
 APPLICATION NOTE

R01AN0326EJ0213 Rev. 2.13 Page 1 of 107

Mar 16, 2015

Renesas USB MCU

 USB Basic Mini Firmware

This document is an application note describing the USB Basic Mini Firmware, a sample program for USB interface

control using the Renesas USB MCU.

Target Device

R8C/3MU, R8C/34U, R8C/3MK, R8C/34K, RL78/G1C, RL78/L1C

This program can be used with other microcontrollers that have the same USB module as the above target devices. When

using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

Contents

1. Overview .. 2

2. Registering a Class Driver .. 4

3. USB-BASIC-F/W Description .. 5

4. Software Configuration ... 7

5. Peripheral Sample Program (UPL) ... 12

6. Peripheral Controller Driver (PCD) .. 25

7. Host Sample Program (UPL) .. 53

8. Host Control Driver (HCD) ... 66

9. The System Scheduler ... 94

10. Restrictions .. 106

R01AN0326EJ0213

Rev. 2.13

Mar 16, 2015

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 2 of 107

Mar 16, 2015

1. Overview

This application note describes the USB Basic Mini Firmwareusing a Renesas USB MCU.

This document is intended to be used together with the device’s data sheet, seechapter 1.2.

1.1 Functions and Features

The USB Basic Mini Firmware conforms to the Full Speed and Low Speed of Universal Serial Bus Specification (USB

from now on and description). It and enables communication with a USB vendor host or USB vendor peripheral device.

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. Battery Charging Specification Revision 1.2

[http://www.usb.org/developers/docs/]

3. Renesas USB MCU User’s Manual: Hardware

Available from the Renesas Electronics Website

 Renesas Electronics Website

[http://renesas.com/]

 USB Devices Page

[http://renesas.com/usb/]

1.3 List of Terms

Terms and abbreviations used in this document are listed below.

API : Application Program Interface

APL : Application program

cstd : Prefix for peripheral & host common function of USB-BASIC-F/W

CS+ : Renesas integration development environment

CDP : Charging Downstream Port

DCP : Dedicated Charging Port

HBC : Host Battery Charging control

Data Transfer : Generic name of Bulk transfer and Interrupt transfer

(When the host mode is selected, the Control transfer is contained.)

e2 studio : Eclipse embedded studio (However not supported current release)

HCD : Host control driver of USB-BASIC-F/W

HDCD : Host device class driver (device driver and USB class driver)

HEW : High-performance Embedded Workshop

HM : Hardware Manual

hstd : Prefix for host function of USB-BASIC-F/W

H/W : Renesas USB device

MGR : Sequencer of HCD to manage the state of the peripheral device

PBC : Peripheral Battery Charging control

PCD : Peripheral control driver of USB-BASIC-F/W

PDCD : Peripheral device class driver (device driver and USB class driver)

psmpl : Peripheral Sample (code)

PP : Pre-processed definition

pstd : Prefix for peripheral function of USB-BASIC-F/W

RSK : Renesas Starter Kit

Scheduler : Used to schedule functions, like a simplified OS.

Scheduler Macro : Used to call a scheduler function

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 3 of 107

Mar 16, 2015

SDP : Standard Downstream Port

Task : Processing unit

UPL User Programming Layer (Upper layer of USB-BASIC-F/W:HDCD, PDCD, APL or etc)

USB : Universal Serial Bus

USB-BASIC-F/W : USB Basic Mini Firmware

(Peripheral & Host USB basic firmware(USB low level) for Renesas USB MCU)

1.4 How to Read This Document

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to

look up information on functionality and interfaces as needed for your particular solution.

To get acquainted with the source code, read Chapter 4.3.1 and note which MCU-specific files you need select at

directory "devicename\src\HwResource".

Observe which files belong to the application level.

Chapter 5 and Chapter 6 of this document are only for the peripheral mode. Chapter 7 and Chapter 8 of this document are

only for the host mode. Chapter 5 explains how the default peripheral vendor application works. Chapter 7 explains how

the default host vendor application works. You will change this to create your own solution.

Understand how all code modules are divided into tasks, and that these tasks pass messages to one another. This is so that

functions (tasks) can execute in the order determined by a scheduler and not strictly in a predetermined order. This way

more important tasks can have priority. Further, tasks are intended to be non-blocking by using a documented callback

mechanism. The task mechanism is described in Chapter 9.1. All USB-BASIC-F/W tasks are listed in Chapter 4.4.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 4 of 107

Mar 16, 2015

2. Registering a Class Driver

The USB class driver which the user creates must be registered with the USB-BASIC-F/W.

2.1 Peripheral (Function)

Please consult function usb_psmpl_driver_registration() in r_usb_vendor_papl.c to register the class driver into theUSB-

BASIC-F/W. For details, refer to Chapter 6.

The following function must be filled out and called to register a user-created class driver and application with USB-

BASIC-F/W.

USB_STATIC void usb_psmpl_driver_registration(void)

{

 usb_pcdreg_t driver;

 /* Driver registration */

 driver.pipetbl = g_usb_psmpl_EpTbl1; /* Pipe define table */

 driver.devicetbl = g_usb_psmpl_DeviceDescriptor;

 driver.configtbl = g_usb_psmpl_Configuration;

 driver.stringtbl = g_usb_psmpl_StringPtr;

 driver.statediagram = &usb_psmpl_device_state; /* Change device state */

 driver.ctrltrans = &usb_psmpl_control_transfer; /* Control transfer */

 R_usb_pstd_DriverRegistration(&driver);

}

2.2 Host

Please consult function usb_hsmpl_driver_registration() in r_usb_vendor_hapl.c and register the class driver into a USB-

BASIC-F/W. For details, please refer to the Chapter 8.

The following function must be filled out and called to register a user-created class driver and application with the USB-

BASIC-F/W.

USB_STATIC void usb_hsmpl_driver_registration(void)

{

 usb_hcdreg_t driver;

 /* Driver registration */

 driver.ifclass = USB_IFCLS_VEN; /* Device class */

 driver.classcheck = &usb_hsmpl_class_check; /* Operation judgment */

 driver.statediagram = &usb_hsmpl_device_state; /* Change device state */

 R_usb_hstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 5 of 107

Mar 16, 2015

3. USB-BASIC-F/W Description

3.1 Development Goals

USB-BASIC-F/W was developed to:

 Simplify the development of USB communication programs by customers using the Renesas USB MCU.

 Provide source code examples for hardware control of USB.

 Reduce code size.

3.2 Features

The main features of USB-BASIC-F/W as sample firmware for the H/W control with built-in device are as follows.

3.2.1 Overall

 Capable of running at Full-Speed and Low-Speed (USB2.0).

 Can control the target device using common source code. Refer to Table 3-1 for MCU differences.

 Can operate in either USB host mode or USB function mode.

 API functions for H/W control are provided, e.g. connect/disconnect, suspend/resume, and remote wakeup.

 API functions for data transfers (control, bulk and interrupt transfer) are provided.

 Two or more data transfers are possible (“exclusive pipe usage”) using the same pipe, because UPL (User

Programming Layer) manages data toggle of the endpoint.

 Using a callback function to notify UPL of the result of H/W control, the result of data transfer and the USB

state transition can be monitored by the application.

 A sample application and vendor class driver that show usage of USB-BASIC-F/W are provided.

 (1) Control transfers (enumeration)

 (2) Bulk and interrupt transfers

 (3) A method of describing the class request (control transfer)

3.2.2 Host mode

 Enumeration with low-speed or full-speed device. (Low-Speed only with RL78/USB)

 A sample program showing control transfers (enumeration) is provided.

 A common data transfer API (for control, bulk, and interrupt transfer) is provided.

 API function for suspend and resume processing .

 A sample program for CDP operation or DCP operation is provided. (Only RL78/USB).

3.2.3 Peripheral (function) mode

 Enumeration at low-speed or full-speed with USB 1.1/2.0/3.0 host. (Low-Speed only possible with RL78/USB.)

 Operation can be confirmed by using USBCommandVerifier.exe.

(USBCV is available for download from http://www.usb.org/developers/tools/.)

A HS hub must be used in order for USB-CV to work. Connect HS hub between PC and device.

 A sample program for control transfer (enumeration) is provided.

 An API for FIFO buffer access for control transfers is provided.

 A common data transfer API function for bulk and interrupt transfer is provided.

 An API function for remote wakeup is provided.

 A sample program for CDP operation is provided (Only RL78/USB).

3.2.4 Functionality provided by user

The following functions must be provided by the customer.

http://www.usb.org/developers/tools/

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 6 of 107

Mar 16, 2015

 Over-current detection processing and descriptor analysis (Host mode).

 Device class driver example currently exists for HID, MSC, CDC, LibUSB, etc.

 The pipe information table.

 The descriptor table (peripheral mode).

3.3 Scheduler Function and Tasks

The scheduler function manages requests issued by tasks, according to the task ID, and requests occurring due to H/W

interrupt. USB-BASIC-F/W notifies a task about the end of request via a callback function. The scheduler function does

not have to change when adding or changing the UPL. Please refer to Chapter 9.1 for details of the scheduler function.

3.4 Functional differences by MCU

Table 3-1 shows functional differences by MCU.

Table 3-1 USB functional list by RL78 and R8C

Function R8C/USB RL78/USB

MCU type R8C/34U, R8C/3MU,

R8C/34K, R8C/3MK.

RL78/G1C

RL78/L1C

Peripheral mode

Transmission rate possible

1 port.

Full Speed.

1 port. *1

Full Speed / Low Speed.

Host mode

Number of ports and transmission

rate

R8C/34K, R8C/3MK are 1 port host.

R8C/34U, R8C/3MU peripheral only.

Full Speed.

2 ports host *2

Full Speed / Low Speed.

Control transfer pipes PIPE0 PIPE0

Bulk transfer pipes PIPE4, PIPE5 PIPE4, PIPE5

Interrupt transfer pipes PIPE6, PIPE7 PIPE6, PIPE7

Isochronous transferr pipes Not available Not available

To connect HUB device when

host mode

Not available Not available

Battery Charging Not available Available

[Notes]

*1: The user can customize whether to operate the peripheral in Full Speed or Low Speed in the USB-BASIC-F/W and

UPL. Please refer to Chapter 5.6 for details.

*2: With the target board RSKRL78, host mode operation is only possible on USB-PORT1. However, it is necessary to

build the USB-BASIC-F/W with 2PORTHOST to access USB-PORT1. Please refer to Chapter 7.5 for details.

*3: USB-BASIC-F/W does not support Isochronous transfer.

3.5 Host and Peripheral Sample Vendor Demo

The USB-BASIC-F/W host sample application will exchange example data over USB when connected to a USB-BASIC-

F/W device running as USB function (peripheral). In this sample vendor class application, data is transferred in both

directions using endpoints EP1 to EP4:

1. The host will send a byte which is incremented from 0x00 to 0xFF using EP1 and EP3 OUT.

2. This endpoint (EP1 and EP3 OUT) is continuously read by the peripheral demo application.

3. The peripheral will send a byte which is incremented from 0x00 to 0xFF using EP2 and EP4 IN.

4. This endpoints (EP2 and EP4 IN) is continuously read by the host demo application.

3.6 Note

USB-BASIC-F/W is not guaranteed to provide USB communication operation. The customer should verify operation

when utilizing it in a system and confirm the ability to connect to various USB devices.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 7 of 107

Mar 16, 2015

4. Software Configuration

4.1 Module Configuration

The software that composes the USB-BASIC-F/W has a "task" structure. The task hierarchy of the USB-BASIC-F/W is

shown in Figure 4.1 and the software functional overview is shown in. These tasks communicate via the scheduler using

a messaging system.

The USB-BASIC-F/W is composed of PCD (peripheral control driver - when r_usb_basic_config.h is configured as

peripheral), HCD (host control driver - when r_usb_basic_config.h is configured as host),, and MGR (USB peripheral

state management and host sequencing). The USB class driver (HDCD/PDCD), the host device driver (HDD) and an

application (APL) are not a part of USB-BASIC-F/W.

PCD operates H/W control and data transfers upon demand from UPL. It also notifies the application task when H/W

control ends, of results of data transfers, and of requests of the USB interrupt handler (status change etc).

HCD likewise operates H/W control and data transfer upon demand from the MGR task. It executes data transfers on

demand from UPL, and notifies MGR and UPL of the result of these data transfers. HCD also notifies MGR when H/W

control ends, and of requests of the USB interrupt handler (status change etc).

MGR manages the USB state of the connected device and processes sequences such as enumeration. Moreover, the USB

state of the connected device changes according to demands of UPL via API functions. To do this, MGR sends requests

to HCD to achieve this sequence processing necessary for USB state transition. (HCD then does the H/W control and

data transfers.) The result of the USB state transition is notified to UPL via callbacks.

Device Class Driver

6 Device Class Driver (PDCD)

2 Peripheral Control Driver (PCD)

8 Application (APL)

USB - BASIC - F/W

4 Host Manager (MGR)

3 Host Control Driver (HCD)

1 USB Interrupt Handler

Hardware

6 Device Class Driver (HDCD)

7 Device driver (HDD)

8 Application (APL)

Peripheral Mode Host Mode

User Programming Layer (UPL)

S
c
h

e
d

u
le

r
 F

u
n

c
ti
o

n

Figure 4.1 Task Configuration of USB-BASIC-F/W

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 8 of 107

Mar 16, 2015

Table 4-1 Software function overview

No Module Name Description

1 USB Interrupt Handler Handles all USB interrupts: USB packet transmit/receive end and special

signal detection.

2 Peripheral Control Driver

(PCD)

Hardware control when in peripheral mode.

Peripheral transaction management.

3 Host Control Driver

(HCD)

Hardware control when in host mode

Host transaction management

4 Host Manager

(MGR)

Management of connected device state - enumeration.

5 Device Class Driver

(PDCD/HDCD)

Provided by the customer as appropriate for the system.

Rensas class driver examples are available for download.

6 Host Device Driver

(HDD)

Provided by the customer as appropriate for the system.

Rensas class driver examples are available for download.

7 Application(APL) rovided by the customer as appropriate for the system.

Rensas APL examples are available for download.

4.2 Overview of Application Program Functions

After enumeration, these are the main function of the application.

1. Data is received from the connected USB device by bulk and interrupt transfers.

2. Data is transmitted to the connected USB device by bulk and interrupt transfers.

3. The device state of the connected USB device changes when user presses SW1-3 on the RSK.

When the peripheral device is running at Low Speed, only interrupt data transfer is possible.

Switch input operation is described in Table 4-2 and Table 4-3.

Table 4-2 User switch input in host mode

Switch Function Description Switch Number

SUSPEND The connected peripheral device is suspended SW1

RESUME The connected peripheral device is resumed SW2

PORTCONTROL VBUS output is disabled SW3

Table 4-3 User switch input in peripheral mode

Switch Function Description Switch Number

REMOTEWAKEUP The connected host device receives Wake-up SW1

PORT OFF Pull-up release of D+ or D- line SW2

PORT ON Pull-up set of D+ or D- line SW3

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 9 of 107

Mar 16, 2015

4.3 Folder Structure

The folder composition and files of USB-BASIC-F/W is shown below. USB-BASIC-F/W includes an example vendor

class application to show data transfer, and hardware resource sample code.

The project folder contains source code that controls the MCU and the evaluation board.

+ (Integrated development environment)[CS+, HEW, IAR Embedded Workbench, e2 studio]

 + (MCU name) Project file

 + ――― HOST Host build result

 + ――― PERI Peripheral build result

 + src

 ＋―――USBSTDFW[Common USB code that is used by all USB firmware]

 ｜ ＋――― inc Common header files of USB driver

 ｜ ＋――― src USB driver

 ＋―――SmplMain[Sample application]

 ｜ ＋――― APL Sample application

 ＋―――VENDOR [Vendor Class driver] See Table 4-4

 ｜ ＋――― inc Common header files of vendor class driver

 ｜ ＋――― src Vendor class driver

 ＋―――HwResource [Hardware access layer; to initialize the MCU]

 ＋――― inc Hardware resource header file

 ＋――― src Hardware resource

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 10 of 107

Mar 16, 2015

4.3.1 List of files

Files of the USB-BASIC-F/W are listed below.

Table 4-4 List of source files

Folder File Name Description Notes

USBSTDFW\src r_usb_cstdapi.c USB library API functions

USBSTDFW\src r_usb_cstdfunction.c USB library functions

USBSTDFW\src r_usb_h1port.c 1-port host functions

USBSTDFW\src r_usb_h2port.c 2-port host functions

USBSTDFW\src r_usb_hbc.c USB HBC control functions

USBSTDFW\src r_usb_hdriver.c USB Host Control Driver

USBSTDFW\src r_usb_hdriverapi.c HCD API functions

USBSTDFW\src r_usb_hp0function.c Port 0 control functions

USBSTDFW\src r_usb_hp1function.c Port 1 control functions

USBSTDFW\src r_usb_pbc.c USB PBC control functions

USBSTDFW\src r_usb_pdriver.c USB Peripheral Control Driver

USBSTDFW\src r_usb_pdriverapi.c PCD API functions

USBSTDFW\src r_usb_hport.h Prototype declarations of USB host functions

USBSTDFW\src r_usb_iodefine.h Macro definitions for USB register access

USBSTDFW\inc r_usb_api.h Prototype declaration of USB API functions

USBSTDFW\inc r_usb_cdefusbip.h Macro definition for USB-BASIC-F/W

USBSTDFW\inc r_usb_ckernelid.h Macro definition for scheduler functions

USBSTDFW\inc r_usb_ctypedef.h Type definition of USB-BASIC-F/W

USBSTDFW\inc r_usb_usrconfig.h Macro definitions for user configuration

SmplMain main.c Main process

SmplMain\APL r_usb_vendor_descriptor.c Descriptor and endpoint information

SmplMain\APL r_usb_vendor_hapl.c Host sample application program

SmplMain\APL r_usb_vendor_papl.c Peripheral sample application program

SmplMain\APL r_usb_vendor_apl.h Macro definions for the application

VENDOR\src r_usb_vendor_hapi.c Sample HDCD API

VENDOR\src r_usb_vendor_hdriver.c Sample HDCD (host class driver)

VENDOR\src r_usb_vendor_papi.c Sample PDCD API

VENDOR\src r_usb_vendor_pdriver.c Sample PDCD (peripheral class driver)

VENDOR\inc r_usb_vendor_api.h Prototype declaration of Vendor class driver

R8C3xx\src\Hw

Resource\src

ncrt0.a30

adc_driver_r8c.c

lcddriver_r8c.c

r8cusbmcu.c

iodefine_r8c.h

nc_define.inc

sect30.inc

Startup program

AD converter driver

LCD driver

MCU control processing

IO define header

Macro Symbol definition

Section define

R8C3xx\src\Hw

Resource\inc

hw_resource.h

r_usb_usbip.h

Prototype declarations of special function driver

USB register declarations

RL78xxx\src\Hw

Resource\src

adcdriver.c

csi_driver.c

keydriver.c

lcddriver.c

leddriver.c

rl78usbmcu.c

AD converter driver

CSI driver

KEY driver

LCD driver

LED driver

MCU control processing

RL78xxx\src\Hw

Resource\inc

hw_resource.h

r_usb_usbip.h

Prototype declaration of special function driver

USB register declarations

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 11 of 107

Mar 16, 2015

4.4 System Resources

4.4.1 Definitions

Table 4-5 and Table 4-6 list the Task ID and the task priorities used when registering the USB-BASIC-F/W modules with

the scheduler. These are defined in the r_usb_ckerneid.h header file.

Table 4-5 Scheduler Registration IDs when Host

Scheduler registration task Description Notes

Task ID: USB_HVEN_TSK HDCD (R_usb_hvndr_Task)

Priority 2

Task ID: USB_HSMP_TSK

APL (usb_hsmpl_apl_task)

Priority 3

Task ID: USB_HCD_TSK

HCD (R_usb_hstd_HcdTask)

Priority 0

Task ID: USB_MGR_TSK

MGR (R_usb_hstd_MgrTask)

Priority 1

Mailbox ID / Default receive task Message description Notes

USB_HVEN_MBX / USB_HVEN_TSK Mailbox ID and receive task ID of

APL -> HDCD messages

USB_HSMP_MBX / USB_HSMP_TSK Mailbox ID and receive task ID of

HDCD -> APL messages

USB_HCD_MBX / USB_HCD_TSK HCD mailbox and its task ID

USB_MGR_MBX / USB_MGR_TSK MGR mailbox and its task ID

Table 4-6 Scheduler Registration IDs when Peripheral

Scheduler registration task Description Notes

Task ID: USB_PVEN_TSK PDCD (R_usb_pvndr_Task)

Priority 3

Task ID: USB_PSMP_TSK

APL (usb_psmpl_apl_task)

Priority 4

Task ID: USB_PHCD_TSK

PCD (R_usb_pstd_PcdTask)

Priority 0

Mailbox ID / Default receive task Message description Notes

USB_PVEN_MBX / USB_PVEN_TSK Mailbox ID and receive task ID of

APL -> PDCD messages

USB_PSMP_MBX / USB_PSMP_TSK Mailbox ID and receive task ID of

PDCD -> APL messages

USB_PCD_MBX / USB_PCD_TSK PCD task mailbox and task ID

4.5 Customization, Notes

The customer will need to make a variety of customizations, depending on USB class, differences in system

configuration,. Other customizations are transmission rate and program ROM/RAM size, or settings that affect the user

interface(Key & LCD etc…).

