
United States Patent

US007051277B2

(12) (10) Patent N0.: US 7,051,277 B2
Kephart et a]. (45) Date of Patent: May 23, 2006

(54) AUTOMATED ASSISTANT FOR 5,899,995 A * 5/1999 Millier et a1. 707/102

ORGANIZING ELECTRONIC DOCUMENTS 5,969,720 A * 10/1999 Lisle et a1. 345/351
6,028,605 A * 2/2000 Conrad et a1. . 345/354

(75) Inventors: Je?rey Owen Kephart, Cortlandt i i gem _ . . , , arrye a. 104211.10?’ Nwggé§lgltlardlgr?n gegal’ 6,182,059 B1 * 1/2001 Angotti et a1. . 706/45

“{mng’ ’ eve 1° ar 6,182,066 B1 * 1/2001 Marques 707/5

Whlte, New York’ NY (Us) 6,295,543 B1 * 9/2001 Block et a1. 707/530

(73) Assignee: International Business Machines OTHER PUBLICATIONS

corporatlon’ Onk’ NY (Us) Warren Ernst, Using Netscape, Que Corporation, pp. 54-55,

(*) Notice: Subject to any disclaimer, the term of this 66'67 1995*, _ _ _
patent is extended or adjusted under 35 Dobrrca, Savrc, Automatic c1ass1?cat1on of office docu
U S C 1546)) by 288 days ments: Review of available methods and techniques, ARMA

' ' ' ' Records Management Quarterly, Prairie Village, Oct./ 1995,

(21) Appl. No.2 09/061,706 V°1~ 29, Issue 4’ PP~ 3-34~* _ _
G. Salton and M. I. McGrll, “Introduction to Modern

(22) Filed; AP}; 17, 1998 Information Retrieval”, McGraW-Hill Book Company, pp.
52-448, 1983.

(65) Prior Publication Data W. W. Cohen, “Learning Rules that Classify E-Mail”, 8
pages, AT&T Laboratories, Murray Hill, NJ 07974,

US 2001/0042087 A1 Nov. 15, 2001 WCohen@research'an'com~

(51) Int. Cl. (Continued)
G06F 15/00 (2006.01) _ _ _ _

Primary Exammeriwllllam Bashore
(52) U 5 Cl 715/530 715/531_ 707/1_ (74) Attorney, Agent, or FirmiFrank V. DeRosa; F.Chau &

707/3; 707/104; 706/45 ASSOCImeS’LLC
(58) Field of Classi?cation Search 707/ 1, (57) ABSTRACT

707/3, 104, 102, 5; 715/530, 531; 706/20,
_ _ 706/45; 345/354_; 709/219 A method of assisting a user With the task of categorizing a

See aPPheanOn ?le for Complete Search 11151013’ - received electronic document into a collection includes the
_ steps of classifying the document to obtain one or more most

(56) References Clted likely categorical labels; displaying, to the user, a represen

U.S. PATENT DOCUMENTS

5,544,360 A * 8/1996 Lewak et a1. 707/1

5,642,288 A 6/1997 Leung et a1. 700/223
5,751,287 A 5/1998 Hahn et a1. 345/351

5,772,446 A * 6/1998 Rosen 434/307 R

5,867,799 A * 2/1999 Lang et a1 707/1

5,877,963 A 3/1999 Leung et a1. . 700/223
5,895,470 A * 4/1999 P1r0lli et a1. 707/102

tation of the one or more most likely categorical labels;
receiving data, from the user, representative of a selected
categorical label; and labeling the document Within the
collection With the selected categorical label. The electronic
document can include an electronic mail message, a Web

page bookmark, an audio ?le or a video ?le.

53 Claims, 12 Drawing Sheets

3081
Call

Classi?er_C|assify(Message)
to compute BestFolders

ShortcutMode= 31°
AddBuiiunS

312

Label MoveTn buttons with
folders named in BeetFolders;

add them to Message

ShortcutMode?

ShortcutMude=
EnhanceMenu

316

User Click of
File Button
Received

322

324

318 l

MailCaLMove(Message, lnbox. SelecledFolder)

BestFolders is prspended to
usual alphabetical Folder

menu

User selection
a

SeiectedFolder
Received

US 7,051,277 B2
Page 2

OTHER PUBLICATIONS Pattie Maes, “Agents that Reduce Work and Information

T‘ R‘ Payne and R Edwards’ “Interface Agents that Learn: Overload , Communications of the ACM, Jul. 1994/Vol. 37,
N . 7 . 31-40.

An Investigation of Learning Issues in a Mail Agent Inter- O ’ pp
face”, Applied Arti?cial Intelligence, 1111-32, 1997. * cited by examiner

U.S. Patent May 23, 2006 Sheet 2 0f 12 US 7,051,277 B2

Text Classi?ers

Richard B Segal
oa/aoxss 10:40 AM

To: Jeff KephartN/atson/IBM@IBMUS

From: Flichard B SegalN/atson/IBM @ IBMUS
Subiect: Patent draft

An Automated Assistant for Organizing Electronic Documents

Jeffrey 0. Kephart and Richard B. Segal
1 IBM Thomas J. Watson Research Center
53 PO. Box 704. Yorktown Heights, NY 1 0590

Field of the Invention

This invention relates generally to software applications that deliver electronic documents such
as electronic mail. articles from news groups, or articles from electronic news services.

U.S. Patent May 23, 2006 Sheet 3 of 12 US 7,051,277 B2

308k
Call

Classifier_Classify(Message)
to compute BestFolders

ShortcutMode= 310 ShortcutMode=
AddButtons ShortcutMode? EnhanceMenu

3121
Label MoveTo buttons with

folders named in BestFolders;
add them to Message

User Click of
File Button
Received

3181
BestFolders is prepended to
usual alphabetical Folder

menu

314

User click of
"Move T0" or

"File“ button to
indicate

SelectedFolder
Received

320

User selection
of

SelectedFolder
Received

322k T
MailCat_Move(Message, lnbox, SelectedFolder)

324

Fig. 3

U.S. Patent May 23, 2006 Sheet 4 0f 12 US 7,051,277 B2

4011 i
PrevLearningTime=

Current Time

402E i
Try to get first/next Folder F in Database

Failure

404
412

F in
Exclusion

List?

