
3. Approach

The design constraints, technical and practical, mentioned in section 2, provide an exclusive focus

on the development of the ADCI. However, an analysis of the design aspect is taken into

consideration, individually, to determine the approach of the ADCI prototype; this approach is

explained in detail in the following sections.

3.1 System Architecture

The ADCI integrates different sensors along with a long distance communication system. A

diagram of the system layout is provided below in Figure 3.1.

Figure 3.1: System layout for the ADCI

The microprocessor is the central piece of hardware in the system, collecting the information

received from the different sensors, logging that information, and sending it on to the cellular

module. In the best case the temperature sensor and GPS would be completely separate from the

rest of the system; allowing for them to both be easily replaced later on. The temperature sensor

follows this ideal, but the current GPS unit for cost purposes is on the same board as the cellular

module. It is; however, isolated from the cellular module and if a separate GPS is needed later it

can be easily added to the system and the current one can be disabled.

As stated above the microprocessor will be logging the information gathered from the sensors and

storing it in memory stored off the chip. This will enable a back-up of the information in case

any of it is not properly transmitted. There are many different storage devices that can be used

and these are discussed further on.

The information gathered in the microprocessor is buffered and then sent onward to the cellular

module at one minute intervals. The cellular module is able to interpret these messages and turn

them into text messages which can then be sent to either another cellular device or to an e-mail

address where the information can be gathered by a base station computer. If there are any

problems with sending the data a message can be relayed back to the microprocessor to have it

make a note of the failure to send; thus allowing data which failed to transmit to be quickly found

on the accompanying data logger.

3.2 Hardware

3.2.1 Microprocessor

The microprocessor has many tasks in the ADCI. It must read on data from the different sensors

and create buffers for this data. At regular intervals it will store the data it has collected on the

attached data logger, as well as send the current sensor readings to the cellular module at one

minute intervals. The microprocessor must also be able to identify when the cellular module has

an error sending and ensure that the data is not lost.

There are many different types of microprocessors, but due to previous knowledge only the PIC

family was researched for this task; specifically the PIC24HJ32 using the mini-Bully and the

PIC18 using the PICAXE microprocessor system. Both of the microprocessors will work for the

ADCI and the decision on which was used was not based on any physical parameters. The team

leader has worked with the PIC18 and PICAXE system before and is more comfortable with it

than the PIC24. The main embedded programmer in the group has worked with both the PIC18

and the PIC24 with mini-Bully before, so both were quite familiar. In the end the PIC18 with

PICAXE system was chosen due to the group overall being more comfortable with it.

3.2.2 Sensors

The ADCI has to be capable of measuring location, altitude, speed, and temperature. In order to

meet these needs, several sensors are required.

The most important measurement for the ADCI is location. Location is measured using a GPS

module that is incorporated within the Terminus cellular module. The Terminus cellular module

was chosen for the ADCI because of its capability to measure GPS data and communicates as

explained in section 3.2.3.

The next sensor on the ADIC is the temperature sensor. There are many types of temperature

sensors available. The first sensor consider for the ADCI was a liner LM34. The LM34 is a three

wire IC sensor in a TO-92 package. This sensor is inexpensive and is easy to interface with the

microcontroller. The LM34 has a temperature range of -45°C to 148°C providing a suitable range

for the ADCI [1]. After consulting with an experienced professor, it was determined the LM34

would not be the most suitable choice for the ADCI. Since the LM34 is a linear type temperature

sensor, operating it at low temperatures will cause electrical noise over the signal wire. This will

cause the microcontroller to read erratic voltages into the ADC yielding erroneous data. Since the

balloon will be reaching altitudes of up to 10 miles, the ADCI will encounter very low

temperatures causing the LM 34 to give incorrect data.

The current solution to replace the LM34 is the DS18B20 temp sensor. The DS18B20 is a

programmable resolution one-wire digital thermometer. The DS18B20 temp sensor can be read

using 12bit resolution where as the LM34 could only be read using 10bit resolution. The

increased resolution means the sensor is more accurate. The DS18B20 does not just change its

voltage as a function of temperature, it also has a built-in buffer and hi and low temperature

triggers. This enables temperature ranges to be set within the sensor itself to notify of an over or

under temperature situation. Since the IC has a buffer, it contains the received information until

the microcontroller accesses it. A block diagram of the DS18B20 is shown below in figure 3.2.

Figure 3.2: Block diagram of the DS18B20 thermometer [2]

The thermometer can be used as a one-wire sensor, meaning that only one wire is needed to read

and power the unit. There is a built in parasitic capacitor that the sensor pulls power from while

the microcontroller is reading the data. The DS18B20 has a temperature range of -55°C to 125°C.

