
Cygwin User’s Guide

Cygwin User’s Guide

Copyright (c) 1998, 1999, 2000, 2001, 2002, 2003 Red Hat, Inc.

Table of Contents
1. Cygwin Overview...1

1.1. What is it?...1
1.2. Are the Cygwin tools free software?..1
1.3. A brief history of the Cygwin project...1
1.4. Expectations for UNIX Programmers...2
1.5. Expectations for Windows Programmers..2
1.6. Highlights of Cygwin Functionality...2

1.6.1. Introduction..3
1.6.2. Supporting both Windows NT and 9x...3
1.6.3. Permissions and Security...4
1.6.4. File Access...4
1.6.5. Text Mode vs. Binary Mode..6
1.6.6. ANSI C Library..6
1.6.7. Process Creation...6
1.6.8. Signals..7
1.6.9. Sockets...8
1.6.10. Select..8

2. Setting Up Cygwin...10

2.1. Internet Setup..10
2.1.1. Download Source...10
2.1.2. Selecting an Install Directory...11
2.1.3. Local Package Directory..11
2.1.4. Connection Method..11
2.1.5. Choosing Mirrors...12
2.1.6. Choosing Packages..12
2.1.7. Download and Installation Progress..13
2.1.8. Icons...13
2.1.9. Post-Install Scripts...13

2.2. Environment Variables..13
2.3. Changing Cygwin’s Maximum Memory..14
2.4. NT security and thentsec usage...15

2.4.1. NT security...16
2.4.2. Process privileges...19
2.4.3. File permissions...19
2.4.4. New since Cygwin release 1.1...21
2.4.5. The mapping leak...23
2.4.6. New acl API...25

i

2.4.7. New setuid concept..26
2.4.8. New since Cygwin release 1.3.3..28
2.4.9. Special values of user and group ids..29

2.5. Customizing bash..30

3. Using Cygwin..32

3.1. Mapping path names...32
3.1.1. Introduction..32
3.1.2. The Cygwin Mount Table..32
3.1.3. Additional Path-related Information..34

3.2. Text and Binary modes...34
3.2.1. The Issue..34
3.2.2. The default Cygwin behavior...35
3.2.3. Example...36
3.2.4. Binary or text?..36
3.2.5. Programming..37

3.3. File permissions..37
3.4. Special filenames..38

3.4.1. DOS devices...38
3.4.2. POSIX devices...38
3.4.3. The .exe extension..41
3.4.4. The @pathnames...41

3.5. The CYGWIN environment variable..42
3.6. Cygwin Utilities..44

3.6.1. cygcheck..44
3.6.2. cygpath...46
3.6.3. dumper...47
3.6.4. getfacl...48
3.6.5. kill ..49
3.6.6. mkgroup...51
3.6.7. mkpasswd...52
3.6.8. mount...54

3.6.8.1. Using mount..54
3.6.8.2. Cygdrive mount points..56
3.6.8.3. Limitations..57

3.6.9. passwd..57
3.6.10. ps..59
3.6.11. regtool..60
3.6.12. setfacl...62
3.6.13. ssp..64
3.6.14. strace..67

ii

3.6.15. umount...68
3.7. Using Cygwin effectively with Windows...69

3.7.1. Pathnames..69
3.7.2. Console Programs..70
3.7.3. Cygwin and Windows Networking..70
3.7.4. The cygutils package..71
3.7.5. Creating shortcuts with cygutils...71
3.7.6. Printing with cygutils...72

4. Programming with Cygwin ...73

4.1. Using GCC with Cygwin..73
4.1.1. Console Mode Applications...73
4.1.2. GUI Mode Applications...73

4.2. Debugging Cygwin Programs...76
4.3. Building and Using DLLs...77

4.3.1. Building DLLs...78
4.3.2. Linking Against DLLs...79

4.4. Defining Windows Resources...79

iii

List of Examples
2-1. /etc/passwd..20
2-2. /etc/group..21
2-5. /etc/passwd..23
2-6. /etc/group..23
3-1. Displaying the current set of mount points...33
3-2. Using @pathname..41
3-3. Example cygpath usage..47
3-4. Using the kill command..50
3-5. Setting up the groups file for local accounts...52
3-6. Setting up the passwd file for local accounts..53
3-7. Using an alternate home root..53
3-8. Displaying the current set of mount points...54
3-9. Adding mount points..55
3-10. Changing the default prefix..57
4-1. Building Hello World with GCC..73
4-2. Compiling with -g...76
4-3. "break" in gdb...77
4-4. Debugging with command line arguments...77

i

Chapter 1. Cygwin Overview

1.1. What is it?
The Cygwin tools are ports of the popular GNU development tools and utilities for
Windows NT and 9x. They function through the use of the Cygwin library which
provides the UNIX system calls and environment that these programs require.

With the tools installed, programmers may write Win32 console or GUI applications
that make use of the standard Microsoft Win32 API and/or the Cygwin API. As a
result, it is possible to easily port many significant UNIX programs without the need
for extensive changes to the source code. This includes configuring and building most
of the available GNU software (including the development tools included with the
Cygwin distributions). Even if the compiler tools are of little to no use to you, you may
have interest in the many standard UNIX utilities. They can be used both from the bash
shell (provided) or from the command.com.

1.2. Are the Cygwin tools free software?
Yes. Parts are GNU software (gcc, gas, ld, etc...), parts are covered by the standard X11
license, some of it is public domain, some of it was written by Red Hat and placed
under the GPL. None of it is shareware. You don’t have to pay anyone to use it but you
should be sure to read the copyright section of the FAQ for more information on how
the GNU General Public License may affect your use of these tools. If you intend to
port a proprietary application using the Cygwin library, you may want the Cygwin
proprietary-use license. For more information about the proprietary-use license, please
go to http://www.redhat.com/software/tools/cygwin/. Customers of the native Win32
GNUPro should feel free to submit bug reports and ask questions through the normal
channels. All other questions should be sent to the project mailing list
<cygwin@cygwin.com >.

1.3. A brief history of the Cygwin project
The first thing done was to enhance the development tools (gcc, gdb, gas, et al) so that
they could generate/interpret Win32 native object files.

1

Chapter 1. Cygwin Overview

The next task was to port the tools to Win NT/9x. We could have done this by rewriting
large portions of the source to work within the context of the Win32 API. But this
would have meant spending a huge amount of time on each and every tool. Instead, we
took a substantially different approach by writing a shared library (the Cygwin DLL)
that adds the necessary UNIX-like functionality missing from the Win32 API (fork,
spawn, signals, select, sockets, etc.). We call this new interface the Cygwin API. Once
written, it was possible to build working Win32 tools using UNIX-hosted
cross-compilers, linking against this library.

From this point, we pursued the goal of producing native tools capable of rebuilding
themselves under Windows 9x and NT (this is often called self-hosting). Since neither
OS ships with standard UNIX user tools (fileutils, textutils, bash, etc...), we had to get
the GNU equivalents working with the Cygwin API. Most of these tools were
previously only built natively so we had to modify their configure scripts to be
compatible with cross-compilation. Other than the configuration changes, very few
source-level changes had to be made. Running bash with the development tools and
user tools in place, Windows 9x and NT look like a flavor of UNIX from the
perspective of the GNU configure mechanism. Self hosting was achieved as of the beta
17.1 release.

1.4. Expectations for UNIX Programmers
Developers coming from a UNIX background will find a set of utilities they are already
comfortable using, including a working UNIX shell. The compiler tools are the
standard GNU compilers most people will have previously used under UNIX, only
ported to the Windows host. Programmers wishing to port UNIX software to Windows
NT or 9x will find that the Cygwin library provides an easy way to port many UNIX
packages, with only minimal source code changes.

1.5. Expectations for Windows Programmers
Developers coming from a Windows background will find a set of tools capable of
writing console or GUI executables that rely on the Microsoft Win32 API. The linker
and dlltool utility may be used to write Windows Dynamically Linked Libraries
(DLLs). The resource compiler "windres" is also provided with the native Windows
GNUPro tools. All tools may be used from the Microsoft command line prompt, with
full support for normal Windows pathnames.

2

Chapter 1. Cygwin Overview

1.6. Highlights of Cygwin Functionality

1.6.1. Introduction
When a binary linked against the library is executed, the Cygwin DLL is loaded into
the application’s text segment. Because we are trying to emulate a UNIX kernel which
needs access to all processes running under it, the first Cygwin DLL to run creates
shared memory areas that other processes using separate instances of the DLL can
access. This is used to keep track of open file descriptors and assist fork and exec,
among other purposes. In addition to the shared memory regions, every process also
has a per_process structure that contains information such as process id, user id, signal
masks, and other similar process-specific information.

The DLL is implemented using the Win32 API, which allows it to run on all Win32
hosts. Because processes run under the standard Win32 subsystem, they can access both
the UNIX compatibility calls provided by Cygwin as well as any of the Win32 API
calls. This gives the programmer complete flexibility in designing the structure of their
program in terms of the APIs used. For example, they could write a Win32-specific
GUI using Win32 API calls on top of a UNIX back-end that uses Cygwin.

Early on in the development process, we made the important design decision that it
would not be necessary to strictly adhere to existing UNIX standards like POSIX.1 if it
was not possible or if it would significantly diminish the usability of the tools on the
Win32 platform. In many cases, an environment variable can be set to override the
default behavior and force standards compliance.

1.6.2. Supporting both Windows NT and 9x
While Windows 95 and Windows 98 are similar enough to each other that we can
safely ignore the distinction when implementing Cygwin, Windows NT is an extremely
different operating system. For this reason, whenever the DLL is loaded, the library
checks which operating system is active so that it can act accordingly.

In some cases, the Win32 API is only different for historical reasons. In this situation,
the same basic functionality is available under Windows 9x and NT but the method
used to gain this functionality differs. A trivial example: in our implementation of
uname, the library examines the sysinfo.dwProcessorType structure member to figure
out the processor type under Windows 9x. This field is not supported in NT, which has
its own operating system-specific structure member called sysinfo.wProcessorLevel.

3

Chapter 1. Cygwin Overview

Other differences between NT and 9x are much more fundamental in nature. The best
example is that only NT provides a security model.

1.6.3. Permissions and Security
Windows NT includes a sophisticated security model based on Access Control Lists
(ACLs). Cygwin maps Win32 file ownership and permissions to the more standard,
older UNIX model by default. Cygwin version 1.1 introduces support for ACLs
according to the system calls used on newer versions of Solaris. This ability is used
when the ‘ntsec’ feature is switched on which is described in another chapter. The
chmod call maps UNIX-style permissions back to the Win32 equivalents. Because
many programs expect to be able to find the /etc/passwd and /etc/group files, we
provide utilities that can be used to construct them from the user and group information
provided by the operating system.

Under Windows NT, the administrator is permitted to chown files. There is no
mechanism to support the setuid concept or API call since Cygwin version 1.1.2. With
version 1.1.3 Cygwin introduces a mechanism for setting real and effective UIDs under
Windows NT/W2K. This is described in the ntsec section.

Under Windows 9x, the situation is considerably different. Since a security model is
not provided, Cygwin fakes file ownership by making all files look like they are owned
by a default user and group id. As under NT, file permissions can still be determined by
examining their read/write/execute status. Rather than return an unimplemented error,
under Windows 9x, the chown call succeeds immediately without actually performing
any action whatsoever. This is appropriate since essentially all users jointly own the
files when no concept of file ownership exists.

It is important that we discuss the implications of our "kernel" using shared memory
areas to store information about Cygwin processes. Because these areas are not yet
protected in any way, in principle a malicious user could modify them to cause
unexpected behavior in Cygwin processes. While this is not a new problem under
Windows 9x (because of the lack of operating system security), it does constitute a
security hole under Windows NT. This is because one user could affect the Cygwin
programs run by another user by changing the shared memory information in ways that
they could not in a more typical WinNT program. For this reason, it is not appropriate
to use Cygwin in high-security applications. In practice, this will not be a major
problem for most uses of the library.

4

Chapter 1. Cygwin Overview

1.6.4. File Access
Cygwin supports both Win32- and POSIX-style paths, using either forward or back
slashes as the directory delimiter. Paths coming into the DLL are translated from
Win32 to POSIX as needed. As a result, the library believes that the file system is a
POSIX-compliant one, translating paths back to Win32 paths whenever it calls a Win32
API function. UNC pathnames (starting with two slashes) are supported.

The layout of this POSIX view of the Windows file system space is stored in the
Windows registry. While the slash (’/’) directory points to the system partition by
default, this is easy to change with the Cygwin mount utility. In addition to selecting
the slash partition, it allows mounting arbitrary Win32 paths into the POSIX file system
space. Many people use the utility to mount each drive letter under the slash partition
(e.g. C:\ to /c, D:\ to /d, etc...).

The library exports several Cygwin-specific functions that can be used by external
programs to convert a path or path list from Win32 to POSIX or vice versa. Shell scripts
and Makefiles cannot call these functions directly. Instead, they can do the same path
translations by executing the cygpath utility program that we provide with Cygwin.

Win32 file systems are case preserving but case insensitive. Cygwin does not currently
support case distinction because, in practice, few UNIX programs actually rely on it.
While we could mangle file names to support case distinction, this would add
unnecessary overhead to the library and make it more difficult for non-Cygwin
applications to access those files.

Symbolic links are emulated by files containing a magic cookie followed by the path to
which the link points. They are marked with the System attribute so that only files with
that attribute have to be read to determine whether or not the file is a symbolic link.
Hard links are fully supported under Windows NT on NTFS file systems. On a FAT file
system, the call falls back to simply copying the file, a strategy that works in many
cases.

The inode number for a file is calculated by hashing its full Win32 path. The inode
number generated by the stat call always matches the one returned in d_ino of the
dirent structure. It is worth noting that the number produced by this method is not
guaranteed to be unique. However, we have not found this to be a significant problem
because of the low probability of generating a duplicate inode number.

Chroot is supported since release 1.1.3. Note that chroot isn’t supported native by
Windows. This implies some restrictions. First of all, the chroot call isn’t a privileged
call. Each user may call it. Second, the chroot environment isn’t safe against native
windows processes. If you want to support a chroot environment as, for example, by
allowing an anonymous ftp with restricted access, you’ll have to care that only native

5

Chapter 1. Cygwin Overview

Cygwin applications are accessible inside of the chroot environment. Since that
applications are only using the Cygwin POSIX API to access the file system their
access can be restricted as it is intended. This includes not only POSIX paths but
Win32 paths (containing drive letter and/or backslashes) and CIFS paths (//server/share
or \\server\share) as well.

1.6.5. Text Mode vs. Binary Mode
Interoperability with other Win32 programs such as text editors was critical to the
success of the port of the development tools. Most Red Hat customers upgrading from
the older DOS-hosted toolchains expected the new Win32-hosted ones to continue to
work with their old development sources.

Unfortunately, UNIX and Win32 use different end-of-line terminators in text files.
Consequently, carriage-return newlines have to be translated on the fly by Cygwin into
a single newline when reading in text mode.

This solution addresses the compatibility requirement at the expense of violating the
POSIX standard that states that text and binary mode will be identical. Consequently,
processes that attempt to lseek through text files can no longer rely on the number of
bytes read as an accurate indicator of position in the file. For this reason, the CYGWIN
environment variable can be set to override this behavior.

1.6.6. ANSI C Library
We chose to include Red Hat’s own existing ANSI C library "newlib" as part of the
library, rather than write all of the lib C and math calls from scratch. Newlib is a
BSD-derived ANSI C library, previously only used by cross-compilers for embedded
systems development.

The reuse of existing free implementations of such things as the glob, regexp, and
getopt libraries saved us considerable effort. In addition, Cygwin uses Doug Lea’s free
malloc implementation that successfully balances speed and compactness. The library
accesses the malloc calls via an exported function pointer. This makes it possible for a
Cygwin process to provide its own malloc if it so desires.

1.6.7. Process Creation
The fork call in Cygwin is particularly interesting because it does not map well on top

6

Chapter 1. Cygwin Overview

of the Win32 API. This makes it very difficult to implement correctly. Currently, the
Cygwin fork is a non-copy-on-write implementation similar to what was present in
early flavors of UNIX.

The first thing that happens when a parent process forks a child process is that the
parent initializes a space in the Cygwin process table for the child. It then creates a
suspended child process using the Win32 CreateProcess call. Next, the parent process
calls setjmp to save its own context and sets a pointer to this in a Cygwin shared
memory area (shared among all Cygwin tasks). It then fills in the child’s .data and .bss
sections by copying from its own address space into the suspended child’s address
space. After the child’s address space is initialized, the child is run while the parent
waits on a mutex. The child discovers it has been forked and longjumps using the saved
jump buffer. The child then sets the mutex the parent is waiting on and blocks on
another mutex. This is the signal for the parent to copy its stack and heap into the child,
after which it releases the mutex the child is waiting on and returns from the fork call.
Finally, the child wakes from blocking on the last mutex, recreates any
memory-mapped areas passed to it via the shared area, and returns from fork itself.

While we have some ideas as to how to speed up our fork implementation by reducing
the number of context switches between the parent and child process, fork will almost
certainly always be inefficient under Win32. Fortunately, in most circumstances the
spawn family of calls provided by Cygwin can be substituted for a fork/exec pair with
only a little effort. These calls map cleanly on top of the Win32 API. As a result, they
are much more efficient. Changing the compiler’s driver program to call spawn instead
of fork was a trivial change and increased compilation speeds by twenty to thirty
percent in our tests.

However, spawn and exec present their own set of difficulties. Because there is no way
to do an actual exec under Win32, Cygwin has to invent its own Process IDs (PIDs). As
a result, when a process performs multiple exec calls, there will be multiple Windows
PIDs associated with a single Cygwin PID. In some cases, stubs of each of these Win32
processes may linger, waiting for their exec’d Cygwin process to exit.

1.6.8. Signals
When a Cygwin process starts, the library starts a secondary thread for use in signal
handling. This thread waits for Windows events used to pass signals to the process.
When a process notices it has a signal, it scans its signal bitmask and handles the signal
in the appropriate fashion.