406
E

———> Try to get first/next Message M in F

408? lSuccess
Classifler_Add(M,F)

410é l
Set M.LastFolder=F

Failure

Fig. 4

U.S. Patent

LearningMode=Lazy

May 23, 2006 Sheet 5 0f 12 US 7,051,277 B2

501

510

E v

LearningM0de=lnstant
502

Folder in
Exclusion

List? §504
Classi?er_Add(M,Folder)

Yes |
506

E v Set M.LastFoIder
= None Set M.LastFolder = Folder

508
\i v

-——-———>» Add M to Folder

512

U.S. Patent May 23, 2006 Sheet 6 0f 12 US 7,051,277 B2

Message
M

M.LastFolder in
ExclusionList?

602

j 604
C|assi?er_De|ete(M,M.LastFo|der)

606

E
Delete M from
Mail Database

608

Fig. 6

U.S. Patent May 23, 2006 Sheet 7 0f 12 US 7,051,277 B2

Message M FromFolder ToFolder

LearningMode=Lazy

LearningMode=lnstant
702

ToFolder in
ExclusionList?

C|assi?er_Add(M,ToFoIder)

706

FromFolder in 708
ExclusionList? 5

C|assifier_Delete(M,FromFolder)
| 710

I
Set M.LastFo|der =

ToFolder

7121 l
Move M from FormFoIder

to ToFoIder

714

U.S. Patent May 23, 2006 Sheet 8 0f 12 US 7,051,277 B2

802 i
CurrLearningTime = Current Time

804 i
Failure . .

l————— Try to get first/next Folder F in Database 4
822 7 Success
PrevLearningTime = 806
CurrLearningTime Last time F

modified>
824 PrevLearningTime?

808

+ Try to get first/next Message M in F
Failure

Success
810 F _

M.LastFolder?

No
812

F in
Exclusion

List?

No

816

M.LastFolder in
ExclusionList?

Classifier_De|ete(M,M.LastF0|der)
820

Set M.LastFo|der = F

Fig. 8
Incremental Learning Update

U.S. Patent

904 1

May 23, 2006 Sheet 9 0f 12

9021
Tokenize message body to obtain

BodyTokens

t

US 7,051,277 B2

Tokenize "From" header to obtain FromTokens.
Prefix tokens in FromTokens with "From:"

906 1
Tokenize "To" header to obtain ToTokens.

Prefix tokens in ToTokens with "T01"

i 9081
Tokenize "CC" header to obtain CCTokens.

Prefix tokens in CCTokens with "C61"

9101
Tokenize "Subject" header to obtain

SubjectTokens.

QHL +
Add SubjectTokens to BodyTokens

t 9127”
Prefix tokens in SubjectTokens with "Subject"

914 1
AtlTokens = FromTokens + ToTokens + CCTokens +

SubjectTokens + BodyTokens

916
Return

AtlTokens Fig. 9

U.S. Patent May 23, 2006 Sheet 10 of 12 US 7,051,277 B2

10041
Tokenize message

10061 ‘
Count number of occurrences of each token
and store in MessageTokenCountltoken]

10081 i
———> Try to get first/next Folder in index Fauure

10101 ‘Success
Try to get first/next Token Failure
in MessageTokenCount

10121 ‘Success
Compute TokenWeight[Folder, Token]

10141

——._____>

Compute similarity between
MessageTokenCount and <—

TokenWeight[Folder] to obtain Score[Folder].

10161 ‘
BestFolders = Set of at most MaxButtons
folders for which Score[Folder] is largest

l
1 Remove from BestFolders all folders for

which Score[Folder] < Threshold

Return
BestFolders

1018

1020

Fig. 10

U.S. Patent May 23, 2006 Sheet 11 0f 12 US 7,051,277 B2

Folder

11061 T
Tokenize message

11081 $
Count number of occurrences of each Token
and store in MessageTokenCount[Token]

1110 I i 1114
Try to get first/next token Failure

’ in MessageTokenCount

7 Success

1112 1
TokenCount[Folder, Token] = TokenCount[Fo|der, Token] +

MessageTokenCount[Token}

Fig. 11

U.S. Patent May 23, 2006 Sheet 12 0f 12 US 7,051,277 B2

1200\k T
Tokenize ‘message

1208 ‘

Count number of occurrences of each Token
and store in MessageTokenCount[Token]

12101 1, 1214
Get first/next Token Failure

in MessageTokenCount

7 Success 7

12121
TokenCount[Folder, Token] = TokenCountlFoIder, Token] -

MessageTokenCount[Token}

Fig. 12

US 7,051,277 B2
1

AUTOMATED ASSISTANT FOR
ORGANIZING ELECTRONIC DOCUMENTS

FIELD OF THE INVENTION

This invention relates generally to software applications
that manage electronic documents such as electronic mail,
articles from news groups, articles from electronic news
services, web pages or non-textual electronic documents
such as images, video clips and audio clips.

BACKGROUND OF THE INVENTION

Numerous software applications permit users to receive
and/or read electronic documents of various types. Lotus
Notes, cc:Mail, Eudora, Netscape Messenger and Xmh are
just a few of the many applications that handle electronic
mail. Other applications, such as Xrn and GNUS, are
speci?cally tailored to news groups on UseNet. Yet another
set of applications, such as Netscape Navigator and
Microsoft Internet Explorer, allows the reader to access and
view web pages (documents that are distributed throughout
the Internet and made available via the World Wide Web).
A useful feature shared by many of these applications is

the ability to store a given document (or pointer to a
document) and associate that document (or pointer) with one
or more categorical labels. When the user wishes to view a
document, the user can supply one or more of the labels to
the application, thereby improving the speed and ef?ciency
of locating it within the collection of documents.

