Pushlogic SPL1
Language Reference Manual (draft).
Updated - January 2007

DJ Greaves
University of Cambridge, Computer Laboratory

April 20, 2009

1David.Greaves@cl.cam.ac.uk

Abstract

SPL1 Pushlogic is a scripting language for a dynamic pojuriaif devices (e.g.
sensors, processors or actuators) and dynamic number aficent applications
in a reliable or safety critical system. It is a constrainauuage, fully amenable
to automated reasoning at various granularites. It defiedsg/drationfor dy-
namic binding of rules to new device instances and a load-timodel checker
that runs before a new bundle of rules may join a domain ofg@pation. In a
typical application of Pushlogic, complex embedded devie partitioned into
passive components known as ‘Pebbles’. API registratiahraftection are then
used to expose the interfaces offered by the Pebbles. Adigtike and interac-
tive behaviour between Pebbles or over the network must lleeimplemented
with Pushlogic and ‘code reflection’, as we call it, exposes behaviour for au-
tomated reasoning. This report gives the syntax and secsa®RL1 Pushlogic.
This work was carried out under the CMI Goals/Pebbles pr¢jgdct

This document is currently under preparation and is beirsgnghd every month
or so...

Contents

1 Introduction 6
1.1 ToolchainFlow 8
1.2 Bundles 10
1.3 BindingandNaming 10
1.4 DoP and Checking Granularity 10
15 Re-Hydration 11
2 Ontology 12
21 Glossary 12
3 Pushlogic Constants 14
3.1 Atomic ConstantValues. 14
3.2 EventConstants 15
3.3 PushlogicTypes 15
3.31 LockType 15
3.3.2 FuseType 15
3.3.3 BooleanType 16
4 Pushlogic Object Level (VM Execution) 17
4.1 Code ReflectionSchema 17
4.2 VirtualMachine 19
4.3 Pushlogic Expressions 24
4.4 Fields and their Declaration. 24
4.5 Leveland EventExpressions 26

45.1 Syntax-directed guide to level and event expressions. 26
4.5.2 Assertions on Level and Event Expressions 26

4.6 ExecutableRules L. 27
4.6.1 Nominal MeaningofaRule 27
4.6.2 EventandLevel Constraints 27
4.6.3 Unilateral Resetto SafeValue 28
4.6.4 Pushbacks: Simple and ComplexUndo 28
46.5 ComplexUndo 29

4.7 Inter-Bundle Communication 29

4.8 StandingConstraints o0 29

4.9 Temporal Logic Assertions 33

Pushlogic Source Language 34

5.1 Concrete syntaxtree 34

5.2 Abstractsyntaxtree 44

53 ProgramFile 46

5.4 Bundle Declaration 46

55 ConstantValues 47

5.6 Identifiers 47

5.7 Field Declarations 47
5.71 SortStatement oL 49
5.7.2 NamespaceBinding 49

58 Pragmas 50

59 Operators e 50
59.1 FunctionCall 50

5.10 Pushlogic Statements 52
5.10.1 Emit Statement (SOAP and GENAtoo) 52
5.10.2 Pebble Statement 52
5.10.3 Input and Output Statements 53
5.10.4 Assignment Statement 53
5.10.5 Sequential composition 54
5.10.6 With Statement 54
5.10.7 If/Then/Else Statement 54
5.10.8 Switch/Case/Default Statement 54
5.10.9 Stategraph Statement, 55
5.10.10 Disable Statement 57

5.10.11 While/For/Break/Continue Statements 57

5.10.12 Procedure Call Statement 57
5.10.13 Return Statement 58
5.10.14Wait Statement Lo 58
5.10.15Lock Statement 58
5.10.16 Fuse Statement 59
5.11 PushlogicRPC 60
5.11.1 Foreign RPC (SOAPand GENA) 60
5.11.2 Native RPC 60
5.12 OO Structures e 60
5.13 Temporal Logic Assertions 61
5.14 CompilerOperation 62
5.14.1 Conversiontol-Code 62
5.14.2 Repeated Elaboration from each Entry Point until Cesu64
5.14.3 Compensation Path Determination 66
5.14.4 Compile Time Assertion Checking 66
5145 CodeOutput 66
5.15 ModelChecking. 67
5.16 Bundle MetalInfo 68
5.17 BindingHooks 68
Standard Environment 69
6.1 BundleMetalnfo, 69
6.2 Local Variable Store o 69
6.3 PushlogicTimer. 70
6.4 Assistance with Network Race Conditions 71
6.4.1 TestandSetFacility 72
6.4.2 Make/breaklIssues, 72
6.5 Low-level Parallel Composition of Tuples. 73
Plant Model 74
Domain Manager 76
8.1 Using the compilertocheckdomains. 77

8.2 Incremental and Real-time Model Checking
8.3 Federation of PushlogicDoPs

9 Pebbles and Pebble Formal Model
9.0.1 Platform Metainfo: Reflection via Pebble Dataplane

9.0.2 Bundle Metainfo: Reflection via Pebble Dataplane

10 Execution Platforms

10.1 Registration
10.2 Codereflection,
10.3 WebInterface o
10.4 Pusher: Command Lineand GUI Tool
10.4.1 Pusher Command Line Arguments
105 ConsoleOQutput

11 Other Issues

80

Chapter 1

Introduction

In software terms, a ‘script’ is a collection of commands &gerformed in a

particular order under various conditions. Imperativegpamming languages,
such as assembly language, Java and the unix shell langtexfeguently used
for scripting. These languages are used to control a calecf devices or to

otherwise automate a process. They are unrestricted iregsipility and hence
reasoning about their behaviour or their interaction witieo such scripts is hard.
When a script phrased in a decidable language controls ants teeobjects con-
taining undecideable code (or exhibiting unpredicatatdeaviour), the system
becomes undecidable as a whole. Nonetheless, it is ouff bediethere are sig-
nificant benefits from using decidable code at the highesidevthe level of ap-

plication scripting. Model checkers are good at exploripgtsm behaviour over
all possible behaviours of the undecidable subsystems.

In our approach, complex, autonomous or undecidable betiais partitioned
and placed in pebbles that interact using a constrained controlling language
called Pushlogic. Pushlogic object level is a byte codejgdesl as an inter-
mediate code for automated reasoning with respect to dexeraution models
that vary in how fast a program can be checked and how actuettects of
message loss or delivery delay are included. Pushlogicedevel looks like an
unconstrained, imperative, multi-threaded OO-like laagriwhere the partition-
ing between decidable and undecidable constructs is noediately apparent to
the programmer.

Pushlogic object consists of bundles containing rules. fRafe eitherconsis-
tency assertionsexpressed in temporal logic or elegecutable rulesthat define
a finite state machine omechanism Bundles run inside domain of participa-
tion (DoP). Dynmaic storage allocation only occurs when new hlaswlf rules are
loaded into a running DoP. Bundles arrive either when a newlpdhat requires
control arrives, or when a new application is started, esged in Pushlogic. Be-
fore a bundle can be loaded, the union of the rules in the newllbus formed
against those already in the domain. If any of the rules arensistent or any
of the temporal logic rules (existing or new) will not holdder the combined

mechanism, the bundle cannot be loaded.

Pushlogic is a finite-state language, but the amount of statéushlogic domain
varies over time, as new bundles or pebbles enter and lea\2dR.

Instead of being executable, a bundle may Ipéaat bundle that models reactive
and autonomous behaviour not programmed using Pushlogievorid model
mirrors the behaviour of the physical system or plant or otloétware agents. In
many real systems, there are predictable effects from ttubof actuators that
may be detected by sensors. These feedback effects canuralesgrable effects,
such as deadlock or oscillations, that Pushlogic can deé&fote they occur. Run-
time monitoring of the conformance of the real system wishwbrld model can
also detect various faults and failures in sensors and @ctuand so on.

We use the ternmechanisrifor our combination of FSMs because it models not
only the effect of inputs on outputs and internal state, lmdalnse a mechanical
system of levers and cogs can sometimes be operated ineeveath pressure
applied to an output causing an ‘input’ to change. Pushlogmements a form
of compensationvhere rules are executed in reverse. This is callpdshback
We believe this greatly reduces the effort required to haediors and failures.
To start with, less code needs to be written, but the real svthat error recovery
procedures then add little overhead to the automated relekatg.

Pushlogic runs on real platforms under its own interpretazompiled to native
code (or in one extension, to .net bytecode). Two main exatplatforms have
been developed: a unix workstation application capegher that also sports a
GTK-based GUI if needed, and an embedded version that rulety processor
cards or on bare PC motherboards without OS. A geographyaiqgal modelling
system called/world is currently being developed that enables a number of vir-
tual, interacting pebbles to be visualised on a canvas.

For checking purposes, Pushlogic defines several execoioaels that succes-
sively decrease in level of modelling detail. All models suéable for finite-state
model checking. The aim is to enable a more-rapid check cdsdetailed exe-
cution model to be verified before proceeding to slower, yeteydetailed mod-
elling.

Message and Component Failure and Network Loss or Delay
Message and Component Failure and Network Delay

Message and Component Failure

Message Failure

Component Failure

o o M w NhoPRE

Atomic, Reliable

Universal
Rule
Library

Expert Script
Source Source Source ﬁ; - User Interface Creation
Bundle / \ Bundle Bundle (emacs) Phase
Source
/ Library
Compilation
/ Phase
/ \\ Canned
Object Object Obiject s;‘r’;g:
Bundle Bundle Bundle
XML reflection
information Binding
via UPnP and
/ Loading

Re- Re- Re- Re- Phases
. Hydration Hydration Hydration Hydration [¢——— Device
Domain

standing Bindings

rules /e T e e -

Hydrated
Bundle

Compile
Time
Checker

Object
Bundle
Bundle
Checker

Domain

Manager
and
Checker

Execution
Phase

Execution Execution Execution

Platform Platform Platform DBG

Domain of Participation|

UDP Broadcast Subnet ETC: UDP SOAP‘GENA

<« | 2

Figure 1.1: The write/compile/re-hydrate/execute toalntior Pushlogic

Pushlogic has been developed for a year or so, and its firgpitemand run time

system are becoming stable. We are now implementing the Dariager, that
provides real-time checking of bundles joining the DoP, lsat tPushlogic can
provide a scripting language for safety-critical systenith\a dynamic popula-
tion of sensors, actuators and applications. We are also@ddrays and remote
procedure call clients

1.1 Toolchain Flow

Figure 1.1 shows the Pushlogic toolchain. Source bundees@mnpiled with li-
braries to generate dry object bundles that do not referdoip pebbles by name.
A subsequent re-hydration stage implements such bindargsa given bundle
may join the DOP more than once, as illustrated, but usirfgreift bindings for
each instance. Several bundles may run on a single exeqladorm, but the
behaviour of the system is, as far as possible, the same agtthbey were dis-
tributed over the network. For a self-contained devicegi®#®M’d code, such as
the Heating Controller presented later, part of the re-hyainacan be performed
before canning the code to ROM, so that the code is bound ttoda¢ pebbles,

!Server-side RPC requires further study, because of thetaitg unlimited number of con-
current activations that must be held as server state.

8

and part of it can be done later, for instance to bind to otlesrogs encountered
in the domain at run time.

Ubiquitous computing architectures, such as those basedMin UPnP and
XMLRPC have matured in terms of their support for automatgisteation in
directory services and description of the command APIsreffdoy devices for
asynchronous eventing and RPC. However, until now there reasltide empha-
sis on automated description of theoactivebehaviour of applications running
in such an environment. These applications invoke operatad various APIs
available on the local device or over the network. Withoesthapplications, the
APIs would remain unused and pointless. However, when doakapplications
are running at once in an environment like a home, car or hotgh, they are
bound to interact and occasionally disagree about the mucerect setting of
some value, such as brightness of room lights or locked staeloor.

A solution to this problem is being explored within our AutAN project[5]. In
our approach, each device must be architecturally compiseennto some num-
ber of passivePebblesand a set of Pushlogic rules that control these Pebbles.
A Pebble can represent a fairly large chunk of functionalitycould be a hard-
ware component, such as a wall-mounted keypad or a fire alanmder, or it
could be an entirely virtual device, hosted somewhere ométeork, such as a
speech recogniser. Each Pebble is able to describe itself ageflection API,
such as that provided by UPnP or XMLRPC, and register itsel eynamic di-
rectory services of the form required for ad hoc computinggether with MIT
Project O2S we have developed a complete architectureifosoint of behaviour.
However, most importantly, no Pebble is able to interachwaity other Pebble
under its own volition. Instead, all proactive and interactbehaviour must be
held outside the Pebbles in small application scripts ttiatedly cause something
to happen.

For instance, consider a DVD player designed to operate euthenvironment.
As illustrated in figure??, each of its major, internal components is a separate
Pebble (at the architectural modelling layer). The Keypalife will not make
direct contact with the Mechanism Pebble. Instead, whenpilag’ key on the
keypad is pressed, the application script that glues tegd¢ile DVD components
will convey the event to the Mechanism Pebble to commencginga Using
dedicated wiring to carry the output signals, as is commawtpre until now, the
mechanism will be connected directly to the physical ougmakets on the back
of the unit. Accordingly, the application does not have toatigthing to convey
the multimedia stream to its destination. In the future,rtrezlia will also stream
over a packet switched network using a virtual connectidns then the job of
the application to set up the connection parameters, athoot to copy the data
itself. In this scenario, the embedded application is hgarmproactive effect on
other Pebbles in the local environment - for instance, ibiding audio and video
to them. We use the term ‘feature interaction’ to descril@géaneral situation
where independent application scripts try to perform diseipg operations on a
Pebble at the same time. In the DVD example, feature interastould arise

when two DVD players try to route video to one display at once.

Using the Pushlogic approach, all application scripts migm environment of
participating devices must either be implemented in Pggblor else summarised
in it. The various routes to using Pushlogic are illustratetigure 1.1. A high-
level language, such as Pushlogic Source, is compiled byaimgpiler to generate
the Pushlogic object code. This is then canned in ROM forctlirgerpretation
in the embedded target or further compiled to native coda fiaricro-controller.
The latter approach may serve to use less RAM. In all routesisal®gic form
of each application is made available for checking in adgawicthe application
being allowed to join the environment of participation. Weeuhe term code
reflection for the concept of application software being examinablsame for
or another.

1.2 Bundles

Pushlogic programs consist diundlesof rules. A bundle must be checked be-
fore it is allowed to commence execution and may alsoreéhydrated before
checking. A bundle contains rules and meta information.

1.3 Binding and Naming
Bundles have access to several namespaces.

Their own local name space,
a namespace local to the platform they are running on,

a namespace local to the domain of participation (DoP),

A w0 NP

a global, or outermost, namespace, accessed via URISs.

1.4 DoP and Checking Granularity

A Pushlogic program executes in a domain of participatioaRp A DoP typ-
ically encompasses some number of Pushlogic executiomesgiDoPs may
become merged or federated, as explained in section 8.3ougaagents may
attempt to insert a bundle into a domain of participationt iRetance, a starting
bundle may be loaded by the agent that first set up the domajoallg, when
new devices are added to the system, an associated bund$® ity@ically of-
fered. The presence of certain combinations of pebbles andi&s in a domain

10

may trigger loading of further bundles: eg a fire alarm systeight be automat-
ically implemented whenever there both a smoke sensor aathan klaxon are
present in the domain.

A bundle must be checked against all other rules alreadyamtémain and if all
rules hold, then the bundle joins and its rules start to téfleetas well. A bundle
may also be unloaded by deleting all of its rules at any timmeyiged it is not
critical to ensuring a consistency rule that is not also adéx at the same time.

A bundle might require parts of it to be loaded onto differemecution plat-
forms for efficiency, but the underlying tuplecore implersion means this is
not strictly necessary, since all points of the tuplespaeenaminally accessible
from anywhere.

... operational model ...

1.5 Re-Hydration

A bundle of rules may beé-hydratedbefore being offered to the domain. This
means expanding various hierarchic macros in the rulesoiyge flat Pushlogic
Object code. The number of rules in a bundle may be increase@aeased
during re-hydration. For instance, a complete bundle afdded rules may be
copied out from a store where they are held in a ‘canned’ fdfiacro-generation
is needed because Simple Pushlogic (SPL1) has no bindiagders, objects or
dynamic storage allocation. The macro-generation ans8srthis by generating
rules with static fields.

Pushlogic rules may directly refer to fields with absolutéhpzames (as part of
a global tuple space), or to fields local to the current exenytlatform (gener-
ally the current device) or to the current domain of paratipn. In a general
situation, this is not sufficient. Rules need to refer to llychbund devices, such
as ‘front-door-bell’. Re-hydration provides such bindirigalso provides guar-
anteed uniqueness for certain field names needed in apphisahat require the
equivalent of ‘local variables’.

Research question: is it a good idea that the rules for retigdrundles to be
implemented in the same language that is used within theleésitdemselves?
How do they need to differ and why? One clear distinction et tAushlogic
SPL1 is a finite-state language whereas dynamic rehydratianges the amount
of state. This separation might be also most helpful in na@iig amenability to
automated correctness checking.

2In the future, we may define forms of Pushlogic that are ndedabimple Pushlogic. These
may support dynamic state creation, e.g. to implement RP@seides.

11

Chapter 2

Ontology

The Pushlogic approach defines its own ontology. This codevice structure
and also domains of participation.

2.1 Glossary

Pebble. A pebble is a basic entity that can register its existancedamain, broad-
cast events and be controlled over the network. A pebble doesiteract
directly with any other pebble.

Bundle. A bundle of Pushlogic rules consists of software, tempargid assertions
and meta information. It may be interpreted by a Pushlogectan plat-
form or be natively compiled. It is the only class of entityattprovides
communication between Pebbles.

Canned Bundle. A canned bundled is stored in a file on a server or in ROM, ready f
re-hydration. It may contain formal variables that are aept in macro-
expansion style to actual variable (field/tuple) referesnce

Soft Pebble. A soft pebble is one that can run on any networked executiatigsh. It
has no specialised or associated hardware.