Several complications in the implementation arise from the fact that the signal handler

7

Chapter 1. Cygwin Overview

operates in the same address space as the executing program. The immediate
consequence is that Cygwin system functions are interruptible unless special care is
taken to avoid this. We go to some lengths to prevent the sig_send function that sends
signals from being interrupted. In the case of a process sending a signal to another
process, we place a mutex around sig_send such that sig_send will not be interrupted
until it has completely finished sending the signal.

In the case of a process sending itself a signal, we use a separate semaphore/event pair
instead of the mutex. sig_send starts by resetting the event and incrementing the
semaphore that flags the signal handler to process the signal. After the signal is
processed, the signal handler signals the event that it is done. This process keeps
intraprocess signals synchronous, as required by POSIX.

Most standard UNIX signals are provided. Job control works as expected in shells that
support it.

1.6.9. Sockets
Socket-related calls in Cygwin simply call the functions by the same name in Winsock,
Microsoft’s implementation of Berkeley sockets. Only a few changes were needed to
match the expected UNIX semantics - one of the most troublesome differences was that
Winsock must be initialized before the first socket function is called. As a result,
Cygwin has to perform this initialization when appropriate. In order to support sockets
across fork calls, child processes initialize Winsock if any inherited file descriptor is a
socket.

Unfortunately, implicitly loading DLLs at process startup is usually a slow affair.
Because many processes do not use sockets, Cygwin explicitly loads the Winsock DLL
the first time it calls the Winsock initialization routine. This single change sped up
GNU configure times by thirty percent.

1.6.10. Select
The UNIX select function is another call that does not map cleanly on top of the Win32
API. Much to our dismay, we discovered that the Win32 select in Winsock only worked
on socket handles. Our implementation allows select to function normally when given
different types of file descriptors (sockets, pipes, handles, and a custom /dev/windows
Windows messages pseudo-device).

8

Chapter 1. Cygwin Overview

Upon entry into the select function, the first operation is to sort the file descriptors into
the different types. There are then two cases to consider. The simple case is when at
least one file descriptor is a type that is always known to be ready (such as a disk file).
In that case, select returns immediately as soon as it has polled each of the other types
to see if they are ready. The more complex case involves waiting for socket or pipe file
descriptors to be ready. This is accomplished by the main thread suspending itself, after
starting one thread for each type of file descriptor present. Each thread polls the file
descriptors of its respective type with the appropriate Win32 API call. As soon as a
thread identifies a ready descriptor, that thread signals the main thread to wake up. This
case is now the same as the first one since we know at least one descriptor is ready. So
select returns, after polling all of the file descriptors one last time.

9

Chapter 2. Setting Up Cygwin

2.1. Internet Setup
To install the Cygwin net release, go to http://cygwin.com/ and click on "Install
Cygwin Now!" (http://cygwin.com/). This will download a GUI installer called
setup.exewhich can be run to download a complete cygwin installation via the
internet. Follow the instructions on each screen to install Cygwin.

Thesetup.exeinstaller is designed to be easy for new users to understand while
remaining flexible for the experienced. The volunteer development team is constantly
working onsetup.exe; before requesting a new feature, check the wishlist in the CVS
README(http://sources.redhat.com/cgi-
bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2). It may already be
present in the CVS version!

Since the default value for each option is the logical choice for most installations, you
can get a working minimal Cygwin environment installed by simply clicking theNext

button at each page. The only exception to this is choosing a Cygwin mirror, which you
can choose by experimenting with those listed at http://cygwin.com/mirrors.html. For
more details about each of page of thesetup.exeinstallation, read on below. Please
note that this guide assumes that you have a basic understanding of Unix (or a
Unix-like OS). If you are new to Unix, you will also want to make use of other
resources (http://www.google.com/search?q=new+to+unix).

2.1.1. Download Source
Cygwin uses packages to manage installing various software. When the default
Install from Internet option is chosen,setup.execreates a local directory to
store the packages before actually installing the contents.Download from Internet

performs only the first part (storing the packages locally), whileInstall from

Local Directory performs only the second (installing the contents of the packages).

TheDownload from Internet option is mainly for creating a base Cygwin package
tree on one computer for installation on several machines withInstall from Local

Directory ; copy the entire local package tree to another machine with the directory
tree intact. For example, you might create aC:\cache\ directory and placesetup.exe
in it. Runsetup.exeto Install from Internet or Download from Internet ,

10

Chapter 2. Setting Up Cygwin

then copy the wholeC:\cache\ to each machine and instead chooseInstall from

Local Directory . Unfortunatelysetup.exedoes not yet support unattended installs.

Though this provides some basic mirroring functionality, if you are managing a wide
Cygwin installation, to keep up to date we recommend using a mirroring tool such as
wget. A helpful user on the Cygwin mailing list created a simple demonstration script
to accomplish this; search the list formkcygwgetfor ideas.

2.1.2. Selecting an Install Directory
TheRoot Directory for Cygwin (defaultC:\cygwin) will become/ within your
Cygwin installation. You must have write access to the parent directory, and any ACLs
on the parent directory will determine access to installed files.

The Install For options ofAll Users or Just Me should always be left on the
defaultAll Users , unless you do not have write access toHKEY_LOCAL_MACHINEin
the registry or the All Users Start Menu. This is true even if you are the only user
planning to use Cygwin on the machine. SelectingJust Me will cause problems for
programs such ascrond andsshd. If you do not have the necessary permissions, but
still want to use these programs, consult the Cygwin mailing list archives about others’
experiences.

TheDefault Text File Type should be left onUnix (that is,\n) unless you have
a very good reason to switch it toDOS(that is,\r\n).

2.1.3. Local Package Directory
TheLocal Package Directory is the cache wheresetup.exestores the packages
before they are installed. The cache must not be the same folder as the Cygwin root.
Within the cache, a separate directory is created for each Cygwin mirror, which allows
setup.exeto use multiple mirrors and custom packages. After installing Cygwin, the
cache is no longer necessary, but you may want to retain the packages as backups, for
installing Cygwin to another system, or in case you need to reinstall a package.

2.1.4. Connection Method
TheDirect Connection method of downloading will directly download the
packages, while the IE5 method will leverage your IE5 cache for performance. If your
organisation uses a proxy server or auto-configuration scripts, the IE5 method also uses

11

Chapter 2. Setting Up Cygwin

these settings. If you have a proxy server, you can manually type it into theUse Proxy

section. Unfortunately,setup.exedoes not currently support password authorization for
proxy servers.

2.1.5. Choosing Mirrors
Since there is no way of knowing from where you will be downloading Cygwin, you
need to choose at least one mirror site. Cygwin mirrors are geographically distributed
around the world; check the list at http://cygwin.com/mirrors.html to find one near you.
You can select multiple mirrors by holding downCTRLand clicking on each one. If you
have the URL of an unlisted mirror (for example, if your organization has an internal
Cygwin mirror) you can add it.

2.1.6. Choosing Packages
For each selected mirror site,setup.exedownloads a small text file calledsetup.bz2

that contains a list of packages available from that site along with some basic
information about each package whichsetup.exeparses and uses to create the chooser
window. For details about the format of this file, see
http://sources.redhat.com/cygwin-apps/setup.html
(http://sources.redhat.com/cygwin-apps/setup.html#setup.ini).

The chooser is the most complex part ofsetup.exe. Packages are grouped into
categories, and one package may belong to multiple categories (assigned by the
volunteer package maintainer). Each package can be found under any of those
categories in the heirarchial chooser view. By defaultsetup.exewill install only the
packages in theBase category and their dependencies, resulting in a minimal Cygwin
installation. However, this will not include many commonly used tools such asgcc
(which you will find in theDevel category).

You can changesetup.exe’s view style, which is helpful if you know the name of a
package you want to install but not which category it is in. Click on theView button
and it will rotate betweenCategory (the default),Full (all packages), andPartial

(only packages to be upgraded). If you are familiar with Unix, you will probably want
to at least glance through theFull listing for your favorite tools.

Once you have an existing Cygwin installation, thesetup.exechooser is also used to
manage your Cygwin installation. Information on installed packages is kept in the
/etc/setup/ directory of your Cygwin installation; ifsetup.execannot find this
directory it will act just like you had no Cygwin installation. Ifsetup.exefinds a newer

12

Chapter 2. Setting Up Cygwin

version of an installed package available, it will automatically mark it to be upgraded.
To Uninstall , Reinstall , or get theSource for an existing package, click onKeep

to toggle it. Also, to avoid the need to reboot after upgrading, make sure to close all
Cygwin windows and stop all Cygwin processes beforesetup.exebegins to install the
upgraded package.

The final feature of thesetup.exechooser is forPrevious andExperimental

packages. By default the chooser shows only the current version of each package,
though mirrors have at least one previous version and occasionally there is a testing or
beta version of a package available. To see these package, click on thePrev or Exp

radio button. Be warned, however, that the next time you runsetup.exeit will try to
replace old or experimental versions with the latest.

2.1.7. Download and Installation Progress
First,setup.exewill download all selected packages to the local directory chosen
earlier. Before installing,setup.exeperforms a checksum on each package. If the local
directory is a slow medium (such as a network drive) this can take a long time. During
the download and installation,setup.exeshow progress bars for the current task and
total remaining disk space.

2.1.8. Icons
You may choose to install shortcuts on the Desktop and/or Start Menu to start abash

shell. If you prefer to use a different shell or the native Windows version ofrxvt , you
can use these shortcuts as a guide to creating your own.

2.1.9. Post-Install Scripts
Last of all,setup.exewill run any post-install scripts to finish correctly setting up
installed packages. Since each script is run separately, several windows may pop up. If
you are interested in what is being done, see the Cygwin Package Contributor’s Guide
at http://cygwin.com/setup.html When the last post-install script is completed,
setup.exewill display a box announcing the completion. A few packages, such as the
OpenSSH server, require some manual site-specific configuration. Relevant
documentation can be found in the/usr/doc/Cygwin/ directory.

13

Chapter 2. Setting Up Cygwin

2.2. Environment Variables
Before starting bash, you may set some environment variables. A .bat file is provided
where the most important ones are set before bash in launched. This is the safest way to
launch bash initially. The .bat file is installed in the root directory that you specified
during setup and pointed to in the Start Menu under the "Cygwin" option. You can edit
it this file your liking.

The CYGWIN variable is used to configure many global settings for the Cygwin
runtime system. Initially you can leave CYGWIN unset or set it totty (e.g. to support
job control with ^Z etc...) using a syntax like this in the DOS shell, before launching
bash.

C:\> set CYGWIN=tty notitle glob

The PATH environment variable is used by Cygwin applications as a list of directories
to search for executable files to run. This environment variable is converted from
Windows format (e.g.C:\WinNT\system32;C:\WinNT) to UNIX format (e.g.,
/WinNT/system32:/WinNT) when a Cygwin process first starts. Set it so that it
contains at least thex:\cygwin\bin directory where "x:\cygwin is the "root" of
your cygwin installation if you wish to use cygwin tools outside of bash.

The HOME environment variable is used by many programs to determine the location
of your home directory and we recommend that it be defined. This environment
variable is also converted from Windows format when a Cygwin process first starts. Set
it to point to your home directory before launching bash.

The TERM environment variable specifies your terminal type. It is automatically set to
cygwin if you have not set it to something else.

The LD_LIBRARY_PATH environment variable is used by the Cygwin function
dlopen () as a list of directories to search for .dll files to load. This environment
variable is converted from Windows format to UNIX format when a Cygwin process
first starts. Most Cygwin applications do not make use of thedlopen () call and do
not need this variable.

2.3. Changing Cygwin’s Maximum Memory
By default no Cygwin program can allocate more than 384 MB of memory
(program+data). You should not need to change this default in most circumstances.
However, if you need to use more real or virtual memory in your machine you may add

14

Chapter 2. Setting Up Cygwin

an entry in the either theHKEY_LOCAL_MACHINE(to change the limit for all users) or
HKEY_CURRENT_USER(for just the current user) section of the registry.

Add theDWORDvalueheap_chunk_in_mb and set it to the desired memory limit in
decimal MB. It is preferred to do this in Cygwin using theregtool program included in
the Cygwin package. (For more information aboutregtool or the other Cygwin
utilities, seeSection 3.6or use each the--help option of each util.) You should
always be careful when usingregtool since damaging your system registry can result in
an unusable system. This example sets memory limit to 1024 MB:

regtool -i set /HKLM/Software/Cygnus\ Solutions/Cygwin/heap_chunk_in_mb 1024
regtool -v list /HKLM/Software/Cygnus\ Solutions/Cygwin

Exit all running Cygwin processes and restart them. Memory can be allocated up to the
size of the system swap space minus any the size of any running processes. The system
swap should be at least as large as the physically installed RAM and can be modified
under the System category of the Control Panel.

Here is a small program written by DJ Delorie that tests the memory allocation limit on
your system:

main()
{

unsigned int bit=0x40000000, sum=0;
char *x;

while (bit > 4096)
{

x = malloc(bit);
if (x)
sum += bit;
bit >>= 1;

}
printf("%08x bytes (%.1fMb)\n", sum, sum/1024.0/1024.0);
return 0;

}

You can compile this program using:

gcc max_memory.c -o max_memory.exe

Run the program and it will output the maximum amount of allocatable memory.

15

Chapter 2. Setting Up Cygwin

2.4. NT security and the ntsec usage
The design goal of ntsec is to get a more UNIX like permission structure based upon
the security features of Windows NT. To describe the changes, I will give a short
overview of NT security in chapter one.

Chapter two discusses the changes in ntsec related to privileges on processes.

Chapter three shows the basics of UNIX like setting of file permissions.

Chapter four talks about the advanced settings introduced in release 1.1

Chapter five illustrates the permission mapping leak of Windows NT.

Chapter six describes the new support of a setuid concept introduced with release 1.1.3.

Chapter six describes in short the new acl API since release 1.1

The setting of UNIX like object permissions is controlled by the new CYGWIN
variable setting(no)ntsec .

2.4.1. NT security
The NT security allows a process to allow or deny access of different kind to ‘objects’.
‘Objects’ are files, processes, threads, semaphores, etc.

The main data structure of NT security is the ‘security descriptor’ (SD) structure. It
explains the permissions, that are granted (or denied) to an object and contains
information, that is related to so called ‘security identifiers’ (SID).

A SID is a unique identifier for users, groups and domains. SIDs are comparable to
UNIX UIDs and GIDs, but are more complicated because they are unique across
networks. Example:

SID of a system ‘foo’:

S-1-5-21-165875785-1005667432-441284377

SID of a user ‘johndoe’ of the system ‘foo’:

S-1-5-21-165875785-1005667432-441284377-1023

The above example shows the convention for printing SIDs. The leading ‘S’ should
show that it is a SID. The next number is a version number which is always 1. The next
number is the so called ‘top-level authority’ that identifies the source that issued the
SID.

16

Chapter 2. Setting Up Cygwin

While each system in a NT network has it’s own SID, the situation is modified in NT
domains: The SID of the domain controller is the base SID for each domain user. If an
NT user has one account as domain user and another account on his local machine, this
accounts are under any circumstances DIFFERENT, regardless of the usage of the
same user name and password!

SID of a domain ‘bar’:

S-1-5-21-186985262-1144665072-740312968

SID of a user ‘johndoe’ in the domain ‘bar’:

S-1-5-21-186985262-1144665072-740312968-1207

The last part of the SID, the so called ‘relative identifier’ (RID), is by default used as
UID and/or GID under cygwin. As the name and the above example implies, this id is
unique only relative to one system or domain.

Note, that it’s possible, that an user has the same RID on two different systems. The
resulting SIDs are nevertheless different, so the SIDs are representing different users in
an NT network.

There is a big difference between UNIX IDs and NT SIDs, the existence of the so
called ‘well known groups’. For example UNIX has no GID for the group of ‘all users’.
NT has an SID for them, called ‘Everyone’ in the English versions. The SIDs of
well-known groups are not unique across an NT network but their meanings are
unmistakable. Examples of well-known groups:

everyone S-1-1-0
creator/owner S-1-3-0
batch process (via ‘at’) S-1-5-3
authenticated users S-1-5-11
system S-1-5-18

The last important group of SIDs are the ‘predefined groups’. This groups are used
mainly on systems outside of domains to simplify the administration of user
permissions. The corresponding SIDs are not unique across the network so they are
interpreted only locally:

administrators S-1-5-32-544
users S-1-5-32-545
guests S-1-5-32-546
...

17

Chapter 2. Setting Up Cygwin

Now, how are permissions given to objects? A process may assign an SD to the object.
The SD of an object consists of three parts:

• the SID of the owner
• the SID of the group
• a list of SIDs with their permissions, called ‘access control list’ (ACL)

UNIX is able to create three different permissions, the permissions for the owner, for
the group and for the world. In contrast the ACL has a potentially infinite number of
members. Every member is a so called ‘access control element’ (ACE). An ACE
contains three parts:

• the type of the ACE
• permissions, described with a DWORD
• the SID, for which the above mentioned permissions are set

The two important types of ACEs are the ‘access allowed ACE’ and the ‘access denied
ACE’. The ntsec functionality only used ‘access allowed ACEs’ up to Cygwin version
1.1.0. Later versions also use ‘access denied ACEs’ to reflect the UNIX permissions as
well as possible.

The possible permissions on objects are more detailed than in UNIX. For example, the
permission to delete an object is different from the write permission.

With the aforementioned method NT is able to grant or revoke permissions to objects in
a far more specific way. But what about cygwin? In a POSIX environment it would be
fine to have the security behavior of a POSIX system. The NT security model is
MOSTLY able to reproduce the POSIX model. The ntsec method tries to do this in
cygwin.

You ask "Mostly? Why mostly???" Because there’s a leak in the NT model. I will
describe that in detail in chapter 4.