Applications that manage electronic mail, electronic news
items, web pages or other forms of electronic documents use
a variety of methods for storing, labeling and retrieving
documents. For example, the mail application Xmh stores
each document as a separate ?le in the ?le system of the
computer or network on which Xmh is running. Each
document is assigned a single label, and all documents with
the same label are stored in the same directory. The name of
the label and the name of the directory in which documents
with that label are stored are typically closely associated. For
example, all documents labeled “administrivia” might be
stored in the directory “/u/kephart/Mail/administrivia.” If
the user later wishes to ?nd mail that he received a few
months ago having to do with a lab safety check, he might
click the button that represents the “administrivia” folder
and either visually inspect the messages in that folder or ask
Xmh to do a keyword search that is con?ned to the “admin
istrivia” folder.
An alternative to storing each document as a separate ?le

in a categorically labeled directory is to store each electronic
document, along with one or more associated labels, in a
database. For example, Lotus Notes employs this approach.
Furthermore, web browsers, such as Netscape, permit users
to maintain a collection of bookmarks (pointers to remotely
stored web pages) that can be organized into folders.
Netscape keeps information on bookmarks and their group
ing into folders in a specially formatted ?le.
From the user’s perspective, the act of storing, labeling

and retrieving documents depends very little on such imple
mentation details. Applications typically combine the steps
of labeling and storing documents by offering the user a
(usually alphabetized) menu of all of the labels that currently
exist. Typically, the user selects one or more labels and then
signals to the application (e.g., by clicking a button) that it
can go ahead and store the document (or the document
pointer) with the selected labels. Facilities for choosing and

20

30

35

40

45

50

55

60

65

2
dynamically updating a set of labels meaningful to an
individual user are usually provided.
A problem often encountered in electronic mail readers

and other applications that manage electronic documents is
that the list of possible labels may be several dozen or more,
and consequently, it may take a user an appreciable amount
of time (e.g., a fraction of a minute) to choose the most
appropriate label or labels. The prospect of taking this time,
along with the cognitive burden placed on the user, can
discourage the user from labeling the document at all. The
result is an undifferentiated mass of documents that can be
dif?cult to navigate.
One attempt to address this issue in the electronic mail

domain, Maxims, has been proposed and implemented by
Maes et al., Agents That Reduce Work and Information
Overload, Communications of the ACM 37(7):3l*40, July
1994. An individual user’s Maxims agent continually moni
tors each interaction between that user and the Eudora mail
application, and stores a record of each such interaction as
a situation-action pair. It uses memory-based reasoning to
anticipate a user’s actions, ie it searches for close matches
between the current situation and previously encountered
situations, and uses the actions associated with past similar
situations to predict what action the user is likely to take.
Given this prediction, Maxims either carries out the pre
dicted action automatically or provides a shortcut to the user
that facilitates that action.

There are several drawbacks to the approach taken by
Maxims. First, as noted by Maes et al., it can take some time
for Maxims to gain enough experience to be useful. Maes et
al. address this problem by allowing a newly instantiated
agent to learn from more established ones. However,
because categorization schemes and labels are very much an
individual matter, one personalized e-mail agent cannot
accurately teach another personalized e-mail agent about
categorization. A second problem is that this approach
requires the agent to be active and vigilant at all times to
record every action taken by the user. Constant vigilance
requires tight integration between the agent and the mail
application, and therefore increases the di?iculty of incor
porating mail categorization into existing mail applications.
A third problem is that the route by which a mail item
becomes associated with a label may be indirect. For
example, suppose a message M is initially ?led under
category C1 and then, one month later, it is moved to
category C2. This would generate two situation-action pairs:
M being moved from the Inbox to C1, and later M being
moved from C1 to C2. While the net effect is that M has been
placed in C2, the two situation-action pairs learned by
Maxims cause it to predict that messages like M should ?rst
be placed in C1 and then sometime later be moved to C2. At
best, this is inef?cient and, at worst, it could decrease
classi?cation accuracy because the movement of M to C2
requires two separate predictions to be made accurately. The
classi?er would be more e?icient and accurate if the clas
si?er simply learned that M should be moved to C2. A fourth
problem that could be acute for mail systems that store a
user’s mail database remotely on a server is that it may be
inef?cient to continually monitor actions on a client and
report them back to the server. Workarounds for this are
likely to be complex. A ?fth problem is that the learning step
of this approach involves periodic analysis of the entire body
of situation features and actions to ?nd correlations that are
used as weights in the distance metric used to gauge the
similarity between one situation and another. As the agent
grows in experience, so does the amount of time required for
the learning step. Because of the large amount of time

US 7,051,277 B2
3

required for the learning phase, Maes et al. suggest that
learning be performed only once a day. As a result, the
Maxims classi?er can be a full day out of sync With the
user’s most recent patterns of placing messages in folders.

Payne et al., Interface Agents That Learn: An Investiga
tion of Learning Issues in a Mail Agent Interface, Applied
Arti?cial Intelligence, llzli32, 1997, describe an electronic
mail categorization system very similar to that of Maes et al.
Their method also requires that the user’s actions be moni
tored on a continual basis. Furthermore, although they alloW
for to the possibility of incremental learning, they do not
address the issue that the classi?er cannot perform Well until
the classi?er has seen the user categorize a large number of
messages.

Cohen, Learning Rules That Classify e-mail, In Proceed
ings of the 1996 AAAI Spring Symposium on Machine
Learning and Information Access, AAAI Press, l996,com
pares the relative merits of tWo procedures for text classi
?cation. The comparisons are made using mail messages
that have been previously categorized into folders using a
technique similar to that disclosed hereinbeloW to bootstrap
a text classi?er to perform Well on the ?rst messages seen by
the classi?er. HoWever, the emphasis of his Work is on
comparing the performance of the tWo methods. Cohen does
not discuss the relevance of previously categorized mes
sages for bootstrapping a mail categorizer or similar appli
cation.

