
Pushlogic SPL1
Language Reference Manual (draft).

Updated - January 2007

DJ Greaves1

University of Cambridge, Computer Laboratory

April 20, 2009

1David.Greaves@cl.cam.ac.uk

Abstract

SPL1 Pushlogic is a scripting language for a dynamic population of devices (e.g.
sensors, processors or actuators) and dynamic number of concurrent applications
in a reliable or safety critical system. It is a constrained language, fully amenable
to automated reasoning at various granularites. It definesre-hydration for dy-
namic binding of rules to new device instances and a load-time model checker
that runs before a new bundle of rules may join a domain of participation. In a
typical application of Pushlogic, complex embedded devices are partitioned into
passive components known as ‘Pebbles’. API registration and reflection are then
used to expose the interfaces offered by the Pebbles. All proactive and interac-
tive behaviour between Pebbles or over the network must thenbe implemented
with Pushlogic and ‘code reflection’, as we call it, exposes this behaviour for au-
tomated reasoning. This report gives the syntax and semantics SPL1 Pushlogic.
This work was carried out under the CMI Goals/Pebbles project[1].

This document is currently under preparation and is being changed every month
or so...

1

Contents

1 Introduction 6

1.1 Toolchain Flow . 8

1.2 Bundles . 10

1.3 Binding and Naming . 10

1.4 DoP and Checking Granularity 10

1.5 Re-Hydration . 11

2 Ontology 12

2.1 Glossary . 12

3 Pushlogic Constants 14

3.1 Atomic Constant Values. 14

3.2 Event Constants . 15

3.3 Pushlogic Types . 15

3.3.1 Lock Type . 15

3.3.2 Fuse Type . 15

3.3.3 Boolean Type . 16

4 Pushlogic Object Level (VM Execution) 17

4.1 Code Reflection Schema . 17

4.2 Virtual Machine . 19

4.3 Pushlogic Expressions . 24

4.4 Fields and their Declaration. 24

4.5 Level and Event Expressions . 26

4.5.1 Syntax-directed guide to level and event expressions. . . 26

4.5.2 Assertions on Level and Event Expressions 26

2

4.6 Executable Rules . 27

4.6.1 Nominal Meaning of a Rule 27

4.6.2 Event and Level Constraints 27

4.6.3 Unilateral Reset to Safe Value 28

4.6.4 Pushbacks: Simple and Complex Undo 28

4.6.5 Complex Undo . 29

4.7 Inter-Bundle Communication . 29

4.8 Standing Constraints . 29

4.9 Temporal Logic Assertions . 33

5 Pushlogic Source Language 34

5.1 Concrete syntax tree . 34

5.2 Abstract syntax tree . 44

5.3 Program File . 46

5.4 Bundle Declaration . 46

5.5 Constant Values . 47

5.6 Identifiers . 47

5.7 Field Declarations . 47

5.7.1 Sort Statement . 49

5.7.2 Namespace Binding . 49

5.8 Pragmas . 50

5.9 Operators . 50

5.9.1 Function Call . 50

5.10 Pushlogic Statements . 52

5.10.1 Emit Statement (SOAP and GENA too) 52

5.10.2 Pebble Statement . 52

5.10.3 Input and Output Statements 53

5.10.4 Assignment Statement 53

5.10.5 Sequential composition 54

5.10.6 With Statement . 54

5.10.7 If/Then/Else Statement 54

5.10.8 Switch/Case/Default Statement 54

5.10.9 Stategraph Statement . 55

5.10.10 Disable Statement . 57

3

5.10.11 While/For/Break/Continue Statements 57

5.10.12 Procedure Call Statement 57

5.10.13 Return Statement . 58

5.10.14 Wait Statement . 58

5.10.15 Lock Statement . 58

5.10.16 Fuse Statement . 59

5.11 Pushlogic RPC . 60

5.11.1 Foreign RPC (SOAP and GENA) 60

5.11.2 Native RPC . 60

5.12 OO Structures . 60

5.13 Temporal Logic Assertions . 61

5.14 Compiler Operation . 62

5.14.1 Conversion to I-Code . 62

5.14.2 Repeated Elaboration from each Entry Point until Closure 64

5.14.3 Compensation Path Determination 66

5.14.4 Compile Time Assertion Checking 66

5.14.5 Code Output . 66

5.15 Model Checking . 67

5.16 Bundle Meta Info . 68

5.17 Binding Hooks . 68

6 Standard Environment 69

6.1 Bundle Meta Info . 69

6.2 Local Variable Store . 69

6.3 Pushlogic Timer . 70

6.4 Assistance with Network Race Conditions 71

6.4.1 Test and Set Facility . 72

6.4.2 Make/break Issues . 72

6.5 Low-level Parallel Composition of Tuples. 73

7 Plant Model 74

8 Domain Manager 76

8.1 Using the compiler to check domains 77

4

8.2 Incremental and Real-time Model Checking 77

8.3 Federation of Pushlogic DoPs 77

9 Pebbles and Pebble Formal Model 78

9.0.1 Platform Metainfo: Reflection via Pebble Dataplane . . .79

9.0.2 Bundle Metainfo: Reflection via Pebble Dataplane 80

10 Execution Platforms 81

10.1 Registration . 82

10.2 Code reflection . 82

10.3 Web Interface . 82

10.4 Pusher: Command Line and GUI Tool 82

10.4.1 Pusher Command Line Arguments 83

10.5 Console Output . 84

11 Other Issues 85

5

Chapter 1

Introduction

In software terms, a ‘script’ is a collection of commands to be performed in a
particular order under various conditions. Imperative programming languages,
such as assembly language, Java and the unix shell language are frequently used
for scripting. These languages are used to control a collection of devices or to
otherwise automate a process. They are unrestricted in expressibility and hence
reasoning about their behaviour or their interaction with other such scripts is hard.
When a script phrased in a decidable language controls and reacts to objects con-
taining undecideable code (or exhibiting unpredicatable behaviour), the system
becomes undecidable as a whole. Nonetheless, it is our belief that there are sig-
nificant benefits from using decidable code at the highest levels - the level of ap-
plication scripting. Model checkers are good at exploring system behaviour over
all possible behaviours of the undecidable subsystems.

In our approach, complex, autonomous or undecidable behaviour is partitioned
and placed in ‘pebbles’ that interact using a constrained controlling language
called Pushlogic. Pushlogic object level is a byte code, designed as an inter-
mediate code for automated reasoning with respect to several execution models
that vary in how fast a program can be checked and how accurately effects of
message loss or delivery delay are included. Pushlogic source level looks like an
unconstrained, imperative, multi-threaded OO-like language where the partition-
ing between decidable and undecidable constructs is not immediately apparent to
the programmer.

Pushlogic object consists of bundles containing rules. Rules are eitherconsis-
tency assertionsexpressed in temporal logic or elseexecutable rulesthat define
a finite state machine or ‘mechanism.’ Bundles run inside adomain of participa-
tion (DoP). Dynmaic storage allocation only occurs when new bundles of rules are
loaded into a running DoP. Bundles arrive either when a new pebble that requires
control arrives, or when a new application is started, expressed in Pushlogic. Be-
fore a bundle can be loaded, the union of the rules in the new bundle is formed
against those already in the domain. If any of the rules are inconsistent or any
of the temporal logic rules (existing or new) will not hold under the combined

6

mechanism, the bundle cannot be loaded.

Pushlogic is a finite-state language, but the amount of statein a Pushlogic domain
varies over time, as new bundles or pebbles enter and leave the DoP.

Instead of being executable, a bundle may be aplant bundle that models reactive
and autonomous behaviour not programmed using Pushlogic. Aworld model
mirrors the behaviour of the physical system or plant or other software agents. In
many real systems, there are predictable effects from the output of actuators that
may be detected by sensors. These feedback effects can causeundesirable effects,
such as deadlock or oscillations, that Pushlogic can detectbefore they occur. Run-
time monitoring of the conformance of the real system with its world model can
also detect various faults and failures in sensors and actuators and so on.

We use the term ‘mechanism’ for our combination of FSMs because it models not
only the effect of inputs on outputs and internal state, but because a mechanical
system of levers and cogs can sometimes be operated in reverse, with pressure
applied to an output causing an ‘input’ to change. Pushlogicimplements a form
of compensationwhere rules are executed in reverse. This is called apushback.
We believe this greatly reduces the effort required to handle errors and failures.
To start with, less code needs to be written, but the real win is that error recovery
procedures then add little overhead to the automated rule checking.

Pushlogic runs on real platforms under its own interpreter or compiled to native
code (or in one extension, to .net bytecode). Two main execution platforms have
been developed: a unix workstation application calledpusher that also sports a
GTK-based GUI if needed, and an embedded version that runs onMolly processor
cards or on bare PC motherboards without OS. A geographical physical modelling
system calledvworld is currently being developed that enables a number of vir-
tual, interacting pebbles to be visualised on a canvas.

For checking purposes, Pushlogic defines several executionmodels that succes-
sively decrease in level of modelling detail. All models aresuitable for finite-state
model checking. The aim is to enable a more-rapid check of a less-detailed exe-
cution model to be verified before proceeding to slower, yet more-detailed mod-
elling.

1. Message and Component Failure and Network Loss or Delay

2. Message and Component Failure and Network Delay

3. Message and Component Failure

4. Message Failure

5. Component Failure

6. Atomic, Reliable

7

Compiler

Object
Bundle

Bundle
Checker

XML reflection
information
via UPnP

Device
Bindings

Object
Bundle

Object
Bundle

Compile
Time

Checker

Re-
Hydration

Re-
Hydration

Re-
Hydration

Source
Bundle

Source
Library

Expert
User Interface

(emacs)

Universal
Rule

Library

Hydrated
Bundle

Hydrated
Bundle

Hydrated
Bundle

Hydrated
Bundle

Execution
Platform

Execution
Platform

Execution
Platform

Domain
standing

rules

Script
Creation
Phase

Compilation
Phase

Binding
and

Loading
Phases

Execution
Phase

Canned
Storage
Phase

UDP Broadcast Subnet ETC: UDP SOAP GENA

Re-
Hydration

Object
Bundle

DBG

Source
Bundle

Source
Bundle

Domain of Participation

Domain
Manager

and
Checker

Figure 1.1: The write/compile/re-hydrate/execute toolchain for Pushlogic

Pushlogic has been developed for a year or so, and its first compiler and run time
system are becoming stable. We are now implementing the DoP manager, that
provides real-time checking of bundles joining the DoP, so that Pushlogic can
provide a scripting language for safety-critical systems with a dynamic popula-
tion of sensors, actuators and applications. We are also adding arrays and remote
procedure call clients1

1.1 Toolchain Flow

Figure 1.1 shows the Pushlogic toolchain. Source bundles are compiled with li-
braries to generate dry object bundles that do not refer to specific pebbles by name.
A subsequent re-hydration stage implements such bindings,and a given bundle
may join the DOP more than once, as illustrated, but using different bindings for
each instance. Several bundles may run on a single executionplatform, but the
behaviour of the system is, as far as possible, the same as though they were dis-
tributed over the network. For a self-contained device using ROM’d code, such as
the Heating Controller presented later, part of the re-hydration can be performed
before canning the code to ROM, so that the code is bound to thelocal pebbles,

1Server-side RPC requires further study, because of the potentially unlimited number of con-
current activations that must be held as server state.

8

and part of it can be done later, for instance to bind to other devices encountered
in the domain at run time.

Ubiquitous computing architectures, such as those based onXML, UPnP and
XMLRPC have matured in terms of their support for automatic registration in
directory services and description of the command APIs offered by devices for
asynchronous eventing and RPC. However, until now there has been little empha-
sis on automated description of theproactivebehaviour of applications running
in such an environment. These applications invoke operations at various APIs
available on the local device or over the network. Without these applications, the
APIs would remain unused and pointless. However, when dozens of applications
are running at once in an environment like a home, car or hotelroom, they are
bound to interact and occasionally disagree about the current correct setting of
some value, such as brightness of room lights or locked stateof a door.

A solution to this problem is being explored within our AutoHAN project[5]. In
our approach, each device must be architecturally componentised into some num-
ber of passive ‘Pebbles’ and a set of ‘Pushlogic’ rules that control these Pebbles.
A Pebble can represent a fairly large chunk of functionality: it could be a hard-
ware component, such as a wall-mounted keypad or a fire alarm sounder, or it
could be an entirely virtual device, hosted somewhere on thenetwork, such as a
speech recogniser. Each Pebble is able to describe itself using a reflection API,
such as that provided by UPnP or XMLRPC, and register itself with dynamic di-
rectory services of the form required for ad hoc computing. Together with MIT
Project O2S we have developed a complete architecture for this sort of behaviour.
However, most importantly, no Pebble is able to interact with any other Pebble
under its own volition. Instead, all proactive and interactive behaviour must be
held outside the Pebbles in small application scripts that actually cause something
to happen.

For instance, consider a DVD player designed to operate withour environment.
As illustrated in figure??, each of its major, internal components is a separate
Pebble (at the architectural modelling layer). The Keypad Pebble will not make
direct contact with the Mechanism Pebble. Instead, when the‘play’ key on the
keypad is pressed, the application script that glues together the DVD components
will convey the event to the Mechanism Pebble to commence playing. Using
dedicated wiring to carry the output signals, as is common practice until now, the
mechanism will be connected directly to the physical outputsockets on the back
of the unit. Accordingly, the application does not have to doanything to convey
the multimedia stream to its destination. In the future, themedia will also stream
over a packet switched network using a virtual connection. It is then the job of
the application to set up the connection parameters, although not to copy the data
itself. In this scenario, the embedded application is having a proactive effect on
other Pebbles in the local environment - for instance, it is routing audio and video
to them. We use the term ‘feature interaction’ to describe the general situation
where independent application scripts try to perform disagreeing operations on a
Pebble at the same time. In the DVD example, feature interaction would arise

9

when two DVD players try to route video to one display at once.

Using the Pushlogic approach, all application scripts within an environment of
participating devices must either be implemented in Pushlogic, or else summarised
in it. The various routes to using Pushlogic are illustratedin figure 1.1. A high-
level language, such as Pushlogic Source, is compiled by thecompiler to generate
the Pushlogic object code. This is then canned in ROM for direct interpretation
in the embedded target or further compiled to native code fora micro-controller.
The latter approach may serve to use less RAM. In all routes, a Pushlogic form
of each application is made available for checking in advance of the application
being allowed to join the environment of participation. We use the term ‘code
reflection’ for the concept of application software being examinable in some for
or another.

1.2 Bundles

Pushlogic programs consist of ‘bundles’ of rules. A bundle must be checked be-
fore it is allowed to commence execution and may also be ‘re-hydrated’ before
checking. A bundle contains rules and meta information.

1.3 Binding and Naming

Bundles have access to several namespaces.

1. Their own local name space,

2. a namespace local to the platform they are running on,

3. a namespace local to the domain of participation (DoP),

4. a global, or outermost, namespace, accessed via URIs.

1.4 DoP and Checking Granularity

A Pushlogic program executes in a domain of participation (DoP). A DoP typ-
ically encompasses some number of Pushlogic execution engines. DoPs may
become merged or federated, as explained in section 8.3. Various agents may
attempt to insert a bundle into a domain of participation. For instance, a starting
bundle may be loaded by the agent that first set up the domain. Equally, when
new devices are added to the system, an associated bundle is also typically of-
fered. The presence of certain combinations of pebbles and bundles in a domain

10

may trigger loading of further bundles: eg a fire alarm systemmight be automat-
ically implemented whenever there both a smoke sensor and analarm klaxon are
present in the domain.

A bundle must be checked against all other rules already in the domain and if all
rules hold, then the bundle joins and its rules start to take effect as well. A bundle
may also be unloaded by deleting all of its rules at any time, provided it is not
critical to ensuring a consistency rule that is not also unloaded at the same time.

A bundle might require parts of it to be loaded onto differentexecution plat-
forms for efficiency, but the underlying tuplecore implementation means this is
not strictly necessary, since all points of the tuplespace are nominally accessible
from anywhere.

... operational model ...

1.5 Re-Hydration

A bundle of rules may be ‘re-hydrated’ before being offered to the domain. This
means expanding various hierarchic macros in the rules to produce flat Pushlogic
Object code. The number of rules in a bundle may be increased or decreased
during re-hydration. For instance, a complete bundle of standard rules may be
copied out from a store where they are held in a ‘canned’ form.Macro-generation
is needed because Simple Pushlogic (SPL1) has no bindings, pointers, objects or
dynamic storage allocation. The macro-generation ameliorates this by generating
rules with static fields.2

Pushlogic rules may directly refer to fields with absolute path names (as part of
a global tuple space), or to fields local to the current execution platform (gener-
ally the current device) or to the current domain of participation. In a general
situation, this is not sufficient. Rules need to refer to locally bound devices, such
as ‘front-door-bell’. Re-hydration provides such binding.It also provides guar-
anteed uniqueness for certain field names needed in applications that require the
equivalent of ‘local variables’.

Research question: is it a good idea that the rules for rehydrating bundles to be
implemented in the same language that is used within the bundles themselves?
How do they need to differ and why? One clear distinction is that Pushlogic
SPL1 is a finite-state language whereas dynamic rehydrationchanges the amount
of state. This separation might be also most helpful in maintaining amenability to
automated correctness checking.