Creating explicit object security is not that easy so you will often see only two simple
variations in use:

• default permissions, computed by the operating system
• each permission to everyone

For parameters to functions that create or open securable objects another data structure
is used, the ‘security attributes’ (SA). This structure contains an SD and a flag that
specifies whether the returned handle to the object is inherited to child processes or not.
This property is not important for ntsec so in this document the difference between SDs
and SAs is ignored.

18

Chapter 2. Setting Up Cygwin

2.4.2. Process privileges
Any process started under control of cygwin has a semaphore attached to it, that is used
for signaling purposes. The creation of this semaphore can be found in sigproc.cc,
function ‘getsem’. The first parameter to the function call ‘CreateSemaphore’ is an SA.
Without ntsec this SA assigns default security to the semaphore. There is a simple
disadvantage: Only the owner of the process may send signals to it. Or, in other words,
if the owner of the process is not a member of the administrators’ group, no
administrator may kill the process! This is especially annoying, if processes are started
via service manager.

Ntsec now assigns an SA to the process control semaphore, that has each permission
set for the user of the process, for the administrators’ group and for ‘system’, which is a
synonym for the operating system itself. The creation of this SA is done by the function
‘sec_user’, that can be found in ‘shared.cc’. Each member of the administrators’ group
is now allowed to send signals to any process created in cygwin, regardless of the
process owner.

Moreover, each process now has the appropriate security settings, when it is started via
‘CreateProcess’. You will find this in function ‘spawn_guts’ in module ‘spawn.cc’. The
security settings for starting a process in another user context have to add the sid of the
new user, too. In the case of the ‘CreateProcessAsUser’ call, sec_user creates an SA
with an additional entry for the sid of the new user.

2.4.3. File permissions
If ntsec is turned on, file permissions are set as in UNIX. An SD is assigned to the file
containing the owner and group and ACEs for the owner, the group and ‘Everyone’.

The complete settings of UNIX like permissions can be found in the file ‘security.cc’.
The two functions ‘get_nt_attribute’ and ‘set_nt_attribute’ are the main code. The
reading and writing of the SDs is done by the functions ‘read_sd’ and ‘write_sd’.
‘write_sd’ uses the function ‘BackupRead’ instead of the simpler function
‘SetFileSecurity’ because the latter is unable to set owners different from the caller.

If you are creating a file ‘foo’ outside of cygwin, you will see something like the
following on ls -ln:

If your login is member of the administrators’ group:

rwxrwxrwx 1 544 513 ... foo

if not:

19

Chapter 2. Setting Up Cygwin

rwxrwxrwx 1 1000 513 ... foo

Note the user and group IDs. 544 is the UID of the administrators’ group. This is a
‘feature’ :-P of WinNT. If one is a member of the administrators’ group, every file,
that he has created is owned by the administrators’ group, instead by him.

The second example shows the UID of the first user, that has been created with NT’s
the user administration tool. The users and groups are sequentially numbered, starting
with 1000. Users and groups are using the same numbering scheme, so a user and a
group don’t share the same ID.

In both examples the GID 513 is of special interest. This GID is a well known group
with different naming in local systems and domains. Outside of domains the group is
named ’None’ (‘Kein’ in German, ‘Aucun’ in French, etc.), in domains it is named
’Domain Users’. Unfortunately, the group ‘None’ is never shown in the user admin tool
outside of domains! This is very confusing but this seems to have no negative
consequences.

To work correctly, ntsec depends on the files/etc/passwd/ and/etc/group . In
cygwin release 1.0 the names and the IDs must correspond to the appropriate NT IDs!
The IDs used in cygwin are the RID of the NT SID, as mentioned earlier. An SID of
e.g. the user ‘corinna’ on my NT workstation:

S-1-5-21-165875785-1005667432-441284377-1000

Note the last number: It’s the RID 1000, the cygwin’s UID.

Unfortunately, workstations and servers outside of domains are not able to set primary
groups! In these cases, where there is no correlation of users to primary groups, NT
returns 513 (None) as primary group, regardless of the membership to existing local
groups.

When usingmkpasswd -l -gon such systems, you have to change the primary group
by hand if ‘None’ as primary group is not what you want (and I’m sure, it’s not what
you want!)

Look at the following examples, which were parts of my files before storing SIDs in
/etc/passwd and /etc/group had been introduced (See next chapter for details). With the
exception of my personal user entry, all entries are well known entries.

Example 2-1. /etc/passwd

everyone:*:0:0:::
system:*:18:18:::
administrator::500:544::/home/root:/bin/bash

20

Chapter 2. Setting Up Cygwin

guest:*:501:546:::
administrators:*:544:544::/home/root:
corinna::1000:547:Corinna Vinschen:/home/corinna:/bin/tcsh

Example 2-2. /etc/group

everyone::0:
system::18:
none::513:
administrators::544:
users::545:
guests::546:
powerusers::547:

As you can see, I changed my primary group membership from 513 (None) to 547
(powerusers). So all files I created inside of Cygwin were now owned by the
powerusers group instead of None. This is the way I liked it.

Groups may be mentioned in the passwd file, too. This has two advantages:

• Because NT assigns them to files as owners, als -l is often more readable.
• Moreover it’s possible to assigned them to files as owners with cygwin’schown.

The group ‘system’ is the aforementioned synonym for the operating system itself and
is normally the owner of processes, that are started through service manager. The same
is true for files, that are created by processes, which are started through service
manager.

2.4.4. New since Cygwin release 1.1
In Cygwin release 1.1 a new technique of using the/etc/passwd and/etc/group is
introduced.

Both files may now contain SIDs of users and groups. They are saved in the last field of
pw_gecos in/etc/passwd and in the gr_passwd field in/etc/group .

This has the following advantages:

• ntsec works better in domain environments.
• Accounts (users and groups) may get another name in cygwin than their NT account

name. The name in/etc/passwd or /etc/group is transparently used by cygwin
applications (eg.chown, chmod, ls):

21

Chapter 2. Setting Up Cygwin

root::500:513::/home/root:/bin/sh

instead of

adminstrator::500:513::/home/root:/bin/sh

Caution: If you like to use the account as login account viatelnet etc. you have to
remain the name unchanged or you have to use the special version oflogin which is
part of the standard Cygwin distribution since 1.1.

• Cygwin UIDs and GIDs are now not necessarily the RID part of the NT SID:

root::0:513:S-1-5-21-54355234-56236534-345635656-500:/home/root:/bin/sh

instead of

root::500:513::/home/root:/bin/sh

• As in U*X systems UIDs and GIDs numbering scheme now don’t influence each
other. So it’s possible to have same Id’s for a user and a group:

Example 2-3. /etc/passwd:

root::0:0:S-1-5-21-54355234-56236534-345635656-500:/home/root:/bin/sh

Example 2-4. /etc/group:

root:S-1-5-32-544:0:

The toolsmkpasswdandmkgroup create the needed entries by default. If you don’t
want that you can use the options-s or --no-sids . I suggest not to do this since ntsec
works better when having the SIDs available.

Please note that the pw_gecos field in/etc/passwd is defined as a comma seperated
list. The SID has to be the last field!

As aforementioned you are able to use cygwin account names different from the NT
account names. If you want to login thru ‘telnet’ or something else you have to use the
speciallogin. You may then add another field to pw_gecos which contains the NT user
name including it’s domain. So you are able to login as each domain user. The syntax is
easy: Just add an entry of the form U-ntdomain\ntusername to the pw_gecos field. Note
that the SID must still remain the last field in pw_gecos!

the_king::1:1:Elvis Presley,U-STILLHERE\elvis,S-1-5-21-1234-5678-9012-1000:/bin/sh

22

Chapter 2. Setting Up Cygwin

For a local user just drop the domain:

the_king::1:1:Elvis Presley,U-elvis,S-1-5-21-1234-5678-9012-1000:/bin/sh

In either case the password of the user is taken from the NT user database, NOT from
the passwd file!

As in the previous chapter I give my personal/etc/passwd and/etc/group as
examples. Please note that I’ve changed these files heavily! There’s no need to change
them that way, it’s just for testing purposes and... for fun.

Example 2-5. /etc/passwd

root:*:0:0:Administrators group,S-1-5-32-544::
SYSTEM:*:18:18:,S-1-5-18:/home/system:/bin/bash
admin:*:500:513:,S-1-5-21-1844237615-436374069-1060284298-500:/home/Administrator:/bin/bash
corinna:*:100:0:Corinna Vinschen,S-1-5-21-1844237615-436374069-1060284298-1003:/home/corinna:/bin/tcsh
Guest:*:501:546:,S-1-5-21-1844237615-436374069-1060284298-501:/home/Guest:/bin/bash

Example 2-6. /etc/group

root:S-1-5-32-544:0:
local:S-1-2-0:2:
network:S-1-5-2:3:
interactive:S-1-5-4:4:
authenticatedusers:S-1-5-11:5:
SYSTEM:S-1-5-18:18:
local_svc:S-1-5-19:19:
netwrk_svc:S-1-5-20:20:
none:S-1-5-21-1844237615-436374069-1060284298-513:513:
bckup_op:S-1-5-32-551:551:
guests:S-1-5-32-546:546:
pwrusers:S-1-5-32-547:547:
replicator:S-1-5-32-552:552:
users:S-1-5-32-545:545:

If you want to do similar changes to your files, please do that only if you’re feeling
comfortably with the concepts. Otherwise don’t be surprised if some stuff doesn’t work
anymore. If you screwed up things, revert to files created by mkpasswd and mkgroup.
Especially don’t change the uid or the name of user SYSTEM. Even if that works
mostly, some Cygwin applications running as local service under that account could
behave strangly suddenly.

23

Chapter 2. Setting Up Cygwin

2.4.5. The mapping leak
Now its time to point out the leak in the NT permissions. The official documentation
explains in short the following:

• access allow ACEs are accumulated regarding to the group membership of the caller.
• The order of ACEs is important. The system reads them in sequence until either any

needed right is denied or all needed rights are granted. Later ACEs are then not taken
into account.

• All access denied ACEs _should_ precede any access allowed ACE.

Note that the last rule is a preference, not a law. NT will correctly deal with the ACL
regardless of the sequence order. The second rule is not modified to get the ACEs in the
prefered order.

Unfortunately the security tab of the NT4 explorer is completely unable to deal with
access denied ACEs while the explorer of W2K rearranges the order of the ACEs
before you can read them. Thank God, the sort order remains unchanged if one presses
the Cancel button.

You still ask "Where is the leak?" NT ACLs are unable to reflect each possible
combination of POSIX permissions. Example:

rw-r-xrw-

1st try:

UserAllow: 110
GroupAllow: 101
OthersAllow: 110

Hmm, because of the accumulation of allow rights the user may execute because the
group may execute.

2st try:

UserDeny: 001
GroupAllow: 101
OthersAllow: 110

Now the user may read and write but not execute. Better? No! Unfortunately the group
may write now because others may write.

3rd try:

24

Chapter 2. Setting Up Cygwin

UserDeny: 001
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Now the group may not write as intended but unfortunately the user may not write
anymore, too. How should this problem be solved? According to the official rules a
UserAllow has to follow the GroupDeny but it’s easy to see that this can never be
solved that way.

The only chance:

UserDeny: 001
UserAllow: 010
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Again: This works for both, NT4 and W2K. Only the GUIs aren’t able to deal with that
order.

2.4.6. New acl API
For dealing with ACLs Cygwin now has the acl API as it’s implemented in newer
versions of Solaris. The new data structure for a single ACL entry (ACE in NT
terminology) is defined insys/acl.h as:

typedef struct acl {
int a_type; /* entry type */
uid_t a_id; /* UID | GID */
mode_t a_perm; /* permissions */

} aclent_t;

The a_perm member of the aclent_t type contains only the bits for read, write and
execute as in the file mode. If eg. read permission is granted, all read bits (S_IRUSR,
S_IRGRP, S_IROTH) are set. CLASS_OBJ or MASK ACL entries are not fully
implemented yet.

The new API calls are

acl(2), facl(2)
aclcheck(3),
aclsort(3),

25

Chapter 2. Setting Up Cygwin

acltomode(3), aclfrommode(3),
acltopbits(3), aclfrompbits(3),
acltotext(3), aclfromtext(3)

Like in Solaris, Cygwin has two new commands for working with ACLs on the
command line:getfaclandsetfacl.

Online man pages for the aforementioned commands and API calls can be found on eg.
http://docs.sun.com

2.4.7. New setuid concept
UNIX applications which have to switch the user context are using thesetuidand
seteuidcalls which are not part of the Windows API. Nevertheless these calls are
supported under Windows NT/W2K since Cygwin release 1.1.3. Because of the nature
of NT security an application which needs the ability has to be patched, though.

NT uses so called ‘access tokens’ to identify a user and it’s permissions. To switch the
user context the application has to request such an ‘access token’. This is typically done
by calling the NT API functionLogonUser. The access token is returned and either
used inImpersonateLoggedOnUserto change user context of the current process or
in CreateProcessAsUserto change user context of a spawned child process. An
important restriction is that the application usingLogonUsermust have special
permissions:

"Act as part of the operating system"
"Replace process level token"
"Increase quotas"

Note that administrators do not have all these user rights set by default.

Two new Cygwin calls are introduced to support portingsetuidapplications with a
minimum of effort. You only give Cygwin the right access token and then you can call
seteuidor setuidas usual in POSIX applications. The call tosexecis not needed
anymore. Porting asetuidapplication is illustrated by a short example:

/* First include all needed cygwin stuff. */
#ifdef __CYGWIN__
#include <windows.h>
#include <sys/cygwin.h>
/* Use the following define to determine the Windows version */
#define is_winnt (GetVersion() < 0x80000000)
#endif

26

Chapter 2. Setting Up Cygwin

[...]

struct passwd *user_pwd_entry = getpwnam (username);
char *cleartext_password = getpass ("Password:");

[...]

#ifdef __CYGWIN__
/* Patch the typical password test. */
if (is_winnt)

{
HANDLE token;

/* Try to get the access token from NT. */
token = cygwin_logon_user (user_pwd_entry, cleartext_password);
if (token == INVALID_HANDLE_VALUE)

error_exit;
/* Inform Cygwin about the new impersonation token.

Cygwin is able now, to switch to that user context by
setuid or seteuid calls. */

cygwin_set_impersonation_token (token);
}

else
#endif /* CYGWIN */

/* Use standard method for W9X as well. */
hashed_password = crypt (cleartext_password, salt);
if (!user_pwd_entry ||

strcmp (hashed_password, user_pwd_entry->pw_password))
error_exit;

[...]

/* Everything else remains the same! */

setegid (user_pwd_entry->pw_gid);
seteuid (user_pwd_entry->pw_uid);
execl ("/bin/sh", ...);

The new Cygwin call to retrive an access token is defined as follows:

#include <windows.h>
#include <sys/cygwin.h>

27

Chapter 2. Setting Up Cygwin

HANDLE
cygwin_logon_user (struct passwd *pw, const char *cleartext_password)

You can call that function as often as you want for different user logons and remeber
the access tokens for further calls to the second function.

#include <windows.h>
#include <sys/cygwin.h>

void
cygwin_set_impersonation_token (HANDLE hToken);

is the call to inform Cygwin about the user context to which further calls to
setuid/seteuidshould switch to. While you need always the correct access token to do
asetuid/seteuidto another users context, you are always able to usesetuid/seteuidto
return to your own user context by giving your own uid as parameter.

If you have remembered several access tokens from calls tocygwin_logon_useryou
can switch to different user contexts by observing the following order:

cygwin_set_impersonation_token (user1_token);
seteuid (user1_uid);

[...]

seteuid (own_uid);
cygwin_set_impersonation_token (user2_token);
seteuid (user2_uid);

[...]

seteuid (own_uid);
cygwin_set_impersonation_token (user1_token);
seteuid (user1_uid);

etc.

2.4.8. New since Cygwin release 1.3.3
Since Cygwin release 1.3.3, applications having theCreate a process level tokenuser
right can switch user context without giving a password by just calling the usualsetuid,
seteuid, setgidandsetegidfunctions. This is typically only given to the SYSTEM user.

28

Chapter 2. Setting Up Cygwin

However, this now allows to switch the user context using e. g. rhosts authentication or
(when running sshd under SYSTEM account as service) public key authentication.

An important restriction of this method is, that a process started under SYSTEM
account can’t access network shares which require authentication. This also applies to
the subprocesses which switched the user context without a password. People using
network home drives are typically not able to access it when trying to login using ssh or
rsh without password.

2.4.9. Special values of user and group ids
If the current user is not present in/etc/passwd , that user’s user id is set to a special
value of 400. The user name for the current user will always be shown correctly. If
another user (or a Windows group, treated as a user) is not present in/etc/passwd ,
the user id of that user will have a special value of -1 (which would be shown byls as
65535). The user name shown in this case will be ’????????’.

If the current user is not present in/etc/passwd , that user’s login group id is set to a
special value of 401. If another user is not present in/etc/passwd , that user’s login
group id is set to a special value of -1. If the user is present in/etc/passwd , but that
user’s group is not in/etc/group and is not the login group of that user, the group id
is set to a special value of -1. The name of this group (id -1) will be shown as
’????????’. In releases of Cygwin before 1.3.20, the group id 401 had a group name
’None’. Since Cygwin release 1.3.20, the group id 401 is shown as ’mkpasswd’,
indicating the command that should be run to alleviate the situation.

Also, since Cygwin release 1.3.20, if the current user is present in/etc/passwd , but
that user’s login group is not present in/etc/group , the group name will be shown as
’mkgroup’, again indicating the appropriate command.

To summarize:

• If the current user doesn’t show up in/etc/passwd , it’s groupwill be named
’mkpasswd’.

• Otherwise, if the login group of the current user isn’t in/etc/group , it will be
named ’mkgroup’.

• Otherwise a group not in/etc/group will be shown as ’????????’ and a user not in
/etc/passwd will be shown as "????????".

Note that, since the special user and group names are just indicators, nothing prevents
you from actually having a user named ‘mkpasswd’ in/etc/passwd (or a group

29

Chapter 2. Setting Up Cygwin

named ‘mkgroup’ in/etc/group). If you do that, however, be aware of the possible
confusion.