Conventionally, text classi?ers learn to predict the cat
egory of a document by training on a corpus of previously
labeled documents. Text classi?ers make their predictions by
comparing the frequency of tokens Within a document to the
average frequency of tokens in documents appearing in each
category. A token is any semantically meaningful sequence
of characters appearing in the document, such as a Word,
multi-Word phrase, number, date or abbreviation. For
example, the text “The Civil War ended in 1865” might be
tokenized into the token set {“The”, “Civil War”, “ended”,
“in”, “1865” Note that “Civil War” is interpreted here as
a single token. The art of tokenization, as described in Salton
et al., Introduction to Modern Information Retrieval,
McGraW-Hill Book Company, 1983, is Well knoWn to those
in the skilled in the art.

As discussed by Salton et al., direct comparison of the
document’s token frequencies With the token frequencies of
each category can lead to highly inaccurate categorization
because it tends to over-emphasize frequently occurring
Words such as “the” and “about.” This problem is typically
avoided by ?rst converting the category token frequencies
into category token Weights that de-emphasize common
Words using the Term Frequency-Inverse Document Fre
quency (TF-IDF) principle. The TF-IDF Weight for a token
in a speci?c category increases With the frequency of that
token among documents knoWn to belong to the category
and decreases With the frequency of that token Within the
entire collection of documents. There are many different
TF-IDF Weighting schemes. Salton et al. describe several
Weighting schemes and their implementations.
A document is classi?ed by computing the similarity

betWeen the document token frequencies and the category
token Weights. The document is assigned the category labels
for the most similar category or categories. Numerous
similarity metrics are used in practice. Most treat the docu
ment token frequencies and the category token Weights as a
vector and compute some variation on the cosine of the
angle betWeen the tWo vectors. Salton et al. describe several
similarity metrics and their implementations.

20

25

30

35

40

45

50

55

60

65

4
The complete procedure for training and using a standard

text classi?er is as folloWs. The classi?er is ?rst trained on
a corpus of previously labeled documents. The training
consists of tallying the frequencies of each token Within each
category, using this information to compute each token’s
Weight Within each category, and storing the computed
Weights in a database for later retrieval. Classi?cation con
sists of computing the document token frequencies, retriev
ing the category Weights of each token appearing in the
document and using the similarity measure to compute the
similarity betWeen the document’s token frequencies and
each category’s token Weights. The classi?er predicts the
categories With the largest similarity.
The standard algorithm Works Well When the corpus used

for training is static. A problem occurs if the training corpus
ever changes due to addition, removal or re-categorization of
a document. Because of the nature of the Weight computa
tion, adding or removing a single document affects the
Weights of every token in every category. As a result, the
entire token Weight database must be recomputed Whenever
the training corpus changes. This is unacceptable for orga
nizing electronic mail because messages are continually
being added and removed from folders.

Therefore, there is a need for an automated method for
assisting a user With the task of using labels to organize
electronic documents, Without requiring continual monitor
ing of the user’s actions or excessive amounts of computa
tion devoted to learning the user’s categorization prefer
ences.

Also, there is a need for an automated method of assisting
a user With organizing electronic documents using a text
classi?er algorithm having ?exibility so that the normal
additions, deletions and re-categorization of documents do
not require unnecessary Weight recomputation Within the
system.

Finally, there is a need for an automated method of
assisting the user With organizing documents that, When ?rst
installed, uses information about documents that have been
labeled previously by other means to produce a classi?er,
thus reducing or eliminating the amount of time required to
train the automated method to categorize documents accu
rately.

SUMMARY OF THE INVENTION

The present invention is a method for assisting a user With
the task of identifying and carrying out an appropriate
labeling of an electronic document such as electronic mail,
a neWs group article, Web pages or non-textual electronic
documents such as images, video clips and audio clips.
The method of the present invention includes the steps of

training a text classi?er on the user’s existing labeled
collection of documents, running the classi?er on neWly
received documents, using the classi?cation results to iden
tify the most likely labels and presenting the set of possible
labels to the user in a Way that accentuates the most likely
labels. The method further includes the step of updating the
classi?er as documents continue to be stored and labeled.

In one embodiment of the invention, the method is
imbedded in an electronic mail application and assists users
in organizing their mail in separate folders. In a second
embodiment, the method is imbedded in a Web broWser for
the purpose of assisting users in organizing their bookmarks
(pointers to Web pages).

Speci?cally, a method of assisting a user With the task of
categorizing a received electronic document into a collection
is provided including the steps of classifying the document

US 7,051,277 B2
5

to obtain one or more most likely categorical labels, dis
playing, to the user, a representation of the one or more most
likely categorical labels, receiving data, from the user,
representative of one or more selected categorical labels and
labeling the document Within the collection With the one or
more selected categorical labels.

Preferably, the method includes the step of re-training a
classi?er incrementally to adapt to modi?cations of the
collection. In addition, the method preferably includes the
step of training the classi?er from scratch With a pre-existing
collection of categorized documents.