2In the future, we may define forms of Pushlogic that are not called Simple Pushlogic. These
may support dynamic state creation, e.g. to implement RPC server sides.

11

Chapter 2

Ontology

The Pushlogic approach defines its own ontology. This coversdevice structure
and also domains of participation.

2.1 Glossary

Pebble. A pebble is a basic entity that can register its existance in adomain, broad-
cast events and be controlled over the network. A pebble doesnot interact
directly with any other pebble.

Bundle. A bundle of Pushlogic rules consists of software, temporal logic assertions
and meta information. It may be interpreted by a Pushlogic exection plat-
form or be natively compiled. It is the only class of entity that provides
communication between Pebbles.

Canned Bundle. A canned bundled is stored in a file on a server or in ROM, ready for
re-hydration. It may contain formal variables that are replaced in macro-
expansion style to actual variable (field/tuple) references.

Soft Pebble. A soft pebble is one that can run on any networked execution platform. It
has no specialised or associated hardware.

Device. A device contains Pebbles and Bundles, execution resources and other sys-
tem services that are neither Pebbles or Bundles.

Service. A service is the same as a device. However, the term is used forsoftware-
only devices. These can generally be dynamically instantiated whereas
hardware devices are instantiated by a user introducing oneinto the domain.

Domain of Participation. A DoP is any space in which a quantifier ranges. Typically thiscovers a
physical or logical space. Most-trivially, it is the local UDP broadcast sub-
net. An example use of a DoP is a rule which says ’all lights must be off
when the master switch is off’: in this example, the word ’all’ is interpreted

12

with respect to the current DoP. Devices and Pebbles can participate in sev-
eral domains at once (Atif is working on this).

13

Chapter 3

Pushlogic Constants

Pushlogic source and object use the same constant forms.

3.1 Atomic Constant Values.

The constant values available are integers and strings.

Strings that are defined as part of an enumeration or the reserved strings ‘true’ and
‘false’ do not need quote marks when they appear at source level, but at object
level there is no concept of whether a string was in quotes or not at source level.

Constant value strings containing spaces must be enclosed inquotes at the source
level. They should be avoided for everyday device control.

Integers are rendered in base ten and have no leading zeros, except for zero itself.
In all respects, an integer behaves equivalently to its corresponding base ten string.
The runtime system (e.g. Pushlogic interpeter) may freely convert between ASCII
string and binary representations of integers as it wishes.

Pushlogic object also uses the special constant bottom (also known as backstop)
(⊥).

The null string, the string ‘false’ (whether in quotes at source level or not), the
integer zero and any strings containing only zeros are the values that represent
logical false in the evaluation of Boolean operators.

The null string is defined as the string of length zero. There is no separate ’null
pointer’ version of the null string and string variables cannot be ’null’. Any plat-
form that uses the null pointer to represent the null string must ensure the two are
fully identified, under comparison and so on.

14

3.2 Event Constants

Certain fields or variables range over events. The event name is the same as the
name as the field or variable that relays it. Events may be parameterised with an
event constant that is a string or integer. An event type is a set of unique strings
and/or integers that are the event constants possible for a given event. The null
event constant denotes that an event is not currently occurring.

3.3 Pushlogic Types

Types in SPL1 are sets containing enumerations of constantsand/or integer ranges.
Types are designated using type expressions. A type expression is the name of a
type or a list of constants enclosed in braces. A colon may partition the list: this
defines the values before the colon as safe values. The constants are strings, which
do not need quotes in this context, unless they contain spaces, or integer ranges
of the form ‘nn .. mm ’ where nn and mm are integers. The word ‘event’
may be placed in front of the opening brace to declare an eventtype. An event
type has an implied safe value that is the empty string and thegiven constants are
unsafe values.

type-expression ::= <id> |
{ u1 u2 ... } |
{ s0 s1 ... : u1 u2 ... } |
event { e1 e2 ... } |
fuse | bool | lock

Named types are defined with the ‘sort set’ statement but the right-hand side
type expressions can be used inline as anonymous types. Example:

type-declaration ::= sort set <id> = <type-expression>

sort set <typename> = { s0, s1, ... : u1, u2, ... };

3.3.1 Lock Type

The lock type is built in to Pushlogic and ranges over any string constant. Its safe
value is the null string. Only the bundle that last set a lock type to a non-null value
can set it to any other value.

3.3.2 Fuse Type

The fuse type is built in to Pushlogic and defined as follows:

sort set bool = { true : false };

15

3.3.3 Boolean Type

The Boolean type is built in to Pushlogic and defined as follows:

sort set bool = { true, false };

The sort ‘bool’ is already defined by the system and contains the reserved con-
stants ‘false’ and ‘true’, both as unsafe values.

It is an error to define any field to range over the reserved constants ‘false’ or
‘true’, unless the field ranges over exactly these two fields. They may be safe or
unsafe.

Examples:

sort set d0 = bool; // OK - making use of predefined sort.
sort set d1 = { true : false }; // OK - true is safe.
sort set d2 = { true false }; // OK - both unsafe, same as boolean.
sort set d3 = { false : 0..9 }; // Illegal.
sort set d3 = { false : true red brown }; // Illegal.

16

Chapter 4

Pushlogic Object Level (VM
Execution)

Pushlogic originally generated its own native object-level bytecode. This was
considered the reference standard for code reflection. Anything that generated
this form of code could particpate in the system.

Now (2008), the Pushlogic compiler also generates .net IL code. The code can
be checked whether conformant to one or morecheckablity profilesand the do-
main manager will reject bundles that are outside its supported set of checkability
profiles.

4.1 Code Reflection Schema

Pushlogic native object level is considered the primary form of represenation. It
exists in bytecode and XML forms.

The XML schema for Pushlogic code reflection is as follows. A separate schema
is used for data reflection via the tuplecore (todo: where is it listed?).

<?xml version="1.0" encoding="UTF-8"?> <xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="bundle">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs="unbounded" ref="PK_subxw"/>
<xs:element maxOccurs="unbounded" ref="PK_domain"/>
<xs:element maxOccurs="unbounded" ref="PK_rule"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="PK_subxw">

<xs:complexType mixed="true">
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="PK_fieldr"/>

</xs:sequence>
<xs:attribute name="no" use="required" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_fieldr">

<xs:complexType>
<xs:choice>
<xs:element ref="PK_fielda"/>
<xs:element ref="PK_tup"/>

</xs:choice>

17

<xs:attribute name="arg1s" use="required" type="xs:NCName"/>
</xs:complexType>

</xs:element>
<xs:element name="PK_domain">

<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="PK_s"/>
<xs:element minOccurs="0" ref="PK_ellipsis"/>
<xs:element ref="PK_fieldd"/>

</xs:sequence>
<xs:attribute name="mode" use="required" type="xs:NCName"/>
<xs:attribute name="safecount" use="required" type="xs:integer"/>
<xs:attribute name="spare" use="required" type="xs:NCName"/>
<xs:attribute name="unsafecount" use="required" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_ellipsis">

<xs:complexType/>
</xs:element>
<xs:element name="PK_fieldd">

<xs:complexType>
<xs:choice>
<xs:element ref="PK_fielda"/>
<xs:element ref="PK_tup"/>

</xs:choice>
<xs:attribute name="arg1s" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_rule">

<xs:complexType>
<xs:sequence>
<xs:element ref="PK_fieldw"/>
<xs:choice>

<xs:element ref="PK_query"/>
<xs:element ref="PK_s"/>

</xs:choice>
<xs:element maxOccurs="unbounded" ref="PK_skip"/>

</xs:sequence>
<xs:attribute name="timer" use="required" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_fieldw">

<xs:complexType>
<xs:sequence>
<xs:element ref="PK_fielda"/>

</xs:sequence>
<xs:attribute name="arg1s" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_tup">

<xs:complexType>
<xs:attribute name="arg1tup" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_fielda">

<xs:complexType>
<xs:sequence>
<xs:element ref="PK_tup"/>

</xs:sequence>
<xs:attribute name="arg1s" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_s">

<xs:complexType>
<xs:attribute name="arg1s" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="PK_query">

<xs:complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="PK_deqd"/>
<xs:element ref="PK_query"/>
<xs:element ref="PK_s"/>
<xs:element ref="PK_subxr"/>
<xs:element ref="PK_and"/>

</xs:choice>
<xs:element minOccurs="0" ref="PK_backstop"/>
<xs:element ref="PK_skip"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="PK_and">

<xs:complexType>
<xs:sequence>
<xs:choice maxOccurs="unbounded">

<xs:element ref="PK_deqd"/>
<xs:element ref="PK_subxr"/>

</xs:choice>
<xs:element ref="PK_skip"/>

</xs:sequence>
</xs:complexType>

18

</xs:element>
<xs:element name="PK_backstop">

<xs:complexType/>
</xs:element>
<xs:element name="PK_skip">

<xs:complexType/>
</xs:element>
<xs:element name="PK_deqd">

<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="PK_query"/>
<xs:element minOccurs="0" ref="PK_subxr"/>
<xs:element ref="PK_s"/>
<xs:element ref="PK_skip"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="PK_subxr" type="xs:NMTOKEN"/>

</xs:schema>

This schema is partial since it does not currently list all ofthe diadic operators.
The PKskip statement is shown instead of the pushback info in this version.

4.2 Virtual Machine

The bytecode is defined in this table:

Pushlogic Byte Code Descriptions : DRAFT.

For the bytecode representation, self-describing args preceed
the bytecode and fixed-field args follow the byte code.

For the XML representation, self-describing args are included as
sub-elements of the element and the fixed-field args are put
as attributes.

OPERATORS

--
CODE PK_and 2

Logical and function.

Three stack args : left, right and pushback info.
No postfix attributes.

--
CODE PK_or 3

Logical or function.

Three stack args : left, right and pushback info.
No postfix attributes.
--

CODE PK_not 4

Logical not function
One stack arg.
No postfix attributes.

--
CODE PK_inv 5

Bitwise complement.

One stack arg.
No postfix attributes.
--
CODE PK_xor 6

Logical xor function.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_divide 32

Division operator.

19

Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_mod 33

Modulus operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_fqgt 34

Four quadrant greater than operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_multiply 35

Multiplication operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_query 14

Conditional expression operator.
Four stack args: guard, true-exp, false-exp, pushback info.
No postfix args.

CODE PK_deqd 15

Equality comparison operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_dgtd 16

Greater than comparison operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_dged 17

Greater than or equals comparison operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_plus 20

Addition operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_minus 21

Subtraction operator.
Three stack args : left, right and pushback info.
No postfix attributes.

CODE PK_tup 22

Reference to a tuple in the current domain of participation -
sometimes currently used instead of localroot.
No stack args.

One postfix attribute: the tuple name.

CONSTANT VALUES

CODE PK_s 1

Defines a string constant

No stack args.
One postfix attribute: the string itself.

20

CODE PK_backstop 19

A constant value which when assigned does not change the current value.
No stack args.
No postfix args.

CODE PK_int 25

No stack args.
In bytecode, a representation of integers in base 256.
In XML, integer elements appear directly.

CODE PK_nint 26

No stack args.
In bytecode, a representation of integers in base ???.
In XML, integer elements appear directly.

CODE PK_ellipsis 28

A constant value which denotes other possible values in a domain declaration.
No stack args.
No postfix args.

CODE PK_range 29

Declares a subrange of the integers.
Two stack args: from and to inclusively.
No postfix args.

TOP LEVEL ITEMS

--
CODE PK_rule 7

Defines an executable rule

Six stack args are left-hand side tuple, left-hand field, right-hand side, pushback, spare and spare.
In XML form, the left-hand side tuple and field are combined and use a single element.
One postfix attribute: nominally called timeout but currently unused.

--
CODE PK_subxw 8

Define a subexpression.
One stack arg: any expression
One postfix attribute: the subx number.

CODE PK_subxr 9

Read a subx defined by subxw.
Zero stack args.
One postfix attribute: the subx number.

CODE PK_domain 30

Declares the range of values for a field.
Stack args: the safe values followed by the unsafe values.
Three postfix args: type, safe values, unsafe value.

CODE PK_safetylive 24 // not used now

An Oldform ?

CODE PK_sl 40

Safety/live rule definition.

Three stack args : guard, true/false and message.
No postfix attributes.

The middle value is true for a safety rule and false for a live rule.
The message should be reported if the rule fails.
Fairness constraints are to be added!

CODE PK_fieldl 41

not used anymore?

21

FIELD AND TUPLE ACCESS

CODE PK_localroot 13

Explicit name for the local root tuple - sometimes currently omitted by implication.
No stack args.
No postfix args.

CODE PK_uri 27

Reference to a tuple on another execution platform.

No stack args.
One postfix attribute: the uri.

CODE PK_fielda 23

A field reference where the field contains a tuple.
One stack arg: a tuple.
One postfix arg: the field name.

CODE PK_fieldw 10

A field reference for writing.
One stack arg: a tuple.
One postfix arg: the field name to be written.

CODE PK_fieldr 18

A field reference for reading.
One stack arg: a tuple.
One postfix arg: the field name to be read.

CODE PK_fieldlk 39

A field declaration where the field will be a lock.

One stack arg: a tuple that will contain the field.
One postfix arg: the field name.

CODE PK_fieldd 36

A field declaration.
One stack arg: a tuple that will contain the field.
One postfix arg: the field name.

MISCELLANEOUS

CODE PK_eventr 42

event read: pushlogic interepreter internal use only.
Does not appear in bytecode currently - inferred by bcload.

CODE PK_pbind 37

Pushback info.

??? currently being changed sligthtly

CODE PK_pbval 38

Pushback info.

22

??? currently being changed sligthtly

CODE PK_meta 11

Not used.

CODE PK_skip 12

A nop.
No stack args.
No postfix args.

CODE PK_eob 31

End of bundle marker - not used in XML form.
No stack args.
No postfix args.

EOF

The XML schema essentially follows the bytecode, in that a very simple tree
walker is all that is needed to convert XML form to bytecode. The current push-
logic interpreter indeed converts it in this way.

Pushlogic has three forms of representation: source, canned object and re-hydrated
object. In this section we give the semantics of re-hydratedobject, which is re-
garded as the primary form of Push Logic. It is actually a bytecode suitable for
automated checking, distribution and loading into an execution platform (byte-
code interpreter).1

A Pushlogic program, at the object level, is a set of rules known as a ‘bundle’.
Pushlogic programs are aggregated into a domain of participation by disregarding
bundle boundaries and forming the union set of rules, but a bundle may not be
admitted if automated formal tests fail for any rule within it. These tests are given
below. Each one is called a ‘constraint’. A race can arise if an attempt is made to
load a pair of incompatible bundles at once: the system will accept only the rules
from the first bundle.

Pushlogic object rules have three forms: executable, liveness and safety. The
source compiler can convert more complex temporal constraints into a conjunction
of live and safety checks for the object form to handle. Liveness and safety rules
are assertions to be checked by a model checker invoked by theloader. The loader
also has certain built-in constraints, described below, that require model checking.
(The model checker can be run as a network service or as a process on the target
execution platform.) The combination of the current bundleand all other rules in
the domain of participation is model checked. If all assertions still hold, then the
new bundle is acceptable to the domain and becomes part of it.Execution of its
executable rules is then allowed.

1We also plan to implement a compiler that generates native C code from the bytecode, because
the current byte code interpreter is RAM-hungry and slow.

23

4.3 Pushlogic Expressions

Pushlogic atomic object expressions are the constant values (strings, integers and
bottom (⊥)) and the values of fields.

More complex expressions are built up using operators. The operators are any
deterministic, referentially-transparent functions, including the normal Boolean
connectives and the conditional expression construct (query-colon). The full core
set of operators found in Java and C++ is supported, along withstring catenation.
Function calls could be provided for brevity, but these are currently fully inlined
by the compiler and so do not appear in the object code.

Expressions are either level or event expressions. A level expression is a function
of state whereas an event expression will only have a non-null value momentarily.

Arithmetic and comparison operators are provided using thenormal coercion rules
that allow strings and integers to be interchanged, as foundin languages such as
Perl.⊥ is represented with a unique byte code that is disjoint from any string:⊥
does not need to be explicitly written in the Pushlogic source level.

A full list of operators should be given here. Note that string cat uses dot and↑ is
xor.

A FQGT operator is provided that performs a comparison in the styleof greater-
than but with the assumption that a pair of integers in a adjacent quadrants of the
number space have not lapped each other. Example needed here...

4.4 Fields and their Declaration.

Our current, main Pushlogic implementation is part of a distributed tuple space
platform and hence variables are called fields. Most fields are either events or
range over the constant string/integer values defined above. Apart from strings,
integers and events, the tuple space platform supports someother types, including
level, primary key, credit, URI and so on. Their definition is beyond the scope of
this document and so only mentioned in passing.

A tuple is a collection of fields, each named with a tag string.A field may contain
a nested tuple.

Every tuple has a field called ‘level (i.e. the tag string for that field is ‘level’). It
contains a negative integer.

lev(v) ∈ Z−

All fields and tuples are part of a global shared address space, and in principal, can
be accessed from any bundle. However, the concepts of domain, device, pebble
and bundle each impose overlays of name aliasing and access control on the global
space.