This will satisfy the temperature requirement for the ADIC. This sensor will be implemented on

the ADCI.

The ADCI is designed to allow for added sensors in the future. The possibility of having more

sensors added allows the user to customize the ADCI to their particular needs. It would be easy to

incorporate a barometric pressure sensor or some accelerometers to add to the collected data. This

data can also be processed by the microcontroller, data logged and wirelessly transmitted just as

all the current sensors are capable of.

Other data collection devices may include an onboard camera. A camera that has remote

triggering capability could be triggered by the microcontroller to take pictures periodically. The

pictures cannot be sent through wireless communication or stored in the ADCI’s data logging

module. All pictures are held in the camera’s internal memory where the user can access them

once the package is on the ground.

3.2.3 Data Logging

As mentioned above, the ADCI requires data logging capability. Due to the possibility the

cellular module fails to send a message, the current sensor data must be stored for the user to

access after flight. The microcontroller gathers the data from all the sensors, including GPS

location, and has to store it all someplace. The microcontroller has enough non-volatile memory

to store a few samples of the sensor data but not enough to store all data recorded in a two hour

flight. In order to retain all measured data, a data logger is required. To meet the data logging

requirements for the ADCI, several criteria must be met. The most important requirement for the

data logger is it has enough storage space to hold all data collected during a two hour flight. The

second is the type of data logger used must be able to interface with the microcontroller. The third

requirement is that the data logger be removable from the ADCI. This will allow the user to

retrieve the data once the ADCI is on the ground without any support from the ADCI unit. The

final requirement for the data logger is cost. Data loggers have a wide range of cost so a

reasonably priced data logger that meets all requirements is desirable for the ADCI.

The first step to finding a data logger is determining the amount of storage capacity required. For

the ADCI, the collected data will be stored once every minute over a two hour period of time

adding up to a total number of 120 messages. The amount of data accumulated for one flight is

found by using equation 1 shown below.

 [1]

The GPS, temperature and other sensor data measured by the microcontroller, is estimated to

be140 bytes. Having the estimated number of bytes per message and the total number of

messages, the data storage space required is calculated as shown below using equation 1.

After determining the number of bytes required for a two hour flight, we have narrowed down the

total choices of data storage to a few that can meet the needs of the ADCI.

The easiest and cheapest way to store data from the microcontroller is by using an Electrically

Erasable Programmable Read-Only Memory IC or (EEPROM). An EEPROM is an integrated

chip that is used for non-volatile data storage. The microcontroller can read and write data to an

EEPROM as need without any problem. It provides adequate storage space but it is not a

removable device. If an EEPROM was used, the user would be required to have the ADCI

connected to a computer in order to extract the data that is stored on the IC. This method is not

practical because of the added difficulty for the user to retrieve data.

Another data storage device is a secure digital card or (SD card). SD cards are very popular in

many electronics that stored data such as, digital cameras and cell phones. SD cards provide data

storage ranging from a few MB ranging to 32GB; greatly exceed the 16.8KB required by the

ADCI unit. A disadvantage of the SD card is cost. The SD cards themselves are not expensive but

the card slot that is used to read and write to the SD card itself is. This would accrue added cost to

the ADCI package but would also make it more user friendly. Another disadvantage is, it is more

complicated to read and write to an SD card using the microcontroller. Although it is more

expensive and more complicated to interface, it is worth the tradeoff to have the data stored on a

removable more user friendly data storage medium.

Another data storage possibility is adding a USB port to the ADCI that will allow a jump drive to

be inserted to store data. Jump drives are inexpensive, readily available and widely used for

portable data storage. The storage capacity of jump drives range into the hundreds of GB,

providing more than enough storage space for the ADCI application. USB breakaway boards are

available providing an interface for the microcontroller to read and write to an inserted jump

drive. This method of data storage will be the most portable and the least complicated within the

price range for this project.

3.2.4 Communication

The cellular module is the chosen device to communicate the data, primarily because of its speed

to transfer data. Also, the procedure to set up the link between two peers, a computer and the

ADCI, is not time consuming. The connection for the Cell module is made towards the internet to

achieve a point to point connection between the two.

Think of the cellular module as a cell phone whereas a phone number is not needed; the

connection is done with AT&T wireless. This approach has the advantage of shifting the control

of the application through the modem directly on a cell phone tower, making it readily accessible

from the ADCI to the computer via text messaging.