BRIEF DESCRIPTION OF THE DRAWING

These and other features of the present invention Will
become apparent from the accompanying detailed descrip
tion and draWings, Wherein:

FIG. 1 is a block diagram of a data processing system on
Which the present invention can be implemented;

FIG. 2 shoWs the user interface of one embodiment of the
present invention, the Mailcat interface With Lotus Notes;

FIG. 3 is a ?oW diagram of the MailCat_Classify proce
dure of one embodiment of the present invention;

FIG. 4 is a ?oW diagram of the procedure by Which the
classi?er, according to one embodiment of the present
invention, is trained from scratch;

FIG. 5 is a ?oW diagram of the MailCat_Add procedure
of one embodiment of the present invention;

FIG. 6 is a ?oW diagram of the MailCat_Delete procedure
of one embodiment of the present invention;

FIG. 7 a ?oW diagram of the MailCat_Move procedure of
one embodiment of do the present invention;

FIG. 8 is a ?oW diagram of the batched incremental
leaming update procedure of one embodiment of the present
invention;

FIG. 9 a ?oW diagram of the procedure by Which mes
sages are tokenized prior to further processing by one of the
core classi?er procedures of one embodiment of the present
invention;

FIG. 10 is a ?oW diagram of the Classi?er_Classify
procedure of one embodiment of the present invention;

FIG. 11 is a ?oW diagram of the Classi?er_Add procedure
of one embodiment of the present invention; and

FIG. 12 is a ?oW diagram of the Classi?er_Delete pro
cedure of one embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 is a block diagram of a data processing system 10
that is suitable for practicing the teaching of the present
invention. Abus 12 is comprised of a plurality of signal lines
for conveying addresses, data and controls betWeen a Cen
tral Processing Unit 14 and a number of other system bus
units. A RAM 16 is coupled to the system bus 12 and
provides program instruction storage and Working memory
of the CPU 14. A terminal control subsystem 18 is coupled
to the system bus 14 and provides outputs to a display device
20, typically a CRT monitor, and receives inputs from a
manual input device 22, typically a keyboard. Manual input
may also be provided from a pointing device, such as a
mouse. A hard disk control subsystem 24 bidirectionally
couples a rotating ?xed disk, or hard disk 26, to the system
bus 12. The control 24 and hard disk 26 provide mass
storage for CPU instructions and data. A ?oppy disk control
subsystem 28, Which along With ?oppy disk drives 30 is
useful as an input means in the transfer of computer ?les

20

25

30

35

40

45

50

55

60

65

6
from a ?oppy diskette 30a to system memory, bidirection
ally couples one or more of the ?oppy disk drives 30 to the
system bus 12. Also, other storage systems such as compact
disk (CD) (not shoWn) can be included. Finally, a commu
nications controller subsystem 32 provides netWorking
capabilities for the data processing system 10.
The components illustrated in FIG. 1 may be embodied

Within a personal computer, a portable computer, a Work
station, a minicomputer or a supercomputer. As such, the
details of the physical embodiment of the data processing
system 10, such as the structure of the bus 12 or the number
of CPUs 14 that are coupled to the bus, is not crucial to the
operation of the invention, and is not described in further
detail hereinbeloW.
One embodiment of the present invention, referred to

hereinbeloW as “MailCat,” augments Lotus Notes, a com
mercially available groupWare product that supports elec
tronic mail. MailCat uses a text classi?er to assist the user
With categorizing mail, and continually updates the text
classi?er to maintain an accurate prediction of the user’s
likely categorization choices.

All electronic messages received by Notes are stored in a
database. The database is organized into a hierarchy of
folders. Initially, When a message is ?rst received, it is
placed in a special folder called the Inbox. After the message
has arrived in the Inbox, the user can move the message into
any folder. The folders provide a mechanism for categoriz
ing messages. For instance, the user may use the folder
“Baseball” to store all messages related to the game of
baseball.

Notes alloWs users to categorize messages using the
“File” button. When the “File” button is pressed While the
user is vieWing a mail message, a dialog box entitled “Move
To Folder” is displayed to the user, and the user can select
from it a folder in Which to place the message. It generally
takes a small but signi?cant amount of time and mental
effort to scroll through the list of folders, trying to determine
the most appropriate folder for the message.

MailCat simpli?es the task of moving messages to folders
by placing a number (e.g., three) of special “Move To”
buttons (categorization shortcuts) above each message dis
played on the display device 20, as illustrated in FIG. 2. The
leftmost button 210 is labeled With “Patents,” Which is,
preferably, the name of the folder that is deemed by the text
classi?er to be most likely to be selected by the user as the
destination for the message. Preferably, the other tWo but
tons 220 and 230 are labeled, respectively, With the names
of folders that are deemed second (“Mailcat”) and third
(“Text Classi?ers”) most likely to be selected by the user.
When one of the three buttons is selected by the manual
input device 22, e.g., clicked, the message is immediately
moved to the associated folder name. If the user decides that
none of the folders offered by the three special buttons are
appropriate, she can simply select the “File” button 240 and
use the traditional “Move To Folder” dialog box (not shoWn)
Which lists all of the user’s folders. Thus, even When the
classi?er fails to anticipate the correct folder, there is no
penalty other than the small loss of screen space devoted to
the buttons. When the message is moved from the Inbox to
another folder, various actions are taken to support incre
mental leaming based on the neW information derived from
the fact that the message has been placed in a particular
folder. Amore detailed description of MailCat’s usage of the
text classi?er is provided hereinbeloW.

In order to predict the most likely destination folder or
folders for a particular message, the text classi?er must be
trained. As is generally knoWn in the ?eld, a text classi?er

US 7,051,277 B2
7

is trained on a corpus of documents that have been classi?ed
by humans. Often, the development of a labeled corpus
involves a long, laborious effort by a human expert. Fortu
nately, in an electronic mail application, the corpus is
ready-made: the documents are the individual mail mes
sages, and the label for each is simply the name of the folder
into Which it has been placed.

In the present invention, training may take place in a
number of Ways at various times. If the automated catego
riZation capability of the MailCat embodiment is installed
after Lotus Notes has already been in use, most likely there
Will be a pre-existing mail database containing folders into
Which mail messages have been placed by the user (using the
standard “File” button). In this situation, an initial classi?er
can be trained directly from the existing database. While
MailCat is in use, further training can be performed by an
incremental learning procedure Which can be run in either a
“lazy” or “instant” mode. Training from scratch, laZy incre
mental learning and instant incremental learning are
described hereinbeloW.

