monitored variable and the least skewed is used to calculate the Gelman Rubin
statistic. If FALSE, the data are left untransformed (this may give problems cal-
culating the statistic in extreme cases). Ignored if check.conv==FALSE. Default
TRUE.

check.stochastic

non-stochastic monitored variables will cause errors when calculating the Gelman-
Rubin statistic, if check.stochastic==TRUE then all monitored variables will be
checked to ensure they are stochastic beforehand. This has a computational cost,
and can be bypassed if check.stochastic==FALSE. Default TRUE.

run.jags 21

modules external modules to be loaded into JAGS. More than 1 module can be used.
Default none.

factories factory modules to be loaded into JAGS. More than 1 factory can be used.
Factories should be in the format ’<facname>(<factype>)’, for example: fac-
tories=’mix::TemperedMix(sampler)’. Default none.

thin the thinning interval to be used in JAGS. Increasing the thinning interval may
reduce autocorrelation, and therefore reduce the number of samples required,
but will increase the time required to run the simulation. Default 1.

monitor.deviance

this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

monitor.pd this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

monitor.pd.i this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

monitor.popt this argument is deprecated and remains for backwards compatibility only. See
the ’monitor’ variable.

check.conv this argument is deprecated and remains for backwards compatibility only. See
the ’summarise’ variable.

keep.jags.files

option to keep the folder with files needed to call JAGS, rather than deleting
it. May be useful for attempting to bug fix models. A character string can also
provided, in which case this folder name will be used instead of the default
(existing folders will NOT be over-written). Default FALSE.

tempdir option to use the temporary directory as specified by the system rather than
creating files in the working directory. If keep.jags.files==TRUE then the folder
is copied to the working directory after the job has finished (with a unique folder
name based on ’runjagsfiles’). Any files created in the temporary directory are
removed when the function exits for any reason. Default TRUE.

jags.refresh the refresh interval (in seconds) for monitoring JAGS output using the ’interac-
tive’ and ’parallel’ methods (see the ’method’ argument). Longer refresh inter-
vals will use less processor time. Default 0.1 seconds.

batch.jags option to call JAGS in batch mode, rather than using input redirection. On JAGS
>= 3.0.0, this suppresses output of the status which may be useful in some situ-
ations. Default TRUE if silent.jags is TRUE, or FALSE otherwise.

method the method with which to call JAGS; probably a character vector specifying
one of ’rjags’, ’simple’, ’interruptible’, ’parallel’, ’background’, ’bgparallel’ or
’snow’ (and see also xgrid.autoextend.jags). The former runs JAGS using
the rjags package, whereas other options do not require the rjags package and
call JAGS as an external executable. ’simple’ runs JAGS as a foreground process
(the default behaviour for runjags < 0.9.6), ’interruptible’ allows the JAGS pro-
cess to be terminated immediately using the interrupt signal, ’parallel’ runs each
chain as a separate process on a separate core, ’snow’ uses a simple network
of workstations (which may be passed into the method.options list as ’cl’), and
’background’ & ’bgparallel’ starts JAGS as one or more background processes

22 run.jags

and returns the information needed to be passed to results.jags to retrieve the
simulations when they have finished. The default for run.jags is to use ’rjags’
if the ’rjags’ package is load()ed, or the ’interactive’ method otherwise. The
default for the extend.jags function is to use the same method as used for the
previous JAGS call.
Note that the parallel, snow and bgparallel methods all use separate JAGS in-
stances to speed up execution of models with multiple chains (at the expense
of using more RAM), but cannot be used to monitor pd/popt/pd.i (and there-
fore DIC). Each chain is specified using a different random number genera-
tor (.RNG.name) for up to 4 chains (the number of different RNG available in
JAGS), unless .RNG.name is specified in the initial values. Because each chain
uses a separate JAGS instance, JAGS has no way of ensuring independence
between multiple chains using the same random number generator (as would
normally be done when calling a single JAGS instance with multiple chains).
Using more than 4 chains with one of these methods without the use of new
RNG factories may therefore produce dependence between chains, and is not
recommended (a warning is given if trying to do so).
Starting with runjags version 1.0.0, there has been an attempt to abstract the
method used to call JAGS - as a result a user-specified function may also be
passed as the method. This function must call JAGS on a given batch script
contained within ’sim’ folders in the working directory, and either wait for JAGS
to output simulation results to file then return TRUE or return FALSE which
is assumed to mean that the JAGS processes are still running, in which case
the behaviour is as for ’background’. The return may also be a list including
the named element ’complete’ which refers to the same thing, as well as other
elements that are returned to the top level. If you are interested in developing
another method please feel free to contact the package author.

method.options an optional named list of argument to be passed to the method function (includ-
ing a user specified method function). Of the default arguments, only ’nsims’
indicating the number of separate simulations (for parallel, snow and bgparallel
methods) and ’cl’ specifying an existing snow cluster and/or ’remote.jags’ spec-
ifying the path to JAGS on the remote machines (for the snow method only) can
be used. Others are ignored with a warning.

Value

Usually an object of class ’runjags’, or an object of class ’runjags.bginfo’ for background methods
(see runjags-class).

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

runjags-class

autorun.jags,

xgrid.run.jags,

run.jags 23

combine.mcmc,

testjags,

dump.format

Examples

run a model to calculate the intercept and slope of the expression
y = m x + c, assuming normal observation errors for y:

Not run:

Simulate the data
X <- 1:100
Y <- rnorm(length(X), 2*X + 10, 1)

Model in the JAGS format
model <- "model {
for(i in 1 : N){
Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m * X[i]) + c;
}
m ~ dunif(-1000,1000);
c ~ dunif(-1000,1000);
precision ~ dexp(1);
}"

Use dump.format to convert the data and initial values files
into the R dump format, with explicit control over the random
number generator used for each chain (optional):
data <- dump.format(list(X=X, Y=Y, N=length(X)))
inits1 <- dump.format(list(m=1, c=1, precision=1,
.RNG.name="base::Super-Duper", .RNG.seed=1))
inits2 <- dump.format(list(m=0.1, c=10, precision=1,
.RNG.name="base::Wichmann-Hill", .RNG.seed=2))

Run the model and produce plots
results <- run.jags(model=model, monitor=c("m", "c", "precision"),
data=data, n.chains=2, inits=c(inits1,inits2), plots = TRUE)

