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AUTOMATED ASSISTANT FOR 
ORGANIZING ELECTRONIC DOCUMENTS 

FIELD OF THE INVENTION 

This invention relates generally to software applications 
that manage electronic documents such as electronic mail, 
articles from news groups, articles from electronic news 
services, web pages or non-textual electronic documents 
such as images, video clips and audio clips. 

BACKGROUND OF THE INVENTION 

Numerous software applications permit users to receive 
and/or read electronic documents of various types. Lotus 
Notes, cc:Mail, Eudora, Netscape Messenger and Xmh are 
just a few of the many applications that handle electronic 
mail. Other applications, such as Xrn and GNUS, are 
speci?cally tailored to news groups on UseNet. Yet another 
set of applications, such as Netscape Navigator and 
Microsoft Internet Explorer, allows the reader to access and 
view web pages (documents that are distributed throughout 
the Internet and made available via the World Wide Web). 
A useful feature shared by many of these applications is 

the ability to store a given document (or pointer to a 
document) and associate that document (or pointer) with one 
or more categorical labels. When the user wishes to view a 
document, the user can supply one or more of the labels to 
the application, thereby improving the speed and ef?ciency 
of locating it within the collection of documents. 

Applications that manage electronic mail, electronic news 
items, web pages or other forms of electronic documents use 
a variety of methods for storing, labeling and retrieving 
documents. For example, the mail application Xmh stores 
each document as a separate ?le in the ?le system of the 
computer or network on which Xmh is running. Each 
document is assigned a single label, and all documents with 
the same label are stored in the same directory. The name of 
the label and the name of the directory in which documents 
with that label are stored are typically closely associated. For 
example, all documents labeled “administrivia” might be 
stored in the directory “/u/kephart/Mail/administrivia.” If 
the user later wishes to ?nd mail that he received a few 
months ago having to do with a lab safety check, he might 
click the button that represents the “administrivia” folder 
and either visually inspect the messages in that folder or ask 
Xmh to do a keyword search that is con?ned to the “admin 
istrivia” folder. 
An alternative to storing each document as a separate ?le 

in a categorically labeled directory is to store each electronic 
document, along with one or more associated labels, in a 
database. For example, Lotus Notes employs this approach. 
Furthermore, web browsers, such as Netscape, permit users 
to maintain a collection of bookmarks (pointers to remotely 
stored web pages) that can be organized into folders. 
Netscape keeps information on bookmarks and their group 
ing into folders in a specially formatted ?le. 
From the user’s perspective, the act of storing, labeling 

and retrieving documents depends very little on such imple 
mentation details. Applications typically combine the steps 
of labeling and storing documents by offering the user a 
(usually alphabetized) menu of all of the labels that currently 
exist. Typically, the user selects one or more labels and then 
signals to the application (e.g., by clicking a button) that it 
can go ahead and store the document (or the document 
pointer) with the selected labels. Facilities for choosing and 
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2 
dynamically updating a set of labels meaningful to an 
individual user are usually provided. 
A problem often encountered in electronic mail readers 

and other applications that manage electronic documents is 
that the list of possible labels may be several dozen or more, 
and consequently, it may take a user an appreciable amount 
of time (e.g., a fraction of a minute) to choose the most 
appropriate label or labels. The prospect of taking this time, 
along with the cognitive burden placed on the user, can 
discourage the user from labeling the document at all. The 
result is an undifferentiated mass of documents that can be 
dif?cult to navigate. 
One attempt to address this issue in the electronic mail 

domain, Maxims, has been proposed and implemented by 
Maes et al., Agents That Reduce Work and Information 
Overload, Communications of the ACM 37(7):3l*40, July 
1994. An individual user’s Maxims agent continually moni 
tors each interaction between that user and the Eudora mail 
application, and stores a record of each such interaction as 
a situation-action pair. It uses memory-based reasoning to 
anticipate a user’s actions, ie it searches for close matches 
between the current situation and previously encountered 
situations, and uses the actions associated with past similar 
situations to predict what action the user is likely to take. 
Given this prediction, Maxims either carries out the pre 
dicted action automatically or provides a shortcut to the user 
that facilitates that action. 