Certain tuples are associated with the current DoP, certain with the current device

24

or execution platform and certain exist only for private, local access by the current
bundle. Like a bundle, a pebble also possesses a set of associated local fields, but
these are not private: indeed they are used as shared variables for communication
with the Pebble.

As a coding convention, users of Pushlogic are invited to usefirst-letter capitali-
sation for then names of fields that contain tuples and lower case for fields that are
variables.

Fields that are local to the current bundle are declared withthe keyword ‘local’.
Fields that are shared and provide input or output to the current bundle are de-
clared with the keywords ‘input’, ‘ inout’ or ‘output’. Actually, at object
level, the keywords are replaced with Pushlogic bytecodes.

The built in types, such as ‘lock’, ‘ bool’ or ‘fuse’ can be used at source level
as a short hand to declare local fields. For example, the following two lines show
equivalent ways of defining booleans.

local var1, var2 : bool;
bool var3, var4;

The definition of fields and tuples is identical at source level and object level and
is unchanged by the compiler.

When a field is declared, a range of values for it may also be declared. If the range
is to be used frequently, it can be named and represented as a ‘type’ and then
refered to by its name. The range is denotation of a list of constant strings, but
integer subranges can be used to specifiy parts of this list.

The range of values is partitioned intosafeandunsafevalues. The the list of safe
values is definitive, whereas code should operate correctlyand all assertions pass
if further unsafe strings or integers occur during run time.This supports dynamic
system extensibility. The elipsis construct is allowed in list of unsafe value at
the the pushlogic source level, but serves only to alter behaviour with respect to
compile-time warnings.

One of the safe values, the first listed in any list, is known asthe nominal starting
value for that field, and can be used as such in offline checks that involve reachable
state analysis.

When a bundle (or pebble) is introduced to a DoP, if the nominalstarting value of
any of the the newly created fields associated with the new bundle (or pebble) is
inconsistent with extant domain values, fields may be set toany value that makes
the rules consistent, but with priority being given first to nominal starting values,
then to other safe values, then to listed unsafe values.

If insertion of a new bundle (or pebble) into a DoP would immediately cause a
pushback inside the domain, this should perhaps be flagged ata meta-level to the
operative attempting the insertion.

25

4.5 Level and Event Expressions

Expressions are either level or event expressions. It is possible to define the dis-
tinction in a syntax-directed way, as given shortly. However, the current and pre-
ferred implementation is not to rely on syntax but to use the elaboration rules in
the compiler to determine whether a given expression is acceptable in a given con-
text. The rules deny the conjunction of events from separatesources and require
that all code reaches closure under repeated symbolic elaboration (§5.14.2). The
elaboration rules offer a richer language since the syntax-directed form cannot
easily encompass concepts of an differentiator enclosed inan integrator.

4.5.1 Syntax-directed guide to level and event expressions

The following rules would be broadly sufficient to distinguish level expressions
from event expressions, but they are intended as a guide to programmers and are
not a definition.

A level expression is essentially an expression with no leafvariables of type
‘event’ and which does not contain the differentiation operator. It maintains
its value unless any of the supporting variables changes their current value (their
level in hardware terms).

An event expression is a function of one or more variables of type ‘event’ or
which contain the differentiation operator. Not all operators support event ar-
guments: those that do are conjunction, disjunction and conditional expression
(query-colon construct); negation of events is forbidden.Disjunction of event
expressions (logical OR) is always allowed but conjunction requires that both ar-
guments stem from a single external event delivered to the current bundle. The
basis of this is that simultaneous delivery of external events is not meaningful.

4.5.2 Assertions on Level and Event Expressions

The ‘always’ assertion asserts that a condition must always hold and itsargu-
ment must be a level expression. The ‘never’ and ‘live’ assertions may apply
to either type of expression.

Further temporal logic operators, such as ‘until’ and ‘w-until’ and gen-
eral CTL expressions, are not currently supported, but will have the requirements
on their arguments that would arise from decomposition intosafety and liveness
form.

26

4.6 Executable Rules

Each executable rule is an assignment of the form

f := exp : pbind

wheref is a field (a scalar variable name) in a global name space andexp is
a Pushlogic object expression andpbind is compensation information that asists
in reversing the operation of the rule. This information also identifies certain of
the expression support (i.e. certain of the free variables occuring inexp) as the
sensitive parentsof the rule.

All pushlogic rules, at the object level, are composed in parallel and execute si-
multaneously.

D1: Rule Execution: The reference execution model for an executable Push-
logic rule is that all subexpressions occurring in the expression are re-evaluated
whenever there are changes to any of their support. Likewise, changes to the result
of the top expression become scheduled as updates to the assigned field. Updates
aregated, by which we mean that all updates to fields held on the same execution
platform as the Pushlogic that arise owing to a single event are batched and made
at once (atomically). Further changes arising from a batch of gated updates are
collected and deferred to the next batch.

An event nominally holds for one gated cycle. All event fieldsare re-set to the
null string after the cycle where they were processed.

4.6.1 Nominal Meaning of a Rule

A Pushlogic rule is to be thought of as holding at all times, except when it is
assigning⊥, at which times the assigned field retains its current value or is con-
trolled by another rule. Push Logic is designed such that each rule may also be
interpreted as an assertion about the current state of the assigned field and the con-
junction of all such assertions should hold at all times. However, because fields
may be held on physically separate devices, and Push Logic interpreters inter-
change network messages when fields need to be changed, this conjunction will
not globally hold for brief periods while network messages are in flight or during
network disconnect.

4.6.2 Event and Level Constraints

The occurance of event expresions in executable rules is restricted by the follow-
ing schema. The executable rule must be factorisable into one of three forms,
whereee denotes an event expression,le denotes a level expression,lv denotes a
level variable andev denotes an event variable. The four forms are:

lv := (le)?le : ⊥;

27

ev := (le)?ee : ⊥;

lv := (ee)?le : ⊥;

lv := (le)?ee : ⊥;

The second form is known as an ’emit’ assignment (§5.10.1).

The third and fourth forms are known as integrations.

4.6.3 Unilateral Reset to Safe Value

Unilateral changes to shared fields can occur for various reasons. For instance, a
device may be disconnected from the network and an application that was relying
on it can no longer function. As a second instance, consider aPebble that controls
the drainage valve on a cistern. A Pushlogic script may make the assignment that
opens the valve, but the Pebble may make autonomous (unilateral) action to reset
the valve to its closed state (a safe state) once the cistern is empty. This is allowed
within our definition of a Pebble since the field is stored within the Pebble.

Local fields will not suffer unilateral changes: all changeswill accrue from exe-
cutable rules in the associated bundle.

4.6.4 Pushbacks: Simple and Complex Undo

When an executable rule makes a change to a field that fails (a failed update), the
rule is obliged to compensate with corrective action. Otherwise, the rule could no
longer be viewed also as a universally quantified assertion about the state of the
domain. The update may fail straightaway or else the field mayrevert to some safe
value after an interval of time. Either way, the system must perform a ‘pushback’
after a failure. A ‘simple undo’ involves changing a sensitive parent of the rule to a
safe value that again makes the rule hold (when viewed as an assertion). An undo
must also be performed by the rule if another rule or an external agent changes its
driven field.

Push back information must be provided where there would otherwise be more
than one possibility for compensating. If an external agent(or other rule) changes
the value of the assigned field to one of its safe values, the push back indica-
tion uniquely identifies fields occurring in the associated expression that can be
changed to make the rule hold. For information loosing operators, values must
also be provided. For example, with logical not, no indication is required, be-
cause the new value is obvious at push back time. For comparison when pushed
back so it holds, then it is sufficient to specify one operand to push back on, since
it must be pushed back to the current value of the other operand. For compar-
ison, when pushed back to false, a value and operand must be specified, since,
in general, there are many possible vaues that will make a comparion fail. For

28

conjunction, when pushed back to false, knowning which operand to push on is
required, since either will do, whereas to push conjunctionto hold may require
both its arguments to be changed. For the conditional expression operator, the
condition may have to be changed and also the value of that side of the operator
may have to be changed.

The pushlogic source ‘cut’ function, (or whatever it is currently called!) does not
appear in the object code - it serves only to influence the pushback information.

4.6.5 Complex Undo

The complex undo is expanded at compile time using extensions of thefuse
statement. No object-level representation is needed.

4.7 Inter-Bundle Communication

All communication between entities is through shared variables. (Multimedia is
supported using the notion of third-party setup, where a field in a source pebble is
set to the same value as a field in a sink pebble, where the valueacts as a virtual
circuit identifier).

Where a bundle alters the value of a field held on a remote resource, the run time
system generates network traffic, such as a SOAP RPC [16]. Wherea bundle is
sensitive to changes on remote resources, it uses a soft-state registration protocol
(a UDP version of UPnP’s GENA) that causes it to receive notification of changes.
An inout field may be set to one of its non-safe values by at mostone bundle.2

Changes in local or remote field values are notified to the Pushlogic execution
engine because it registers for appropriate notification callbacks.

v := [[exp]]σ

4.8 Standing Constraints

Apart from embedded safety and liveness constraints comingfrom bundles, every
DoP is subject to the following standing system constraints. A bundle cannot be
loaded if it would violate any of these constraints.

PLC1: Level Ordering Constraint: For every rule, the level of the assigned
field must be less than any level found in the supporting parents (free fields of) its

2Currently we have implemented our own protocol, running over UDP, called ETC, that im-
plements the field writes, remote registrations for events and code and API reflection, but there is
little reason not to use the standard protocols.

29

1

2
5

4
3

A

B

A

B

if (s==1 && A) s := 2;
if (s==2 && B) s := 5;
if (s==1 && B) s := 3;
if (s==3 && A) s := 4;

A&&B

A&&B

Figure 4.1: Example of a Race Hazard

assigned expression

∀f ′ ∈ sup(exp).levf < lev(f ′) ⊢ f := exp

Fields may be allocated new levels by the system as part of theprocess of loading
a bundle. However, this is not always successful because a pair of rules in different
bundles may have contradictory field level requirements. Where the fields are held
on different execution platforms, a distributed algorithmmay be run to establish
their levels. If this constraint cannot be met, the bundle isnot loaded.

The level ordering constraint does not apply to local variables, including lock or
fuses or compiler-generated program counters.

PLC2: Consistency Constraint: A Pushlogic object expression may be deter-
ministically evaluated in an environment,σ, to produce a string or else the special
value bottom,⊥. When a rule produces⊥, it has no affect on the assigned field:
σ[⊥ /v] = σ.

To ensure consistency (i.e. to avoid fighting between rules), all rules that assign
a given field must evaluate to a common non-bottom value or bottom itself in all
possible environments. Each rule of a new bundle is checked against the existing
participating rules and the bundle is not loaded if any violates this condition.

PLC2b: No race hazards:Any program that contains a race of the nature shown
in figure 4.1 will not unwind during compilation since the final result depends on
the order of interleaving.

PLC3a: Safe Value Constraint A: A pair of bundles is incompatible if they
disagree on their safe value declarations for any field.

PLC3b: Safe Value Constraint B: There must exist at least one setting of the
fields such that all executable rules hold and all fields that have safe values defined
are set to one of those safe values.

PLC3c: Safe Values Constraint C:The safe values of a field must be a subset
of the safe values that any expression assigned to that field can safely generate, or
else the expression must be able to safely generate bottom. Bysafely generate,
we mean that the expression generates that value when all of its supporting fields
are set to their safe values. This constraint ensures that when a pushback occurs,
and an assigned value is set to one of its safe values, the assigned expressions can

30

Push In

An Undo
Arrives

Pushes Out

Undo’s Out

Field’s Value

P

N
Undo(P, N)

Ack(P)

Ack(P,N)

Write(N)

End
P

Figure 4.2: Pushlogic Undo Sequence (Failed Update)

Push In

An Undo
Arrives

Pushes Out

Field’s Value

P

N

V

V

Undo(P, N)

Ack(V)

Ack(P,N)

Write(N)

End

Pushes Out

Write(V)

Figure 4.3: Undo Sequence with Race Condition

push back on their support, safely, so that the rule holds. (This constraint is stricly
stronger than PLC3b ?).

PLC3d: Safe Live Insertion Constraint: An insertion into a DoP that causes an
immediate pushback may be considered an error in some applications. At least a
warning or deferral should be offered to the operative.

PLC4: Push Back Uniqueness:Only one possible pushback procedure should
be possible for each possible pushback circumstance. If there is more than one,
then thepbind information is ambiguous. The constraint implies that where a
parent is shared between multiple rules of a bundle there is just one change to the
parent that is acceptable with respect to this constraint for all rules sharing that
parent field.3

D7: Undo Race Avoidance:Where an undo operates over the network between
different execution platforms, a race can arise, where another independent change
to the driven field has been performed by another rule or external agent. This
normal course of events is illustrated in figure 4.2, whereasfigure 4.3 shows the
race condition. To overcome races, a simple undo ... TBD. Needs work.

Declarative programming languages aim to consist of a set ofdeclarations that all

3This constraint is concave, in that two parts of an admissable bundle, considered as separate
bundles, might be inadmissable in isolation.

31

hold at all times. On the other hand, many useful control sequences cannot be
expressed entirely declaratively. For instance, when we press the ‘skip forward’
key on a CD or DVD player, we expect it to jump to the next track orindex point.
When we press the button again, a new definition of ’next’ now pertains and so
the operation is not idempotent. Implementation of this feature requires both a
differentiation to detect the active edge of the button pushand an integration to
accumulate the increment to the track number.

PLC5: Idempotency Constraint: Any Pushlogic program will result in no fur-
ther output changes if ‘executed’ more than once without unilateral (external)
change of any field.

Idempotency is assured if every integration is uniquely associated with a differ-
entiation. In addition, an integration of the forma := a + 1 breaks the Level
Ordering Constraint in thata occurs on both side of the rule and hence the level
on both sides is equal.

The solution to this dichotomy is provided by the Gated Update mechanism.

The gated nature of updates to fields all held on a common platform allows that
certain rule combinations to operate deterministically when they would not other-
wise. Consider the following pair of rules where d1 is a tightly-coupled field:

d1 := d;

d2 := (d&&!d1)?1 :⊥

This pair will reliably set d2 to one whenever d goes from false to true. Without
the gated-update constraint, the second rule might always be executed after the
first rule and hence the guard would never hold. In our currentimplementation,
a tightly-coupled field is any field held on the same executionplatform and these
are readily determined because their path name starts with the local root.

The int-diff constraint provides that an infinitewhile loop wrapped around a par-
allel statement, that contains no internalwaits, is not sensitive to the additional
loops made by the thread.

PLC6a: Montonicity constraint: All rules must meet the other constraints with
any amout of extension to the range of unsafe values in any field.

The constraints on allowable Pushlogic programs (union of unbundled rule bun-
dles) have just been presented. These constraints can be checked without full
possession of the Pushlogic object code. This could be very useful in large sys-
tems or where IP or policy needs to be protected. A summary form for a bundle
may be defined that lists for each assign field the level constraints and the pos-
sibly assigned values. Where the Pushlogic Timer or other common resource is
frequently depended on, then the summary can helpfully mention this explicitly.
For instance, a set of different bundles might control a common field at different
times of day and these would appear incompatible if time wereignored, but by
including it in the summary, the bundles become compatible.

PLC6b: Montonicity constraint: Any bundle, whose assertion guarantees rest

32

on the presence of other bundles that might become unloaded,is not allowed.
(This is checked using a non-deterministic presence guard for each unloadable
bundle by the domain manager).

PLC7: No oscillations constraint: Oscillation is created by inverting loops. Any
bundle that contains an internal oscillating loop cannot beelaborated by the com-
piler and causes a compile-time error. When bundles are brought together with
each other or world models any oscillators then formed are detected by the do-
main manager and the union is not allowed.

For example, the following two lines are inconsistent sincethey form an oscillator.
If the lines are in the same bundle, a compile-time unwind fail error is flagged. If
they are in different bundles but the variables are bound to form a distributed
inverting loop then the oscillation error is flagged by the domain manager.

a := b;
b := !a;

Many device control loops are oscillators, such as those used in thermostats. In
order to implement these, the loop must be broken using a timedelay at some
point to regulate the maximum frequency of oscillation. Forexample:

with Timer#Countdown if (#atimer == 0)
{

#atimer := 1000; // Delay for one second
b_delayed = b;

}
a := b_delayed;
b := !a;

Resynchronisation Constraint:A liveness predicate expresses that two supposedly-
coupled systems will eventually become re-synchronised after network distruption
has finished.

4.9 Temporal Logic Assertions

A bundle may contain a number of safety or liveness assertions. These take ex-
pressions as arguments and the expressions have the form defined in§4.3.

Object-level safety and liveness assertions are checked bythe Domain Manager at
bundle load time. They are retained by the Domain Manager forfurther checking
against newly arriving bundles. Monotonicity constraintsimply they cannot be
violated by bundle or pebble departure.

33

Chapter 5

Pushlogic Source Language

NB: There is a user manual for the source compiler in html on thewebsite. This
chapter discusses the source language per se, rather than how to compile it.

Although rules are frequently a useful way to express desired behaviour, many ap-
plications are most easily coded in an imperative programming style. Rather than
expecting the user to manually convert his notions of application behaviour into
Pushlogic object rules, a compiler for imperative-style expression of applications
is used. We note that imperative programs deal essentially with sequential changes
of state, whereas logical predicates over application programs deal in terms of the
visible, accumulated results of these changes.