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 12 of 107

Mar 16, 2015

5. Peripheral Sample Program (UPL)

This chapter exemplifies the case when the RL78 MCU is used, but applies in general to all devices running the USB-

BASIC-F/W. Low Speed devices cannot communicate using bulk transfer, so skip descriptions concerning bulk transfer

when the user system is Low Speed, for example when using Low-speed not support MCU.

5.1 Operation Environment

The Figure 5.1 and Figure 5.2 show a sample operating environment for the software.

RSK Board

Host Vendor devicePeripheral Vendor device

Enumeration

(PIPE0 control transfer)

Data communication
(PIPE4, PIPE5 bulk transfer)USB

PORT

USB cable

Vendor class driver

+

USB-BASIC-F/W

RSK Board
USB

PORT

Data communication
(PIPE6, PIPE7 interrupt transfer)

Vendor class driver

+

USB-BASIC-F/W

Figure 5.1 Example Full Speed Operation Environment

RSK Board

Host Vendor devicePeripheral Vendor device

Enumeration

(PIPE0 control transfer)

USB

PORT

USB cable

Vendor class driver

+

USB-BASIC-F/W

RSK Board
USB

PORT

Data communication
(PIPE6, PIPE7 interrupt transfer)

Vendor class driver

+

USB-BASIC-F/W

Figure 5.2 Example Low Speed Operation Environment

5.2 Description of Peripheral Sample Program

The peripheral sample program of the USB-BASIC-F/W operates in Full Speed or Low Speed, as configured by the

user in r_usb_usrconfig.h. The sample program includes a vendor class driver and a sample application for data transfer.

The data communication using bulk transfer uses pipes 4 and 5, and data communication using interrupt transfer uses

pipes 6 and 7.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 13 of 107

Mar 16, 2015

When creating a customer class driver or an application, refer to files r_usb_vendor_papl.c, r_usb_vendor_descriptor.c,

and r_usb_vendor_pdriver.c.

The following settings are necessary in order to communicate when running as a USB peripheral.

1. Select Full Speed or Low Speed.

2. Set up the scheduler (number of tasks, table size, task ID, mailbox ID, etc.)

3. Call a application task in main loop.

4. Create a device descriptor table so that the bus’s host (at the other end of the USB bus) will select the correct host

device class driver at enumeration.

5. Create a pipe information table, so the bus’s host device class driver can query the peripheral what endpoints to use.

6. Return data according to the received USB host requests.

5.2.1 Sunmary of Functionality

(1). Sample application

 A USB state transition inside PCD will cause the registered vendor driver’s callback to execute. The UPL is

thereby notified of events. When the USB state transition USB_STS_CONFIGURED occurs are initialize

processing, and sample application data transfer is requested from the vendor class driver. Bulk transfers use

PIPE4 and 5 and interrupt transfers use PIPE6 and 7. When the vendor class driver is notified of the end of a

data transfer (via function g_usb_SmplTrnMsg[pipe].complete), the sample applcation data transfer is restarted

using the same pipe.

When USB_STS_SUSPEND is issued from the USB-BASIC-F/W, UPL executes the STOP/WAIT instruction.

User key input is received during regular processing. Example code for remote wake up (from suspend state),

and port enable/disable are included.

(2). Vendor class driver

Initialize processing according to the USB state that is notified from APL which call

R_usb_pstd_PcdChangeDeviceState() . Data transfer is requested by the application to USB-BASIC-F/W, which

executes the transfer. End of data transfer is notified to the application by USB-BASIC-F/W. Vendor class

driver does not support to the vendor class request.

(3). Enumeration

When the USB host detects a connection, USB Host starts enumeration. An enumeration ends normally if a

vendor class driver is registered in the USB host, and USB_STS_CONFIGURED is notified to the application

by a callback function.

(4). Data communication

When enumeration ends normally, data transfer is possible. The application can begin data transfer when the

USB state transition callback occurs.

Vendor class request

A vendor class request is not issued. (STALL response.)

(5). USB state transition

After the vendor driver is registered together with its callback, USB state transitions can be monitored by the

user.

USB_STS_DETACH: Stop the data transfer

USB_STS_DEFAULT: Initialized data transfer size, Initialized configuration number

USB_STS_ADDRESS: Initialized configuration number

USB_STS_CONFIGURED: Initialized data toggle buffer, Start the data transfer

USB_STS_SUSPEND: Interrupt the data transfer, Execute the STOP/WAIT instruction

USB_STS_RESUME: Restart the data transfer

The sample application returns from the suspended state by a resume signal. Moreover, it is also possible for the

peripheral application to demand remote wake up from USB-BASIC-F/W.

(6). USB device framework

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 14 of 107

Mar 16, 2015

Operation can be confirmed using a device framework test with USBCommandVerifier.exe (USBCV)

distributed from the USB Implementers Forum (USB-IF). A supported test item is Chapter 9 only. To run

USBCV you will likely need a High Speed hub between the host and the device.

5.2.2 Operation of Peripheral Sample Program

(1). Initialization

 For HEW

When performingAfter hardware reset for aof the MCU device, the _PowerON_Reset_PC function, in

ncrt0.a30/resetprg, is called. The reset function initializes the MCU via and call the hardware initializationv

function usb_cpu_mcu_initialize() function. When returning from the hardware initialization function, initialize

mMemory areas are then initialized, and calls finally the main() function, in main.c, is calledfile. For more

details of startup processing, refer to the hardware manaulHM and the integrated development environment

manual.

 For CS+

When performing hardware reset for a device, the _@cstart function of a startup file created using the CS+ is

called. The startup function initializes the MCU, and call the hardware initialization function hdwinit() function

of the user definition. When returning from the hardware initialization function, initialize memory areas such as

saddr area and call the main() function in the main.c file. For more details of startup processing, refer to the

hardware manaulHM and the integrated development environment manual.

(2). Main function processing

The main() function initializes the system via the usb_psmpl_main_init() function (initialization of target MCU

and board, initialization of the USB module, start of USB-BASIC-F/W, registration of the UPL driver, and

setting operation permission of the USB module), the program is in the static state, and will wait for a request in

the main loop.

Operation in the main loop are as follows:

(1) Determine if the scheduler has a request pending.

(2) If processing is requested, start a task.

(3) Perform static processing.

(4) Return to (1).

(3). Sample application task (usb_psmpl_apl_task())

When an enumeration ends normally, the sample application initializes global variables and requests the start of

the demonstration data transfer using the API function R_usb_pvndr_TransferStart(). When a transfer end

callback is received from the vendor class driver, the data transfer is repeated (R_usb_pvndr_TransferStart is

called again).When state USB_STS_SUSPEND ocurrs in USB-BASIC-F/W, the APL executes the STOP/WAIT

instruction via the usb_cpu_stop_mode() function.

(4). Vendor class driver (R_usb_psmpl_VendorTask())

When data transfer is requested by the sample application, the vendor class driver (PDCD) demands the data

transfer of USB-BASIC-F/W using the API function R_usb_pstd_TransferStart(). Moreover, the end of the data

transfer is notified to the application via the callback function when the callback for data transfer end is called

from USB-BASIC-F/W.

When the USB state transition is notified to the sample application, the vendor class driver initializes the

following global variables according to the USB state.

USB_STS_CONFIGURED

Keep the configuration number, and initialize the global variable of the DATA-PID table.

USB_STS_DETACH, USB_STS_ ADDRESS, USB_STS_ DEFAULT

"0" cleared of configuration number.

USB_STS_SUSPEND, USB_STS_RESUME

 No processing.

Figure 5.3 shows the outline flow of the UPL.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 15 of 107

Mar 16, 2015

The USB-BASIC-F/W comprises tasks that implement control functions for USB data transmit and receive operations.

When an interrupt occurs, a notification is sent by means of a message to the USB-BASIC-F/W. When the USB-BASIC-

F/W receives a message from the USB interrupt handler, it determines the interrupt source and executes the appropriate

processing.

USB_RCV_MSG?

return

No

Yes

Task

 processing

Each task

Main

Main()

Task processing?
No

Yes

return

Select request with

top priority

Scheduler

Processing request?

System initialization

usb_psmpl_main_init()

return

Initialization

usb_psmpl_main_init()

usb_cpu_usb_interrupt

return

Send a message of

processing request to

PCD task

No

Yes

MCU initialization

H/W reset

Go to main()

Memory initialization

Set operation mode(Peripheral)

R_usb_pstd_PcdChangeDeviceState()

Driever registration

R_usb_pstd_DriverRegistration()

Driver open

R_usb_pstd_PcdOpen()

USB IP initialization

R_usb_pstd_PcdChangeDeviceState()

Target board initialization

usb_cpu_target_init()

Scheduler

R_usb_cstd_Scheduler()

PCD task

R_usb_pstd_PcdTask()

PDCD task

R_usb_psmpl_VendorTask()

Application task

usb_psmpl_apl_task()

Key processing

usb_psmpl_keyprocess()

Standby processing

usb_cpu_stop_mode()

usb_cpu_mcu_initialize()

Clear interrupt status

Figure 5.3 Sequence Outline

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 16 of 107

Mar 16, 2015

5.2.3 Setting a Scheduler

Set the maximum value of a task ID and maximum number of messages stored in the task priority table in the

r_usb_cstd_kernelid.h file.

/* Please set user system */

#define USB_IDMAX ((uint8_t)5) /* Maximum Task ID +1 */

#define USB_TABLEMAX ((uint8_t)5) /* Maximum priority table */

#define USB_BLKMAX ((uint8_t)5) /* Maximum block */

5.2.4 Setting a Task ID and Mail Box ID

Set a task ID and mailbox ID in the file r_usb_cstd_kernelid.h.The task priority level is the same as task ID. (When

the task identification number is small, priority is high.)

#define USB_PCD_TSK USB_TID_0 /* Peripheral Control Driver Task */

#define USB_PCD_MBX USB_PCD_TSK /* Mailbox ID */

#define USB_PVEN_TSK USB_TID_3 /* Vendor Class Driver ID */

#define USB_PVEN_MBX USB_PVEN_TSK /* Mailbox ID */

#define USB_PSMP_TSK USB_TID_4 /* Peripheral Sample Application Task */

#define USB_PSMP_MBX USB_PSMP_TSK /* Mailbox ID */

5.2.5 Task calling

Call a task to be used in main loop (main() function).

void main(void)

{

 /* Initialized USBIP hardware */

 usb_psmpl_main_init();

 /* Sample main loop */

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET)

 {

 R_usb_pstd_PcdTask(); /* PCD Task */

 R_usb_psmpl_VendorTask();

 usb_psmpl_apl_task();

 }

 keydata = usb_smpl_KeyRead();

 if (keydata != 0x00)

 {

 usb_psmpl_keyprocess(keydata);

 }

 if (g_usb_suspend_flag == USB_YES)

 {

 usb_cpu_stop_mode();

 }

 }

5.2.6 Starting the UPL

The USB-BASIC-F/W (running as USB function) has established a connection with a host when a

SET_CONFIGURATION request is received. This is notified to the UPL via the callback function

g_usb_PcdDriver.statediagram. The USB state of the second argument must be analyzed, and suitable user

processing can then take place (the user application can start). The sample application notifies the USB state to the

vendor class driver, initializes the data area, and starts example application data transfers. Note that the vendor class

driver must memorize the configuration number when SET_CONFIGURATION occurs.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 17 of 107

Mar 16, 2015

5.2.7 Responding to a USB Request

A program example of control transfer for a received host class request, using the API function provided by USB-

BASIC-F/W, is shown below.

void usb_psmp_ControlTransfer(usb_request_t* request, uint16_t ctsq)

{

 g_usb_psmp_Request = request;

 if ((g_usb_psmp_Request.wRequest & USB_BMREQUESTTYPETYPE) == USB_CLASS)

 {

 switch(ctsq)

 {

 case USB_CS_IDST: usb_psmp_control_trans0(request); break;

 case USB_CS_RDDS: usb_psmp_control_trans1(request); break;

 case USB_CS_WRDS: usb_psmp_control_trans2(request); break;

 case USB_CS_WRND: usb_psmp_control_trans3(request); break;

 case USB_CS_RDSS: usb_psmp_control_trans4(request); break;

 case USB_CS_WRSS: usb_psmp_control_trans5(request); break;

 case USB_CS_SQER:

 R_USB_pstd_ControlEnd((uint16_t)USB_DATA_ERR); break;

 default:

 R_USB_pstd_ControlEnd((uint16_t)USB_DATA_ERR); break;

 }

 }

 else

 {

 R_USB_pstd_SetStallPipe0();

 }

}

1. Data stage processing

Transfer data to the USB host using the API function R_usb_pstd_ControlRead()/R_usb_pstd_ControlWrite() for

supported requests *. Call the API function R_usb_pstd_SetStallPipe0()to return STALL to a USB host for an

unsupported request.

2. Status stage processing

If the data stage ends properly, call the API R_usb_pstd_ControlEnd() and specify USB_CTRL_END as the status

argument. . If the data stage does not end properly, specify instead SB_DATA_ERR.

*USB-BASIC-F/W accesses the user buffer up to the data size specified with API function R_usb_pstd_ControlRead() /

R_usbh_pstd_ControlWrite(). Therefore, make sure that the capacity of the user buffer exceeds the transmit / receive data

size specified in the control transfer data stage.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 18 of 107

Mar 16, 2015

5.2.8 Application Outline

The USB-BASIC-F/W starts data transfer after configuration as shown in the procedure below.

Identify the USB state using the callback function usb_psmpl_device_state(), and request the vendor class driver to

execute data transfer.

USB-BASIC-F/W HOST

SET_CONFIGURATION

Enumeration

Callback statediagram

usb_psmpl_device_state()

R_usb_pstd_TransferStart（）

Data transfer

Callback Complete

usb_pvndr_transfer_result()

Initialize HW

Start PCD

Driver RegistrationR_usb_pstd_DriverRegistration()

USB host connected

(VBUS detected)

Data line pull up

main()

R_usb_pstd_TransferStart（）

Yes

No

usb_psmpl_apl_task()

usb_psmpl_main_init

usb_psmpl_apl_task

R_usb_pstd_PcdTask

R_usb_cstd_Scheduler

Task operated?

R_usb_psmpl_VendorTask

R_usb_pstd_PcdOpen()

R_usb_pstd_PcdChangeDeviceState()

R_usb_pvndr_StateCallback（）

R_usb_pvndr_TransferStart（）
data transfer start request

R_usb_pvndr_TransferStart（）

R_usb_psmpl_VendorTask()

Transfer end

Callback Complete

usb_psmpl_transfer_result()

usb_smpl_data_initilized()

Initialize data area

usb_psmpl_tranfer_start()

Start data transfer

R_usb_pvndr_TransferStart（）

R_usb_pstd_PcdChangeDeviceState()

R_usb_pvndr_DriverStart()
Start PDCD

HW setting

Figure 5.4 Application Operation Outline

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 19 of 107

Mar 16, 2015

5.3 Data Transfer

User data transfer is customer-specific as to when it occurs, transfer method, start or end timing. The message buffer

size and structure needs to change based on the application.

5.3.1 Basic specification

Inside USB-BASIC-F/W, data transfer occurs using the user’s buffer pointed to by the USB Data Transfer Structure

usb_utr_t. See Table 6-3.When data transfer ends, the USB-BASIC-F/W sets PID = NAK and notifies the transfer

end by the callback function.

The USB-BASIC-F/W updates the pipe status (utr_table.pipectr) specified when the data transfer is demanded.

Moreover, the pipe status (data toggle) is notified by the callback at data transfer end. Therefore, because UPL

memorizes the pipe status, the data transfer of multiple endpoints is possible using one pipe. The pipe status however

should be initialized to “DATA0" at USB reset, STALL release, SET_CONFIGURATION request, and at

SET_INTERFACE request, etc.

The size of the max packet of the Bulk pipe is fixed at 64 bytes and should not be changed.

5.3.2 Data Transfer Request

Use R_usb_pstd_TransferStart() to start a UPL data transfer.

5.3.3 Notification of Transfer Result

Data transfer end is notified to the UPL using the callback function specified in the usb_utr_t transfer structure. Refer

to Table 6-7 for how to handle the content of the transfer structure.

5.3.4 Notes on Data Transmission

1. Not support the continuous transfer using the sampe pipe.

2. Not be able to tranfer the next data until the callback function is called.

5.3.5 Notes on Data Reception

(1) Use a transaction counter for the receive pipe.

When a short packet is received at the end of a data transfer, the expected remaining receive data length is stored

in tranlen of the usb_utr_t structure. When the received data exceeds the buffer size, data read from the FIFO

buffer up to the buffer size and this transfer ends. When the user buffer area is insufficient to accommodate the

transfer size, the usb_cstd_forced_termination() function may clear the receive packet.

(2) Receive callback

 When the received data is n times of the maximum packet size but less than the expected received data length,

the data transfer is not considered to be ended and so a callback is not generated. Only when receiving a short

packet or the data size is matched, the USB-BASIC-F/W judges the transfer ended and generates the callback.

Example

When the data size of the reception schedule is 128 bytes and the maximum packet size is 64 bytes:

 1 to 63 bytes received A received callback is generated.

 64 bytes received A receive callback is not generated.

 65 to 128 bytes received A receive callback is generated.

5.3.6 Data Transfer Outline

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 20 of 107

Mar 16, 2015

To transfer data, set the necessary information in the transfer structure usb_utr_t structure and call

R_usb_pstd_TransferStart(). An example data transfer is shown below.

void usb_pvndr_transfer_start(uint16_t pipe)

{

 g_usb_PsmplTrnMsg[pipe].pipenum = pipe;

 g_usb_PsmplTrnMsg[pipe].tranadr = g_usb_PsmplTrnPtr[pipe];

 g_usb_PsmplTrnMsg[pipe].tranlen = g_usb_PsmplTrnSize[pipe];

 g_usb_PsmplTrnMsg[pipe].pipectr = g_usb_PsmplPipeCtr[pipe];

 g_usb_PsmplTrnMsg[pipe].setup = USB_NULL;

 g_usb_PsmplTrnMsg[pipe].complete = (usb_cb_t)&usb_pvndr_transfer_result;

 R_usb_pstd_TransferStart((usb_utr_t *)&g_usb_PsmplTrnMsg[pipe]);

}

An example of a callback function (executed when at the end of the transfer and notified to UPL via a scheduler

message) is shown below.

void usb_pvndr_transfer_result(usb_utr_t *mess)

{

 usb_er_t err;

 mess->msginfo = USB_SMPL_TRANSFER_END;

 err = R_USB_SND_MSG(USB_PVEN_MBX, (usb_msg_t*)mess);

 if(err != USB_E_OK)

 {

 while(1);

 }

}

5.4 Pipe Information

Pipe settings for the peripheral class driver need to be created in the form of a ”Pipe Information Table”. A pipe

information example for a peripheral vendor class driver is in uint16_t g_usb_psmpl_EpTbl1[], in the

r_usb_vendor_descriptor.c file.

5.4.1 Pipe Information Table

A Pipe Information Table comprises the following four items (uint16_t 4).

1. Pipe window select register (address 0x64)

2. Pipe configuration register (address 0x68)

3. Pipe maximum packet size register (address 0x6C)

4. Dummy data (not possible to delete)

5.4.2 Pipe Definition

The pipe information table structure used in the peripheral sample program is shown below. The macros are defined

in the r_usb_cstd_defusbip.h file. Refer to the header file for pipe definition values.

Structure example of pipe information table:

uint16_t g_usb_psmpl_EpTbl1[] = Pipe information table

{

 USB_PIPE4, Pipe definition item 1

 USB_BULK | USB_BFREOFF | USB_DBLBON | USB_SHTNAKON | USB_DIR_P_IN | USB_EP4,

 ← Pipe definition item 2

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 21 of 107

Mar 16, 2015

 USB_MAX_PACKET(64), Pipe definition item 3

 USB_NULL, Dummy data

 :

 USB_PDTBLEND,

}

(1). Pipe definition item 1: Specify the values to be set in the pipe window select register.

Pipe select: Specify the selected pipes (USB_PIPE4 to USB_PIPE7).

(2). Pipe definition item 2: Specify the values to be set in the pipe configuration register.

Transfer type : Specify either USB_BULK or USB_INT

BRDY operation designation : Specify USB_BFREOFF

Double buffer mode : Specify either USB_DBLBON or USB_DBLBOFF

SHTNAK operation designation : Specify either USB_SHTNAKON or USB_SHTNAKOFF

Transfer direction : Specify either USB_DIR_P_OUT or USB_DIR_P_IN

Endpoint number : Specify the endpoint number (EP1 to EP15) to the pipe

 The settable values differ depending on the pipes for the transfer type. For details, refer to the HM.

 Describe the pipe information according to the endpoint descriptor.

 Set USB_SHTNAKON for the receive direction pipe (USB_DIR_P_OUT).

(3). Pipe definition item 3: Specify the maximum packet size of the endpoint.

 Specify the maximum packet size: Set the value based on the USB specification.

 Specify the maximum packet size of the endpoint.

(4). Others.

 The pipe information is necessary somultiple endpoints can be used to communicate simultaneously.

 Synchronize communication for each transfer associated with the UPL.

 Write USB_PDTBLEND at the end of the table.

 Register the pipe information table using the R_usb_pstd_DriverRegistration() function.

 When the SET_CONFIGURATION request is received, set the pipe information to a register in the

USB-BASIC-F/W.

 The pipe information does not support alternate interface setting.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 22 of 107

Mar 16, 2015

5.5 Descriptor Information

It is necessary to create descriptors according to the customer system. In the peripheral sample program, a sample table

of descriptors is found in file r_usb_vendor_descriptor.c.

The descriptor definitions comprise the following three types.