Device. A device contains Pebbles and Bundles, execution resouncesther sys-
tem services that are neither Pebbles or Bundles.

Service. A service is the same as a device. However, the term is usesbftwvare-
only devices. These can generally be dynamically insteettiavhereas
hardware devices are instantiated by a user introducingndméhe domain.

Domain of Participation. A DoP is any space in which a quantifier ranges. Typically tusgers a
physical or logical space. Most-trivially, it is the locaDP® broadcast sub-
net. An example use of a DoP is a rule which says ’all lights tnbesoff
when the master switch is off’: in this example, the word '&@linterpreted

12

with respect to the current DoP. Devices and Pebbles cacipate in sev-
eral domains at once (Atif is working on this).

13

Chapter 3

Pushlogic Constants

Pushlogic source and object use the same constant forms.

3.1 Atomic Constant Values.

The constant values available are integers and strings.

Strings that are defined as part of an enumeration or thevezbstrings ‘true’ and
‘false’ do not need quote marks when they appear at soured, leut at object
level there is no concept of whether a string was in quote®batsource level.

Constant value strings containing spaces must be enclospmbias at the source
level. They should be avoided for everyday device control.

Integers are rendered in base ten and have no leading zeceg; éor zero itself.
In all respects, an integer behaves equivalently to itsespwnding base ten string.
The runtime system (e.g. Pushlogic interpeter) may freehyert between ASCII
string and binary representations of integers as it wishes.

Pushlogic object also uses the special constant bottorm Kalswn as backstop)
(L)

The null string, the string ‘false’ (whether in quotes at is@ulevel or not), the
integer zero and any strings containing only zeros are theesahat represent
logical false in the evaluation of Boolean operators.

The null string is defined as the string of length zero. Thenea separate 'null
pointer’ version of the null string and string variables @anbe 'null’. Any plat-
form that uses the null pointer to represent the null stringtnensure the two are
fully identified, under comparison and so on.

14

3.2 Event Constants

Certain fields or variables range over events. The event nane isame as the
name as the field or variable that relays it. Events may benpetexised with an

event constant that is a string or integer. An event type &t @fsunique strings

and/or integers that are the event constants possible fowea gvent. The null

event constant denotes that an event is not currently aogurr

3.3 Pushlogic Types

Types in SPL1 are sets containing enumerations of constadfsr integer ranges.
Types are designated using type expressions. A type expnasghe name of a
type or a list of constants enclosed in braces. A colon mattioarthe list: this
defines the values before the colon as safe values. The otsata strings, which
do not need quotes in this context, unless they contain spacénteger ranges
of the formnn .. mm ’where nn and mm are integers. The woevéent’
may be placed in front of the opening brace to declare an @¢ypat An event
type has an implied safe value that is the empty string anditles constants are
unsafe values.

type-expression ::= <id>
{ ulwu2 ... } |
{ sOsl ... : ulu2... } |
event { el e2 ... } |
fuse | bool | lock

Named types are defined with treort set ' statement but the right-hand side
type expressions can be used inline as anonymous types.piscam

type-declaration ::= sort set <id> = <type-expression>

sort set <typenane> ={ sO, sl1, ... : ul, u2, ... };

3.3.1 Lock Type
The lock type is built in to Pushlogic and ranges over anyigtdonstant. Its safe

value is the null string. Only the bundle that last set a lgqdetto a non-null value
can set it to any other value.

3.3.2 Fuse Type

The fuse type is built in to Pushlogic and defined as follows:

sort set bool ={ true : false };

15

3.3.3 Boolean Type

The Boolean type is built in to Pushlogic and defined as follows
sort set bool ={ true, false };

The sort bool ' is already defined by the system and contains the reserved co
stantsf al se’and ‘t r ue’, both as unsafe values.

It is an error to define any field to range over the reservedtaotsf al se’ or
‘t rue’, unless the field ranges over exactly these two fields. Thay e safe or
unsafe.

Examples:
sort set dO = bool; /1 OK - nmaking use of predefined sort.
sort set dl ={ true : false }; /I OK - true is safe.
sort set d2 ={ true false }; /1l OK - both unsafe, same as bool ean.
sort set d3 ={ false : 0..9 }; Il 111legal.
sort set d3 ={ false : true red brown }; // Illegal.

16

Chapter 4

Pushlogic Object Level (VM
Execution)

Pushlogic originally generated its own native object-ldwgecode. This was
considered the reference standard for code reflection. Maytthat generated
this form of code could particpate in the system.

Now (2008), the Pushlogic compiler also generates .net ecolrhe code can
be checked whether conformant to one or maneckablity profilesand the do-
main manager will reject bundles that are outside its supgdaet of checkability
profiles.

4.1 Code Reflection Schema

Pushlogic native object level is considered the primarynfof represenation. It
exists in bytecode and XML forms.

The XML schema for Pushlogic code reflection is as follows.efparate schema
is used for data reflection via the tuplecore (todo: wherelisted?).

<?xm version="1.0" encodi ng="UTF-8"?> <xs: schema
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" el ement For nDef aul t =" qual i fi ed">
<xs: el ement name="bundl e">
<xs: conpl exType>
<xs: sequence>
<xs: el enent maxCccur s="unbounded" ref="PK_subxw'/>
<xs: el enent maxCccur s="unbounded" ref="PK_donain"/>
<xs: el enent maxCccur s="unbounded" ref="PK_ rule"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="PK_subxw'>
<xs: conpl exType ni xed="true">
<xs: sequence>
<xs: el ement m nCccurs="0" maxCccur s="unbounded" ref="PK fieldr"/>
</ xs: sequence>
<xs:attribute nane="no" use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el enent >
<xs: el ement nanme="PK_fieldr">
<xs: conpl exType>
<xs: choi ce>
<xs:elenent ref="PK fielda"/>
<xs:el ement ref="PK tup"/>
</ xs: choi ce>

17

<xs:attribute nane="argls" use="required" type="xs:NCName"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="PK_domai n">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement mi nCccurs="0" nmaxCccurs="unbounded" ref="PK s"/>
<xs: el ement minCccurs="0" ref="PK_ el lipsis"/>
<xs:elenent ref="PK fieldd"/>
</ xs: sequence>
<xs:attribute nane="node" use="required" type="xs:NCNane"/>
<xs:attribute nane="safecount" use="required" type="xs:integer"/>
<xs:attribute nane="spare" use="required" type="xs:NCName"/>
<xs:attribute nane="unsafecount" use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="PK_ el | i psis">
<xs: conpl exType/ >
</ xs: el ement >
<xs: el ement nanme="PK_fiel dd">
<xs: conpl exType>
<xs: choi ce>
<xs: el enent ref="PK fielda"/>
<xs: el ement ref="PK tup"/>
</ xs: choi ce>
<xs:attribute nane="argls" use="required" type="xs: NCNane"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="PK_rul e">
<xs: conpl exType>
<xs: sequence>
<xs:elenent ref="PK fieldw'/>
<xs: choi ce>
<xs: el ement ref="PK_query"/>
<xs:el ement ref="PK s"/>
</ xs: choi ce>
<xs: el ement maxCccur s="unbounded" ref="PK_skip"/>
</ xs: sequence>
<xs:attribute nanme="timer" use="required" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="PK_fiel dw'>
<xs: conpl exType>
<xs: sequence>
<xs:elenent ref="PK fielda"/>
</ xs: sequence>
<xs:attribute nane="argls" use="required" type="xs:NCName"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="PK_tup">
<xs: conpl exType>
<xs:attribute nane="argltup" use="required" type="xs:NCNane"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="PK_fiel da">
<xs: conpl exType>
<Xs:sequence>
<xs: el ement ref="PK tup"/>
</ xs: sequence>
<xs:attribute nane="argls" use="required" type="xs:NCName"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="PK_s">
<xs: conpl exType>
<xs:attribute nane="argls" use="required"/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="PK_query">
<xs: conpl exType>
<xs: sequence>
<xs: choi ce mi nQccurs="0" maxCccur s="unbounded" >
<xs: el ement ref="PK deqd"/>
<xs: el enent PK_query"/>
<xs: el ement PK_s"/>
<xs: el ement PK_subxr"/>
<xs: el enent ref="PK and"/>
</ xs: choi ce>
<xs: el ement minCccurs="0" ref="PK_ backstop"/>
<xs: el enent ref="PK_ skip"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="PK_and">
<xs: conpl exType>
<xs: sequence>
<xs: choi ce maxQccur s="unbounded" >
<xs: el enent ref="PK deqd"/>
<xs: el ement ref="PK_subxr"/>
</ xs: choi ce>
<xs: el enent ref="PK_skip"/>
</ xs: sequence>
</ xs: conpl exType>

18

</ xs: el ement >
<xs: el ement nanme="PK_backst op">
<xs: conpl exType/ >
</ xs: el ement >
<xs: el ement name="PK_skip">
<xs: conpl exType/ >
</ xs: el ement >
<xs: el ement name="PK_deqd" >
<xs: conpl exType>
<xs: sequence>
<xs: el enent m nCccurs="0" maxCccur s="unbounded" ref="PK_query"/>
<xs: el ement mnGCccurs="0" ref="PK_subxr"/>
<xs:element ref="PK s"/>
<xs: el ement ref="PK_ skip"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nanme="PK_subxr" type="xs: NMTOKEN'/ >
</ xs: schema>

This schema is partial since it does not currently list altloé diadic operators.
The PKskip statement is shown instead of the pushback info in thssove

4.2 Virtual Machine

The bytecode is defined in this table:

Pushl ogi ¢ Byte Code Descriptions : DRAFT.

For the bytecode representation, self-describing args preceed
the bytecode and fixed-field args follow the byte code.

For the XM. representation, self-describing args are included as

sub-el enents of the element and the fixed-field args are put
as attributes.

OPERATORS

CODE PK_and 2

Logi cal and function.

Three stack args : left, right and pushback info.
No postfix attributes.

-O-CDE PK_or 3

Logi cal or function.

Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_not 4

Logi cal not function
One stack arg.

No postfix attributes.
CODE PK_i nv 5

Bi twi se conpl enent.

One stack arg.
No postfix attributes.

CODE PK_xor 6

Logi cal xor function.

Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_di vi de 32

Di vi si on operator.

19

ES
o

Three stack args : left, right and pushback i
No postfix attributes.

CCDE PK_rod 33

Modul us oper at or.
Three stack args : left, right and pushback
No postfix attributes.

nfo.

CODE PK_fqgt 34

Four quadrant greater than operator.
Three stack args : left, right and pushback i
No postfix attributes.

ES
o

CODE PK_nul tiply 35

Mul tiplication operator.
Three stack args : left, right and pushback
No postfix attributes.

nfo.

CODE PK_query 14

Condi tional expression operator.
Four stack args: guard, true-exp, fal se-exp, pushback info.
No postfix args.

CCDE PK_deqd 15

Equal ity conparison operator.
Three stack args : left, right and pushback
No postfix attributes.

nf o.

CODE PK_dgtd 16

Greater than conparison operator.

Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_dged 17

Greater than or equals conparison operator.

Three stack args : left, right and pushback info
No postfix attributes.

CODE PK_pl us 20

Addi ti on operator.

Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_mi nus 21

Subtraction operator.

Three stack args : left, right and pushback info.

No postfix attributes.

CODE PK_tup 22

Reference to a tuple in the current donain of participation -
sometines currently used instead of |ocalroot.

No stack args.

One postfix attribute: the tuple name.

CONSTANT VALUES

CODE PK_s 1
Defines a string constant

No stack args.
One postfix attribute: the string itself.

20

CODE PK_backst op 19

A constant val ue whi ch when assigned does not change the current val ue.

No stack args.
No postfix args.

CODE PK_int 25

No stack args.
In bytecode, a representation of integers in base 256.
In XM., integer elenents appear directly.

CODE PK_nint 26
No stack args.

In bytecode, a representation of integers in base ???.
In XM, integer elenments appear directly.

CODE PK_ el lipsis 28

A constant val ue which denotes other possible values in a donain declaration.

No stack args.
No postfix args.

CODE PK_range 29

Decl ares a subrange of the integers.
Two stack args: fromand to inclusively.
No postfix args.

TOP LEVEL | TEMS

CODE PK_rule 7

Defines an executable rule

Six stack args are left-hand side tuple, left-hand field, right-hand side,

pushback,

spare and spare.

In XM. form the left-hand side tuple and field are conbined and use a single el enent.

One postfix attribute: nomnally called tinmeout but currently unused.

CODE PK_subxw 8

Define a subexpression.
One stack arg: any expression
One postfix attribute: the subx nunber.

CODE PK_subxr 9
Read a subx defined by subxw.

Zero stack args.
One postfix attribute: the subx nunber.

CODE PK_domai n 30
Decl ares the range of values for a field.
Stack args: the safe values followed by the unsafe val ues.

Three postfix args: type, safe values, unsafe val ue.

CODE PK_safetylive 24 // not used now

An A dform?

CODE PK_sl 40
Safety/live rule definition.

Three stack args : guard, true/fal se and nessage.
No postfix attributes.

The middle value is true for a safety rule and false for a live rule.

The nessage should be reported if the rule fails.
Fairness constraints are to be added!

CODE PK_fieldl 41

not used anynore?

21

FI ELD AND TUPLE ACCESS

CODE PK_| ocal root 13

Explicit name for the local root tuple - sonetines currently omtted by inplication.

No stack args.
No postfix args.

CODE PK_uri 27
Reference to a tuple on another execution platform

No stack args.
One postfix attribute: the uri.

CODE PK_fielda 23

A field reference where the field contains a tuple.
One stack arg: a tuple.

One postfix arg: the field nane.

CODE PK_fieldw 10

A field reference for witing.

One stack arg: a tuple.

One postfix arg: the field nane to be witten.
CODE PK_fieldr 18

A field reference for reading.

One stack arg: a tuple.
One postfix arg: the field name to be read.

CODE PK_fieldl k 39
A field declaration where the field will be a | ock.

One stack arg: a tuple that will contain the field.
One postfix arg: the field nane.

CODE PK_fieldd 36
A field declaration.

One stack arg: a tuple that will contain the field.
One postfix arg: the field nane.

M SCELLANEQUS
CCDE PK_eventr 42

event read: pushlogic interepreter internal use only.
Does not appear in bytecode currently - inferred by bcload.

CODE PK_pbi nd 37
Pushback i nfo.

??? currently being changed sligthtly
CODE PK_pbval 38

Pushback i nfo.

22

??? currently being changed sligthtly

CCDE PK_ret a 11

Not used.

CODE PK_ski p 12
A nop.

No stack args.
No postfix args.

CODE PK_eob 31
End of bundle marker - not used in XML form

No stack args.
No postfix args.

ECF

The XML schema essentially follows the bytecode, in that gy \v@mple tree
walker is all that is needed to convert XML form to bytecodéeTurrent push-
logic interpreter indeed converts it in this way.

Pushlogic has three forms of representation: source, dasrject and re-hydrated
object. In this section we give the semantics of re-hydratgdct, which is re-
garded as the primary form of Push Logic. It is actually a byt suitable for
automated checking, distribution and loading into an ettenwplatform (byte-
code interpreter).

A Pushlogic program, at the object level, is a set of rulesaknas a bundlé.
Pushlogic programs are aggregated into a domain of paatioipby disregarding
bundle boundaries and forming the union set of rules, butralleumay not be
admitted if automated formal tests fail for any rule withinTrhese tests are given
below. Each one is called adnstraint. A race can arise if an attempt is made to
load a pair of incompatible bundles at once: the system wdept only the rules
from the first bundle.

Pushlogic object rules have three forms: executable, éissrand safety. The
source compiler can convert more complex temporal comésraito a conjunction
of live and safety checks for the object form to handle. Lesnhand safety rules
are assertions to be checked by a model checker invoked lyetier. The loader
also has certain built-in constraints, described beloat, tquire model checking.
(The model checker can be run as a network service or as agsrooethe target
execution platform.) The combination of the current buratid all other rules in
the domain of participation is model checked. If all assedistill hold, then the
new bundle is acceptable to the domain and becomes partexétcution of its
executable rules is then allowed.

1We also plan to implement a compiler that generates nativad€ from the bytecode, because
the current byte code interpreter is RAM-hungry and slow.

23

4.3 Pushlogic Expressions

Pushlogic atomic object expressions are the constantvésiiengs, integers and
bottom (L)) and the values of fields.

More complex expressions are built up using operators. Hesabors are any
deterministic, referentially-transparent functions;liding the normal Boolean
connectives and the conditional expression constructryge@on). The full core
set of operators found in Java and C++ is supported, alongsivitig catenation.
Function calls could be provided for brevity, but these aneantly fully inlined
by the compiler and so do not appear in the object code.

Expressions are either level or event expressions. A leygkssion is a function
of state whereas an event expression will only have a ndn/alule momentarily.

Arithmetic and comparison operators are provided usingdtiimal coercion rules
that allow strings and integers to be interchanged, as faufahguages such as
Perl. L is represented with a unique byte code that is disjoint frognsring: |
does not need to be explicitly written in the Pushlogic seuevel.

A full list of operators should be given here. Note that giriat uses dot antlis
XOr.

A FQGT operator is provided that performs a comparison in the sti/lgreater-
than but with the assumption that a pair of integers in a &djpguadrants of the
number space have not lapped each other. Example needed here

4.4 Fields and their Declaration.

Our current, main Pushlogic implementation is part of ariisted tuple space
platform and hence variables are called fields. Most fieldsedther events or
range over the constant string/integer values defined ab&gart from strings,

integers and events, the tuple space platform supports stiraetypes, including
level, primary key, credit, URI and so on. Their definition eybnd the scope of
this document and so only mentioned in passing.

A tuple is a collection of fields, each named with a tag striznd@ield may contain
a nested tuple.

Every tuple has a field calledevel(i.e. the tag string for that field is ‘level’). It
contains a negative integer.
lev(v) € Z~

All fields and tuples are part of a global shared address spaden principal, can
be accessed from any bundle. However, the concepts of dpaiice, pebble
and bundle each impose overlays of name aliasing and acoasslon the global
space.