‘Pushlogic Source’ is a block-structured, imperative-like, programming language,
but with no dynamic storage allocation and currently no arrays. It is less funda-
mental to our approach than the object form, because a variety of source forms
could be envisaged that would generate compatible object for various niche ap-
plications. The Pushlogic constraints on a bundle are implemented at bundle load
time, but, as far as possible, are also implemented by the compiler to give ad-
vanced warning.

5.1 Concrete syntax tree

The concrete syntax tree is following yacc file:

/*
* $Id: pushlogic.yy,v 1.35 2008/07/11 08:15:04 djg11 Exp $

*
* Bigtop.
CBG Badger Tuplers Project
University of Cambridge
Computer Laboratory
(C) 2004 David J Greaves
#
Mostly Written Romsey - Dec 2004.
#

*
* Pushlogic Grammar

*/

34

%{
#include "cbglish.h"
#include <stdio.h>

#define PL_LINEPOINT(X) add_linepoint("pl_linepoint", X)

%}

%union {
builder *auxval;

}
%type <auxval> pl_assoclist pl_associtem bytecode
%type <auxval> pushl_decls prog module value value_list value_list_or_nil
%type <auxval> pushl_def pl_formals pl_actuals pl_formal pushl_defstyle
%type <auxval> pushl_statement pushl_statement_list case_item case_item_list pl_type
%type <auxval> pushl_statename pushl_statechartlist pushl_state pushl_stateitemlist pushl_stateitem pushl_statespec
%type <auxval> sd_id_comma_list pushl_field_decl pushl_macro_decl pushl_macro_decl_list pushl_field_decl_list
%type <auxval> exp exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 exp10 exp11 exp12 exp12a exp13 exp13a
%type <auxval> string_option
%type <auxval> formal_comma_list exp_comma_list exp12_comma_list
%type <auxval> xml_file xml_element xml_element_list xml_att_list
%%

prog:
pushl_decls

{
builder *r = $1;
results = LISTCONS(r, results);
$$ = freverse(results);
}
;

bytecode:
/* nothing */ { $$ =

LISTEND(0);
}
| sd_string sd_number bytecode { $$ =
LISTCONS(TREE2("pl_stringtab", $1, $2), $3);
}

| sd_number bytecode { $$ =
LISTCONS(TREE1("pl_bytecode", $1), $2);
}
;

pushl_decls: /* nothing */ { $$ =
LISTEND(0);
}
| module pushl_decls { $$ =
LISTCONS($1, $2);
}
;

pushl_statement_list: /* nothing */ { $$ =
LISTEND(0);
}

| pushl_statement pushl_statement_list { $$ =
LISTCONS($1, $2);
}
;

/* A simple xml parser here for reading in compiled bundles and code reflected fragments */

xml_qbody: /* It would be better to handle this xmlq in the lexer ? */
sd_id xml_qbody

| sd_string xml_qbody
| ss_equals xml_qbody
| ss_minus xml_qbody
| ;

xml_element_list: ss_dltd ss_slash sd_id ss_dgtd { $$ =
LISTEND(0);
}

| xml_element xml_element_list { $$ =
LISTCONS($1, $2);
}
;

xml_att_list: { $$ =
LISTEND(0);
}

| sd_id ss_equals sd_string xml_att_list { $$ =
LISTCONS(TREE2("xml_att", $1, $3), $4);
}
;

35

xml_element:
ss_dltd sd_id xml_att_list ss_dgtd xml_element_list

{ $$ = TREE3("xml_element", $2, $3, $5); }

| ss_dltd sd_id xml_att_list ss_xml_singleton
{ $$ = TREE3("xml_element", $2, $3, LISTEND(0)); }

| sd_id { $$ = TREE1("xml_chars", $1); }
| sd_number { $$ = TREE1("xml_int", $1); }
;

xml_file:
ss_xmql xml_qbody ss_xmqr xml_file { $$ = $4; }

| xml_element { $$ = $1; }
;

module:
pushl_def pl_semicolon_opt { $$ = $1; }

| pushl_statement { $$ = $1; }

| ss_pling bytecode {
$$ = TREE1("pl_compiled_bundle", $2);

}

| ss_xmql xml_qbody ss_xmqr xml_file { $$ = TREE1("pl_xml", $4); }
;

pl_semicolon_opt: ss_semicolon | /* nothing */
;

pl_formals:
ss_lpar ss_rpar

{ $$ = NULL; }
| ss_lpar formal_comma_list ss_rpar
{ $$ = $2; }
;

pl_actuals:
ss_lpar ss_rpar

{ $$ = NULL; }
| ss_lpar exp_comma_list ss_rpar
{ $$ = $2; }
;

pushl_defstyle:
sd_id { $$ = $1; }

| s_pebble { $$ = mkstring("pebble"); }
;

pushl_def:
s_def pushl_defstyle sd_id pl_formals ss_lsect pushl_decls ss_rsect

{ $$ =
TREE4("pl_def_bundle", $2, $3, $4, $6); }
;

pushl_macro_decl:
exp12 ss_equals exp { $$ =
TREE2("", $1, $3);

}

;

pl_type:
ss_lsect value_list ss_colon value_list ss_rsect { $$ =
TREE2("pl_safeunsafe", $2, $4);

}

| ss_lsect value_list ss_rsect { $$ =
TREE1("pl_unsafe", $2); /* depreciated form */

}

| s_event { $$ =
TREE1("pl_event", LISTEND(0));
}

| s_event ss_lpar value_list_or_nil ss_rpar { $$ =
TREE1("pl_event", $3);
}

| s_fuse{ $$ =
TREE0("pl_fusetype");
}

| s_lock{ $$ =
TREE0("pl_locktype");

36

}

| sd_id { $$ =
TREE1("pl_tid", $1);
}
;

pushl_field_decl:
exp12_comma_list ss_colon pl_type { $$ = /* preferred form for now on */
TREE2("pl_fielddec", $1, $3);

}

| exp12_comma_list { $$ =
TREE1("pl_fielddecn", $1); /* depreciated form - no type given */

}
;

pushl_field_decl_list:
pushl_field_decl { $$ =

LISTCONS($1, LISTEND(0));
}

| pushl_field_decl ss_comma pushl_field_decl_list
{ $$ =
LISTCONS($1, $3);
}
;

pushl_macro_decl_list:
pushl_macro_decl { $$ =

LISTCONS($1, LISTEND(0));
}

| pushl_macro_decl ss_comma pushl_macro_decl_list
{ $$ =
LISTCONS($1, $3);
}
;

case_item:
s_case exp_comma_list ss_colon pushl_statement { $$ =

TREE2("pl_case_item", $2, $4);
}

| s_default ss_colon pushl_statement { $$ =
TREE1("pl_case_default", $3);
}
;

case_item_list:
case_item { $$ =

LISTCONS($1, LISTEND(0));
}

| case_item case_item_list { $$ =
LISTCONS($1, $2);
}
;

pl_assoclist:
pl_associtem { $$ =

LISTCONS($1, LISTEND(0));
}

| pl_associtem ss_comma pl_assoclist { $$ =
LISTCONS($1, $3);
}
;

pl_associtem:
sd_id ss_equals exp { $$ =
TREE2("pl_associtem", $1, $3);
}

pushl_statement:
s_sort s_set sd_id ss_equals pl_type ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_sortset_dec", $3, $5));

}

| ss_lsect pushl_statement_list ss_rsect s_fuse exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_fused", TREE1("pl_block", $2), $5));

}

37

| s_pragma sd_id ss_equals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_pragma", $2, $4));

}

| s_fun sd_id pl_formals ss_lsect pushl_decls ss_rsect pl_semicolon_opt { $$ =
PL_LINEPOINT(TREE3("pl_fun", $2, $3, $5));

}

| s_input pushl_field_decl_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_dv", TREE0("dv_input"), $2));

}

/* | s_lock pushl_field_decl_list ss_semicolon { $$ =

* PL_LINEPOINT(TREE1("pl_lock", $2));

* }

*/

| s_output pushl_field_decl_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_dv", TREE0("dv_output"), $2));

}

| s_inout pushl_field_decl_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_dv", TREE0("dv_inout"), $2));

}

| s_local pushl_field_decl_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_dv", TREE0("dv_local"), $2));

}

| s_facet exp ss_equals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_facet_instance", $2, $4));

}

| s_macro pushl_macro_decl_list ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_macro", $2));

}

| s_const sd_id ss_equals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_const", $2, $4));

}

| s_pebble sd_id ss_equals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_pebble", $2, $4));

}

| s_with exp pushl_statement { $$ =
PL_LINEPOINT(TREE2("pl_with", $2, $3));
}

| s_skip ss_semicolon { $$ =
PL_LINEPOINT(TREE0("pl_skip"));
}

| s_break ss_semicolon { $$ =
PL_LINEPOINT(TREE0("pl_break"));
}

| s_continue ss_semicolon { $$ =
PL_LINEPOINT(TREE0("pl_continue"));
}

| sd_id ss_colon { $$ =
PL_LINEPOINT(TREE1("pl_label", $1));
}

| s_wait exp ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_wait", $2));
}

| s_goto sd_id ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_goto", $2));
}

| s_return exp ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_return", $2));
}

| s_switch exp ss_lsect case_item_list ss_rsect { $$ =
PL_LINEPOINT(TREE2("pl_switch", $2, $4));
}

| s_disable exp_comma_list ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_disable", $2));
}

| s_meta pl_assoclist ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_meta", $2));
}

| s_live string_option exp_comma_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_live", $2, $3));

38

}

| s_emit exp ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_emit", $2));
}

| s_never string_option exp_comma_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_never", $2, $3));
}

| s_always string_option exp_comma_list ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_always", $2, $3));
}

| s_while ss_lpar exp ss_rpar pushl_statement { $$ =
PL_LINEPOINT(TREE2("pl_while", $3, $5));
}

| s_forever pushl_statement ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_forever", $2));
}

| s_if ss_lpar exp ss_rpar pushl_statement { $$ =
PL_LINEPOINT(TREE2("pl_if", $3, $5));
}

| s_if ss_lpar exp ss_rpar pushl_statement s_else pushl_statement { $$ =
PL_LINEPOINT(TREE3("pl_ife", $3, $5, $7));
}

| ss_lsect pushl_statement_list ss_rsect { $$ =
PL_LINEPOINT(TREE1("pl_block", $2));
}

| ss_lpsect pushl_statement_list ss_rpsect { $$ =
PL_LINEPOINT(TREE1("pl_parblock", $2));
}

| exp ss_colonequals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_assign", $1, $3));
}

| exp ss_plusequals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_assign", $1, TREE3("pl_diadic", YYLEAF("pl_plus"), $1, $3)));
}

| exp ss_minusequals exp ss_semicolon { $$ =
PL_LINEPOINT(TREE2("pl_assign", $1, TREE3("pl_diadic", YYLEAF("pl_minus"), $1, $3)));
}

| exp ss_semicolon { $$ =
PL_LINEPOINT(TREE1("pl_e_as_c", $1));
}

| s_stategraph sd_id pl_formals ss_lsect pushl_statechartlist ss_rsect ss_semicolon { $$ =
TREE3("pl_stategraph", $2, $3, $5);
}
;

pushl_statechartlist:
/* nothing */
{ $$ =
LISTEND(0);
}
| pushl_state pushl_statechartlist { $$ = LISTCONS($1, $2); }
;

pushl_statename:
sd_id { $$ = $1; }

| s_disable { $$ = mkstring("disable"); }
;

pushl_state:
s_state pushl_statename pl_formals ss_colon pushl_stateitemlist s_endstate { $$ =

TREE3("pl_state_def", $2, $3, $5);
}
| s_state pushl_statename ss_colon pushl_stateitemlist s_endstate { $$ =
TREE3("pl_state_def", $2, 0, $4);
}
;

pushl_stateitemlist:
/* nothing */
{ $$ =
LISTEND(0);
}
| pushl_stateitem pushl_stateitemlist { $$ = LISTCONS($1, $2); }
;

39

pushl_stateitem:
pushl_statement { $$ = /* implied body: */

TREE2("pl_state_action", mkstring("body"), PL_LINEPOINT($1));
}
| sd_id ss_colon pushl_statement { $$ =
TREE2("pl_state_action", $1, PL_LINEPOINT($3));
}

| s_exit ss_colon pushl_statement { $$ =
TREE2("pl_state_action", mkstring("exit"), PL_LINEPOINT($3));
}

| pushl_statespec ss_rarrow1 pushl_statespec ss_semicolon { $$ =
TREE3("pl_transition", $1, $3, TREE0("NONE"));
}

| pushl_statespec ss_rarrow1 pushl_statespec ss_colon pushl_statement { $$ =
TREE3("pl_transition", $1, $3, TREE1("SOME", PL_LINEPOINT($5)));
}
;

string_option:
/* nothing */ { $$ = TREE0("NONE"); }
| sd_string ss_colon { $$ = TREE1("SOME", $1); }
;

pushl_statespec:
exp { $$ =

TREE1("pl_state_exp", $1);
}
| s_exit{ $$ =
TREE0("pl_state_exit");
}
| s_exit ss_lpar sd_id ss_rpar{ $$ =
TREE1("pl_state_tagged_exit", $3);
}

;

/*
*
*/

sd_id_comma_list:
/* nothing */
{ $$ =
LISTEND(0);
}
| sd_id { $$ = LISTCONS($1, LISTEND(0)); }

| sd_id ss_comma sd_id_comma_list { $$ = LISTCONS($1, $3); }
;

exp12_comma_list:
exp12 { $$ = LISTCONS($1, LISTEND(0)); }

| exp12 ss_comma exp12_comma_list { $$ = LISTCONS($1, $3); }
;

exp_comma_list:
exp { $$ =

LISTCONS($1, LISTEND(0));
}
| exp ss_comma exp_comma_list
{ $$ =
LISTCONS($1, $3);
}
;

pl_formal:
exp ss_colon exp { $$ =

TREE2("pl_formal", $1, $3);
}

| exp { $$ =
TREE1("pl_formal_nt", $1);
}
;

formal_comma_list:
pl_formal { $$ =

LISTCONS($1, LISTEND(0));
}

| pl_formal ss_comma formal_comma_list

40

{ $$ =
LISTCONS($1, $3);
}
;

value:
sd_number ss_dotdot sd_number { $$ =

TREE2("pl_num_range", $1, $3);
}

| sd_number ss_minus sd_number { $$ =
TREE2("pl_num_range", $1, $3);
fprintf(stderr, " Syntax change: Please use .. instead of - for integer ranges\n");
}

| sd_id { $$ =
TREE1("pl_id", $1);
}

| ss_ellipsis { $$ =
TREE0("pl_ellipsis");
}

| sd_number { $$ =
TREE1("pl_num", $1);
}

| sd_string
{ $$ =

TREE1("pl_string", $1);
}
;

value_list_or_nil:
/* */ { $$ = LISTEND(0); }

| value_list { $$ = $1; }
;

value_list:
value

{ $$ =
LISTCONS($1, LISTEND(0));
}
| value value_list
{ $$ =
LISTCONS($1, $2);
}
;

exp:
exp1 { $$ = $1; }

;

exp1:
exp2 ss_query exp1 ss_colon exp1 { $$ =

TREE3("pl_query", $1, $3, $5);
}

| exp2 { $$ = $1; }
;

exp2:
exp3 { $$ = $1; }

| exp3 ss_rarrow2 exp3 { $$ =
TREE3("pl_diadic", YYLEAF("pl_implies"), $1, $3);
}
;

exp3:
exp4 { $$ = $1; }

| exp3 ss_rarrow2 exp4 { $$ =
TREE2("pl_implies", $1, $3);
}

;

exp4:
exp5 { $$ = $1; }

| exp4 ss_logor exp5 { $$ =
TREE3("pl_diadic", YYLEAF("pl_logor"), $1, $3);

41

}
| exp4 ss_disj exp5 { $$ =
TREE3("pl_diadic", YYLEAF("pl_logor"), $1, $3);
}
;

exp5:
exp6 { $$ = $1; }

| exp5 ss_logand exp6 { $$ =
TREE3("pl_diadic", YYLEAF("pl_logand"), $1, $3);
}
| exp5 ss_caret exp6 { $$ =
TREE3("pl_diadic", YYLEAF("pl_xor"), $1, $3);
}
| exp5 ss_conj exp6 { $$ =
TREE3("pl_diadic", YYLEAF("pl_logand"), $1, $3);
}
;

exp6:
exp7 { $$ = $1; }

| exp7 ss_deqd exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_deqd"), $1, $3);
}
| exp7 ss_dned exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_dned"), $1, $3);
}
| exp7 ss_dltd exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_dltd"), $1, $3);
}
| exp7 ss_dled exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_dled"), $1, $3);
}

| exp7 ss_dgtd exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_dgtd"), $1, $3);
}
| exp7 s_FQGT exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_fqgt"), $1, $3);
}
| exp7 ss_dged exp7 { $$ =
TREE3("pl_diadic", YYLEAF("pl_dged"), $1, $3);
}
;

exp7:
exp8 { $$ = $1; }

| exp9 ss_stile exp8 { $$ =
TREE3("pl_diadic", YYLEAF("pl_binor"), $1, $3);
}

;

exp8:
exp9 { $$ = $1; }

| exp8 ss_ampersand exp9 { $$ =
TREE3("pl_diadic", YYLEAF("pl_binand"), $1, $3);
}