1. Standard Device Descriptor

 uint8_t g_usb_psmpl_DeviceDescriptor[]

2. Configuration/Other_Speed_Configuration/Interface/Endpoint

 uint8_t g_usb_psmpl_ConfigurationF_1[]

3. String Descriptor

 uint8_t g_usb_psmpl_StringDescriptor0[]

 uint8_t g_usb_psmpl_StringDescriptor1[]

 uint8_t g_usb_psmpl_StringDescriptor2[]

 uint8_t g_usb_psmpl_StringDescriptor3[]

 uint8_t g_usb_psmpl_StringDescriptor4[]

1). ID registration

Set a vendor ID and product ID as in the example. Do not use the default values in a product.

Example) If you own the Vendor ID 0x0000, and wish to use product ID = 0x00FF, set

 #define USB_VENDORID (0x0000u) /* Vendor ID */

 #define USB_PRODUCTID (0x00FFu) /* Product ID */

2). Device information

Set device information depending on selected speed.

#ifdef USB_LSPERI_PP

 #define USB_PVDR_BLENGTH 32 /* Low Speed (PIPE 6-7) */

 #define USB_DCPMAXP (8u) /* DCP max packet size */

 #define USB_EPNUMS (2) /* Endpoint number */

 #define USB_INTEPMAXP (8u) /* Interrupt pipe max packet size */

#endif /* USB_LSPERI_PP */

#ifdef USB_FSPERI_PP

 #define USB_PVDR_BLENGTH 46 /* Full Speed (PIPE 4-7) */

 #define USB_DCPMAXP (64u) /* DCP max packet size */

 #define USB_EPNUMS (4) /* Endpoint number */

 #define USB_INTEPMAXP (64u) /* Interrupt pipe max packet size */

#endif /* USB_FSPERI_PP */

3). Other information

Set the following information expanded to a descriptor.

 #define USB_BCDNUM (0x0200u) /* bcdUSB */

 #define USB_RELEASE (0x0100u) /* Release Number */

 #define USB_CONFIGNUM (1u) /* Configuration number */

4). Notes

1. For more details of each descriptor, refer to Chapter 9 of USB specification Revision 2.0.

2. When changing a descriptor definition, change the pipe information table (sample table is in

r_usb_vendor_descriptor.c) according to the endpoint descriptor.

3. Serial number must start from 0 for the interface number.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 23 of 107

Mar 16, 2015

5.6 Operating USB-BASIC-F/W in Peripheral Mode

This chapter describes the procedure to operate the USB-BASIC-F/W in peripheral mode. See also the sample code.

5.6.1 Select a device

Table 5-1 lists the integrated development environment of each device for USB-BASIC-F/W . Use the H/W resource

folder that corresponds to the device.

Table 5-1 Hardware Resource of Sample Code

Device

Integrated

development

environment

Data rate Hardware Resource Folder

R8C/3MU,

R8C/34U,

R8C/3MK,

R8C/34K

HEW Full Speed

src\HwResource
RL78/G1C CS+

Full Speed

Low Speed

RL78/L1C CS+
Full Speed

Low Speed

5.6.2 User Configuration file (r_usb_usrconfig.h)

Configure the User Definition Information file (r_usb_usrconfig.h) in the “inc” folder, to set the functionality of the

USB-BASIC-F/W. Settable items are shown below.

(1). Specify data transfer rate (only RL78/USB)

Set the data transfer rate of the USB communication. Make the macro in operation effective.

// #define USB_LSPERI_PP // LowSpeed peripheral device

 #define USB_FSPERI_PP // FullSpeed peripheral device

(2). Specify the function to change the global variable to the static variable.

Add the follow.

#define USB_STATIC_USE

(3). Specify the function to use the fook function when the error is generated.

Add the follow

#define USB_DEBUG_HOOK_USE

(4). Specify battery charging operation (only RL78/USB)

Set the battery charging operation. Make the macro in operation effective.

 #define USB_PERI_BC_ENABLE Enable batetry charging

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 24 of 107

Mar 16, 2015

The following definition is defined by the project file of the integration environment.

RL78G1C/RL78L1C : USB_FUNCSEL_PP = USB_PERI_PP

RL78USB

R8C : USB_FUNCSEL_PP = USB_PERI_PP

R8CUSB

5.6.3 Changing USB-BASIC-F/W

The code shown below is subject to change, though sample functions for the Renesas USB MCU are already provided.

Change them according to the user system. The functions that are subject to change are listed in Table 5-2, with the

functionality they implement:

 Initialization of the MCU (clock, pin and port setup…), interrupt handling, etc.

 The wait functions (usb_cpu_delay_xms() and usb_cpu_delay_1u()) generate the wait time. Change the number of

loops according to the system design.

 Use the function usb_cpu_int_enable() to enable the USB interrupt in order to use the scheduler function.

usb_cpu_int_disable() will stop the scheduler from detecting USB acitivity.

 The message is sent to PCD task from the USB interrupt by generating the USB interrupt. The scheduler executes

the task control and call PCD task.

Table 5-2 USB-BASIC-F/W Function List

Type Function Name and argument Description

void usb_cpu_mcu_initialize(void) MCU initialization (oscillation control, etc.)

void usb_cpu_target_init(void) System initialization (pin config, port and interrupts

setup, etc.

void usb_cpu_set_pin_function(void) USB function setting of the MCU(pin setting, etc.)

void usb_cpu_usb_interrupt (void) USB interrupt handler

void usb_cpu_usbint_init (void) USB interrupt enabled

void usb_cpu_int_enable(void) USB interrupt enabled for the scheduler

void usb_cpu_int_disable(void) USB interrupt disabled for the scheduler

void usb_cpu_intp0_enable(void) Enable INTP0 interrupt for the swtich for RSK

void usb_cpu_intp0(void) INTP0 interrupt for the swtich for RSK

void usb_cpu_usb_resume_interrupt(void) USB interrupt handler for USB resume

void usb_cpu_delay_1us(uint16_t time) 1 s wait processing

void usb_cpu_delay_xms(uint16_t time) 1 ms wait processing

void usb_cpu_stop_mode(void) Execute the STOP instruction

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 25 of 107

Mar 16, 2015

6. Peripheral Controller Driver (PCD)

6.1 Basic Function

PCD is a program to control the hardware when operating target devices as USB functions. The USB-BASIC-F/W

analyzes requests issued from the UPL and controls the hardware. The hardware control result is notified to UPL using a

return value or callback function. Requests to the hardware are made from the UPL The results are made known to UPL

via the callback function that was registered to the USB-BASIC-F/W using the driver information structure. Start the

USB-BASIC-F/W as shown in chapter 6.2.1 and register the UPL as shown in 6.2.3 to configure USB-BASIC-F/W as a

peripheral.

The fFunctions of the PCD include:

1. Detection of USB state change with the connected host, and notification ofthe result. See chapter 6.2.3

2. Enumeration with the host: See 6.2.7

3. Notification of USB requests: 6.2.4

4. Data transfer and notification of transfer result: 6.2.5

5. USB state control (USB state control and notification of control result): 6.2.6

6.2 Operation Outline

6.2.1 Starting the PCD

Start the USB-BASIC-F/W using API function R_usb_pstd_PcdOpen().

6.2.2 Registration of UPL

The UPL registers information shown in Table 6-1 to the USB-BASIC-F/W using the API function

R_usb_pstd_DriverRegistration()

The USB-BASIC-F/W preserves this information in the global variable (g_usb_PcdDriver).

typedef struct

{

 uint16_t *pipetbl; /* Pipe definition table address */

 uint8_t *devicetbl; /* Device descriptor table address */

 uint8_t *configtbl; /* Configuration descriptor table address */

 uint8_t **stringtbl; /* String descriptor table address */

 usb_cb_info_t statediagram; /* Device status */

 usb_cb_trn_t ctrltrans; /* Control transfer */

} usb_pcdreg_t;

Table 6-1 Members of the usb_pcdreg_t Structure

Members Functions Notes

*pipetbl Register the address of the Pipe Information Table.

*devicetbl Register the address of the Device Descriptor table.

*configtbl Register the address of the Configuration Descriptor table.

**stringtbl Register the address of the String Descriptor address table.

statediagram Register the function to start when the USB state transits.

ctrltrans Register the function to start when a class request or vendor request is

issued.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 26 of 107

Mar 16, 2015

6.2.3 Notification of USB State Change

To notify UPL of a USB state transition etc, the USB-BASIC-F/W executes USB state transition callback function

(*g_usb_PcdDriver.statediagram) that the user previously registered with USB-BASIC-F/W. The USB-BASIC-F/W

notifies the information below to the UPL using the second argument of the callback function. Analyze the USB state

and perform suitable processing to the system.

USB state transition

USB_ STS_DETACH: Detach detection

USB_ STS_ATTACH: Attach detection

USB_ STS_DEFAULT: Default state transition (USB bus reset detection)

USB_ STS_ADDRESS: Address state transition (Set_Address request reception)

USB_ STS_CONFIGURED: Configured state transition (Set_Configuration request reception)

USB_ STS_SUSPEND: Suspend state transition (suspend detection)

USB_ STS_RESUME: Suspend state cancellation (resume detection)

USB_PORTENABLE: Pull up the D+ (RL78/USB contain the case where "Pull up D-"

6.2.4 Control Transfer Notification

The USB-BASIC-F/W automatically returns standard requests when enumerating to a USB host. See 6.2.7). When a

device class (a vendor class) request is received, the control transfer callback function (*g_usb_pstd_Driver.ctrltrans),

registered in the USB-BASIC-F/W, is executed. The USB-BASIC-F/W notifies the UPL of the information shown in

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 27 of 107

Mar 16, 2015

Table 6-2 using the first argument of the callback function. The UPL must analyze a USB request and perform

appropriate processing.

The following standard requests will trigger the control transfer callback to execute.

 When receiving Get_Descriptor request and bRecipient is an interface.

 When receiving Clear_Feature request or Set_Feature request.

 These standard request types are notified via the second argument of the callback:

 USB_CLEARSTALL Receive Clear_Feature request (Clear STALL)

 USB_CLEARREMOTE Receive Clear_Feature request (Disable remote wakeup)

 USB_SETREMOTE Receive Set_Feature request (Enable remote wakeup)

 USB_SETSTALL Receive Set_Feature request (Set STALL)

 USB_RECIPIENT Receive Get_Descriptor request and bRecipient is an interface

A USB request from host will be available to the UPL in the following structure.

typedef struct

{

 union {

 struct { /* Characteristics of request */

 uint8_t bRecipient:5; /* Recipient */

 uint8_t bType:2; /* Type */

 uint8_t bDirection:1; /* Data transfer direction */

 uint8_t bRequest:8; /* Specific request */

 } BIT;

 uint16_t wRequest; /* Control transfer request */

 } WORD;

 uint16_t wValue; /* Value */

 uint16_t wIndex; /* Index */

 uint16_t wLength; /* Length */

} usb_request_t;

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 28 of 107

Mar 16, 2015

Table 6-2 Members of the usb_request_t Structure

Members Functions Notes

wRequest The value is wRequest of request. (The value is BREQUEST of USBREQ

register.) The bit can refer for wRequest in a union type.

wValue The value is wValue of request. (The value is USBVAL register.)

wIndex The value is wIndex of request. (The value is USBINDEX register.)

wLength The value is wLength of request. (The value is USBLENG register.)

6.2.5 Issuing a Transfer Request to USB-BASIC-F/W

The following structure must be passed as an argument when calling the API function R_usb_pstd_TransferStart() when

the UPL wants to transfer data. The USB-BASIC-F/W preserves address information of the argument in the global

variable (g_usb_LibPipe). Therefore, the user must maintain this argument data in UPL until the data transfer ends.

struct usb_utr_t

{

 usb_strct_t msginfo; /* Message Info for F/W */

 usb_strct_t pipenum; /* Pipe number */

 usb_strct_t status; /* Transfer status */

 usb_strct_t flag; /* Flag */

 usb_cb_t complete; /* Call Back Function Info */

 uint8_t *tranadr; /* Transfer data Start address */

 uint16_t *setup; /* Setup packet(for control only) */

 uint16_t pipectr; /* Pipe control register */

 usb_leng_t tranlen; /* Transfer data length */

 uint8_t dummy; /* Adjustment of the byte border */

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 29 of 107

Mar 16, 2015

Table 6-3 The Data Transfer Structure usb_utr_t

Members Functions

msginfo Message information that USB-BASIC-F/W uses.

It is set when using an API functions. It’s value depends on the API.

pipenum Specify the pipe number for that the UPL is to use for transfer.

status The USB-BASIC-F/W returns the following status information.

USB_DATA_OK: Data transfer (transmission/reception) normal end

USB_DATA_SHT: Data reception normal end with less than specified data length

USB_DATA_OVR: Receive data size exceeded

USB_DATA_ERR: No-response condition or over/under run error detected

USB_DATA_DTCH： Detach detected

USB_DATA_STALL: STALL or max packet size error detected

USB_DATA_STOP: Data transfer forced end

complete Specify the callback function to be executed in the UPL at the end of a data transfer.

Type declaration of the callback function :

typedef void (*usb_cb_t)(usb_utr_t*);

*tranadr The UPL should specify the following information.

Reception: Buffer address to store receive data

Transmission: Buffer address to store transmit data

Secure a bigger area than the data length specified with tranlen below.

pipectr Specify the PIPExCTR register (Pipe Control Register) which the UPL selects.

Control the sequence bit of DATA0/DATA1 according to bit 6 of the applicable member.

Set USB_NULL for the initial state and the returned value by the USB-BASIC-F/W after

the second called.

USB-BASIC-F/W returns the PIPExCTR register information.

tranlen The UPL should specify the following information:

Reception: Data length to be received

Transmission: Data length to be transmitted

The maximum length that can be sent and received is 65535 bytes. USB-BASIC-F/W

stores the remaining transmit/receive data length internally until the end of a data transfer.

Others Not used

6.2.6 Changing USB State

The UPL should call the API function R_usb_pstd_PcdChangeDeviceState() to change the USB state.

Information controlled by the USB-BASIC-F/W can be obtained using API function R_usb_pstd_DeviceInformation().

6.2.7 Enumeration

The USB-BASIC-F/W automatically returns standard requests to the USB host. Supported standard requests by USB-

BASIC-F/W are :

(1) GET_DESCRIPTOR

(2) SET_ADDRESS

(3) SET_CONFIGURATION

(4) GET_STATUS

(5) GET_CONFIGURATION

(6) GET_INTERFACE

(7) CLEAR_FEATURE

(8) SET_FEATURE

(9) SET_INTERFACE

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 30 of 107

Mar 16, 2015

When the USB-BASIC-F/W device is connectted by the host (transition to configured state), the USB-BASIC-F/W

notifies the configuration to the UPL using the registered callback function (*g_usb_PcdDriver.statediagram). The

UPL must analyze the USB state of the second argument and perform appropriate processing . The sample application

initializes the sample application global variables at the transition to the USB_STS_CONFIGURED state to enable data

transfer.

6.2.8 Peripheral Battery Charging (PBC)

PBC is the H/W control program for the target device that operates the Charging Port Detection (CPD) defined by the

USB Battery Charging Specification (Revision 1.2).

CPD immediately executes after the USB-BASIC-F/W notifies of USB state transition USB_STS_ATTACH to UPL

via the callback function (*g_usb_PcdDriver.statediagram). USB-BASIC-F/W also notifies the result of the CPD

action to UPL by the callback function, at the USB state transition USB_PORTENABLE, using the first argument. The

result of the callback notified to UPL is one of the following:

0 : Standard Downstream Port (SDP) Detection

1 : Charging Downstream Port (CDP) Detection

2 : Dedicated Charging Port (DCP) Detection

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 31 of 107

Mar 16, 2015

The processing flow of PBC is shown in Figure 6.1.

【Charging Port Detection】

USB State Change
(USB_STS_ATTACH)

BATCHGE = 1

Data Contact Detect

Primary Detection

Result

Secondary Detection

Charging Port

Result

BATCHGE = 0

USB State Charge
(USB_PORTENABLE)

SDP

CDP

【Data Contact Detect】

CNEN=1, IDPSRCE=1, RPDME=1
Software Wait 5[ms]

LNST

Software Wait 11[ms]

LNST

CNEN=0, IDPSRCE=0, RPDME=0

return COMP_SE0

SE0

SE0

not SE0

Timer++
Software Wait 1[ms]

not SE0

Timer > 600
No

Yes

CNEN=0, IDPSRCE=0, RPDME=0

return TIMEOUT

【Primary Detection】

VDPSRCE=1, IDMSINKE=1
Software Wait 42[ms]

Read CHGDETSTS

VDPSRCE=0, IDMSINKE=0
Software Wait 21[ms]

CHGDETSTS

return ChargingPort return SDP

0

1

【Secondary Detection】

VDMSRCE=1, IDPSINKE=1
Software Wait 42[ms]

Read PDDETSTS

VDMSRCE=0, IDPSINKE=0

PDDETSTS

return DCP return CDP

0

1

Figure 6.1 PBC processing flow

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 32 of 107

Mar 16, 2015

6.2.9 Notes on USB-BASIC-F/W

Even if a suspend state occurs, the USB-BASIC-F/W does not interrupt a data transfer.

USB-BASIC-F/W stops data transfer when detecting a detach.

USB-BASIC-F/W does not support setting of more than one configuration (SET_CONFIGURATION request).

USB-BASIC-F/W does not support the setting of alternate interface setting.

6.3 The PCD API

USB-BASIC-F/W includes the following functions.

(1) Enable and disable the USB port.

(2) Change the USB state (remote wakeup).

(3) Stall a pipe.

(4) Stop a PCD.

(5) Access the FIFO buffer for the Control transfer.

Request all hardware control from the UPL using the PCD API functions. The API functions are in the

r_usb_pdriverapi.c file. When including the header files, follow the order shown in Table 6-4. Table 6-5 lists the API

functions.

Table 6-4 List of PCD API header files

File Name Description Notes

r_usb_ctypedef.h Variable type definitions

r_usb_ckernelid.h System header file

r_usb_cdefusbip.h Various definitions for the USB driver

r_usb_api.h USB driver API function definitions

Table 6-5 List of PCD API Functions

Function Name Description Notes

R_usb_pstd_PcdTask The PCD task

R_usb_pstd_PcdOpen PCD task initialization and activation

R_usb_pstd_DriverRegistration UPL registration

R_usb_pstd_TransferStart Data transfer execution request

R_usb_pstd_TransferEnd Data transfer forced end request

R_usb_pstd_PcdChangeDevice

State

USB device state change request

R_usb_pstd_DeviceInformation Obtain the USB device information

R_usb_pstd_SetStallPipe0 Set PID of pipe 0 to STALL

R_usb_pstd_SetPipeStall Set PID of pipe other than pip 0 to STALL

R_usb_pstd_ControlRead FIFO access execution request for control read transfer

R_usb_pstd_ControlWrite FIFO access execution request for control write

transfer

R_usb_pstd_ControlEnd Control transfer end request

R_usb_pstd_SetPipeRegister Set pipe information

6.4 PCD Callbacks

The USB-BASIC-F/W notifies USB state changes and data transfer ends to the UPL using callback function. When a

driver hasbeen registered, an API function can be called, at which time it also specifies its callback function. When

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 33 of 107

Mar 16, 2015

calling an API that “registers” a new callback function, include the header files in the order as shown in Table 6-4. , A

PCD callback function list is shown in Table 6-6

Table 6-6 List of PCD callback Function

Function Name Description Notes

*g_usb_PcdDriver.statediagram A USB state transition detected

*g_usb_PcdDriver.ctrltrans A control transfer occurred

* g_usb_LibPipe[pipe]->complete A data transfer occurred

6.5 API and Callback Details

API function and callback function details are explained below.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 34 of 107

Mar 16, 2015

R_usb_pstd_PcdTask

PCD task

Format

void R_usb_pstd_PcdTask(void)

Arguments

－ －

Return Value

－ －

Description

Calls the usb_pstd_pcd_task() function.which is then executed. This task:

 Processes any USB standard host requests.When a class request or vendor request is detected, the control

transfer callback function proviously registered by the UPL will be called automatically. (Processing

previously requested by the API will execute).

 When a USB state transition is detected, the USB state transition callback function registered by the UPL will

be called automatically. (Processing previously requested by the API will execute.)

 Performs any data transfers requested by the API.When data transfer ends, the callback function previusly

registered by the UPL will be called automatically.

Notes

1. Call this function in a loop using the scheduler mechanism.

2. Call hook function(R_usb_cstd_debug_hook()) when receiving the invalid message.Refer to Chapter 9.3.

Example

void main(void)

{

 usb_psmpl_main_init();

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET)

 {

 R_usb_pstd_PcdTask();

 usb_psmpl_apl_task();

 }

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 35 of 107

Mar 16, 2015

R_usb_pstd_PcdOpen

PCD task start

Format

void R_usb_pstd_PcdOpen(void)

Arguments

－ －

Return Value

－ －

Description

Starts USB-BASIC-F/W and initializes global variables used by PCD.

Note

－

Example

void usb_psmpl_main_init(void)

{

 usb_cpu_target_init(); /* Target board initialize */

 /* USB-IP is now initialize */

 R_usb_pstd_PcdChangeDeviceState(USB_DO_INITHWFUNCTION)

 /* PCD driver open & registration */

 R_usb_pstd_PcdOpen(); /* PCD task open */

 usb_psmpl_driver_registration(); /* Sample driver registration */

 /* USB-IP is set to the peripheral */

 R_usb_pstd_PcdChangeDeviceState(USB_DO_SETHWFUNCTION);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 36 of 107

Mar 16, 2015

R_usb_pstd_DriverRegistration

Peripheral device class driver (PDCD) registration

Format

void R_usb_pstd_DriverRegistration(usb_pcdreg_t *registinfo)

Argument

registinfo* Class driver structure

Return Value

－ －

Description

Register the UPL to the USB-BASIC-F/W. Call this function from the UPL at initialization.