Certain tuples are associated with the current DoP, certdimtiae current device

24

or execution platform and certain exist only for privatedbaccess by the current
bundle. Like a bundle, a pebble also possesses a set of assbicical fields, but
these are not private: indeed they are used as shared earfablcommunication
with the Pebble.

As a coding convention, users of Pushlogic are invited tofuiseletter capitali-
sation for then names of fields that contain tuples and loase ¢or fields that are
variables.

Fields that are local to the current bundle are declaredtiétkeywordt ocal .
Fields that are shared and provide input or output to thesatifoundle are de-
clared with the keywords ‘nput ’, *i nout ’ or ‘out put’. Actually, at object
level, the keywords are replaced with Pushlogic bytecodes.

The built in types, such as bck’, ‘bool ’"or ‘f use’ can be used at source level
as a short hand to declare local fields. For example, thedoiptwo lines show
equivalent ways of defining booleans.

| ocal varl, var2 : bool
bool var3, vari4;

The definition of fields and tuples is identical at source llewel object level and
is unchanged by the compiler.

When a field is declared, a range of values for it may also bexdkst! If the range
is to be used frequently, it can be named and representedtgspa’and then
refered to by its name. The range is denotation of a list oktaot strings, but
integer subranges can be used to specifiy parts of this list.

The range of values is partitioned irdafeandunsafevalues. The the list of safe
values is definitive, whereas code should operate corrantlyall assertions pass
if further unsafe strings or integers occur during run timbis supports dynamic
system extensibility. The elipsis construct is allowedigt bf unsafe value at
the the pushlogic source level, but serves only to alter\wiebawith respect to
compile-time warnings.

One of the safe values, the first listed in any list, is knowthasnominal starting
value for that field, and can be used as such in offline cheeltstvolve reachable
state analysis.

When a bundle (or pebble) is introduced to a DoP, if the nonstaating value of
any of the the newly created fields associated with the newllbyor pebble) is
inconsistent with extant domain values, fields may be sahjovalue that makes
the rules consistent, but with priority being given first tnmnal starting values,
then to other safe values, then to listed unsafe values.

If insertion of a new bundle (or pebble) into a DoP would immagely cause a
pushback inside the domain, this should perhaps be flaggedata-level to the
operative attempting the insertion.

25

4.5 Level and Event Expressions

Expressions are either level or event expressions. It isiplesto define the dis-
tinction in a syntax-directed way, as given shortly. Howetlge current and pre-
ferred implementation is not to rely on syntax but to use tabaration rules in
the compiler to determine whether a given expression is#abége in a given con-
text. The rules deny the conjunction of events from sepa@teces and require
that all code reaches closure under repeated symbolicrekado §5.14.2). The
elaboration rules offer a richer language since the sydigected form cannot
easily encompass concepts of an differentiator enclosad integrator.

4.5.1 Syntax-directed guide to level and event expressions

The following rules would be broadly sufficient to distinghilevel expressions
from event expressions, but they are intended as a guidegrgnmers and are
not a definition.

A level expression is essentially an expression with no eafables of type
‘event’ and which does not contain the differentiation operatdarmaintains
its value unless any of the supporting variables changésdheent value (their
level in hardware terms).

An event expression is a function of one or more variableyjpé tevent ’ or
which contain the differentiation operator. Not all operatsupport event ar-
guments: those that do are conjunction, disjunction andlitonal expression
(query-colon construct); negation of events is forbidd@isjunction of event
expressions (logical OR) is always allowed but conjuncteuuires that both ar-
guments stem from a single external event delivered to theecubundle. The
basis of this is that simultaneous delivery of external &vennot meaningful.

4.5.2 Assertions on Level and Event Expressions

The ‘al ways’ assertion asserts that a condition must always hold anakgfs-
ment must be a level expression. Thever’and ‘l i ve’ assertions may apply
to either type of expression.

Further temporal logic operators, such astil’ and ‘wuntil’ and gen-
eral CTL expressions, are not currently supported, but \aiethe requirements
on their arguments that would arise from decomposition satiety and liveness
form.

26

4.6 Executable Rules

Each executable rule is an assignment of the form
f = exp: pbind

where f is a field (a scalar variable name) in a global name spacecands

a Pushlogic object expression apidnd is compensation information that asists
in reversing the operation of the rule. This informationoaldentifies certain of
the expression support (i.e. certain of the free variabtesiong inexp) as the
sensitive parentef the rule.

All pushlogic rules, at the object level, are composed irafp@rand execute si-
multaneously.

D1: Rule Execution: The reference execution model for an executable Push-
logic rule is that all subexpressions occurring in the egpi@n are re-evaluated
whenever there are changes to any of their support. Likeeismnges to the result

of the top expression become scheduled as updates to tgeessield. Updates
aregated by which we mean that all updates to fields held on the san=uéze
platform as the Pushlogic that arise owing to a single evenbatched and made

at once (atomically). Further changes arising from a bafadmted updates are
collected and deferred to the next batch.

An event nominally holds for one gated cycle. All event fietde re-set to the
null string after the cycle where they were processed.

4.6.1 Nominal Meaning of a Rule

A Pushlogic rule is to be thought of as holding at all times;ept when it is
assigningl, at which times the assigned field retains its current vatus oon-
trolled by another rule. Push Logic is designed such that eale may also be
interpreted as an assertion about the current state of signasl field and the con-
junction of all such assertions should hold at all times. oy, because fields
may be held on physically separate devices, and Push Lotpneters inter-
change network messages when fields need to be changedoniisction will
not globally hold for brief periods while network messagesia flight or during
network disconnect.

4.6.2 Event and Level Constraints

The occurance of event expresions in executable rulestrscted by the follow-
ing schema. The executable rule must be factorisable intoodrihree forms,
whereee denotes an event expressidndenotes a level expressidm,denotes a
level variable an@v denotes an event variable. The four forms are:

lv = (le)?le: L;

27

lv = (ee)?le: L;
lv == (le)?ee: L;

The second form is known as an 'emit’ assignme&bt10.1).
The third and fourth forms are known as integrations.

4.6.3 Unilateral Reset to Safe Value

Unilateral changes to shared fields can occur for variousorea For instance, a
device may be disconnected from the network and an apmicétat was relying
on it can no longer function. As a second instance, consiéefidle that controls
the drainage valve on a cistern. A Pushlogic script may miagessignment that
opens the valve, but the Pebble may make autonomous (ualjedetion to reset
the valve to its closed state (a safe state) once the cistemppty. This is allowed
within our definition of a Pebble since the field is stored witthe Pebble.

Local fields will not suffer unilateral changes: all changal accrue from exe-
cutable rules in the associated bundle.

4.6.4 Pushbacks: Simple and Complex Undo

When an executable rule makes a change to a field that faild€d tgpdate), the
rule is obliged to compensate with corrective action. Otleez, the rule could no
longer be viewed also as a universally quantified assertiontahe state of the
domain. The update may fail straightaway or else the field ree@grt to some safe
value after an interval of time. Either way, the system mestggm a pushback
after a failure. A simple undbinvolves changing a sensitive parent of the rule to a
safe value that again makes the rule hold (when viewed assant@as). An undo
must also be performed by the rule if another rule or an eatergent changes its
driven field.

Push back information must be provided where there wouldratise be more
than one possibility for compensating. If an external agendther rule) changes
the value of the assigned field to one of its safe values, tisé pack indica-
tion uniquely identifies fields occurring in the associatedression that can be
changed to make the rule hold. For information loosing dpesa values must
also be provided. For example, with logical not, no indizatis required, be-
cause the new value is obvious at push back time. For congpaniken pushed
back so it holds, then it is sufficient to specify one operanplush back on, since
it must be pushed back to the current value of the other oder&or compar-
ison, when pushed back to false, a value and operand mustebdisg, since,
in general, there are many possible vaues that will make gadon fail. For

28

conjunction, when pushed back to false, knowning which apeito push on is
required, since either will do, whereas to push conjuncteohold may require
both its arguments to be changed. For the conditional egjmme®perator, the
condition may have to be changed and also the value of thato§ithe operator
may have to be changed.

The pushlogic sourceut ’ function, (or whatever it is currently called!) does not
appear in the object code - it serves only to influence the pashk information.

4.6.5 Complex Undo

The complex undo is expanded at compile time using exteasibrihef use
statement. No object-level representation is needed.

4.7 Inter-Bundle Communication

All communication between entities is through shared Wiz (Multimedia is

supported using the notion of third-party setup, where d fieh source pebble is
set to the same value as a field in a sink pebble, where the aatsas a virtual

circuit identifier).

Where a bundle alters the value of a field held on a remote resptire run time
system generates network traffic, such as a SOAP RPC [16]. Véhewedle is
sensitive to changes on remote resources, it uses a sftratastration protocol
(a UDP version of UPnP’s GENA) that causes it to receive ratiifon of changes.
An inout field may be set to one of its non-safe values by at mostbundI€.

Changes in local or remote field values are notified to the Bgghkexecution
engine because it registers for appropriate notificatidlbaeks.

vi=[expl,

4.8 Standing Constraints

Apart from embedded safety and liveness constraints cofrongbundles, every
DoP is subject to the following standing system constraiAtbundle cannot be
loaded if it would violate any of these constraints.

PLC1: Level Ordering Constraint: For every rule, the level of the assigned
field must be less than any level found in the supporting parree fields of) its

2Currently we have implemented our own protocol, runningra¥®P, called ETC, that im-
plements the field writes, remote registrations for events@de and API reflection, but there is
little reason not to use the standard protocols.

29

A&&B
%
A .
@ if (s==1 && A) s :=2;

G>/_> if (5==2 && B) s :=5;
AGEE if (s==1 && B) s := 3;
B if (s==3 && A) s := 4;
A

Figure 4.1: Example of a Race Hazard

assigned expression

V" € sup(exp).levf <lev(f')F f:=exp

Fields may be allocated new levels by the system as part girtheess of loading
a bundle. However, this is not always successful becausie aefpales in different
bundles may have contradictory field level requirements. \/tiee fields are held
on different execution platforms, a distributed algorithmay be run to establish
their levels. If this constraint cannot be met, the bundlsoisloaded.

The level ordering constraint does not apply to local vdeisbincluding lock or
fuses or compiler-generated program counters.

PLC2: Consistency Constraint: A Pushlogic object expression may be deter-
ministically evaluated in an environment, to produce a string or else the special
value bottom,l. When a rule produces, it has no affect on the assigned field:
o[lL /v] =o.

To ensure consistency (i.e. to avoid fighting between rukdkyules that assign
a given field must evaluate to a common non-bottom value doboitself in all
possible environments. Each rule of a new bundle is cheocjamhst the existing
participating rules and the bundle is not loaded if any esdahis condition.

PLC2b: No race hazards: Any program that contains a race of the nature shown
in figure 4.1 will not unwind during compilation since the fimesult depends on
the order of interleaving.

PLC3a: Safe Value Constraint A: A pair of bundles is incompatible if they
disagree on their safe value declarations for any field.

PLC3b: Safe Value Constraint B: There must exist at least one setting of the
fields such that all executable rules hold and all fields thaelsafe values defined
are set to one of those safe values.

PLC3c: Safe Values Constraint C:The safe values of a field must be a subset
of the safe values that any expression assigned to that &eldafely generate, or
else the expression must be able to safely generate bottonsafly generate,
we mean that the expression generates that value when tdlsafpporting fields
are set to their safe values. This constraint ensures thext @lpushback occurs,
and an assigned value is set to one of its safe values, tlgnadsexpressions can

30

Push In Field’s Value

P
Lty
> j% Pushes Out

N

I&E\/Q Undo’s Out
(=]

Figure 4.2: Pushlogic Undo Sequence (Failed Update)

An Undo
Arrives

PusQin Field's Value

P

j%Pushes Out
A
j%F’ushes Out

v,

fWV
End

Figure 4.3: Undo Sequence with Race Condition

W'fls(/\,)

Ak \s

An Undo
Arrives

push back on their support, safely, so that the rule holdsis(@onstraint is stricly
stronger than PLC3b ?).

PLC3d: Safe Live Insertion Constraint: An insertion into a DoP that causes an
immediate pushback may be considered an error in some apphs. At least a
warning or deferral should be offered to the operative.

PLC4: Push Back Uniqueness:Only one possible pushback procedure should
be possible for each possible pushback circumstance. ré iteanore than one,
then thepbind information is ambiguous. The constraint implies that vehar
parent is shared between multiple rules of a bundle theresiope change to the
parent that is acceptable with respect to this constramaliaules sharing that
parent field 3

D7: Undo Race Avoidance:Where an undo operates over the network between
different execution platforms, a race can arise, wheretmmandependent change
to the driven field has been performed by another rule or eateagent. This
normal course of events is illustrated in figure 4.2, whefgase 4.3 shows the
race condition. To overcome races, a simple undo ... TBD. Slesudk.

Declarative programming languages aim to consist of a s@¢cifrations that all

3This constraint is concave, in that two parts of an admigshbhdle, considered as separate
bundles, might be inadmissable in isolation.

31

hold at all times. On the other hand, many useful control seges cannot be
expressed entirely declaratively. For instance, when wegthe ‘skip forward’
key on a CD or DVD player, we expect it to jump to the next trackndex point.
When we press the button again, a new definition of 'next’ novigoes and so
the operation is not idempotent. Implementation of thisuearequires both a
differentiation to detect the active edge of the button pasti an integration to
accumulate the increment to the track number.

PLCS5: Idempotency Constraint: Any Pushlogic program will result in no fur-
ther output changes if ‘executed’ more than once withoutatgrial (external)
change of any field.

Idempotency is assured if every integration is uniquelyeissed with a differ-
entiation. In addition, an integration of the forin:= « + 1 breaks the Level
Ordering Constraint in that occurs on both side of the rule and hence the level
on both sides is equal.

The solution to this dichotomy is provided by the Gated Updaechanism.

The gated nature of updates to fields all held on a commonophathllows that
certain rule combinations to operate deterministicallgewkhey would not other-
wise. Consider the following pair of rules where d1 is a tigtabupled field:

dl = d;
d2 = (d&&!d1)71:L

This pair will reliably set d2 to one whenever d goes fromddls true. Without

the gated-update constraint, the second rule might alwaysxbcuted after the
first rule and hence the guard would never hold. In our culraptementation,

a tightly-coupled field is any field held on the same execuplatform and these
are readily determined because their path name startshatlotal root.

The int-diff constraint provides that an infinimi | e loop wrapped around a par-
allel statement, that contains no intermali t s, is not sensitive to the additional
loops made by the thread.

PLC6a: Montonicity constraint: All rules must meet the other constraints with
any amout of extension to the range of unsafe values in ar fiel

The constraints on allowable Pushlogic programs (unionndiundled rule bun-
dles) have just been presented. These constraints can bkedheithout full
possession of the Pushlogic object code. This could be & fulin large sys-
tems or where IP or policy needs to be protected. A summaryg for a bundle
may be defined that lists for each assign field the level camssr and the pos-
sibly assigned values. Where the Pushlogic Timer or othemummresource is
frequently depended on, then the summary can helpfully imemtiis explicitly.
For instance, a set of different bundles might control a comifireld at different
times of day and these would appear incompatible if time vigmered, but by
including it in the summary, the bundles become compatible.

PLC6b: Montonicity constraint: Any bundle, whose assertion guarantees rest

32

on the presence of other bundles that might become unloasieaht allowed.
(This is checked using a non-deterministic presence guaredch unloadable
bundle by the domain manager).

PLC7: No oscillations constraint: Oscillation is created by inverting loops. Any
bundle that contains an internal oscillating loop cannatlaeorated by the com-
piler and causes a compile-time error. When bundles are htdagether with
each other or world models any oscillators then formed atectied by the do-
main manager and the union is not allowed.

For example, the following two lines are inconsistent sithay form an oscillator.
If the lines are in the same bundle, a compile-time unwinleiawor is flagged. If
they are in different bundles but the variables are boundtmfa distributed
inverting loop then the oscillation error is flagged by thendan manager.

a = b;
b : l a;

Many device control loops are oscillators, such as thosd usthermostats. In
order to implement these, the loop must be broken using a diehey at some
point to regulate the maximum frequency of oscillation. Example:

wi th Ti mer#Countdown if (#atiner == 0)

{
#atimer := 1000; // Delay for one second
b _del ayed = b;
}
a := b_del ayed,;
b :=la;

Resynchronisation Constraint: A liveness predicate expresses that two supposedly-
coupled systems will eventually become re-synchronised aétwork distruption
has finished.

4.9 Temporal Logic Assertions

A bundle may contain a number of safety or liveness assettidhese take ex-
pressions as arguments and the expressions have the formadief§4.3.

Object-level safety and liveness assertions are check#dweliyomain Manager at
bundle load time. They are retained by the Domain Managéduftiner checking

against newly arriving bundles. Monotonicity constraimgply they cannot be
violated by bundle or pebble departure.

33

Chapter 5

Pushlogic Source Language

NB: There is a user manual for the source compiler in html orvtkbsite. This
chapter discusses the source language per se, rather tharidhnoompile it.

Although rules are frequently a useful way to express deésietaviour, many ap-
plications are most easily coded in an imperative progrargmatyle. Rather than
expecting the user to manually convert his notions of appibe behaviour into

Pushlogic object rules, a compiler for imperative-stylpression of applications
is used. We note that imperative programs deal essentighysequential changes
of state, whereas logical predicates over applicationnarog deal in terms of the
visible, accumulated results of these changes.

‘Pushlogic Source’ is a block-structured, imperatives|ikrogramming language,
but with no dynamic storage allocation and currently noyardt is less funda-
mental to our approach than the object form, because a yarietource forms
could be envisaged that would generate compatible objeataidous niche ap-
plications. The Pushlogic constraints on a bundle are impteed at bundle load
time, but, as far as possible, are also implemented by theibemnio give ad-
vanced warning.

5.1 Concrete syntax tree

The concrete syntax tree is following yacc file:

/%
* $ld: pushlogic.yy,v 1.35 2008/ 07/11 08:15: 04 djgll Exp $

*
* Bigtop.

