
The New SU User’s Manual

John W. Stockwell, Jr. & Jack K. Cohen

Version 3.2: August 2002

The Seismic Unix project is supported by these organizations:

The Society of Exploration Geophysicists

Center for Wave Phenomena

Colorado School of Mines
Golden, CO 80401, USA

Past support was received from:

The Gas Research Institute

The CWP/SU Free Software Package:
Legal Matters

This file is property of the Colorado School of Mines.

Copyright 2004, Colorado School of Mines, all rights reserved.

Warranty Disclaimer:

NO GUARANTEES, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, ARE PROVIDED BY

CWP, CSM, ANY EMPLOYEE OR MEMBER OF THE AFORESAID ORGANIZATIONS, OR BY

ANY CONTRIBUTOR TO THIS SOFTWARE PACKAGE, REGARDING THE ACCURACY, SAFETY,

FITNESS FOR A PARTICULAR PURPOSE, OR ANY OTHER QUALITY OR CHARACTERISTIC

OF THIS SOFTWARE, OR ANY DERIVATIVE SOFTWARE.

Export restriction Disclaimer:

We believe that CWP/SU: Seismic Un*x is a low technology product that does

not appear on the Department of Commerce CCL list of restricted exports.

Accordingly, we believe that our product meets the qualifications of

an ECCN (export control classification number) of EAR99 and we believe

it fits the qualifications of NRR (no restrictions required), and

is thus not subject to export restrictions of any variety.

Limited License:

The CWP/SU Seismic Un*x package (SU) is not public domain software, but

it is available free under the following terms and conditions:

1. Permission to use, copy, and modify this software for any purpose without

fee and within the guidelines set forth below is hereby granted, provided

that the above copyright notice, the warranty disclaimer, and this

permission notice appear in all copies, and the name of the

Colorado School of Mines (CSM) not be used

in advertising or publicity pertaining to this software without the

specific, written permission of CSM.

2. The simple repackaging and selling of the SU package as is, as a

commercial software product, is expressly forbidden without the prior

written permission of CSM. Any approved repackaging arrangement will

carry the following restriction: only a modest profit over reproduction

costs may be realized by the reproducer.

iii

Approved Reference Format:

In publications, please refer to SU as per the following example:

Cohen, J. K. and Stockwell, Jr. J. W., (200_), CWP/SU: Seismic Un*x

Release No. __: a free package for seismic research and processing,

Center for Wave Phenomena, Colorado School of Mines.

Recent articles about SU in peer-reviewed journals:

Saeki, T., (1999), A guide to Seismic Un*x (SU)(2)---examples of data processing (part 1), data input and preparation of headers, Butsuri-Tansa (Geophysical Exploration), vol. 52, no. 5, 465-477.

Stockwell, Jr. J. W. (1999), The CWP/SU: Seismic Un*x Package, Computers and Geosciences, May 1999.

Stockwell, Jr. J. W. (1997), Free Software in Education: A case study of CWP/SU: Seismic Un*x, The Leading Edge, July 1997.

Templeton, M. E., Gough, C.A., (1998), Web Seismic Un*x: Making seismic reflection processing more accessible, Computers and Geosciences, in press.

Acknowledgements:

SU stands for CWP/SU:Seismic Un*x, a processing line developed at Colorado

School of Mines, partially based on Stanford Exploration Project (SEP)

software.