Using the Classi?er
According to this embodiment of the present invention,

When neW mail arrives in a user’s Inbox, a sequence of
events ensues in Which the message is classi?ed, appropriate
buttons are added to displayed messages and the mail is
quickly ?led in response to the user’s selection. This
sequence of events is referred to as the MailCat_Classify
procedure.

MailCat_Classify may be triggered in a number of dif
ferent Ways. The simplest approach is to invoke MailCat_
Classify Whenever a neW message arrives in the Inbox.
HoWever, With this approach, there is a delay betWeen When
the message is classi?ed and When it is vieWed. If incre
mental learning has updated the classi?er during the interim,
the buttons displayed With the message upon vieWing might
not represent the classi?er’s latest predictions. An alterna
tive is to run MailCat_Classify on a message just at the
moment When the user indicates a desire to display that
message. This method improves the accuracy of the buttons
added to the classi?er, but introduces a slight delay in
displaying the more up-to-date message screen. A third
possibility is to offer the user a button that, When clicked,
invokes MailCat_Classify on one, some or all of the mes
sages in the Inbox. This method for triggering MailCat_
Classify gives the user manual control over the tradeolf
betWeen computational cost and currentness of the buttons.

The operation of MailCat_Classify is illustrated in FIG. 3.
MailCat_Classify takes as input a Message in any of the
three approaches described hereinabove. First, at step 308, a
core classi?er procedure Classi?er_Classify is applied to the
Message. As is described in greater detail hereinbeloW,
Classi?er_Classify takes the Message as its input and pro
duces, as output, a list of one or more categorical labels or
folder names, “BestFolders.” Preferably, graphical represen
tations or categoriZation shortcuts of the folder names in
BestFolders are derived sometime betWeen the time the
document is received and the time the document is displayed
to the user. These representations, e.g. buttons, are prefer
ably ordered such that the ?rst element is the name of the
folder deemed by the classi?er to be the most likely desti
nation for the input Message, the second element is the
second most likely destination folder, etc. The maximal
number of buttons that should be displayed, “MaxButtons,”
is an integer, set either to some chosen default value or set
by the user (most likely via a graphical user interface). For
example, in FIG. 2, MaxButtons is set to 3, and Classi

20

25

30

35

40

45

50

55

60

65

8
?er_Classify has returned the ordered list consisting of
BestFolders:{Patents, Mailcat, Text Classi?ers}.
At step 310, the value of a ?ag “ShortcutMode” is

examined. If the value of ShortcutMode is equal to
“AddButtons,” this is interpreted as meaning that the folders
listed in BestFolders are to be presented to the user in the
form of special “Move To” buttons as illustrated in FIG. 2.
In this case, the objects corresponding to the buttons are
derived, even if their display is delayed. If the value of the
?ag is equal to “EnhanceMenu,” then in lieu of buttons the
user Will be provided With an enhanced version of the “Move
To Folder” menu, in Which the ordered set of folders
BestFolders is prepended to the standard alphabetic ordering
of all of the folders in the database.

If the value of ShortcutMode is AddButtons, then the
method continues in step 312. At step 312, special “Move
To” buttons are included at the top of the message, so that
if and When that message is displayed to the user, it Will be
similar in form to What is illustrated in FIG. 2. The “Move
To” button labels are the folder names in BestFolders,
preferably placed in order of their appearance in BestFolders
from left to right at the top of the message. After some period
of time, When the user has displayed and read the message,
the user may elect to click on one of the “Move To” buttons
to choose a “SelectedFolder” into Which she desires the
message to be placed. If none of the “Move To” buttons offer
the desired category, the user may choose SelectedFolder by
using the standard “File” button. Therefore, in step 314, data
is received indicating that the user chose a SelectedFolder.

If the value of ShortcutMode is EnhanceMenu, the
method continues from step 310 to step 316. At step 316, the
reader reads the message and data is received indicating that
the user invoked the standard “Move To Folder” menu by
clicking on the “File” button. At step 318, the list BestFold
ers is prepended to the traditional alphabetic listing of folder
names. This enables the user to quickly choose a Selected
Folder, causing data indicative of the selection to be received
at step 320.

Regardless of the value of ShortcutMode, the tWo alter
native paths join back together at step 322, Where the
function MailCat_Move (detailed hereinbeloW) is called.
MailCat_Move moves the message from the Inbox to the
SelectedFolder and updates the classi?er With the informa
tion that the Message is noW in SelectedFolder. MailCat_
Classify then terminates at step 324.

Training the Classi?er
Although not directly observable by the user, MailCat

continually trains and re-trains the classi?er in an attempt to
keep up With dynamic changes in the user’s mail database as
mail is received, deleted and moved. HoWever, an additional
step of training the classi?er from scratch is preferable When
an automated assistant according to the present invention is
instantiated.

Training from Scratch
If MailCat is installed after Lotus Notes has already been

in use, the mail database Will most likely contain a set of
folders, each of Which contains several mail messages. If so,
this pre-existing set of folders constitutes a corpus of labeled
documents that can be used to train the classi?er. At instal
lation, or in response to the user’s request for a complete
refresh of the classi?er, the classi?er can be trained from
scratch by the procedure illustrated in FIG. 4.

First, at step 401, a global variable “PrevLeamingTime”
is set to the current time. PrevLearningTime records the last
time at Which the classi?er Was updated. As Will become

US 7,051,277 B2

clear in the discussion of incremental updates hereinbeloW,
this information can help reduce computational effort during
the incremental updates.