Notes

1. There is only one registerable driver. Refer to Chapter 6.2.1 for registered information.

Example

void usb_psmpl_driver_registration(void)

{

 usb_pcdreg_t driver;

 /* Driver registration */

 driver.pipetbl = g_usb_psmpl_EpTbl1;

 driver.devicetbl = g_usb_psmpl_DeviceDescriptor;

 driver.configtbl = g_usb_psmpl_ConfigurationF_1;

 driver.stringtbl = g_usb_psmpl_StringPtr;

 driver.statediagram = &usb_apl_change_device_state;

 driver.ctrltrans = &usb_psmpl_control_transfer;

 R_usb_pstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 37 of 107

Mar 16, 2015

R_usb_pstd_TransferStart

Data transfer request

Format

usb_er_t R_usb_pstd_TransferStart(usb_utr_t * utr_table)

Argument

utr_table* References a data transfer structure. See Table 6-3 The Data Transfer Structure usb_utr_t.

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap. (The pipe is in use.)

Description

Request the data transfer of the pipe specified in the transfer structure. When either the specified data size is

satisfied, a short packet is received, or an error occurs, the data transfer ends.

When data transfer ends, the callback function of the argument in the structure member is called. Remaining data

length of transmission and reception, status, and information of transfer end are set in the argument of this callback

function (utr_table).

When a data transfer is restarted with the same pipe, it is necessary to put the pipe status (data toggle: previous pipe

status) for the next transfer. Structure member (utr_table.pipectr) of the argument must be set to the pipe status.

When a USB reset or clear STALL etc. occur, the pipe status should be initialized to “DATA0".

When a transfer start request is issued to a pipe during a data transfer, USB_E_QOVR is returned.

Notes

1. This function does not support control transfers.

2. When the received data is n times maximum packet size, and less than the expected received data length, a data

transfer is not considered ended, and so no callback is issued.

Example

usb_utr_t g_usb_PsmplTrnMsg[USB_TBL_MAX];

void usb_pvndr_data_transfer(usb_pipe_t pipe)

{

 /* PIPE Transfer set */

 g_usb_PsmplTrnMsg[pipe].pipenum = pipe;

 g_usb_PsmplTrnMsg[pipe].tranadr = g_usb_PsmplTrnPtr[pipe];

 g_usb_PsmplTrnMsg[pipe].tranlen = g_usb_PsmplTrnSize[pipe];

 g_usb_PsmplTrnMsg[pipe].pipectr = g_usb_PsmplPipeCtr[pipe];

 g_usb_PsmplTrnMsg[pipe].setup = USB_NULL;

 g_usb_PsmplTrnMsg[pipe].complete = (usb_cb_t)&usb_pvndr_transfer_result;

 R_usb_pstd_TransferStart((usb_utr_t *)&g_usb_PsmplTrnMsg[pipe]);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 38 of 107

Mar 16, 2015

R_usb_pstd_TransferEnd

Data transfer forced end request

Format

usb_er_t R_usb_pstd_TransferEnd(usb_pipe_t pipe, usb_strct_t_t msginfo)

Arguments

pipe Pipe number

msginfo Communication status

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end)

Description

Set the following values to the argument msginfo.

 USB_DO_TRANSFER_STP: Data transfer forced end

 USB_DO_TRANSFER_TMO: Data transfer timeout (The PCD does not call back.)

The transfer end is notified to UPL using the callback function set when the data transfer was requested with

R_usb_pstd_TransferStart The callback will signal forced end with msginfo=USB_DO_TRANSFER_STP. The

remaining data length of transmission and reception, pipe control register value, and transfer status =

USB_DATA_STOP are available in the argument of the callback (usb_utr_t). When a forced end request is issued to

a pipe is not executing any data transfer, USB_E_QOVR is returned.

Notes

1. When data transmission is suspended, the FIFO buffer of the SIE is not cleared.

When the FIFO buffer is transmitted using double buffer, the data that has not been transmitted yet may remain in

the FIFO buffer.

2. When the argument pipes are Pipe 0 to Pipe 3, USB_E_QOVR error is returned and the USB_E_ERROR error is

returned for Pipe 8 or higher in RL78/USB.

Example

void usb_smp_task(void)

{

 R_usb_pstd_TransferEnd(USB_PIPE4, USB_DO_TRANSFER_STP);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 39 of 107

Mar 16, 2015

R_usb_pstd_PcdChangeDeviceState

USB device state change request

Format

usb_er_t R_usb_pstd_PcdChangeDeviceState(usb_strct_t msginfo)

Argument

msginfo Desired USB state

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Use the following argument values (msginfo) to change the USB state of the USB-BASIC-F/W:

 USB_DO_PORT_ENABLE

Pull-up request (connection notification to host) of the USB data line (D+/D- line).

 USB_DO_PORT_DISABLE

Pull-up request (cutoff notification to a host) of the USB data line (D+/D- line).

 USB_DO_REMOTEWAKEUP

Request remote wakeup.

 USB_DO_INITHWFUNCTION

Start the USB-IP and perform a software reset. Execute this function before USB-BASIC-F/W starts.

 USB_DO_SETHWFUNCTION

Set the the USB-IP as a USB peripheral (device). Execute this function after registering UPL.

Notes

1. When a connection or disconnection is detected by an interrupt in USB-BASIC-F/W, the USB data lines pull up

are automatically released.

2. This is executed without the PCD task being involved.

Example

void usb_smp_task(void)

{

 R_usb_pstd_PcdChangeDeviceState(USB_DO_INITHWFUNCTION);

 R_usb_pstd_PcdOpen(); /* PCD task open */

 usb_psmpl_driver_registration(); /* Sample driver registration */

 R_usb_pstd_PcdChangeDeviceState(USB_DO_SETHWFUNCTION);

 ：

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 40 of 107

Mar 16, 2015

R_usb_pstd_DeviceInformation

Obtain USB device state information

Format

void R_usb_pstd_DeviceInformation (uint16_t *table)

Argument

*table Table address where the obtained information is stored

Return Value

－ －

Description

Obtain USB device information. The following information is stored to the address specified by the argument

(*table).

[0]: USB state (VBSTS and DVSQ field values in the INTSTS0 register)

[1]: Configuration number (wValue of SET_CONFIGURATION request)

[2]: Number of interfaces (g_usb_PcdDriver.configtbl[USB_CON_NUM_INTERFACE])

[3]: Remote wakeup flag (Enable: USB_YES, disable: USB_NO)

Notes

1. Prepare an area of size 4*word in the argument *table.

Example

void usb_smp_task(void)

{

 uint16_t res[4];

 ：

 R_usb_pstd_DeviceInformation(res);

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 41 of 107

Mar 16, 2015

R_usb_pstd_SetStallPipe0

Set STALL for Pipe 0 PID (for control transfers)

Format

void R_usb_pstd_SetStallPipe0(void)

Arguments

－ －

Return Value

－ －

Description

Set STALL to the PID of PIPE0.

Notes

1. Call this function when the response to a class request or vendor request is to be STALL.

2. When R_usb_ControlEnd(USB_CTRL_END) is called after this API is executed, A STALL is responped.

3. Refer to MCU hardware manual about PID.

Example

void usb_psmpl_control_transfer(usb_request_t *data1, uint16_t data2)

{

 if (data1->TypeRecip == USB_INTERFACE)

 {

 R_usb_pstd_SetStallPipe0();

 }

 else

 {

 usb_smpl_vendore_request(data1);

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 42 of 107

Mar 16, 2015

R_usb_pstd_SetPipeStall

Set STALL for pipe x PID (for data transfers)

Format

void R_usb_pstd_SetPipeStall(usb_pipe_t pipe)

Argument

pipe Pipe number

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Set STALL to the PID of the pipe number specified by the argument. Call this function when the response to a data

transfer request is to be STALL .

Notes

1. Pipe 0 as argument is an error. Use the R_usb_pstd_SetStallPipe0() function.

2. Refer to MCU hardware manual about PID.

Example

void usb_smp_task(void)

{

 ：

 R_usb_pstd_SetPipeStall(USB_PIPE4);

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 43 of 107

Mar 16, 2015

R_usb_pstd_ControlRead

FIFO access request for control read transfer

Format

uint16_t R_usb_pstd_ControlRead (usb_leng_t bsize, uint8_t *table)

Argument

bsize Transmit data buffer size

*table Transmit data buffer address

Return Value

USB_WRITESHRT Data write end (short packet data write)

USB_WRITING Data write in progress (additional data present)

USB_FIFOERROR FIFO access error

Description

This function is used during the data stage of the control read transfer, to send requested data to the host. The

address of the ‘read’ data to send to host is given by the argument (*table), and will be written to the FIFO buffer.

USB-BASIC-F/W discontinues the data stage if a short packet or OUT token is received from host.

Note

1. Call this function at the data stage of the control read transfer.

2. If USB-BASIC-F/W is also use on the host side, note that if when the specified data size is equal to the size of the

max packet, the NULL packet is transmitted by the IN token after the specified data is transmitted.

Example

uint8_t g_usb_smp_buff[16];

void usb_smpl_vendore_reques1(usb_request_t *data1, uint16_t data2)

{

 if (data1->TypeRecip == USB_INTERFACE)

 {

 R_usb_pstd_ControlRead(10,(uint8_t*)&g_usb_smp_buff);

 }

 else

 {

 R_usb_pstd_SetStallPipe0();

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 44 of 107

Mar 16, 2015

R_usb_pstd_ControlWrite

FIFO access request for control write transfer

Format

void R_usb_pstd_ControlWrite(usb_leng_t bsize, uint8_t *table)

Argument

bsize Receive data buffer size

*table Receive data buffer address

Return Value

－ －

Description

This function is used during the data stage of a control write transfer where the function must read the USB

[vendor] request data from host. The API will read the data from the FIFO buffer and write it to the area given by

the argument (*table).

Notes

1. Call this function at the data stage of a control write transfer.

2. The data will be read up to the specified length.

3. If received data is less than the data length, reading ends when a short packet is received.

Example

uint8_t g_usb_smp_buff[16];

void usb_smpl_vendore_reques2(usb_request_t *data1, uint16_t data2)

{

 if (data1->TypeRecip == USB_INTERFACE)

 {

 R_usb_pstd_ControlWrite(10,(uint8_t*)&g_usb_smp_buff);

 }

 else

 {

 R_usb_pstd_SetStallPipe0();

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 45 of 107

Mar 16, 2015

R_usb_pstd_ControlEnd

Control transfer end request

Format

void R_usb_pstd_ControlEnd(uint16_t status)

Argument

status Status

Return Value

－ －

Description

This function is used during the data stage of a control transfer.

Set any of the following values to the argument (status).

 USB_CTRL_END

Status stage normal end

 USB_DATA_STOP

Return NAK to host at status stage.

 USB_DATA_ERR / USB_DATA_OVR

 Return STALL to a host at status stage.

Notes

1. Call this function at the status stage of a control transfer.

2. When specifying USB_CTRL_END to the argument (status), set PID = BUF and CCPL = 1.

3. When specifying USB_CTRL_END to the argument (status) while PID is STALL, STALL is returned.

4. Refer to MCU hardware manual about PID, BUF and CCPL.

Example

uint8_t g_usb_smp_buff[16];

void usb_smpl_vendore_reques3(usb_request_t *data1, uint16_t data2)

{

 if (data1->TypeRecip == USB_INTERFACE)

 {

 R_usb_pstd_ControlEnd(USB_CTRL_END);

 }

 else

 {

 R_usb_pstd_ControlEnd(USB_DATA_ERR);

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 46 of 107

Mar 16, 2015

R_usb_pstd_SetPipeRegister

Set pipe information to USB H/W

Format

void R_usb_pstd_SetPipeRegister(uint16_t* table, uint16_t command)

Argument

table Pipe information table

command Command. See below.

Return Value

－ －

Description

 When the command is “USB_NO".

All pipes specified with the pipe information table are set to be unused.

 When the command is “USB_YES".

All pipes specified with the pipe information table are set to be unused.

After set to unused, all pipes are reinitiated based on the pipe information.

Notes

1. When the Set_Configuration request is received, USB-BASIC-F/W executes this processing.

Example

void usb_pstd_set_configuration3(void)

{

 if(g_usb_PcdRequest.TypeRecip == USB_DEVICE)

 {

 ：

 if(g_usb_PcdConfigNum != (uint8_t)g_usb_PcdRequest.wValue)

 {

 /* Configuration number set */

 g_usb_PcdConfigNum = (uint8_t)g_usb_PcdRequest.wValue;

 R_usb_pstd_SetPipeRegister(g_usb_PcdDriver.pipetbl, USB_NO);

 }

 if(g_usb_PcdConfigNum > 0)

 {

 R_usb_pstd_SetPipeRegister(g_usb_PcdDriver.pipetbl, USB_YES);

 }

 return;

 ：

 }

 R_usb_pstd_SetStallPipe0();

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 47 of 107

Mar 16, 2015

*g_usb_PcdDriver.statediagram

Callback when detecting the USB state transition

Format

void (*g_usb_PcdDriver.statediagram)((uint16_t)data1, (uint16_t)device_state);

Argument

data1 Normally not used, configuration number for Set_Configurationdevice_state USB

state.

Return Value

－ －

Description

USB state transition is notified to the UPL using this callback function.

 Resume detection

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_RESUME) ;

 State transition interrupt detection

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_DEFAULT);

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_ADDRESS);

(*g_usb_PcdDriver.statediagram)(g_usb_PcdConfigNum, USB_STS_CONFIGURED);

 (*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_SUSPEND);

 Detach detection

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_DETACH);

 Attach detection

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_STS_ATTACH);

 USB data line is set to pull up

(*g_usb_PcdDriver.statediagram)(USB_NO_ARG, USB_PORTENABLE);

Notes

1. Communication speed of a device is not notified when a reset is detected.

2. PCD does not issue this callback when the Set_Configuration request is received and the structure number isnot

changed

3. The ADDRESS state is notified when the Set_Configuration request is received and the structure number is 0.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 48 of 107

Mar 16, 2015

Example

Example processing that the callback should in turn execute in UPL is shown here.

void usb_apl_change_device_state(uint16_t data, uint16_t state)

 case USB_STS_CONFIGURED: /* Device configured */

 configuratuion_num = (uint8_t)data;

 usb_psmpl_open();

 break;

 case USB_STS_ATTACH: /* Device attach */

 break;

 case USB_STS_DETACH: /* Device detach */

 configuratuion_num = (uint8_t)0;

 break;

case USB_STS_SUSPEND: /* Device suspend */

 case USB_STS_RESUME: /* Device resume */

 break;

 case USB_STS_DEFAULT: /* Device default */

 case USB_STS_ADDRESS: /* Device addressed */

 configuratuion_num = (uint8_t)0;

 break;

 case USB_PORTENABLE: /* D+ line pull up */

 break;

 default:

 usb_apl_dummy_function(data,state);

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 49 of 107

Mar 16, 2015

*g_usb_PcdDriver.ctrltrans

Callback for control transfer

Format

void (*g_usb_PcdDriver.ctrltrans)((usb_request_t *)request, (uint16_t)data;

Argument

request USB request

data Stage of control transfer

Return Value

－ －

Description

A host’s class or vendor request control transfer is notified to the UPL by this callback function. The transfer stage is

given in the second argument, and shown below. For more details, refer to the MCU HW Manual.

 USB_CS_IDST /* Idle or setup stage */

 USB_CS_RDDS: /* Control read data stage */

 USB_CS_WRDS: /* Control write data stage */

 USB_CS_WRND: /* Control write no data status stage */

 USB_CS_RDSS: /* Control read status stage */

 USB_CS_WRSS: /* Control write status stage */

 USB_CS_SQER: /* Control sequence error */

 (*g_usb_PcdDriver.ctrltrans)((usb_request_t*)&g_usb_PcdRequest, (uint16_t)intseq);

When the standard requests shown below are received, generation for the class request or vendor request control

transfer is notified to the UPL.

 When the Clear_Feature request is received and remote wakeup is cancelled :

 (*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_CLEARREMOTE);

 When the Clear_Feature request is received and STALL of ENDPOINT is cancelled :

(*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_ CLEARSTALL);

 When the Get_Descriptor request is received and bRecipient in its request is USB_INTERFACE ;

(*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_RECIPIENT);

 When the Get_Interface request is received and it is an alternate notificaion request.

(*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_GET_INTERFACE);

 When the Set_Feature request is received and remote wakeup is enabled ;

(*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_SETREMOTE);

 When the Set_Feature request is received and stall of endpoint is set;

(*g_usb_PcdDriver. ctrltrans)((usb_request_t*)&g_usb_PcdRequest, USB_SETSTALL);

Notes

1. The USB-BASIC-F/W does not support for the interface alternate setting (pipes cannot be switched).

When the Clear_Feature request is normally accepted, callback is notified to the UPL. Determine if STALL is

cancelled for the pipe in which the UPL sets STALL.

2. The alternative notification demand of the Get_Interface request responds “0”.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 50 of 107

Mar 16, 2015

Example

Example processing that the callback should in turn execute in UPL is shown

here.void usb_psmpl_control_transfer(usb_request_t *request, uint16_t data)

{

 g_usb_SmplRequest = *request;

 switch(g_usb_SmplRequest.wRequest & USB_BMREQUESTTYPETYPE)

 {

 case USB_STANDARD:

 switch(data)

 {

 case USB_SETREMOTE:

 /* Enable Remote wakeup */

 break;

 case USB_CLEARREMOTE:

 /* Disable Remote wakeup */

 break;

 case USB_SETSTALL:

 /* Set stall */

 break;

 case USB_CLEARSTALL:

 /* Clear stall */

 break;

 default:

 break;

 }

 break;

 case USB_CLASS:

 R_usb_pstd_ControlEnd(USB_DATA_ERR);

 break;

 case USB_VENDOR:

 switch(data)

 {

 case USB_CS_IDST: /* Idle or setup stage */

 case USB_CS_RDDS: /* Control read data stage */

 case USB_CS_WRDS: /* Control write data stage */

 case USB_CS_WRND: /* Control write nodata status stage */

 case USB_CS_RDSS: /* Control read status stage */

 case USB_CS_WRSS: /* Control write status stage */

 case USB_CS_SQER: /* Control sequence error */

 default: /* Illegal */

 break;

 }

 R_usb_pstd_SetStallPipe0();

 break;

 default: /* Special function */

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 51 of 107

Mar 16, 2015

*g_usb_LibPipe [pipe]->complete

Callback at data transfer end

Format

void (*g_usb_LibPipe[pipe]->complete)((usb_utr_t*)g_usb_LibPipe[pipe]);

Argument

g_usb_LibPipe Transferred message

Return Value

－ －

Description

A data transfer end, or a forced end completion, is notified to the UPL by this callback function.

Notes

1. A message when transfer is requested is available. Table 6-7 shows the structure members updated by the USB-

BASIC-F/W.

2. The PCD does not issue the callback for a data transfer timeout (USB_DO_TRANSFER_TMO specified using the

R_usb_pstd_TransferEnd() function).

Table 6-7 usb_utr_t Data Transfer structure Structure Members

Members Update Function Notes

tranlen Updated
The remaining data length.

(tranlen = transfer request size – the sent/received size)

status Updated

The following transfer results are in the transfer structure.

USB_DATA_OK Data transfer (transmission/reception) ends
normally.

USB_DATA_SHT Data transfer ends with less than
specified data length.

USB_DATA_OVR When received data size is exceeded
USB_DATA_STOP When data transfer is forcibly ended

pipectr Updated The pipe control register (PIPExCTR register) value is updated

Other than

above
Not updated The contents requested to be transferred are stored.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 52 of 107

Mar 16, 2015

Example

Example processing that the callback should in turn execute in UPL is shown here.

void usb_psmpl_transfer_result(usb_utr_t *mess)

{

 switch(mess->status)

 {

 case USB_DATA_OK:

 case USB_DATA_SHT:

 if (mess->keyword == USB_PIPE4)

 {

 usb_psmpl_DataTransfer(512, (uint8_t*)&g_usb_SmplTrnData);

 }

 break;

 case USB_DATA_OVR:

 if (mess->keyword == USB_PIPE5)

 {

 usb_psmpl_DataTransfer(512, (uint8_t*)&g_usb_SmplTrnData);

 }

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 53 of 107

Mar 16, 2015

7. Host Sample Program (UPL)

This chapter assumes and explains the case where RL78 is used as MCU.

A Low Speed device cannot communicate using bulk transfer. Skip the description concerning bulk transfer when the

user system is a Low Speed device. Therefore, skip the description concerning Low Speed when the user system uses

Low-speed not support MCU.

The sample host application performs data communication when connected to a USB device which is also running the

USB-BASIC-F/W. See 3.5, Host and Peripheral Sample Vendor Demo.

7.1 Operating Environment

The Figure 7.1 and Figure 7.2 show a sample operating environment for the software.