There are several drawbacks to the approach taken by 
Maxims. First, as noted by Maes et al., it can take some time 
for Maxims to gain enough experience to be useful. Maes et 
al. address this problem by allowing a newly instantiated 
agent to learn from more established ones. However, 
because categorization schemes and labels are very much an 
individual matter, one personalized e-mail agent cannot 
accurately teach another personalized e-mail agent about 
categorization. A second problem is that this approach 
requires the agent to be active and vigilant at all times to 
record every action taken by the user. Constant vigilance 
requires tight integration between the agent and the mail 
application, and therefore increases the di?iculty of incor 
porating mail categorization into existing mail applications. 
A third problem is that the route by which a mail item 
becomes associated with a label may be indirect. For 
example, suppose a message M is initially ?led under 
category C1 and then, one month later, it is moved to 
category C2. This would generate two situation-action pairs: 
M being moved from the Inbox to C1, and later M being 
moved from C1 to C2. While the net effect is that M has been 
placed in C2, the two situation-action pairs learned by 
Maxims cause it to predict that messages like M should ?rst 
be placed in C1 and then sometime later be moved to C2. At 
best, this is inef?cient and, at worst, it could decrease 
classi?cation accuracy because the movement of M to C2 
requires two separate predictions to be made accurately. The 
classi?er would be more e?icient and accurate if the clas 
si?er simply learned that M should be moved to C2. A fourth 
problem that could be acute for mail systems that store a 
user’s mail database remotely on a server is that it may be 
inef?cient to continually monitor actions on a client and 
report them back to the server. Workarounds for this are 
likely to be complex. A ?fth problem is that the learning step 
of this approach involves periodic analysis of the entire body 
of situation features and actions to ?nd correlations that are 
used as weights in the distance metric used to gauge the 
similarity between one situation and another. As the agent 
grows in experience, so does the amount of time required for 
the learning step. Because of the large amount of time 
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required for the learning phase, Maes et al. suggest that 
learning be performed only once a day. As a result, the 
Maxims classi?er can be a full day out of sync With the 
user’s most recent patterns of placing messages in folders. 

Payne et al., Interface Agents That Learn: An Investiga 
tion of Learning Issues in a Mail Agent Interface, Applied 
Arti?cial Intelligence, llzli32, 1997, describe an electronic 
mail categorization system very similar to that of Maes et al. 
Their method also requires that the user’s actions be moni 
tored on a continual basis. Furthermore, although they alloW 
for to the possibility of incremental learning, they do not 
address the issue that the classi?er cannot perform Well until 
the classi?er has seen the user categorize a large number of 
messages. 

Cohen, Learning Rules That Classify e-mail, In Proceed 
ings of the 1996 AAAI Spring Symposium on Machine 
Learning and Information Access, AAAI Press, l996,com 
pares the relative merits of tWo procedures for text classi 
?cation. The comparisons are made using mail messages 
that have been previously categorized into folders using a 
technique similar to that disclosed hereinbeloW to bootstrap 
a text classi?er to perform Well on the ?rst messages seen by 
the classi?er. HoWever, the emphasis of his Work is on 
comparing the performance of the tWo methods. Cohen does 
not discuss the relevance of previously categorized mes 
sages for bootstrapping a mail categorizer or similar appli 
cation. 

Conventionally, text classi?ers learn to predict the cat 
egory of a document by training on a corpus of previously 
labeled documents. Text classi?ers make their predictions by 
comparing the frequency of tokens Within a document to the 
average frequency of tokens in documents appearing in each 
category. A token is any semantically meaningful sequence 
of characters appearing in the document, such as a Word, 
multi-Word phrase, number, date or abbreviation. For 
example, the text “The Civil War ended in 1865” might be 
tokenized into the token set {“The”, “Civil War”, “ended”, 
“in”, “1865” Note that “Civil War” is interpreted here as 
a single token. The art of tokenization, as described in Salton 
et al., Introduction to Modern Information Retrieval, 
McGraW-Hill Book Company, 1983, is Well knoWn to those 
in the skilled in the art. 

As discussed by Salton et al., direct comparison of the 
document’s token frequencies With the token frequencies of 
each category can lead to highly inaccurate categorization 
because it tends to over-emphasize frequently occurring 
Words such as “the” and “about.” This problem is typically 
avoided by ?rst converting the category token frequencies 
into category token Weights that de-emphasize common 
Words using the Term Frequency-Inverse Document Fre 
quency (TF-IDF) principle. The TF-IDF Weight for a token 
in a speci?c category increases With the frequency of that 
token among documents knoWn to belong to the category 
and decreases With the frequency of that token Within the 
entire collection of documents. There are many different 
TF-IDF Weighting schemes. Salton et al. describe several 
Weighting schemes and their implementations. 
A document is classi?ed by computing the similarity 

betWeen the document token frequencies and the category 
token Weights. The document is assigned the category labels 
for the most similar category or categories. Numerous 
similarity metrics are used in practice. Most treat the docu 
ment token frequencies and the category token Weights as a 
vector and compute some variation on the cosine of the 
angle betWeen the tWo vectors. Salton et al. describe several 
similarity metrics and their implementations. 
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4 
The complete procedure for training and using a standard 