2.5. Customizing bash
To set bash up so that cut and paste work properly, click on the "Properties" button of
the window, then on the "Misc" tab. Make sure that "Quick Edit" is checked and "Fast
Pasting" isn’t. These settings will be remembered next time you run bash from that
shortcut. Similarly you can set the working directory inside the "Program" tab. The
entry "%HOME%" is valid.

Your home directory should contain three initialization files that control the behavior of
bash. They are.profile , .bashrc and.inputrc . These initialization files will only
be read if HOME is defined before starting bash.

.profile (other names are also valid, see the bash man page) contains bash
commands. It is executed when bash is started as login shell, e.g. from the command
bash --login(the provided .bat file does not set the switch). This is a useful place to
define and export environment variables and bash functions that will be used by bash
and the programs invoked by bash. It is a good place to redefine PATH if needed. We
recommend adding a ":." to the end of PATH to also search the current working
directory (contrary to DOS, the local directory is not searched by default). Also to
avoid delays you should eitherunsetMAILCHECK or define MAILPATH to point to
your existing mail inbox.

.bashrc is similar to.profile but is executed each time an interactive bash shell is
launched. It serves to define elements that are not inherited through the environment,
such as aliases. If you do not use login shells, you may want to put the contents of
.profile as discussed above in this file instead.

shopt -s nocaseglob

will allow bash to glob filenames in a case-insensitive manner. Note that.bashrc is
not called automatically for login shells. You can source it from.profile .

.inputrc controls how programs using the readline library (including bash) behave. It
is loaded automatically. The full details are in thereadline.info . Due to a bug in the
current readline version,.inputrc cannot contain \r, even on text mounted systems.
Consider the following settings:

Make Bash 8bit clean

30

Chapter 2. Setting Up Cygwin

set meta-flag on
set convert-meta off
set output-meta on
Ignore case while completing
set completion-ignore-case on

The first three commands allow bash to display 8-bit characters, useful for languages
with accented characters. The last line makes filename completion case insensitive,
which can be convenient in a Windows environment.

31

Chapter 3. Using Cygwin
This chapter explains some key differences between the Cygwin environment and
traditional UNIX systems. It assumes a working knowledge of standard UNIX
commands.

3.1. Mapping path names

3.1.1. Introduction
Cygwin supports both Win32- and POSIX-style paths, where directory delimiters may
be either forward or back slashes. UNC pathnames (starting with two slashes and a
network name) are also supported.

POSIX operating systems (such as Linux) do not have the concept of drive letters.
Instead, all absolute paths begin with a slash (instead of a drive letter such as "c:") and
all file systems appear as subdirectories (for example, you might buy a new disk and
make it be the/disk2 directory).

Because many programs written to run on UNIX systems assume the existance of a
single unified POSIX file system structure, Cygwin maintains a special internal POSIX
view of the Win32 file system that allows these programs to successfully run under
Windows. Cygwin uses this mapping to translate between Win32 and POSIX paths as
necessary.

3.1.2. The Cygwin Mount Table
Themount utility program is used to to map Win32 drives and network shares into
Cygwin’s internal POSIX directory tree. This is a similar concept to the typical UNIX
mount program. For those people coming from a Windows background, themount
utility is very similar to the old DOSjoin , in that it makes your drive letters appear as
subdirectories somewhere else.

The mapping is stored in the current user’s Cygwinmount tablein the Windows
registry so that the information will be retrieved next time the user logs in. Because it is
sometimes desirable to have system-wide as well as user-specific mounts, there is also
a system-wide mount table that all Cygwin users inherit. The system-wide table may

32

Chapter 3. Using Cygwin

only be modified by a user with the appropriate priviledges (Administrator priviledges
in Windows NT).

The current user’s table is located under "HKEY_CURRENT_USER/Software/Cygnus
Solutions/Cygwin/mounts v<version>" where <version> is the latest registry version
associated with the Cygwin library (this version is not the same as the release number).
The system-wide table is located under the same subkeys under
HKEY_LOCAL_SYSTEM.

By default, the POSIX root/ points to the system partition but it can be relocated to
any directory in the Windows file system using themount command. Whenever
Cygwin generates a POSIX path from a Win32 one, it uses the longest matching prefix
in the mount table. Thus, ifC: is mounted as/c and also as/ , then Cygwin would
translateC:/foo/bar to /c/foo/bar .

Invokingmount without any arguments displays Cygwin’s current set of mount points.
In the following example, the C drive is the POSIX root and D drive is mapped to/d .
Note that in this case, the root mount is a system-wide mount point that is visible to all
users running Cygwin programs, whereas the/d mount is only visible to the current
user.

Example 3-1. Displaying the current set of mount points

c:\> mount
f:\cygwin\bin on /usr/bin type system (binmode)
f:\cygwin\lib on /usr/lib type system (binmode)
f:\cygwin on / type system (binmode)
e:\src on /usr/src type system (binmode)
c: on /cygdrive/c type user (binmode,noumount)
e: on /cygdrive/e type user (binmode,noumount)

You can also use themount command to add new mount points, and theumount to
delete them. SeeSection 3.6.8andSection 3.6.15for more information on how to use
these utilities to set up your Cygwin POSIX file system.

Whenever Cygwin cannot use any of the existing mounts to convert from a particular
Win32 path to a POSIX one, Cygwin will automatically default to an imaginary mount
point under the default POSIX path/cygdrive . For example, if Cygwin accesses
Z:\foo and the Z drive is not currently in the mount table, thenZ:\ would be
automatically converted to/cygdrive/Z . The default prefix of/cygdrive may be
changed (see theSection 3.6.8for more information).

It is possible to assign some special attributes to each mount point. Automatically
mounted partitions are displayed as "auto" mounts. Mounts can also be marked as either

33

Chapter 3. Using Cygwin

"textmode" or "binmode" -- whether text files are read in the same manner as binary
files by default or not (seeSection 3.2for more information on text and binary modes.

3.1.3. Additional Path-related Information
Thecygpathprogram provides the ability to translate between Win32 and POSIX
pathnames in shell scripts. SeeSection 3.6.2for the details.

The HOME, PATH, and LD_LIBRARY_PATH environment variables are
automatically converted from Win32 format to POSIX format (e.g. from
c:\cygwin\bin to /bin , if there was a mount from that Win32 path to that POSIX
path) when a Cygwin process first starts.

Symbolic links can also be used to map Win32 pathnames to POSIX. For example, the
commandln -s //pollux/home/joe/data /datawould have about the same effect as
creating a mount point from//pollux/home/joe/data to /data usingmount,
except that symbolic links cannot set the default file access mode. Other differences are
that the mapping is distributed throughout the file system and proceeds by iteratively
walking the directory tree instead of matching the longest prefix in a kernel table. Note
that symbolic links will only work on network drives that are properly configured to
support the "system" file attribute. Many do not do so by default (the Unix Samba
server does not by default, for example).

3.2. Text and Binary modes

3.2.1. The Issue
On a UNIX system, when an application reads from a file it gets exactly what’s in the
file on disk and the converse is true for writing. The situation is different in the
DOS/Windows world where a file can be opened in one of two modes, binary or text. In
the binary mode the system behaves exactly as in UNIX. However in text mode there
are major differences:

a.On writing in text mode, a NL (\n, ^J) is transformed into the sequence CR (\r, ^M)
NL.

b. On reading in text mode, a CR followed by an NL is deleted and a ^Z character
signals the end of file.

34

Chapter 3. Using Cygwin

This can wreak havoc with the seek/fseek calls since the number of bytes actually in the
file may differ from that seen by the application.

The mode can be specified explicitly as explained in the Programming section below.
In an ideal DOS/Windows world, all programs using lines as records (such asbash,
make, sed...) would open files (and change the mode of their standard input and
output) as text. All other programs (such ascat, cmp, tr ...) would use binary mode. In
practice with Cygwin, programs that deal explicitly with object files specify binary
mode (this is the case ofod, which is helpful to diagnose CR problems). Most other
programs (such ascat, cmp, tr) use the default mode.

3.2.2. The default Cygwin behavior
The Cygwin system gives us some flexibility in deciding how files are to be opened
when the mode is not specified explicitly. The rules are evolving, this section gives the
design goals.

a. If the file appears to reside on a file system that is mounted (i.e. if its pathname
starts with a directory displayed bymount), then the default is specified by the
mount flag. If the file is a symbolic link, the mode of the target file system applies.

b. If the file appears to reside on a file system that is not mounted (as can happen
when the path contains a drive letter), the default is text.

c. Pipes and non-file devices are opened in binary mode, except if the CYGWIN
environment variable containsnobinmode .

Warning!
In b20.1 of 12/98, a file will be opened in binary mode if
any of the following conditions hold:

1. binary mode is specified in the
open call

2. CYGWIN contains binmode

3. the file resides in a binary
mounted partition

4. the file is not a disk file

35

Chapter 3. Using Cygwin

d. When a Cygwin program is launched by a shell, its standard input, output and error
are in binary mode if the CYGWIN variable containstty , else in text mode,
except if they are piped or redirected.

When redirecting, the Cygwin shells uses rules (a-c). For these shells the relevant
value of CYGWIN is that at the time the shell was launched and not that at the
time the program is executed. Non-Cygwin shells always pipe and redirect with
binary mode. With non-Cygwin shells the commandscat filename | program
and program < filename are not equivalent whenfilename is on a
text-mounted partition.

3.2.3. Example
To illustrate the various rules, we provide scripts to delete CRs from files by using the
tr program, which can only write to standard output. The script

#!/bin/sh
Remove \r from the file given as argument
tr -d ’\r’ < "$1" > "$1".nocr

will not work on a text mounted systems because the \r will be reintroduced on writing.
However scripts such as

#!/bin/sh
Remove \r from the file given as argument
tr -d ’\r’ | gzip | gunzip > "$1".nocr

and the .bat file

REM Remove \r from the file given as argument
@echo off
tr -d \r < %1 > %1.nocr

work fine. In the first case (assuming the pipes are binary) we rely ongunzip to set its
output to binary mode, possibly overriding the mode used by the shell. In the second
case we rely on the DOS shell to redirect in binary mode.

36

Chapter 3. Using Cygwin

3.2.4. Binary or text?
UNIX programs that have been written for maximum portability will know the
difference between text and binary files and act appropriately under Cygwin. For those
programs, the text mode default is a good choice. Programs included in official Cygwin
distributions should work well in the default mode.

Text mode makes it much easier to mix files between Cygwin and Windows programs,
since Windows programs will usually use the CRLF format. Unfortunately you may
still have some problems with text mode. First, some of the utilities included with
Cygwin do not yet specify binary mode when they should, e.g.cat will not work with
binary files (input will stop at ^Z, CRs will be introduced in the output). Second, you
will introduce CRs in text files you write, which can cause problems when moving
them back to a UNIX system.

If you are mounting a remote file system from a UNIX machine, or moving files back
and forth to a UNIX machine, you may want to access the files in binary mode. The text
files found there will normally be in UNIX NL format, and you would want any files
put there by Cygwin programs to be stored in a format understood by UNIX. Be sure to
remove CRs from all Makefiles and shell scripts and make sure that you only edit the
files with DOS/Windows editors that can cope with and preserve NL terminated lines.

Note that you can decide this on a disk by disk basis (for example, mounting local disks
in text mode and network disks in binary mode). You can also partition a disk, for
example by mountingc: in text mode, andc:\home in binary mode.

3.2.5. Programming
In theopen() function call, binary mode can be specified with the flagO_BINARYand
text mode withO_TEXT. These symbols are defined infcntl.h .

In the fopen() function call, binary mode can be specified by adding ab to the mode
string. There is no direct way to specify text mode.

The mode of a file can be changed by the callsetmode(fd,mode) wherefd is a file
descriptor (an integer) andmode is O_BINARYor O_TEXT. The function returns
O_BINARYor O_TEXTdepending on the mode before the call, andEOFon error.

37

Chapter 3. Using Cygwin

3.3. File permissions
On Windows 9x systems, files are always readable, and Cygwin uses the native
read-only mode to determine if they are writable. Files are considered to be executable
if the filename ends with .bat, .com or .exe, or if its content starts with #!. Consequently
chmodcan only affect the "w" mode, it silently ignores actions involving the other
modes. This means thatls -l needs to open and read files. It can thus be relatively slow.

Under NT, file permissions default to the same behavior as Windows 9x but there is
optional functionality in Cygwin that can make file systems behave more like on UNIX
systems. This is turned on by adding the "ntea" option to the CYGWIN environment
variable.

When the "ntea" feature is activated, Cygwin will start with basic permissions as
determined above, but can store POSIX file permissions in NT Extended Attributes.
This feature works quite well on NTFS partitions because the attributes can be stored
sensibly inside the normal NTFS filesystem structure. However, on a FAT partition, NT
stores extended attributes in a flat file at the root of the partition calledEA DATA. SF.
This file can grow to extremely large sizes if you have a large number of files on the
partition in question, slowing the system to a crawl. In addition, theEA DATA. SFfile
can only be deleted outside of Windows because of its "in use" status. For these
reasons, the use of NT Extended Attributes is off by default in Cygwin. Finally, note
that specifying "ntea" in CYGWIN has no effect under Windows 9x.

Under NT, the test "[-w filename]" is only true if filename is writable across the board,
e.g.chmod +w filename.

3.4. Special filenames

3.4.1. DOS devices
Windows filenames invalid under Windows are also invalid under Cygwin. This means
that base filenames such asAUX, COM1, LPT1 or PRN(to name a few) cannot be used in a
regular Cygwin Windows or POSIX path, even with an extension (prn.txt). However
the special names can be used as filename extensions (file.aux). You can use the
special names as you would under DOS, for example you can print on your default
printer with the commandcat filename > PRN(make sure to end with a Form Feed).

38

Chapter 3. Using Cygwin

3.4.2. POSIX devices
There is no need to create a POSIX/dev directory as it is simulated within Cygwin
automatically. It supports the following devices:/dev/null , /dev/zero , /dev/tty ,
/dev/ttyX , /dev/ptmx , /dev/comX (the serial ports),/dev/windows (the windows
message queue),/dev/random and/dev/urandom . These devices cannot be seen
with the commandls /devalthough commands such asls /dev/tty work fine.

Windows NT/W2K/XP additionally support raw devices like floppies, disks, partitions
and tapes. These are accessed from Cygwin applications using POSIX device names
which are supported in two different ways. Up to 1.3.3, Cygwin only uses Win32
device names, since 1.3.4 it additionally uses NT internal device names.

Up to Cygwin 1.3.3 the only way to access those devices is to mount the Win32 device
names to a POSIX device name.

The Win32 device name for a partition is the drive letter with leading\\.\ , so the
floppy would be\\.\A: , the first partition typically\\.\C: . Complete drives (except
floppies and CD-ROMS which are supported as partitions only) are named
\\.\PHYSICALDRIVEx . Thex is the drive number which you can check in the disk
manager. Each drive line has prepended the text "Disk x".

To access tape drives the Win32 file name\\.\TAPEx is used. For example the first
installed tape device is named\\.\tape0 .

The naming convention is simple: The name of the POSIX device has to begin with
/dev/ and the rest is as you like. The only exception are tape devices. To identify if the
tape device is used as a rewind or a no-rewind device the name must not begin withn

(rewind) or has to begin withn (no-rewind).

Some examples:

mount -b //./A: /dev/fd0 # mount floppy as raw block special
mount -b //./physicaldrive1 /dev/hdb # mount "Disk 1"
mount -b //./tape0 /dev/st0 # mount first tape as the rewind device...
mount -b //./tape0 /dev/nst0 # ...and as the no-rewind device

Note the usage of the-b option. It is best to include the -b option when mounting these
devices to ensure that all file I/O is in "binary mode".

Since Cygwin 1.3.4 raw devices are accessible from inside of Cygwin processes using
fixed POSIX device names. That means, you don’t have to mount the devices anymore
which results in a more cleaner mount table.

These new fixed POSIX device names are generated using a direct conversion from the
POSIX namespace to the internal NT namespace. E.g. the first harddisk is the NT

39

Chapter 3. Using Cygwin

internal device \device\harddisk0\partition0 or the first partition on the third harddisk is
\device\harddisk2\partition1. The first floppy in the system is \device\floppy0, the first
CD-ROM is \device\cdrom0 and the first tape drive is \device\tape0.

The new fixed POSIX names are mapped to NT internal devices as follows:

/dev/st0 \device\tape0, rewind
/dev/nst0 \device\tape0, no-rewind
/dev/st1 \device\tape1
...

/dev/fd0 \device\floppy0
/dev/fd1 \device\floppy1
...

/dev/scd0 \device\cdrom0
/dev/scd1 \device\cdrom1
...

/dev/sda \device\harddisk0\partition0 (whole disk)
/dev/sda1 \device\harddisk0\partition1 (first partition)
...
/dev/sda15 \device\harddisk0\partition15 (fifteenth partition)

/dev/sdb \device\harddisk1\partition0
/dev/sdb1 \device\harddisk1\partition1

[up to]

/dev/sdl \device\harddisk11\partition0
/dev/sdl1 \device\harddisk11\partition1
...
/dev/sdl15 \device\harddisk11\partition15

if you don’t like these device names, feel free to create symbolic links as they are
created on Linux systems for convenience:

ln -s /dev/scd0 /dev/cdrom
ln -s /dev/st0 /dev/tape
...

Note that you can’t use the mount table to map from fixed device name to your own
device name or to map from internal NT device name to your own device name. The
following two examples will not work:

40

Chapter 3. Using Cygwin

mount -s -f -b /dev/st0 /dev/tape
mount -s -f -b /device/tape0 /dev/tape

3.4.3. The .exe extension
Executable program filenames end with .exe but the .exe need not be included in the
command, so that traditional UNIX names can be used. However, for programs that end
in ".bat" and ".com", you cannot omit the extension.