Plot the monitored variables:
plot(results)

Look at the summary statistics:
print(results)

Extract only the coefficient as an mcmc.list object:
coeff <- as.mcmc.list(results,vars="m")

End(Not run)

24 run.jags.study

The same model but using embedded shortcuts to specify data, inits and monitors:

Not run:

Model in the JAGS format

model <- "model {
for(i in 1 : N){ #data# N
Y[i] ~ dnorm(true.y[i], precision); #data# Y
true.y[i] <- (m * X[i]) + c; #data# X
}
m ~ dunif(-1000,1000); #inits# m
c ~ dunif(-1000,1000);
precision ~ dexp(1);
#monitor# m, c, precision
}"

Simulate the data
X <- 1:100
Y <- rnorm(length(X), 2*X + 10, 1)
N <- length(X)

initfunction <- function(chain) return(switch(chain,
"1"=list(m=-10), "2"=list(m=10)))

results <- run.jags(model, n.chains=2, initlist=initfunction)

Look at a traceplot of the intercept and slope on a 2x1 grid:
plot(results,type="trace",vars=c("m","^c"),layout=c(2,1))

End(Not run)

run.jags.study Run an MCMC Model in JAGS Using Multiple Simulated Datasets

Description

This function can be used to fit a user specified JAGS model to multiple datasets with automatic
control of run length and convergence, over a distributed computing cluster such as that provided
by snow. The results for monitored variables are compared to the target values provided and a
summary of the model performance is returned. This may be used to facilitate model validation
using simulated data, or to assess model fit using a ’drop-k’ type cross validation study where one
or more data points are removed in turn and the model’s ability to predict that datapoint is assessed.

run.jags.study 25

Usage

run.jags.study(simulations, model=NULL, datafunction=NULL,
targets=list(), confidence=0.95, record.chains=FALSE,
runjags.options=list(), cat.progress=FALSE, test=TRUE,
parallel.method=parLapply, ...)

Arguments

simulations the number of datasets to run the model on

model the JAGS model to use, in the same format as would be specified to run.jags

datafunction an optional function that will be used to specify the data. If provided, this must
take exactly one argument, representing the simulation number, and return either
a named list or character vector in the R dump format containing the data specific
to that simulation. It is possible to specify any data that does not change for each
simulation using a #data# <variable> tag in the model code. If a datafunction is
not provided, the data will be the same for all simulations (and a warning will
be printed).

targets a named list of variables (which can include vectors/arrays) with values to which
the model outputs are compared (if stochastic). The target variable names are
also automatically included as monitored variables.

confidence a probability (or vector of probabilities) to use when calculating the proportion
of credible intervals containing the true target value. Default 95% CI.

record.chains option to return the full runjags objects returned from each simulation as a list
item named ’runjags’. Default FALSE.

runjags.options

a named list of options to be passed to the underlying autorun.jags function
used to run the models.

cat.progress option to print a message when individual simulations have finished running.
This is available for use with lapply, but messages will not be printed for some
parallel methods (such as the default parLapply). Default FALSE.

test option to test the model compilation on a single (randomly chosen) dataset,
to ensure that the model compiles before calling the parallel method. Default
TRUE.

parallel.method

a function that will be used to call the repeated simulations. This must take
the first two arguments ’X’ and ’FUN’ as for lapply, with other optional argu-
ments passed through from the parent function call. Default uses parLapply,
but lapply or mclapply could also be used.

... optional arguments to be passed directly to the parallel method function, such as
’cl’ in the case of parLapply.

26 run.jags.study

Value

An object of class runjags.study-class, containing a summary of the performance of the model
with regards to the target variables specified. If record.chains==TRUE, an element named ’runjags’
containing a list of all the runjags objects returned will also be present.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags, runjags.study-class

Examples

Not run:

Perform a drop-1 validation study for a simple model:

themodel <- "
model{

for(i in 1:N){
Y[i] ~ dnorm(true.y[i], precision)
true.y[i] <- (m * X[i]) + c
}
m ~ dunif(-1000,1000)
c ~ dunif(-1000,1000)
precision ~ dexp(1)

#data# N, X
#inits# m, c, precision
}"

Simulate the data
N <- 20
X <- 1:N
Y <- rnorm(length(X), 2*X + 1, 1)

Some initial values to use for 2 chains:
m <- list(-10,10)
c <- list(10,-10)
precision <- list(0.01,100)

A simple function that removes (over-writes with NA) one datapoint at a time:
datafun <- function(s){
simdata <- Y
simdata[s] <- NA
return(list(Y=simdata))
}

run.jagsfile 27

Set up a cluster to use with the parLapply method:
cl <- makeCluster(20)

Call the 20 simulations over the snow cluster:
results <- run.jags.study(simulations=20, model=themodel, datafunction=datafun, targets=list(Y=Y, m=2, c=1), runjags.options=list(n.chains=2), cl=cl)

Examine the results:

results

End(Not run)

run.jagsfile Deprecated functions

Description

These functions are deprecated and only remain for backwards compatibility. Please use the run.jags
or autorun.jags functions directly, with the model argument replacing path.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

autorun.jags,

run.jags,

xgrid.run.jags,

read.winbugs

runjags Interface utilities for Just Another Gibbs Sampler (JAGS) using paral-
lel and distributed computing

28 runjags

Description

This package provides high-level interface utilities for JAGS, either running locally (via the rjags
package or using multiple cores in parallel) or via distributed computing clusters such as those pro-
vided by snow (a Simple Network Of Workstations), Apple Xgrid distributied computing clusters
(Mac OS X 10.5-10.7 only), and possibly others via user specified functions. The primary moti-
vation is to facilitate running relatively simple JAGS models to convergence, including evaluating
the performance of a model against simulated data, and compatibility with the WinBUGS syntax of
model files with data and initial values lists. Runjags interface functions also provide convenience
wrappers for automatic control of model convergence assessment and run length diagnostics, cal-
culation of relevant summary statistics, generation of trace and density plots, calculation of DIC,
and automatic retrieval of R objects as data and initial values. Running of arbitrary R commands
(not involving JAGS) over Xgrid is also supported. Requires Just Another Gibbs Sampler (JAGS)
for most functions, see: http://www-fis.iarc.fr/~martyn/software/jags/

Details

JAGS is a program which allows analysis of Bayesian models using Markov chain Monte Carlo
(MCMC) simulation, and was developed by Martyn Plummer to be an alternative to BUGS that
ran on UNIX systems as well as Windows systems (see: http://www-fis.iarc.fr/~martyn/
software/jags/ for more information). The R package rjags is a native R interface to the JAGS
library, and allows a greater level of control for compiled models, which may be more useful for
model development. This package was intended to provide additional functions to help automate
the process of running models, including interpretation of WinBUGS type text files including data
and initial values, automated convergence diagnostics, automated collation and plotting of results,
and convinience wrappers for running models (either individually or for multiple data sets) over dis-
tributed computing cluster such as those provided by snow and Apple’s (now discontinued) Xgrid.
The package also includes functions for running any other user specified R code over Xgrid dis-
tributed computing clusters from within R (requires Mac OS X and access to an Xgrid system).