text classi?er is as folloWs. The classi?er is ?rst trained on 
a corpus of previously labeled documents. The training 
consists of tallying the frequencies of each token Within each 
category, using this information to compute each token’s 
Weight Within each category, and storing the computed 
Weights in a database for later retrieval. Classi?cation con 
sists of computing the document token frequencies, retriev 
ing the category Weights of each token appearing in the 
document and using the similarity measure to compute the 
similarity betWeen the document’s token frequencies and 
each category’s token Weights. The classi?er predicts the 
categories With the largest similarity. 
The standard algorithm Works Well When the corpus used 

for training is static. A problem occurs if the training corpus 
ever changes due to addition, removal or re-categorization of 
a document. Because of the nature of the Weight computa 
tion, adding or removing a single document affects the 
Weights of every token in every category. As a result, the 
entire token Weight database must be recomputed Whenever 
the training corpus changes. This is unacceptable for orga 
nizing electronic mail because messages are continually 
being added and removed from folders. 

Therefore, there is a need for an automated method for 
assisting a user With the task of using labels to organize 
electronic documents, Without requiring continual monitor 
ing of the user’s actions or excessive amounts of computa 
tion devoted to learning the user’s categorization prefer 
ences. 

Also, there is a need for an automated method of assisting 
a user With organizing electronic documents using a text 
classi?er algorithm having ?exibility so that the normal 
additions, deletions and re-categorization of documents do 
not require unnecessary Weight recomputation Within the 
system. 

Finally, there is a need for an automated method of 
assisting the user With organizing documents that, When ?rst 
installed, uses information about documents that have been 
labeled previously by other means to produce a classi?er, 
thus reducing or eliminating the amount of time required to 
train the automated method to categorize documents accu 
rately. 

SUMMARY OF THE INVENTION 

The present invention is a method for assisting a user With 
the task of identifying and carrying out an appropriate 
labeling of an electronic document such as electronic mail, 
a neWs group article, Web pages or non-textual electronic 
documents such as images, video clips and audio clips. 
The method of the present invention includes the steps of 

training a text classi?er on the user’s existing labeled 
collection of documents, running the classi?er on neWly 
received documents, using the classi?cation results to iden 
tify the most likely labels and presenting the set of possible 
labels to the user in a Way that accentuates the most likely 
labels. The method further includes the step of updating the 
classi?er as documents continue to be stored and labeled. 

In one embodiment of the invention, the method is 
imbedded in an electronic mail application and assists users 
in organizing their mail in separate folders. In a second 
embodiment, the method is imbedded in a Web broWser for 
the purpose of assisting users in organizing their bookmarks 
(pointers to Web pages). 

Speci?cally, a method of assisting a user With the task of 
categorizing a received electronic document into a collection 
is provided including the steps of classifying the document 
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to obtain one or more most likely categorical labels, dis 
playing, to the user, a representation of the one or more most 
likely categorical labels, receiving data, from the user, 
representative of one or more selected categorical labels and 
labeling the document Within the collection With the one or 
more selected categorical labels. 

Preferably, the method includes the step of re-training a 
classi?er incrementally to adapt to modi?cations of the 
collection. In addition, the method preferably includes the 
step of training the classi?er from scratch With a pre-existing 
collection of categorized documents. 

BRIEF DESCRIPTION OF THE DRAWING 

These and other features of the present invention Will 
become apparent from the accompanying detailed descrip 
tion and draWings, Wherein: 

FIG. 1 is a block diagram of a data processing system on 
Which the present invention can be implemented; 

FIG. 2 shoWs the user interface of one embodiment of the 
present invention, the Mailcat interface With Lotus Notes; 

FIG. 3 is a ?oW diagram of the MailCat_Classify proce 
dure of one embodiment of the present invention; 

FIG. 4 is a ?oW diagram of the procedure by Which the 
classi?er, according to one embodiment of the present 
invention, is trained from scratch; 

FIG. 5 is a ?oW diagram of the MailCat_Add procedure 
of one embodiment of the present invention; 

FIG. 6 is a ?oW diagram of the MailCat_Delete procedure 
of one embodiment of the present invention; 

FIG. 7 a ?oW diagram of the MailCat_Move procedure of 
one embodiment of do the present invention; 

FIG. 8 is a ?oW diagram of the batched incremental 
leaming update procedure of one embodiment of the present 
invention; 

FIG. 9 a ?oW diagram of the procedure by Which mes 
sages are tokenized prior to further processing by one of the 
core classi?er procedures of one embodiment of the present 
invention; 

FIG. 10 is a ?oW diagram of the Classi?er_Classify 
procedure of one embodiment of the present invention; 

FIG. 11 is a ?oW diagram of the Classi?er_Add procedure 
of one embodiment of the present invention; and 

FIG. 12 is a ?oW diagram of the Classi?er_Delete pro 
cedure of one embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