At step 402, a loop over all folders in the database begins
by determining the ?rst (or next) folder F to process. If there
are no folders left, the entire training-from-scratch proce
dure terminates at step 412. Otherwise, if F exists, it is
checked at step 404 for membership in “ExclusionList,” a
list of names of folders that are excluded from indexing. For
example, ExclusionList could contain the folders Inbox,
Drafts or any others that the user Wishes to exclude from
automatic categorization. ExclusionList could be a default
list, or a list modi?ed or created by the user via a graphical
user interface. If F is a member of ExclusionList, then the
method continues to step 402, Where the next folder is
determined. OtherWise, at step 406, a loop begins over all
messages M stored Within F. At step 406, the ?rst (or next)
message M is determined, and When no such messages are
left in F, the training method continues to step 402, Where the
loop over folders is resumed. Otherwise, if at step 406, it is
determined that there is a message M to process, then the
training method continues to step 408. At step 408, the
procedure Classi?er_Add (detailed hereinbeloW) is applied
to message M and folder F. Classi?er_Add incorporates into
the classi?er the fact that message M and its contents belong
to category F. At step 410, the “LastFolder” ?eld of message
M, “M.LastFolder,” is set equal to F to indicate that the
classi?er has recorded that M belongs to category F. MailCat
preferably de?nes and uses an extra LastFolder ?eld for each
message for tracking Which category the message Was in
When the classi?er Was last updated for that message. This
bookkeeping is needed for lazy incremental learning. After
step 410, is the method returns to step 406 Where the loop
over messages continues.

Incremental Learning
Users continually receive neW mail, delete old mail and

move mail messages among folders. Since the contents of
the folders (and the user’s oWn conception of What messages
belong in What folders) are in constant ?ux, it is important
for the classi?er to continually adapt itself, i.e. it should be
capable of incremental learning.

MailCat can use tWo different strategies for incremental
learning. The ?rst is an “instant” strategy, in Which updates
to the classi?er are made immediately Whenever mail is
added, deleted or moved. The second is a “lazy” strategy, in
Which some minor bookkeeping permits the updates to be
deferred. As mentioned hereinabove, the bookkeeping
required to support lazy learning involves de?ning and
maintaining an extra ?eld, “Message.LastFolder,” to track
Which category Message Was in When the classi?er Was last
updated.

There are numerous advantages to lazy learning. On
computers that are currently available, it can take a signi?
cant fraction of a second to update the classi?er. Users might
not tolerate an extra second of delay before vieWing their
next mail message. Lazy learning makes it possible to
perform the classi?er update during a moment When that to
update is less likely to hurt performance, for example When
the user’s machine is relatively idle. Of potentially even
greater importance than performance is that the instant
learning technique demands closer integration of the auto
mated categorizer With the mail application than does lazy
learning. An automated mail categorizer that employs
instant learning must be constantly vigilant for any operation
taken by the mail application that results in adding, deleting
or moving a message, and When any such operation occurs,

20

25

30

35

40

45

50

55

60

65

10
it must respond immediately by updating its classi?er. The
need for tight communication betWeen the categorizer and
the mail application can complicate the incorporation of
automated categorization into an existing mail application,
making it less universal and practical than one based on lazy
learning. In contrast, the use of lazy learning simpli?es
MailCat’s integration With Lotus Notes.
The implementation of incremental learning requires

either updating the classi?er or performing bookkeeping
operations Whenever messages are added to folders,
removed from folders or moved from one folder to another.
These operations are handled by the MailCat_Add, Mail
Cat_Delete, and MailCat_Move operations respectively. In
addition, lazy incremental learning requires an additional
procedure for processing any updates to the classi?er that
have been deferred. A detailed description of each of these
functions under both the lazy and instant learning scenarios
is given hereinbeloW.

MailCat_Add
The MailCat_Add procedure adds the message “M” to the

folder “Folder” and simultaneously updates the classi?er, if
necessary. MailCat_Add is called Whenever a neW mail
message is received and placed in a folder. Because neW
mail is usually placed in the Inbox, normally FoldeFInbox.
FIG. 5 illustrates the process of receiving neW mail into any
folder. At step 501, a check is made to determine Whether the
“LeamingMode” is “Lazy” or “Instant.” If the Leaming
Mode is Lazy, the process continues in step 510. At step 510,
M’s LastFolder ?eld, M.LastFolder, is set to “None” to
indicate that the message is not currently regarded by the
classi?er as belonging to any particular folder. Then, the
process continues in step 508, Where the addition of M to
Folder is carried out. The process terminates at step 512.
Except for the simple act of setting a ?eld’s value in the
database, the system behaves exactly as it Would if there
Were no automated categorizer. Thus, little added Work is
necessary to handle neW incoming messages.

If, at step 501, it is determined that the LeamingMode is
Instant, then the process continues in step 502. At step 502,
a check is made to determine Whether Folder is in Exclu
sionList. If Folder is not a member of ExclusionList, then at
step 504 the Classi?er_Add function (detailed hereinbeloW)
is applied to M and Folder, and the process continues to step
506. OtherWise, if F is a member of ExclusionList, then
application of Classi?er_Add at step 504 is bypassed, and
the process continues directly to step 506. At step 506, the
LastFolder ?eld of M, M.LastFolder, is set to Folder. At step
508, M is added to Folder, and the process terminates at step
512.

MailCat_Delete
The MailCat_Delete procedure removes a message M

from the database and simultaneously updates the classi?er,
if necessary. FIG. 6 illustrates the process. Regardless of the
learning mode, the procedure begins at step 602, Where it is
determined Whether the folder F named in the LastFolder
?eld of message M, M.LastFolder, is in ExclusionList. If F
is not a member of ExclusionList, then at step 604, the
Classi?er_Delete function is applied to message M. M is
then deleted from the mail database at step 606. OtherWise,
if F is a member of ExclusionList, then application of
Classi?er_Delete at step 604 is bypassed, and M is deleted
from the mail database at step 606.

MailCat_Move
The function MailCat_Move moves a message M from

the folder “FromFolder” to the folder “To Folder,” and

US 7,051,277 B2
11

simultaneously updates the classi?er, if appropriate. FIG. 7
illustrates the process. At step 701, a check is made to
determine whether the LeamingMode is Lazy or Instant. If
the LearningMode is Lazy, the process continues in step 712,
where M is moved from FromFolder to ToFolder. The
system behaves exactly as it would if there were no auto
mated categoriZer. In laZy learning mode, it is unnecessary
to monitor the movement of messages among folders, as was
highlighted hereinabove.