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags and extend.jags for basic model runs

autorun.jags and autoextend.jags for automated running of models to convergence and auto-
mated calculation of necessary sample sizes

runjags-class for S3 methods relating to runjags objects, incluing conversion to/from jags objects
(for compatibility with the rjags package)

read.winbugs for translation of WinBUGS text files into JAGS compatible model, data and initial
values files

combine.mcmc and dump.format for MCMC related tools

timestring, new_unique and ask for more general tools

xgrid.run.jags and xgrid.submit.jags for use of Xgrid clusters to run JAGS models remotely

xgrid.run and xgrid.submit for use of Xgrid clusters for remote execution of user specified R
code

http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/~martyn/software/jags/
http://www-fis.iarc.fr/~martyn/software/jags/

runjags-class 29

jags.model in the rjags package for fine control over the JAGS libraries

runjags-class The ’runjags’ class (and associated classes) and available S3 methods

Description

Objects of class ’runjags’ are produced by the run.jags/extend.jags/autorun.jags etc functions, and
can be passed to extend.jags and autoextend.jags to extend the simulation. They also have a few
specific S3 methods for print, plot and extraction of the MCMC objects contained within the runjags
object.

Objects of class ’runjags.study’ are produced by the run.jags.study function, and class ’runjags.bginfo’
represents a JAGS model being run using a background method and can be passed to the results.jags
function to retrieve (a copy of this object will also have been saved to ’jagsinfo.Rsave’ in the work-
ing directory of the background JAGS call in case the returned object is not saved by the user).

These functions provide print and plot methods, and conversion facilities to/from MCMC objects
and objects of class ’jags’ for compatibility with the rjags package.

The ’failedjags’ environment is used to store JAGS model/data/initial value files from failed simu-
lations for inspection by the user.

Usage

S3 method for class ’runjags’
print(x, vars=NA, digits = 5, ...)
S3 method for class ’runjags’
plot(x,vars=NA, layout=NA, newwindows=NA,
file="", type="all", ...)

S3 method for class ’runjags.model’
print(x, linenumbers=TRUE, ...)
S3 method for class ’runjags.data’
print(x, linenumbers=TRUE, ...)
S3 method for class ’runjags.inits’
print(x, linenumbers=TRUE, ...)

S3 method for class ’runjags.study’
print(x,...)
S3 method for class ’runjags.bginfo’
print(x, ...)

S3 method for class ’runjags’
as.mcmc(x)
S3 method for class ’runjags’
as.mcmc.list(x, vars=NA, ...)

30 runjags-class

S3 method for class ’runjags’
as.jags(x, ...)
S3 method for class ’jags’
as.runjags(x, monitor = stop("No monitored variables supplied"),
modules=c(""), factories=c(""), check=TRUE, jags = findjags(), ...)

Arguments

x an object of class ’runjags’ (as returned by the run.jags or autorun.jags func-
tions), or for the as.runjags method an object of class ’jags’ (as returned by the
jags.model function in the rjags package).

vars an optional character vector of variable names to extract. If supplied, only vari-
able names in the object supplied with a partial match to anything in ’vars’ will
be summarised/plotted/extracted. Note that regular expressions are not allowed,
but the caret (^) token can be used to specify the match at the start of a vari-
able name, and a quoted vars will be matched exactly. Default NA meaning all
variables available are returned.

digits the number of significant digits to display for tabulated statistics. Default 5.
layout a numeric vector of length 2 representing the number of rows and columns to

produce plots in. Default 1 plot per page for trace and density options, or a
single row of 2 plots if plotting both types.

newwindows if there are a greater number of variables than will fit on one page, should new
graphics windows be created for each plot or the exisiting device used for all
plots? Ignored if writing plots to file. Default TRUE on Mac/Windows GUI
systems, and FALSE otherwise.

file an optional character string representing a filename to save plots to (as a PDF)
rather than using the default graphics device. Default "" (ie don’t write to file).

type option to produce ’trace’ plots, ’density’ plots, a ’crosscorr’ plot or ’all’. Cases
are ignored and partial matching is used; the argument may also be of length >1.
Default ’all’.

linenumbers option to prepend lines with line numbers for runjags model/data/initial value
strings. This may be helpful for debugging against the output of (failed) JAGS
runs. Default TRUE.

... other options to be passed down to underlying methods where available (ignored
for plot.runjags - see below).

monitor a character vector of the names of variables to monitor. No default.
modules external modules to be loaded into JAGS. More than 1 module can be used.

Default none.
factories factory modules to be loaded into JAGS. More than 1 factory can be used.

Factories should be in the format ’<facname>(<factype>)’, for example: fac-
tories=’mix::TemperedMix(sampler)’. Default none.

check should the runjags object returned be checked to ensure that an external call to
JAGS is able to run the model? Default TRUE.

jags the system call or path for activating JAGS (ignored if check==FALSE). Default
calls findjags() to attempt to locate JAGS on your system.

testjags 31

Details

The runjags class contains the full model, data, modules, factories etc required to run JAGS and
is designed to encapsulate the model in a similar vein to the ’lm’ or ’mer’ class. Most interaction
with a runjags object should be done using the print/plot/as.mcmc.list methods, but it may also
be helpful to access some elements of the list directly - the names of the elements can be access
using ’names(runjags.object)’. For example, this is currently the only method of extracting the full
pd/popt/pd.i information.