As a side effect, thels filenamegives information aboutfilename.exe if
filename.exe exists andfilename does not. In the same situation the function call
stat("filename",..) gives information aboutfilename.exe . The two files can
be distinguished by examining their inodes, as demonstrated below.

C:\> ls *
a a.exe b.exe
C:\> ls -i a a.exe
445885548 a 435996602 a.exe
C:\> ls -i b b.exe
432961010 b 432961010 b.exe

If a shell scriptmyprog and a programmyprog.exe coexist in a directory, the program
has precedence and is selected for execution ofmyprog.

Thegcccompiler produces an executable namedfilename.exe when asked to
producefilename . This allows many makefiles written for UNIX systems to work
well under Cygwin.

Unfortunately, theinstall andstrip commands do distinguish betweenfilename and
filename.exe . They fail when working on a non-existingfilename even if
filename.exe exists, thus breaking some makefiles. This problem can be solved by
writing install andstrip shell scripts to provide the extension ".exe" when needed.

3.4.4. The @pathnames
To circumvent the limitations on shell line length in the native Windows command
shells, Cygwin programs expand their arguments starting with "@" in a special way. If
a file pathname exists, the argument@pathname expands recursively to the content of
pathname . Double quotes can be used inside the file to delimit strings containing
blank space. Embedded double quotes must be repeated. In the following example
compare the behaviors of the bash built-inechoand of the program/bin/echo.

41

Chapter 3. Using Cygwin

Example 3-2. Using @pathname

bash$ echo ’This is "a long" line’ > mylist
bash$ echo @mylist
@mylist
c:\> c:\cygwin\bin\echo @mylist
This is a long line

3.5. The CYGWIN environment variable
The CYGWIN environment variable is used to configure many global settings for the
Cygwin runtime system. It contains the options listed below, separated by blank
characters. Many options can be turned off by prefixing withno .

• (no)binmode- if set, non-disk (e.g. pipe and COM ports) file opens default to binary
mode (no CRLF translation) instead of text mode. Defaults to set (binary mode). By
default, devices are opened in binary mode, so this option has little effect on normal
cygwin operations. It does affect two things, however. For non-NTFS filesystems,
this option will control the line endings for standard output/input/error for
redirection from the Windows command shell. It will also affect the default
translation mode of a pipe, although most shells set the pipe to binary by default.

Warning!
If set in 12/98 b20.1, all files always open in binary mode.

• check_case:level- Controls the behaviour of Cygwin when a user tries to open or
create a file using a case different from the case of the path as asved on the disk.
level is one ofrelaxed , adjust andstrict .

• relaxedwhich is the default behaviour simply ignores case. That’s the default for
native Windows applications as well.

• adjustbehaves mostly invisible. The POSIX input path is internally adjusted in
case, so that the resulting DOS path uses the correct case throughout. You can see
the result when changing the directory using a wrong case and calling/bin/pwd
afterwards.

42

Chapter 3. Using Cygwin

• strict results in a error message if the case isn’t correct. Trying to open a fileFoo

while a file fOo exists results in a "no such file or directory" error. Trying to create
a file BARwhile a fileBar exists results in a "Filename exists with different case"
error.

• codepage:[ansi|oem]- Windows console applications can use different character sets
(codepages) for drawing characters. The first setting, called "ansi", is the default.
This character set contains various forms of latin characters used in European
languages. The name originates from the ANSI Latin1 (ISO 8859-1) standard, used
in Windows 1.0, though the character sets have since diverged from any standard.
The second setting selects an older, DOS-based character set, containing various line
drawing and special characters. It is called "oem" since it was originally encoded in
the firmware of IBM PCs by original equipment manufacturers (OEMs). If you find
that some characters (especially non-US or ’graphical’ ones) do not display correctly
in Cygwin, you can use this option to select an appropriate codepage.

• (no)envcache- If set, environment variable conversions (between Win32 and
POSIX) are cached. Note that this is may cause problems if the mount table changes,
as the cache is not invalidated and may contain values that depend on the previous
mount table contents. Defaults to set.

• (no)export- if set, the final values of these settings are re-exported to the
environment as $CYGWIN again.

• error_start:filepath- if set, runsfilepath when cygwin encounters a fatal error.
This is useful for debugging.filepath is usually set to the path to thegdb program.

(no)glob[:ignorecase]- if set, command line arguments containing UNIX-style file
wildcard characters (brackets, question mark, asterisk, escaped with \) are expanded
into lists of files that match those wildcards. This is applicable only to programs
running from a DOS command line prompt. Default is set.

This option also accepts an optional[no]ignorecase modifer. If supplied,
wildcard matching is case insensitive. The default isnoignorecase

• (no)ntea- if set, use the full NT Extended Attributes to store UNIX-like inode
information. This option only operates under Windows NT. Defaults to not set.

Warning!
This may create additional large files on non-NTFS
partitions.

43

Chapter 3. Using Cygwin

• (no)ntsec- if set, use the NT security model to set UNIX-like permissions on files
and processes. The file permissions can only be set on NTFS partitions. FAT doesn’t
support the NT file security. For more information, read the documentation in
[ntsec.sgml].

• (no)smbntsec- if set, use ‘ntsec’ on remote drives as well (this is the default). If you
encounter problems with NT shares or Samba drives, setting this to ‘nosmbntsec’
could help. In that case the permission and owner/group information is faked as on
FAT partitions. A reason for a non working ntsec on remote drives could be
insufficient permissions of the users. Since the needed user rights are somewhat
dangerous (SeRestorePrivilege) it’s not always an option to grant that rights to users.
However, this shouldn’t be a problem in NT domain environments.

• (no)reset_com- if set, serial ports are reset to 9600-8-N-1 with no flow control when
used. This is done at open time and when handles are inherited. Defaults to set.

• (no)strip_title- if set, strips the directory part off the window title, if any. Default is
not set.

• (no)title - if set, the title bar reflects the name of the program currently running.
Default is not set. Note that under Win9x the title bar is always enabled and it is
stripped by default, but this is because of the way Win9x works. In order not to strip,
specifytitle or title nostrip_title .

• (no)tty- if set, Cygwin enables extra support (i.e., termios) for UNIX-like ttys. It is
not compatible with some Windows programs. Defaults to not set, in which case the
tty is opened in text mode with ^Z as EOF. Note that this has been changed such that
^D works as expected instead of ^Z, and is settable via stty. This option must be
specified before starting a Cygwin shell and it cannot be changed in the shell.

• (no)winsymlinks- if set, Cygwin creates symlinks as Windows shortcuts with a
special header and the R/O attribute set. If not set, Cygwin creates symlinks as plain
files with a magic number, a path and the system attribute set. Defaults to set.

3.6. Cygwin Utilities
Cygwin comes with a number of command-line utilities that are used to manage the
UNIX emulation portion of the Cygwin environment. While many of these reflect their
UNIX counterparts, each was written specifically for Cygwin. You may use the long or
short option names interchangeably; for example,--help and-h function identically.
All of the Cygwin command-line utilities support the--help and--version options.

44

Chapter 3. Using Cygwin

3.6.1. cygcheck

Usage: cygcheck [OPTIONS] [program ...]
Check system information or PROGRAM library dependencies

-c, --check-setup check packages installed via setup.exe
-s, --sysinfo system information (not with -k)
-v, --verbose verbose output (indented) (for -s or programs)
-r, --registry registry search (requires -s)
-k, --keycheck perform a keyboard check session (not with -s)
-h, --help give help about the info (not with -c)
-V, --version output version information and exit

You must at least give either -s or -k or a program name

Thecygcheckprogram is a diagnostic utility that examines your system and reports the
information that is significant to the proper operation of Cygwin programs. It can give
information about specific programs or libraries you are trying to run, general system
information, or both. If you list one or more programs on the command line, it will
diagnose the runtime environment of that program or programs, providing the names of
DLL files on which the program depends. If you specify the-s option, it will give
general system information. If you specify-s and list one or more programs on the
command line, it reports on both.

The-h option prints additional helpful messages in the report, at the beginning of each
section. It also adds table column headings. While this is useful information, it also
adds some to the size of the report, so if you want a compact report or if you know what
everything is already, just leave this out.

The-v option causes the output to be more verbose. What this means is that additional
information will be reported which is usually not interesting, such as the internal
version numbers of DLLs, additional information about recursive DLL usage, and if a
file in one directory in the PATH also occurs in other directories on the PATH.

The-r option causescygcheckto search your registry for information that is relevent
to Cygwin programs. These registry entries are the ones that have "Cygwin" in the
name. If you are paranoid about privacy, you may remove information from this report,
but please keep in mind that doing so makes it harder to diagnose your problems.

The-c option causes the arguments to be interpreted as package names.cygcheckwill
report the current version of the package that you specify, or with no arguments, on all
packages.

Thecygcheckprogram should be used to send information about your system for
troubleshooting when requested. When asked to run this command save the output so

45

Chapter 3. Using Cygwin

that you can email it, for example:

C:\cygwin> cygcheck -s -v -r -h > cygcheck_output.txt

3.6.2. cygpath

Usage: cygpath (-d|-m|-u|-w|-t TYPE) [-c HANDLE] [-f FILE] [options] NAME
cygpath [-ADHPSW]

Convert Unix and Windows format paths, or output system path information

Output type options:
-d, --dos print DOS (short) form of NAME (C:\PROGRA~1\)
-m, --mixed like --windows, but with regular slashes (C:/WINNT)
-u, --unix (default) print Unix form of NAME (/cygdrive/c/winnt)
-w, --windows print Windows form of NAME (C:\WINNT)
-t, --type TYPE print TYPE form: ’dos’, ’mixed’, ’unix’, or ’windows’

Path conversion options:
-a, --absolute output absolute path
-l, --long-name print Windows long form of NAME (with -w, -m only)
-p, --path NAME is a PATH list (i.e., ’/bin:/usr/bin’)
-s, --short-name print DOS (short) form of NAME (with -w, -m only)

System information:
-A, --allusers use ‘All Users’ instead of current user for -D, -P
-D, --desktop output ‘Desktop’ directory and exit
-H, --homeroot output ‘Profiles’ directory (home root) and exit
-P, --smprograms output Start Menu ‘Programs’ directory and exit
-S, --sysdir output system directory and exit
-W, --windir output ‘Windows’ directory and exit

Thecygpathprogram is a utility that converts Windows native filenames to Cygwin
POSIX-style pathnames and vice versa. It can be used when a Cygwin program needs
to pass a file name to a native Windows program, or expects to get a file name from a
native Windows program. Alternatively,cygpathcan output information about the
location of important system directories in either format.

The-u and-w options indicate whether you want a conversion to UNIX (POSIX)
format (-u) or to Windows format (-w). Use the-d to get DOS-style (8.3) file and path
names. The-m option will output Windows-style format but with forward slashes
instead of backslashes. This option is especially useful in shell scripts, which use
backslashes as an escape character.

46

Chapter 3. Using Cygwin

In combination with the-w option, you can use the-l and-s options to use normal
(long) or DOS-style (short) form. The-d option is identical to-w and-s together.

Caveat: The-l option does not work if thecheck_caseparameter ofCYGWINis set to
strict, since Cygwin is not able to match any Windows short path in this mode.

The-p option means that you want to convert a path-style string rather than a single
filename. For example, the PATH environment variable is semicolon-delimited in
Windows, but colon-delimited in UNIX. By giving-p you are instructingcygpath to
convert between these formats.

The-i option supresses the print out of the usage message if no filename argument
was given. It can be used in make file rules converting variables that may be omitted to
a proper format. Note thatcygpathoutput may contain spaces (C:\Program Files) so
should be enclosed in quotes.

Example 3-3. Example cygpath usage

#!/bin/sh
if ["${1}" = ""];

then
XPATH=".";

else
XPATH="$(cygpath -w "${1}")";

fi
explorer $XPATH &

The capital options-D , -H , -P , -S , and-W output directories used by Windows that are
not the same on all systems, for example-S might output C:\WINNT\SYSTEM32 or
C:\WINDOWS\SYSTEM. The-H shows the Windows profiles directory that can be
used as root of home. The-A option forces use of the "All Users" directories instead of
the current user for the-D and-P options. On Win9x systems with only a single user,
-A has no effect;-D and-AD would have the same output. By default the output is in
UNIX (POSIX) format; use the-w or -d options to get other formats.

3.6.3. dumper

Usage: dumper [OPTION] FILENAME WIN32PID
Dump core from WIN32PID to FILENAME.core

-d, --verbose be verbose while dumping
-h, --help output help information and exit

47

Chapter 3. Using Cygwin

-q, --quiet be quiet while dumping (default)
-v, --version output version information and exit

Thedumper utility can be used to create a core dump of running Windows process.
This core dump can be later loaded togdb and analyzed. One common way to use
dumper is to plug it into cygwin’s Just-In-Time debugging facility by adding

error_start=x:\path\to\dumper.exe

to theCYGWINenvironment variable. Please note thatx:\path\to\dumper.exe is
Windows-style and not cygwin path. Iferror_start is set this way, then dumper will
be started whenever some program encounters a fatal error.

dumper can be also be started from the command line to create a core dump of any
running process. Unfortunately, because of a Windows API limitation, when a core
dump is created anddumper exits, the target process is terminated too.

To save space in the core dump,dumper doesn’t write those portions of target process’
memory space that are loaded from executable and dll files and are unchangeable, such
as program code and debug info. Instead,dumper saves paths to files which contain
that data. When a core dump is loaded into gdb, it uses these paths to load appropriate
files. That means that if you create a core dump on one machine and try to debug it on
another, you’ll need to place identical copies of the executable and dlls in the same
directories as on the machine where the core dump was created.

3.6.4. getfacl

Usage: getfacl [-adn] FILE [FILE2...]
Display file and directory access control lists (ACLs).

-a, --all display the filename, the owner, the group, and
the ACL of the file

-d, --dir display the filename, the owner, the group, and
the default ACL of the directory, if it exists

-h, --help output usage information and exit
-n, --noname display user and group IDs instead of names
-v, --version output version information and exit

When multiple files are specified on the command line, a blank
line separates the ACLs for each file.

48

Chapter 3. Using Cygwin

For each argument that is a regular file, special file or directory,getfacldisplays the
owner, the group, and the ACL. For directoriesgetfacldisplays additionally the default
ACL. With no options specified,getfacldisplays the filename, the owner, the group,
and both the ACL and the default ACL, if it exists. For more information on Cygwin
and Windows ACLs, see seeSection 2.4in the Cygwin User’s Guide. The format for
ACL output is as follows:

file: filename
owner: name or uid
group: name or uid
user::perm
user:name or uid:perm
group::perm
group:name or gid:perm
mask:perm
other:perm
default:user::perm
default:user:name or uid:perm
default:group::perm
default:group:name or gid:perm
default:mask:perm
default:other:perm

3.6.5. kill

Usage: kill [-f] [-signal] [-s signal] pid1 [pid2 ...]
kill -l [signal]

Send signals to processes

-f, --force force, using win32 interface if necessary
-l, --list print a list of signal names
-s, --signal send signal (use kill --list for a list)
-h, --help output usage information and exit
-v, --version output version information and exit

Thekill program allows you to send arbitrary signals to other Cygwin programs. The
usual purpose is to end a running program from some other window when ^C won’t
work, but you can also send program-specified signals such as SIGUSR1 to trigger
actions within the program, like enabling debugging or re-opening log files. Each
program defines the signals they understand.

49

Chapter 3. Using Cygwin

You may need to specify the full path to usekill from within some shells, including
bash, the default Cygwin shell. This is becausebashdefines akill builtin function; see
thebashman page underBUILTIN COMMANDSfor more information. To make sure
you are using the Cygwin version, try

$ /bin/kill --version

which should give the Cygwinkill version number and copyright information.

Unless you specific the-f option, the "pid" values used bykill are the Cygwin pids,
not the Windows pids. To get a list of running programs and their Cygwin pids, use the
Cygwinpsprogram.ps -W will display all windows pids.

Thekill -l option prints the name of the given signal, or a list of all signal names if no
signal is given.

To send a specific signal, use the-signN option, either with a signal number or a
signal name (minus the "SIG" part), like these examples:

Example 3-4. Using the kill command

$ kill 123
$ kill -1 123
$ kill -HUP 123
$ kill -f 123

Here is a list of available signals, their numbers, and some commentary on them, from
the file<sys/signal.h> , which should be considered the official source of this
information.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3 quit
SIGILL 4 illegal instruction (not reset when caught)
SIGTRAP 5 trace trap (not reset when caught)
SIGABRT 6 used by abort
SIGEMT 7 EMT instruction
SIGFPE 8 floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill

50

Chapter 3. Using Cygwin

SIGURG 16 urgent condition on IO channel
SIGSTOP 17 sendable stop signal not from tty
SIGTSTP 18 stop signal from tty
SIGCONT 19 continue a stopped process
SIGCHLD 20 to parent on child stop or exit
SIGTTIN 21 to readers pgrp upon background tty read
SIGTTOU 22 like TTIN for output if (tp->t_local<OSTOP)
SIGPOLL 23 System V name for SIGIO
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit
SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 window changed
SIGLOST 29 resource lost (eg, record-lock lost)
SIGUSR1 30 user defined signal 1
SIGUSR2 31 user defined signal 2

3.6.6. mkgroup

Usage: mkgroup [OPTION]... [domain]...
Prints /etc/group file to stdout

Options:
-l,--local print local group information
-c,--current print current group, if a domain account
-d,--domain print global group information (from current

domain if no domains specified).
-o,--id-offset offset change the default offset (10000) added to gids

in domain accounts.
-s,--no-sids don’t print SIDs in pwd field

(this affects ntsec)
-u,--users print user list in gr_mem field
-h,--help print this message

-v,--version print version information and exit

One of ‘-l’ or ‘-d’ must be given on NT/W2K.