The connection is billed on the amount of data exchange (number of text messages transferred)

and not on the time spent connected, or the distance the module has to cover. This makes it

plausible for the module to always stay connected and ready to receive/send data on demand.

Shown below in figure 3.3, is the block diagram of the Cell module.

FIGURE 3.3: Cellular module block diagram [3]

Above in figure 3.1, there is a RS-232 block; this is where the communication will come from

when the cell module is active. For a clear picture of where the RS-232 connects on the cell

module, see figure 3.4 shown below.

Figure 3.4: Serial Interface plug [3]

The RS-232 connects to the computer so that the messages being communicated from the ADCI

will get transferred to its correct location.

The Embedded interface is a 50 pin dual row header that allows the ADCI to access many of the

available ports and features of the cell module through a single interface [3]. Figure 3.5 shows the

connection points.

Figure 3.5: 50 pin dual row header [3]

As shown above in figure 3.5, the connector is located on the bottom of the unit. To aid the ADCI,

the interface divides up into two groups: General Purpose I/0 (input and output) interface, and

GPS Receiver interface. This enables the module to be accessed through a single port.

3.2.5 Power Supply

ADCI uses Lithium Sulfur Dioxide (LISO2) Batteries to supply energy. Each battery has a

voltage of 2.9 V, and putting 4 of them in series allow approximately 12 V for the ADCI. The

LISO2 provide the ADCI with mobility, portability, and reliability. The LISO2 batteries are

decided due to the power needed for the ADCI power consumption it uses. Lead acid, nickel

metal-hydride, and lithium-ion are three types of batteries that are cable of producing the voltage

for the ADCI. Lead acid battery is an inexpensive but heavy battery that could form a memory; a

memory in a battery is caused by overcharging of the battery, which will diminish the battery life

overtime [4]. With nickel metal-hydride battery, forming of memory and weight are not an effect,

but it is expensive. Lithium-ion battery has less weight and no development of memory, and it is

said to have a better life span when introduce to cold weather. With those effects, the LISO2 is

chosen for the ADCI.

3.3 Software

Software for the ADCI consists of C code to control the microprocessor and Python for the

cellular module as well as the GUI. The microprocessor programming allows it to get raw data

from the sensors and convert it into a format usable by the cellular module. The cellular module

coding is then used to convert the data into a text message which can be sent to any preselected.

The GUI’s code will poll the e-mail account and take any new messages and display them in an

easy to read format.

3.3.1 Microprocessor

The microprocessor cycles through each of the sensors, reading new information off them into

buffers. In the case of the GPS it chooses the middle value from the buffer and stores it. For the

other sensors the data will be averaged and this number is stored. Every minute the

microprocessor takes the current sensor data and sends it on to the cellular module and also saves

a record of the sent data in the data logger. After sending the data to the cellular module the

microprocessor waits to see if the message can be sent; if not then it makes a note of this in the

data logger before starting to read from the sensors again. The state diagram of this process can

be seen in Figure 3.6 below.

Read Temp

Sensor

Stage 1

Power ON

Stage 0

Send Data to Cell

Module

Stage 5

Send timer

Read GPS

Stage 2

Read Sensor 2

Stage 3

Log Recorded

Data

Stage 4

Record Failure

Stage 6
Successful

Log Sent Data

Stage 7

NO

YES

NO YES

Figure 3.6: Microprocessor State Diagram

3.3.2 Cellular Module

As of this moment there is no code of our own in the cellular module. There are built in

commands to take input and send it as a text message to a phone number or e-mail address. There

may need to be some code added after some testing. For instance we may want it to send the data

to a different e-mail in flight by sending a pre-selected message to the module. Also, for cases

where the message was unable to be sent from the ground it may be possible to queue the

message to be re-sent when in contact range without input from the microprocessor.

Check Today’s

Flight Data

Stage 2

Power ON

Stage 0

Pull Data Into GUI

Stage 3

Any Data

Get E-mail Input

Stage 1

New Data

Wait 1

minute

YES

NO

NO

Check for New

Data

Stage 4

Yes

Figure 3.7: GUI State Diagram

3.3.3 GUI

The current GUI state machine is shown above in Figure 3.7. On startup the GUI is supplied an

e-mail address by the user where the data is being sent. The GUI then polls the e-mail account

for any data from the current day’s flight and displays it along with a timestamp for each piece of

data. After the initial start-up the GUI will check the e-mail account every minute for updated

flight information and append it to the information on the screen. In the future it may also be

possible to display the GPS data on Google Maps to give an idea visually of the balloon’s path.