Value

The print method for runjags objects displays a range of summary statistics for the MCMC chains
(similar to that produced by summary.mcmc, but with additional details).

The plot method produces trace and density plots (note that these are pre-plotted and stored inside
the runjags object, so the usual options to lattice or plot functions are not available).

The as.mcmc method combines the chains (with a warning) and returns an mcmc object, and the
as.mcmc.list method extracts the mcmc.list from the runjags object (or possibly a sub-selection of
variables given by vars). See also combine.mcmc which can be used directly on runjags objects.

The print methods for runjags model, data and initial value strings simply provide the option for
printing line numbers which may be useful for debugging. The print methods for runjags.study and
runjags.bginfo objects provide a basic overview of the objects.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

combine.mcmc,

run.jags,

autorun.jags,

summary.mcmc,

testjags Analyse the System to Check That JAGS Is Installed

Description

Test the users system to determine the operating system, version of R installed, and version of JAGS
installed. Some information is collected from other functions such as .platform and Sys.info. Used
by the run.jags function.

Usage

testjags(jags=findjags(), silent=FALSE)

32 timestring

Arguments

jags the system call or path for activating JAGS. Default calls findjags() to attempt
to locate JAGS on your system automatically. In unix the system call should
always be ’jags’, in Windows a path to the JAGS executable or the enclosing
/bin or /JAGS folder is required.

silent should on-screen feedback be suppressed? Default FALSE.

Value

A named list of values containing information about the JAGS installs found on the user’s system.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags,

findjags

Examples

Run the function to determine if JAGS is installed:
results <- testjags()

timestring Calculate the Elapsed Time in Sensible Units

Description

Function to calculate the elapsed time between 2 time periods (in seconds), or to calculate a number
of seconds into a time measurement in more sensible units.

Usage

timestring(time1, time2=NA, units=NA, show.units=TRUE)

Arguments

time1 either the time index (from Sys.time()) at the start of the time period, a length of
time in seconds, or an object of class ’difftime’.

time2 either the time index (from Sys.time()) at the end of the time period, or missing
data if converting a single length of time. Default NA.

xgrid.run 33

units either missing, in which case a sensible time unit is chosen automatically, or one
of ’s’, ’m’, ’h’, ’d’, ’w’, ’y’ to force a specific unit. Default NA.

show.units if TRUE, then the time is returned with units, if FALSE then just an integer is
returned. Default TRUE.

Value

A time measurement, with or without units.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

Sys.time

Examples

time how long it takes to complete a task:

pre.time <- Sys.time()
for (i in 1:10000000) hold <- exp(100) # PROCESS TO TIME
post.time <- Sys.time()
timestring(pre.time, post.time)

Convert 4687 seconds into hours:

timestring(4687, units=’hours’, show.units=FALSE)

xgrid.run Remote execution of user-specified R functions on Apple Xgrid dis-
tributed computing clusters

Description

Allows arbitrary R code to be executed on Apple Xgrid distributed computing clusters and the
results returned to the R session of the user. Jobs can either be run synchronously (the process will
wait for the model to complete before returning the results) or asynchronously (the process will
terminate on submission of the job and results are retrieved at a later time). Access to an Xgrid
cluster with R (along with all packages required by the function) installed is required. Due to the
dependance on Xgrid software to perform the underlying submission and retrieval of jobs, these
functions can only be used on machines running Mac OS X.

The two utility functions xgrid.jobs and xgrid.delete allow the currently running jobs to be examined
and deleted from inside R.

Note Apple has discontinued Xgrid from Mac OS 10.8 onwards, so future development and
testing of these functions will be extremely limited

34 xgrid.run

Usage

xgrid.run(f=function(iteration){}, niters=1, object.list=list(),
file.list=character(0), max.threads=100, arguments=as.list(1:niters),
Rversion="", packages=list(), artfun=function() writeLines("1"),
email=NA, profiling=TRUE, cpuarch=NA, minosversion=NA,
queueforserver=FALSE, hostnode=NA, forcehost=FALSE, ramrequired=10,
jobname=NA, cleanup=TRUE, showprofiles=FALSE, Rpath=’/usr/bin/R’,
Rbuild=’64’, max.filesize="1GB",
mgridpath=system.file("xgrid", "mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), tempdir=FALSE,
keep.files=FALSE, show.output=TRUE, threads=min(niters, max.threads),
...)

xgrid.submit(f=function(iteration){}, niters=1, object.list=list(),
file.list=character(0), max.threads=100, arguments=as.list(1:niters),
Rversion="", packages=list(), artfun=function() writeLines("1"),
email=NA, profiling=TRUE, cpuarch=NA, minosversion=NA,
queueforserver=FALSE, hostnode=NA, forcehost=FALSE, ramrequired=10,
jobname=NA, Rpath=’/usr/bin/R’, Rbuild=’64’, max.filesize="1GB",
mgridpath=system.file("xgrid", "mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), show.output=TRUE,
separate.jobs=FALSE, threads=min(niters, max.threads), ...)

xgrid.results(jobinfo, wait=TRUE, partial.retrieve=!wait,
cleanup=!partial.retrieve, show.output=TRUE)

xgrid.jobs(comment=FALSE, user=FALSE, jobs=10,
mgridpath=system.file("xgrid", "mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"))

xgrid.delete(jobinfo, keep.files=FALSE)

xapply(X, FUN, method.options=list(), ...)

Arguments

f the function to be iterated over on Xgrid. This must take at least 1 argument,
the first of which represents the value of the ’arguments’ list to be passed to the
function for that iteration, which is the iteration number unless ’arguments’ (or
’X’ for xapply) is specified. Any other arguments to be passed to the function
can be supplied as additional arguments to xgrid.run/xgrid.submit/xapply. The
value(s) of interest should be returned by this function (an object of any class is

xgrid.run 35

permissable). No default.

niters the total number of iterations over which to evaluate the function f. This can be
less than the number of threads, in which case multiple iterations are evaluated
serially as part of the same task. No default.

object.list a named list of objects that will be copied to the global environment on Xgrid
and so will be visible inside the function. Alternatively, this can be a character
vector of objects, that will be looked for in the global environment, rather than
a named list. All other objects in the current working directory will not be vis-
ible when the function is evaluated. THIS INCLUDES LIBRARIES WHICH
MUST BE RE-CALLED WITHIN THE FUNCTION BEFORE USE. In order
to use functions within an R library it is therefore necessary for the required
library to be installed on the Xgrid nodes on which the job will be run. If not
all nodes have the required libraries installed, you can use an ART script to en-
sure the job is sent only to machines that do (see the example provided below),
or you can use mgrid to manually request certain nodes using the ’-f -h <node-
name>’ options. Alternatively, text files containing R code can be included in
the ’file.list’ argument and source()d within the function. Default blank list (no
objects copied).

file.list a vector of filenames representing files in the current working directory that will
be copied to the working directory of the executed function. This allows R code
to be source()d, datasets to be loaded, and compiled code to be dynamically
linked within the function, among other things. Default none.

max.threads the maximum number of tasks (or jobs) to split into.

arguments a list of values to be passed as the first argument to the function, with each
element of the list specifying the value at that iteration. Default is as.list(1:niters)
which passes only the iteration number to the function.