;

exp9:
exp9 ss_plus exp10 { $$ =

TREE3("pl_diadic", YYLEAF("pl_plus"), $1, $3);
}

| exp9 ss_minus exp10 { $$ =
TREE3("pl_diadic", YYLEAF("pl_minus"), $1, $3);
}

| exp10 { $$ = $1; }
;

exp10:
exp10 ss_star exp11 { $$ =

TREE3("pl_diadic", YYLEAF("pl_multiply"), $1, $3);
}

| exp10 ss_slash exp11 { $$ =
TREE3("pl_diadic", YYLEAF("pl_divide"), $1, $3);
}

| exp10 ss_percent exp11 { $$ =
TREE3("pl_diadic", YYLEAF("pl_mod"), $1, $3);
}

42

| exp11 { $$ = $1; }
;

exp11:
ss_caret exp12 { $$ =

TREE1("pl_differentiate", $2);
}

| exp12 { $$ = $1; }
;

exp12:
ss_hash exp12a {

$$ = TREE1("pl_wfield", $2);
}
| exp12a { $$ = $1; }
;

exp12a:
exp12a ss_hash exp13 {

$$ = TREE2("pl_raw_field", $1, $3);
}

| exp13 { $$ = $1; }
;

exp13:
exp13a ss_lpar ss_rpar { $$ =

TREE2("pl_apply", $1, NULL);
}

| exp13a ss_lpar exp_comma_list ss_rpar { $$ =
TREE2("pl_apply", $1, $3);

}

| ss_lpar exp ss_comma exp_comma_list ss_rpar { $$ =
TREE1("pl_tuple", LISTCONS($2, $4));

}

| exp13a { $$ = $1; }

| ss_lpar exp ss_rpar { $$ = $2; }

| ss_query exp13
{ $$ =

TREE1("pl_channel_read", $2);
}

| sd_number
{ $$ =

TREE1("pl_num", $1);
}

| sd_string
{ $$ =

TREE1("pl_string", $1);
}

| ss_tilda exp13
{ $$ =
TREE1("pl_binnot", $2);
}

| ss_pling exp13
{ $$ =
TREE1("pl_lognot", $2);
}
;

exp13a:
sd_id { $$ = TREE1("pl_id", $1); }

| sd_string { $$ = TREE1("pl_string", $1); }

| exp13a ss_dot exp13a { $$ = TREE3("pl_diadic", YYLEAF("pl_cat"), $1, $3); }

| ss_dollars { $$ = TREE0("pl_dollars"); }
;

%%

#include <stdio.h>

43

#include <ctype.h>

extern FILE *stderr;
int yyerror (const char *s)
{

extern builder *lishlex();
extern void exit(int);
extern void givesrcPoint();

givesrcPoint();
fprintf(stderr, "Syntax error: %s: \n", s);

fprintf(stderr, "Next symbol: %s\n", atom_to_str(lishlex()));
exit(1);

return 1;
}

void yydebug_on()
{
#ifdef YYDEBUG
// extern int yydebug;
// yydebug = 0;
#endif
}

char *smllib = "plgram";

int yylex()
{

char s; int v=0;
extern void givesrcPoint();
extern builder *lishlex();
extern int lextracef;
builder *b, *a = lishlex();
if (!a) return 0;
yylval.auxval = a;

if (fnumberp(a)) return sd_number;
if (fstringp(a)) return sd_string;

b = fgetprop(a, smacro);
if (lextracef) printf("Lex %i %p %s\n", v, b, atom_to_str(a)); fflush(stdout);
if (b) return atom_to_int(fcdr(b));
s = atom_to_str(a)[0];
if (isalpha(s) || s==’_’) return sd_id;
givesrcPoint();
cbgerror(cbge_fatal, "Illegal input token %c", s);
return 0;

}

/* eof */

5.2 Abstract syntax tree

The abstract syntax tree is defined using the following SML datatype:

(*
* $Id: plgram.sml,v 1.27 2008/07/11 08:15:04 djg11 Exp $
CBG Badger Tuplers Project
University of Cambridge
Computer Laboratory
(C) 2004 David J Greaves
#
Mostly Written Romsey - Dec 2004.
#
1-Oct-05 added parblock and fuse
#

*)

open linepoint;

datatype pl_diop_t = pl_deqd | pl_dned | pl_dltd | pl_dled | pl_dged | pl_dgtd | pl_logand | pl_logor | pl_binor | pl_binand | pl_plus | pl_minus
;

datatype pl_type_t =
pl_safeunsafe of pl_exp_t list * pl_exp_t list

| pl_unsafe of pl_exp_t list
| pl_safe of pl_exp_t list
| pl_event of pl_exp_t list
| pl_fielddec of pl_exp_t list * pl_type_t
| pl_fielddecn of pl_exp_t list (* depreciated form *)
| pl_tid of string

44

| pl_fusetype
| pl_locktype

and pl_formal_t =
pl_formal of pl_exp_t * pl_exp_t

| pl_formal_nt of pl_exp_t

and pl_exp_t =
pl_query of pl_exp_t * pl_exp_t * pl_exp_t
| pl_raw_field of pl_exp_t * pl_exp_t (* comes in this way from parser *)
| pl_string of string
| pl_wtuple of pl_exp_t list (* no longer generated *)
| pl_tuple of pl_exp_t list
| pl_id of string
| pl_ellipsis
| pl_backstop
| pl_dollars
| pl_differentiate of pl_exp_t
| pl_wfield of pl_exp_t
| pl_diadic of pl_diop_t * pl_exp_t * pl_exp_t
| pl_catenate of pl_exp_t * string
| pl_num of int
| pl_num_range of int * int
| pl_lognot of pl_exp_t
| pl_apply of pl_exp_t * pl_exp_t list
| pl_par of pl_exp_t * pl_exp_t

(* The following do/does not occur in yacc parse tree *)
| pl_raw_fieldl of pl_exp_t list

| pl_filler1 (* Used only to supress the unused cases warning in my other match traps *)
;

(* Old form, compiled bytecode files: *)
datatype pl_comp_t =

pl_stringtab of string * int
| pl_bytecode of int
;

datatype xml_t =
xml_element of string * xml_att_t list * xml_t list

| xml_meta of string
| xml_int of int
| xml_chars of string

and xml_att_t = xml_att of (string * string)
;

(* A transitioner should be one of entry | body | exit *)
type pl_transitioner_t = string;

datatype dv_t = dv_output | dv_input | dv_inout | dv_local | dv_fuse | dv_lock | dv_tuple | dv_other;

datatype pl_case_item_t =
pl_case_item of pl_exp_t list * pl_cmd_t
| pl_case_default of pl_cmd_t

and pl_cmd_t =
pl_if of pl_exp_t * pl_cmd_t
| pl_while of pl_exp_t * pl_cmd_t
| pl_forever of pl_cmd_t
| pl_ife of pl_exp_t * pl_cmd_t * pl_cmd_t
| pl_switch of pl_exp_t * pl_case_item_t list
| pl_assign of pl_exp_t * pl_exp_t
| pl_pragma of string * pl_exp_t
| pl_block of pl_cmd_t list
| pl_parblock of pl_cmd_t list
| pl_with of pl_exp_t * pl_cmd_t
| pl_fused of pl_cmd_t * pl_exp_t
| pl_wait of pl_exp_t
| pl_goto of string
| pl_label of string
| pl_break
| pl_continue
| pl_emit of pl_exp_t
| pl_return of pl_exp_t
| pl_assert_sl of string * bool * pl_exp_t
| pl_never of string option * pl_exp_t list
| pl_always of string option * pl_exp_t list
| pl_live of string option * pl_exp_t list
| pl_disable of pl_exp_t list
| pl_skip

| pl_dv of dv_t * pl_type_t list
| pl_macro of (pl_exp_t * pl_exp_t) list
| pl_linepoint of linepoint_t * pl_cmd_t
| pl_pebble of string * pl_exp_t
| pl_const of string * pl_exp_t

| pl_e_as_c of pl_exp_t

45

| pl_sortset_dec of string * pl_type_t
| pl_meta of pl_associtem_t list
| pl_bundle of string * pl_cmd_t list

| pl_def_pebble of string * pl_formal_t list * pl_cmd_t list
| pl_def_bundle of string * string * pl_formal_t list * pl_cmd_t list
| pl_facet_instance of pl_exp_t * pl_exp_t
| pl_fun of string * pl_formal_t list * pl_cmd_t list

| pl_stategraph of string * pl_formal_t list * pl_state_t list

| pl_compiled_bundle of pl_comp_t list
| pl_xml of xml_t

| pl_filler2 (* Used only to supress the unused cases warning in my other match traps *)

and pl_associtem_t =
pl_associtem of string * pl_exp_t

and pl_state_t =
pl_state_def of string * pl_formal_t list list * pl_stateitem_t list

and pl_stateitem_t =
pl_transition of pl_statespec_t * pl_statespec_t * pl_cmd_t option

| pl_state_action of pl_transitioner_t * pl_cmd_t

and pl_statespec_t =
pl_state_exp of pl_exp_t

| pl_exit_state_exit
| pl_exit_state_tagged_exit of string
;

datatype metainfo_t =
MIA of string * string

| MIA_filler
;

(* eof *)

5.3 Program File

A Pushlogic Source program is an unordered list of declarations, bundle, pebble
and function definitions. A simple program file contains justone bundle definition
that contains all of the rules as well as further declarations.

Comments are defined with the BCPL-style double slash.

5.4 Bundle Declaration

def bundle mybundlename()
{

// contents go here.

}

A bundle declaration uses the keyword sequence ‘def bundle’. The bundle
content is a list of declarations and statements. The bundlename should com-
monly be the same as the program file name on the storage media.

The statements in a bundle are all started in parallel when the compiled object
bundle is loaded. A statement may be a sequential block, thereby providing the
normal imperative programming paradigm.

46

Each item within a bundle definitions is either a declaration, a first-order or tem-
poral logic assertion or an executable sequence of imperative code. Executable
sequences are composed in parallel. Each sequence may be considered to be en-
closed in an infinitewhile loop that has its own thread that executes the rule
as fast as possible, but with all such threads of the bundle performing their next
assignments in synchronism. Sequential composition of behavioural statements is
introduced with the block construct, denoted with C-like open and close braces.
A further level of parallelism is possible inside a sequential block because parallel
assignment is supported: e.g.(a, b) := (e1, e2).

Bundles may also be declared using ‘def pebble’, ‘ def world’ and ‘def
plant’. The pebble declaration allows soft pebbles to be defined fully using
Pushlogic. Pebbles have slightly different rules over binding of shared fields from
bundles ... details to follow.

5.5 Constant Values

Constants may take the same forms as those define in§3.1 for object level, except
that bottom is not allowed at source level.

5.6 Identifiers

Identifiers appear alone or as part of an heirarchic field name.

Identifiers appearing alone must be either a member of one or more field range
enumerations, the last component of an heirarchic field nameor the reserved iden-
tifiers ‘true’ or ‘false’.

Where the last component of an heirarchic field name is shared over more than
one field, or is also a constant value from a field range enumeration, the identifier
cannot be used alone: it must be placed in double quotes to imply the constant
value, or to refer to a field, must be disambiguated by providing further trailing
portions of the heirarchic field name or using by using a ‘with’ statement.

The alone use of identifiers is not currently working in the compiler always.

5.7 Field Declarations

Variables are known as fields.

Field declarations define the heirarchic name of the field (its name) and then
(partially) enumerate the ranges of safe values and unsafe values, delimited with
colons. The safe and unsafe enumerations for must be disjoint for any one field.

47

If the colon between the safe and unsafe values is ommitted, all listed values are
unsafe.

Field values can be enclosed in quotes when they need to contain non-alphanumeric
characters for any reason. An integer range is specified witha two dots. Elipsis is
allowed as an unsafe value, represented with three dots.

Declarations may be introduced with the following keywords: input, output,
inout, lock, local, macro andfuse. Any number of the same sort
may be declared in one statement using commas to separate them.

Some examples are

input a#b#c1 : { s0, s1 : v1, v2 };
output a#b#c2 : { 0 : 1..99 };
inout e#c3 : { off : 1..9, ... };
local david : { contented : happy, sad };

Because Pushlogic is designed to operate in a dynamic, extensible environment,
further values of the fields may occur at run-time, beyond those defined and
checked against at compile time. Not every field name needs bedeclared, pro-
vided the compiler has sufficient information overall to work out the sensitive
parent list to put in each object level rule.

The ‘input’ declaration defines a field that is only read by the bundle. The
‘output’ declaration defines a field that is only written by the bundle. The
‘inout’ declaration defines a field that is both read and written. Thewrites to an
inout field are frequently not explicit in the source code because they arise only
during a pushback. Definition of a field as input instead of inout can lead to a ‘no
suitable sensitive parent setting’ error from the compiler.

The ‘local’ declaration defines a field that is allocated space in the bundle’s
local tuple.

The ‘macro’ declaration defines a name of a subexpression that is macro ex-
panded before use. This might be deleted in future.

The ‘lock’ modifier defines a field that supports atomic operations. See§5.10.15.

The ‘event’ modifier defines a field that communicates an event. See§3.2.

The ‘fuse’ modifier defines a field of Boolean sort that is given low priority
for pushback. See§5.10.16. The range declaration for a fuse is optional, and if
provided, must be ‘{ false : true }’.

When a modifier appears without a preceeding declaration keywork then a local
declaration is made.

48

5.7.1 Sort Statement

The ‘sort set’ statement associates a user’s idenfitier with a pair of safeand
unsafe range enumerations. It can then be used in declarations, as shown in this
example:

sort set mysort = { s0, s1 : v1, v2 };
output x#b, x#c : mysort;
inout x#d : mysort;

5.7.2 Namespace Binding

All tuples exist in a global name space, but aliases or handles for certain points
are provided for ease of reference. The available handles are denoted with

Leading Symbol Meaning
dollars ($) Local Bundle Private Namespace
<blank> Device/Platform Namespace
hash (#) Device Namespace orwith context
slash (/) DoP Root
tup:// URI - remote tuple access

Hash and slash are inter-changeable as delimiters between the parts of an heirar-
chic field reference but have special meaning at the start of afield name. Dot may
also be used, but is intended for access to components withinthe OO parts of the
language.

A field name starting with a dollars sign is a local field name. These need not
be used, since the compiler provides the special ‘local’ keyword that defines
aliases so that local variables may be stored in the bundle’sprivate area. In an
implementation, the dollars symbol is mapped during re-hydration to a fresh tuple
stored on the local execution platform whose primary key is the bundle instance
identifier.

When the name starts with a hash it is interpreted with respectto the field prefix
given in a textually surrounding ‘with’ statement. If there is no surrounding
‘with’ statement then the reference is to the namespace of the local device. This
is also the default namespace when no leading character is given and the field
reference starts with a tuple name.

A field name starting with a slash refers to fields provided andstored within the
current DoP.

Field names may also start with a URI or a symbolic name that is converted to
a URI during re-hydration. A more detailed description of heirarchic names is
outside the definition of Pushlogic and are defined in the Tuplecore document and
web pages.

The ‘pebble’ alias statment establishes a pointer to part of the namespace. It is
frequently used to provide a Pushlogic bundle with access topebbles instantiated

49

on the same device (platform), hence its name, but it can alsobe used for access
to fields shared by other bundles.

Here we present a simple example using hardwired IP address,but actual device
addresses should not normally appear in the source code: they should be supplied
during re-hydration:

def bundle simplelink()
{

pebble my_keyboard = Pebbles#Front_panel#Keyboard;
pebble your_devices = tup://128.232.1.10/Pebbles#Devices;
// field declarations omitted
your_devices#front_panel#on_led := my_keyboard#on_switch;

}

Pebble aliases can be defined inside a bundle statement (as shown) or outside.

5.8 Pragmas

The ‘pragma’ statment enables control flags to be passed to the compiler.These
may occur inside a bundle declaration or at the top level of a file. See the compiler
manual for details of the supported pragmas.

5.9 Operators

The operators available at source level include all those defined in for object level
in §4.3. Each is denoted with its usual symbol or digraph.

In addition, the differentiate operator is provided, denoted with uparrow (↑ exp).

The currently available forms are summarised in Figure 5.1.

It is our goal to support as many features found in common OO imperative HLLs
as possible, while still producing output that can be represented as Pushlogic ob-
ject rules and checked automatically at load time.

5.9.1 Function Call

Function calls are expanded fully at compile time and so mustbe have statically
bounded recursion.

50

• String constants (quotes optional if part of
an enum): e.g."hello",

• Local hierarchic field names: a#b#c,

• Remote hierarchic field names:
tup://128.232.1.22/a#b#c,

• Function call: f(a,b,c...)