3.3.4 Usage Cases

U
s
e
r

G
ra
p
h
ic
a
l
U
s
e
r
In
te
rf
a
c
e
 (
G
U
I)

Reque
st E-m

ail Add
ress In

forma
tion

Provide Correct E-mail Address Information

E
-M

a
il
C
lie
n
t

Displa
ys Cu

rrent F
light D

ata

Sends
 reque

sted E
-mails

Requests Today’s E-mails

Requests New E-mails

Sends
 reque

sted E
-mails

Displa
ys Up

dated
 Flight

 Data

Figure 3.8: GUI Sunny Day Case

Figure 3.8 above shows the sunny day case for the GUI. On start-up it asks the user for e-mail

address information to poll for data. The user provides information causing the GUI to poll the e-

mail account for any e-mails from the current day. The GUI then displays this information for the

user. Every minute after that, the GUI polls the e-mail account for any new messages and

updates the information for the user.

A rainy day case for the GUI occurs if it cannot access the e-mail account. If the user provides

incorrect e-mail information the GUI will first try to connect to the e-mail server. If it cannot

connect the first step is to check to ensure there is a connection to the internet. If not, it will

inform the user and ask them to ensure that the computer is connected. Otherwise, if there is a

connection then the GUI will tell the user that something is wrong with connecting to the e-mail

account and requests new account information. After this, provided the user gives correct e-mail

information, the GUI will poll the e-mail and return to normal operation. This case is outlined

below in figure 3.9.

U
s
e
r

G
ra
p
h
ic
a
l
U
s
e
r
In
te
rf
a
c
e
 (
G
U
I)

Request E-m
ail Address In

formation

Provide Incorrect E-mail Address Info

E
-M

a
il
C
lie
n
t

Requests Today’s E-mails

Could Not Co
nnect

Check Internet Connection

Internet Conn
ection Okay

Request New
 E-mail Addre

ss Info

Provide Correct E-mail Address Info
Requests Today’s E-mails

Sends Reque
sted E-mails

Displays Cur
rent Flight Da

ta

Figure 3.9: GUI Rainy Day Case

During a sunny day the microprocessor is constantly reading new data off of the attached sensors

and occasionally sending the data to the data logger. Once every minute the microprocessor

creates a data package containing most recent sensor information and sends it onward to the

cellular module. It then waits for the cellular module to say that the message was sent

successfully before storing the package and resuming its reading of the sensors. The normal

operation can be seen below in figure 3.10.

D
a
ta
 L
o
g
g
e
r

M
Ic
ro
p
ro
c
e
s
s
o
r

Sends Senso
r Data

S
e
n
s
o
rs

Requests Sensor Data

Successfully
Sent Data Pa

ckage

Send Data Package

C
e
llu
la
r
M
o
d
u
le

Sends Senso
r Data

Requests Sensor Data

Log Data

Log Data

Log Data Pac
kage

Figure 3.10: Microprocessor Sunny Day Case

D
a
ta
 L
o
g
g
e
r

M
ic
ro
p
ro
c
e
s
s
o
r

Could Not Se
nd

Send Data Package

C
e
llu
la
r
M
o
d
u
le

Send Failed Package

Log Data Pac
kage

Log Error

Successfully
Sent Data Pa

ckage

Send Data Package

Successfully
Sent Data Pa

ckage

Send Data Package

Log Data Pac
kage

Request Fail
ed Package

Figure 3.11: Microprocessor Rainy Day Case

Above in figure 3.11 the rainy day case for the microprocessor can be seen. The data package

that is sent to the cellular module returns a failure to send notice. In this case the microprocessor

must make a note along with the logged data that there was a problem sending the package. It

then returns to normal operation until a data package is successfully sent. When this occurs, and

the microprocessor receives confirmation that it was sent successfully, a request is sent to the data

logger for the failed package from earlier and resends that package onward to the cellular module

in an effort to transmit any failed data.

Reference

[1] National Semiconductor Datasheet, LM 34, precession Fahrenheit temperature sensor.

[Online]. Available: http://pdf1.alldatasheet.com/datasheet-pdf/view/8853/NSC/LM34.html

[2] Dallas Semiconductor Datasheet, DS18B20, Programmable Resolution 1-wire digital

thermometer. [Online]. Available: http://www.rev-ed.co.uk/docs/ds18b20.pdf

[3] Janus Remote Communications Datasheet, Terminus GSM864Q Hardware User Manual.

[Online]. Available: http://www.janus-rc.com/pr/GSM864Q_user_guide.pdf

[4] [Online]. Mississippi State University, Senior Design Archives. Available:

http://www.ece.msstate.edu/courses/design/2008/pwrsupply/home.html