RSK Board

Host Peripheral

Enumeration

(PIPE0 control transfer)

Data communication
(PIPE4, PIPE5 bulk transfer)USB

PORT

USB cable

Vendor class driver

+

USB-BASIC-F/W

RSK Board
USB

PORT

Data communication
(PIPE6, PIPE7 interrupt transfer)

Vendor class driver

+

USB-BASIC-F/W

Figure 7.1 Example Full Speed Operating Environment

RSK Board

Host Peripheral

Enumeration

(PIPE0 control transfer)

USB

PORT

USB cable

Vendor class driver

+

USB-BASIC-F/W

RSK Board
USB

PORT

Data communication
(PIPE6, PIPE7 interrupt transfer)

Vendor class driver

+

USB-BASIC-F/W

Figure 7.2 Example Low Speed Operating Environment

7.2 Description of Host Sample Program

The host sample program of the USB-BASIC-F/W operates at Full Speed or Low Speed, selected by the connected

device. A sample program includes a vendor class driver and sample application for data transfer. Data

communication using bulk transfer uses pipes 4 and 5, and data communication using interrupt transfer uses pipes 6

and 7. When creating a customer class driver or an application, refer to the r_usb_vendor_hapl.c file and

r_usb_vendor_hdriver.c file. The following settings are necessary for the UPL to communicate with a USB peripheral

device application when in USB host mode.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 54 of 107

Mar 16, 2015

Items that need to be changed, from the default sample vendor demo, to create a new UPL application:

1. Setting up a scheduler (the number of tasks, table size, task ID, and mail box ID, etc.)

2. Calling a application task in main loop.

3. Supporting descriptor analysis processing to a device class driver to be mounted

4. Creating a supporting pipe information table to a device class driver to be mounted.

5. Supporting USB request forwarding to a device class driver to be mounted

7.2.1 Summary of Functionality

(1). Sample application

 A USB state transition inside PCD will cause the registered vendor driver’s callback to execute. The UPL is

thereby notified of events. When the USB state transition USB_STS_CONFIGURED occurs are initialize

processing, and sample application data transfer is initiated from the vendor class driver. Bulk transfers use

PIPE4 and 5 and interrupt transfers use PIPE6 and 7. When the vendor class driver is notified of the end of a

data transfer (via function g_usb_SmplTrnMsg[pipe].complete), the sample application data transfer is restarted

using the same pipe.

When USB_STS_SUSPEND is issued from the USB-BASIC-F/W, the APL executes the STOP instruction.

User key input is received during regular processing. Example code for remote wake up (from suspend state),

and port enable/disable are included.

(2). Vendor class driver

Initialize processing according to the USB state that is notified from APL which call

R_usb_hstd_ChangeDeviceState(). Data transfer is requested by the application to USB-BASIC-F/W, which

executes the transfer. End of data transfer is notified to the application by USB-BASIC-F/W. Vendor class

driver does not support to the vendor class request.

(3). Enumeration

When the USB host detects a connection, USB-BASIC-F/W automatically starts enumeration. An enumeration

ends normally if a vendor class driver is registered in the USB host, and USB_STS_CONFIGURED is notified

to the application by a callback function.

(4). Data communication

When enumeration ends normally, data transfer is possible. The application can begin data transfer when the

USB state transition callback occurs.

(5). Vendor class request

A vendor class request is not issued. (STALL response.)

(6). USB state transition

After the vendor driver is registered together with its callback, USB state transitions can be monitored by the

user.

USB_STS_DETACH: Stop the data transfer

USB_STS_DEFAULT: Initialized data transfer size, Initialized configuration number

USB_STS_ADDRESS: Initialized configuration number

USB_STS_CONFIGURED: Initialized data toggle buffer, Start the data transfer

USB_STS_SUSPEND: Interrupt the data transfer, Execute the STOP instruction

USB_STS_RESUME: Restart the data transfer

USB_STS_WAKEUP: The same as the resume processing

 The sample application returns from the suspended state by a resume signal. Moreover, it is also possible for

the host application to demand remote wake up from USB-BASIC-F/W.

(7). Driver check callback

When the Configuration descriptor is acquired from the peripheral at enumeration, USB-BASIC-F/W executes

the driver confirmation callback function (*g_usb_hstd_Driver.classcheck) that UPL previously registered

with USB-BASIC-F/W (see Host2.2). The application shall then confirm operation; whether the connected

device is of the correct, anticipated, vendor class driver, by running the R_usb_hvndr_ClassCheck() function.

The items to check to confirm whether the sample vendor class driver is working or not:

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 55 of 107

Mar 16, 2015

1) Do the received Device descrptor’s VID and PID correspond to the vendor driver?

2) Is there a matching string descriptor of the product ID ?

3) Other checks, such as in the example: Are two bulk pipes and two interrupt pipes in the interface?

The vendor driver shall respond to the USB-BASIC-F/W with the answer USB_YES via API function

R_usb_hstd_ReturnEnuMGR() if all requirements are met.

7.2.2 Operation of Host Sample Program

(1). Initialization setting

 For HEW/e2 studio

When performingAt hardware reset for a device, the _PowerON_Reset_PC function in ncrt0.a30/resetprg.c is

called. The reset function initializes the MCU and calls the hardware initialization function

usb_cpu_mcu_initialize() function. When returning from the hardware initializationis function, initialize

memory areas are initialized, and last, calls the main() function in main.c file is called. For more details of

startup processing, refer to the HM and the integrated development environment manual.

 For CS+

When performing hardware reset for a device, the _@cstart function of athe startup file created using the CS+ is

called. The startup function initializes the MCU, and calls the user defined hardware initialization function

hdwinit() function of the user definition. When returning from thise hardware initialization function, initialize

memory areas are initialized, such as the saddr area, and last, the call the main() function in the main.c is

calledfile. For more details of startup processing, refer to the HM and the integrated development environment

manual.

(2). Main function

The main() function initializes the system by calling usb_hsmpl_main_init() which initializes the target MCU,

the board, and the USB module. This function then starts up the USB-BASIC-F/W, registers the UPL driver, and

enable the USB module. The program is now in the static state and waits for a request generation from within

the main loop.

The main loop does the following:

(1) Checks for any requests in the scheduler.

(2) When message is pending, start its task.

(3) Perform static processing.

(4) Return to (1).

(3). Sample application task (usb_hsmpl_apl_task())

When an enumeration ends normally, the sample application initializes global variables and requests the start of

the demonstration data transfer using the API function R_usb_hvndr_TransferStart(). When a transfer end

callback is received from the vendor class driver, the data transfer is repeated using API function

R_usb_hvndr_TransferStart().

(4). Vendor class driver (R_usb_hsmpl_VendorTask())

When a data transfer is requested from the sample application, the vendor class driver (HDCD) demands the

data transfer of USB-BASIC-F/W using the API function R_usb_hstd_TransferStart(). The end of the data

transfer is notified to the application via the callback function when the callback for data transfer end is called

from USB-BASIC-F/W.

When the USB state transition is notified from the sample application to the vender class driver, special

processing is not done. The sample application starts / ends the vendor class driver, sets the register for pipe

information based on the USB state, and begins the data transfer.

Figure 7.3 shows the outline flow of the UPL.

The USB-BASIC-F/W comprises tasks that implement control functions for USB data transmit/receive operation. When

an interrupt occurs, a notification is sent by means of a scheduler message to the USB-BASIC-F/W. When the USB-

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 56 of 107

Mar 16, 2015

BASIC-F/W receives a message from the USB interrupt handler, it determines the interrupt source and executes the

appropriate processing.

USB_RCV_MSG?

return

No

Yes

Task

 processing

Each task

Main

Main()

Task processing?
No

Yes

return

Select request with

top priority

Scheduler

Processing request?

System initialization

usb_hsmpl_main_init()

return

Initialization

usb_hsmpl_main_init()

No

Yes

MCU initialization

Go to main()

Memory initialization

Set operation mode(Host)

R_usb_hstd_ChangeDeviceState()

Driever registration

R_usb_hstd_DriverRegistration()

Driver open

R_usb_hstd_HcdOpen()

USB IP initialization

R_usb_hstd_ChangeDeviceState()

Target board initialization

usb_cpu_target_init()

Scheduler

R_usb_cstd_Scheduler()

HCD task

R_usb_hstd_HcdTask()

HDCD task

R_usb_hsmpl_VendorTask()

Application

usb_hsmpl_apl_task()

Key processing

usb_psmpl_keyprocess()

MGR task

R_usb_hstd_MgrTask()

usb_cpu_mcu_initialize()

Driever start

R_usb_hvndr_DriverStart()

usb_cpu_usb_interrupt

return

Send a message of

processing request to

HCD task

Clear interrupt status

H/W reset

Figure 7.3 Sequence Outline

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 57 of 107

Mar 16, 2015

7.2.3 Setting up the Scheduler

Set the maximum value of a task ID, and maximum value of a message stored in the task priority table at

r_usb_cstd_kernelid.h file.

/* Please set with user system */

#define USB_IDMAX ((uint8_t)5) /* Maximum Task ID +1 */

#define USB_TABLEMAX ((uint8_t)5) /* Maximum priority table */

#define USB_BLKMAX ((uint8_t)5) /* Maximum block */

7.2.4 Setting a Task ID and Mailbox ID

Set a task ID and mail box ID at r_usb_cstd_kernelid.h file.

The task priority level is the same as task ID. (When the task identification number is small, priority is high.)

#define USB_HCD_TSK USB_TID_0 /* Host Control Driver Task */

#define USB_HCD_MBX USB_HCD_TSK /* Mailbox ID */

#define USB_MGR_TSK USB_TID_1 /* Host Manager Task */

#define USB_MGR_MBX USB_MGR_TSK /* Mailbox ID */

#define USB_HVEN_TSK USB_TID_2 /* Task ID */

#define USB_HVEN_MBX USB_HVEN_TSK /* Mailbox ID */

#define USB_HSMP_TSK USB_TID_3 /* Host Sample Task */

#define USB_HSMP_MBX USB_HSMP_TSK /* Mailbox ID */

7.2.5 Task calling

Call a UPL task to be used as the applicatonfrom the main loop (the main() function).

void main (void)

{

 usb_hsmpl_main_init();

 /* Sample main loop */

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET)

 {

 R_usb_hstd_HcdTask(); /* HCD Task */

 R_usb_hstd_MgrTask(); /* MGR Task */

 R_usb_hsmpl_VendorTask();

 usb_hsmpl_apl_task();

 }

 }

}

7.2.6 Starting the UPL

The USB-BASIC-F/W (running as USB function) has established a connection with a host when a

SET_CONFIGURATION request is received. This is notified to the UPL via the callback function

g_usb_HcdDriver.statediagram. The USB state of the second argument must be analyzed, and suitable user

processing can then take place (the user application can start). The sample application notifies the USB state to the

vendor class driver, initializes the data area, and starts example application data transfers. The sample host application

initializes the data area, puts the pipe configuration register to enabled state and begins data transfer as initiated by the

now enumerated USB peripheral (Function).

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 58 of 107

Mar 16, 2015

7.2.7 Application Outline

USB-BASIC-F/W starts data transfer after configuration in the procedure shown below.

Identify the USB state using callback function usb_hsmpl_device_state() and request to vendor class driver the data

transfer.

USB-BASIC-F/W

SET_CONFIGURATION

Enumeration

R_usb_hstd_TransferStart（）
Data transfer

Callback Complete

usb_hvndr_transfer_result()

R_usb_hstd_DriverRegistration()

Reset

main()

Yes

No
usb_hsmpl_apl_task()

usb_hsmpl_main_init

R_usb_hvndr_Task

R_usb_hstd_HcdTask

R_usb_cstd_Scheduler

Task operated?

R_usb_hstd_MgrTask

R_usb_hstd_HcdOpen()

R_usb_hstd_ChangeDeviceState()

R_usb_hvndr_StateCallback（）

R_usb_hvndr_Task()

Transfer end

Callback Complete

usb_hsmpl_transfer_result()

R_usb_hstd_ChangeDeviceState()

R_usb_hvndr_DriverStart()

usb_hsmpl_apl_task

USB device

USB device connected

(attach detected)

GET_DESCRIPTOR

SET_ADDRESS

GET_DESCRIPTOR
Callback classcheck

usb_hsmpl_class_check()
R_usb_hvndr_ClassCheck（）

USB_MSG_CLS_CHECKREQUEST
Connection device confirmation

R_usb_hstd_ReturnEnuMGR（）

Callback statediagram

usb_hsmpl_device_state()

R_usb_hvndr_PipeRegistration（）
R_usb_hstd_SetPipeRegistration（）

R_usb_hvndr_TransferStart（）
USB_SMPL_TRANSFER_START

R_usb_hstd_TransferStart（）

Callback Complete

usb_hvndr_transfer_result()

Control transfer

R_usb_hstd_TransferStart（）

R_usb_hvndr_TransferStart（）
USB_SMPL_TRANSFER_START

usb_smpl_data_initialized()

Initialize data area

usb_hsmpl_tranfer_all()

Start data transfer

Initialize HW

Start HCD
Driver

Registration

HW setting

Start HDCD

Figure 7.4 Application Operation Outline

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 59 of 107

Mar 16, 2015

7.3 Data Transfer and Control Transfer

Data transfer is customer-specific and depends on the application specification, which includes transfer method,

conditions for sending data, communication start or end timing, buffer structure etc.

7.3.1 Basic specification

Inside USB-BASIC-F/W, data transfer occurs using the user’s buffer pointed to by the USB Data Transfer Structure

usb_utr_t. . When data transfer ends, the USB-BASIC-F/W sets PID = NAK and notifies the transfer end by the

callback function.

The USB-BASIC-F/W updates the pipe status (utr_table.pipectr) specified when the data transfer is demanded.

Moreover, the pipe status (data toggle) is notified by the callback at data transfer end. Therefore, because UPL

memorizes the pipe status, the data transfer of multiple endpoints is possible using one pipe.

The pipe status however should be initialized to “DATA0" at USB reset, STALL release, SET_CONFIGURATION

request, and at SET_INTERFACE request, etc.

The size of the max packet of the Bulk pipe is fixed at 64 bytes and should not be changed.

 When the host operations, the max packet size of the default pipe immediately after the issue of USB reset does not

do any error judgment.

7.3.2 Data Transfer Request

Use R_usb_hstd_TransferStart() to start an application data transfer.

7.3.3 Control Transfer Request

Use R_usb_hstd_TransferStart() to start the data transfer. Please refer to

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 60 of 107

Mar 16, 2015

Table 8-3 for the specification of the setup packet. The control transfer is not done when there is an error in the setup

packet.

7.3.4 Notification of Transfer Result

Data transfer end is notified to the UPL using the callback function specified in the usb_utr_t transfer structure. Refer

to Table 8-8 for how to handle the content of the transfer structure.

7.3.5 Notes on Data Reception

(1) Use a transaction counter for the receive pipe.

When a short packet is received, the expected remaining receive data length is stored in tranlen of the transfer

structure usb_utr_t and the transfer ends. When the received data exceeds the buffer size, data read from the

FIFO buffer up to the buffer size and this transfer ends. When the user buffer area is insufficient to

accommodate the transfer size, the usb_cstd_forced_termination() function may clear the receive packet.

(2) Receive callback

 When the received data is n times of the maximum packet size but less than the expected receive data length, it

the data transfer is not considered to be ended and so a callback is not generated. Only when receiving a short

packet, or the data size is satisfied, the USB-BASIC-F/W judges the transfer ended and generates the callback.

Example

When the data size of the reception schedule is 128 bytes and the maximum packet size is 64 bytes:

 1 to 63 bytes received A received callback is generated.

 64 bytes received A receive callback is not generated.

 65 to 128 bytes received A receive callback is generated.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 61 of 107

Mar 16, 2015

7.3.6 Data transfer Outline

To send data, set the necessary transfer information in the transfer structure usb_uttr_t structure and call R_ usb_

hstd_TransferStart(). Examples of control transfer and data transfer are shown below.

Example of data transfer

void usb_hsmpl_transfer_start(uint16_t pipe)

{

 if(g_usb_SmplTrnCnt[pipe] != 0)

 {

 g_usb_SmplTrnMsg[pipe].keyword = pipe; /* Data area address */

 g_usb_SmplTrnMsg[pipe].tranadr = g_usb_SmplTrnPtr[pipe];

 g_usb_SmplTrnMsg[pipe].tranlen = g_usb_SmplTrnSize[pipe];

 g_usb_SmplTrnMsg[pipe].setup = (uint16_t*)USB_NULL;

 g_usb_SmplTrnMsg[pipe].complete = (usb_cb_t)&usb_hsmpl_transfer_result;

 R_usb_hstd_TransferStart((usb_utr_t*)&g_usb_SmplTrnMsg[pipe]);

 }

}

Example of control transfer

usb_er_t usb_hstd_set_configuration(void)

{

 g_usb_MgrRequest.WORD.BYTE.bmRequestType =

USB_REQUEST_TYPE(USB_HOST_TO_DEV,USB_STANDARD,USB_DEVICE);

 g_usb_MgrRequest.WORD.BYTE.bRequest = USB_SET_CONFIGURATION;

 g_usb_MgrRequest.wValue =

(uint16_t)(g_usb_MgrConfDescr[USB_CON_CONFIG_VAL]);

 g_usb_MgrRequest.wIndex = 0x0000;

 g_usb_MgrRequest.wLength = 0x0000;

 g_usb_MgrRequest.Address = (uint16_t)g_usb_MgrDevAddr;

 g_usb_MgrControlMessage.tranadr = (void*)data_table;

 g_usb_MgrControlMessage.complete = (usb_cb_t)&usb_hstd_transfer_result;

 g_usb_MgrControlMessage.tranlen = (usb_leng_t)g_usb_MgrRequest.wLength;

 g_usb_MgrControlMessage.pipenum = USB_PIPE0;

 g_usb_MgrControlMessage.setup = (void*)&g_usb_MgrRequest;

 R_usb_hstd_TransferStart(&g_usb_MgrControlMessage);

}

Examples of callback functions (transfer end is notified to the UPL task via a scheduler message) is shown here. For the

data transfer example above:

void usb_hsmpl_transfer_result(usb_utr_t *mess)

{

 mess->msginfo = USB_MSG_CLS_TASK; /* Data transfer Callback */

 USB_SND_MSG(USB_HSMP_MBX, (usb_msg_t*)mess);

}

And for the control transfer example:

void usb_hstd_transfer_result(usb_utr_t *mess)

{

 g_usb_MgrSequence++;

 utrmsg->msginfo = USB_MGR_CONTINUE; /* Enumeration */

 USB_SND_MSG(USB_MGR_MBX, (usb_msg_t*)mess);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 62 of 107

Mar 16, 2015

7.4 Pipe Information

The pipe setting for the host class driver needs to be retained in the a host’s “Pipe Information Table”. The pipe

information, acquired dynamically from the device at enumeration, resides in uint16_t g_usb_hvndr_DefEpTbl[] of the

host vendor class driver file r_usb_vendor_hdriver.c.

7.4.1 Pipe Information Table

The Pipe Information Table comprises the following four items (uint16_t 4).

1. Pipe window select register (address 0x64)

2. Pipe configuration register (address 0x68)

3. Pipe maximum packet size register (address 0x6C)

4. Pipe interval register (address 0x6E)

7.4.2 Pipe Definition

The pipe information table structure used in the host vendor class driver is shown below. The macros are defined in

the r_usb_hvendor_driver.h file.Refer to this header file for pipe definition values.

Structure example of pipe information table:

uint16_t g_usb_hvnr_DefEpTbl[] = Pipe information table

{

 USB_PIPE4, ← Pipe definition item 1

 USB_NULL|USB_BFREOFF|USB_DBLBOFF|USB_SHTNAKOFF, ← Pipe definition item 2

 USB_NULL, ← Pipe definition item 3

 USB_NULL, ← Pipe definition item 4

 :

 USB_PDTBLEND, ← Pipe information table end definition

}

(1) Pipe definition item 1: Specify the value set to the pipe window select register

Pipe selected: Specify pipes to be selected (USB_PIPE4 to USB_PIPE7)

(2) Pipe definition item 2: Specify the setting value of the pipe configuration register.

Transfer Type : Specify either USB_BULK or USB_INT.

BRDY interrupt operation specified : Specify USB_BFREOFF

Double buffer mode : Specify either USB_DBLBON or USB_DBLBOFF

SHTNAK operation specified : Specify either USB_SHTNAKON or USB_SHTNAKOFF

Transfer direction : Specify USB_DIR_H_OUT or USB_DIR_H_IN

Endpoint number : Specify endpoint number (EP1 to EP15) to pipes

 The settable values differ depending on the selected pipes for the transfer type. For details, refer to the

 User’s Manual: Hardware.

 Describe the pipe information according to the endpoint descriptor of connecting device.

 Set USB_SHTNAKON for the receive direction pipe (USB_DIR_H_IN).

(3) Pipe definition item 3: Specify the device address and the maximum packet size of the endpoint.

 Specify the device address: Set the device address by using the USB_ADDR2DEVSEL macro.

 Specify the maximum packet size: Set the value based on the USB specification.

(4) Pipe definition item 4: Specify the interval time of the endpoint.

 Interval time specified: Set the value according to the User’s Manual: Hardware.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 63 of 107

Mar 16, 2015

(5) Others.

 The pipe information is necessary for the number of endpoints that can be communicated

simultaneously.

 Synchronize communication each transfer in the UPL.

 Please manage the pipe information used with the UPL.

 Write USB_PDTBLEND at the end of the table.

 The USB-BASIC-F/W notifies the device state transition by the callback function, to mount the register

setting (release) processing of the pipe information by using API function on the UPL side.

The API function R_usb_hstd_ChkPipeInfo() that sets the transfer type, transfer direction, endpoint number,

maximum packet size, and interval time from the endpoint descriptor is provided. When using this function, specify

“USB_NULL” for the each field.

7.5 Operating USB-BASIC-F/W in Host mode

This chapter describes a procedure to operate the USB-BASIC-F/W in host mode.

7.5.1 Select a device

Table 7-1 lists the integrated development environment for each device supported by the USB-BASIC-F/W and the

associated hardware resource folder.