Rversion the required R version for worker nodes to be given tasks - may include ’=’ or
’>=’ to signify exact or minimum version requirements.

packages a list of R packages that must be installed on host nodes for them to be used.

artfun an optional user-specified R function to determine the suitability of nodes in an
ART script - must either cat() 1 (indicating suitable) or 0 (indicating unsuitable)
to stdout.

email an email address to be used to notify of job status.

profiling option to use ART ranking to select the most suitable host nodes preferentially.

cpuarch option to restrict the job to ’ppc’ or ’intel’ nodes.

minosversion option to restrict the job to nodes running a minimum Mac OS version.

queueforserver option to restrict the job to nodes considered to be Server machines.

hostnode option to prefer (or restrict to if forcehost==TRUE) running the job on the speci-
fied nodes - must be provided as a single character string with the colon character
(:) separating node names.

forcehost option to restrict the job to only nodes specified by ’hostnode’.

ramrequired the minimum amount of free RAM (obtained using an approximation) for each
node to be assigned a task.

36 xgrid.run

jobname the name to give the job on Xgrid (optional).

cleanup option to remove the job from Xgrid after completion.

showprofiles option to show the node scores based on the ART ranking used.

Rpath the path to the R executable on the xgrid machines. If not all machines on the
xgrid cluster have R (or a required package) installed then it is possible to use an
ART script to ensure the job is sent to only machines that do - see the examples
section for details. Default ’/usr/bin/R’ (this is the default install location for R).

Rbuild the preferred binary of R to invoke. ’64’ results in ’Rpath64’ (if it exists), ’32’
in ’Rpath32’ (if it exists) and ” (or either of ’32’ or ’64’ if they are not found)
results in Rpath. Notice that this indicates a preference, not a certainty - if
the indicated build is not avalable then another will be used. Also note that
specifying ’64’ may be ignored for PPC nodes depending on what version of
R they are running (you can ensure only intel nodes are used with mgrid using
sub.options=’-c intel’). Default ”.

max.filesize the maximum total size of the objects produced by the function for each thread if
xgrid.method=separatejobs, or for the entire job if xgrid.method=separatetasks.
This is a failsafe designed to prevent attempted transfer of huge files bringing the
xgrid controller down. If the maximum size is exceeded for a thread or job then
the results are erased for all iterations within that thread or job, and the job will
likely have to be re-submitted. If each chain is likely to return a large amount
of information, then ’separatejobs’ should be used because jobs are retrieved
individually which reduces the chances of overloading the Xgrid controller. The
object.list is also checked to ensure it complies with the maximum size, but the
file.list and any objects saved to the working directory by the function are NOT
automatically cheked. Units can be provided as either "MB" or "GB". Default
"1GB".

mgridpath the path to the local mgrid script - default uses the version installed with the
runjags package.

hostname the hostname of the Xgrid server to connect to.

password the password for the Xgrid server given by hostname.

tempdir for xgrid.run, option to use the temporary directory as specified by the system
rather than creating files in the working directory. Any files created in the tem-
porary directory are removed when the function exits. A temporary directory
cannot be used for xgrid.submit. Default TRUE when running the job syn-
chronously.

keep.files option to keep the folder with files needed to run the job rather than deleting it
when the job is deleted from Xgrid. This may be useful for attempting to bug
fix failing jobs. Default FALSE.

show.output option to print the output of the function (obtained using cat, writeLine or print
for example) at each iteration after retrieving the job(s) from xgrid. If FALSE,
the output is suppressed. Default TRUE.

separate.jobs option to submit multiple jobs to Xgrid, to help with file size constraints (see the
entry for ’threads’ below).

threads the number of threads (either jobs if separate.jobs==TRUE or tasks otherwise) to
generate for the job. Each thread is sent to a separate node for execution, so the

xgrid.run 37

more threads there are the faster the job will finish (unless the number of threads
exceeds the number of available nodes). A very large number of threads may
cause problems with the Xgrid controller, hence the ability to set fewer threads
than iterations. Functions that return objects of a very large size should use a
large number of threads and use the xgrid.method ’separatejobs’ to minimise the
total size of objects returned by each xgrid job.

... additional arguments to be passed to the function provided by f.

jobinfo the output of a call to xgrid.submit.

wait option to wait for the Xgrid job to complete if it has not done so already.

partial.retrieve

for xgrid.results, option to retrieve results of partially completed jobs. By default
makes cleanup FALSE. Default TRUE.

comment option to display any comments relevant to the Xgrid jobs running.

user option to display information on the user that submitted each Xgrid job.

jobs the number of (most recent) jobs to display information for.

X for xapply, a vector (atomic or list) over which to apply the function provided.
Equivalent to ’arguments’ for xgrid.run, with niters = length(X).

FUN for xapply, the function to be passed to xgrid.run as ’f’.

method.options for xapply, any arguments (with the exception of ’f’, ’niters’ and ’arguments’
which are ignored) to be passed to xgrid.run.

Details

These functions allow JAGS models to be run on Xgrid distributed computing clusters from within R
using the same syntax as required to run the models locally. All the functionality could be replicated
by saving all necessary objects to files and using the Xgrid command line utility to submit and
retrieve the job manually; these functions merely provide the convenience of not having to do this
manually. Xgrid support is only available on Mac OS X machines running OS X 10.5-10.7 (Xgrid
support was discontinued in Mac OS X 10.8).