CBG Badger Tuplers Project

University of Canbridge

Conputer Laboratory

(C) 2004 David J G eaves

#

Mostly Witten Ronsey - Dec 2004.
#

* Pushl ogi ¢ Grammar
*/

34

A
#include "cbglish. h"
#include <stdio. h>

#define PL_LINEPO NT(X) add_|inepoint("pl_linepoint", X)
%

%uni on {
bui | der *auxval ;

% ype <auxval > pl _assoclist pl_associtem bytecode

% ype <auxval > pushl _decl s prog nodul e val ue value_|list value_list_or_nil

% ype <auxval > pushl _def pl_fornals pl_actuals pl_formal pushl_defstyle

% ype <auxval > pushl _statenent pushl _statement_|ist case_itemcase_itemlist pl_type

% ype <auxval > pushl _statename pushl _statechartlist pushl_state pushl _stateiteniist pushl_stateitem pushl_statespec
% ype <auxval > sd_id_comma_list pushl _field_decl pushl_nmacro_decl pushl_nacro_decl _list pushl _field_decl_list
% ype <auxval > exp expl exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 explO expll expl2 expl2a expl3 expl3a

% ype <auxval > string_option

% ype <auxval > formal _comma_| i st exp_conma_|ist expl2_coma_|i st

% ype <auxval > xnl _file xm _el enent xnml _element _|ist xnl_att_list

9

prog:
pushl _decl s

{

buil der »r = $1;

results = LISTCONS(r, results);
$$ = freverse(results);

}

byt ecode:

/* nothing »/ { $$ =

LI STEND(0) ;

}

| sd_string sd_nunber bytecode { $$ =

LI STCONS(TREE2(" pl _stringtab", $1, $2), $3);
}

| sd_nunber bytecode { $$ =
LI STCONS(TREE1(" pl _byt ecode", $1), $2);

}

pushl _decls: /* nothing =/ { $$ =
LI STEND(0) ;

}

| nodul e pushl _decls { $$ =
LI STOONS($1, $2);
}

pushl _statement _list: /* nothing */ { $$ =
LI STEND(0) ;
}

| pushl_statement pushl_statement list { $$ =
LI STCONS($1, $2);
}

I+ A sinple xnl parser here for reading in conpiled bundles and code reflected fragnents x/

xm _gbody: /* It would be better to handle this xm g in the | exer ? */
sd_i d xnl _gbody

| sd_string xnl_gbody

| ss_equal s xnl _gbody

| ss_minus xm _gbody

[

xm _element _|ist: ss_dltd ss_slash sd_id ss_dgtd { $$ =

LI STEND(0) ;

}

| xm _el ement xm _element_list { $$ =
LI STCONS($1, $2);

}

xm _att_list: { $$ =

LI STEND(0) ;

}

| sd_id ss_equals sd_string xnl_att_list { $$ =
LI STCONS(TREE2("xni _att", $1, $3), $4);
}

35

xm _el enent :
ss_dltd sd_id xm _att_list ss_dgtd xnl _el ement _|i st
{ $$ = TREE3("xm _elenent", $2, $3, $5); }

ss_ditd sd_id xm _att_list ss_xnl_singleton
$$ = TREE3("xnl _el enent”, $2, $3, LISTEND(O)); }

— e

sd_id { $$ = TREEL("xml _chars", $1); }
sd_nunmber { $$ = TREEL("xnm _int", $1); }

xm _file:
ss_xngl xm _gbody ss_xnmgr xm _file { $$ = $4; }
| xm _element { $$ = $1; }

nodul e:
pushl _def pl _senicolon_opt { $$ = $1; }

| pushl_statenent { $$ = $1; }

| ss_pling bytecode {
$$ = TREEL("pl _conpil ed_bundl e", $2);
}

| ss_xmgl xnl_gbody ss_xmgr xm _file { $$ = TREEL("pl_xm ", $4); }

pl _semicolon_opt: ss_semcolon | /* nothing */

pl _fornals:
ss_| par ss_rpar
{ $$ = NULL; }
| ss_lpar formal _conma_list ss_rpar
{ % = 82, }

pl _actual s:
ss_| par ss_rpar
{ $$ = NULL; }
| ss_lpar exp_comma_|ist ss_rpar
{ $% =92, }

pushl _def styl e:
sd_id { $$ = $1; }
| s_pebble { $$ = nkstring("pebble"); }

pushl _def:
s_def pushl_defstyle sd_id pl_formals ss_| sect pushl_decls ss_rsect

{ =
TREE4("pl _def _bundl e", $2, $3, $4, $6); }

pushl _nacro_decl :
expl2 ss_equals exp { $$ =
TREE2("", $1, $3);

pl _type:

ss_l sect value_list ss_colon value_list ss_rsect { $$ =
TREE2("pl _saf eunsafe", $2, $4);
}

| ss_lsect value_list ss_rsect { $$ =
TREE1("pl _unsafe", $2); /* depreciated form*/

| s_event { $$ =
TREEL("pl _event", LISTEND(O));
}

| s_event ss_|lpar value_list_or_nil ss_rpar { $$ =
TREEL("pl _event", $3);

}

| s_fuse{ $$ =

TREEO(" pl _fusetype");

}

| s_lock{ $$ =
TREEO(" pl _I ocktype");

36

}

| sd_id{ $$ =
TREEL("pl _tid", $1);
}

pushl _fiel d_decl :

expl2_coma_| i st ss_colon pl _type { $$ = /* preferred formfor now on */

TREE2("pl _fiel ddec", $1, $3);
}

| expl2_comma_list { $$ =
TREEL("pl _fiel ddecn", $1); /* depreciated form- no type given */
}

pushl _field_decl _|ist:

pushl _field_decl { $$ =
LI STCONS($1, LI STEND(0));
}

| pushl _field_decl ss_comma pushl _field_decl_list
{ %% =
LI STCONS($1, $3);

pushl _macro_decl _|ist:
pushl _macro_decl { $$ =
LI STCONS($1, LI STEND(0));

}

| pushl _macro_decl ss_conma pushl _nacro_decl _|i st
{ %% =

LI STCONS($1, $3);

}

case_item

s_case exp_comme_| ist ss_colon pushl_statement { $$ =
TREE2("pl _case_itent, $2, $4);

| s_default ss_colon pushl _statement { $$ =
TREEL("pl _case_default", $3);
}

case_item|ist:
case_item{ $$ =

LI STCONS($1, LISTEND(0));

}

| case_itemcase_itemlist { $$ =
LI STCONS($1, $2);
}

pl _assoclist:

pl _associtem{ $$ =

LI STCONS($1, LI STEND(0));
}

| pl _associtem ss_coma pl _assoclist { $$ =
LI STCONS($1, $3);
}

pl _associtem
sd_id ss_equals exp { $$ =
TREE2("pl _associtent, $1, $3);

pushl _statenent :
s_sort s_set sd_id ss_equals pl_type ss_semicolon { $$ =
PL_LI NEPOI NT(TREE2("pl _sortset _dec", $3, $5));

| ss_lsect pushl_statement_|list ss_rsect s_fuse exp ss_senicolon { $$ =

PL_LI NEPO NT(TREE2("pl _fused", TREEL("pl _block", $2), $5));
}

37

| s_pragma sd_id ss_equals exp ss_senicolon { $$ =
PL_LI NEPO NT(TREE2(" pl _pragma", $2, $4));
}

| s_fun sd_id pl _fornmals ss_|sect pushl_decls ss_rsect pl_sem colon_opt { $$ =
PL_LI NEPOI NT(TREE3("pl _fun", $2, $3, $5));

}
| s_input pushl _field_decl _|ist ss_senicolon { $$ =
PL_LI NEPO NT(TREE2("pl _dv", TREEO("dv_input"), $2));
}
/% | s_lock pushl_field_decl_list ss_senicolon { $$ =
* PL_LI NEPO NT(TREEL("pl _I ock", $2));
*}
*/
| s_output pushl _field_decl_list ss_senicolon { $$ =
PL_LI NEPOI NT(TREE2(" pl _dv", TREEO("dv_output"), $2));
}
| s_inout pushl_field_decl_list ss_semcolon { $$ =
PL_LI NEPOI NT(TREE2("pl _dv", TREEO("dv_inout"), $2));
}
| s_local pushl_field_decl _|ist ss_senicolon { $$ =
PL_LI NEPO NT(TREE2("pl _dv", TREEO("dv_local"), $2));
}

| s_facet exp ss_equals exp ss_senicolon { $$ =
PL_LI NEPO NT(TREE2("pl _facet_i nstance", $2, $4));
}

| s_macro pushl _macro_decl _list ss_semcolon { $$ =
PL_LI NEPOl NT(TREEL("pl _macro", $2));
}

| s_const sd_id ss_equals exp ss_senicolon { $$ =
PL_LI NEPOI NT(TREE2("pl _const”, $2, $4));
}

| s_pebble sd_id ss_equals exp ss_semicolon { $$ =
PL_LI NEPOI NT(TREE2(" pl _pebbl e", $2, $4));
}

| s_with exp pushl _statenment { $$ =
PL_LI NEPO NT(TREE2("pl _with", $2, $3));
}

| s_skip ss_senmicolon { $$ =
PL_LI NEPO NT(TREEO(" pl _ski p"));
}

| s_break ss_semicolon { $$ =
PL_LI NEPO NT(TREEO(" pl _break"));
}

| s_continue ss_semicolon { $$ =
PL_LI NEPO NT(TREEO(" pl _continue"));
}

| sd_id ss_colon { $$ =
PL_LI NEPO NT(TREE1("pl _Il abel ", $1));
}

| s_wait exp ss_senicolon { $$ =
PL_LI NEPOI NT(TREEL("pl _wait", $2));
}

| s_goto sd_id ss_senicolon { $$ =
PL_LI NEPO NT(TREE1("pl _goto", $2));
}

| s_return exp ss_senicolon { $$ =
PL_LI NEPOI NT(TREEL("pl _return”, $2));
}

| s_switch exp ss_|sect case_iteml|ist ss_rsect { $$ =
PL_LI NEPOI NT(TREE2(“pl _swi tch", $2, $4));
}

| s_disable exp_comma_|list ss_senmicolon { $$ =
PL_LI NEPOI NT(TREEL(" pl _di sabl e", $2));
}

| s_meta pl_assoclist ss_semicolon { $$ =
PL_LI NEPOI NT(TREEL("pl _neta", $2));
}

| s_live string_option exp_conma_|ist ss_semicolon { $$ =
PL_LI NEPOI NT(TREE2("pl _live", $2, $3));

38

}

| s_enit exp ss_senicolon { $$ =
PL_LI NEPOI NT(TREEL("pl _emit", $2));
}

| s_never string_option exp_comma_list ss_semicolon { $$ =
PL_LI NEPO NT(TREE2("pl _never", $2, $3));
}

| s_always string_option exp_coma_|ist ss_semicolon { $$ =
PL_LI NEPOI NT(TREE2(" pl _al ways", $2, $3));
}

| s_while ss_| par exp ss_rpar pushl_statement { $$ =
PL_LI NEPO NT(TREE2("pl _while", $3, $5));
}

| s_forever pushl_statenment ss_senicolon { $$ =
PL_LI NEPO NT(TREE1("pl _forever", $2));
}

| s_if ss_lpar exp ss_rpar pushl_statenment { $$ =
PL_LI NEPO NT(TREE2("pl _if", $3, $5));
}

| s_if ss_lpar exp ss_rpar pushl_statenment s_else pushl_statement { $$ =
PL_LI NEPO NT(TREE3("pl _ife", $3, $5, $7));
}

| ss_lsect pushl_statenent_list ss_rsect { $$ =
PL_LI NEPO NT(TREEL(" pl _bl ock", $2));
}

| ss_l psect pushl_statenment_list ss_rpsect { $$ =
PL_LI NEPO NT(TREEL(" pl _par bl ock", $2));
}

| exp ss_col onequal s exp ss_senicolon { $$ =
PL_LI NEPOI NT(TREE2("pl _assi gn", $1, $3));
}

| exp ss_plusequals exp ss_semicolon { $$ =
PL_LI NEPO NT(TREE2("pl _assign", $1, TREE3("pl _diadic", YYLEAF("pl_plus"), $1, $3)));
}

| exp ss_minusequals exp ss_senicolon { $$ =
PL_LI NEPO NT(TREE2(" pl _assign", $1, TREE3("pl _diadic", YYLEAF("pl_minus"), $1, $3)));
}

| exp ss_semicolon { $$ =
PL_LI NEPO NT(TREEL("pl _e_as_c", $1));
}

| s_stategraph sd_id pl_formals ss_|sect pushl_statechartlist ss_rsect ss_semicolon { $$ =
TREE3("pl _stategraph", $2, $3, $5);
}

pushl _statechartlist:
I+ nothing */

{ $$ =

LI STEND(0) ;

}
| pushl _state pushl _statechartlist { $$ = LI STCONS($1, $2); }

pushl _st at enane:
sd_id { $$ = $1; }
| s_disable { $$ = nkstring("disable"); }

pushl _state:

s_state pushl _statenane pl_formals ss_colon pushl_stateitenliist s_endstate { $$ =
TREE3("pl _state_def", $2, $3, $5);
}

| s_state pushl _statenane ss_col on pushl _stateiteniist s_endstate { $$ =
TREE3("pl _state_def", $2, 0, $4);
}

pushl _stateitenlist:
/* nothing */

{ %% =

LI STEND(0) ;

}
| pushl _stateitempushl _stateiteniist { $$ = LI STCONS($1, $2); }

39

pushl _stateitem

pushl _statenent { $$ = /+ inplied body: =/
TREE2("pl _state_action", nkstring("body"), PL_LINEPO NT($1));
}

| sd_id ss_colon pushl_statement { $$ =
TREE2("pl _state_action", $1, PL_LINEPO NT($3));
}

| s_exit ss_colon pushl_statenent { $$ =
TREE2("pl _state_action", mkstring("exit"), PL_LINEPO NT($3));
}

| pushl _statespec ss_rarrowl pushl _statespec ss_senicolon { $$ =
TREE3("pl _transition", $1, $3, TREEO("NONE"));
}

| pushl _statespec ss_rarrowl pushl _statespec ss_col on pushl _statement { $$ =
TREE3("pl _transition”, $1, $3, TREEL("SOVE', PL_LINEPQ NT($5)));
}

string_option:
/+ nothing =/ { $$ = TREEO("NONE"); }
| sd_string ss_colon { $$ = TREE1("SOVE"', $1); }

pushl _st at espec:
exp { $$ =
TREEL("pl _state_exp", $1);

}
| s_exit{ $$ =
TREEO("pl _state_exit");

| s_exit ss_lpar sd_id ss_rpar{ $$ =
TREEL("pl _state_tagged_exit", $3);
}

| x

*/

sd_id_comma_list:
I+ nothing */

{ $$ =

LI STEND(0) ;

}
| sd_id { $$ = LI STCONS($1, LISTEND(0)); }

| sd_id ss_commma sd_id_coma_list { $$ = LI STCONS($1, $3); }

expl2_conma_list:
expl2 { $$ = LISTCONS($1, LISTEND(O)); }

| expl2 ss_commma expl2_comma_list { $$ = LI STCONS($1, $3); }

exp_comae_|ist:
exp { $$ =
LI STCONS($1, LI STEND(0));
}
| exp ss_comma exp_conmma_li st
{ %% =
LI STCONS($1, $3);
}

pl _formal:

exp ss_colon exp { $$ =
TREE2("pl _formal ", $1, $3);
}

| exp { $$ =
TREEL("pl _formal _nt", $1);
}

formal _comme_list:

pl _formal { $$ =
LI STCONS($1, LI STEND(0));
}

| pl _formal ss_comma formal _comma_|ist

40

{ 3% =
LI STOONS($1, $3);
}

val ue:

sd_nunber ss_dotdot sd_nunber { $$ =
TREE2("pl _num range", $1, $3);
}

| sd_nunber ss_minus sd_nunber { $$ =
TREE2("pl _num range", $1, $3);
fprintf(stderr, " Syntax change: Please use .. instead of - for integer ranges\n");

}

| sd_id { $$ =
TREEL("pl _i d", $1);
}

| ss_ellipsis { $$ =
TREEO("pl _el l'i psis");
}

| sd_nunber { $$ =
TREEL("pl _nunt, $1);
}

| sd_string
{ $$ =
TREEL("pl _string", $1);

val ue_list_or_nil:
I+ =1 { $$ = LISTENX(O); }
| value_list { $$ = $1; }

val ue_list:
val ue
{ %% =
LI STCONS($1, LI STEND(0));

| value value_list
{ $$ =

LI STCONS($1, $2);
}

exp:
expl { $$ = $1; }

expl:

exp2 ss_query expl ss_colon expl { $$ =
TREE3("pl _query", $1, $3, $5);
}

| exp2 { $$ = $1; }
exp2:
exp3 { $$ = $1; }

| exp3 ss_rarrow2 exp3 { $$ =
TREE3("pl _di adic", YYLEAR("pl_inplies"), $1, $3);
}

exp3:
exps4 { $$ = $1; }

| exp3 ss_rarrow2 exp4 { $$ =
TREE2("pl _inplies", $1, $3);
}

expé:
exp5 { $$ = $1; }
| exp4 ss_logor exp5 { $$ =
TREE3("pl _di adic", YYLEAF("pl_logor"), $1, $3);

41

}
| exp4 ss_disj exp5 { $$ =
TREE3("pl _di adic",
}

exp5:

exp6 { $$ = $1; }
| exp5 ss_logand exp6 { $$ =
TREE3(" pl _di adi ¢,
}
| exp5 ss_caret exp6 { $$ =