Table 7-1 Hardware Resource of Sample Code

Device

Integrated

development

environment

Host Data rate Hardware Resource Folder

R8C/3MK,

R8C/34K
HEW 1PortHost Full Speed R8C\HwResource

RL78/G1C CS+

1PortHost
Full Speed

Low Speed
RL78G1C\HwResource*1

2PortHost
Full Speed

Low Speed
RL78G1C\HwResource

Note)

*1: USB host mode forRSKRL78 uses the USB-PORT1 side. USB-BASIC-F/W does not support one port host mode

only on the USB-PORT1 side. Therefore, the execution file works as one port host by making as two port host

(USB_PORTSEL_PP=USB_2PORT_PP), and using the USB-PORT1 side.

7.5.2 User Configuration file (r_usb_usrconfig.h)

Change the User Configuration file (r_usb_usrconfig.h) in the “inc” folder to configure functionality for USB-BASIC-

F/W.

An outline of the User Definition Information file are shown below.

(1). Specify the USB port

Set the number of USB ports to be used (this item will be used only for the RL78)

#define USB_PORTSEL_PP USB_1PORT_PP : Use one USB port

#define USB_PORTSEL_PP USB_2PORT_PP : Use two USB ports

(2). Specify the function to change the global variable to the static variable.

#define USB_STATIC_USE

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 64 of 107

Mar 16, 2015

(3). Specify the function to use the fook function when the error is generated.

#define USB_DEBUG_HOOK_USE

(4). Specify the battery charging operation (only RL78/USB)

Uncomment to enable battery charging operation.

#define USB_HOST_BC_ENABLE : Enable battery charging

Uncomment to enable dedicated charging port operation.

#define USB_BC_DCP_ENABLE : Dedicated Charging Port

(5). Control read data buffer size

Specify the data buffer size received in control read transfers.

Example: Device descriptor 20 bytes, configuration descriptor 256 bytes

 #define USB_DEVICESIZE 20u

 #define USB_CONFIGSIZE 256u

(6). Device address

Specify the device address connected to PORT0.

Example: When starting a device address from 2

 #define USB_DEVICEADDR 2u

Device addresses can be specified from 1 to 5. However, specify the address within the range of 1 to 4 when you

use the USB-PORT1 side.

(7). Debounce interval

Specify the debounce interval time after attach.

Example: Until the scheduler is passed 3000 times(=100msec)

 #define USB_TATTDB 3000

The debounce interval is a minimum duration of 100ms to be provided by the USB System Software according

to the USB specification Chapter 7.1.7.3. After the predetermined number passes the main loop, the USB-

BASIC-F/W outputs the USB reset signal to the connected device.

The following definition is defined by the project file of the integration environment.

RL78G1C : USB_FUNCSEL_PP = USB_HOST_PP

RL78USB

R8C : USB_FUNCSEL_PP = USB_HOST_PP

R8CUSB

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 65 of 107

Mar 16, 2015

7.5.3 Changing USB-BASIC-F/W

The code shown below is subject to change, though sample functions for a Renesas USB MCU are provided. Change

the functions according to the user system. The functions that are subject to change are listed in Table 7-2, together

with the functionality they implement:

 Initialization of the MCU (clock, pin and port setup…), interrupt handling, etc.

 Time wait functions (usb_cpu_delay_xms(), usb_cpu_delay_1u()). These generate the wait time for main task loop

processing. Change the number of loops according to the system design.

 Use the function usb_cpu_int_enable() to enable the USB interrupt s in order to use the scheduler function.

(usb_cpu_int_disable() will stop the scheduler from detecting USB acitivity)The message is sent to PCD task

from the USB interrupt by generating the USB interrupt. The scheduler executes the task control and call PCD

task.

Table 7-2 MCU SettingFunction List

Type Function Name and argument Description Notes

void usb_cpu_mcu_initialize(void) MCU initialization (clock setup etc.)

void usb_cpu_target_init(void) System initialization (pin config, port and

interrupts setup, etc.

void usb_cpu_set_pin_function(void) USB function setting of the MCU(pin setting,

etc.)

void usb_cpu_usb_interrupt (void) USB interrupt handler

void usb_cpu_usbint_init (void) USB interrupt enabled

void usb_cpu_int_enable(void) USB interrupt enabled for the scheduler

void usb_cpu_int_disable(void) USB interrupt disabled for the scheduler

void usb_cpu_int_disable(void) USB interrupt disabled for the scheduler

void usb_cpu_intp0_enable(void) Enable INTP0 interrupt for the swtich for RSK

void usb_cpu_intp0(void) INTP0 interrupt for the swtich for RSK

void usb_cpu_delay_1us(uint16_t time) 1 s wait processing

void usb_cpu_delay_xms(uint16_t time) 1 ms wait processing

void usb_cpu_stop_mode(void) Execute the STOP instruction

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 66 of 107

Mar 16, 2015

8. Host Control Driver (HCD)

8.1 Basic Information

HCD is a program that controls the hardware when operating the target device in USB host mode.

USB-BASIC-F/W analyzes requests from UPL and controls the H/W accordingly. The result is notified to UPL using

the return value of the API function, and by using a callback function since many actions cannot be accomplished at

once. A callback function in the driver information, registered at startup in the USB-BASIC-F/W, is called at the end

of enumeration.

Start the USB-BASIC-F/W as shown here below in 8.2.1 and then register the UPL as shown in 8.2.2 to make the

USB-BASIC-F/W run as host.

The functions of USB-BASIC-F/W are:

1. Detection of USB state change with the connected device and notification of the result: See chapter

 8.2.3 below.

2. Enumeration with the connected device: Chapter 8.2.8.

3. Determination of correct operation of the connected device: Chapter 8.2.4.

4. Data transfer and transfer result notification: Chapter 8.2.5.

5. USB state control (USB state control and notification for control result): Chapter 8.2.7.

8.2 Operation Outline

8.2.1 Starting the HCD

Start USB-BASIC-F/W using the API function R_usb_hstd_HcdOpen().

8.2.2 Registration of UPL

UPL registers the information in Table 8-1 below to USB-BASIC-F/W using the API function

R_usb_hstd_DriverRegistration().

USB-BASIC-F/W preserves information in the global variable (g_usb_HcdDriver[]).

typedef struct

{

 usb_port_t rootport; /* Root port */

 usb_addr_t devaddr; /* Device address */

 uint16_t devstate; /* Device state */

 uint16_t ifclass; /* Interface Class */

 usb_cb_check_t classcheck; /* Driver check */

 usb_cb_info_t statediagram; /* Device status */

} usb_hcdreg_t;

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 67 of 107

Mar 16, 2015

Table 8-1 Members of Structure usb_hcdreg_t

Members Functions Notes

rootport USB-BASIC-F/W uses this variable. The connected port number is

registered.

devaddr USB-BASIC-F/W uses this variable. The device address is registered.

devstate USB-BASIC-F/W uses this variable. The device connection state is

updated.

ifclass Register the interface class code in which the UPL operates.

classcheck Register a function to check the connecting device operation for the

enumeration.

statediagram Register a function to be called to notify the user application of USB state

transitions.

8.2.3 Notification for USB State Change

To notify UPL of USB state transitions etc, the USB-BASIC-F/W calls the USB state transition callback function

(*g_usb_PcdDriver.statediagram) which UPL has registered in USB-BASIC-F/W. The USB-BASIC-F/W thereby

notifies the information below to the UPL using the second argument of the callback function. The UPL should then

analyze the USB state and perform suitable processing.

USB states:

 USB_STS_DETACH: Detach detection

 USB_STS_ATTACH: Attach detection

 USB_STS_DEFAULT: Default state transition (USB reset detection)

 USB_STS_OVCRCURRENT: Over current detection

 USB_STS_CONFIGURED: Configured state transition (Set_Configuration request transmission)

USB_STS_WAKEUP: Configured state transition (remote wakeup processing ends)

 USB_STS_POWER: Enable a port (request using the API function)

 USB_STS_PORTOFF: Disable a port (request using the API function)

 USB_STS_SUSPEND: Suspend (request using the API function)

 USB_STS_RESUME: Resume (request using the API function)

 USB_STALL_SUCCESS: Cancel STALL for the peripheral device (request using the API function)

8.2.4 Operation right or wrong judgment of connected device

When the USB-BASIC-F/W detects a device connection, enumeration as shown in Chapter 8.2.8 is performed. The

Configuration descriptor is obtained in the sequence processing of enumeration and the driver check callback function

(*g_usb_hstd_Driver.classcheck) that UPL registered in USB-BASIC-F/W is executed. USB-BASIC-F/W thereby

notifies the information in Table 8-2 below to UPL in the first argument of the callback function.

 To analyze the received device information by the UPL, moreinformation than what is listed in Table 8-2 may be

necessary for the host to fetch. This is done using the API function R_usb_hstd_TransferStart().

When the connected device has been identified, return operation (USB_YES/USB_NO) to the USB-BASIC-F/W

using the API function R_usb_hstd_ReturnEnuMGR(). When USB_YES is notified, the USB-BASIC-F/W continues

the enumeration and transits the device to configured state. When USB_NO is notified, other registered drivers are

searched for.

 table[0] = (uint16_t*)&g_usb_MgrDeviceDescriptor;

 table[1] = (uint16_t*)&g_usb_MgrConfigurationDescriptor;

 table[2] = (uint16_t*)&g_usb_HcdDeviceAddr;

 (*driver->classcheck)((uint16_t**)&table);

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 68 of 107

Mar 16, 2015

Table 8-2 Argument Array of classcheck

Order of Array Functions Notes

table[0] Address of device descriptor storage area

table[1] Address of configuration descriptor storage area

table[2] Address of global variable that mean the Device Address

8.2.5 Data transfer Request and Notification to the USB-BASIC-F/W

The following structure (with sub-structures) is to be used as arguments when calling the API function

R_usb_hstd_TransferStart() when the UPL wants transfer data. USB-BASIC-F/W preserves the address of the argument

in the global variable g_usb_LibPipe. Therefore, maintain the argument in UPL until the data transfer ends. That is, both

superstructures below need to be declared static in UPL.

struct usb_utr_t

{

 usb_strct_t msginfo; /* Message Info for F/W */

 usb_strct_t pipenum; /* Pipe number */

 usb_strct_t status; /* Transfer status */

 usb_strct_t flag; /* Flag */

 usb_cb_t complete; /* Call Back Function Info */

 void *tranadr; /* Transfer data Start address */

 uint16_t *setup; /* Setup packet (for control only) */

 uint16_t pipectr; /* Pipe control register */

 usb_leng_t tranlen; /* Transfer data length */

 uint8_t dummy; /* Adjustment of the byte border */

}

8.2.6 Setup Packet

Write the address of the following structure to member setup of the usb_utr_t before a control transfer is executed.

typedef struct

{

 union {

 struct { /* Characteristics of request */

 uint8_t bmRequestType; /* Characteristics of request */

 uint8_t bRequest; /* Specific request */

 } BYTE;

 uint16_t wRequest; /* Control transfer request */

 } WORD;

 uint16_t wValue; /* Control transfer value */

 uint16_t wIndex; /* Control transfer index */

 uint16_t wLength; /* Control transfer length */

 uint16_t Address;

} usb_hcdrequest_t;

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 69 of 107

Mar 16, 2015

Table 8-3 usb_hcdrequest_t Structure Members

Member

(See USB spec)

Functions Notes

bmRequestType The bmRequestType value of the USB request. (See USB spec).

Set this member by using the USB_REQUEST_TYPE macro.

bRequest bRequest of the USB request.

wRequest wRequest of the USB request. (The value is BREQUEST of USBREQ

register.) The bit can refer for wRequest in a union type.

wValue wValue of the USB request.

(Set the value to USBVAL register.)

wIndex wIndex of the USB request.

(Set the value ito USBINDEX register.)

wLength wLength of the USB request.

(Set The value to USBLENG register.)

Address Device address assigned to the USB function.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 70 of 107

Mar 16, 2015

Table 8-4 usb_utr_t Data Transfer Structure Members

Members Functions Notes

Msginfo Message information that USB-BASIC-F/W uses.

It is set when using an API function. It’s value depends on the API.

pipenum Specify the pipe number that the UPL is to use for transfer.

status The USB-BASIC-F/W returns the following status information.

USB_CTRL_END: Control transfer normal end

USB_DATA_OK: Data transfer (transmission/reception) normal end

USB_DATA_SHT: Data reception normal end with less than specified

data length

USB_DATA_OVR: Receive data size exceeded

USB_DATA_ERR: No-response condition or over/under run error

detected

USB_DATA_DTCH： Detach detected

USB_DATA_STALL: STALL or max packet size error detected

USB_DATA_STOP: Data transfer forced end

USB_DATA_TMO: Forced end due to timeout, no callback

flag Not used

complete Specify the callback function to be executed in the UPL at the end of a data

transfer. Type declaration of the callback function:

typedef void (*usb_cb_t)(usb_utr_t*);

*tranadr The UPL should specify the following information.

Reception or ControlRead: Buffer address to store the receive data

Transmission or ControlWrite: Buffer address to store the transmit data

NoDataControl transfer: Ignored if specified

To secure the bigger area than the data length at the specified with tranlen.

*setup For control transfers, specify the structure address as in Table 8-3.

pipectr Specify the PIPExCTR register (Pipe Control Register) which the UPL selects.

Control the sequence bit of DATA0/DATA1 according to bit 6 of the applicable

member.

Set USB_NULL for the initial state and the returned value by the USB-BASIC-

F/W after the second called. USB-BASIC-F/W returns the PIPECTR register

information.

tranlen The UPL should specify the following information:

- Reception or ControlRead transfer: Data length to be received.

- Transmission or ControlWrite transfer: Data length to be transmitted.

- NoDataControl transfer: Specify 0.

- The remaining transmit/receive data length is stored for the HCD after USB

communication ends.

- The maximum length that can be sent and received is 65535 bytes. USB-

BASIC-F/W stores the remaining transmit/receive data length in this member

after the end of data transfer.

8.2.7 Changing the USB State for HCD

When UPL wants to change the USB state call the API function R_usb_hstd_MgrChangeDeviceState().

Indicate this USB state using the API function argument. MGR task executes the state transition while controlling the

sequence. When the USB state change of the connected device ends, the result is notified via the callback function.

More information about the device can be retreived from USB-BASIC-F/W the API function

R_usb_hstd_DeviceInformation().

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 71 of 107

Mar 16, 2015

8.2.8 Enumeration

When a USB device connection is detected from the USB-BASIC-F/W, a USB reset is issued and enumeration

performed. In the sequence of enumeration the standard requests below are issued. USB-BASIC-F/W allocates the

“USB_DEVICEADDR” for the device, as defined by a user macro, to the device connected to port 0. When the H/W

supports port 1, the address of “USB_DEVICEADDR+1” is allocated for the device connected to port 1. However,

please define the macro of "USB_DEVICEADDR" so that the address number does not exceed "0x05".

(1) GET_DESCRIPTOR (Device Descriptor)

(2) SET_ADDRESS

(3) GET_DESCRIPTOR (Configuration Descriptor)

(4) SET_CONFIGURATION

After the configuration descriptor is obtained, the callback function (see 8.2.4 above) registered in USB-BASIC-F/W is

executed. The UPL then confirms whether the registered driver is a match for the connected device (whether the VID

and PID of the driver match the connected device). UPL notifies the result of this analysis with USB_YES/USB_NO

using the API function R_usb_hstd_ReturnEnuMGR() to the USB-BASIC-F/W. If the host driver sends USB_YES,

USB-BASIC-F/W issues the SET_CONFIGURATION request, and later notifies UPL of the now completed device

connection by a callback function (usb_hsmpl_device_state()). If no operable class driver is registered (the host driver

sent USB_NO), the USB-BASIC-F/W issues SET_CONFIGURATION request to the connected device, but in this

case, the state transition is not notified to the UPL.

8.2.9 Host Battery Charging (HBC)

HBC is the H/W control program for the target device that operates the CDP or the DCP as defined by the USB Battery

Charging Specification Revision 1.2.

Processing is executed as follows according to the timing of the USB-BASIC-F/W. Refer to Figure 8.1.

VBUS is driven

Attach processing

Detach processing

Moreover, processing is executed in coordination with the PDDETINT interrupt.

There is no necessity for control from UPL, neither is UPL notified.

CDP and DCP exclude other execution of the Basic FW. When DCP is operating, USB communication cannot be done.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 72 of 107

Mar 16, 2015

The processing flow of HBC is shown Figure 8.1.

VBUS Drive

DCP Build

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

DRPD=0,
BATCHGE=1, DCPMODE=1

1 0

return

PDDETINT Interrupt

PDDETSTS

VDMSRCE = 1 VDMSRCE = 0

1 0

return

Cut chattering

VDMSRCE == 0 VDMSRCE == 1

Yes Yes

No No

ATTACH Process

BATCHGE=0, IDPSINKE=0,
PDDETINT=0, PDDEINTE=0

return

DETACH Process

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

return

Figure 8.1 HBC processing flow

8.2.10 Notes on USB-BASIC-F/W

The USB-BASIC-F/W cannot enumerate several devices simultaneously.

The USB-BASIC-F/W does not support a multi configuration device.

The USB-BASIC-F/W does not support a multi interface device.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 73 of 107

Mar 16, 2015

When the UPL requests suspend, interrupt (stop) the data transfer.

When the UPL receives resume completion or remote wakeup detection, resume data transfer.

When Detach is detected, the USB-BASIC-F/W stops data transfer.

The USB-BASIC-F/W includes the following functions. Refer to the API function shown in Chapter 8.3 for more

details.

(1) Control to disable the USB port.

(2) Change the USB state (suspend and resume).

(3) Clears the STALL pipe (cancel STALL to the connected device)

(4) Search Endpoint information from Descriptor.

(5) Interrupts the data transfer.

(6) Release the UPL

8.3 The HCD API

UPL requests H/W control using the USB-BASIC-F/W API functions in the r_usb_hdriverapi.c file.

When using these HCD API functions, include the header files in the order shown in Table 8-5. Table 8-6 lists the HCD

API functions.

Table 8-5 List of HCD API header file

File Name Description Notes

r_usb_ctypedef.h Variable type definition

r_usb_ckernelid.h System header file

r_usb_cdefusbip.h Various definition for the USB driver

r_usb_api.h USB driver API function definitions

Table 8-6 List of HCD API Function

Function Name Description Notes

R_usb_hstd_HcdTask HCD task

R_usb_hstd_MgrTask MGR task

R_usb_hstd_HcdOpen Start the MGR task and HCD task (Task initialization)

R_usb_hstd_DriverRegistration Register the UPL driver

R_usb_hstd_DriverRelease Release the UPL driver

R_usb_hstd_TransferStart Data transfer start request

R_usb_hstd_TransferEnd Data transfer forced end request

R_usb_hstd_MgrChangeDevice

State

Change the USB state of the connected device

R_usb_hstd_ChangeDeviceState Change the connected device state

R_usb_hstd_DeviceInformation Request the connected device state

R_usb_hstd_ChkPipeInfo Create pipe information from endpoint descriptor

R_usb_hstd_ReturnEnuMGR Enumeration continue request

R_usb_hstd_SetPipeRegistration Register setting of pipe information

8.4 HCD Callback Functions

USB-BASIC-F/W notifies USB state changes and data transfer ends to the UPL using callback functions. The UPL

specifies the callback function when the API function is called or the driver is registered. When adding a new callback

function, follow the order shown in Table 8-5 for including header files (the same is true when wrting code to use the

API functions). Moreover, the HCD callback function list is shown in Table 8-7.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 74 of 107

Mar 16, 2015

Table 8-7 HCD Callback Functions

Function Name Description Notes

*g_usb_HcdDriver[x].classcheck Callback function which UPL uses to determine

whether the connected device is usable with

register host driver.

*g_usb_HcdDriver[x].statediagram Callback function when USB state transition is

detected

* g_usb_LibPipe[pipe]->complete Callback function when data transfer occurred

*g_usb_MgrCallback Callback function at USB state transition end as

request ed by API.

8.5 API and Callback Details

Details of the API and callback function are shown below.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 75 of 107

Mar 16, 2015

R_usb_hstd_HcdTask

The HCD task

Format

void R_usb_hstd_HcdTask(void)

Arguments

－ －

Return Value

－ －

Description

Calls the HCD task function usb_hstd_hcd_task().

 Performs USB control transfers on request from UPL.

 When the control transfer ends, call the callback function.

 When the USB state transition is detected, notify the MGR task.

The usb_hstd_hcd_task() function performs data transfer requested via UPL (the API function).

 When the data transfer ends, the callback function specified by the API function is called.

The usb_hstd_hcd_task() function performs the USB state controll (H/W control) by request from the MGR task.

 When the USB state changes, callback function is called.

Notes

1. Be sure to ｃall this function in a loop where the scheduler is.

2. Call hook function(R_usb_cstd_debug_hook()) when receiving the invalid message.

Example

void main(void)

{

 usb_hsmpl_main_init();

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET)

 {

 R_usb_hstd_HcdTask();

 R_usb_hstd_MgrTask();

 usb_hsmpl_apl_task();

 }

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 76 of 107

Mar 16, 2015

R_usb_hstd_MgrTask

MGR task

Format

void R_usb_hstd_MgrTask(void)

Arguments

－ －

Return Value

－ －

Description

To call usb_hstd_mgr_task() function

The usb_hstd_mgr_task() function manages the sequence of the USB state that the HCD task detected.

 Perform sequence control for enumeration.

 Perform sequence control for remote wakeup.

 Perform sequence control for detach and over current.

 At the end of the sequence control, the Mgr will call the USB state callback function registered by a user.

usb_hstd_mgr_task()also manages sequencing of USB states that an API function may request:

 Perform sequence control for suspend or resume.