The xgrid controller hostname and password can also be set as environmental variables. The com-
mand line version of R knows about environmental variables set in the .profile file, but unfortunately
the GUI version does not and requires them to be set from within R using:

Sys.setenv(XGRID_CONTROLLER_HOSTNAME="<hostname>")

Sys.setenv(XGRID_CONTROLLER_PASSWORD="<password>")

(These lines could be copied into your .Rprofile file for a ’set and forget’ solution)

Note that the runjags package also contains a utility shell script called ’mgrid’ that enhances the
capabilities of Xgrid substantially - to install this from the command line navigate to the folder
given by system.file("xgrid", package="runjags") and from the terminal type ’sudo cp mgrid.sh
/usr/local/bin/mgrid (or similar) to make the script visible in your search path. Help on the mgrid
script can then be obtained by typing ’mgrid’ (with no arguments) at the command line.

38 xgrid.run

Value

For xgrid.submit, a list containing the jobname (which will be required by xgrid.results to re-
trieve the job) and the job ID(s) for use with the xgrid command line facilities. For xgrid.run and
xgrid.results, the output of the function over all iterations is returned as a list, with each element of
the list representing the results at each iteration. If the function returned an error, then the error will
be held in the list as the return value at the iteration that returned the error. If the function returns an
object that exceeds the ’max.filesize’ when combined with the results for other iterations in that job
(or greater than max.filesize/threads for multi-task jobs), the results for that thread are replaced with
an error message (this is to prevent the xgrid controller crashing due to transferring large files). The
xapply function returns as xgrid.run (or xgrid.submit if xgrid.options=list(submitandstop=TRUE)
in which case the results can be retrieved using xgrid.results).

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

xgrid.run.jags for functions to run JAGS models on Xgrid, or run.jags to do so locally.

mclapply and parLapply in the parallel package for parallel execution of code over multiple local
(or remote) cores.

Examples

A basic example of synchronous running of code over 100 iterations,
split up between 10 tasks:

Not run:

The function to evaluate:
f <- function(iteration){
All objects supplied to object.list will be visible here, but
remember to call all necessary libraries within the function

cat("Running iteration", iteration, "\n")
Some lengthy code evaluation....

output <- rpois(10, iteration)
return(output)
}

Run the function on xgrid for 100 iterations split between 10 machines:
results <- xgrid.run(f, niters=100, threads=10)

End(Not run)

xgrid.run 39

A basic example of xapply to calculate the mean of a list of numbers:

Not run:

A list of 3 datasets from which to calculate the mean:
datasets <- list(c(1,5,6,NA), c(9,2,NA,0), c(-1,4,10,20))

Standard lapply syntax:
results1 <- lapply(datasets, mean, na.rm=TRUE)

Equivalent xapply syntax:
results2 <- xapply(datasets, mean,
xgrid.options=list(wait.interval=’15s’), na.rm=TRUE)

Or submit the job:
id <- xapply(datasets, mean, xgrid.options=list(submitandstop=TRUE),
na.rm=TRUE)
And retrieve the results:
results3 <- xgrid.results(id)

End(Not run)

Not run:

Subit an xgrid job just to see which packages are installed
on a particular machine.

A function to harvest details of R version and installed packages:
f <- function(i){

archavail <- any(dimnames(installed.packages())[[2]]==’Archs’)

To deal with older versions of R:
if(archavail){
packagesinst <- installed.packages()[,c(’Version’, ’Archs’, ’Built’)]
}else{
packagesinst <- installed.packages()[,c(’Version’, ’OS_type’, ’Built’)]
}

Rinst <- unlist(R.version[c(’version.string’, ’arch’, ’platform’)])
names(Rinst) <- c(’Version’, ’Archs’, ’Built’)
return(rbind(R=Rinst, packagesinst))

}

Or to get more details about a particular package:
g <- function(i){
p <- library(help=’bayescount’)

40 xgrid.run.jags

return(p$info)
}

Get the information back from 2 specific machines called ’newnode1’
and ’newnode2’:
results <- xgrid.run(f, niters=2, threads=2,
hostnode=’newnode1:newnode2’)

See the installed packages on the two nodes:
results

End(Not run)

xgrid.run.jags Run a JAGS Model using an Apple Xgrid distributed computing cluster
from Within R

Description

Extends the functionality of the run.jags family of functions to use with Apple Xgrid distributed
computing clusters. Jobs can either be run synchronously using xgrid.(auto)run.jags in which case
the process will wait for the model to complete before returning the results, or asynchronously using
xgrid.submit.jags in which case the process will terminate on submission of the job and results are
retrieved at a later time using xgrid.results.jags. The latter function can also be used to check the
progress of incomplete simulations without stopping or retrieving the full job. Access to an Xgrid
cluster with JAGS (although not necessarily R) installed is required. Due to the dependance on
Xgrid software to perform the underlying submission and retrieval of jobs, these functions can only
be used on machines running Mac OS X. Further details of required environmental variables and
the optional mgrid script to enable multi-task jobs can be found in the details section.

Note Apple has discontinued Xgrid from Mac OS 10.8 onwards, so future development and
testing of these functions will be extremely limited

Usage

xgrid.run.jags(model=stop("No model supplied"), max.threads=Inf,
JAGSversion=">=2.0.0", email=NA, profiling=TRUE, cpuarch=NA,
minosversion=NA, queueforserver=FALSE, hostnode=NA, forcehost=FALSE,
ramrequired=10, jobname=NA, cleanup=TRUE, showprofiles=FALSE,
jagspath=’/usr/local/bin/jags’, mgridpath=system.file("xgrid",
"mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), ...)

xgrid.run.jags 41

xgrid.autorun.jags(model=stop("No model supplied"), max.threads=Inf,
JAGSversion=">=2.0.0", email=NA, profiling=TRUE, cpuarch=NA,
minosversion=NA, queueforserver=FALSE, hostnode=NA, forcehost=FALSE,
ramrequired=10, jobname=NA, cleanup=TRUE, showprofiles=FALSE,
jagspath=’/usr/local/bin/jags’, mgridpath=system.file("xgrid",
"mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), ...)