TREE3("pl _di adic", YYLEAF("pl _:
}

| exp5 ss_conj exp6 { $$ =
TREE3("pl _di adic", YYLEAF("pl _|
}

exp6:

exp7 { $$ = $1; }

| exp7 ss_deqd exp7 { $$ =
TREE3(" pl _di adi c",
}

| exp7 ss_dned exp7 { $$ =
TREE3(" pl _di adi ¢",

}

| exp7 ss_dltd exp7 { $$ =
TREE3(" pl _di adi c",
}

| exp7 ss_dled exp7 { $$ =
TREE3("pl _di adi ¢,
}

| exp7 ss_dgtd exp7 { $$ =
TREE3(" pl _di adi c",

}

| exp7 s_FQGT exp7 { $$ =
TREE3(" pl _di adi c",
}

| exp7 ss_dged exp7 { $$ =
TREE3(" pl _di adi ¢",

exp7:

exp8 { $$ = $1; }
| exp9 ss_stile exp8 { $$ =
TREE3("pl _di adi ¢,
}

exp8:

exp9 { $$ = $1; }
| exp8 ss_anpersand exp9 { $$
TREE3(" pl _di adi c",
}

exp9:

exp9 ss_plus expl0o { $$ =
TREE3("pl _di adi ¢,
}

| exp9 ss_ninus expl0o { $$ =
TREE3("pl _di adic",
}

| expl0 { $$ = $1; }

explo:

expl0 ss_star expll { $$ =
TREE3("pl _di adi c",
}

| expl0 ss_slash expll { $$ =
TREE3("pl _di adi ¢,
}

| expl0 ss_percent expll { 3
TREE3(" pl _di adi c",
}

YYLEAF(" pl _|

YYLEAF(" pl _|

YYLEAF("pl _deqd"),

YYLEAF(" pl _dned"),

YYLEAF("pl _dl td"),

YYLEAF("pl _dl ed"),

YYLEAF("pl _dgtd"),

YYLEAF("pl _fqgt"),

YYLEAF("pl _dged"),

YYLEAF("pl _bi nor"),

YYLEAF(" pl _bi nand"),

YYLEAF("pl _pl us"),

YYLEAF(" pl _mi nus"),

YYLEAF("pl _nmul tiply"),

YYLEAF(" pl _di vi de"),

YYLEAF(" pl _od"),

logor"), $1, $3);

I ogand"), $1, $3);

xor"),

$1, $3);

| ogand"), $1, $3);

$1, $3);

$1, $3);
$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

$1, $3);

42

| expll { $$ = $1; }

expll:

ss_caret expl2 { $$ =
TREE1("pl _differentiate", $2);
}

| expl2 { $$ = $1; }

expl2:
ss_hash expl2a {
$$ = TREEL("pl _wfield", $2);

}
| expl2a { $$ = $1; }

expl2a:
expl2a ss_hash expl3 {

$$ = TREE2("pl _raw field", $1, $3);
}

| expl3d { $$ = $1; }

expl3:
expl3a ss_| par ss_rpar { $$ =
TREE2("pl _apply", $1, NULL);
}

| expl3a ss_| par exp_conme_|ist ss_rpar { $$ =
TREE2("pl _appl y", $1, $3);
}

| ss_lpar exp ss_comma exp_comma_list ss_rpar { $$ =
TREE1("pl _tuple", LISTCONS($2, $4));
}

| expl3a { $$ = $1; }
| ss_lpar exp ss_rpar { $$ = $2; }
| ss_query expl3

$$ =

TREEL("pl _channel _read", $2);
}

| sd_number

{ %% =
TREEL("pl _nunt, $1);
}

| sd_string

{ %% =
TREEL("pl _string", $1);
}

| ss_tilda expl3
{ $$ =
TREEL(" pl _bi nnot", $2);

| ss_pling expl3
{ %% =
TREE1("pl _l ognot", $2);

expl3a:
sd_id { $$ = TREEL("pl _id", $1); }

| sd_string { $$ = TREEL("pl _string", $1); }
| expl3a ss_dot expl3a { $$ = TREE3("pl _diadic", YYLEAF("pl_cat"), $1, $3);

| ss_dollars { $$ = TREEO("pl _dollars"); }

Wh

#include <stdio. h>

43

#i ncl ude <ctype. h>

extern FILE *stderr;
int yyerror (const char *s)

extern builder xlishlex();
extern void exit(int);
extern void givesrcPoint();
gi vesrcPoint ();
fprintf(stderr, "Syntax error: %: \n", s);
fprintf(stderr, "Next synbol: %\n", atomto_str(lishlex())):
exit(1);
return 1;

}

voi d yydebug_on()

{

#i f def YYDEBUG

/1 extern int yydebug;
11/ yydebug = 0;
#endi f

char *smlib = "plgrant;
int yylex()
{

char s; int v=0;

extern void givesrcPoint();
extern builder *lishlex();
extern int |extracef;
builder *b, *a = lishlex();
if (la) return O;

yyl val . auxval = a;

if (fnunmberp(a)) return sd_nunber;
if (fstringp(a)) return sd_string;

b = fgetprop(a, smacro);

if (lextracef) printf("Lex % % %\n", v, b, atomto_str(a)); fflush(stdout);
if (b) return atomto_int(fcdr(b));

s = atomto_str(a)[0];

if (isalpha(s) || s=="_") return sd_id;
gi vesrcPoint ();
cbgerror(cbge_fatal, "Illegal input token %", s);
return 0;
}
I+ eof x/

5.2 Abstract syntax tree

The abstract syntax tree is defined using the following SMiatyae:

—~
(e I I

-

$ld: plgramsni,v 1.27 2008/ 07/11 08:15:04 djgll Exp $
CBG Badger Tupl ers Project

Uni versity of Canbridge

Conput er Laboratory

(C) 2004 David J G eaves

Mostly Witten Ronsey - Dec 2004.

1- Cct- 05 added parbl ock and fuse

open |inepoint;

datatype pl _diop_t = pl_deqd | pl_dned | pl_ditd | pl_dled | pl_dged | pl_dgtd | pl_logand | pl_logor | pl_binor | pl_binand | pl_plus | pl_

datatype pl _type_t =
pl _safeunsafe of pl_exp_t list = pl_exp_t |ist
| pl _unsafe of pl_exp_t |ist
| pl_safe of pl_exp_t list
| pl_event of pl_exp_t list
| pl_fielddec of pl_exp_t list * pl_type_t
| pl _fielddecn of pl_exp_t list (* depreciated form =)
| pl _tid of string

44

| pl _fusetype
| pl _I ockt ype

and pl _formal _t =
pl _formal of pl_exp_t * pl_exp_t
| pl _formal _nt of pl_exp_t

and pl _exp_t =

pl _query of pl_exp_t * pl_exp_t » pl_exp_t

pl _raw field of pl_exp_t * pl_exp_t (* comes in this way from parser x)
pl _string of string

pl _wuple of pl_exp_t list (* no |onger generated *)
pl _tuple of pl_exp_t list

pl_id of string

pl _ellipsis

pl _backst op

|

|

|

|

|

|

| pl_dollars

| pl_differentiate of pl_exp_t

| pl_wiield of pl_exp_t

| pl_diadic of pl_diop_t * pl_exp_t * pl_exp_t
| pl_catenate of pl_exp_t * string

| pl _num of int

| pl _numrange of int * int

| pl _l ognot of pl_exp_t

| pl _apply of pl_exp_t * pl_exp_t list
| pl _par of pl_exp_t » pl_exp_t

(* The followi ng do/does not occur in yacc parse tree *)
| pl _raw fieldl of pl_exp_t list

| pl _fillerl (* Used only to supress the unused cases warning in ny other match traps *)

(» dd form conpiled bytecode files: *)
dat at ype pl _conp_t =

pl _stringtab of string * int
| pl _byt ecode of int

datatype xm _t =
xm _el ement of string * xm _att_t list = xm _t |ist
| xm _nmeta of string
| xm_int of int
| xm _chars of string

and xm _att_t = xnl_att of (string * string)

(* Atransitioner should be one of entry | body | exit *)
type pl_transitioner_t = string;

datatype dv_t = dv_output | dv_input | dv_inout | dv_local | dv_fuse | dv_lock | dv_tuple | dv_other;
datatype pl _case_itemt =

pl _case_itemof pl_exp_t list * pl_cnd_t
| pl _case_default of pl_cnu_t

and pl _cnmd_t =
pl_if of pl_exp_t * pl_cnd_t
pl _while of pl_exp_t * pl_cnd_t
pl _forever of pl_cnd_t
pl_ife of pl_exp_t * pl_cnd_t » pl_cnd_t
pl _switch of pl_exp_t * pl_case_itemt |ist

pl _assign of pl_exp_t * pl_exp_t
pl _pragma of string * pl_exp_t

|

|

|

|

|

|

| pl_bl ock of pl_cnd_t list

| pl_parblock of pl_cmd_t Iist

| pl_with of pl_exp_t * pl_cnd_t

| pl _fused of pl_cnd_t * pl_exp_t

| pl_wait of pl_exp_t

| pl_goto of string

| pl_label of string

| pl_break

| pl _continue

| pl_enit of pl_exp_t

| pl_return of pl_exp_t

| pl_assert_sl of string * bool * pl_exp_t

| pl _never of string option * pl_exp_t |ist

| pl_al ways of string option * pl_exp_t |ist

| pl_live of string option * pl_exp_t |ist

| pl_disable of pl_exp_t list

| pl_skip
pl _dv of dv_t » pl_type_t list
pl _macro of (pl_exp_t * pl_exp_t) list

pl _l'inepoint of linepoint_t * pl_cnd_t
pl _pebbl e of string * pl_exp_t
pl _const of string » pl_exp_t

| pl _e_as_c of pl_exp_t

45

pl _sortset_dec of string * pl_type_t
pl _neta of pl_associtemt Iist
pl _bundl e of string * pl_crmd_t |ist

|

|

|

| pl _def _pebbl e of string * pl _formal _t list * pl_cnd_t |ist

| pl _def _bundl e of string * string * pl _formal _t list * pl_cnd_t |ist
| pl _facet_instance of pl_exp_t * pl_exp_t

| pl _fun of string » pl _formal _t list = pl_cnd_t list

| pl _stategraph of string * pl_formal _t list = pl_state_t |ist

| pl _conpi | ed_bundl e of pl_conp_t |ist
| pl _xm of xm _t

| pl _filler2 (* Used only to supress the unused cases warning in my other match traps x)

and pl _associtemt =
pl _associtemof string * pl_exp_t

and pl _state_t =
pl _state_def of string » pl _formal _t list list * pl_stateitemt list

and pl _stateitemt =
pl _transition of pl_statespec_t * pl_statespec_t * pl_cnd_t option
| pl _state_action of pl_transitioner_t * pl_cnd_t
and pl _statespec_t =
pl _state_exp of pl_exp_t
| pl _exit_state_exit
| pl _exit_state_tagged_exit of string

datatype nmetainfo_t =
M A of string * string
| MAfiller

(* eof x)

5.3 Program File

A Pushlogic Source program is an unordered list of declamatibundle, pebble
and function definitions. A simple program file contains jus¢ bundle definition
that contains all of the rules as well as further declaration

Comments are defined with the BCPL-style double slash.

5.4 Bundle Declaration

def bundl e nybundl enane()
{

/'l contents go here.

A bundle declaration uses the keyword sequeniad ‘ bundl e’. The bundle
content is a list of declarations and statements. The bumatkee should com-
monly be the same as the program file name on the storage media.

The statements in a bundle are all started in parallel whercéimpiled object
bundle is loaded. A statement may be a sequential blockellygoroviding the
normal imperative programming paradigm.

46

Each item within a bundle definitions is either a declaratefirst-order or tem-
poral logic assertion or an executable sequence of imperatide. Executable
sequences are composed in parallel. Each sequence maydigeced to be en-
closed in an infinitenhi | e loop that has its own thread that executes the rule
as fast as possible, but with all such threads of the bundfenpang their next
assignments in synchronism. Sequential composition ad\aebral statements is
introduced with the block construct, denoted with C-like m@&d close braces.
A further level of parallelism is possible inside a sequarilock because parallel
assignment is supported: e(g, b) := (el, e2).

Bundles may also be declared usimef pebbl e’, ‘def worl d’ and ‘def
pl ant’. The pebble declaration allows soft pebbles to be defindg fising
Pushlogic. Pebbles have slightly different rules over lnigaf shared fields from
bundles ... details to follow.

5.5 Constant Values

Constants may take the same forms as those defiffe irfor object level, except
that bottom is not allowed at source level.

5.6 Identifiers

Identifiers appear alone or as part of an heirarchic field name

Identifiers appearing alone must be either a member of oneooe field range
enumerations, the last component of an heirarchic field rartree reserved iden-
tifiers‘t rue’ or ‘f al se’.

Where the last component of an heirarchic field name is sharedmore than
one field, or is also a constant value from a field range enuroardhe identifier
cannot be used alone: it must be placed in double quotes ty itng constant
value, or to refer to a field, must be disambiguated by pragdurther trailing
portions of the heirarchic field name or using by usingvat'h’ statement.

The alone use of identifiers is not currently working in the pien always

5.7 Field Declarations

Variables are known as fields.

Field declarations define the heirarchic name of the fiekl fame) and then
(partially) enumerate the ranges of safe values and unséies; delimited with
colons. The safe and unsafe enumerations for must be digwiany one field.

47

If the colon between the safe and unsafe values is ommittidistad values are
unsafe.

Field values can be enclosed in quotes when they need tacotaalphanumeric
characters for any reason. An integer range is specifiedanito dots. Elipsis is
allowed as an unsafe value, represented with three dots.

Declarations may be introduced with the following keywordsput , out put
i nout, l|ock, local, macro andfuse. Any number of the same sort
may be declared in one statement using commas to separate the

Some examples are

i nput a#b#cl : { sO, sl : vi1, v2 },;
output a#b#c2 : { 0 : 1..99 };
i nout e#c3 o { off : 1..9, ... };
| ocal david : { contented : happy, sad };

Because Pushlogic is designed to operate in a dynamic, éfesvironment,
further values of the fields may occur at run-time, beyondséhdefined and
checked against at compile time. Not every field name needieblared, pro-
vided the compiler has sufficient information overall to waut the sensitive
parent list to put in each object level rule.

The ‘i nput ’ declaration defines a field that is only read by the bundlee Th
‘out put ’ declaration defines a field that is only written by the bundlEhe

‘i nout ' declaration defines a field that is both read and written. Whtes to an
inout field are frequently not explicit in the source codeaaese they arise only
during a pushback. Definition of a field as input instead otitrean lead to a ‘no
suitable sensitive parent setting’ error from the compiler

The ‘l ocal ’ declaration defines a field that is allocated space in thelles
local tuple.

The ‘macr o’ declaration defines a name of a subexpression that is maero e
panded before use. This might be deleted in future.

The 1 ock’ modifier defines a field that supports atomic operations.§Sek®.15.
The ‘event ' modifier defines a field that communicates an event. {Se&

The f use’ modifier defines a field of Boolean sort that is given low piipri
for pushback. Seg5.10.16. The range declaration for a fuse is optional, and if
provided, mustbe{' false : true }.

When a modifier appears without a preceeding declaration deythen a local
declaration is made.

48

5.7.1 Sort Statement

The 'sort set’ statement associates a user’s idenfitier with a pair of aaté
unsafe range enumerations. It can then be used in declssatie shown in this
example:

sort set nysort ={ sO, s1 : vl, v2 };
out put x#b, x#c : nysort;
i nout x#d . nysort;

5.7.2 Namespace Binding

All tuples exist in a global name space, but aliases or hanfdlecertain points
are provided for ease of reference. The available handéedearoted with

Leading Symbol Meaning
dollars ($) Local Bundle Private Namespace
<blank> Device/Platform Namespace
hash (#) Device Namespace o t h context
slash (/) DoP Root
tup:// URI - remote tuple access

Hash and slash are inter-changeable as delimiters betlwegratts of an heirar-
chic field reference but have special meaning at the starfiefdhname. Dot may
also be used, but is intended for access to components \ihi@O parts of the
language.

A field name starting with a dollars sign is a local field naméne3e need not
be used, since the compiler provides the spetiacal * keyword that defines
aliases so that local variables may be stored in the bungi&/ate area. In an
implementation, the dollars symbol is mapped during reratyon to a fresh tuple
stored on the local execution platform whose primary keyéshundle instance
identifier.

When the name starts with a hash it is interpreted with regpdbie field prefix
given in a textually surroundingns t h’ statement. If there is no surrounding
‘Wi t h’ statement then the reference is to the namespace of thiededae. This
is also the default namespace when no leading charactevas gnd the field
reference starts with a tuple name.

A field name starting with a slash refers to fields provided stoded within the
current DoP.

Field names may also start with a URI or a symbolic name thabnserted to
a URI during re-hydration. A more detailed description ofrhaihic names is
outside the definition of Pushlogic and are defined in thedagre document and
web pages.

The ‘pebbl e’ alias statment establishes a pointer to part of the nancespais
frequently used to provide a Pushlogic bundle with accepgbdles instantiated

49

on the same device (platform), hence its name, but it canteagsed for access
to fields shared by other bundles.

Here we present a simple example using hardwired IP addvesagctual device
addresses should not normally appear in the source codeslioald be supplied
during re-hydration:

def bundl e sinplelink()

{
pebbl e ny_keyboard = Pebbl es#Front _panel #Keyboar d;
pebbl e your devices = tup://128.232. 1. 10/ Pebbl es#Devi ces;
/1 field declarations onitted
your _devi ces#front _panel #on_|l ed : = ny_keyboar d#on_swi t ch;
}

Pebble aliases can be defined inside a bundle statemenb(@s)sbr outside.

5.8 Pragmas

The ‘pr agma’ statment enables control flags to be passed to the comphese
may occur inside a bundle declaration or at the top level déaSiee the compiler
manual for details of the supported pragmas.

5.9 Operators

The operators available at source level include all thofeeltin for object level
in §4.3. Each is denoted with its usual symbol or digraph.

In addition, the differentiate operator is provided, dedboiith uparrow ([exp).
The currently available forms are summarised in Figure 5.1.

It is our goal to support as many features found in common O@enative HLLS
as possible, while still producing output that can be regmeesd as Pushlogic ob-
ject rules and checked automatically at load time.

5.9.1 Function Call

Function calls are expanded fully at compile time and so rhbadtave statically
bounded recursion.