 Perform sequence control to enable or disable a port.

 Cancel STALL for the connected device.

When the end of the sequence control, call the callback function specified by the API function.

Note

1. Be sure to call this function in a loop where scheduler processing is performed.

Example

void main(void)

{

 usb_hsmpl_main_init();

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET)

 {

 R_usb_hstd_HcdTask();

 R_usb_hstd_MgrTask();

 usb_hsmpl_apl_task();

 }

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 77 of 107

Mar 16, 2015

R_usb_hstd_HcdOpen

HCD task start

Format

void R_usb_hstd_HcdOpen(void)

Arguments

－ －

Return Value

－ －

Description

Initializes the global variables which HCD uses

Note

Call this function at the Initial start.

Example

void usb_hsmpl_main_init(void)

{

 usb_cpu_target_init(); /* Target board initialize */

 /* USB-IP initialized */

 R_usb_hstd_ChangeDeviceState(USB_DO_INITHWFUNCTION)

 /* HCD driver open & registration */

 R_usb_hstd_HcdOpen(); /* HCD task, MGR task open */

 usb_hsmpl_driver_registration(); /* Sample driver registration */

 /* USB-IP is set to the host */

 R_usb_hstd_ChangeDeviceState(USB_DO_SETHWFUNCTION);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 78 of 107

Mar 16, 2015

R_usb_hstd_DriverRegistration

Host device class driver (HDCD) registration

Format

void R_usb_hstd_DriverRegistration(usb_hcdreg_t * registinfo)

Argument

registinfo* Class driver registration structure

Return Value

－ －

Description

Register the UPL to the USB-BASIC-F/W. Updates the number of registered drivers controlled by the USB-

BASIC-F/W and registers the UPL information to a new array area.

Notes

1. Call this function from UPL to “register” UPL with USB-BASIC-F/W.

2. Refer to Table 8-1 Members of Structure usb_hcdreg_t for information to be registered.

3. A typical interface class code is defined in the r_usb_cdefusbip.h file.

Example

void usb_hsmpl_driver_registration(void)

{

 usb_hcdreg_t driver;

 /* Driver registration */

 driver.ifclass = USB_IFCLS_VEN; /* Vendor class */

 driver.classcheck = &usb_hsmpl_class_check;

 driver.statediagram = &usb_hsmpl_open_close;

 R_usb_hstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 79 of 107

Mar 16, 2015

R_usb_hstd_DriverRelease

Release host device class driver (HDCD)

Format

void R_usb_hstd_DriverRelease(uint8_t devclass)

Argument

devclass Device class (interface class code of USB2.0 specification)

Return Value

－ －

Description

Release a device class driver registered to the USB-BASIC-F/W. Update the number of registered drivers controlled

by the USB-BASIC-F/W and the used area is cleared.

Notes

1. To release a driver, call this function from the UPL.

2. Refer to Table 8-1 for what information is released.

3. A typical interface class code is defined in the r_usb_cdefusbip.h file.

4. Stop the data transfer using R_usb_hstd_TransferEnd API before calling this API.

Example

ueb_er_t usb_smp_task(void)

{

 usb_hcdreg_t driver;

 ：

 R_usb_hstd_DriverRegistration(&driver); /* Driver registration */

 ：

 R_usb_hstd_DriverRelease(USB_IFCLS_HID); /* Release HID class driver */

 /* Driver registration */

 driver.ifclass = USB_IFCLS_VEN; /* Vendor class */

 driver.classcheck = &usb_hsmpl_class_check;

 driver.statediagram = &usb_hsmpl_open_close;

 R_usb_hstd_DriverRegistration(&driver);

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 80 of 107

Mar 16, 2015

R_usb_hstd_TransferStart

Data transfer request

Format

usb_er_t R_usb_hstd_TransferStart(usb_utr_t * utr_table)

Argument

* utr_table Structure of the data transfer

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap(The pipe is using.)

Description

Request the data transfer of each pipe. When the specified data size is satisfied, receiving a short packet, and an

error occurs, the data transfer ends.

When the data transfer ends, call the callback function of the argument in the structure member. Remaining data

length of transmission and reception, status, and information of transfer end are set in the argument of this callback

function (utr_table).

When a data transfer is restarted with the same pipe, it is necessary to put the pipe status (data toggle: previous pipe

status) for the next transfer. Structure member (utr_table.pipectr) of the argument must be set to the pipe status.

When a USB reset or clear STALL etc. occur, the pipe status should be initialized to “DATA0".

When a transfer start request is issued to a pipe during data transfer, USB_E_QOVR is returned.

Notes

1. Refer to Table 8-4 usb_utr_t Data Transfer Structure for the data transfer structure.

2. When received data is n times the maximum packet size, and less than the expected received data length, data

transfer is is considered to be ended and a callback is not generated.

3. The control transfer uses this API function.

Example

usb_utr_t g_usb_HsmplTrnMsg[USB_TBL_MAX];

void usb_hvndr_data_transfer(usb_pipe_t pipe)

{

 /* PIPE Transfer set */

 g_usb_HsmplTrnMsg[pipe].pipenum = pipe;

 g_usb_HsmplTrnMsg[pipe].tranadr = g_usb_HsmplTrnPtr[pipe];

 g_usb_HsmplTrnMsg[pipe].tranlen = g_usb_HsmplTrnSize[pipe];

 g_usb_HsmplTrnMsg[pipe].pipectr = g_usb_HsmplPipeCtr[pipe];

 g_usb_HsmplTrnMsg[pipe].setup = 0;

 g_usb_HsmplTrnMsg[pipe].complete = (usb_cb_t)&usb_hvndr_transfer_result;

 R_usb_hstd_TransferStart((usb_utr_t *)&g_usb_HsmplTrnMsg[pipe]);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 81 of 107

Mar 16, 2015

R_usb_hstd_TransferEnd

Data transfer forced end request

Format

usb_er_t R_usb_hstd_TransferEnd(usb_pipe_t pipe, usb_strct_t msginfo)

Arguments

pipe Pipe number

msginfo Communication status

Return Value

USB_E_OK Success

USB_E_ERROR Failure

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end)

Description

Set the following values to argument msginfo to request forced end of data transfer to the USB-BASIC-F/W.

 USB_DO_TRANSFER_STP: Data transfer forced end (The HCD calls back.)

 USB_DO_TRANSFER_TMO: Data transfer timeout (The HCD does not call back.)

When USB_DO_TRANSFER_STP is specified in msginfo, transfer end is notified using the callback function set

when the data transfer was requested (with R_usb_hstd_TransferStart).

Remaining data length of transmission and reception, pipe control register value, and transfer status =

USB_DATA_STOP, are set using the argument (usb_utr_t) of the callback function.

When a forced end request to a pipe that does not execute data transfer isissued, USB_E_QOVR is returned.

Notes

1. When data transmission is interrupted, the FIFO buffer of the SIE is not cleared.

2. When the FIFO buffer is transmitted using double buffer, the data that has not been transmitted yet may remain in

the FIFO buffer.

3. When argument pipes are pipe 0 to pipe 3, USB_E_QOVR error is returned andUSB_E_ERROR error is returned

for pipe 8 or more in RL78/USB.

Example

void usb_smp_task(void)

{

 usb_er_t err;

 ：

 /* Transfer end request */

 err = R_usb_hstd_TransferEnd(USB_PIPE4, USB_DO_TRANSFER_TMO);

 return err;

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 82 of 107

Mar 16, 2015

R_usb_hstd_MgrChangeDeviceState

USB device state change request

Format

usb_er_t R_usb_hstd_MgrChangeDeviceStat(usb_cb_info_t complete,

 usb_strct_t msginfo,

 usb_strct_t keyword)

Arguments

complete Callback function executed when the USB state changing ends.

msginfo USB state to be changed

keyword keyword meaning depends on msginfo, e.g. port number, device address, pipe number.

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Set the following value to argument msginfo to request a change of USB state of the USB-BASIC-F/W.

 USB_DO_PORT_ENABLE / USB_DO_PORT_DISABLE

Enable or disable a port specified by a keyword (on/off control of VBUS output).

 USB_DO_GLOBAL_SUSPEND

Keep the port specified by a keyword as the suspend state.

 USB_DO_GLOBAL_RESUME

Resume a port specified by a keyword

 USB_DO_CLEAR_STALL

Cancel STALL of the device that uses a pipe specified by a keyword.

Notes

1. When a connection or a disconnection is detected (by an interrupt in USB-BASIC-F/W), USB-BASIC-F/W

automatically starts the enumeration sequence processing, or the detach sequence processing. Therefore, this

function does not need to be called during normal circumstances.

2. When transiting the USB state using this function, the USB state transition callback of the driver structure

registered using the API function R_usb_hstd_DriverRegistration() is not called.

Example

void usb_smp_task(void)

{

 R_usb_hstd_MgrChangeDeviceState

 (usb_hsmpl_status_result, USB_DO_GLOBAL_SUSPEND, g_usb_hsmpl_Port);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 83 of 107

Mar 16, 2015

R_usb_hstd_ChangeDeviceState

USB IP state setting request

Format

usb_er_t R_usb_hstd_ChangeDeviceState(usb_strct_t msginfo)

Argument

msginfo USB state to be changed

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Set the following values to argument msginfo to request change of USB state from USB-BASIC-F/W.

 USB_DO_INITHWFUNCTION

Start the USB-IP and perform the software reset. Execute this function before USB-BASIC-F/W starts.

 USB_DO_SETHWFUNCTION

Set the the USB-IP as the USB host device. Execute this function after registering UPL.

Notes

1. This function executes processing without the MGR task and the HCD task being involved.

Example

void usb_smp_task(void)

{

 R_usb_hstd_ChangeDeviceState(USB_DO_INITHWFUNCTION);

 R_usb_hstd_HcdOpen(); /* HCD task open */

 usb_hsmpl_driver_registration(); /* Sample driver registration */

 R_usb_hstd_ChangeDeviceState(USB_DO_SETHWFUNCTION);

 ：

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 84 of 107

Mar 16, 2015

R_usb_hstd_DeviceInformation

Obtain USB device state information

Format

void R_usb_hstd_DeviceInformation(usb_addr_t devaddr, uint16_t *table)

Argument

devaddr Device address

*table Table address to store the device information

Return Value

－ －

Description

Obtain the USB device information. Stores the following information to an address specified by the argument

(*table).

[0]: Root port number (port 0: USB_0, port 1: USB_1)

[1]: USB state (unconnected: USB_STS_DETACH, enumerated: USB_STS_DEFAULT/USB_STS_ADDRESS,

connected: USB_STS_CONFIGURED, suspended: USB_STS_SUSPEND)

[2]: Configuration number (g_usb_HcdDevInfo[g_usb_MgrDevAddr].config)

[3]: Connection speed (FS: USB_FSCONNECT, LS: USB_LSCONNECT, unconnected: USB_NOCONNECT)

Notes

1. Provide 4 word area for the argument *table.

2. When specifying 0 to the device address, the following information is returned.

(1) When there is not a device during enumeration.

table[0] = USB_NOPORT, table[1] = USB_STS_DETACH

(2) When there is a device during enumeration.

table[0] = Port number, table[1] = USB_STS_DEFAULT

Example

void usb_smp_task(void)

{

 uint16_t tbl[4];

 ：

 /* Device information check */

 R_usb_hstd_DeviceInformation(devaddr, &tbl);

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 85 of 107

Mar 16, 2015

R_usb_hstd_ChkPipeInfo

Sets up the Pipe Information Iable

Format

usb_er_t R_usb_hstd_ChkPipeInfo(uint16_t *table, uint8_t *descriptor)

Argument

table * Pipe Information Table

descriptor Endpoint descriptor

Return Value

USB_DIR_H_IN IN endpoint was set..

USB_DIR_H_OUT OUT endpoint was set.

USB_ERROR Failed to set endpoint.

Description

Analyzes the endpoint descriptor and sets the Pipe Information Table for specified pipe when class check.

Fields whose information are updated:

 USB_TYPFIELD USB_BULK or USB_INT

 USB_SHTNAKFIELD USB_SHTNAKON（USB_TYPFIELD == USB_DIR_H_IN）

 USB_DIRFIELD USB_DIR_H_IN .or. USB_DIR_H_OUT

 USB_EPNUMFIELD Endpoint number shown in the endpoint descriptor

 USB_IITVFIELD Interval counter (specified by 2 to the nth power)

Notes

1. Refer to Chapter 7.4 for info on the Pipe Information Table.

2. Set the interval counter (number of frame) by 2 to the nth power for endpoint descriptor.

3. Call this function from the driver check callback function to check if connected device can work as expected.

4. When creating the information table for several pipes, search the endpoint descriptor and call this function

repeatedly to embed processing in the following cases:

 When the interface includes several endpoints.

 When communication for several endpoints in the multiple interfaces.

Example

void usb_hsmpl_pipe_info(uint8_t *table)

{

 usb_er_t retval = USB_YES;

 uint16_t *ptr;

 /* Check Endpoint Descriptor */

 ptr = g_usb_hsmpl_DefEpTbl;

 for (; table[1] == USB_DT_ENDPOINT, retval != USB_ERROR; table += table[0],

 ptr += USB_EPL)

 {

 retval = R_usb_hstd_ChkPipeInfo(ptr, table);

 }

 return retval;

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 86 of 107

Mar 16, 2015

R_usb_hstd_ReturnEnuMGR

Device class determination notification

Format

void R_usb_hstd_ReturnEnuMGR(uint16_t cls_result)

Argument

cls_result Right or wrong of operation of connecting device

Return Value

－ －

Description

This function notifies (with USB_YES or USB_NO as cls_result) USB-BASIC-F/W whether the connected device is of

the correct, anticipated, class driver. When USB_NO is returned using this function, the USB-BASIC-F/W will move on

and check operation using other device class driver..

Note

Call this function, when the driver check callback function is ended. (See g_usb_HcdDriver[x].classcheck function)

Example

void usb_hsmpl_enumeration(usb_tskinfo_t *mess)

{

 ：

 retval = usb_hsmpl_pipe_info(g_usb_hsmpl_InterfaceTable,

 (uint8_t)g_usb_hsmpl_ConfigTable[2]);

 if(retval == USB_ERROR)

 {

 R_usb_hstd_ReturnEnuMGR(USB_NO);

 }

 else

 {

 R_usb_hstd_ReturnEnuMGR(USB_YES);

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 87 of 107

Mar 16, 2015

R_usb_hstd_SetPipeRegistration

Reset the pipe registers, or reconfigure them according to the Pipe Information Table
Format

void R_usb_hstd_SetPipeRegistation(uint16_t* table, uint16_t command)

Argument

table Pipe information table

command Command

Return Value

－ －

Description

 When the command is “USB_NO".

All pipe registers specified with the as indicated by the Pipe Information Table are set to be unused (cleared).

 When the command is “USB_YES".

All pipes specified in the Pipe Information Table are set unused (cleared), then the function sets up all pipe

registers according to the Pipe Information Table.

Notes

1. Refer to 7.4.1 section about Pipe Information Table.

Example

void usb_hsmpl_open_close(uint16_t data1, uint16_t device_state)

{

 switch(device_state)

 {

 case USB_DEVCONFIG:

 if(data1 == g_usb_hsmpl_Devaddr)

 {

 /* device address set */

 R_usb_hstd_SetPipeRegistration(g_usb_hsmpl_DefEpTbl, USB_YES);

 usb_hsmpl_task_operate(USB_SMPL_INIT);

 }

 break;

 case USB_DEVDETACH:

 ：

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 88 of 107

Mar 16, 2015

*g_usb_HcdDriver[x].classcheck

Callback so UPL can check suitability of current driver with device being enumerated

Format

void (*driver->classcheck)((uint16_t**)&table);

Arguments

table Device information to notify to the device driver

Return Value

－ －

Description

The registered device class driver checks whether the connected device is of the correct, anticipated, class driver.

Refer to

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 89 of 107

Mar 16, 2015

Table 8-2 Argument Array of classcheck for the argument information table.

Notify the result of this check (right or wrong) by the API function R_usb_hstd_ReturnEnuMGR().

Notes

1. The USB-BASIC-F/W executes callback when received the Configuration Descriptor.

(*driver->classcheck)((uint16_t**)&table);

2. When check ends, notify the result to the USB-BASIC-F/W using the API function of

R_usb_hstd_ReturnEnuMGR().

Example

Processing example of the callback .

void usb_hsmpl_class_check(uint16_t **table)

{

 g_usb_hsmpl_DeviceTable = (uint8_t*)((uint16_t*)table[0]);

 g_usb_hsmpl_ConfigTable = (uint8_t*)((uint16_t*)table[1]);

 g_usb_hsmpl_Devaddr = (uint16_t)(*table[3]);

 g_usb_hsmpl_EnumerationSeq = USB_SEQ_0;

 g_usb_hsmpl_Message.msginfo.w = USB_MSG_CLS_CHECKREQUEST;

 /* Class check of enumeration sequence move to class function */

 if(USB_SND_MSG(USB_HSMP_MBX, (usb_msg_t*)&g_usb_hsmpl_Message) != USB_E_OK)

 {

 while(1);

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 90 of 107

Mar 16, 2015

*g_usb_HcdDriver[x].statediagram

Callback when HCD detected a USB state transition

Format

void (*driver->statediagram)((uint16_t)data1, (uint16_t)device_state);

Arguments

data1 Device address

device_state USB device state

Return Value

－ －

Description

Generation for the USB state transition change is notified to the UPL.

1. Attach detection

(*driver->statediagram)(USB_NO_ARG, USB_STS_ATTACH);

2. Issue USB reset signal

(*driver->statediagram)(USB_NO_ARG, USB_STS_DEFAULT);

3. End of enumeration sequence processing

(*driver->statediagram)(driver->devaddr, USB_STS_CONFIGURED);

4. Detach detection

(*driver->statediagram)(g_usb_MgrDevAddr, USB_STS_DETACH);

5. Over current detection

(*driver->statediagram)(driver->devaddr, USB_STS_OVERCURRENT);

6. End of remote wakeup sequence processing

(*driver->statediagram)(g_usb_MgrDevAddr, USB_STS_WAKEUP);

Note

1. When the USB state is changed in API function R_usb_hstd_ChangeDeviceState() or

R_usb_hstd_MgrChangeDeviceState() function, a callback concerned is not called.

2. This callback notification when HCD detects attach, or issues a USB reset, is executed for all registered device

class drivers.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 91 of 107

Mar 16, 2015

Example

Processing example of the callback .

void usb_hsmpl_device_state(uint16_t data, uint16_t state)

{

 case USB_STS_DETACH:

 usb_hsmpl_transfer_end_all();

 R_usb_hvndr_DriverStop();

 break;

 case USB_STS_ATTACH:

 R_usb_hvndr_DriverStart();

 break;

 case USB_STS_DEFAULT:

 case USB_STS_ADDRESS:

 break;

 case USB_STS_CONFIGURED:

 g_usb_gmpl_DeviceAddr = data1;

 if(g_usb_gmpl_DeviceAddr != 0)

 {

 R_usb_hstd_SetPipeRegistration(g_usb_hsmpl_DefEpTbl, USB_YES);

 }

 usb_hsmpl_tranfer_all();

 break;

 case USB_STS_SUSPEND:

 break;

 case USB_STS_RESUME:

 case USB_STS_WAKEUP:

 usb_hsmpl_tranfer_all();

 break;

 case USB_STS_OVERCURRENT:

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 92 of 107

Mar 16, 2015

*g_usb_LibPipe[pipe]->complete

Callback for data transfer end

Format

void (*g_usb_LibPipe[pipe]->complete)((usb_utr_t*)g_usb_LibPipe[pipe]);

Argument

g_usb_LibPipe Transfer message

Return Value

－ －

Description

The end of a data transfer or forced end request is notified to UPL.

Notes

1. A message is returned with this callback. Table 8-8 lists the structure members updated by the USB-BASIC-F/W.

2. Do not call back for the timeout (USB_DO_TRANSFER_TMO specified by the R_usb_hstd_TransferEnd()

function).

Table 8-8 usb_utr_t Data Transfer Structure Members that are updated

Members Update Function Notes

tranlen Updated The acutual transferd data length is notified.

status Updated

The following transfer results are notified.

USB_DATA_OK When the data transfer (transmission /
reception) normally ends.

USB_DATA_SHT When the data transfer ends with less than the
specified data length.

USB_DATA_OVR When the received data size is exceeded
USB_DATA_STOP When the data transfer is forcibly ended
USB_CTRL_END Control transfer end (PIPE0 only)

pipectr Updated The pipe control register (PIPExCTR register) value is notified

Other than

above
Not updated The contents requested to be transferred are stored.

Example

Processing example of the callback .

void usb_hsmpl_transfer_result(usb_utr_t *mess)

{

 switch(mess->status)

 {

 case USB_DATA_OK:

 case USB_DATA_SHT:

 case USB_DATA_OVR:

 if ((mess->pipenum == USB_PIPE4) || (mess->pipenum == USB_PIPE5))

 {

 :

 }

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 93 of 107

Mar 16, 2015

*g_usb_MgrCallback

Callback when USB state update ends using the API function
R_usb_hstd_MgrChangeDeviceState

Format

void (*g_usb_MgrCallback)((uint16_t)keyword, (uint16_t)msginfo);

Argument

keyword The content is different according to msginfo like the port number, the device address, and the pipe

number, etc.

msginfo USB device state

Return Value

－ －

Description

This function is the callback function to notify the API function R_usb_hstd_MgrChangeDeviceState() request end.