• Vector of expressions (, ,)

• Comparison predicates:<><=>===
! =

• Integer arithmetic: + - * /

• Differentiation:↑ exp,

• Conditional expression:(g)?St : Sf ,

• Blocking remote procedure call: e.g.
rc=device!(...),

• String catenation operator: e.g."nice"
. "girl",

• Attribute access with constant tag string
e.g.var.ID,

Figure 5.1: Pushlogic Source Operators

51

5.10 Pushlogic Statements

5.10.1 Emit Statement (SOAP and GENA too)

The ‘emit’ statement delivers a Pushlogic event. This may be mapped toa non-
Pushlogic GENA event or device RPC during rehydration (§5.11.1).

if (<ee>) emit <event-name>;
if (<ee>) emit <event-name>(args, ...);

The ‘emit’ statement is shown in the context of an ‘if’ statement that is guarded
by an event expression. Such a guard must normally exist within the surrounding
program flow control in some form or another.

If the guard is a level expression, this would allow cause a nominal, continuous
stream of back-to-back events to be emitted and would tend toviolate idempo-
tency.

The guarding context may be a level expression if the event being emitted is en-
tirely local and the nominal stream of events is local to the current bundle and is
integrated back to being a level expression in all places where it is used.

In the future, it is envisaged that closer integration with UPnP, SOAP and other
device control languages will be implemented, and hence theemit statement will
be implied by constructs such as

if (<ee>)
house.livingroom.curtains.setto(halfway);

This need arises since many devices have an event-driven APIand integrate the
received event stream to set their internal state; these areconventional models of
commanding over an asynchronous packet network.

5.10.2 Pebble Statement

Thepebble statement is used to hard-code the address of a network resource,
such as the IP address and port number of a remote pebble. Thisstatement should
not normally be used and should not occur in portable code. Binding is normally
performed at rehydration time, mapping symbolic constantsin the source code to
active network addresses.

def bundle displayecho()
{

pebble PushClock = "tup://169.254.25.32:1200";
input PushClock#Pebbles#ClockDisplay#Leds#hour : {0..23};

52

input PushClock#Pebbles#ClockDisplay#Leds#minute : {0..59};

pebble DisplayPanel = "tup://169.254.25.192:1202";
output DisplayPanel#Pebbles#Display#value : { "No message yet" : ...

// Use the string cat operator, dot, to make the output message.
value := "Time now:" . hour . " " . minute;

}

5.10.3 Input and Output Statements

5.10.4 Assignment Statement

Assignments are denoted with the colon-equals assignment operator.

Parallel assignment is supported where the same number of comma-separated ex-
pressions appear on both sides of the assignment : e.g.(a, b) := (e1, e2).

All executable rules are placed in parallel by default at thetop-level but sequential
composition occurs inside nested blocks, unless explicitly written in this parallel
form.

Event and Level Constraints

The constraints on the object-level assignments between level and event variables
and expressions, given in§4.6.2, is reflected at the source level, but with one
relaxation, described in§5.10.1.

The object-level constraints allow the following four basic source forms, or any-
thing tantamount to them:

if (le) lv := le;
if (le) ev := ee;
if (ee) lv := le;
if (le) lv := ee;

Rather than assigning to an event variable, emitting an eventis possible, described
in §5.10.1.

The third and fourth forms are known as integrations.

53

5.10.5 Sequential composition

Statements separated by a semicolon inside a ‘bundle’, ‘ def mod’ or top-level
‘with’ with statment are still considered top-level and composedin parallel. All
other statements separated by a semicolon are composed in series, corresponding
to normal imperative programming.

An example:

def bundle s()
{ // Bundle braces do not force seq
...
a := b; // Three statements in parallel (two assigns and an if).
c := d;
if (e)

{
f := h; // A seqeuence of two statements.
g := f+j; // Assign to f above has immediate effect on this rhs.

}
}

5.10.6 With Statement

The ‘with’ statement sets up a textually-scoped alias for part of tuple space.
Field references that start with an hash sign inside the statement are refered to this
alias. An example:

with (/devices#book)
{

x1 := /devices#book#page#number;
x2 := #page#number;
// x1 and x2 have actually been assigned the same.

}

The ‘with’ statement does not cause sequential composition of its contents.

5.10.7 If/Then/Else Statement

The ‘if/else’ statement, as found in the C language, is supported.

5.10.8 Switch/Case/Default Statement

A form of ‘switch’ statement, is supported. Multiple tags per statement block
are allowed using comma separation. Unlike the C language, flow does not fall

54

from one branch into the next and so there is no associated binding for the ‘break’
statement.

A tag called ‘default’ may be used to catch any, otherwise unmatched condi-
tions.

5.10.9 Stategraph Statement

The stategraph defines a finite state machine, where each state has a state name.
A top-level stategraph is always active, meaning it is in exactly one state. On the
other hand, a stategraph that is instanced as a child stategraph within a state in
another stategraph is inactive (not in any state) unless itsparent is in that instanti-
ating state. A state may instantiate any number of child stategraphs but recursion
is not allowed.

The stategraph general form is:

stategraph graph_name()
{

state statename0 (subgraph_name, subgraph_entry_state), ... :

entry: statement;
exit: statement;
body: statement;

statement;
... // implied ’body:’ statements
statement;

c1 -> statename1: statement;
c2 -> statename2: statement;
c3 -> exit(good);
...

exit(good) -> statename3: statement;
exit(bad) -> statename4: statement;

...

endstate

state statename2:
...

55

...
endstate

state disable: // A special state that can be
// forced remotely

...

}

A state may contain tagged tatements, each of which may be a basic block if re-
quired. They are distinguished using three tag words. The ‘entry’ statement is run
on entry to the state and the ‘exit’ statement is run on exit. The ‘body’ statement is
run while in the state. A ‘body’ statement must contain idempotent code, so that
there is no concept of the number of times it is run while in thestate. Statements
with no tag are treated as body tagged statements. Multiple occurrences of state-
ments with the same tag are allowed and these are evaluated asthough executed
in the textual order they occur or else in parallel (current implementation is serial
but this will be change to parallel, so watch out!).

A state contains transition definitions that define the successor states. Each tran-
sition consists of a boolean guard expression, the name of one of the states in
the current stategraph and an optional statement to be executed when taking the
transition. In situations where multiple guard expressions currently hold, the first
holding transition is taken.

The guard expressions range over the inputs to the stategraph, which are the vari-
ables and events in the current textual scope, and the exit labels of child state-
graphs.

When a child stategraph becomes active, it will start in the starting state name is
given as an argument to the instantiation, or the first state of no starting name is
given.

A child stategraph becomes inactive when its parent transitions, even if the tran-
sition is to the current state, in which case the child stategraph becomes inactive
and active again and so transitions to the appropriate entrystate.

A child stategraph can cause its parent to transition when the child transitions to
an exit state. There may be any number, including zero, of exit states in a child
stategraph but never any in a top-level stategraph. The parent must define one or
more transitions to be taken for all possible exit transitions of its children. An exit
state is either called ’exit’ or ’exit(id)’ where ’id’ is an exit tag identifier. Exit
tags used in the children must all be matched by transitions in the parent, or else
the parent must transition itself under the remaining exit conditions of the child or
else the parent must provide an untagged exit that is used by default.

A stategraph may be wholly enclosed inside any conditional statement, such as an

56

‘if’ or ‘case’ statement, in which case it is as though all of its internal activity
is guarded by that condition: the condition is simply foldedinside every construct
to the point where a conditional is allowed. The stategraph does not reset to its
starting state when this guard does not hold.

A stategraph with a state called disable may be disabled fromelsewhere in the
same bundle using the ‘disable’ statement. Please see§5.10.10.

The stategraph general form is sufficient to encompass the SysML state machines.

5.10.10 Disable Statement

The ‘disable’ statement is used for a remote disable of a stategraph.

Syntax:

if (g) disable stategraph_name1, stategraph_name2, ...;

The disable statement must be conditional, otherwise the stategraph would never
leave its disable state, and the disable guard,g may either be an event or level
expression. When the disable guard is a level expression it takes precedence over
any transitions in the stategraph that lead from the disablestate.

if (g) disable stategraph_name1, stategraph_name2, ...;

5.10.11 While/For/Break/Continue Statements

The ‘while/continue/break’ statement, as found in the C language, is sup-
ported.

The ‘for/continue/break’ statement, as found in the C language, is sup-
ported.

The ‘do/while/continue/break’ statement, as found in the C language, is
not yet implemented.

The ‘forever’ statement is an alias for ‘while(1)’.

5.10.12 Procedure Call Statement

A procedure call statement has no keyword. A call consists ofa function name
followed by its arguments in parenthesis. Procedure calls are expanded at compile
time and hence must have a compile-time determined upper-bound on recursion
depth.

57

5.10.13 Return Statement

The ‘return’ statement is for use in functions only.

An example:

def fun add(a, b, c)
{

if (a=red) return b;
return c+d;

}

5.10.14 Wait Statement

while(1)
{

...
wait expr;
...

}

The ‘wait’ statement cause the current ‘thread’ to wait until a condition holds.
There are no threads in Pushlogic object code and so the wait statement is imple-
mented by splitting the source code into separate basic blocks that are guarded
by values of an automatically-defined enumeration that chains control from one
block to the next. The enumeration variable acts rather likea program counter.
At runtime it is stored in the field ‘$local#pcnnn’ where nnn is an integer that is
unique to a bundle. To avoid inter-bundle name-space clashes, all fields in starting
with ‘$local’ are renumbered to be disjoint at bundle load time. The same mech-
anism is used to create a hidden variable to store the old value of a field by the
differentiation operator denoted with the uparrow ()̂.

SOME REPETITION HERE!

Thewait statement blocks the current thread until the condition holds. If the
thread loops around and enters the same wait statement whilethe condition still
holds, the thread is not blocked.

Where more than onewait statement exists for a thread, a program counter vari-
able is created and stored as a field in the bundle’s local tuple.

5.10.15 Lock Statement

Thelock statement declares a field that supports atomic test-and-set operations.

A field of sort lock has as its safe value the empty string.

58

Any bundle may store a value in a lock field, but only if it is currently null. If it
is not null, the write will fail and a pushback occurs. A bundle typically stores its
own private identifier (accessible from the metainfo tuple§6.1).

A bundle is responsible for clearing the lock back to the empty string when it has
finished with the guarded resource.

5.10.16 Fuse Statement

Where a section of code does not intrinsically support a push back operation, it
may be associated with a fuse variable by enclosing it in a fuse statement. For
example, consider the following invalid code:

{
input X#x : { S: US };
inout Y#y : { S: US };
y : = x;

}

The problem is that ifY #y makes a unilateral change from US to S, which it is
free to do, since it is an ‘inout’, then no push back is possible becauseX#x is an
‘input’ that cannot be changed from inside the bundle.

The solution is to enclose the rule inside a fuse. This fuse isable to ‘blow’ should
Y #y make a push back.

input X#x : { S: US };
inout Y#y : { S: US };
fuse F1;
{ y : = x; } fuse F1;

forever { wait F1; sleep_secs(5); F1 := false; }

The fuse declaration defines a boolean variable with both values safe and to be set
false on bundle load. The fuse statement is just syntactic sugar, because the line ‘
y : = x; fuse F1;’ is rewritten during initial expansion as ‘if(!f1) y : = x;’. During
pushback path creation, the fuse is chosen as the last optionand only marked for
push back update if there is no other pushback path available. Only the inner-most
fuse of any nested fuse blocks acts on the enclosed code.

The reset behaviour is enclosed inside a forever statement,equivalent to ‘while
(1)’ and not needed since all push logic sequential sectionsare enclosed inside an
implied forever. It resets the fuse five seconds after it has blown. If Y #y refuses
to accept the current value at this time, the fuse blows again. Other code can be
sensitive to this fuse.

59

5.11 Pushlogic RPC

Currently RPC is not used and all comunication between platforms is imple-
mented via the shared-variable illusion implemented by thetuplecore ‘ETC’ pro-
tocol. In the future, Remote procedure call (RPC) may be used between Pushlogic
bundles, or between a Pushlogic bundle and a non-pushlogic entity.

5.11.1 Foreign RPC (SOAP and GENA)

Pushlogic may make calls directly over the network using XMLRPC (and in the
future SOAP RPC). Details to be added...

Pushlogic can also send and receive GENA events by setting upsimple mappings
between Pushlogic events and GENA events. Details to be added...

5.11.2 Native RPC

Native remote procedure call is provided for communicationbetween Pushlogic
bundles on the same or different execution platforms. implemented by expan-
sion to other statements. Owing to the dynamic storage restiction limitations of
SPL1, a bundle must be re-hydrated for each concurrent service operation. Block-
ing RPC is currently being developed - the blocking aspect is implemented by
expansion to the ‘wait’ statement.

Non-blocking RPC does not return a result and is denoted with ‘device!(...)’
where the ellipsis is replaced with a list of assignments to mutable fields of that
device. This is translated to a conjunction of assertions that the appropriate tag
fields of the indexed device have the values being passed. Blocking RPC is im-
plemented by the compiler as a combination of non-blocking RPC and await
statement.

Details to be added here ...

5.12 OO Structures

Some basic syntactic sugar is implemented to enable objectsto be defined and
instantiated. All instantiations are performed at compiletime using abstract inter-
pretation and so must be statically determinable.

This part of the compiler is currently a bit broken, but contains nothing novel.

60

5.13 Temporal Logic Assertions

Assertions may be included in the Pushlogic source code and checked by the
system model checker as well as at compile time or at load time, as appropriate.
Each assertion can have a textual name.

A ‘live’ assertion asserts that a condition must reoccur infinitelyoften. A
‘never’ assertion asserts that a condition must never occur. An ‘always’ as-
sertion asserts that a (level) condition must always holds and is equivalent to a
never statement with negated condition. In these assertions, any number of condi-
tions may be listed, separated by commas, and these have the same meaning as if
provided in a separate statements. Live statements may occur inside if/then/else
and other control flow statements, in which case each condition is guarded by
(conjuncted with) the enclosing conditional statement guards.

In the future, these simple assertions will be augmented with richer assertions that
span the ground between liveness and safety: i.e. until assertions and assertions
that specify quantitative maximum and minimum valuations on resource use.

always [string :] <exp>, <exp> ...;
never [string :] <exp>, <exp> ...;
live [string :] <exp>, <exp> ...;

The string is the rule name that is carried forward for outputby logging or moni-
toring code.

We illustrate liveness checking using the following bundlethat causes a variable
called locked to be false for 5 seconds after a variable called button holds.

def bundle ButtonLock()
{

input v#keys#button : { false:true};
output v#locks#unlocked : { false:true };
forever {
wait (button);
unlocked := true;
sleep_secs(5);
unlocked := false;
wait (!button);
}

local locked := !unlocked;
live "Door Unlockable Assertion" unlocked, locked;

}

It makes a call to the following timer library function, thatblocks the thread for a
period, using the timer pebble provided on all execution platforms. As explained,
there is no notion of thread in the final bytecode because all function calls are
inlined during compilation and all thread constructs are converted to executable
rule form. The live statement is an assertion that the lockedvariable should never
become stuck at one value permanenty.

61

fun sleep_secs(t)
{

local until : { 0..59 };
with (__local_timer)
{ until := (#time_now#second + t);
wait(#time_now#second FQGT until);

}
}

The timer code places the unblocking time in the local variable until and then
blocks. TheFQGT operator is builtin and performs a greater-than comparisonthat
behaves sensibly as the arguments overflow in their field provided their initial dif-
ference is less than half the range. In the future, we would like to use a wider
field than seconds (0 to 59) so that we can sleep, say, for many thousand millisec-
onds. However, larger fields consume more BDD primary inputs and BDD nodes,
which are currently at a premium. We shall also consider automatic switching to
a lifted form for modelling the sleep call, where it is held asa single wait stat-
ment on a fresh variable. This is simpler to model, provided there are few of these
constructs, but complexity will eventually mount up in meta-constraints over the
fresh variables that model the possible firing orders.

Here is a bundle that is incompatible with the ButtonLock: both cannot be loaded
into the same DoP. To explain this, first we must mention that we have not fully im-
plemented the re-hydration stage yet, and so hardcoded identifiers, such as the IP
address of the other bundle’s platform are currently hardcoded in the source files.
The button variable was originally free to change at any timebut becomes con-
strained by the second bundle to only change while the unlocked variable holds.
The system cannot be unlocked without the button being pressed, and hence the
live assertion in the Button listing fails. This will in future be spotted by the
DoP manager, but currently can only be spotted by the compiler checking against
pre-compiled bundles that are to hand.

def bundle B2()
{

pebble r = tup://128.232.1.45/v;
input d#q : bool;
r#keys#button := r#locks#unlocked && d#q;

}

5.14 Compiler Operation

It is helpful to briefly present the internal operation of thecompiler. The internal
flow of the compiler is shown in Figure 5.2.

5.14.1 Conversion to I-Code

The input is parsed and converted to imperative intermediate code using conven-
tional compiler techniques. Function calls are expanded inline. For each sequence

62

NULL ENV

Parser

Expand
and Compile

Parallel
Elaboration

Create Binary
Encodings

Create
Push Back Paths

BDD
Package

Equivalence
Checker

Consistency
Checkers

Model
Checker

Executable
Rules

Temporal
Assertions

Source
Code

Library
Code

Bundle
File C Struct Native Code

Convert
to C

I Code

Compile
Time

Assert
Failures

Repeat
until

closure

FAIL

FAIL

Subexpresion
Sharer

Figure 5.2: Internal structure of the Pushlogic Compiler

63

in the source code a section of I-code is generated. I-code consists of labels, go-
tos, waits, assignments and conditional branches. For eachsection, a run-time
program counter is defined. At the object code level, these program counters act
just like other local variables, and their values range overthe labels in that sec-
tion. There is no run-time spawning or joining of threads (although the illusion of
this can be provided from a static set of threads using pre-processing techniques).
Temporal logic assertions in the source code are split off and held separately.
Liveness assertions may be guarded by nestedif statements and by the current
value of the program counter.