FIG. 1 is a block diagram of a data processing system 10 
that is suitable for practicing the teaching of the present 
invention. Abus 12 is comprised of a plurality of signal lines 
for conveying addresses, data and controls betWeen a Cen 
tral Processing Unit 14 and a number of other system bus 
units. A RAM 16 is coupled to the system bus 12 and 
provides program instruction storage and Working memory 
of the CPU 14. A terminal control subsystem 18 is coupled 
to the system bus 14 and provides outputs to a display device 
20, typically a CRT monitor, and receives inputs from a 
manual input device 22, typically a keyboard. Manual input 
may also be provided from a pointing device, such as a 
mouse. A hard disk control subsystem 24 bidirectionally 
couples a rotating ?xed disk, or hard disk 26, to the system 
bus 12. The control 24 and hard disk 26 provide mass 
storage for CPU instructions and data. A ?oppy disk control 
subsystem 28, Which along With ?oppy disk drives 30 is 
useful as an input means in the transfer of computer ?les 
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6 
from a ?oppy diskette 30a to system memory, bidirection 
ally couples one or more of the ?oppy disk drives 30 to the 
system bus 12. Also, other storage systems such as compact 
disk (CD) (not shoWn) can be included. Finally, a commu 
nications controller subsystem 32 provides netWorking 
capabilities for the data processing system 10. 
The components illustrated in FIG. 1 may be embodied 

Within a personal computer, a portable computer, a Work 
station, a minicomputer or a supercomputer. As such, the 
details of the physical embodiment of the data processing 
system 10, such as the structure of the bus 12 or the number 
of CPUs 14 that are coupled to the bus, is not crucial to the 
operation of the invention, and is not described in further 
detail hereinbeloW. 
One embodiment of the present invention, referred to 

hereinbeloW as “MailCat,” augments Lotus Notes, a com 
mercially available groupWare product that supports elec 
tronic mail. MailCat uses a text classi?er to assist the user 
With categorizing mail, and continually updates the text 
classi?er to maintain an accurate prediction of the user’s 
likely categorization choices. 

All electronic messages received by Notes are stored in a 
database. The database is organized into a hierarchy of 
folders. Initially, When a message is ?rst received, it is 
placed in a special folder called the Inbox. After the message 
has arrived in the Inbox, the user can move the message into 
any folder. The folders provide a mechanism for categoriz 
ing messages. For instance, the user may use the folder 
“Baseball” to store all messages related to the game of 
baseball. 

Notes alloWs users to categorize messages using the 
“File” button. When the “File” button is pressed While the 
user is vieWing a mail message, a dialog box entitled “Move 
To Folder” is displayed to the user, and the user can select 
from it a folder in Which to place the message. It generally 
takes a small but signi?cant amount of time and mental 
effort to scroll through the list of folders, trying to determine 
the most appropriate folder for the message. 

MailCat simpli?es the task of moving messages to folders 
by placing a number (e.g., three) of special “Move To” 
buttons (categorization shortcuts) above each message dis 
played on the display device 20, as illustrated in FIG. 2. The 
leftmost button 210 is labeled With “Patents,” Which is, 
preferably, the name of the folder that is deemed by the text 
classi?er to be most likely to be selected by the user as the 
destination for the message. Preferably, the other tWo but 
tons 220 and 230 are labeled, respectively, With the names 
of folders that are deemed second (“Mailcat”) and third 
(“Text Classi?ers”) most likely to be selected by the user. 
When one of the three buttons is selected by the manual 
input device 22, e.g., clicked, the message is immediately 
moved to the associated folder name. If the user decides that 
none of the folders offered by the three special buttons are 
appropriate, she can simply select the “File” button 240 and 
use the traditional “Move To Folder” dialog box (not shoWn) 
Which lists all of the user’s folders. Thus, even When the 
classi?er fails to anticipate the correct folder, there is no 
penalty other than the small loss of screen space devoted to 
the buttons. When the message is moved from the Inbox to 
another folder, various actions are taken to support incre 
mental leaming based on the neW information derived from 
the fact that the message has been placed in a particular 
folder. Amore detailed description of MailCat’s usage of the 
text classi?er is provided hereinbeloW. 

In order to predict the most likely destination folder or 
folders for a particular message, the text classi?er must be 
trained. As is generally knoWn in the ?eld, a text classi?er 
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is trained on a corpus of documents that have been classi?ed 
by humans. Often, the development of a labeled corpus 
involves a long, laborious effort by a human expert. Fortu 
nately, in an electronic mail application, the corpus is 
ready-made: the documents are the individual mail mes 
sages, and the label for each is simply the name of the folder 
into Which it has been placed. 