50

String constants (quotes optional if part
an enum): e.g' hel | 0",

Local hierarchic field names: a#tbttc,

Remote hierarchic field name
tup://128.232.1.22/at#tbi#c,

Function call: f(a,b,c...)
Vector of expressions (, ,)

Comparison predicates:<><=>===

| =

Integer arithmetic: + - */
Differentiation: T exp,

Conditional expression(g)?S; : Sy,

Blocking remote procedure call: e
rc=device!(...),

String catenation operator: e.gni ce"
mn gi r. I n ,

Attribute access with constant tag str
e.g.var. | D,

Figure 5.1: Pushlogic S

51

of

ng

ource Operators

5.10 Pushlogic Statements

5.10.1 Emit Statement (SOAP and GENA too0)

The ‘em t ’ statement delivers a Pushlogic event. This may be mappadtn-
Pushlogic GENA event or device RPC during rehydratigh11.1).

if (<ee>) emt <event-nane>;
if (<ee>) emt <event-nane>(args, ...);

The ‘em t’ statement is shown in the context of arf * statement that is guarded
by an event expression. Such a guard must normally existntitie surrounding
program flow control in some form or another.

If the guard is a level expression, this would allow cause minal, continuous
stream of back-to-back events to be emitted and would ternvibtate idempo-
tency.

The guarding context may be a level expression if the evangleEmitted is en-
tirely local and the nominal stream of events is local to theent bundle and is
integrated back to being a level expression in all placegevités used.

In the future, it is envisaged that closer integration witArl?, SOAP and other
device control languages will be implemented, and henceitiéstatement will
be implied by constructs such as

if (<ee>)
house. |'i vi ngroom curt ai ns. setto(hal fway);

This need arises since many devices have an event-driverardintegrate the
received event stream to set their internal state; thesecareentional models of
commanding over an asynchronous packet network.

5.10.2 Pebble Statement

The pebbl e statement is used to hard-code the address of a networkrecesou
such as the IP address and port number of a remote pebblestatément should
not normally be used and should not occur in portable codadiBgnis normally
performed at rehydration time, mapping symbolic constamtise source code to
active network addresses.

def bundl e di spl ayecho()
{

pebbl e PushC ock = "tup://169.254.25.32:1200";
i nput PushC ock#Pebbl es#C ockDi spl ay#Leds#hour : {0..23};

52

i nput PushC ock#Pebbl es#C ockDi spl ay#Leds#m nute : {0..59};

pebbl e Di spl ayPanel = "tup://169.254.25.192:1202";

out put Di spl ayPanel #Pebbl es#Di spl ay#value : { "No nessage yet"

/'l Use the string cat operator, dot, to make the output nessage.

value := "Tinme now " . hour m nut e;

5.10.3 Input and Output Statements

5.10.4 Assignment Statement

Assignments are denoted with the colon-equals assignnpenator.

Parallel assignment is supported where the same numbenwhaeseparated ex-
pressions appear on both sides of the assignment (elg.:= (el, e2).

All executable rules are placed in parallel by default atitielevel but sequential
composition occurs inside nested blocks, unless expliaititten in this parallel
form.

Event and Level Constraints

The constraints on the object-level assignments betweehdad event variables
and expressions, given §%.6.2, is reflected at the source level, but with one
relaxation, described i§6.10.1.

The object-level constraints allow the following four basburce forms, or any-
thing tantamount to them:

if (le) lv :=1leg;
if (le) ev := ee;
if (ee) lv :=1leg;
if (le) lv := ee;

Rather than assigning to an event variable, emitting an ev@oissible, described
in §5.10.1.

The third and fourth forms are known as integrations.

53

5.10.5 Sequential composition

Statements separated by a semicolon insidmiadl e’, ‘def nod’ or top-level
‘wi t h’ with statment are still considered top-level and compdseguhrallel. All
other statements separated by a semicolon are composeatkes) serresponding
to normal imperative programming.

An example:

def bundl e s()
{ I/ Bundle braces do not force seq

= b; // Three statenents in parallel (two assigns and an if).
c :=d;
if (e)
{
f :=h; /'l A seqgeuence of two statenents.
g:=f+; // Assign to f above has imediate effect on this rhs.
}
}

5.10.6 With Statement

The W t h’ statement sets up a textually-scoped alias for part ofetigplace.
Field references that start with an hash sign inside thersitt are refered to this
alias. An example:

wi th (/devi ces#book)

{

x1 : = /devi ces#book#page#numnber ;

X2 : = #page#nunber;

/1 x1 and x2 have actually been assigned the sane.
}

The ‘wi t h’ statement does not cause sequential composition of itents

5.10.7 If/Then/Else Statement

The i f/ el se’ statement, as found in the C language, is supported.

5.10.8 Switch/Case/Default Statement

A form of ‘swi t ch’ statement, is supported. Multiple tags per statementikbloc
are allowed using comma separation. Unlike the C language, dbes not fall

54

from one branch into the next and so there is no associatddlifor the br eak’
statement.

A tag called def aul t " may be used to catch any, otherwise unmatched condi-
tions.

5.10.9 Stategraph Statement

The stategraph defines a finite state machine, where eaehhstaia state name.
A top-level stategraph is always active, meaning it is incélyeone state. On the
other hand, a stategraph that is instanced as a child sptegyvithin a state in

another stategraph is inactive (not in any state) unlegarsnt is in that instanti-

ating state. A state may instantiate any number of chiletgtaphs but recursion
is not allowed.

The stategraph general form is:

st at egraph graph_nane()
{

state statenane0 (subgraph_nanme, subgraph_entry state),
entry: statenent;
exit: st at enent ;
body: statenent;
st at enent ;
/1 inplied body:’ statenents
st at enent ;
cl -> statenanel: statenent;

c2 -> statenane2: statenent;
c3 -> exit(good);

exi t(good) -> statenanme3: statenent;
exi t(bad) -> statenane4:. statenent;
endst at e
state statenane2:

55

endst at e

state disable: // A special state that can be
/1l forced renotely

A state may contain tagged tatements, each of which may bsia lback if re-
quired. They are distinguished using three tag words. Tiieyestatement is run
on entry to the state and the ‘exit’ statement is run on exie body’ statement is
run while in the state. A ‘body’ statement must contain idetept code, so that
there is no concept of the number of times it is run while ingtege. Statements
with no tag are treated as body tagged statements. Multq@ercences of state-
ments with the same tag are allowed and these are evaluatbduggh executed
in the textual order they occur or else in parallel (curremplementation is serial
but this will be change to parallel, so watch out!).

A state contains transition definitions that define the ssmmestates. Each tran-
sition consists of a boolean guard expression, the name efobthe states in
the current stategraph and an optional statement to be texkadnen taking the
transition. In situations where multiple guard expressioarrently hold, the first
holding transition is taken.

The guard expressions range over the inputs to the stategrduch are the vari-
ables and events in the current textual scope, and the éstslaf child state-
graphs.

When a child stategraph becomes active, it will start in thetisig state name is
given as an argument to the instantiation, or the first sthte tarting name is
given.

A child stategraph becomes inactive when its parent tiansit even if the tran-
sition is to the current state, in which case the child staijgly becomes inactive
and active again and so transitions to the appropriate stutg.

A child stategraph can cause its parent to transition whercliid transitions to
an exit state. There may be any number, including zero, efséxies in a child
stategraph but never any in a top-level stategraph. Thenpamast define one or
more transitions to be taken for all possible exit tranagiof its children. An exit
state is either called ’exit’ or "exit(id)’ where 'id’ is anxé tag identifier. Exit
tags used in the children must all be matched by transitiotise parent, or else
the parent must transition itself under the remaining esittitions of the child or
else the parent must provide an untagged exit that is usedfayltd

A stategraph may be wholly enclosed inside any conditioiaément, such as an

56

‘i f’or‘case’ statement, in which case it is as though all of its interrcivéty
is guarded by that condition: the condition is simply foldleside every construct
to the point where a conditional is allowed. The stategrapéschot reset to its
starting state when this guard does not hold.

A stategraph with a state called disable may be disabled &lsewhere in the
same bundle using thdi sabl e’ statement. Please s8&.10.10.

The stategraph general form is sufficient to encompass tblélSgtate machines.

5.10.10 Disable Statement

The ‘di sabl e’ statement is used for a remote disable of a stategraph.
Syntax:

if (g) disable stategraph_nanel, stategraph_nane2, ...;

The disable statement must be conditional, otherwise #iegtaph would never
leave its disable state, and the disable guarthay either be an event or level
expression. When the disable guard is a level expressiokes farecedence over
any transitions in the stategraph that lead from the dissthke.

if (g) disable stategraph_nanel, stategraph_nanme2, ...;

5.10.11 While/For/Break/Continue Statements

The whi | e/ cont i nue/ br eak’ statement, as found in the C language, is sup-
ported.

The f or/ conti nue/ br eak’ statement, as found in the C language, is sup-
ported.

The ‘do/ whi | e/ cont i nue/ br eak’ statement, as found in the C language, is
not yet implemented.

The f or ever’ statement is an alias fomhi | e(1) ".

5.10.12 Procedure Call Statement

A procedure call statement has no keyword. A call consist foinction name
followed by its arguments in parenthesis. Procedure cadlexpanded at compile
time and hence must have a compile-time determined upperebon recursion
depth.

57

5.10.13 Return Statement

The r et ur n’ statement is for use in functions only.
An example:

def fun add(a, b, c)
{

if (a=red) return b;
return c+d;

}

5.10.14 Wait Statement

whi | e(1)
{

wa|t expr;
}

The wai t ' statement cause the current ‘thread’ to wait until a caaditolds.
There are no threads in Pushlogic object code and so the tatgent is imple-
mented by splitting the source code into separate basikbl@at are guarded
by values of an automatically-defined enumeration thatnsheontrol from one
block to the next. The enumeration variable acts ratherdilggogram counter.
At runtime it is stored in the field ‘$local#pcnnn’ where nranan integer that is
unique to a bundle. To avoid inter-bundle name-space ctaslidields in starting
with ‘$local’ are renumbered to be disjoint at bundle loaddi The same mech-
anism is used to create a hidden variable to store the oleé \&la field by the
differentiation operator denoted with the uparréw (

SOME REPETITION HERE!

Thewai t statement blocks the current thread until the conditior$ollf the
thread loops around and enters the same wait statement tivhilndition still
holds, the thread is not blocked.

Where more than ongai t statement exists for a thread, a program counter vari-
able is created and stored as a field in the bundle’s loca tupl

5.10.15 Lock Statement

Thel ock statement declares a field that supports atomic test-arapseations.
A field of sort lock has as its safe value the empty string.

58

Any bundle may store a value in a lock field, but only if it is @ntly null. If it
is not null, the write will fail and a pushback occurs. A buntifpically stores its
own private identifier (accessible from the metainfo tujtiel).

A bundle is responsible for clearing the lock back to the gnsping when it has
finished with the guarded resource.

5.10.16 Fuse Statement

Where a section of code does not intrinsically support a pask bperation, it
may be associated with a fuse variable by enclosing it in a ftatement. For
example, consider the following invalid code:

{
input X#x : { S: US };
inout Y#y @ { S US };
y @ = X;

}

The problem is that it #y makes a unilateral change from US to S, which it is
free to do, since itis an ‘inout’, then no push back is possii@cause& #x is an
‘input’ that cannot be changed from inside the bundle.

The solution is to enclose the rule inside a fuse. This fuablis to ‘blow’ should
Y #y make a push back.

input X#x @ { S US };

inout Y#y : { S: US };

fuse F1;

{y: =x; } fuse F1,;

forever { wait F1; sleep_secs(5); Fl1 := false; }

The fuse declaration defines a boolean variable with botlegadafe and to be set
false on bundle load. The fuse statement is just syntacgjarsbecause the line °
y : =X; fuse F1; is rewritten during initial expansion as(ifl) y : = x;". During
pushback path creation, the fuse is chosen as the last agpttbonly marked for
push back update if there is no other pushback path avail@uily the inner-most
fuse of any nested fuse blocks acts on the enclosed code.

The reset behaviour is enclosed inside a forever stateraguaiyalent to ‘while
(1)’ and not needed since all push logic sequential secaomgnclosed inside an
implied forever. It resets the fuse five seconds after it hawin If Y #y refuses
to accept the current value at this time, the fuse blows adather code can be
sensitive to this fuse.

59

5.11 Pushlogic RPC

Currently RPC is not used and all comunication between platois imple-

mented via the shared-variable illusion implemented bytipéecore ‘ETC’ pro-

tocol. In the future, Remote procedure call (RPC) may be useddest Pushlogic
bundles, or between a Pushlogic bundle and a non-pushlotiig.e

5.11.1 Foreign RPC (SOAP and GENA)

Pushlogic may make calls directly over the network using XRRRC (and in the
future SOAP RPC). Details to be added...

Pushlogic can also send and receive GENA events by settisgnge mappings
between Pushlogic events and GENA events. Details to bedadde

5.11.2 Native RPC

Native remote procedure call is provided for communicabetween Pushlogic
bundles on the same or different execution platforms. impleted by expan-
sion to other statements. Owing to the dynamic storagectistilimitations of

SPL1, a bundle must be re-hydrated for each concurrenicgeopieration. Block-
ing RPC is currently being developed - the blocking aspeamnislemented by
expansion to thewai t ’ statement.

Non-blocking RPC does not return aresult and is denoted déhi ce! (. ..)’
where the ellipsis is replaced with a list of assignments taile fields of that
device. This is translated to a conjunction of assertioas titine appropriate tag
fields of the indexed device have the values being passedkiBp&PC is im-
plemented by the compiler as a combination of non-blockin@ RRd awai t
statement.

Details to be added here ...

5.12 OO Structures

Some basic syntactic sugar is implemented to enable objedis defined and
instantiated. All instantiations are performed at compitee using abstract inter-
pretation and so must be statically determinable.

This part of the compiler is currently a bit broken, but caméenothing novel.

60

5.13 Temporal Logic Assertions

Assertions may be included in the Pushlogic source code bhadked by the
system model checker as well as at compile time or at load @®@ppropriate.
Each assertion can have a textual name.

A ‘l i ve’ assertion asserts that a condition must reoccur infinitdtgn. A
‘never’ assertion asserts that a condition must never occur. AAmays’ as-
sertion asserts that a (level) condition must always holdkia equivalent to a
never statement with negated condition. In these assert@my number of condi-
tions may be listed, separated by commas, and these havanigenseaning as if
provided in a separate statements. Live statements may side if/then/else
and other control flow statements, in which case each comndi guarded by
(conjuncted with) the enclosing conditional statementdsia

In the future, these simple assertions will be augmented maher assertions that
span the ground between liveness and safety: i.e. untiftasseand assertions
that specify quantitative maximum and minimum valuationse&source use.

always [string :] <exp> <exp> ...;
never [string :] <exp> <exp> ...;
live [string :] <exp> <exp> ...;

The string is the rule name that is carried forward for outpulogging or moni-
toring code.

We illustrate liveness checking using the following bunitliat causes a variable
called locked to be false for 5 seconds after a variable @#ilgton holds.

def bundl e ButtonLock()

{
i nput v#keys#button : { false:true};

out put v#l ocks#unl ocked : { false:true };

forever {
wai t (button);
unl ocked : = true;
sl eep_secs(5);
unl ocked : = fal se;
wait (!button);
}
| ocal | ocked := !unl ocked;

| ive "Door Unlockable Assertion" unl ocked, | ocked;

}

It makes a call to the following timer library function, thalbcks the thread for a
period, using the timer pebble provided on all executiotfptens. As explained,
there is no notion of thread in the final bytecode becauseualition calls are
inlined during compilation and all thread constructs arevested to executable
rule form. The live statement is an assertion that the loskedble should never
become stuck at one value permanenty.

61

fun sl eep_secs(t)

{

local until : { 0..59 };
with (__local tinmer)
{ until := (#time_now#second + t);

wai t (#ti me_nowt#tsecond FQGT until);

}
}

The timer code places the unblocking time in the local végialnt i | and then
blocks. TheFQGT operator is builtin and performs a greater-than compatisan
behaves sensibly as the arguments overflow in their fieldgeovheir initial dif-
ference is less than half the range. In the future, we wollel b use a wider
field than seconds (0 to 59) so that we can sleep, say, for mhaagand millisec-
onds. However, larger fields consume more BDD primary inpatsDD nodes,
which are currently at a premium. We shall also considerraatac switching to
a lifted form for modelling the sleep call, where it is heldasingle wait stat-
ment on a fresh variable. This is simpler to model, providexte are few of these
constructs, but complexity will eventually mount up in metanstraints over the
fresh variables that model the possible firing orders.

Here is a bundle that is incompatible with the ButtonLock:hbednnot be loaded
into the same DoP. To explain this, first we must mention trelhave not fully im-
plemented the re-hydration stage yet, and so hardcodetifides; such as the IP
address of the other bundle’s platform are currently hatddan the source files.
The button variable was originally free to change at any tbmebecomes con-
strained by the second bundle to only change while the usbbetariable holds.
The system cannot be unlocked without the button being pdessd hence the
live assertion in the Button listing fails. This will in futerbe spotted by the
DoP manager, but currently can only be spotted by the comghlecking against
pre-compiled bundles that are to hand.

def bundl e B2()
pebble r = tup://128.232.1.45/v;
i nput d#q : bool

r#keys#button : = r#l ocks#unl ocked && d#q;
}

5.14 Compiler Operation

It is helpful to briefly present the internal operation of ttampiler. The internal
flow of the compiler is shown in Figure 5.2.