Each I-code instruction is stored in an array, indexed by compile-time program
counter, and each has one of the following forms:

(* Intermediate, imperative assembler code form *)
and icode_t =

I_assign of bc_t * bc_t
| I_resultis of bc_t
| I_goto of int
| I_wait of bc_t
| I_if of bc_t * int
| I_eof
| I_skip
| I_safetylive of bool * bc_t (* safe is true *)

Runtime program counters range only over the entry point to a thread and the
points immediately following anI wait.

The I-code is embedded in a BDD package by generating binary encodings of
every variable (field), constant and operator. This then enables an equivalence
checker to be used to compare any pair of expressions or checkthat a predicate is
a tautology.

5.14.2 Repeated Elaboration from each Entry Point until Clo-
sure

An entry point is defined as any entry point to a section of I-code or the location
immediately after any wait instruction. Parallel symbolicevaluation is then con-
ducted, until closure, or failure if more than 100 iterations is needed. This consists
of starting in a null environment and evaluating from each entry point to collect
symbolically the assigns to every variable, including program counters, up until a
wait statement or the thread loops back to its initial entry point. Function calls are
expanded in line.

64

Elaboration of assignment

While more than one assign is made to a variable, by different threads, such as
v := e1; v := e2;, the assignments are combined in pairs using the following rule

v := (e1 =⊥)?e2 : e1; check(e1 = e2 ∨ e1 =⊥ ∨e2 =⊥);

his gives a single expression for every assigned variable. If the check fails, the
compilation fails because the operations are incompatible.

Elaboration of Sequential Composition

Sequential composition of statements is implemented by forming a conjunction
of their translations but where any assignment is implemented as as symbolic
substitution before translating a next statement.

[[v = e; C2]] → [[v = e]] ∧ [[C2[e/v]]]

[[C1; C2]] → [[C1]] ∧ [[C2]]

Elaboration of WAIT

The ‘wait’ statement essentially divides an infinite thread circuit into a number
of arcs. Each arc commences with a different setting of a synthesized program
counter that is generated for each parallel statement containing waits. These pro-
gram counters are stored in the local tuple of the execution platform and renamed
to be unique at bundle load time. The program counter may be set to one of a
number of new values at the end of each arc, depending on conditional execution
paths within the arc. A program counter must be classed as integrator (its next
value depends on its current value). The guard conditions present inwait state-
ments must accordingly, somehow achieve the differentiator property when the
bundle is model checked as a whole. Some examples will be added here.

Elaboration of IF/THEN/ELSE

The if/then/else construct is converted to an object form conditional expression

[[if c then T else F]] → [[c]] ? [[T]] : [[F]]

that is then expanded as usual:

(c)?t : f → (c ∧ t) ∨ (∼c ∧ f)

After the first elaboration from all entry points, the process is repeated using the
environment created by the first. Code guarded by differentiators will not have

65

any consequences on the second or subsequent elaborations.After each elabora-
tion, the equivalence checker is used to detect any changes in any symbolic value,
and if there are, then another iteration is commenced. Beforeeach new iteration,
occurrences of⊥ in the expression for a variable in the environment are replaced
with the symbolic value for that variable calculated on the iteration before. This
exactly models the behaviour of the runtime interpreter, which holds (orgates) all
assignments until every subexpression has been recomputed, and then performs a
commit.

5.14.3 Compensation Path Determination

After a closed set of symbolic assignments has been computed, push back paths
are created through the right-hand-side expressions from any field whose mode is
’inout’. For each safe value of an inout field, a path is tracedbackwards through
the expression tree that will cause generation of that value. These paths extend
back though local variables used as intermediate values in any computation. For
all safe values of all bearing inouts, the same path must workfor each local vari-
able. This constraint can cause some novel error messages. The paths are stored
in the push back indication section of each rule.

Sub-expressions are generated by spotting common subexpressions using a hash-
ing technique. Where a pair of rules use a common subexpression, this sharing is
noted by a re-writing phase before code generation.

5.14.4 Compile Time Assertion Checking

The model checker constructs a next state relation from the executable rules. For
the purposes of the relation, a hidden input variable is created for every possible
pushback, which is every safe value of every inout field. Thisis called apushback
input. Additional clauses are added to the next state relation to represent that at
most one of the pushback inputs of each inout may hold at any one time, and
that when it holds, the variables altered by that pushback have the constant values
determined during pushback calculation.

5.14.5 Code Output

The output code bundle, containing executable code, field definitions and asser-
tions, is written to four output files that all contain the same information:

• a bytecode bundle file (list of integers in ASCII/comma format),

• a C struct file that contains some initialised C arrays, for direct canning into
ROM,

66

• a dot net version (CIL assembly file),

• an XML encoded version.

The dot net version can be canned to ROM by compiling it with the ilasm as-
sembler from the mono project and then using themonos utility program on the
resulting bytecode.

In the future, the declarative byte code can also be converted to C to be run as
native ROM code instead of being interpreted on the execution platform (thereby
saving expensive RAM on embedded devices).

5.15 Model Checking

The pushlogic compiler contains a symbolic model checker that uses a BDD pack-
age. This is the same BDD package as used by the compiler for equivalence
checking when it is searching for idempotent closure (§5.14.2).

The model checker in the compiler can operate on more than onebundle at once,
checking inter-bundle interactions. Since the compiler can accept, on its command
line, at most one source file and any number of object files, there are three ways
the model checker might get invoked:

• With one source bundle it checks the assertions in that bundle are consistent
with the logic in that bundle.

• With one source bundle and one or more object bundles, it checks that the
current source bundle will be compatible when run alongsidethe object
bundles in a domain.

• With a list of object bundles, it checks they are mutually compatible.

The third way enables the compiler to serve as a checker over aset of rehydrated
bundles. Hence it can serve as thedomain checker.

Scalability is a big problem with BDD-based model checking. Afair bit of time
is used up finding variable orderings that lead to a compact BDD. The compiler
writes out the order it finally selected to a hidden file,.bdd.xml, and reads it in
again, if present in the current directory. Since the filename is currently fixed, it is
important to do widely differing runs in different directories.

Current research is developing an incremental model checkerso that scalability
restrictions are greatly reduced.

67

5.16 Bundle Meta Info

The compiler generates a small amount of meta information and stores this in a
dedicated tuple in the local space.

5.17 Binding Hooks

Before execution and insertion into a DoP, a bundle is re-hydrated using operations
akin to macro-language rewrites ...

68

Chapter 6

Standard Environment

Pushlogic programs may rely on the presence of certain libraries at compile time
and certain Pebbles at run time.

6.1 Bundle Meta Info

Object code from the compiler automatically contains assignments to a tuple
called ‘BundleInfo’. This includes meta-information regarding the compiler ver-
sion, source file name and so on.

Code in the bundle may also typically store additional meta info, for example

BundleInfo#Company := "Acme Limited";
BundleInfo#Release := "Version 21.2";

The execution platform stores the BundleInfo tuple in the local tuple for the bun-
dle. The local tuple is stored in the Bundles tuple of the hosting execution platform
under a field name that serves as a unique instance identifier for the re-hydrated
bundle.

Additional information can be passed to the BundleInfo tupleusing the ‘meta’
statement. This statement takes a comma-spearated list of tag/value pairs. For
example

meta Subassembly= "Motioncontrol", Release= "Version 21.2";

Currently, themeta statement does not do anything other than create a field in
the BundleInfo and store a constant expression in it.

6.2 Local Variable Store

Pushlogic places its local variables in a tuple called ‘Local’.

69

6.3 Pushlogic Timer

Every Pushlogic platform provides access to a timer. The timer has a real-time
clock and also provides any number of countdown timers.

The local real-time clock may be accessed by first declaring the following fields
in the Pebbles tuple of the local platform and then reading them as needed:

input Pebbles#Timer#Timenow#hour : {0..23},
Pebbles#Timer#Timenow#minute : {0..59},
Pebbles#Timer#Timenow#second : {0..59};

If the local bundle also sets the real time clock, then it should declare these fields
using the ‘inout’ keyword.

Countdown timers are created by declaring a field inside Timer#Countdowns.
Two different bundles on the same platform will interfere ifthey both declare
the same count down counter - this needs blocking. The field must be set to an
integer number of milliseconds and it counts down to zero by itself. The following
code fragment illustrates how to make a light flash at five hertz.

inout Pebbles#Timer#Countdown#mytimer : { 0..100 };
output Somedevice#lights#light : { off: on };

with Pebbles#Timer#Countdown if (#mytimer == 0)
{

#mytimer := 100; // Half cycle every 100 milliseconds
if (light==on) light:=off; else light:=on;

}

The rest of this section is obsolete.

Frequently, rules must fire at a particular time of day, or describe constraints that
apply only for specific periods of time. Examples are, respectively, “Turn the light
on at 6:30 pm” and “All lights must be off between 01:00 and 06:30”. As a basis
for execution of temporal rules, a clock device is provided as a local resource at
each Pushlogic interpreter. At the object level, it accessed in the same way as
any other Pebble, but hooks for handling time are built in to the Pushlogic source
language. Time encompasses both a linear, infinite sequenceand a set of finite
periodic schedules, hourly, daily and weekly. We refer to each of these as a base
temporal extent. Any constant time expression mentioned inthe rules can be seen
as a partition of a base temporal extent into two temporal extents (or epochs):
before the mentioned time and after the mentioned time.1 Taking the union of
all partitions on temporal extents leads to a finite number ofepochs. It is simple
to statically evaluate whether any expression referring totime is true or false in a

1An exception is that if only one time expression exists and itrefers to a periodic temporal
extent then it has no effect.

70

with Pebbles#Keypad
if (#now == stop)
{ #(playled, pauseled, stopled) := (0,0,1);

Works#cmd := stop;
}
else if (#now == play)
{ #(playled, pauseled, stopled) := (1,0,0);

Works#cmd := play;
}
else if (#now == pause && local#keypad_old != pause)
{ if (Works#cmd == play)

{ #(playled, pauseled, stopled) := (1,1,0);
Works#cmd := pause;

}
else
{ #(playled, pauseled, stopled) := (1,0,0);

Works#cmd := play;
}

}
else if (#now == eject)

{ #(playled, pauseled, stopled) := (0,0,0);
Works#cmd := eject;

}

Figure 6.1: Pushlogic Source Code: fragment from our DVD player demo.

given epoch. The rule validator must essentially collate the epochs and then check
for rulebase consistency in every epoch. It can do this as an explicit datastructure
but better would be to do it symbolically.

The tagged fields refer to components of the worldview. The other operators all
have their normal meanings. In the future, arithmetic can besupported using
Presburger [8] or CVC Lite [7].

A fragment of Pushlogic Source for our prototype DVD player is listed in Fig-
ure 6.1.

6.4 Assistance with Network Race Conditions

A number of problems arise when a program is distributed overthe network and
are well-known in concurrency theory: e.g. the Dining Philosophers, the Byzan-
tine Generals problem, and more general problems in load balancing. Any lan-
guage design must partition the work of solving these problems between compile-
time and run-time and between language-level features, libraries and application
code. A distributed implementation of Esterel, for instance, would still maintain

71

the Esterel concept of the atomic event, although there is a heavy penalty in its
implementation. Esterel does not have a native, looser, more-efficient, network
paradigm. In Pushlogic, however, the basic operation, a write to a remote field, is
not itself an atomic test-and-set and hence we need to consider the further support
required to avoid problems from network races and unreliability.

Any program that contains a race of the nature shown in figure 4.1 will not unwind
during compilation since the final result depends on the order of interleaving.

Races:As fields are names in a global name space, there may be networkdelays
in making access to their values for read or write. Races may also arise in that no
synchronisation between reads and writes is implemented atexecution time.

The binding part of resource allocation is handled in Pushlogic at re-hydration
time. All instances of a given type of device must be given unique identifiers dur-
ing binding, and, because currently there are no arrays in Pushlogic, each identifier
must textually exist in the Pushlogic source program.

6.4.1 Test and Set Facility

Consider a pair of DVD players that are commanded at once to send their output to
a single display, where that display can only handle a singlestream. If the display
has a field that says which stream it is currently receiving, then the most simple
form of resource allocation is to allow this to set at any timeand the most recent
write to it is the current winner. This gives the familiar radio-button method of
source selection.

Where it is important that a resource is claimed for a specific interval, terminated
by an explicit release, then concurrency theory tells us that an atomic test-and-set
is required at some level in the system or else we must essentially have a set of
locks, indexed by requester name, that implements a variantDijkstra’s solution.

Pushlogic allows a field to be declared as a ‘lock’, whose safe value is the null
string. More than one bundle may store a non-safe value in a lock field (relaxing
the normal rule) but such a store is only successful if the previous value was the
null string. In a network race, the second client that attempts to store a non-null
value will experience a pushback.

6.4.2 Make/break Issues

Where an event triggers the change of two or more fields, sometimes the order in
which they are changed is critical. For instance, electrical changeover switches
come in make-before-break and break-before-make varieties.

Since Pushlogic is a relatively high-level language, built-in support for make-
break ordering should perhaps be provided for the common cases, rather than
forcing the programmer to implement his own sequencers. However, this is for

72

future study. What is implemented is checking over various message delivery
skew and loss scenarios (§1.4).

6.5 Low-level Parallel Composition of Tuples.

Both the ‘pebble’ statement in Pushlogic and the binding performed at re-
hydration implement mappings between identifiers in a Pushlogic program and
other parts of the Tuplespace, typically tuples in Pebbles.Sometimes it is helpful
for there to be more than one, concurrent binding in place. For instance, we might
want to address all the klaxons on the floor of a building or throughout the whole
building. Also, different Pushlogic bundles might want to use different parallel
compositions, such that a pair of pebbles that are in parallel from the point of
view of one program are separate from the point of view of another.

There are two basic ways in which a number of pebbels can be addressed at once
from a single Pushlogic read or write of a field: either the pushlogic code is macro
expanded in some way, such as being rehydrated more than once, or else the
pebbles are ‘hardwired’ in parallel at a lower level, such aswith additional mech-
anisms in the tuplecore.

We require that any pair of fields composed by low-level parallel composition have
the same tag name and safe value set. The meaning of low-levelparallel composi-
tion is slightly different for read and write operations. Wealso need to define the
behaviour under unliateral change, pushback and under message delivery errors.

When fields that are paralleled are written by a Pushlogic program the writes are
simply sent to all of the fields. This is useful, for instance,when wishing to mimic
the status of a hardware Pebble with a software GUI that reflects the most recent
fields written to the Pebble. Each write is sent to each of the two destinations. If
one of the writes fails or is pushed back to a safe value, then the run-time system
must push back the other fields mapped in parallel accordingly. These push backs
appear as undo’s to code in other bundles that drives the mapped fields and to new
writes to code that references the mapped fields.

For fields written unilaterally by external devices, or fields that refuse to accept a
pushback, the value of their parallel composition is definedto be the most recent
value written to any one of the fields. This provides suitablebehaviour when a
number of very simple push button pebbles are paralleled: the push logic program
receives the up and down strokes of each key with no demarcation as to which
button was pressed. However, it is expected that even the most simple push but-
tons, whether implemented physically or as part of a GUI, will be momentary at
the point of operation, but with built-in status indicatorsas latches, and therefore
able to accept a push back. If the off state is safe and the on state not, then ... and
any pushback to off will turn off all the indicators. These ideas extend easily to
other forms of widget.

73

Chapter 7

Plant Model

Instead of being executable, a bundle may be a plant model. A plant model mir-
rors the behaviour of the physical world system or plant. In many real systems,
there are predictable effects from the output of actuators that may be detected by
sensors. These feedback effects can cause undesirable effects, such as deadlock
or oscillations, that Pushlogic can detect before they occur. Run-time monitoring
of the conformance of the real system with its world model canalso detect various
faults and failures in sensors and actuators and so on.

A plant (world) model declaration uses the keyword sequence‘def world’.
The bundle content is a list of declarations and statements,like any other bundle.

For example

def world name()
{
input plant#heater#setting : { off: lo, hi };
output plant#ambient#temperature : { -273 .. 1000 };

forever
{

sleep_seconds(1);
if (setting==hi && temperature < 90) temperature += 3;
else if (setting==lo && temperature < 90) temperature += 1;
else if (setting==off && temperature > 0) temperature -= 1;

}

}

A plant model generates bytecode that does not execute on anyplatform, but
which is used for bundle consistency checking.

The sequence ‘def plant’ can be used instead of ‘def world’ to define a
world model: it makes no difference at the moment.

74

Run-time checking of the real plant’s consistency with worldmodels will be im-
plemented.