In the present invention, training may take place in a 
number of Ways at various times. If the automated catego 
riZation capability of the MailCat embodiment is installed 
after Lotus Notes has already been in use, most likely there 
Will be a pre-existing mail database containing folders into 
Which mail messages have been placed by the user (using the 
standard “File” button). In this situation, an initial classi?er 
can be trained directly from the existing database. While 
MailCat is in use, further training can be performed by an 
incremental learning procedure Which can be run in either a 
“lazy” or “instant” mode. Training from scratch, laZy incre 
mental learning and instant incremental learning are 
described hereinbeloW. 

Using the Classi?er 
According to this embodiment of the present invention, 

When neW mail arrives in a user’s Inbox, a sequence of 
events ensues in Which the message is classi?ed, appropriate 
buttons are added to displayed messages and the mail is 
quickly ?led in response to the user’s selection. This 
sequence of events is referred to as the MailCat_Classify 
procedure. 

MailCat_Classify may be triggered in a number of dif 
ferent Ways. The simplest approach is to invoke MailCat_ 
Classify Whenever a neW message arrives in the Inbox. 
HoWever, With this approach, there is a delay betWeen When 
the message is classi?ed and When it is vieWed. If incre 
mental learning has updated the classi?er during the interim, 
the buttons displayed With the message upon vieWing might 
not represent the classi?er’s latest predictions. An alterna 
tive is to run MailCat_Classify on a message just at the 
moment When the user indicates a desire to display that 
message. This method improves the accuracy of the buttons 
added to the classi?er, but introduces a slight delay in 
displaying the more up-to-date message screen. A third 
possibility is to offer the user a button that, When clicked, 
invokes MailCat_Classify on one, some or all of the mes 
sages in the Inbox. This method for triggering MailCat_ 
Classify gives the user manual control over the tradeolf 
betWeen computational cost and currentness of the buttons. 

The operation of MailCat_Classify is illustrated in FIG. 3. 
MailCat_Classify takes as input a Message in any of the 
three approaches described hereinabove. First, at step 308, a 
core classi?er procedure Classi?er_Classify is applied to the 
Message. As is described in greater detail hereinbeloW, 
Classi?er_Classify takes the Message as its input and pro 
duces, as output, a list of one or more categorical labels or 
folder names, “BestFolders.” Preferably, graphical represen 
tations or categoriZation shortcuts of the folder names in 
BestFolders are derived sometime betWeen the time the 
document is received and the time the document is displayed 
to the user. These representations, e.g. buttons, are prefer 
ably ordered such that the ?rst element is the name of the 
folder deemed by the classi?er to be the most likely desti 
nation for the input Message, the second element is the 
second most likely destination folder, etc. The maximal 
number of buttons that should be displayed, “MaxButtons,” 
is an integer, set either to some chosen default value or set 
by the user (most likely via a graphical user interface). For 
example, in FIG. 2, MaxButtons is set to 3, and Classi 
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8 
?er_Classify has returned the ordered list consisting of 
BestFolders:{Patents, Mailcat, Text Classi?ers}. 
At step 310, the value of a ?ag “ShortcutMode” is 

examined. If the value of ShortcutMode is equal to 
“AddButtons,” this is interpreted as meaning that the folders 
listed in BestFolders are to be presented to the user in the 
form of special “Move To” buttons as illustrated in FIG. 2. 
In this case, the objects corresponding to the buttons are 
derived, even if their display is delayed. If the value of the 
?ag is equal to “EnhanceMenu,” then in lieu of buttons the 
user Will be provided With an enhanced version of the “Move 
To Folder” menu, in Which the ordered set of folders 
BestFolders is prepended to the standard alphabetic ordering 
of all of the folders in the database. 

If the value of ShortcutMode is AddButtons, then the 
method continues in step 312. At step 312, special “Move 
To” buttons are included at the top of the message, so that 
if and When that message is displayed to the user, it Will be 
similar in form to What is illustrated in FIG. 2. The “Move 
To” button labels are the folder names in BestFolders, 
preferably placed in order of their appearance in BestFolders 
from left to right at the top of the message. After some period 
of time, When the user has displayed and read the message, 
the user may elect to click on one of the “Move To” buttons 
to choose a “SelectedFolder” into Which she desires the 
message to be placed. If none of the “Move To” buttons offer 
the desired category, the user may choose SelectedFolder by 
using the standard “File” button. Therefore, in step 314, data 
is received indicating that the user chose a SelectedFolder. 

If the value of ShortcutMode is EnhanceMenu, the 
method continues from step 310 to step 316. At step 316, the 
reader reads the message and data is received indicating that 
the user invoked the standard “Move To Folder” menu by 
clicking on the “File” button. At step 318, the list BestFold 
ers is prepended to the traditional alphabetic listing of folder 
names. This enables the user to quickly choose a Selected 
Folder, causing data indicative of the selection to be received 
at step 320. 