Themkgroup program can be used to help configure your Windows system to be more
UNIX-like by creating an initial/etc/group . Its use is essential on the NT series
(Windows NT, 2000, and XP) to include Windows security information. It can also be
used on the Win9x series (Windows 95, 98, and Me) to create a file with the correct

51

Chapter 3. Using Cygwin

format. To initially set up your machine if you are a local user, you’d do something like
this:

Example 3-5. Setting up the groups file for local accounts

$ mkdir /etc
$ mkgroup -l > /etc/group

Note that this information is static. If you change the group information in your system,
you’ll need to regenerate the group file for it to have the new information.

The-d and-l options allow you to specify where the information comes from, the
local machine or the domain (default or given), or both. With the-d option the program
contacts the Domain Controller, which my be unreachable or have restricted access. An
entry for the current domain user can then be created by using the option-c together
with -l , but -c has no effect when used with-d . The-o option allows for special
cases (such as multiple domains) where the GIDs might match otherwise. The-s

option omits the NT Security Identifier (SID). For more information on SIDs, see
Section 2.4in the Cygwin User’s Guide. The-u option causesmkgroup to enumerate
the users for each group, placing the group members in the gr_mem (last) field. Note
that this can greatly increase the time formkgroup to run in a large domain. Having
gr_mem fields is helpful when a domain user logs in remotely while the local machine
is disconnected from the Domain Controller.

3.6.7. mkpasswd

Usage: mkpasswd [OPTION]... [domain]...
Prints /etc/passwd file to stdout

Options:
-l,--local print local user accounts
-c,--current print current account, if a domain account
-d,--domain print domain accounts (from current domain

if no domains specified)
-o,--id-offset offset change the default offset (10000) added to uids

in domain accounts.
-g,--local-groups print local group information too

if no domains specified
-m,--no-mount don’t use mount points for home dir
-s,--no-sids don’t print SIDs in GCOS field

(this affects ntsec)

52

Chapter 3. Using Cygwin

-p,--path-to-home path use specified path and not user account home dir or /home
-u,--username username only return information for the specified user
-h,--help displays this message
-v,--version version information and exit

One of ‘-l’, ‘-d’ or ‘-g’ must be given on NT/W2K.

Themkpasswdprogram can be used to help configure your Windows system to be
more UNIX-like by creating an initial/etc/passwd from your system information. Its
use is essential on the NT series (Windows NT, 2000, and XP) to include Windows
security information, but the actual passwords are determined by Windows, not by the
content of/etc/passwd . On the Win9x series (Windows 95, 98, and Me) the
password field must be replaced by the output ofcrypt your_password if remote
access is desired. To initially set up your machine if you are a local user, you’d do
something like this:

Example 3-6. Setting up the passwd file for local accounts

$ mkdir /etc
$ mkpasswd -l > /etc/passwd

Note that this information is static. If you change the user information in your system,
you’ll need to regenerate the passwd file for it to have the new information.

The-d and-l options allow you to specify where the information comes from, the
local machine or the domain (default or given), or both. With the-d option the program
contacts the Domain Controller, which my be unreachable or have restricted access. An
entry for the current domain user can then be created by using the option-c together
with -l , but -c has no effect when used with-d . The-o option allows for special
cases (such as multiple domains) where the UIDs might match otherwise. The-g

option creates a local user that corresponds to each local group. This is because NT
assigns groups file ownership. The-m option bypasses the current mount table so that,
for example, two users who have a Windows home directory of H: could mount them
differently. The-s option omits the NT Security Identifier (SID). For more information
on SIDs, seeSection 2.4in the Cygwin User’s Guide. The-p option causesmkpasswd
to use the specified prefix instead of the account home dir or/home/ . For example, this
command:

Example 3-7. Using an alternate home root

$ mkpasswd -l -p "$(cygpath -H)" > /etc/passwd

53

Chapter 3. Using Cygwin

would put local users’ home directories in the Windows ’Profiles’ directory. On Win9x
machines the-u option creates an entry for the specified user. On the NT series it
restricts the output to that user, greatly reducing the amount of time it takes in a large
domain.

3.6.8. mount

Usage: mount [OPTION] [<win32path> <posixpath>]
Display information about mounted filesystems, or mount a filesystem

-b, --binary (default) text files are equivalent to binary files
(newline = \n)

-c, --change-cygdrive-prefix change the cygdrive path prefix to <posixpath>
-f, --force force mount, don’t warn about missing mount

point directories
-h, --help output usage information and exit
-m, --mount-commands write mount commands to replace user and

system mount points and cygdrive prefixes
-o, --options X[,X...] specify mount options
-p, --show-cygdrive-prefix show user and/or system cygdrive path prefix
-s, --system (default) add system-wide mount point
-t, --text text files get \r\n line endings
-u, --user add user-only mount point
-v, --version output version information and exit
-x, --executable treat all files under mount point as executables
-E, --no-executable treat all files under mount point as

non-executables
-X, --cygwin-executable treat all files under mount point as cygwin

executables

Themount program is used to map your drives and shares onto Cygwin’s simulated
POSIX directory tree, much like as is done by mount commands on typical UNIX
systems. Please seeSection 3.1.2for more information on the concepts behind the
Cygwin POSIX file system and strategies for using mounts. To remove mounts, use
umount

3.6.8.1. Using mount

If you just typemount with no parameters, it will display the current mount table for
you.

54

Chapter 3. Using Cygwin

Example 3-8. Displaying the current set of mount points

c:\cygwin\> mount
c:\cygwin\bin on /usr/bin type system (binmode)
c:\cygwin\lib on /usr/lib type system (binmode)
c:\cygwin on / type system (binmode)
c: on /c type user (binmode,noumount)
d: on /d type user (binmode,noumount)

In this example, c:\cygwin is the POSIX root and D drive is mapped to/d . Note that in
this case, the root mount is a system-wide mount point that is visible to all users
running Cygwin programs, whereas the/d mount is only visible to the current user.

Themount utility is also the mechanism for adding new mounts to the mount table.
The following example demonstrates how to mount the directory
\\pollux\home\joe\data to /data .

Example 3-9. Adding mount points

c:\cygwin\> ls /data
ls: /data: No such file or directory
c:\cygwin\> mount \\pollux\home\joe\data /data
mount: warning - /data does not exist!
c:\cygwin\> mount
\\pollux\home\joe\data on /data type sytem (binmode)
c:\cygwin\bin on /usr/bin type system (binmode)
c:\cygwin\lib on /usr/lib type system (binmode)
c:\cygwin on / type system (binmode)
c: on /c type user (binmode,noumount)
d: on /d type user (binmode,noumount)

Note thatmount was invoked from the Windows command shell in the previous
example. In many Unix shells, including bash, it is legal and convenient to use the
forward "/" in Win32 pathnames since the "\" is the shell’s escape character.

The-s flag tomount is used to add a mount in the system-wide mount table used by
all Cygwin users on the system, instead of the user-specific one. System-wide mounts
are displayed bymount as being of the "system" type, as is the case for the/ partition
in the last example. Under Windows NT, only those users with Administrator
priviledges are permitted to modify the system-wide mount table.

Note that a given POSIX path may only exist once in the user table and once in the
global, system-wide table. Attempts to replace the mount will fail with a busy error. The

55

Chapter 3. Using Cygwin

-f (force) flag causes the old mount to be silently replaced with the new one. It will
also silence warnings about the non-existence of directories at the Win32 path location.

The-b flag is used to instruct Cygwin to treat binary and text files in the same manner
by default. Binary mode mounts are marked as "binmode" in the Flags column of
mount output. By default, mounts are in text mode ("textmode" in the Flags column).

Normally, files ending in certain extensions (.exe, .com, .bat, .cmd) are assumed to be
executable. Files whose first two characters begin with ’#!’ are also considered to be
executable. The-x flag is used to instruct Cygwin that the mounted file is "executable".
If the -x flag is used with a directory then all files in the directory are executable. This
option allows other files to be marked as executable and avoids the overhead of opening
each file to check for a ’#!’. The-X option is very similar to-x , but also prevents
Cygwin from setting up commands and environment variables for a normal Windows
program, adding another small performance gain. The opposite of these flags is the-E

flag, which means that no files should be marked as executable.

The-m option causes themount utility to output a series of commands that could
recreate both user and system mount points. You can save this output as a backup when
experimenting with the mount table. It also makes moving your settings to a different
machine much easier.

The-o option is the method via which various options about the mount point may be
recorded. The following options are available (note that most of the options are
duplicates of other mount flags):

user - mount lives user-specific mount
system - mount lives in system table (default)
binary - files default to binary mode (default)
text - files default to CRLF text mode line endings
exec - files below mount point are all executable
notexec - files below mount point are not executable
cygexec - files below mount point are all cygwin executables
nosuid - no suid files are allowed (currently unimplemented)
managed - directory is managed by cygwin. Mixed case and special

characters in filenames are allowed.

3.6.8.2. Cygdrive mount points

Whenever Cygwin cannot use any of the existing mounts to convert from a particular
Win32 path to a POSIX one, Cygwin will, instead, convert to a POSIX path using a
default mount point:/cygdrive . For example, if Cygwin accessesz:\foo and the z
drive is not currently in the mount table, thenz:\ will be accessible as/cygdrive/z .

56

Chapter 3. Using Cygwin

Themount utility can be used to change this default automount prefix through the use
of the "--change-cygdrive-prefix" option. In the following example, we will set the
automount prefix to/ :

Example 3-10. Changing the default prefix

c:\cygwin\> mount --change-cygdrive-prefix /

Note that if you set a new prefix in this manner, you can specify the-s flag to make
this the system-wide default prefix. By default, the cygdrive-prefix applies only to the
system-wide setting. You can always see the user and system cygdrive prefixes with the
-p option. Using the-b flag with --change-cygdrive-prefix makes all new
automounted filesystems default to binary mode file accesses.

3.6.8.3. Limitations

Limitations: there is a hard-coded limit of 30 mount points. Also, although you can
mount to pathnames that do not start with "/", there is no way to make use of such
mount points.

Normally the POSIX mount point in Cygwin is an existing empty directory, as in
standard UNIX. If this is the case, or if there is a place-holder for the mount point (such
as a file, a symbolic link pointing anywhere, or a non-empty directory), you will get the
expected behavior. Files present in a mount point directory before the mount become
invisible to Cygwin programs.

It is sometimes desirable to mount to a non-existent directory, for example to avoid
cluttering the root directory with names such asa, b, c pointing to disks. Although
mount will give you a warning, most everything will work properly when you refer to
the mount point explicitly. Some strange effects can occur however. For example if
your current working directory is/dir , say, and/dir/mtpt is a mount point, then
mtpt will not show up in anls or echo *command andfind . will not find mtpt .

3.6.9. passwd

Usage: passwd (-l|-u|-S) [USER]
passwd [-i NUM] [-n MINDAYS] [-x MAXDAYS] [-L LEN]

Change USER’s password or password attributes

57

Chapter 3. Using Cygwin

User operations:
-l, --lock lock USER’s account
-u, --unlock unlock USER’s account
-S, --status display password status for USER (locked, expired, etc.)

System operations:
-i, --inactive set NUM of days before inactive accounts are disabled

(inactive accounts are those with expired passwords)
-n, --minage set system minimum password age to MINDAYS
-x, --maxage set system maximum password age to MAXDAYS
-L, --length set system minimum password length to LEN

Other options:
-h, --help output usage information and exit
-v, --version output version information and exit

passwdchanges passwords for user accounts. A normal user may only change the
password for their own account, but administrators may change passwords on any
account.passwdalso changes account information, such as password expiry dates and
intervals.

Password changes: The user is first prompted for their old password, if one is present.
This password is then encrypted and compared against the stored password. The user
has only one chance to enter the correct password. The administrators are permitted to
bypass this step so that forgotten passwords may be changed.

The user is then prompted for a replacement password.passwdwill prompt twice for
this replacement and compare the second entry against the first. Both entries are require
to match in order for the password to be changed.

After the password has been entered, password aging information is checked to see if
the user is permitted to change their password at this time. If not,passwdrefuses to
change the password and exits.

Account maintenance: User accounts may be locked and unlocked with the-l and-u

flags. The-l option disables an account. The-u option re-enables an account.

The account status may be given with the-S option. The status information is self
explanatory.

Administrators can also usepasswdto change system-wide password expiry and length
requirements with the-i , -n , -x , and-L options. The-i option is used to disable an
account after the password has been expired for a number of days. After a user account
has had an expired password forNUM days, the user may no longer sign on to the
account. The-n option is used to set the minimum number of days before a password

58

Chapter 3. Using Cygwin

may be changed. The user will not be permitted to change the password until
MINDAYSdays have elapsed. The-x option is used to set the maximum number of
days a password remains valid. AfterMAXDAYSdays, the password is required to be
changed. Allowed values for the above options are 0 to 999. The-L option sets the
minimum length of allowed passwords for users who don’t belong to the administrators
group toLEN characters. Allowed values for the minimum password length are 0 to 14.
In any of the above cases, a value of 0 means ‘no restrictions’.

Limitations: Users may not be able to change their password on some systems.

3.6.10. ps

Usage: ps [-aefls] [-u UID]
Report process status

-a, --all show processes of all users
-e, --everyone show processes of all users
-f, --full show process uids, ppids
-h, --help output usage information and exit
-l, --long show process uids, ppids, pgids, winpids
-s, --summary show process summary
-u, --user list processes owned by UID
-v, --version output version information and exit
-W, --windows show windows as well as cygwin processes

With no options, ps outputs the long format by default

Thepsprogram gives the status of all the Cygwin processes running on the system (ps
= "process status"). Due to the limitations of simulating a POSIX environment under
Windows, there is little information to give.

The PID column is the process ID you need to give to thekill command. The PPID is
the parent process ID, and PGID is the process group ID. The WINPID column is the
process ID displayed by NT’s Task Manager program. The TTY column gives which
pseudo-terminal a process is running on, or a’?’ for services. The UID column shows
which user owns each process. STIME is the time the process was started, and
COMMAND gives the name of the program running.

By defaultpswill only show processes owned by the current user. With either the-a or
-e option, all user’s processes (and system processes) are listed. There are historical
UNIX reasons for the synonomous options, which are functionally identical. The-f

option outputs a "full" listing with usernames for UIDs. The-l option is the default
display mode, showing a "long" listing with all the above columns. The other display

59

Chapter 3. Using Cygwin

option is-s , which outputs a shorter listing of just PID, TTY, STIME, and
COMMAND. The -u option allows you to show only processes owned by a specific
user. The-W option causespsshow non-Cygwin Windows processes as well as Cygwin
processes. The WINPID is also the PID, and they can be killed with the Cygwinkill
command’s-f option.

3.6.11. regtool

Usage: regtool.exe [OPTION] (add | check | get | list | remove | unset) KEY
View or edit the Win32 registry

Actions:
add KEY\SUBKEY add new SUBKEY
check KEY exit 0 if KEY exists, 1 if not
get KEY\VALUE prints VALUE to stdout
list KEY list SUBKEYs and VALUEs
remove KEY remove KEY
set KEY\VALUE [data ...] set VALUE
unset KEY\VALUE removes VALUE from KEY

Options for ’list’ Action:
-k, --keys print only KEYs
-l, --list print only VALUEs
-p, --postfix like ls -p, appends ’\’ postfix to KEY names

Options for ’set’ Action:
-e, --expand-string set type to REG_EXPAND_SZ
-i, --integer set type to REG_DWORD
-m, --multi-string set type to REG_MULTI_SZ
-s, --string set type to REG_SZ

Options for ’set’ and ’unset’ Actions:
-K<c>, --key-separator[=]<c> set key separator to <c> instead of ’\’

Other Options:
-h, --help output usage information and exit
-q, --quiet no error output, just nonzero return if KEY/VALUE missing
-v, --verbose verbose output, including VALUE contents when applicable
-V, --version output version information and exit

KEY is in the format [host]\prefix\KEY\KEY\VALUE, where host is optional
remote host in either \\hostname or hostname: format and prefix is any of:

60

Chapter 3. Using Cygwin

root HKCR HKEY_CLASSES_ROOT (local only)
config HKCC HKEY_CURRENT_CONFIG (local only)
user HKCU HKEY_CURRENT_USER (local only)
machine HKLM HKEY_LOCAL_MACHINE
users HKU HKEY_USERS

You can use forward slash (’/’) as a separator instead of backslash, in
that case backslash is treated as escape character
Example: regtool.exe get ’\user\software\Microsoft\Clock\iFormat’

Theregtool program allows shell scripts to access and modify the Windows registry.
Note that modifying the Windows registry is dangerous, and carelessness here can
result in an unusable system. Be careful.

The-v option means "verbose". For most commands, this causes additional or lengthier
messages to be printed. Conversely, the-q option supresses error messages, so you can
use the exit status of the program to detect if a key exists or not (for example).

You must provideregtool with anactionfollowing options (if any). Currently, the
action must beadd , set , check , get , list , remove , set , or unset .

Theadd action adds a new key. Thecheck action checks to see if a key exists (the exit
code of the program is zero if it does, nonzero if it does not). Theget action gets the
value of a value of a key, and prints it (and nothing else) to stdout. Note: if the value
doesn’t exist, an error message is printed and the program returns a non-zero exit code.
If you give -q , it doesn’t print the message but does return the non-zero exit code.

The list action lists the subkeys and values belonging to the given key. Withlist ,
the-k option instructsregtool to print only KEYs, and the-l option to print only
VALUEs. The-p option postfixes a’/’ to each KEY, but leave VALUEs with no
postfix. Theremove action removes a key. Note that you may need to remove
everything in the key before you may remove it, but don’t rely on this stopping you
from accidentally removing too much.

Theset action sets a value within a key.-e means it’s an expanding string
(REG_EXPAND_SZ) that contains embedded environment variables.-i means the
value is an integer (REG_DWORD).-m means it’s a multi-string (REG_MULTI_SZ).
-s means the value is a string (REG_SZ). If you don’t specify one of these,regtool
tries to guess the type based on the value you give. If it looks like a number, it’s a
DWORD. If it starts with a percent, it’s an expanding string. If you give multiple
values, it’s a multi-string. Else, it’s a regular string. Theunset action removes a value
from a key.