If, at step 701, it is determined that the LeamingMode is
Instant, then the process continues in step 702, where it is
determined whether ToFolder is a member of ExclusionList.
If ToFolder is not in ExclusionList, then at step 704, the
Classi?er_Add procedure is applied to the message M and
the folder ToFolder, and then the process continues in step
706. Otherwise, if ToFolder is in ExclusionList, step 704 is
bypassed and the process continues directly to step 706. At
step 706, FromFolder is checked for membership in Exclu
sionList. If FromFolder is not a member of ExclusionList,
then at step 708, the Classi?er_Delete function is applied to
message M and the folder FromFolder, and then the process
continues in step 710. Otherwise, if FromFolder is a member
of ExclusionList, then step 708 is bypassed and the process
continues directly to step 710. At step 710, the LastFolder
?eld of message M is set to ToFolder to indicate that the
classi?er (correctly) regards M as a member of the ToFolder
category. Finally, at step 712, M is moved from FromFolder
to ToFolder. Finally, the MailCat_Move process terminates
at 714.

Incremental Learning Update for Lazy Learning
If lazy learning is being employed, then the discrepancies

between the state of the database when the classi?er was last
trained and the current state of the database will continue to
grow. At some point, a decision must be made to re-train the
classi?er by performing an incremental update. Several
criteria can be used to determine when to trigger incremental
learning. For example, a ?xed amount of time (say an hour)
may have passed since the last incremental update, or a
threshold for the number of messages that have been added,
deleted or moved may have been exceeded. Alternatively,
the system may be in an idle state, so that the update can be
carried out without adversely affecting performance.
Regardless of the details of how or why it is triggered, the
incremental learning update proceeds as illustrated in FIG.
8.

At step 802, a “CurrLearningTime” variable is set to the
current time. Then, at step 804, a loop over the folders in the
mail database begins by identifying the ?rst folder F to be
scanned for updates. The loop continues until all folders
have been processed. When all folders have been processed,
the update continues in step 822 where the variable “Prev
LearningTime” is set to CurrLearningTime. The incremental
update terminates at step 824.

The loop over folders in the mail database proceeds as
follows. At step 806, a to test is made to determine whether
PrevLeamingTime (the time at which the previous incre
mental learning batch began) occurred before the time at
which the current folder F was last modi?ed (this informa
tion is typically available in the mail database). If the last
modi?cation to F occurred after the start of the last update,
then one or more messages may have been added to F in the
interim. Therefore, each message in F should be checked to
see whether the classi?er has already been updated with the
understanding that the message is in category F, which is
accomplished by continuing to step 808. Otherwise, if F was
last modi?ed before the start of the last update, then no

20

25

30

35

40

45

50

55

60

65

12
messages in F need to be checked, and the update continues
in step 804, where the next folder to process is determined.

Step 808 is the beginning of a loop over all messages in
the folder F. The loop terminates when there are no messages
in F that remain to be processed. At this point, control passes
back to the loop over folders at step 804. Otherwise, if there
is a message M to process, at step 810 M’s LastFolder ?eld,
M.LastFolder, is checked to see whether it is equal to F. If
so, then no updates are required on account of M, and the
update continues in step 808, where the next message in F
is obtained. Otherwise, if M’s LastFolder ?eld is not equal
to F, then the classi?er may need to be updated, and the
update continues in step 812.

At 812, a check is ?rst made to determine whether F is a
member of ExclusionList. If so, the update continues in step
816. Otherwise if F is not a member of ExclusionList, then,
at step 814, the Classi?er_Add function (detailed hereinbe
low) is applied to the message M and the folder F. At step
816, the folder F' speci?ed in the LastFolder ?eld of M is
checked for membership in ExclusionList. If F is in Exclu
sionList, then the update continues in step 820. Otherwise,
at step 818, the Classi?er_Delete procedure (detailed here
inbelow) is applied to the message M and the folder F.
At step 820, message M’s LastFolder ?eld, M.LastFolder,

is set to F. Upon the completion of step 820, the update
continues in step 808, where the next message in F is
obtained. Note that steps 802, 806, and 822 are introduced
only for the sake of e?iciency, and could be eliminated
without affecting the correctness of the incremental update.

Text Classi?er
The overhead of recomputing all token weights for each

update is avoided in MailCat’s text classi?er according to
the present invention by storing and retrieving token fre
quencies rather than token weights. Token frequencies are
easier to maintain in the face of updates because adding and
removing documents from a category only requires adding
or subtracting the token counts for the document being
updated. Token frequencies can be used for classi?cation as
follows. When the classi?er is asked to classify a document,
it retrieves, for each category, the frequencies for just those
tokens that appear in the document. From the retrieved token
frequencies, it computes the token weights for each category
on the ?y. The classi?er then uses the dynamically generated
token weights to compute the similarity of the document to
each category. Since the similarity computation only
requires weights for the tokens appearing in the document
being compared, computing weights for the entire database
can be avoided. Furthermore, the on-the-?y weight compu
tation does not affect the computational complexity of
classi?cation. As a result, on-the-?y computation of token
weights slows the classi?cation procedure by only 10% to
20% in practice.
The MailCat classi?er provides three functions to imple

ment incremental learning: Classi?er_Classify, Classi?
er_Add and Classi?er_Delete. Classi?er_Classify performs
the actual classi?cation of messages. Classi?er_Add and
Classi?er_Delete maintain the database of token frequen
cies. The database of token frequencies is stored in a
two-dimensional array “TokenCount[Folder, Token].”
TokenCount stores, for each Token and each Folder, the
number of occurrences of Token in Folder. The TokenCount
array is stored as an inverted index for ef?ciency as
described in Salton et al. In addition to its three core
functions, the MailCat classi?er uses the function TokeniZe
(Message) to generate the tokens used for classi?cation. The
following sections describe each of these functions in detail.