Regardless of the value of ShortcutMode, the tWo alter 
native paths join back together at step 322, Where the 
function MailCat_Move (detailed hereinbeloW) is called. 
MailCat_Move moves the message from the Inbox to the 
SelectedFolder and updates the classi?er With the informa 
tion that the Message is noW in SelectedFolder. MailCat_ 
Classify then terminates at step 324. 

Training the Classi?er 
Although not directly observable by the user, MailCat 

continually trains and re-trains the classi?er in an attempt to 
keep up With dynamic changes in the user’s mail database as 
mail is received, deleted and moved. HoWever, an additional 
step of training the classi?er from scratch is preferable When 
an automated assistant according to the present invention is 
instantiated. 

Training from Scratch 
If MailCat is installed after Lotus Notes has already been 

in use, the mail database Will most likely contain a set of 
folders, each of Which contains several mail messages. If so, 
this pre-existing set of folders constitutes a corpus of labeled 
documents that can be used to train the classi?er. At instal 
lation, or in response to the user’s request for a complete 
refresh of the classi?er, the classi?er can be trained from 
scratch by the procedure illustrated in FIG. 4. 

First, at step 401, a global variable “PrevLeamingTime” 
is set to the current time. PrevLearningTime records the last 
time at Which the classi?er Was updated. As Will become 
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clear in the discussion of incremental updates hereinbeloW, 
this information can help reduce computational effort during 
the incremental updates. 

At step 402, a loop over all folders in the database begins 
by determining the ?rst (or next) folder F to process. If there 
are no folders left, the entire training-from-scratch proce 
dure terminates at step 412. Otherwise, if F exists, it is 
checked at step 404 for membership in “ExclusionList,” a 
list of names of folders that are excluded from indexing. For 
example, ExclusionList could contain the folders Inbox, 
Drafts or any others that the user Wishes to exclude from 
automatic categorization. ExclusionList could be a default 
list, or a list modi?ed or created by the user via a graphical 
user interface. If F is a member of ExclusionList, then the 
method continues to step 402, Where the next folder is 
determined. OtherWise, at step 406, a loop begins over all 
messages M stored Within F. At step 406, the ?rst (or next) 
message M is determined, and When no such messages are 
left in F, the training method continues to step 402, Where the 
loop over folders is resumed. Otherwise, if at step 406, it is 
determined that there is a message M to process, then the 
training method continues to step 408. At step 408, the 
procedure Classi?er_Add (detailed hereinbeloW) is applied 
to message M and folder F. Classi?er_Add incorporates into 
the classi?er the fact that message M and its contents belong 
to category F. At step 410, the “LastFolder” ?eld of message 
M, “M.LastFolder,” is set equal to F to indicate that the 
classi?er has recorded that M belongs to category F. MailCat 
preferably de?nes and uses an extra LastFolder ?eld for each 
message for tracking Which category the message Was in 
When the classi?er Was last updated for that message. This 
bookkeeping is needed for lazy incremental learning. After 
step 410, is the method returns to step 406 Where the loop 
over messages continues. 

Incremental Learning 
Users continually receive neW mail, delete old mail and 

move mail messages among folders. Since the contents of 
the folders (and the user’s oWn conception of What messages 
belong in What folders) are in constant ?ux, it is important 
for the classi?er to continually adapt itself, i.e. it should be 
capable of incremental learning. 

MailCat can use tWo different strategies for incremental 
learning. The ?rst is an “instant” strategy, in Which updates 
to the classi?er are made immediately Whenever mail is 
added, deleted or moved. The second is a “lazy” strategy, in 
Which some minor bookkeeping permits the updates to be 
deferred. As mentioned hereinabove, the bookkeeping 
required to support lazy learning involves de?ning and 
maintaining an extra ?eld, “Message.LastFolder,” to track 
Which category Message Was in When the classi?er Was last 
updated. 

There are numerous advantages to lazy learning. On 
computers that are currently available, it can take a signi? 
cant fraction of a second to update the classi?er. Users might 
not tolerate an extra second of delay before vieWing their 
next mail message. Lazy learning makes it possible to 
perform the classi?er update during a moment When that to 
update is less likely to hurt performance, for example When 
the user’s machine is relatively idle. Of potentially even 
greater importance than performance is that the instant 
learning technique demands closer integration of the auto 
mated categorizer With the mail application than does lazy 
learning. An automated mail categorizer that employs 
instant learning must be constantly vigilant for any operation 
taken by the mail application that results in adding, deleting 
or moving a message, and When any such operation occurs, 
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10 
it must respond immediately by updating its classi?er. The 
need for tight communication betWeen the categorizer and 
the mail application can complicate the incorporation of 
automated categorization into an existing mail application, 
making it less universal and practical than one based on lazy 
learning. In contrast, the use of lazy learning simpli?es 
MailCat’s integration With Lotus Notes. 
The implementation of incremental learning requires 

either updating the classi?er or performing bookkeeping 
operations Whenever messages are added to folders, 
removed from folders or moved from one folder to another. 
These operations are handled by the MailCat_Add, Mail 
Cat_Delete, and MailCat_Move operations respectively. In 
addition, lazy incremental learning requires an additional 
procedure for processing any updates to the classi?er that 
have been deferred. A detailed description of each of these 
functions under both the lazy and instant learning scenarios 
is given hereinbeloW. 