5.14.1 Conversion to I-Code

The input is parsed and converted to imperative intermediatle using conven-
tional compiler techniques. Function calls are expandédén For each sequence

62

Source Library
Code Code

Parser

Expand
and Compile
Temporal
Assertions
NULL ENV
Create Binary
> Encodings
Repeat Parallel
until Elaboration
closure i
Equivalence BDD
Checker Package|
Create S,
l Push Back Paths /,’ K

FAIL ¥ K ;

’ 1

’
Executable R)
Rules K
'

Subexpresion Model

Sharer ’ Checker
Consistency
Checkers

qrrmmmmmmmeneney Compile
»: Convert Time
toC Assert
""""""""" Failures

Bundle

Figure 5.2: Internal structure of the Pushlogic Compiler

63

in the source code a section of I-code is generated. I-codsisis of labels, go-
tos, waits, assignments and conditional branches. For saaion, a run-time
program counter is defined. At the object code level, thesgram counters act
just like other local variables, and their values range akierlabels in that sec-
tion. There is no run-time spawning or joining of threadgh@lgh the illusion of
this can be provided from a static set of threads using pregssing techniques).
Temporal logic assertions in the source code are split aff lzgld separately.
Liveness assertions may be guarded by neistedtatements and by the current
value of the program counter.

Each I-code instruction is stored in an array, indexed by mtaytime program
counter, and each has one of the following forms:

(* Internediate, inperative assenbler code form *)
and icode_ t =
| _assign of bc_t = bc_t
| I _resultis of bc_t
| 1_goto of int
| I _wait of bc_t
| 1_if of bc_t = int
| 1 _eof
| I_skip
| I _safetylive of bool * bc_t (* safe is true =)

Runtime program counters range only over the entry point tor@atd and the
points immediately following ah _wai t .

The I-code is embedded in a BDD package by generating binargdamgs of
every variable (field), constant and operator. This therbksaan equivalence
checker to be used to compare any pair of expressions or thacé predicate is
a tautology.

5.14.2 Repeated Elaboration from each Entry Point until Clo-
sure

An entry point is defined as any entry point to a section ofdecor the location
immediately after any wait instruction. Parallel symbdai@luation is then con-
ducted, until closure, or failure if more than 100 iterai@mneeded. This consists
of starting in a null environment and evaluating from eactryepoint to collect
symbolically the assigns to every variable, including pamg counters, up until a
wait statement or the thread loops back to its initial entijnp Function calls are
expanded in line.

64

Elaboration of assignment

While more than one assign is made to a variable, by diffeteeads, such as
v = el;v := e2;, the assignments are combined in pairs using the followtey r

v:= (el =1)7e2:el;check(el =e2Vel =1 Ve2 =1);

his gives a single expression for every assigned varialblthelcheck fails, the
compilation fails because the operations are incompatible

Elaboration of Sequential Composition

Sequential composition of statements is implemented ayifay a conjunction
of their translations but where any assignment is impleptrts as symbolic
substitution before translating a next statement.

[v=1e;C] — [v=r¢]A[Csle/v]]
[C1;Co] — [Ci] A[CY]

Elaboration of wWAIT

The 'wai t ’ statement essentially divides an infinite thread circoiibia number
of arcs. Each arc commences with a different setting of ahggited program
counter that is generated for each parallel statementicomgavaits. These pro-
gram counters are stored in the local tuple of the executmtfiopm and renamed
to be unique at bundle load time. The program counter may b sme of a

number of new values at the end of each arc, depending ontemraliexecution
paths within the arc. A program counter must be classed agraor (its next
value depends on its current value). The guard conditioasemt inwai t state-

ments must accordingly, somehow achieve the differemtiatoperty when the
bundle is model checked as a whole. Some examples will bedduzte.

Elaboration of IF/THEN/ELSE

The if/then/else construct is converted to an object formddmnal expression
[if ¢ then T else F| — [c] ?[T] : [F]

that is then expanded as usual:

()t f—=(cAt)V (TcAf)

After the first elaboration from all entry points, the prosésrepeated using the
environment created by the first. Code guarded by differearawill not have

65

any consequences on the second or subsequent elabor#tfmrseach elabora-
tion, the equivalence checker is used to detect any changesyisymbolic value,
and if there are, then another iteration is commenced. Befach new iteration,
occurrences of_ in the expression for a variable in the environment are eula
with the symbolic value for that variable calculated on teeation before. This
exactly models the behaviour of the runtime interpreteictvholds (orgateg all
assignments until every subexpression has been recompuigthen performs a
commit.

5.14.3 Compensation Path Determination

After a closed set of symbolic assignments has been comppiistt back paths
are created through the right-hand-side expressions frgnfield whose mode is
'inout’. For each safe value of an inout field, a path is trabbadkwards through
the expression tree that will cause generation of that vallese paths extend
back though local variables used as intermediate valuesyitamputation. For

all safe values of all bearing inouts, the same path must Yasrkach local vari-

able. This constraint can cause some novel error messagegaths are stored
in the push back indication section of each rule.

Sub-expressions are generated by spotting common sulssignie using a hash-
ing technique. Where a pair of rules use a common subexpreshis sharing is
noted by a re-writing phase before code generation.

5.14.4 Compile Time Assertion Checking

The model checker constructs a next state relation fromxbeutable rules. For
the purposes of the relation, a hidden input variable isteteor every possible
pushback, which is every safe value of every inout field. Thealled gpushback
input. Additional clauses are added to the next state relatioepcesent that at
most one of the pushback inputs of each inout may hold at aeytiome, and
that when it holds, the variables altered by that pushback tiee constant values
determined during pushback calculation.

5.14.5 Code Output

The output code bundle, containing executable code, fididiiens and asser-
tions, is written to four output files that all contain the samformation:

e a bytecode bundle file (list of integers in ASCIll/comma forjnat

e a C struct file that contains some initialised C arrays, foeaicanning into
ROM,

66

e adot net version (CIL assembly file),

e an XML encoded version.

The dot net version can be canned to ROM by compiling it withithasmas-
sembler from the mono project and then usingrtb@os utility program on the
resulting bytecode.

In the future, the declarative byte code can also be coryveate€C to be run as
native ROM code instead of being interpreted on the execytdiatform (thereby
saving expensive RAM on embedded devices).

5.15 Model Checking

The pushlogic compiler contains a symbolic model checlkaribes a BDD pack-
age. This is the same BDD package as used by the compiler foradence
checking when it is searching for idempotent closyte14.2).

The model checker in the compiler can operate on more thabwmadie at once,

checking inter-bundle interactions. Since the compileraecept, on its command
line, at most one source file and any number of object filesethee three ways
the model checker might get invoked:

e \With one source bundle it checks the assertions in that leuar@l consistent
with the logic in that bundle.

¢ With one source bundle and one or more object bundles, itkshibat the
current source bundle will be compatible when run alongsiaeobject
bundles in a domain.

e With a list of object bundles, it checks they are mutually pattible.

The third way enables the compiler to serve as a checker csetra rehydrated
bundles. Hence it can serve as ttmmain checker.

Scalability is a big problem with BDD-based model checkingfak bit of time
is used up finding variable orderings that lead to a compact BD}{& compiler
writes out the order it finally selected to a hidden filedd. xm , and reads it in
again, if present in the current directory. Since the fileaagcurrently fixed, it is
important to do widely differing runs in different direcies.

Current research is developing an incremental model chestkénat scalability
restrictions are greatly reduced.

67

5.16 Bundle Meta Info

The compiler generates a small amount of meta informati@hséores this in a
dedicated tuple in the local space.

5.17 Binding Hooks

Before execution and insertion into a DoP, a bundle is reditgdrusing operations
akin to macro-language rewrites ...

68

Chapter 6

Standard Environment

Pushlogic programs may rely on the presence of certairridzat compile time
and certain Pebbles at run time.

6.1 Bundle Meta Info

Object code from the compiler automatically contains assignts to a tuple
called ‘Bundleinfo’. This includes meta-information redang the compiler ver-
sion, source file name and so on.

Code in the bundle may also typically store additional mefia, ifor example

"Acme Limted";
"Version 21.2";

BundlI el nf o#Conpany
Bundl el nf o#Rel ease :

The execution platform stores the Bundlelnfo tuple in thaldgple for the bun-
dle. The local tuple is stored in the Bundles tuple of the Ingstixecution platform
under a field name that serves as a unique instance identifiénd re-hydrated
bundle.

Additional information can be passed to the Bundlelnfo tumang the fret a’
statement. This statement takes a comma-spearated lisgbtue pairs. For
example

nmet a Subassenbl y= "Motioncontrol", Rel ease= "Version 21.2";

Currently, thenet a statement does not do anything other than create a field in

the Bundlelnfo and store a constant expression in it.

6.2 Local Variable Store

Pushlogic places its local variables in a tuple called ‘loca

69

6.3 Pushlogic Timer

Every Pushlogic platform provides access to a timer. Thertihas a real-time
clock and also provides any number of countdown timers.

The local real-time clock may be accessed by first declahedgdllowing fields
in the Pebbles tuple of the local platform and then readiegths needed:

i nput Pebbl es#Ti mer #Ti nenow#hour : {0..23},
Pebbl es#Ti mer #Ti menow#m nute : {0..59},
Pebbl es#Ti mer #Ti menow#second : {0..59};

If the local bundle also sets the real time clock, then it $thoeclare these fields
using the i nout ’ keyword.

Countdown timers are created by declaring a field inside H@euntdowns.
Two different bundles on the same platform will interferehty both declare
the same count down counter - this needs blocking. The fielst imel set to an
integer number of milliseconds and it counts down to zerdssff. The following

code fragment illustrates how to make a light flash at fivezhert

i nout Pebbl es#Ti mer #Count down#nytinmer : { 0..100 };
out put Sonedevi ce#lights#light : { off: on };

wi t h Pebbl es#Ti ner #Count down i f (#nytinmer == 0)

{
#mytimer := 100; // Half cycle every 100 milliseconds

if (light==on) light:=off; else |ight:=on;

The rest of this section is obsolete.

Frequently, rules must fire at a particular time of day, orcdbs constraints that
apply only for specific periods of time. Examples are, respely, “Turn the light
on at 6:30 pm” and “All lights must be off between 01:00 and308: As a basis
for execution of temporal rules, a clock device is provideddocal resource at
each Pushlogic interpreter. At the object level, it accgssehe same way as
any other Pebble, but hooks for handling time are built im®Rushlogic source
language. Time encompasses both a linear, infinite sequemta set of finite
periodic schedules, hourly, daily and weekly. We refer tcheaf these as a base
temporal extent. Any constant time expression mentiong¢ladmules can be seen
as a partition of a base temporal extent into two temporadregt(or epochs):
before the mentioned time and after the mentioned tinaking the union of
all partitions on temporal extents leads to a finite numbezpafchs. It is simple
to statically evaluate whether any expression referrinne is true or false in a

LAn exception is that if only one time expression exists anefiers to a periodic temporal
extent then it has no effect.

70

wi t h Pebbl es#Keypad
i f (#now == stop)

{ #(pl ayl ed, pausel ed, stopled) =(0,0,1);
Wor ks#cnmd = stop
}
el se if (#now == pl ay)
{ #(pl ayl ed, pausel ed, stopled) =(1,0,0);
Wor ks#cnd @ = pl ay;
}
el se if (#now == pause && | ocal #keypad_ol d ! = pause)
{ if (Works#cnd == pl ay)
{ #(pl ayl ed, pausel ed, stopl ed) =(1,1,0);
Wor ks#cmd @ = pause;
}
el se
{ #(pl ayl ed, pausel ed, stopl ed) = (1,0,0);
Wor ks#crmd ;= pl ay;
}
}
el se if (#now == gject)
{ #(playl ed, pausel ed, stopled) = (0,0,0);
Wor ks#cmd @ = ej ect;
}

Figure 6.1: Pushlogic Source Code: fragment from our DVD g@laemo.

given epoch. The rule validator must essentially collagegpochs and then check
for rulebase consistency in every epoch. It can do this agalice datastructure
but better would be to do it symbolically.

The tagged fields refer to components of the worldview. Tlhemwobperators all
have their normal meanings. In the future, arithmetic carsiggported using
Presburger [8] or CVC Lite [7].

A fragment of Pushlogic Source for our prototype DVD playetisted in Fig-
ure 6.1.

6.4 Assistance with Network Race Conditions

A number of problems arise when a program is distributed twenetwork and
are well-known in concurrency theory: e.g. the Dining Pédlphers, the Byzan-
tine Generals problem, and more general problems in loaghbelg. Any lan-
guage design must partition the work of solving these prablbetween compile-
time and run-time and between language-level featuresyridgs and application
code. A distributed implementation of Esterel, for insen@ould still maintain

71

the Esterel concept of the atomic event, although there msaayhpenalty in its
implementation. Esterel does not have a native, loosere+afficient, network
paradigm. In Pushlogic, however, the basic operation, tewsia remote field, is
not itself an atomic test-and-set and hence we need to aanrthiel further support
required to avoid problems from network races and unrditgbi

Any program that contains a race of the nature shown in figurevll not unwind
during compilation since the final result depends on theravtimterleaving.

Races:As fields are names in a global name space, there may be neteianks
in making access to their values for read or write. Races nsayaise in that no
synchronisation between reads and writes is implementexeaution time.

The binding part of resource allocation is handled in Pughlat re-hydration
time. All instances of a given type of device must be giverguriidentifiers dur-
ing binding, and, because currently there are no arraysshiBgic, each identifier
must textually exist in the Pushlogic source program.

6.4.1 Testand Set Facility

Consider a pair of DVD players that are commanded at once tbtkeir output to
a single display, where that display can only handle a sistyéam. If the display
has a field that says which stream it is currently receivihngntthe most simple
form of resource allocation is to allow this to set at any tiamel the most recent
write to it is the current winner. This gives the familiar i@&dutton method of
source selection.

Where it is important that a resource is claimed for a speciferval, terminated
by an explicit release, then concurrency theory tells usghatomic test-and-set
is required at some level in the system or else we must eafigritave a set of
locks, indexed by requester name, that implements a vebigkdtra’s solution.

Pushlogic allows a field to be declared a3 ack’, whose safe value is the null
string. More than one bundle may store a non-safe value iokafield (relaxing
the normal rule) but such a store is only successful if theipus value was the
null string. In a network race, the second client that attisntg store a non-null
value will experience a pushback.

6.4.2 Make/break Issues

Where an event triggers the change of two or more fields, somastihe order in
which they are changed is critical. For instance, eledtebangeover switches
come in make-before-break and break-before-make vagietie

Since Pushlogic is a relatively high-level language, builsupport for make-
break ordering should perhaps be provided for the commoescaather than
forcing the programmer to implement his own sequencers. édew this is for

72

future study. What is implemented is checking over varioussage delivery
skew and loss scenario$l(4).

6.5 Low-level Parallel Composition of Tuples.

Both the pebbl e’ statement in Pushlogic and the binding performed at re-
hydration implement mappings between identifiers in a Ruggblprogram and
other parts of the Tuplespace, typically tuples in Pebt$esnetimes it is helpful
for there to be more than one, concurrent binding in placeirfstance, we might
want to address all the klaxons on the floor of a building codighout the whole
building. Also, different Pushlogic bundles might want teeudifferent parallel
compositions, such that a pair of pebbles that are in parfatlen the point of
view of one program are separate from the point of view of lagiot

There are two basic ways in which a number of pebbels can lressit at once
from a single Pushlogic read or write of a field: either thelpogic code is macro
expanded in some way, such as being rehydrated more than onet¢se the

pebbles are ‘hardwired’ in parallel at a lower level, suckvih additional mech-

anisms in the tuplecore.

We require that any pair of fields composed by low-level parabmposition have
the same tag name and safe value set. The meaning of lowpleradlel composi-
tion is slightly different for read and write operations. lso need to define the
behaviour under unliateral change, pushback and undeageslivery errors.

When fields that are paralleled are written by a Pushlogicraraghe writes are
simply sent to all of the fields. This is useful, for instansen wishing to mimic
the status of a hardware Pebble with a software GUI that teftte most recent
fields written to the Pebble. Each write is sent to each ofwtedestinations. If
one of the writes fails or is pushed back to a safe value, themun-time system
must push back the other fields mapped in parallel accondififhese push backs
appear as undo’s to code in other bundles that drives the eddpdds and to new
writes to code that references the mapped fields.

For fields written unilaterally by external devices, or feetthat refuse to accept a
pushback, the value of their parallel composition is defitoelde the most recent
value written to any one of the fields. This provides suitdid@aviour when a
number of very simple push button pebbles are paralleledptish logic program
receives the up and down strokes of each key with no demancas to which
button was pressed. However, it is expected that even théesmople push but-
tons, whether implemented physically or as part of a GUI|, @l momentary at
the point of operation, but with built-in status indicatasslatches, and therefore
able to accept a push back. If the off state is safe and theata s0t, then ... and
any pushback to off will turn off all the indicators. Thesea&s$ extend easily to
other forms of widget.

73

Chapter 7

Plant Model

Instead of being executable, a bundle may be a plant modelat pnodel mir-
rors the behaviour of the physical world system or plant. Bngnreal systems,
there are predictable effects from the output of actuateasrnay be detected by
sensors. These feedback effects can cause undesiraluts effiech as deadlock
or oscillations, that Pushlogic can detect before they ndgun-time monitoring
of the conformance of the real system with its world modelaan detect various
faults and failures in sensors and actuators and so on.

A plant (world) model declaration uses the keyword sequéde¢ wor | d'.
The bundle content is a list of declarations and statemkkesany other bundle.

For example

def worl d nane()

{
i nput pl ant #heater#setting : { off: lo, hi };

out put pl ant #anbi ent #t enperature : { -273 .. 1000 };

f orever

{

sl eep_seconds(1);

I f (setting==hi && tenperature < 90) tenperature += 3;

else if (setting==lo && tenperature < 90) tenperature += 1;
else if (setting==off && tenperature > 0) tenperature -= 1;

}

A plant model generates bytecode that does not execute omlatigrm, but
which is used for bundle consistency checking.

The sequencedef pl ant’ can be used instead oflef wor | d’ to define a
world model: it makes no difference at the moment.

74

Run-time checking of the real plant’s consistency with wanddels will be im-
plemented.