75

Chapter 8

Domain Manager

The Domain Manager is an aggregation of services that

• delimit the domain boundary,

• manage domain name spaces, including network addresses anddevice names,

• allow new devices, bundles and pebbles to join the domain,

• fetch canned bundles in respsonse to trigger actions, re-hydrate them and
attempt to insert them into the domain,

• allocate interpreted bundles to execution platforms,

• provide compute resources for soft pebbles,

• provide model checking over all rules in the domain to ensureall properties
are satisfied, and

• support removal of devices, bundles and pebbles when no longed wanted.

The Domain Manager provides a few standard pebbles, used by Pushlogic in read-
only mode, that provide domain status information.

Bundles run inside a domain of participation (DoP). Dynmaic storage allocation
only occurs when new bundles of rules are loaded into a running DoP. Bundles
arrive either when a new pebble that requires control arrives, or when a new appli-
cation is started, expressed in Pushlogic. Before a bundle can be loaded, the union
of the rules in the new bundle is formed against those alreadyin the domain. If
any of the rules are inconsistent or any of the temporal logicrules (existing or
new) will not hold under the combined mechanism, the bundle cannot be loaded.

76

8.1 Using the compiler to check domains

It is planned that a number of compiled bundles can be read in during a com-
pilation and the bundles being compiled are checked againstthem. Indeed, no
source-level bundles are provided, the compiler will act asa static checker for a
collection of object bundles. This has been implemented butno examples written
up.

8.2 Incremental and Real-time Model Checking

We wish to design an object bundle file format that is as amenable as possible to
rapid incremental model checking or assume/guarantee-style automated reason-
ing.

Real-time Model Checking ... is one of our main challenges being explored ...

8.3 Federation of Pushlogic DoPs

Pushlogic rules hold within a domain of participation (DoP). The DoP may cover
multiple execution platforms, but all rules are shared in terms of consistency
checking.1

1Variations on this model are required in practice, to provide localised behaviour and assur-
ances, to dynamic allow merging and dividing of domains and to provide federation of domains
where knowledge about peer domains is available in summary form only.

77

Chapter 9

Pebbles and Pebble Formal Model

Pebbles themselves are self-contained hardware or software objects that fulfill a
certain task. Examples are a numeric entry keypad, an electronic piggybank or a
speech recognition engine. Our vision is that all such devices shall, in the future,
share a common middleware and reflection API.

A pebble that is compatible with the Pushhlogic/Tuplecore system is defined for-
mally here. The XML schema for such a Pebble follows exactly the same struc-
ture.

An uninstantiatedpebble is a quad of a typename, pebbledataplane and peb-
ble behaviour.

A type name is a string that is unique name for an uninstantiated pebble. It is
sensible to use use URI’s as typenames, since these can ensure uniqueness, but
other mechanisms can also be used.

A pebbledataplane is a set of (fieldname, fielddomain, fieldtype, fieldvalue)
quads where the fieldnames are disjoint.

A field name is a list of strings. The last string is the finalfield name and the
and others are tuplenames. By convention, field names are in lower cases and
tuple names are capitalised (first letter is a capital letter). Field names that are
only different in their finalfield name are said to be part of the same tuple. Us-
ing Pushlogic, fieldnames are written with a hash sign between each string, for
instance Pebbles#Lamp#status.

A field domain is a disjoint union of safe and unsafe lists. Each member of the
safe and unsafe list is a fielddomainspecifier. A fielddomainspecifier is a string
constant or an integer, an integer range or an ellipsis. (Please see§5.7 for the
concrete syntax for field declarations used in Pushlogic.)

A field type is one of the following values (fluent, event, readonly, lock, money).
Most pebbles only use the fluent type for all fields. A fluent is aconventional
variable that retains its most-recently-written value andreturns this value when
read.

78

A field value is a constant string that conforms to the fielddomain. It is set to the
first item on the safe list when the pebble is first created or reset. A field value may
be interpreted to have integer or real semantics in some contexts, but it is primarily
a string. (There is no NULL string but the string of zero length is allowed. When
interpreted as a boolean, all values are true except for ””, false, FALSE and 0.)

An instantiatedpebble is the conjunction of an instantiatedpebble and an in-
stancename.

The instancename is a globally unique list of strings of which the first maygen-
erally be a URI string (ie has the prefix ’tup:’).

The fieldnames of an instantiatedpebble are logically assimilated into the global
address space by prepending the instancename.

The pebble information (metainfo) for a pebble is held as part of the pebbledataplane
as fixed-value fields with pre-assigned field names whose firstelement is ’info’.
Therefore there is no specific part of the pebble XML schema that corresponds
to metainfo. These fields have readonly type; their domain safe list consists of a
single string that is identical to their fixed-value; their unsafe domain list is empty.

Most of the metainfo is missing until a pebble is instantiated, but the typename
should be present in the field with name Info#type.

Pebbles do not act on other pebbles but can have internal reactive behaviour in
the form of various unilateral interlocks and releases. Forinstance, a hardware
interlock may prevent a furnace control field to be set to ON ifa thermal cutout
field is registering OVERHEAT. This is an example of an interlock. An example
of internal reactive behaviour would be if the pebble set itsown furnace control
field to OFF when the thermal cutout field is reading OVERHEAT. None of the
internal reactive behaviour is allowed to set any field to an unsafe value or to
prevent a field from being externally set to a safe value. (Seealso§4.6.3.) The
internal reactive behaviour of a Pebble is described (currently) using Pushlogic
rules, that have their own schema described§4.1.

9.0.1 Platform Metainfo: Reflection via Pebble Dataplane

An instantiated pebble sits on platform which is either an embedded system or
server. In terms of registration and metainfo, platforms have the same structure as
Pebbles and hence do not show up as an explicit structure in the XML schema.

A platform has a platformname that is a globally unique list of strings of which
the first might be a URI string (ie. has the prefix ’tup:’).

For embedded system platforms, quite frequently, there is only one instance of
a given pebble ever present on the platform and because all execution platforms
have unique names, the plaform’s name can be extended with the string ‘Pebbles’
and then the pebble’s typename is appended on to that to form the unique instance
name for the pebble.

79

For instance, we might have a platform called ‘tup://192.168.1.100’ and
a pebble typename of ‘ThermalCutout’ giving a pebble instance name of
’tup://192.168.1.100#Pebbles#ThermalCutout’.

The metainfo for this example pebble would be found at

tup://192.168.1.100#Pebbles#ThermalCutout#Info

and we would expted the following field to also have the value ‘ThermalCutout’:

tup://192.168.1.100#Pebbles#ThermalCutout#Info#type

Where there are several pebbles of the same typename on one platform, these
must have intance names that differ somehow. For instance, the pusher platform
just adds a decimal number on the end of the typename.

tup://192.168.1.100#Pebbles#ThermalCutout0
tup://192.168.1.100#Pebbles#ThermalCutout1
tup://192.168.1.100#Pebbles#ThermalCutout2

Platforms also have metainfo. This is held using fieldnames that begin with the
word Platform. One typical field for a platform is an IP address. For instance, we
would expect the following field

tup://192.168.1.100#Platform#ipaddress

to have value ’192.168.1.100’

9.0.2 Bundle Metainfo: Reflection via Pebble Dataplane

Platforms host bundles of running software. The local variables and metainfo
for such bundles are readable using the pebbledataplane XML schema. Like an
instantiatedpebble, a runningbundle has a typename and an instancename and
the same naming conventions are used to create instancenames as are used for
pebbles, except the string ‘Bundles’ is used instead.

For instance, a bundle instance name might be

tup://192.168.1.100#Bundles#ClimateControl

and its metainfo would be stored in fields such as

tup://192.168.1.100#Bundles#ClimateControl#BundleInfo#version
tup://192.168.1.100#Bundles#ClimateControl#BundleInfo#copyrightMessage

and its (Pushlogic) local variables are placed in

tup://192.168.1.100#Bundles#ClimateControl#Locals#var1
tup://192.168.1.100#Bundles#ClimateControl#Locals#var2

80

Chapter 10

Execution Platforms

A number of execution platforms are envisaged, but they share the same API when
viewed from the network.

Currently, there is an interpreter for the bytecode in the badger/pushlogic directory
that can be compiled for embedded systems or workstation use. When compiled
for a workstation it is calledpusher. A native compiler for the CAN/PIC platform
is also planned (has been envisaged).

The pusher interpreter may also pretend to be an execution platform pebble, mean-
ing that it might beacon some metainfo so that a domain manager gives it some
bundles to run.

Currently, all platforms speak the ETC protocol over the network.

There is a utility calledcmdline that enables one to manually send low-level
ETC commands over the network.

Thecmdline program allows platform reboot and field read, write and subscribe
operations.

Arg syntax is

cmdline [-nNONCE] [-pNNN] [-dURI] reboot
cmdline [-nNONCE] [-pNNN] [-dURI] w tag v [tag v ...]
cmdline [-nNONCE] [-pNNN] [-dURI] r tag
cmdline [-nNONCE] [-pNNN] [-dURI] s tag

For example, to change the value on the display panel pebble one can use some-
thing like to set a remote field

cmdline -d tup://169.254.25.193:253 w Pebbles#Display#value ’Hello World’

Several field, value pairs can be supplied to one write command.

There is also a pushdown operation for tuplecore use, but that is not currently
used.

81

10.1 Registration

A platform must announce its presence and register with one (or more) domain
manager(s).

We have had various registration technologies, including O2S. Atif is currently
implementing UPnP and RDF registration.

Device API reflection is currently achieved through the codereflection interface.

10.2 Code reflection

A platform exports the source code of its running bundles, including the assertions
about the operation of the enclosing domain that its bundleshave made. This is
calledcode reflection.

Code reflection is achieved using an HTTP GET and the code is encoded in XML.

10.3 Web Interface

Many platforms implement a web interface that allows web-based viewing of in-
ternal state and a certain amount of commanding. The web server provides XML
and also a canned CSS style sheet for easy viewing.

10.4 Pusher: Command Line and GUI Tool

The interactive interpreter for pushlogic on workstationsis calledpusher.

Pusher can be run standalone, on a workstation, with a numberof bundles loaded
from the command line. Figure 10.1 shows a bundle called Lanterns under the
GUI, The output ‘outside#lantern’ is a label and cannot be changed directly with
the GUI. It is updated when the value of this variable changes. The input ‘mains#supply’
has a menu from which the user can select ‘on’ or ‘off’. The inout variables
‘hall#light’ and ‘hall#Switch’ can be changed by the user aswell as by a Push-
logic program. Program counters and other local variables are stored in tuples
held under the ‘Local’ tab, in a unique sub-tuple for each bundle instantiated on
the platform. We also have a locally-written universal UPnPcontrol point, that
can perform roughly the same function for a subnet of UPnP devices. We will
shortly merge the functionality of these two GUIs.

The GTK GUI allows the user to view and manipulate the TupleCore tree in real
time. It uses the tuplecore library to access the TupleCore and it needs a function
’get domain’ which is included in the PushLogic library. It needsto be initialized
using ’init gtk()’, and ’gtk tree(roottup, NULL)’ builds the user interface. A

82

Figure 10.1: Lanterns - An Example of Pushlogic under GTK GUI

thread needs to be created which runs ’dogtk()’ to exercise the GUI. It creates a
gtk label for output and local variables, which are updated withan upcall from the
tuple substrate. For inputs it creates either a gtkscale if the domain is an integer
range, or a gtkcombobox (i.e. a menu) for an enumerated type.

Th pusher interpreter may also pretend to be an execution platform pebble, mean-
ing that it might beacon some metainfo so that a domain manager gives it some
bundles to run.

10.4.1 Pusher Command Line Arguments

Command line arguments are compiled bytecode bundles or options.

The ’-nogui’ command line option disables the GUI and directs all output to the
console.

The ’-cycles=nn’ command line option makes the platform exit to the OS after so
many seconds.

The ’-tupdump’ command line option prints the internal tuplespace to the console
every few seconds.

Bundles should have suffix ‘.plc ’ and this is added if no dot is present in the
filename. Alternatively, bundles should have suffix ‘.plcx ’.

Bundles with a.x suffix are XML coded bundles, as reflected from execution
platforms. NB: the compiler, pushcomp, generates four object files from each
compilation, two of which are loadable by pusher and the remainders are for can-
ning to device ROMs (pushlogic bytecode or .net bytecode).

Bundles are loaded from the current directory or any directory listed on a colon-

83

separated list of directories stored in the PLPATH environment variable.

Bundles can be listed on the command line along with an instance name, separated
by an equals. This allows two instances of the same bundle to be loaded. Each
will put its local fields in its own local tuple, named with theinstance name: for
example ‘ins1=ding.plc ins2=din.plc ’.

10.5 Console Output

Under the debugger, it is possible for a Pushlogic program towrite strings to the
console and to exit with a return code. This is done by sendingevents to certain
fields of a local tuple called Platform#System. Library functions to assist with this
are provided.

Any constant assigned to Platform#System#sysprint is displayed on the console.

Any integer assigned to Platform#System#sysexit causes the platform to return to
the OS using the integer as the return value.

output Platform#System#sysprint : event;
output Platform#System#sysexit : event (0..255);

84

Chapter 11

Other Issues

Parasitic Feedback:Although Pushlogic rules may not cause a higher level field
to change value as a result of a lower field changing in value (apart from via
undo’s) there is nothing to stop a Pebble making a cause/effect connection be-
tween a pair of fields in this way. Such interactions can lead to oscillation and
violate Pushlogic principals.

Multi-media: The Pushlogic interpreter is not envisaged as having sufficient
throughput to directly manipulate multi-media streams. Instead, multi-media streams
are started, stopped and routed using Pushlogic as a ‘control plane’. The Push-
logic sets fields held on media Pebbles, such as cameras, speakers, fileservers
and so on to circuit identifier values. The Pebbles then send the media streams
amongst themselves until again commanded by the Pushlogic.If a field naturally
ends, then its source or destination Pebble can set the controlling field back to its
safe value and the Pushlogic receives an undo that can serve in the same ways as
a conventional ‘interrupt’.

Asynchronous Eventing:Pushlogic may be thought of as an algebra over asyn-
chronous events, and hence has much in common with the work ofour Opera
group. Our fields implement what is now known as a publish/subscribe mecha-
nism. The existence of fields is published in the reflection information of a device
and they are bound at rule re-hydration time. When a field changes, our wire
protocol sends asynchronous notifications to the subscribers.

85

Index

86

References

[1] ‘A Case for Goal-oriented Programming Semantics’ in System Support
for Ubiquitous Computing Workshop at the Fifth Annual Conference
on Ubiquitous Computing (UbiComp ’03). Umar Saif, Hubert Pham,
Justin Mazzola Paluska, Jason Waterman, Chris Terman, SteveWard.
http://o2s.csail.mit.edu/goals.html

[2] S. Kambhampati. ‘A comparative analysis of partial-order planning and task
reduction planning.’ ACM SIGART Bulletin, Special Section onEvaluating
Plans, Planners and Planning agents, Vol. 6., No. 1, January, 1995.cite-
seer.nj.nec.com/kambhampati95comparative.html

[3] ‘Service Composition for eHome Systems: A Rule-based Approach’
M Kirchhof, P Stinauer: Aachen eHome Group.www-i3.informatik.rwth-
aachen.de/tikiwiki/tiki-index.php?pageref id=206

[4] Universal Plug and Play. www.upnp.org
[5] Greaves et al. ‘The AutoHAN project.

www.cl.cam.ac.uk/Research/SRG/netos/han/AutoHAN
[6] Uwe Glasser.‘Systems Level Specification and Modelling of Reactive Sys-

tems: Concepts, Methods, and Tools’, citeseer.nj.nec.com/258.html
[7] CVC Lite http://verify.stanford.edu/CVCL/
[8] M. Presburger: ‘Ober die Vollstndigkeit eines gewissenSystems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tritt’. In Comptes Rendus du I congrs de Math maticiens des PaysSlaves,
Warszawa, 1929, pp.92-101.

[9] Bierman and Sewell. ‘Iota: A concurrent XML scripting language’ Tech-
nical Report Number 557 Computer Laboratory. ISSN 1476-2986 Iota:
!A concurrent XML scripting language with applications to Home Area’
www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-557.pdf

[10] ‘Towards Ubiquitous End-User Programming’ Rob Hague, PRobinson, A
Blackwell. ACM Conference on Ubiquitous Computing, Seattle, October
2003.www.cl.cam.ac.uk/ pr/publications/ubicomp03

[11] Lupu E, Sloman M ‘Conflict Analysis for Management Policies’ In 5th Int
Symp Integrated Network Management IM’97 San-Diego 97 (Chapman
Hall).

[12] J Bacon et al. ‘Cambridge Event Architecture(CEA)’
www.cl.cam.ac.uk/Research/SRG/opera/projects

[13] Monika Solanki et al. ‘Introducing Compositionality inWebservice De-
scriptions’. Proceedings of 3rd ANWIRE workshop on adaptableservices,
DAIS-FMOODS, November 2003, Paris.

[14] Trolltech, Creators of QT. www.trolltech.com.
[15] ‘Paramodulation and theorem-proving in first-order theories with equality.’

G. Robinson and L. Wos. In D. Michie and R. Meltzer, editors, Machine
Intelligence, Vol. IV, pages 135-150. Edinburg U. Press, 1969.

[16] W3C: Simple Object Access Protocol (SOAP)www.w3.org/TR/SOAP

87

Many thanks to Daniel Gordon who implemented much of the firstPushlogic
system and who contributed greatly to its definition.

88