MailCat_Add 
The MailCat_Add procedure adds the message “M” to the 

folder “Folder” and simultaneously updates the classi?er, if 
necessary. MailCat_Add is called Whenever a neW mail 
message is received and placed in a folder. Because neW 
mail is usually placed in the Inbox, normally FoldeFInbox. 
FIG. 5 illustrates the process of receiving neW mail into any 
folder. At step 501, a check is made to determine Whether the 
“LeamingMode” is “Lazy” or “Instant.” If the Leaming 
Mode is Lazy, the process continues in step 510. At step 510, 
M’s LastFolder ?eld, M.LastFolder, is set to “None” to 
indicate that the message is not currently regarded by the 
classi?er as belonging to any particular folder. Then, the 
process continues in step 508, Where the addition of M to 
Folder is carried out. The process terminates at step 512. 
Except for the simple act of setting a ?eld’s value in the 
database, the system behaves exactly as it Would if there 
Were no automated categorizer. Thus, little added Work is 
necessary to handle neW incoming messages. 

If, at step 501, it is determined that the LeamingMode is 
Instant, then the process continues in step 502. At step 502, 
a check is made to determine Whether Folder is in Exclu 
sionList. If Folder is not a member of ExclusionList, then at 
step 504 the Classi?er_Add function (detailed hereinbeloW) 
is applied to M and Folder, and the process continues to step 
506. OtherWise, if F is a member of ExclusionList, then 
application of Classi?er_Add at step 504 is bypassed, and 
the process continues directly to step 506. At step 506, the 
LastFolder ?eld of M, M.LastFolder, is set to Folder. At step 
508, M is added to Folder, and the process terminates at step 
512. 

MailCat_Delete 
The MailCat_Delete procedure removes a message M 

from the database and simultaneously updates the classi?er, 
if necessary. FIG. 6 illustrates the process. Regardless of the 
learning mode, the procedure begins at step 602, Where it is 
determined Whether the folder F named in the LastFolder 
?eld of message M, M.LastFolder, is in ExclusionList. If F 
is not a member of ExclusionList, then at step 604, the 
Classi?er_Delete function is applied to message M. M is 
then deleted from the mail database at step 606. OtherWise, 
if F is a member of ExclusionList, then application of 
Classi?er_Delete at step 604 is bypassed, and M is deleted 
from the mail database at step 606. 

MailCat_Move 
The function MailCat_Move moves a message M from 

the folder “FromFolder” to the folder “To Folder,” and 
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simultaneously updates the classi?er, if appropriate. FIG. 7 
illustrates the process. At step 701, a check is made to 
determine whether the LeamingMode is Lazy or Instant. If 
the LearningMode is Lazy, the process continues in step 712, 
where M is moved from FromFolder to ToFolder. The 
system behaves exactly as it would if there were no auto 
mated categoriZer. In laZy learning mode, it is unnecessary 
to monitor the movement of messages among folders, as was 
highlighted hereinabove. 

If, at step 701, it is determined that the LeamingMode is 
Instant, then the process continues in step 702, where it is 
determined whether ToFolder is a member of ExclusionList. 
If ToFolder is not in ExclusionList, then at step 704, the 
Classi?er_Add procedure is applied to the message M and 
the folder ToFolder, and then the process continues in step 
706. Otherwise, if ToFolder is in ExclusionList, step 704 is 
bypassed and the process continues directly to step 706. At 
step 706, FromFolder is checked for membership in Exclu 
sionList. If FromFolder is not a member of ExclusionList, 
then at step 708, the Classi?er_Delete function is applied to 
message M and the folder FromFolder, and then the process 
continues in step 710. Otherwise, if FromFolder is a member 
of ExclusionList, then step 708 is bypassed and the process 
continues directly to step 710. At step 710, the LastFolder 
?eld of message M is set to ToFolder to indicate that the 
classi?er (correctly) regards M as a member of the ToFolder 
category. Finally, at step 712, M is moved from FromFolder 
to ToFolder. Finally, the MailCat_Move process terminates 
at 714. 