xgrid.extend.jags(runjags.object=stop("The output of a runjags function (with class ’runjags’) must be supplied"),
max.threads=Inf, JAGSversion=">=2.0.0", email=NA, profiling=TRUE, cpuarch=NA,
minosversion=NA, queueforserver=FALSE, hostnode=NA, forcehost=FALSE,
ramrequired=10, jobname=NA, cleanup=TRUE, showprofiles=FALSE,
jagspath=’/usr/local/bin/jags’, mgridpath=system.file("xgrid",
"mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), ...)

xgrid.autoextend.jags(runjags.object=stop("The output of a runjags function (with class ’runjags’) must be supplied"),
max.threads=Inf, JAGSversion=">=2.0.0", email=NA, profiling=TRUE, cpuarch=NA,
minosversion=NA, queueforserver=FALSE, hostnode=NA, forcehost=FALSE,
ramrequired=10, jobname=NA, cleanup=TRUE, showprofiles=FALSE,
jagspath=’/usr/local/bin/jags’, mgridpath=system.file("xgrid",
"mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), ...)

xgrid.submit.jags(model=stop("No model supplied"), max.threads=Inf,
JAGSversion=">=2.0.0", email=NA, profiling=TRUE, cpuarch=NA,
minosversion=NA, queueforserver=FALSE, hostnode=NA, forcehost=FALSE,
ramrequired=10, jobname=NA, jagspath=’/usr/local/bin/jags’,
mgridpath=system.file("xgrid", "mgrid.sh", package="runjags"),
hostname=Sys.getenv("XGRID_CONTROLLER_HOSTNAME"),
password=Sys.getenv("XGRID_CONTROLLER_PASSWORD"), ...)

xgrid.results.jags(background.runjags.object=stop("An object produced by an xgrid.submit call must be supplied"),
wait=TRUE, cleanup=TRUE)

Arguments

model a JAGS model, as would be provided to the run.jags function.

runjags.object an object of class runjags, as would be provided to the extend.jags function.
background.runjags.object

an object of class runjags-bginfo, returned from the xgrid.submit.jags function.

max.threads the maximum number of tasks to split the job into.

JAGSversion the required JAGS version for worker nodes to be given tasks - may include ’=’
or ’>=’ to signify exact or minimum version requirements.

42 xgrid.run.jags

email an email address to be used to notify of job status.

profiling option to use ART ranking to select the most suitable host nodes preferentially.

cpuarch option to restrict the job to ’ppc’ or ’intel’ nodes.

minosversion option to restrict the job to nodes running a minimum Mac OS version.

queueforserver option to restrict the job to nodes considered to be Server machines.

hostnode option to prefer (or restrict to if forcehost==TRUE) running the job on the speci-
fied nodes - must be provided as a single character string with the colon character
(:) separating node names.

forcehost option to restrict the job to only nodes specified by ’hostnode’.

ramrequired the minimum amount of free RAM (obtained using an approximation) for each
node to be assigned a task.

jobname the name to give the job on Xgrid (optional).

cleanup option to remove the job from Xgrid after completion.

showprofiles option to show the node scores based on the ART ranking used.

jagspath the path to JAGS on the host nodes.

mgridpath the path to the local mgrid script - default uses the version installed with the
runjags package.

hostname the hostname of the Xgrid server to connect to.

password the password for the Xgrid server given by hostname.

wait option to wait for the Xgrid job to finish if it has not already done so.

... other options to be passed to the underlying run.jags family functions as if the
model were being run locally.

Details

These functions allow JAGS models to be run on Xgrid distributed computing clusters from within R
using the same syntax as required to run the models locally. All the functionality could be replicated
by saving all necessary objects to files and using the Xgrid command line utility to submit and
retrieve the job manually; these functions merely provide the convenience of not having to do this
manually. Xgrid support is only available on Mac OS X machines running OS X 10.5-10.7 (Xgrid
support was discontinued in Mac OS X 10.8).

The xgrid controller hostname and password can also be set as environmental variables. The com-
mand line version of R knows about environmental variables set in the .profile file, but unfortunately
the GUI version does not and requires them to be set from within R using:

Sys.setenv(XGRID_CONTROLLER_HOSTNAME="<hostname>")

Sys.setenv(XGRID_CONTROLLER_PASSWORD="<password>")

(These lines could be copied into your .Rprofile file for a ’set and forget’ solution)

Note that the runjags package also contains a utility shell script called ’mgrid’ that enhances the
capabilities of Xgrid substantially - to install this from the command line navigate to the folder
given by system.file("xgrid", package="runjags") and from the terminal type ’sudo cp mgrid.sh
/usr/local/bin/mgrid (or similar) to make the script visible in your search path. Help on the mgrid
script can then be obtained by typing ’mgrid’ (with no arguments) at the command line.

xgrid.run.jags 43

Value

Equivalent to that of the run.jags family of functions.

Author(s)

Matthew Denwood <matthew.denwood@glasgow.ac.uk>

See Also

run.jags, autorun.jags and runjags-class for more information on JAGS models.

xgrid.run for functions to execute user-specified functions on Xgrid.

Examples

run a simple model on Xgrid using a single job:

Not run:

Ensure the required environmental variables are set:
Sys.setenv(XGRID_CONTROLLER_HOSTNAME="<hostname>")
Sys.setenv(XGRID_CONTROLLER_PASSWORD="<password>")

Simulate the data
X <- 1:100
Y <- rnorm(length(X), 2*X + 10, 1)

Model in the JAGS format
model <- "model {
for(i in 1 : N){
Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m * X[i]) + c;
}
m ~ dunif(-1000,1000);
c ~ dunif(-1000,1000);
precision ~ dexp(1);
}"

Run the model synchronously using the ’simple’ method:
results <- xgrid.run.jags(model=model, monitor=c("m", "c",
"precision"), data=list(N=length(X), X=X, Y=Y), n.chains=2,
plots = FALSE)

Analyse the results:
results$summary

End(Not run)

Submit a job to xgrid and (later) retrieve the results. Use an

44 xgrid.run.jags

ART script to ensure the job is only sent to nodes with JAGS installed:

Not run:

Ensure the required environmental variables are set:
Sys.setenv(XGRID_CONTROLLER_HOSTNAME="<hostname>")
Sys.setenv(XGRID_CONTROLLER_PASSWORD="<password>")

Simulate the data
X <- 1:100
Y <- rnorm(length(X), 2*X + 10, 1)