By default, the last "\" or "/" is assumed to be the separator between the key and the
value. You can use the-K option to provide an alternate key/value separator character.

61

Chapter 3. Using Cygwin

3.6.12. setfacl

Usage: setfacl [-r] (-f ACL_FILE | -s acl_entries) FILE...
setfacl [-r] ([-d acl_entries] [-m acl_entries]) FILE...

Modify file and directory access control lists (ACLs)

-d, --delete delete one or more specified ACL entries
-f, --file set ACL entries for FILE to ACL entries read

from a ACL_FILE
-m, --modify modify one or more specified ACL entries
-r, --replace replace mask entry with maximum permissions

needed for the file group class
-s, --substitute substitute specified ACL entries for the

ACL of FILE
-h, --help output usage information and exit
-v, --version output version information and exit

At least one of (-d, -f, -m, -s) must be specified

For each file given as parameter,setfaclwill either replace its complete ACL (-s , -f),
or it will add, modify, or delete ACL entries. For more information on Cygwin and
Windows ACLs, see seeSection 2.4in the Cygwin User’s Guide.

Acl_entries are one or more comma-separated ACL entries from the following list:

u[ser]::perm
u[ser]:uid:perm
g[roup]::perm
g[roup]:gid:perm
m[ask]::perm
o[ther]::perm

Default entries are like the above with the additional default identifier. For example:

d[efault]:u[ser]:uid:perm

permis either a 3-char permissions string in the form "rwx" with the character’-’ for
no permission or it is the octal representation of the permissions, a value from 0
(equivalent to "---") to 7 ("rwx").uid is a user name or a numerical uid.gid is a group
name or a numerical gid.

The following options are supported:

62

Chapter 3. Using Cygwin

-d Delete one or more specified entries from the file’s ACL. The owner, group and
others entries must not be deleted. Acl_entries to be deleted should be specified without
permissions, as in the following list:

u[ser]:uid
g[roup]:gid
d[efault]:u[ser]:uid
d[efault]:g[roup]:gid
d[efault]:m[ask]:
d[efault]:o[ther]:

-f Take the Acl_entries from ACL_FILE one per line. Whitespace characters are
ignored, and the character "#" may be used to start a comment. The special filename "-"
indicates reading from stdin. Note that you can use this withgetfaclandsetfaclto copy
ACLs from one file to another:

$ getfacl source_file | setfacl -f - target_file

Required entries are: one user entry for the owner of the file, one group entry for the
group of the file, and one other entry.

If additional user and group entries are given: a mask entry for the file group class of
the file, and no duplicate user or group entries with the same uid/gid.

If it is a directory: one default user entry for the owner of the file, one default group
entry for the group of the file, one default mask entry for the file group class, and one
default other entry.

-m Add or modify one or more specified ACL entries. Acl_entries is a
comma-separated list of entries from the same list as above.

-r Causes the permissions specified in the mask entry to be ignored and replaced by
the maximum permissions needed for the file group class.

-s Like -f , but substitute the file’s ACL with Acl_entries specified in a
comma-separated list on the command line.

While the-d and-m options may be used in the same command, the-f and-s options
may be used only exclusively.

Directories may contain default ACL entries. Files created in a directory that contains
default ACL entries will have permissions according to the combination of the current
umask, the explicit permissions requested and the default ACL entries

63

Chapter 3. Using Cygwin

Limitations: Under Cygwin, the default ACL entries are not taken into account
currently.

3.6.13. ssp

Usage: ssp [options] low_pc high_pc command...
Single-step profile COMMAND

-c, --console-trace trace every EIP value to the console. *Lots* slower.
-d, --disable disable single-stepping by default; use

OutputDebugString ("ssp on") to enable stepping
-e, --enable enable single-stepping by default; use

OutputDebugString ("ssp off") to disable stepping
-h, --help output usage information and exit
-l, --dll enable dll profiling. A chart of relative DLL usage

is produced after the run.
-s, --sub-threads trace sub-threads too. Dangerous if you have

race conditions.
-t, --trace-eip trace every EIP value to a file TRACE.SSP. This

gets big *fast*.
-v, --verbose output verbose messages about debug events.
-V, --version output version information and exit

Example: ssp 0x401000 0x403000 hello.exe

SSP - The Single Step Profiler

Original Author: DJ Delorie

The SSP is a program that uses the Win32 debug API to run a program one ASM
instruction at a time. It records the location of each instruction used, how many times
that instruction is used, and all function calls. The results are saved in a format that is
usable by the profiling programgprof, althoughgprof will claim the values are
seconds, they really are instruction counts. More on that later.

Because the SSP was originally designed to profile the cygwin DLL, it does not
automatically select a block of code to report statistics on. You must specify the range
of memory addresses to keep track of manually, but it’s not hard to figure out what to
specify. Use the "objdump" program to determine the bounds of the target’s ".text"
section. Let’s say we’re profiling cygwin1.dll. Make sure you’ve built it with debug
symbols (elsegprof won’t run) and run objdump like this:

$ objdump -h cygwin1.dll

64

Chapter 3. Using Cygwin

It will print a report like this:

cygwin1.dll: file format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 0007ea00 61001000 61001000 00000400 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE, DATA

1 .data 00008000 61080000 61080000 0007ee00 2**2
CONTENTS, ALLOC, LOAD, DATA

. . .

The only information we’re concerned with are the VMA of the .text section and the
VMA of the section after it (sections are usually contiguous; you can also add the Size
to the VMA to get the end address). In this case, the VMA is 0x61001000 and the
ending address is either 0x61080000 (start of .data method) or 0x0x6107fa00
(VMA+Size method).

There are two basic ways to use SSP - either profiling a whole program, or selectively
profiling parts of the program.

To profile a whole program, just runsspwithout options. By default, it will step the
whole program. Here’s a simple example, using the numbers above:

$ ssp 0x61001000 0x61080000 hello.exe

This will step the whole program. It will take at least 8 minutes on a PII/300 (yes,
really). When it’s done, it will create a file called "gmon.out". You can turn this data file
into a readable report withgprof:

$ gprof -b cygwin1.dll

The "-b" means ’skip the help pages’. You can omit this until you’re familiar with the
report layout. Thegprof documentation explains a lot about this report, butssp
changes a few things. For example, the first part of the report reports the amount of
time spent in each function, like this:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
10.02 231.22 72.43 46 1574.57 1574.57 strcspn

7.95 288.70 57.48 130 442.15 442.15 strncasematch

65

Chapter 3. Using Cygwin

The "seconds" columns are really CPU opcodes, 1/100 second per opcode. So,
"231.22" above means 23,122 opcodes. The ms/call values are 10x too big; 1574.57
means 157.457 opcodes per call. Similar adjustments need to be made for the "self" and
"children" columns in the second part of the report.

OK, so now we’ve got a huge report that took a long time to generate, and we’ve
identified a spot we want to work on optimizing. Let’s say it’s the time() function. We
can use SSP to selectively profile this function by using OutputDebugString() to control
SSP from within the program. Here’s a sample program:

#include <windows.h>
main()
{

time_t t;
OutputDebugString("ssp on");
time(&t);
OutputDebugString("ssp off");

}

Then, add the-d option to ssp to default to *disabling* profiling. The program will run
at full speed until the first OutputDebugString, then step until the second. You can then
usegprof (as usual) to see the performance profile for just that portion of the program’s
execution.

There are many options to ssp. Since step-profiling makes your program run about
1,000 times slower than normal, it’s best to understand all the options so that you can
narrow down the parts of your program you need to single-step.

-v - verbose. This prints messages about threads starting and stopping,
OutputDebugString calls, DLLs loading, etc.

-t and-c - tracing. With-t , *every* step’s address is written to the file "trace.ssp".
This can be used to help debug functions, since it can trace multiple threads. Clever use
of scripts can match addresses with disassembled opcodes if needed. Warning: creates
huge files, very quickly.-c prints each address to the console, useful for debugging
key chunks of assembler. Useaddr2line -C -f -s -e foo.exe < trace.ssp

> lines.ssp and thenperl cvttrace to convert to symbolic traces.

-s - subthreads. Usually, you only need to trace the main thread, but sometimes you
need to trace all threads, so this enables that. It’s also needed when you want to profile
a function that only a subthread calls. However, using OutputDebugString
automatically enables profiling on the thread that called it, not the main thread.

66

Chapter 3. Using Cygwin

-l - dll profiling. Generates a pretty table of how much time was spent in each dll the
program used. No sense optimizing a function in your program if most of the time is
spent in the DLL. I usually use the-v , -s , and-l options:

$ ssp -v -s -l -d 0x61001000 0x61080000 hello.exe

3.6.14. strace

Usage: strace.exe [OPTIONS] <command-line>
Usage: strace.exe [OPTIONS] -p <pid>
Trace system calls and signals

-b, --buffer-size=SIZE set size of output file buffer
-d, --no-delta don’t display the delta-t microsecond timestamp
-f, --trace-children trace child processes (toggle - default true)
-h, --help output usage information and exit
-m, --mask=MASK set message filter mask
-n, --crack-error-numbers output descriptive text instead of error

numbers for Windows errors
-o, --output=FILENAME set output file to FILENAME
-p, --pid=n attach to executing program with cygwin pid n
-S, --flush-period=PERIOD flush buffered strace output every PERIOD secs
-t, --timestamp use an absolute hh:mm:ss timestamp insted of

the default microsecond timestamp. Implies -d
-T, --toggle toggle tracing in a process already being

traced. Requires -p <pid>
-v, --version output version information and exit
-w, --new-window spawn program under test in a new window

MASK can be any combination of the following mnemonics and/or hex values
(0x is optional). Combine masks with ’+’ or ’,’ like so:

--mask=wm+system,malloc+0x00800

Mnemonic Hex Corresponding Def Description
===
all 0x00001 (_STRACE_ALL) All strace messages.
flush 0x00002 (_STRACE_FLUSH) Flush output buffer after each message.
inherit 0x00004 (_STRACE_INHERIT) Children inherit mask from parent.
uhoh 0x00008 (_STRACE_UHOH) Unusual or weird phenomenon.
syscall 0x00010 (_STRACE_SYSCALL) System calls.

67

Chapter 3. Using Cygwin

startup 0x00020 (_STRACE_STARTUP) argc/envp printout at startup.
debug 0x00040 (_STRACE_DEBUG) Info to help debugging.
paranoid 0x00080 (_STRACE_PARANOID) Paranoid info.
termios 0x00100 (_STRACE_TERMIOS) Info for debugging termios stuff.
select 0x00200 (_STRACE_SELECT) Info on ugly select internals.
wm 0x00400 (_STRACE_WM) Trace Windows msgs (enable _strace_wm).
sigp 0x00800 (_STRACE_SIGP) Trace signal and process handling.
minimal 0x01000 (_STRACE_MINIMAL) Very minimal strace output.
exitdump 0x04000 (_STRACE_EXITDUMP) Dump strace cache on exit.
system 0x08000 (_STRACE_SYSTEM) Serious error; goes to console and log.
nomutex 0x10000 (_STRACE_NOMUTEX) Don’t use mutex for synchronization.
malloc 0x20000 (_STRACE_MALLOC) Trace malloc calls.
thread 0x40000 (_STRACE_THREAD) Thread-locking calls.

Thestraceprogram executes a program, and optionally the children of the program,
reporting any Cygwin DLL output from the program(s) to stdout, or to a file with the
-o option. With the-w option, you can start an strace session in a new window, for
example:

$ strace -o tracing_output -w sh -c ’while true; do echo "tracing..."; done’ &

This is particularly useful forstracesessions that take a long time to complete.

Note thatstrace is a standalone Windows program and so does not rely on the Cygwin
DLL itself (you can verify this withcygcheck). As a result it does not understand
POSIX pathnames or symlinks. This program is mainly useful for debugging the
Cygwin DLL itself.

3.6.15. umount

Usage: umount.exe [OPTION] [<posixpath>]
Unmount filesystems

-A, --remove-all-mounts remove all mounts
-c, --remove-cygdrive-prefix remove cygdrive prefix
-h, --help output usage information and exit
-s, --system remove system mount (default)
-S, --remove-system-mounts remove all system mounts
-u, --user remove user mount
-U, --remove-user-mounts remove all user mounts
-v, --version output version information and exit

68

Chapter 3. Using Cygwin

Theumount program removes mounts from the mount table. If you specify a POSIX
path that corresponds to a current mount point,umount will remove it from the system
registry area. (Administrator priviledges are required). The-u flag may be used to
specify removing the mount from the user-specific registry area instead.

Theumount utility may also be used to remove all mounts of a particular type. With
the extended options it is possible to remove all mounts (-A), all cygdrive
automatically-mounted mounts (-c), all mounts in the current user’s registry area (-U),
or all mounts in the system-wide registry area (-S) (with Administrator privileges).

SeeSection 3.6.8for more information on the mount table.

3.7. Using Cygwin effectively with Windows
Cygwin is not a full operating system, and so must rely on Windows for accomplishing
some tasks. For example, Cygwin provides a POSIX view of the Windows filesystem,
but does not provide filesystem drivers of its own. Therefore part of using Cygwin
effectively is learning to use Windows effectively. Many Windows utilities provide a
good way to interact with Cygwin’s predominately command-line environment. For
example,ipconfig.exeprovides information about network configuration, andnet.exe
views and configures network file and printer resources. Most of these tools support the
/? switch to display usage information.

Unfortunately, no standard set of tools included with all versions of Windows exists. If
you are unfamiliar with the tools available on your system, here is a general guide.
Windows 95, 98, and ME have very limited command-line configuration tools.
Windows NT 4.0 has much better coverage, which Windows 2000 and XP expanded.
Microsoft also provides free downloads for Windows NT 4.0 (the Resource Kit Support
Tools), Windows 2000 (the Resource Kit Tools), and XP (the Windows Support Tools).
Additionally, many independent sites such as download.com
(http://download.com.com), simtel.net (http://simtel.net), and sysinternals.com
(http://sysinternals.com) provide command-line utilities. A few Windows tools, such as
find.exeandsort.exe, may conflict with the Cygwin versions; make sure that you use
the full path (/usr/bin/find) or that your Cygwinbin directory comes first in your
PATH.

3.7.1. Pathnames
Windows programs do not understand POSIX pathnames, so any arguments that

69

Chapter 3. Using Cygwin

reference the filesystem must be in Windows (or DOS) format or translated. Cygwin
provides thecygpathutility for converting between Windows and POSIX paths. A
complete description of its options and examples of its usage are inSection 3.6.2,
including a shell script for starting Windows Explorer in any directory. The same
format works for most Windows programs, for example

notepad.exe "$(cygpath -aw "Desktop/Phone Numbers.txt")"

A few programs require a Windows-style, semicolon-delimited path list, which
cygpathcan translate from a POSIX path with the-p option. For example, a Java
compilation frombashmight look like this:

javac -cp "$(cygpath -pw "$CLASSPATH")" hello.java

Since using quoting and subshells is somewhat awkward, it is often preferable to use
cygpath in shell scripts.

3.7.2. Console Programs
Another issue is receiving output from or giving input to the console-based Windows
programs. Unfortunately, interacting with Windows console applications is not a simple
matter of using a translation utility. Windows console applications and designed to run
undercommand.comor cmd.exe, and some do not deal gracefully with other
situations. Cygwin can receive console input only if it is also running in a console
(DOS box) since Windows does not provide any way to attach to the backend of the
console device. Another traditional Unix input/output method, ptys (pseudo-terminals),
are supported by Cygwin but not entirely by Windows. The basic problem is that a
Cygwin pty is a pipe and some Windows applications do not like having their input or
output redirected to pipes.

To help deal with these issues, Cygwin supports customizable levels of Windows verses
Unix compatibility behavior. To be most compatible with Windows programs, use a
DOS prompt, running only the occasional Cygwin command or script. Next would be
to runbashwith the default DOS box. To make Cygwin more Unix compatible in this
case, set CYGWIN=tty (seeSection 3.5). Alternatively, the optionalrxvt package
provides a native-Windows version of the popular X11 terminal emulator (it is not
necessary to set CYGWIN=tty withrxvt). Usingrxvt.exe provides the most Unix-like
environment, but expect some compatibility problems with Windows programs.

70

Chapter 3. Using Cygwin

3.7.3. Cygwin and Windows Networking
Many popular Cygwin packages, such asncftp, lynx, andwget, require a network
connection. Since Cygwin relies on Windows for connectivity, if one of these tools is
not working as expected you may need to troubleshoot using Windows tools. The first
test is to see if you can reach the URL’s host withping.exe, one of the few utilities
included with every Windows version since Windows 95. If you chose to install the
inetutils package, you may have both Windows and Cygwin versions of utilities such as
ftp andtelnet. If you are having problems using one of these programs, see if the
alternate one works as expected.

There are a variety of other programs available for specific situations. If your system
does not have an always-on network connection, you may be interested inrasdial.exe
(or alternatives for Windows 95, 98, and ME) for automating dialup connections. Users
who frequently change their network configuration can script these changes with
netsh.exe(Windows 2000 and XP). For proxy users, the open source NTLM
Authorization Proxy Server (http://apserver.sourceforge.net) or the no-charge
Hummingbird SOCKS Proxy
(http://www.hummingbird.com/products/nc/socks/index.html) may allow you to use
Cygwin network programs in your environment.

3.7.4. The cygutils package
The optional cygutils package contains miscellaneous tools that are small enough to not
require their own package. It is not included in a default Cygwin install; select it from
the Utils category insetup.exe. Several of the cygutils tools are useful for interacting
with Windows.

One of the hassles of Unix-Windows interoperability is the different line endings on
text files. As mentioned inSection 3.2, Unix tools such astr can convert between
CRLF and LF endings, but cygutils provides several dedicated programs:conv, d2u,
dos2unix, u2d, andunix2dos. Use the--help switch for usage information.