75

Chapter 8

Domain Manager

The Domain Manager is an aggregation of services that

e delimit the domain boundary,
e manage domain name spaces, including network addressdewdnd names,
¢ allow new devices, bundles and pebbles to join the domain,

e fetch canned bundles in respsonse to trigger actions, adeatg/them and
attempt to insert them into the domain,

e allocate interpreted bundles to execution platforms,
e provide compute resources for soft pebbles,

e provide model checking over all rules in the domain to ensilneroperties
are satisfied, and

e support removal of devices, bundles and pebbles when netbwgnted.

The Domain Manager provides a few standard pebbles, useddbydgjic in read-
only mode, that provide domain status information.

Bundles run inside a domain of participation (DoP). Dynma&icage allocation
only occurs when new bundles of rules are loaded into a rgnboP. Bundles
arrive either when a new pebble that requires control esri@ewhen a new appli-
cation is started, expressed in Pushlogic. Before a bundlbetoaded, the union
of the rules in the new bundle is formed against those alr@atlye domain. If
any of the rules are inconsistent or any of the temporal logies (existing or
new) will not hold under the combined mechanism, the bundfeot be loaded.

76

8.1 Using the compiler to check domains

It is planned that a number of compiled bundles can be readiimgl a com-

pilation and the bundles being compiled are checked agtiest. Indeed, no
source-level bundles are provided, the compiler will ach asatic checker for a
collection of object bundles. This has been implementedhbugxamples written

up.

8.2 Incremental and Real-time Model Checking

We wish to design an object bundle file format that is as anmlerapossible to
rapid incremental model checking or assume/guarantée-stijomated reason-

ing.
Real-time Model Checking ... is one of our main challengesdekplored ...

8.3 Federation of Pushlogic DoPs

Pushlogic rules hold within a domain of participation (DoPe DoP may cover
multiple execution platforms, but all rules are shared imte of consistency
checking!

Variations on this model are required in practice, to previacalised behaviour and assur-
ances, to dynamic allow merging and dividing of domains angrovide federation of domains
where knowledge about peer domains is available in sumnoany 6nly.

77

Chapter 9

Pebbles and Pebble Formal Model

Pebbles themselves are self-contained hardware or seftwgects that fulfill a
certain task. Examples are a numeric entry keypad, an etectpiggybank or a
speech recognition engine. Our vision is that all such dsvghall, in the future,
share a common middleware and reflection API.

A pebble that is compatible with the Pushhlogic/Tuplecgrtesm is defined for-
mally here. The XML schema for such a Pebble follows exat¢téydame struc-
ture.

An uninstantiategpebble is a quad of a typgame, pebblalataplane and peb-
ble_behaviour.

A type_.name is a string that is unique name for an uninstantiatetlpebt is
sensible to use use URI’s as typames, since these can ensure uniqueness, but
other mechanisms can also be used.

A pebbledataplane is a set of (fieldame, fielddomain, fieldtype, fieldvalue)
guads where the fieldames are disjoint.

A field_name is a list of strings. The last string is the fifiald_.name and the
and others are tupleames. By convention, field names are in lower cases and
tuple names are capitalised (first letter is a capital [ett€reld names that are
only different in their finalfield_name are said to be part of the same tuple. Us-
ing Pushlogic, fieldhames are written with a hash sign between each string, for
instance Pebbles#Lamp#status.

A field_domain is a disjoint union of safe and unsafe lists. Each negrabthe
safe and unsafe list is a fiedbmainspecifier. A fielddomainspecifier is a string
constant or an integer, an integer range or an ellipsis.aelse&5.7 for the
concrete syntax for field declarations used in Pushlogic.)

A field_type is one of the following values (fluent, event, ready, lock, money).
Most pebbles only use the fluent type for all fields. A fluent isoaventional
variable that retains its most-recently-written value aetirns this value when
read.

78

A field_value is a constant string that conforms to the fietamain. It is set to the
first item on the safe list when the pebble is first createdsetreA field value may
be interpreted to have integer or real semantics in somextnbut it is primarily
a string. (There is no NULL string but the string of zero ldngt allowed. When
interpreted as a boolean, all values are true except foalsgf FALSE and 0.)

An instantiatedpebble is the conjunction of an instantiateebble and an in-
stancename.

The instancename is a globally unique list of strings of which the first nggn-
erally be a URI string (ie has the prefix 'tup:’).

The fieldnames of an instantiatgaebble are logically assimilated into the global
address space by prepending the instamaae.

The pebble information (metainfo) for a pebble is held aspiethe pebbledataplane
as fixed-value fields with pre-assigned field names whoseeliestent is 'info’.
Therefore there is no specific part of the pebble XML schena& ¢brresponds
to metainfo. These fields have readly type; their domain safe list consists of a
single string that is identical to their fixed-value; themsafe domain list is empty.

Most of the metainfo is missing until a pebble is instantateut the typename
should be present in the field with name Info#type.

Pebbles do not act on other pebbles but can have interndiveedehaviour in
the form of various unilateral interlocks and releases. iRstance, a hardware
interlock may prevent a furnace control field to be set to OB ifiermal cutout
field is registering OVERHEAT. This is an example of an intekoAn example
of internal reactive behaviour would be if the pebble sebws furnace control
field to OFF when the thermal cutout field is reading OVERHEA®NN of the
internal reactive behaviour is allowed to set any field to asafe value or to
prevent a field from being externally set to a safe value. (@e®t4.6.3.) The
internal reactive behaviour of a Pebble is described (atlyeusing Pushlogic
rules, that have their own schema describéd..

9.0.1 Platform Metainfo: Reflection via Pebble Dataplane

An instantiated pebble sits on platform which is either arbeduded system or
server. In terms of registration and metainfo, platformgetthe same structure as
Pebbles and hence do not show up as an explicit structure MM schema.

A platform has a platforrname that is a globally unique list of strings of which
the first might be a URI string (ie. has the prefixup:).

For embedded system platforms, quite frequently, therenig one instance of

a given pebble ever present on the platform and becauseemiligan platforms
have unigque names, the plaform’s name can be extended wistrihg ‘Pebbles’
and then the pebble’s typgame is appended on to that to form the unique instance
name for the pebble.

79

For instance, we might have a platform calledip: // 192. 168. 1. 100’ and
a pebble typename of Ther mal Cut out ’ giving a pebble instance name of
'tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out ".

The metainfo for this example pebble would be found at
tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out #I nf o

and we would expted the following field to also have the valteer mal Cut out ’:
tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out #I nf o#t ype

Where there are several pebbles of the same_tygme on one platform, these
must have intance names that differ somehow. For instanegyusher platform
just adds a decimal number on the end of the tgpee.

tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out 0
tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out 1
tup://192. 168. 1. 100#Pebbl es#Ther mal Cut out 2

Platforms also have metainfo. This is held using fie&dnmes that begin with the
word Platform. One typical field for a platform is an IP addreSor instance, we
would expect the following field

tup://192. 168. 1. 100#PI at f or n#i paddr ess
to have value192. 168. 1. 100’

9.0.2 Bundle Metainfo: Reflection via Pebble Dataplane

Platforms host bundles of running software. The local \deis and metainfo
for such bundles are readable using the peblalplane XML schema. Like an
instantiatedpebble, a runnindgpundle has a typ@eame and an instangeame and
the same naming conventions are used to create instames as are used for
pebbles, except the strinBundl| es’ is used instead.

For instance, a bundle instance name might be
tup://192. 168. 1. 100#Bundl es#d i mat eCont r ol
and its metainfo would be stored in fields such as

tup://192. 168. 1. 100#Bundl es#C i mat eCont r ol #Bundl| el nf o#ver si on
tup://192. 168. 1. 100#Bundl es#d i mat eCont r ol #Bundl| el nf o#copyri ght Messa

and its (Pushlogic) local variables are placed in
tup://192. 168. 1. 100#Bundl es#C i mat eCont r ol #Local s#var 1
tup://192. 168. 1. 100#Bundl es#C i mat eCont r ol #Local s#var 2

80

Chapter 10

Execution Platforms

A number of execution platforms are envisaged, but theyesthersame APl when
viewed from the network.

Currently, there is an interpreter for the bytecode in thegeagpushlogic directory
that can be compiled for embedded systems or workstationwéen compiled

for a workstation it is callegusher. A native compiler for the CAN/PIC platform
is also planned (has been envisaged).

The pusher interpreter may also pretend to be an executfioph pebble, mean-
ing that it might beacon some metainfo so that a domain margiges it some
bundles to run.

Currently, all platforms speak the ETC protocol over the ek

There is a utility calleccndl i ne that enables one to manually send low-level
ETC commands over the network.

Thecndl i ne program allows platform reboot and field read, write and stibs
operations.

Arg syntax is

cndline [-nNONCE] [-pNNN] [-dURI] reboot
cndline [-nNONCE] [-pNNN] [-dURI] wtag v [tag v ...]
cndline [-nNONCE] [-pNNN] [-dURI] r tag
cndline [-nNONCE] [-pNNN] [-dURI] s tag

For example, to change the value on the display panel peblelean use some-
thing like to set a remote field

cndline -d tup://169.254. 25. 193: 253 w Pebbl es#Di spl ay#val ue "Hell o W

Several field, value pairs can be supplied to one write condman

There is also a pushdown operation for tuplecore use, btitigh@ot currently
used.

81

10.1 Registration

A platform must announce its presence and register with onenpre) domain
manager(s).

We have had various registration technologies, includi2® QAtif is currently
implementing UPnP and RDF registration.

Device API reflection is currently achieved through the coflection interface.

10.2 Code reflection

A platform exports the source code of its running bundledyising the assertions
about the operation of the enclosing domain that its buntdbe® made. This is
calledcode reflection

Code reflection is achieved using an HTTP GET and the code adeddn XML.

10.3 Web Interface

Many platforms implement a web interface that allows webdokviewing of in-
ternal state and a certain amount of commanding. The welrsprevides XML
and also a canned CSS style sheet for easy viewing.

10.4 Pusher: Command Line and GUI Tool

The interactive interpreter for pushlogic on workstatienealledpusher.

Pusher can be run standalone, on a workstation, with a nuaifibeindles loaded
from the command line. Figure 10.1 shows a bundle calleddrastunder the
GUI, The output ‘outside#lantern’ is a label and cannot bengjed directly with
the GUI. Itis updated when the value of this variable changls input ‘mains#supply’
has a menu from which the user can select ‘on’ or ‘off’. Theunwariables
‘hall#light” and ‘hall#Switch’ can be changed by the usenasl as by a Push-
logic program. Program counters and other local variabtesstored in tuples
held under the ‘Local’ tab, in a unique sub-tuple for eachdbernstantiated on
the platform. We also have a locally-written universal URmtrol point, that
can perform roughly the same function for a subnet of UPnRcdsy We will
shortly merge the functionality of these two GUIs.

The GTK GUI allows the user to view and manipulate the TupleGoee in real
time. It uses the tuplecore library to access the TupleCadatareeds a function
'get. domain’ which is included in the PushLogic library. It ne¢d$e initialized
using ’init. gtk()’, and 'gtk tree(roottup, NULL)" builds the user interface. A

82

[=1[a][x]

= outside =7 hall [Bundielnfo
outside#lantem halklight [> Local
off off |
=7 mains
: hall# Swiich
mains#supphy
off |«
off |

inout hall#light 3 {of f ¢ on3:
output outside#lantern @ foff : oni:

irput mains#supply ¢ foff @ oni:
irnout hall#Switch @ foff 1 on3:

local light_on 3 £0 3 132

local light_nokt_on 3 £1 3 03:

light_on (= thall#Switch==on 2& mains#supply==on}:
light_rot_on 3= 1 - light_on:

outzide#lantern (= {light_not_ond 7 of f 2 ong
hall#light := {light_not_on? % off 1 ong

Figure 10.1: Lanterns - An Example of Pushlogic under GTK GUI

thread needs to be created which runsglk()’ to exercise the GUI. It creates a
gtk label for output and local variables, which are updated aitlupcall from the
tuple substrate. For inputs it creates either aggtéile if the domain is an integer
range, or a gtkcombabox (i.e. a menu) for an enumerated type.

Th pusher interpreter may also pretend to be an executitioptapebble, mean-
ing that it might beacon some metainfo so that a domain margiges it some
bundles to run.

10.4.1 Pusher Command Line Arguments

Command line arguments are compiled bytecode bundles amnspti

The -nogui’ command line option disables the GUI and dseatt output to the
console.

The ’-cycles=nn’ command line option makes the platfornt &xthe OS after so
many seconds.

The *-tupdump’ command line option prints the internal gp@ace to the console
every few seconds.

Bundles should have suffix pl ¢ ' and this is added if no dot is present in the
filename. Alternatively, bundles should have suffipt cx .

Bundles with a. x suffix are XML coded bundles, as reflected from execution
platforms. NB: the compiler, pushcomp, generates four aljes from each
compilation, two of which are loadable by pusher and the redeas are for can-
ning to device ROMs (pushlogic bytecode or .net bytecode).

Bundles are loaded from the current directory or any dirgdisted on a colon-

83

separated list of directories stored in the PLPATH envirentwariable.

Bundles can be listed on the command line along with an inetaame, separated
by an equals. This allows two instances of the same bundle toddled. Each
will put its local fields in its own local tuple, named with thestance name: for
examplei ns1=di ng. pl ¢ ins2=din.plc "

10.5 Console Output

Under the debugger, it is possible for a Pushlogic programriie strings to the
console and to exit with a return code. This is done by senelegits to certain
fields of a local tuple called Platform#System. Library ftios to assist with this
are provided.

Any constant assigned to Platform#System#sysprint idaispl on the console.

Any integer assigned to Platform#System#sysexit causgslétform to return to
the OS using the integer as the return value.

out put Pl at f or m#Syst em#sysprint : event;
out put Pl at f or m#Syst en#tsysexit : event (0..255);

84

Chapter 11

Other Issues

Parasitic Feedback:Although Pushlogic rules may not cause a higher level field
to change value as a result of a lower field changing in valpar{arom via
undo’s) there is nothing to stop a Pebble making a causefeftmnection be-
tween a pair of fields in this way. Such interactions can l@adstillation and
violate Pushlogic principals.

Multi-media: The Pushlogic interpreter is not envisaged as having sefffici
throughput to directly manipulate multi-media streamstéad, multi-media streams
are started, stopped and routed using Pushlogic as a ‘tq@hree’. The Push-
logic sets fields held on media Pebbles, such as camerakespetileservers
and so on to circuit identifier values. The Pebbles then seadnedia streams
amongst themselves until again commanded by the Pushlbgidield naturally
ends, then its source or destination Pebble can set theotiogrfield back to its
safe value and the Pushlogic receives an undo that can settve same ways as

a conventional ‘interrupt’.

Asynchronous Eventing: Pushlogic may be thought of as an algebra over asyn-
chronous events, and hence has much in common with the wookiroOpera
group. Our fields implement what is now known as a publistgstibe mecha-
nism. The existence of fields is published in the reflectidormation of a device
and they are bound at rule re-hydration time. When a field absngur wire
protocol sends asynchronous notifications to the subsestribe

85

Index

86

References

[1] ‘A Case for Goal-oriented Programming Semantics’ in 8gstSupport
for Ubiquitous Computing Workshop at the Fifth Annual Confere
on Ubiquitous Computing (UbiComp ’03). Umar Saif, Hubert Pham
Justin Mazzola Paluska, Jason Waterman, Chris Terman, Stevd.
http://02s.csail.mit.edu/goals.html

[2] S. Kambhampati. ‘A comparative analysis of partial-@rglanning and task
reduction planning. ACM SIGART Bulletin, Special Section Bmaluating
Plans, Planners and Planning agents, Vol. 6., No. 1, Janlf8p. cite-
seer.nj.nec.com/kambhampati95comparative.htmi

[3] ‘Service Composition for eHome Systems: A Rule-based Apph’
M Kirchhof, P Stinauer. Aachen eHome Groupww-i3.informatik.rwth-
aachen.de/tikiwiki/tiki-index.php?pagef_id=206

[4] Universal Plug and Play. www.upnp.org

[5] Greaves et al. The AutoHAN project.
www.cl.cam.ac.uk/Research/SRG/netos/han/AutoHAN

[6] Uwe Glasser:Systems Level Specification and Modelling of Reactive Sys-
tems: Concepts, Methods, and Tootsteseer.nj.nec.com/258.html

[7] CVC Lite http://verify.stanford.edu/CVCL/

[8] M. Presburger: ‘Ober die Vollstndigkeit eines gewis&ystems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige @pen hervor-
tritt’. In Comptes Rendus du | congrs de Math maticiens des Btaes,
Warszawa, 1929, pp.92-101.

[9] Bierman and Sewell. ‘lota: A concurrent XML scripting lgumage’ Tech-
nical Report Number 557 Computer Laboratory. ISSN 1476-2386: |
IA concurrent XML scripting language with applications tmide Area’
www.cl.cam.ac.uk/TechReports/lUCAM-CL-TR-557.pdf

[10] “Towards Ubiquitous End-User Programming’ Rob Hagu&dbinson, A
Blackwell. ACM Conference on Ubiquitous Computing, SeattletaDer
2003.www.cl.cam.ac.uk/ pr/publications/ubicomp03

[11] Lupu E, Sloman M Conflict Analysis for Management Policiés 5th Int
Symp Integrated Network Management IM’97 San-Diego 97 (Gieap
Hall).

[121 J Bacon et al. ‘Cambridge Event Architecture(CEA)
www.cl.cam.ac.uk/Research/SRG/opera/projects

[13] Monika Solanki et al. ‘Introducing Compositionality M/ebservice De-
scriptions’. Proceedings of 3rd ANWIRE workshop on adaptakleices,
DAIS-FMOODS, November 2003, Paris.

[14] Trolltech, Creators of QT. www.trolltech.com.

[15] ‘Paramodulation and theorem-proving in first-ordezdhies with equality.’
G. Robinson and L. Wos. In D. Michie and R. Meltzer, editors, Mae
Intelligence, Vol. IV, pages 135-150. Edinburg U. Pres§99

[16] W3C: Simple Object Access Protocol (SOARyw.w3.org/TR/SOAP

87

Many thanks to Daniel Gordon who implemented much of the fnsshlogic
system and who contributed greatly to its definition.

88