iv

Contents

Acknowledgements v

1 About SU 1

1.1 What SU is . 2

1.2 What SU is not . 2

1.3 Obtaining and Installing SU . 3

2 Help facilities 5

2.1 SUHELP - List the Executable Programs and Shell Scripts 6

2.2 SUNAME - Lists the Name and Short Description of Every Item in SU 6

2.3 The Selfdoc - Program Self-Documentation . 7

2.4 SUDOC - List the Full Online Documentation of any Item in SU 8

2.5 SUFIND - Find SU Items with a Given String . 11

2.5.1 Getting information about SU programs 13

2.6 GENDOCS - An Instant LaTeX Document Containing All Selfdocs 14

2.7 Suhelp.html . 14

2.8 Demos . 16

2.9 Other Help Mechanisms . 16

3 Core Seismic Unix Programs 19

3.1 Reading and Writing Data to and from Tapes . 20

3.1.1 The SEGY format and the SU data format 21

3.1.2 SEGYREAD - Getting SEG-Y data into SU 21

3.1.3 SEG-Y abuses . 22

3.1.4 SEGYWRITE - Writing an SEGY Tape or Diskfile 23

3.1.5 SEGYHDRS - make SEG-Y ascii and binary headers for segywrite 23

3.1.6 BHEDTOPAR, SETBHED - Editing the binary header file 24

3.1.7 SEGDREAD - Other SEG formats . 25

3.1.8 DT1TOSU - Non-SEG tape formats . 25

3.2 Data Format conversion . 25

3.2.1 A2B and B2A - ASCII to Binary, Binary to ASCII 26

3.2.2 FTNSTRIP - Importing Fortran Data to C 26

3.2.3 Going from C to Fortran . 27

3.2.4 H2B - Importing 8 Bit Hexidecimal . 28

3.2.5 RECAST - Changing Binary Data Types 28

3.2.6 TRANSP - Transposing Binary Data . 29

v

vi CONTENTS

3.2.7 FARITH - Performs simple arithmetic on binary data. 29

3.3 Trace Header Manipulation . 30
3.3.1 SUADDHEAD - Adding SU Headers to Binary Data 30

3.3.2 SUSTRIP - Strip SU headers SU data . 30
3.3.3 SUPASTE - Paste SU Headers on to Binary Data 31

3.4 Byte Swapping . 31
3.4.1 SWAPBYTES - Swap the Bytes of Binary (non-SU) Data 31

3.4.2 SUSWAPBYTES - Swap the Bytes of SU Data 31
3.5 Setting, Editing, and Viewing Trace Header Fields 32

3.5.1 SUADDHEAD - add SU (SEGY-style) Trace Headers 33

3.5.2 SUSTRIP and SUPASTE - Strip and Paste SU Headers 33
3.5.3 SUKEYWORD - See SU Keywords . 33

3.5.4 SURANGE - Get the Range of Header Values 34
3.5.5 SUGETHW - Get the Values of Header Words in SU Data 34

3.5.6 SUSHW - Set the Header Words in SU Data 36
3.5.7 Setting Geometry - Converting Observers’ Logs to Trace Headers 38

3.5.8 SUCHW - Change (or Compute) Header Words in SU Data 39
3.5.9 SUEDIT and SUXEDIT - Edit the Header Words in SU Data 40