Incremental Learning Update for Lazy Learning 
If lazy learning is being employed, then the discrepancies 

between the state of the database when the classi?er was last 
trained and the current state of the database will continue to 
grow. At some point, a decision must be made to re-train the 
classi?er by performing an incremental update. Several 
criteria can be used to determine when to trigger incremental 
learning. For example, a ?xed amount of time (say an hour) 
may have passed since the last incremental update, or a 
threshold for the number of messages that have been added, 
deleted or moved may have been exceeded. Alternatively, 
the system may be in an idle state, so that the update can be 
carried out without adversely affecting performance. 
Regardless of the details of how or why it is triggered, the 
incremental learning update proceeds as illustrated in FIG. 
8. 

At step 802, a “CurrLearningTime” variable is set to the 
current time. Then, at step 804, a loop over the folders in the 
mail database begins by identifying the ?rst folder F to be 
scanned for updates. The loop continues until all folders 
have been processed. When all folders have been processed, 
the update continues in step 822 where the variable “Prev 
LearningTime” is set to CurrLearningTime. The incremental 
update terminates at step 824. 

The loop over folders in the mail database proceeds as 
follows. At step 806, a to test is made to determine whether 
PrevLeamingTime (the time at which the previous incre 
mental learning batch began) occurred before the time at 
which the current folder F was last modi?ed (this informa 
tion is typically available in the mail database). If the last 
modi?cation to F occurred after the start of the last update, 
then one or more messages may have been added to F in the 
interim. Therefore, each message in F should be checked to 
see whether the classi?er has already been updated with the 
understanding that the message is in category F, which is 
accomplished by continuing to step 808. Otherwise, if F was 
last modi?ed before the start of the last update, then no 
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12 
messages in F need to be checked, and the update continues 
in step 804, where the next folder to process is determined. 

Step 808 is the beginning of a loop over all messages in 
the folder F. The loop terminates when there are no messages 
in F that remain to be processed. At this point, control passes 
back to the loop over folders at step 804. Otherwise, if there 
is a message M to process, at step 810 M’s LastFolder ?eld, 
M.LastFolder, is checked to see whether it is equal to F. If 
so, then no updates are required on account of M, and the 
update continues in step 808, where the next message in F 
is obtained. Otherwise, if M’s LastFolder ?eld is not equal 
to F, then the classi?er may need to be updated, and the 
update continues in step 812. 

At 812, a check is ?rst made to determine whether F is a 
member of ExclusionList. If so, the update continues in step 
816. Otherwise if F is not a member of ExclusionList, then, 
at step 814, the Classi?er_Add function (detailed hereinbe 
low) is applied to the message M and the folder F. At step 
816, the folder F' speci?ed in the LastFolder ?eld of M is 
checked for membership in ExclusionList. If F is in Exclu 
sionList, then the update continues in step 820. Otherwise, 
at step 818, the Classi?er_Delete procedure (detailed here 
inbelow) is applied to the message M and the folder F. 
At step 820, message M’s LastFolder ?eld, M.LastFolder, 

is set to F. Upon the completion of step 820, the update 
continues in step 808, where the next message in F is 
obtained. Note that steps 802, 806, and 822 are introduced 
only for the sake of e?iciency, and could be eliminated 
without affecting the correctness of the incremental update. 

Text Classi?er 
The overhead of recomputing all token weights for each 

update is avoided in MailCat’s text classi?er according to 
the present invention by storing and retrieving token fre 
quencies rather than token weights. Token frequencies are 
easier to maintain in the face of updates because adding and 
removing documents from a category only requires adding 
or subtracting the token counts for the document being 
updated. Token frequencies can be used for classi?cation as 
follows. When the classi?er is asked to classify a document, 
it retrieves, for each category, the frequencies for just those 
tokens that appear in the document. From the retrieved token 
frequencies, it computes the token weights for each category 
on the ?y. The classi?er then uses the dynamically generated 
token weights to compute the similarity of the document to 
each category. Since the similarity computation only 
requires weights for the tokens appearing in the document 
being compared, computing weights for the entire database 
can be avoided. Furthermore, the on-the-?y weight compu 
tation does not affect the computational complexity of 
classi?cation. As a result, on-the-?y computation of token 
weights slows the classi?cation procedure by only 10% to 
20% in practice. 
The MailCat classi?er provides three functions to imple 

ment incremental learning: Classi?er_Classify, Classi? 
er_Add and Classi?er_Delete. Classi?er_Classify performs 
the actual classi?cation of messages. Classi?er_Add and 
Classi?er_Delete maintain the database of token frequen 
cies. The database of token frequencies is stored in a 
two-dimensional array “TokenCount[Folder, Token].” 
TokenCount stores, for each Token and each Folder, the 
number of occurrences of Token in Folder. The TokenCount 
array is stored as an inverted index for ef?ciency as 
described in Salton et al. In addition to its three core 
functions, the MailCat classi?er uses the function TokeniZe 
(Message) to generate the tokens used for classi?cation. The 
following sections describe each of these functions in detail. 