3.7.5. Creating shortcuts with cygutils
Another problem area is between Unix-style links, which link one file to another, and
Microsoft .lnk files, which provide a shortcut to a file. They seem similar at first glance
but, in reality, are fairly different. By default, Cygwin uses a mechanism that creates
symbolic links that are compatible with standard Microsoft .lnk files. However, they do

71

Chapter 3. Using Cygwin

not include much of the information that is available in a standard Microsoft shortcut,
such as the working directory, an icon, etc. The cygutils package includes a
mkshortcut utility for creating standard Microsoft .lnk files.

If Cygwin handled these native shortcuts like any other symlink, you could not archive
Microsoft .lnk files intotar archives and keep all the information in them. After
unpacking, these shortcuts would have lost all the extra information and would be no
different than standard Cygwin symlinks. Therefore these two types of links are treated
differently. Unfortunately, this means that the usual Unix way of creating and using
symlinks does not work with Windows shortcuts.

3.7.6. Printing with cygutils
There are several options for printing from Cygwin, including thelpr found in cygutils
(not to be confused with the native Windowslpr.exe). The easiest way to use cygutils’
lpr is to specify a default device name in the PRINTER environment variable. You may
also specify a device on the command line with the-d or -P options, which will
override the environment variable setting.

A device name may be a UNC path (\\server_name\printer_name), a reserved
DOS device name (prn , lpt1), or a local port name that is mapped to a printer share.
Note that forward slashes may be used in a UNC path
(//server_name/printer_name), which is helpful when usinglpr from a shell that
uses the backslash as an escape character.

lpr sends raw data to the printer; no formatting is done. Many, but not all, printers
accept plain text as input. If your printer supports PostScript, packages such asa2ps
andenscript can prepare text files for printing. The ghostscript package also provides
some translation from PostScript to various native printer languages. Additionally, a
native Windows application for printing PostScript,gsprint, is available from the
Ghostscript website (http://www.cs.wisc.edu/~ghost/).

72

Chapter 4. Programming with Cygwin

4.1. Using GCC with Cygwin

4.1.1. Console Mode Applications
Use gcc to compile, just like under UNIX. Refer to the GCC User’s Guide for
information on standard usage and options. Here’s a simple example:

Example 4-1. Building Hello World with GCC

C:\> gcc hello.c -o hello.exe
C:\> hello.exe
Hello, World

C:\>

4.1.2. GUI Mode Applications
Cygwin allows you to build programs with full access to the standard Windows 32-bit
API, including the GUI functions as defined in any Microsoft or off-the-shelf
publication. However, the process of building those applications is slightly different, as
you’ll be using the GNU tools instead of the Microsoft tools.

For the most part, your sources won’t need to change at all. However, you should
remove all __export attributes from functions and replace them like this:

int foo (int) __attribute__ ((__dllexport__));

int
foo (int i)

The Makefile is similar to any other UNIX-like Makefile, and like any other Cygwin
makefile. The only difference is that you usegcc -mwindowsto link your program into
a GUI application instead of a command-line application. Here’s an example:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

73

Chapter 4. Programming with Cygwin

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

Note the use ofwindres to compile the Windows resources into a COFF-format.res

file. That will include all the bitmaps, icons, and other resources you need, into one
handy object file. Normally, if you omitted the "-O coff" it would create a Windows
.res format file, but we can only link COFF objects. So, we tellwindres to produce a
COFF object, but for compatibility with the many examples that assume your linker
can handle Windows resource files directly, we maintain the.res naming convention.
For more information onwindres , consult the Binutils manual.

The following is a simple GUI-mode "Hello, World!" program to help get you started:

/*---*/
/* hellogui.c - gui hello world */
/* build: gcc -mwindows hellogui.c -o hellogui.exe */
/*---*/
#include <windows.h>

char glpszText[1024];

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
sprintf(glpszText,

"Hello World\nGetCommandLine(): [%s]\n"
"WinMain lpCmdLine: [%s]\n",
lpCmdLine, GetCommandLine());

WNDCLASSEX wcex;

wcex.cbSize = sizeof(wcex);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);

74

Chapter 4. Programming with Cygwin

wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = "HELLO";
wcex.hIconSm = NULL;

if (!RegisterClassEx(&wcex))
return FALSE;

HWND hWnd;
hWnd = CreateWindow("HELLO", "Hello", WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

if (!hWnd)
return FALSE;

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return msg.wParam;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

PAINTSTRUCT ps;
HDC hdc;

switch (message)
{

case WM_PAINT:
hdc = BeginPaint(hWnd, &ps);
RECT rt;
GetClientRect(hWnd, &rt);
DrawText(hdc, glpszText, strlen(glpszText), &rt, DT_TOP | DT_LEFT);
EndPaint(hWnd, &ps);
break;

case WM_DESTROY:
PostQuitMessage(0);

75

Chapter 4. Programming with Cygwin

break;
default:

return DefWindowProc(hWnd, message, wParam, lParam);
}
return 0;

}

4.2. Debugging Cygwin Programs
When your program doesn’t work right, it usually has a "bug" in it, meaning there’s
something wrong with the program itself that is causing unexpected results or crashes.
Diagnosing these bugs and fixing them is made easy by special tools calleddebuggers.
In the case of Cygwin, the debugger is GDB, which stands for "GNU DeBugger". This
tool lets you run your program in a controlled environment where you can investigate
the state of your program while it is running or after it crashes. Crashing programs
sometimes create "core" files. In Cygwin these are regular text files that cannot be used
directly by GDB.

Before you can debug your program, you need to prepare your program for debugging.
What you need to do is add-g to all the other flags you use when compiling your
sources to objects.

Example 4-2. Compiling with -g

$ gcc -g -O2 -c myapp.c
$ gcc -g myapp.c -o myapp

What this does is add extra information to the objects (they get much bigger too) that
tell the debugger about line numbers, variable names, and other useful things. These
extra symbols and debugging information give your program enough information about
the original sources so that the debugger can make debugging much easier for you.

In Windows versions of GNUPro, GDB comes with a full-featured graphical interface.
In Cygwin Net distributions, GDB is only available as a command-line tool. To invoke
GDB, simply typegdb myapp.exeat the command prompt. It will display some text
telling you about itself, then(gdb) will appear to prompt you to enter commands.
Whenever you see this prompt, it means that gdb is waiting for you to type in a
command, likerun or help. Oh :-) typehelp to get help on the commands you can

76

Chapter 4. Programming with Cygwin

type in, or read the [GDB User’s Manual] for a complete description of GDB and how
to use it.

If your program crashes and you’re trying to figure out why it crashed, the best thing to
do is typerun and let your program run. After it crashes, you can typewhere to find
out where it crashed, orinfo locals to see the values of all the local variables. There’s
also aprint that lets you look at individual variables or what pointers point to.

If your program is doing something unexpected, you can use thebreak command to
tell gdb to stop your program when it gets to a specific function or line number:

Example 4-3. "break" in gdb

(gdb) break my_function
(gdb) break 47

Now, when you typerun your program will stop at that "breakpoint" and you can use
the other gdb commands to look at the state of your program at that point, modify
variables, andstepthrough your program’s statements one at a time.

Note that you may specify additional arguments to therun command to provide
command-line arguments to your program. These two cases are the same as far as your
program is concerned:

Example 4-4. Debugging with command line arguments

$ myprog -t foo --queue 47

$ gdb myprog
(gdb) run -t foo --queue 47

4.3. Building and Using DLLs
DLLs are Dynamic Link Libraries, which means that they’re linked into your program
at run time instead of build time. There are three parts to a DLL:

• the exports
• the code and data
• the import library

77

Chapter 4. Programming with Cygwin

The code and data are the parts you write - functions, variables, etc. All these are
merged together, like if you were building one big object files, and put into the dll.
They are not put into your .exe at all.

The exports contains a list of functions and variables that the dll makes available to
other programs. Think of this as the list of "global" symbols, the rest being hidden.
Normally, you’d create this list by hand with a text editor, but it’s possible to do it
automatically from the list of functions in your code. Thedlltool program creates the
exports section of the dll from your text file of exported symbols.

The import library is a regular UNIX-like.a library, but it only contains the tiny bit of
information needed to tell the OS how your program interacts with ("imports") the dll.
This information is linked into your.exe . This is also generated bydlltool .

4.3.1. Building DLLs
This page gives only a few simple examples of gcc’s DLL-building capabilities. To
begin an exploration of the many additional options, see the gcc documentation and
website, currently at http://gcc.gnu.org/

Let’s go through a simple example of how to build a dll. For this example, we’ll use a
single filemyprog.c for the program (myprog.exe) and a single filemydll.c for the
contents of the dll (mydll.dll).

Fortunately, with the latest gcc and binutils the process for building a dll is now pretty
simple. Say you want to build this minimal function in mydll.c:

#include <stdio.h>

int
hello()
{

printf ("Hello World!\n");
}

First compile mydll.c to object code:

gcc -c mydll.c

Then, tell gcc that it is building a shared library:

gcc -shared -o mydll.dll mydll.o

That’s it! To finish up the example, you can now link to the dll with a simple program:

78

Chapter 4. Programming with Cygwin

int
main ()
{

hello ();
}

Then link to your dll with a command like:

gcc -o myprog myprog.ca -L./ -lmydll

However, if you are building a dll as an export library, you will probably want to use
the complete syntax:

gcc -shared -o cyg${module}.dll \
-Wl,--out-implib=lib${module}.dll.a \
-Wl,--export-all-symbols \
-Wl,--enable-auto-import \
-Wl,--whole-archive ${old_lib} \
-Wl,--no-whole-archive ${dependency_libs}

Where ${module} is the name of your DLL, ${old_lib} are all your object files,
bundled together in static libs or single object files and the ${dependency_libs} are
import libs you need to link against, e.g ’-lpng -lz -L/usr/local/special -lmyspeciallib’.

4.3.2. Linking Against DLLs
If you have an existing DLL already, you need to build a Cygwin-compatible import
library. If you have the source to compile the DLL, seeSection 4.3.1for details on
havinggcc build one for you. If you do not have the source or a supplied working
import library, you can get most of the way by creating a .def file with these commands
(you might need to do this inbash for the quoting to work correctly):

echo EXPORTS > foo.def
nm foo.dll | grep ’ T _’ | sed ’s/.* T _//’ >> foo.def

Note that this will only work if the DLL is not stripped. Otherwise you will get an error
message: "No symbols in foo.dll".

Once you have the.def file, you can create an import library from it like this:

dlltool --def foo.def --dllname foo.dll --output-lib foo.a

79

Chapter 4. Programming with Cygwin

4.4. Defining Windows Resources
windres reads a Windows resource file (*.rc) and converts it to a res or coff file. The
syntax and semantics of the input file are the same as for any other resource compiler,
so please refer to any publication describing the Windows resource format for details.
Also, thewindres program itself is fully documented in the Binutils manual. Here’s
an example of using it in a project:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

What follows is a quick-reference to the syntaxwindres supports.

id ACCELERATORS suboptions
BEG
"^C" 12
"Q" 12
65 12
65 12 , VIRTKEY ASCII NOINVERT SHIFT CONTROL ALT
65 12 , VIRTKEY, ASCII, NOINVERT, SHIFT, CONTROL, ALT
(12 is an acc_id)
END

SHIFT, CONTROL, ALT require VIRTKEY

id BITMAP memflags "filename"
memflags defaults to MOVEABLE

id CURSOR memflags "filename"
memflags defaults to MOVEABLE,DISCARDABLE

id DIALOG memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height,helpid styles BEG controls END

memflags defaults to MOVEABLE
exstyle may be EXSTYLE=number
styles: CAPTION "string"

80

Chapter 4. Programming with Cygwin

CLASS id
STYLE FOO | NOT FOO | (12)
EXSTYLE number
FONT number, "name"
FONT number, "name",weight,italic
MENU id
CHARACTERISTICS number
LANGUAGE number,number
VERSIONK number

controls:
AUTO3STATE params
AUTOCHECKBOX params
AUTORADIOBUTTON params
BEDIT params
CHECKBOX params
COMBOBOX params
CONTROL ["name",] id, class, style, x,y,w,h [,exstyle] [data]
CONTROL ["name",] id, class, style, x,y,w,h, exstyle, helpid [data]
CTEXT params
DEFPUSHBUTTON params
EDITTEXT params
GROUPBOX params
HEDIT params
ICON ["name",] id, x,y [data]
ICON ["name",] id, x,y,w,h, style, exstyle [data]
ICON ["name",] id, x,y,w,h, style, exstyle, helpid [data]
IEDIT params
LISTBOX params
LTEXT params
PUSHBOX params
PUSHBUTTON params
RADIOBUTTON params
RTEXT params
SCROLLBAR params
STATE3 params
USERBUTTON "string", id, x,y,w,h, style, exstyle

params:
["name",] id, x, y, w, h, [data]
["name",] id, x, y, w, h, style [,exstyle] [data]
["name",] id, x, y, w, h, style, exstyle, helpid [data]

[data] is optional BEG (string|number) [,(string|number)] (etc) END

81

Chapter 4. Programming with Cygwin

id FONT memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

id ICON memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

LANGUAGE num,num

id MENU options BEG items END
items:

"string", id, flags
SEPARATOR
POPUP "string" flags BEG menuitems END

flags:
CHECKED
GRAYED
HELP
INACTIVE
MENUBARBREAK
MENUBREAK

id MENUEX suboptions BEG items END
items:

MENUITEM "string"
MENUITEM "string", id
MENUITEM "string", id, type [,state]
POPUP "string" BEG items END
POPUP "string", id BEG items END
POPUP "string", id, type BEG items END
POPUP "string", id, type, state [,helpid] BEG items END

id MESSAGETABLE memflags "filename"
memflags defaults to MOVEABLE

id RCDATA suboptions BEG (string|number) [,(string|number)] (etc) END

STRINGTABLE suboptions BEG strings END
strings:

id "string"
id, "string"

(User data)
id id suboptions BEG (string|number) [,(string|number)] (etc) END

82

Chapter 4. Programming with Cygwin

id VERSIONINFO stuffs BEG verblocks END
stuffs: FILEVERSION num,num,num,num

PRODUCTVERSION num,num,num,num
FILEFLAGSMASK num
FILEOS num
FILETYPE num
FILESUBTYPE num

verblocks:
BLOCK "StringFileInfo" BEG BLOCK BEG vervals END END
BLOCK "VarFileInfo" BEG BLOCK BEG vertrans END END

vervals: VALUE "foo","bar"
vertrans: VALUE num,num

suboptions:
memflags
CHARACTERISTICS num
LANGUAGE num,num
VERSIONK num

memflags are MOVEABLE/FIXED PURE/IMPURE PRELOAD/LOADONCALL DISCARDABLE

83

	Table of Contents
	List of Examples
	Chapter 1. Cygwin Overview
	1.1. What is it?
	1.2. Are the Cygwin tools free software?
	1.3. A brief history of the Cygwin project
	1.4. Expectations for UNIX Programmers
	1.5. Expectations for Windows Programmers
	1.6. Highlights of Cygwin Functionality
	1.6.1. Introduction
	1.6.2. Supporting both Windows NT and 9x
	1.6.3. Permissions and Security
	1.6.4. File Access
	1.6.5. Text Mode vs. Binary Mode
	1.6.6. ANSI C Library
	1.6.7. Process Creation
	1.6.8. Signals
	1.6.9. Sockets
	1.6.10. Select

	Chapter 2. Setting Up Cygwin
	2.1. Internet Setup
	2.1.1. Download Source
	2.1.2. Selecting an Install Directory
	2.1.3. Local Package Directory
	2.1.4. Connection Method
	2.1.5. Choosing Mirrors
	2.1.6. Choosing Packages
	2.1.7. Download and Installation Progress
	2.1.8. Icons
	2.1.9. PostInstall Scripts

	2.2. Environment Variables
	2.3. Changing Cygwin's Maximum Memory
	2.4. NT security and the ntsec usage
	2.4.1. NT security
	2.4.2. Process privileges
	2.4.3. File permissions
	2.4.4. New since Cygwin release 1.1
	2.4.5. The mapping leak
	2.4.6. New acl API
	2.4.7. New setuid concept
	2.4.8. New since Cygwin release 1.3.3
	2.4.9. Special values of user and group ids

	2.5. Customizing bash

	Chapter 3. Using Cygwin
	3.1. Mapping path names
	3.1.1. Introduction
	3.1.2. The Cygwin Mount Table
	3.1.3. Additional Pathrelated Information

	3.2. Text and Binary modes
	3.2.1. The Issue
	3.2.2. The default Cygwin behavior
	3.2.3. Example
	3.2.4. Binary or text?
	3.2.5. Programming

	3.3. File permissions
	3.4. Special filenames
	3.4.1. DOS devices
	3.4.2. POSIX devices
	3.4.3. The .exe extension
	3.4.4. The @pathnames

	3.5. The CYGWIN environment variable
	3.6. Cygwin Utilities
	3.6.1. cygcheck
	3.6.2. cygpath
	3.6.3. dumper
	3.6.4. getfacl
	3.6.5. kill
	3.6.6. mkgroup
	3.6.7. mkpasswd
	3.6.8. mount
	3.6.8.1. Using mount
	3.6.8.2. Cygdrive mount points
	3.6.8.3. Limitations

	3.6.9. passwd
	3.6.10. ps
	3.6.11. regtool
	3.6.12. setfacl
	3.6.13. ssp
	3.6.14. strace
	3.6.15. umount

	3.7. Using Cygwin effectively with Windows
	3.7.1. Pathnames
	3.7.2. Console Programs
	3.7.3. Cygwin and Windows Networking
	3.7.4. The cygutils package
	3.7.5. Creating shortcuts with cygutils
	3.7.6. Printing with cygutils

	Chapter 4. Programming with Cygwin
	4.1. Using GCC with Cygwin
	4.1.1. Console Mode Applications
	4.1.2. GUI Mode Applications

	4.2. Debugging Cygwin Programs
	4.3. Building and Using DLLs
	4.3.1. Building DLLs
	4.3.2. Linking Against DLLs

	4.4. Defining Windows Resources