1. Port enable output end

(*g_usb_MgrCallback)(g_usb_MgrPort, USB_STS_POWER);

2. Port disable output end

(*g_usb_MgrCallback)(g_usb_MgrPort, USB_STS_PORTOFF);

3. Suspend sequence end

(*g_usb_MgrCallback)(g_usb_MgrDevAddr, USB_STS_SUSPEND);

4. Resume sequence end

(*g_usb_MgrCallback)(g_usb_MgrDevAddr, USB_STS_RESUME);

5. STALL cancelled for a pipe

(*g_usb_MgrCallback)(g_usb_CurrentPipe, USB_STALL_SUCCESS);

Note

1. The suspension and the resume do the call backing in each device (Each device class screwdriver)

Example

--

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 94 of 107

Mar 16, 2015

9. The System Scheduler

9.1 Scheduler

USB-BASIC-F/W controls “tasks” using a scheduling mechanism. The features of this scheduler are as follows.

1. The scheduler function manages requests issued by tasks or H/W in order of task ID.

2. When several requests are issued to a task, the scheduler processes the requests in a FIFO manner.

3. USB-BASIC-F/W notifies tasks of requests made using a callback function.

 UPL can use this system without modification of the scheduler.

4. Describe the task controlled by the scheduler as the function.

5. The scheduler does not dispatch and preempt other tasks until exiting the user’s top main task loop.

Caution:

Since the scheduler does not dispatch and preempt tasks,the response time of USB control transfers are not

guaranteed to satisfy the USB2.0 standard. Check compliance with the USB2.0 standard in a finished system.

(1). Scheduler items defined by user

Set the following items in the r_usb_cKernelid.h file.

#define USB_IDMAX ((uint8_t)5) : Maximum value of task IDs*1 [9.1.1]

#define USB_TABLEMAX ((uint8_t)5) : Number of messages storable in the task [9.1.2]

#define USB_BLKMAX ((uint8_t)5) : Number of messages obtainable in a system [9.1.2]

*1: For the maximum number setting, add 1 to the highest ID number among the tasks to be used.

(2). Setup of task information

For each added task, add the task ID and mailbox ID to the r_usb_cKernelid.h file. Keep the following points in mind

when setting these items.

・ Do not assign the same ID to more than one task.

・ Set the same value assigned to the task ID and the mailbox ID.

The following settings are examples for vendor class drivers of the sample program.

#define USB_PVEN_TSK USB_TID_3 ：Task ID

#define USB_PVEN_MBX USB_PVEN_TSK ：Mailbox ID

9.1.1 Task ID and Maximum Value of the Task ID

Set task IDs and its maximum value . Do not set the same values for the task ID. Set the maximum value to one more

(+ 1) than the highest task ID to be used. Set the UPL task ID to be used depending on the number to be used.

The task priority level is the same as the task ID. The highest priority level becomes 0. In host mode, set the task

priorities as"HCD task < MGR task < HCDC task". In peripheral mode, set the task priorities as "PCD task < PDCD

task".

Use macros defined in r_usb_cKernrlid.h file for the task ID settings.

9.1.2 Number of Messages That Can be Stored for a Task

The priority table stores processing requests from each task depending on priority. Set the maximum number where

processing requests are stored.

9.1.3 Number of Messages That Can be Allocated in a System

Set the number of messages that can be obtained using R_USB_PGET_SND in a system. A message area is saved until

R_USB_REL_BLK is executed. When all areas are used up, an error is returned in R_USB_PGET_SND. If this occurs,

change R_USB_PGET_SND for the system.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 95 of 107

Mar 16, 2015

9.2 Scheduler Macro and Scheduler Function

Table 9-2 lists the scheduler macros and the API functions of the scheduler. The API functions are in the

r_usb_cstd_libapi.c file. When using these scheduler API function, include the header file in the order listed in Table

9-1.

Table 9-1 Scheduler API header files

File Name Description Notes

r_usb_ctypedef.h Variable type definition

r_usb_ckernelid.h System header file

r_usb_cdefusbip.h Various definition for the USB driver

r_usb_api.h USB driver API function definition

Table 9-2 Scheduler Macros and Functions

Macro Name File Name Description

 R_usb_cstd_Scheduler Scheduler processing

R_USB_TRCV_MSG R_usb_cstd_RecMsg Check if execution is requested .

(Check if a message is waiting for a particular

task.)

R_USB_SND_MSG R_usb_cstd_SndMsg Transmit a processing request (message).

(Send a message to a task.)

R_USB_ISND_MSG R_usb_cstd_iSndMsg Transmit processing request (message) from an

interrupt.

(Send a message to a task from an interrupt.)

R_USB_WAI_MSG R_usb_cstd_WaiMsg Execute R_USB_SND_MSG after calling the

scheduler a specified number of times.

R_USB_GET_SND R_usb_cstd_PgetSend Message area is allocated and R_USB_SND_MSG

is called

R_USB_REL_BLK R_usb_cstd_RelBlk Release a message memory area.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 96 of 107

Mar 16, 2015

R_usb_cstd_Scheduler

Scheduler processing

Format

uint8_t R_usb_cstd_Scheduler(void)

Argument

－ －

Return Value

USB_FLGSET “There is a message waiting for at least one task..

USB_FLGCLR “There are no messages waiting..

Description

Perform scheduler processing.

Manages requests issued by tasks and H/W according to the relative priority of the tasks.

Call the tasks when the Return Value is USB_FLGSET. See example below.

Note

Example

void main(void)

{

 /* Initialized USBIP */

 usb_hsmpl_main_init();

 /* Sample main loop */

 while(1)

 {

 if(R_usb_cstd_Scheduler() == USB_FLGSET) /* Scheduler */

 {

 R_usb_hstd_HcdTask(); /* HCD Task */

 R_usb_hstd_MgrTask(); /* MGR Task */

 usb_hsmpl_apl_task();

 }

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 97 of 107

Mar 16, 2015

R_usb_cstd_RecMsg

Check if message is awaiting task

Format

usb_er_t R_usb_cstd_RecMsg(uint8_t id, usb_msg_t** mess);

Argument

id Task ID of received message

mess Received message

Return Value

USB_E_OK There is request processing

USB_E_ERROR There is no request processing

Description

Check for the reception of a message sent to the task given by id.

When there is a message, USB_E_OK is returned to the return value, and the address of the message received is

stored at the adress given by argument "mess".

Note

When the return value of R_usb_cstd_Scheduler is USB_FLGCLR, do not call R_USB_RCV_MSG.

Example

void usb_hsmpl_apl_task(void)

{

 usb_utr_t *mess;

 usb_er_t err; /* Error code */

 /* Check for message. */

 err = USB_TRCV_MSG(USB_HSMP_MBX, (usb_msg_t**)&mess);

 if(err != USB_E_OK)

 {

 return;

 }

 switch(mess->msginfo)

 {

 case USB_MSG_CLS_CHECKREQUEST: /* Enumeration */

 usb_hsmpl_enumaration((usb_tskinfo_t *) mess);

 break;

 case USB_MSG_CLS_INIT: /* Initialize */

 usb_hsmpl_initialized();

 break;

 case USB_MSG_CLS_TASK:

 usb_hsmpl_application(mess);

 break;

 default:

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 98 of 107

Mar 16, 2015

R_usb_cstd_SndMsg

Transmit message to another task

Format

usb_er_t R_usb_cstd_SndMsg(uint8_t id, usb_msg_t* mess)

Argument

id Task ID of receive task (to which to send message).

mess Message is scheduled for transmission

Return Value

USB_E_OK Message transmission completed

USB_E_ERROR Task ID is not set

Priority table is full (Can’t send request to priority table)

Description

The message is stored in the scheduler priority table.

Note

1. After the USB interruption of MCU is prohibited by the usb_cpu_int_disable() function, R_USB_ISND_MSG

is called.

2. When operating a task periodically using R_USB_SND_MSG, a low priority task can not work.Use

R_USB_WAI_MSG in order to operate a low priority task periodically.

Example

void usb_hsmpl_check_request(uint16_t result)

{

 usb_er_t err;

 g_usb_hsmpl_Message.msginfo = USB_MSG_CLS_CHECKREQUEST;

 g_usb_hsmpl_Message.status = result;

 /* Class check of enumeration sequence move to class function */

 err = USB_SND_MSG(USB_HSMP_MBX, (usb_msg_t*)&g_usb_hsmpl_Message);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 99 of 107

Mar 16, 2015

R_usb_cstd_iSndMsg

Transmit message to another taskfrom an interrupt

Format

usb_er_t R_usb_cstd_iSndMsg(uint8_t id, usb_msg_t* mess)

Argument

id Task ID to which to send message

mess Transmitted message

Return Value

USB_E_OK Message is scheduled for transmission

USB_E_ERROR Task ID is not set

Priority table is full (Can’t send request to priority table)

Description

When the message is transmitted in the interrupt handler blade, it uses it.

The message is stored in the priority level table.

Note

－

Example

void R_usb_hstd_InterruptHandler(void)

{

 usb_er_t err;

 usb_intinfo_t *ptr;

 /* Initialize Interrupt handler message */

 ptr = &g_usb_cstd_IntMsg[g_usb_cstd_IntMsgCnt];

 usb_hstd_check_interrupt_source(&ptr->keyword, &ptr->status);

 err = USB_ISND_MSG(USB_HCD_MBX, (usb_msg_t*)ptr);

 /* Renewal Message count */

 g_usb_cstd_IntMsgCnt++;

 if(g_usb_cstd_IntMsgCnt == USB_INTMSGMAX)

 {

 g_usb_cstd_IntMsgCnt = 0;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 100 of 107

Mar 16, 2015

R_usb_cstd_WaiMsg

Execute R_usb_cstd_SndMsg after calling the scheduler a specified nr of times

Format

usb_er_t R_usb_cstd_WaiMsg(uint8_t id, usb_msg_t* mess, uint16_t times)

Argument

id Task ID to which to send message

mess Transmitted message address

times Number if times scheduler will be called before message is sent

Return Value

USB_E_OK The message was able to be stored in the queue.

USB_E_ERROR Task ID is not set

The queue table is full (Can’t send request to priority table)

Description

After the specified number of times the scheduler is called, R_USB_SND_MSG is executed.

Note

1. This API is used when the message notification is delayed.

2. When the task of specifying is already in the waiting state, this task is registered in the queue ignore the "times".

3. When R_USB_SND_MSG is executed and it responds USB_E_OK, the queue is updated in the FIFO structure.

When two or more messages are registered in the queue, the message since the second is changed to be

“ times=1" and the waiting counter is recounted.

4. When R_USB_SND_MSG is executed and it responds USB_E_ERROR, the queue is not updated.

The message that the count ends is changed to be “ times=1" and the waiting counter is recounted.

Example

 /* enumeration wait setting */

 if(g_usb_HcdMgrMode[elseport] == USB_DEFAULT)

 {

 err = USB_WAI_MSG(USB_MGR_MBX, (usb_msg_t*)g_usb_MgrMessage, 100);

 if(err != USB_E_OK)

 {

 USB_PRINTF1("### hMgrTask snd_msg error (%ld)\n", err);

 }

 }

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 101 of 107

Mar 16, 2015

R_usb_cstd_PgetSend

After a message area is allocated, R_USB_SND_MSG is executed

Format

usb_er_t R_usb_cstd_PgetSend(uint8_t id, usb_strct_t msginfo, usb_cbinfo_t complete, usb_strct_t keyword)

Argument

id Task ID to which to send message.

msginfo Message information

complete Call-back function

keyword Keyword for the send message

Return Value

USB_E_OK Message is scheduled for transmission

USB_E_ERROR Task ID is not set

Priority table is full (can not send request to the scheduler)

All the message areas are used up

Description

A message area is allocated (secured) from the memory pool.

The arguments (id, msginfo, complete, and keyword) are stored in the allocated area.

R_USB_SND_MSG is then executed..

When R_USB_SND_MSG is executed and it responds USB_E_OK, the flag in the secured area is set up, that is, the

message is marked as sent to the receiver task.

Note

1. The "flag" is an index of the secured area. Please specify it for an index number when the area is opened with

R_USB_REL_BLK.

Example

void usb_hstd_detach(usb_port_t port)

{

 /* ATTCH interrupt enable */

 USB_CLR_PAT(DVSTCTR0, (uint16_t)(USB_RWUPE | USB_USBRST | USB_RESUME |

USB_UACT));

 usb_hstd_attch_enable(port);

 USB_PGET_BLK

 (USB_MGR_MBX, USB_DO_DETACH, &usb_cstd_dummy_function ,(uint8_t)port);

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 102 of 107

Mar 16, 2015

R_usb_cstd_RelBlk

Release an allocated message memory area

Format

usb_er_t R_usb_cstd_RelBlk(uint8_t blk_num)

Argument

blk_num An index number when the area is opened

Return Value

USB_E_OK The memory area is released

USB_E_ERROR The area is not released

Description

The argument "blk_num" is assumed to be an index, and the "flag" in the area to be released is retrieved.

When the "blk_num" is corresponding to the "flag", the area is released.

Note

－

Example

void R_usb_pstd_PcdTask(usb_vp_int_t stacd)

{

 usb_tskinfo_t *mess;

 /* Error code */

 usb_er_t err;

 err = USB_TRCV_MSG(USB_PCD_MBX, (usb_msg_t**)&mess, (usb_tm_t)10000);

 if((err != USB_E_OK))

 {

 return;

 }

 g_usb_PcdMessage = (usb_tskinfo_t*)mess;

 switch(g_usb_PcdMessage->msginfo)

 {

 case USB_DO_REMOTEWAKEUP:

 case USB_PCD_DP_ENABLE:

 case USB_PCD_DP_DISABLE:

 (*g_usb_PcdCallback)((uint16_t)USB_NO_ARG, g_usb_PcdMessage->msginfo);

 USB_REL_BLK(g_usb_PcdMessage->flag);

 break;

 default:

 break;

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 103 of 107

Mar 16, 2015

9.3 Common Library Function

Table 9-3 lists the common library API function that can be used by the user for host mode or peripheral mode

(common functions). The common library API is in the r_usb_cstdapi.c file. When using the common library API

function, include r_usb_api.h.

Table 9-3 List of Common Library Function

Function Name Description Notes

R_usb_cstd_SetBufPipe0 Set PID of pipe 0 to BUF.

R_usb_cstd_debug_hook Called when the invalid processing

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 104 of 107

Mar 16, 2015

R_usb_cstd_SetBufPipe0

Set PID of pipe 0 to BUF

Format

void R_usb_cstd_SetBufPipe0(void)

Argument

－ －

Return Value

－ －

Description

Set PID of pipe 0 to BUF.

Note

Refer to MCU hardware manual about PID and BUF.

Example

void usb_pstd_set_ccpl(void)

{

 R_usb_cstd_SetBufPipe0(); /* Request ok */

 USB_SET_PAT(DCPCTR, USB_CCPL); /* Status stage start */

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 105 of 107

Mar 16, 2015

R_usb_cstd_debug_hook

Call this API when the invalid processing is generated for debugging

Format

void R_usb_cstd_debug_hook(uint16_t error_code)

Argument

error_code Upper 8-bit: Error generating cause part

Lower 8-bit: Error serial number

Return Value

－ －

Description

1. Call this API when the invalid processing is generated for debugging.

2. The code indicate the error genererating cause part is as follows.These codes is defined in r_user_config.h file.

Error Code Description

USB_DEBUG_HOOK_HOST Specify this code in the argument when the error generates in the host

processing.

USB_DEBUG_HOOK_PERI Specify this code in the argument when the error generates in the

peripheral processing.

USB_DEBUG_HOOK_HWR Specify this code in the argument when the error generates in the

hardware processing.

USB_DEBUG_HOOK_STD Specify this code in the argument when the error generates in the host

and peripheral common processing.

USB_DEBUG_HOOK_CLASS Specify this code in the argument when the error generates in the class

processing.

USB_DEBUG_HOOK_APL Specify this code in the argument when the error generates in the

application processing.

Note

－

Example

void user_application(void)

{

 :

 if(error)

 {

 R_usb_cstd_debug_hook(USB_DEBUG_HOOK_APL | USB_DEBUG_HOOK_CODE1);

 }

}

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 106 of 107

Mar 16, 2015

10. Restrictions

USB-BASIC-F/W includes the following restrictions.

1. Methods to use pipes is restricted using the pipe information setting function.

 Use the transaction counter using the SHTNAK function for received pipes.

2. Members with different types comprise a structure.

(An address misalignment of structure members may occur depending on compilers.)

3. Prepare the UPL by the user.

Renesas USB MCU USB Basic Mini Firmware

R01AN0326EJ0213 Rev. 2.13 Page 107 of 107

Mar 16, 2015

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev.

Date

Description

Page Summary

Rev.1.00 Apr. 25, 2011 — First edition issued

Rev.2.00 Nob. 30, 2012 — Revision of the document by firmware update

Rev.2.10 Aug. 1, 2013 — RL78/L1C, RX111 is supported. Error is fixed.

Rev.2.11 Oct. 31, 2013 — 4.3.1 Description of folder composition was corrected.

1.4 Folder path fixed.

4.3.2 Folder path fixed.

Error is fixed.

Rev.2.12 Mar. 31, 2014 — Error is fixed.

Rev.2.13 Mar. 16, 2015 — RX111 is deleted from Targe Device

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that

the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 List of Terms
	1.4 How to Read This Document

	2. Registering a Class Driver
	2.1 Peripheral (Function)
	2.2 Host

	3. USB-BASIC-F/W Description
	3.1 Development Goals
	3.2 Features
	3.2.1 Overall
	3.2.2 Host mode
	3.2.3 Peripheral (function) mode
	3.2.4 Functionality provided by user

	3.3 Scheduler Function and Tasks
	3.4 Functional differences by MCU
	3.5 Host and Peripheral Sample Vendor Demo
	3.6 Note

	4. Software Configuration
	4.1 Module Configuration
	4.2 Overview of Application Program Functions
	4.3 Folder Structure
	4.3.1 List of files

	4.4 System Resources
	4.4.1 Definitions

	4.5 Customization, Notes

	5. Peripheral Sample Program (UPL)
	5.1 Operation Environment
	5.2 Description of Peripheral Sample Program
	5.2.1 Sunmary of Functionality
	5.2.2 Operation of Peripheral Sample Program
	5.2.3 Setting a Scheduler
	5.2.4 Setting a Task ID and Mail Box ID
	5.2.5 Task calling
	5.2.6 Starting the UPL
	5.2.7 Responding to a USB Request
	5.2.8 Application Outline

	5.3 Data Transfer
	5.3.1 Basic specification
	5.3.2 Data Transfer Request
	5.3.3 Notification of Transfer Result
	5.3.4 Notes on Data Transmission
	5.3.5 Notes on Data Reception
	5.3.6 Data Transfer Outline

	5.4 Pipe Information
	5.4.1 Pipe Information Table
	5.4.2 Pipe Definition

	5.5 Descriptor Information
	5.6 Operating USB-BASIC-F/W in Peripheral Mode
	5.6.1 Select a device
	5.6.2 User Configuration file (r_usb_usrconfig.h)
	5.6.3 Changing USB-BASIC-F/W

	6. Peripheral Controller Driver (PCD)
	6.1 Basic Function
	6.2 Operation Outline
	6.2.1 Starting the PCD
	6.2.2 Registration of UPL
	6.2.3 Notification of USB State Change
	6.2.4 Control Transfer Notification
	6.2.5 Issuing a Transfer Request to USB-BASIC-F/W
	6.2.6 Changing USB State
	6.2.7 Enumeration
	6.2.8 Peripheral Battery Charging (PBC)
	6.2.9 Notes on USB-BASIC-F/W

	6.3 The PCD API
	6.4 PCD Callbacks
	6.5 API and Callback Details

	7. Host Sample Program (UPL)
	7.1 Operating Environment
	7.2 Description of Host Sample Program
	7.2.1 Summary of Functionality
	7.2.2 Operation of Host Sample Program
	7.2.3 Setting up the Scheduler
	7.2.4 Setting a Task ID and Mailbox ID
	7.2.5 Task calling
	7.2.6 Starting the UPL
	7.2.7 Application Outline

	7.3 Data Transfer and Control Transfer
	7.3.1 Basic specification
	7.3.2 Data Transfer Request
	7.3.3 Control Transfer Request
	7.3.4 Notification of Transfer Result
	7.3.5 Notes on Data Reception
	7.3.6 Data transfer Outline

	7.4 Pipe Information
	7.4.1 Pipe Information Table
	7.4.2 Pipe Definition

	7.5 Operating USB-BASIC-F/W in Host mode
	7.5.1 Select a device
	7.5.2 User Configuration file (r_usb_usrconfig.h)
	7.5.3 Changing USB-BASIC-F/W

	8. Host Control Driver (HCD)
	8.1 Basic Information
	8.2 Operation Outline
	8.2.1 Starting the HCD
	8.2.2 Registration of UPL
	8.2.3 Notification for USB State Change
	8.2.4 Operation right or wrong judgment of connected device
	8.2.5 Data transfer Request and Notification to the USB-BASIC-F/W
	8.2.6 Setup Packet
	8.2.7 Changing the USB State for HCD
	8.2.8 Enumeration
	8.2.9 Host Battery Charging (HBC)
	8.2.10 Notes on USB-BASIC-F/W

	8.3 The HCD API
	8.4 HCD Callback Functions
	8.5 API and Callback Details

	9. The System Scheduler
	9.1 Scheduler
	9.1.1 Task ID and Maximum Value of the Task ID
	9.1.2 Number of Messages That Can be Stored for a Task
	9.1.3 Number of Messages That Can be Allocated in a System

	9.2 Scheduler Macro and Scheduler Function
	9.3 Common Library Function

	10. Restrictions