Model in the JAGS format
model <- "model {
for(i in 1 : N){
Y[i] ~ dnorm(true.y[i], precision);
true.y[i] <- (m * X[i]) + c;
}
m ~ dunif(-1000,1000);
c ~ dunif(-1000,1000);
precision ~ dexp(1);
}"

Run the model asynchronously:

name <- xgrid.submit.jags(model=model, monitor=c("m", "c", "precision"),
data=list(N=length(X), X=X, Y=Y), n.chains=2, plots = FALSE,
inits=list(list(.RNG.name=’base::Wichmann-Hill’),
list(.RNG.name=’base::Marsaglia-Multicarry’)))

Retrieve the results:
results <- xgrid.results.jags(name)

End(Not run)

Index

∗Topic methods
ask, 2
combine.mcmc, 9
dump.format, 11
findjags, 12
new_unique, 13
read.winbugs, 14
run.jags.study, 24
runjags, 27
testjags, 31
timestring, 32
xgrid.run, 33
xgrid.run.jags, 40

∗Topic models
autorun.jags, 3
run.jags, 17
run.jagsfile, 27
runjags-class, 29

as.jags (runjags-class), 29
as.mcmc.list.runjags (runjags-class), 29
as.mcmc.runjags (runjags-class), 29
as.runjags (runjags-class), 29
ask, 2, 14, 28
autoextend.JAGS (autorun.jags), 3
autoextend.jags, 28
autoextend.jags (autorun.jags), 3
autorun.JAGS (autorun.jags), 3
autorun.jags, 3, 22, 25, 27, 28, 30, 31, 43
autorun.JAGSfile (run.jagsfile), 27
autorun.jagsfile (run.jagsfile), 27

combine.MCMC (combine.mcmc), 9
combine.mcmc, 9, 23, 28, 31

dump, 11
dump.format, 11, 23, 28

extend.JAGS (run.jags), 17
extend.jags, 28, 41

extend.jags (run.jags), 17

failedjags (runjags-class), 29
findJAGS (findjags), 12
findjags, 12, 32

jags.model, 29, 30

lapply, 25
list.format (dump.format), 11

mclapply, 25, 38
menu, 3

new_unique, 13, 28

parLapply, 25, 38
plot.runjags (runjags-class), 29
print.crosscorr.stats (runjags-class),

29
print.dic.stats (runjags-class), 29
print.gelman.with.target

(runjags-class), 29
print.mcse.stats (runjags-class), 29
print.runjags (runjags-class), 29

raftery.diag, 6
read.WinBUGS (read.winbugs), 14
read.winbugs, 4, 8, 14, 18, 27, 28
readline, 3
results.JAGS (run.jags), 17
results.jags, 22
results.jags (run.jags), 17
run.JAGS (run.jags), 17
run.jags, 3, 8, 10, 11, 13, 15, 17, 25–28,

30–32, 38, 41–43
run.JAGS.study (run.jags.study), 24
run.jags.study, 24
run.JAGSfile (run.jagsfile), 27
run.jagsfile, 15, 27
runJAGS (runjags), 27

45

46 INDEX

runjags, 27
runJAGS-class (runjags-class), 29
runjags-class, 29
runJAGS-package (runjags), 27
runjags-package (runjags), 27
runJAGS.bginfo-class (runjags-class), 29
runjags.bginfo-class (runjags-class), 29
runJAGS.bginfoclass (runjags-class), 29
runjags.bginfoclass (runjags-class), 29
runJAGS.data-class (runjags-class), 29
runjags.data-class (runjags-class), 29
runJAGS.dataclass (runjags-class), 29
runjags.dataclass (runjags-class), 29
runJAGS.model-class (runjags-class), 29
runjags.model-class (runjags-class), 29
runJAGS.modelclass (runjags-class), 29
runjags.modelclass (runjags-class), 29
runJAGS.plots-class (runjags-class), 29
runjags.plots-class (runjags-class), 29
runJAGS.plotsclass (runjags-class), 29
runjags.plotsclass (runjags-class), 29
runJAGS.study-class (runjags-class), 29
runjags.study-class (runjags-class), 29
runJAGS.studyclass (runjags-class), 29
runjags.studyclass (runjags-class), 29
runJAGSclass (runjags-class), 29
runjagsclass (runjags-class), 29
runJAGSpackage (runjags), 27
runjagspackage (runjags), 27

summary.mcmc, 31
summary.runjags (runjags-class), 29
Sys.time, 33

testJAGS (testjags), 31
testjags, 13, 23, 31
timestring, 28, 32

xapply (xgrid.run), 33
xgrid.autoextend.JAGS (xgrid.run.jags),

40
xgrid.autoextend.jags, 8, 9, 21
xgrid.autoextend.jags (xgrid.run.jags),

40
xgrid.autorun.JAGS (xgrid.run.jags), 40
xgrid.autorun.jags (xgrid.run.jags), 40
xgrid.autorun.JAGSfile (run.jagsfile),

27

xgrid.autorun.jagsfile (run.jagsfile),
27

xgrid.delete (xgrid.run), 33
xgrid.extend.JAGS (xgrid.run.jags), 40
xgrid.extend.jags (xgrid.run.jags), 40
xgrid.jobs (xgrid.run), 33
xgrid.results (xgrid.run), 33
xgrid.results.JAGS (xgrid.run.jags), 40
xgrid.results.jags (xgrid.run.jags), 40
xgrid.run, 28, 33, 43
xgrid.run.JAGS (xgrid.run.jags), 40
xgrid.run.jags, 22, 27, 28, 38, 40
xgrid.run.JAGSfile (run.jagsfile), 27
xgrid.run.jagsfile (run.jagsfile), 27
xgrid.submit, 28
xgrid.submit (xgrid.run), 33
xgrid.submit.JAGS (xgrid.run.jags), 40
xgrid.submit.jags, 28
xgrid.submit.jags (xgrid.run.jags), 40
xgrid.submit.JAGSfile (run.jagsfile), 27
xgrid.submit.jagsfile (run.jagsfile), 27

	ask
	autorun.jags
	combine.mcmc
	dump.format
	findjags
	new_unique
	read.winbugs
	run.jags
	run.jags.study
	run.jagsfile
	runjags
	runjags-class
	testjags
	timestring
	xgrid.run
	xgrid.run.jags
	Index