4 Viewing SU Data in X-Windows and PostScript 43

4.1 X-Windows Plotting Programs . 43

4.1.1 Plotting General Floating Point Data . 44
4.1.2 X-Windows Plotting of SU Data . 45

4.1.3 Special Features of X-Windows Programs 45
4.1.4 PostScript Plotting Programs . 46

4.1.5 PostScript Plotting of General Floating Point Data 46
4.1.6 PostScript Plotting of SU Data . 47

4.2 Additional PostScript Support . 48
4.2.1 PSBBOX - Changing the BoundingBox 48

4.2.2 PSMERGE, MERGE2, MERGE4 - Merging PostScript Plots 49

4.3 Trace Picking Utilities . 51
4.4 Editing SU Data . 51

4.4.1 SUWIND - window traces by key word . 52
4.4.2 SUSORT - sort on any SEGY header keywords 54

4.4.3 SURAMP and SUTAPER - tapering data values 55
4.4.4 SUKILL, SUZERO, SUNULL, SUMUTE - zeroing out data 55

4.4.5 SUVCAT and CAT - Concatenating Data 56
4.4.6 SUVLENGTH - Adjust Variable Length Traces to a Common Number of

Samples . 57

5 General Operations on SU Data 59

5.0.7 SUADDNOISE - Add noise to SU data 59
5.0.8 SUGAIN - Gaining to SU data . 59

5.0.9 SUOP - Unary Arithmetic Operations on SU Data 60
5.0.10 SUOP2 - Binary Operations with SU data 61

5.1 Transform and Filtering Operations . 62
5.1.1 Fourier Transform Operations . 62

CONTENTS vii

5.1.2 1D Fourier Transforms . 62

5.1.3 2D Fourier Transforms . 63

5.2 Hilbert Transform, Trace Attributes, and Time-Frequency Domain 64

5.3 Radon Transform - Tau P Filtering . 65

5.4 1D Filtering Operations . 65

5.4.1 SUFILTER - applies a zero-phase, sine-squared tapered filter 66

5.4.2 SUBFILT - apply Butterworth bandpass filter 66

5.4.3 SUCONV, SUXCOR - convolution, correlation with a user-supplied filter 67

5.4.4 SUPEF - Wiener predictive error filtering 67

5.4.5 SUSHAPE - Wiener shaping filter . 68

5.4.6 SURESAMP - Resample Data in Time . 68

6 Seismic Modeling Utilities 69

6.1 Background Wavespeed Profiles . 69

6.2 Uniformly Sampled Models . 69

6.3 Synthetic Data Generators . 70

6.4 Delaunay Triangulation . 70

6.4.1 Triangulated Model Building . 71

6.4.2 Synthetic Seismic Data in Triangulated Media 71

6.5 Tetrahedral Methods . 71

7 Seismic Processing Utilities 73

7.1 SUSTACK, SURECIP, SUDIVSTACK - Stacking Data 73

7.2 SUVELAN, SUNMO - Velocity Analysis and Normal Moveout Correction 73

7.3 SUDMOFK, SUDMOTX, SUDMOVZ - Dip Moveout Correction 73

7.4 Seismic Migration . 74

7.4.1 SUGAZMIG, SUMIGPS, SUMIGPSPI, SUMIGSPLIT - Phase Shift Mi-

gration . 74

7.4.2 SUKDMIG2D, SUMIGTOPO2D, SUDATUMK2DR, SUDATUMK2DS -
2D Kirchhoff Migration, and Datuming 74

7.4.3 SUMIGFD, SUMIGFFD - Finite-Difference Migration 74

7.4.4 SUMIGTK - Time-Wavenumber Domain Migration 74

7.4.5 SUSTOLT - Stolt Migration . 74

8 Processing Flows with SU 75

8.1 SU and UNIX . 75

8.2 Understanding and using SU shell programs . 76

8.2.1 A simple SU processing flow example . 76

8.2.2 Executing shell programs . 78

8.2.3 A typical SU processing flow . 78

8.3 Extending SU by shell programming . 80

9 Answers to Frequently Asked Questions 85

9.1 Installation questions . 85

9.2 Data format questions . 86

9.3 Tape reading and writing . 89

9.4 Geometry Setting . 90

viii CONTENTS

9.5 Technical Questions . 92
9.6 General . 92

10 How to Write an SU Program 97

10.1 Setting up the Makefile . 97
10.2 A template SU program . 98

10.3 Writing a new program: suvlength . 100

A Obtaining and Installing SU 105
A.1 Obtaining files by anonymous ftp . 105

A.2 Requirements for installing the package . 106
A.3 A quick test . 107

B Help Facililties 109
B.1 Suhelp . 109

B.2 Suname . 111
B.3 Suhelp.html . 122

B.4 SUKEYWORD - list the SU datatype (SEGY) Keywords 127

C DEMOS - a brief descriptions of the demos 139

Acknowledgments

The Seismic Unix project is partially funded by the Society of Exploration Geophysicists (SEG),

and by the Center for Wave Phenomena (CWP), Department of Geophysical Engineering,
Colorado School of Mines. Past support for SU has included these groups, as well as the Gas

Research Institute (GRI).

Thank you SEG, and CWP for your continued support!

The sponsors of the CWP Consortium Project have long been partners in the SU project
and we are pleased to explicitly acknowledge that relationship here. In addition, we wish to

acknowledge extra support supplied in the past by IBM Corporation and by the Center for
Geoscience Computing at the Colorado School of Mines during the late 1980’s when SU was
ported to the modern workstation from its previous incarnation on graphics terminals.

So many faculty and students, both at our Center and elsewhere, have contributed to SU,

that it is impossible to list them all here. However, certain people have made such important
contributions that they deserve explicit mention.

Einar Kjartansson began writing what is now called SU (the SY package) in the late 1970’s

while still a graduate student at Jon Claerbout’s Stanford Exploration Project (SEP). He
continued to expand the package while he was a professor at the University of Utah in the
early eighties. In 1984, during an extended visit to SEP Einar introduced SY to Shuki Ronen,

then a graduate student at Stanford. Ronen further developed SY from 1984 to 1986. Other
students at SEP started to use it and contributed code and ideas. SY was inspired by much

other software developed at SEP and benefited from the foundations laid by Clarbout and many
of his students; Rob Clayton, Stew Levin, Dave Hale, Jeff Thorson, Chuck Sword, and others

who pioneered seismic processing on Unix in the seventies and early eighties.

In 1986, Shuki Ronen brought this work to our Center during a one year postdoctoral
appointment at the Colorado School of Mines. During this time, Ronen aided Cohen in turning

SU into a supportable and exportable product.

Chris Liner, while a student at the Center, contributed to many of the graphics codes used in

the pre-workstation (i.e, graphics terminal) age of SU. Liner’s broad knowledge of seismology
and seismic processing enabled him to make a positive and continuing influence on the SU

coding philosophy.

Craig Artley, now at Golden Geophysical, made major contributions to the graphics codes
while a student at CWP and continues to make significant contributions to the general package.

Dave Hale wrote several of the “heavy duty” processing codes as well as most of the core

scientific and graphics libraries. His knowledge of good C-language coding practice helped make
our package an excellent example for applied computer scientists.

Ken Larner contributed many user interface ideas based on his extensive knowledge of
seismic processing in the “real world.”

ix

x ACKNOWLEDGMENTS

John Scales showed how to use SU effectively in the classroom in his electronic text, Theory
of Seismic Imaging, Samizdat Press, 1994. This text is available from the Samizdat press site

at: samizdat.mines.edu.
John Stockwell’s involvment with SU began in 1989. He is largely responsible for designing

the Makefile structure that makes the package easy to install on the majority of Unix platforms.
He has been the main contact for the project since the first public release of SU in September

of 1992 (Release 17). After Jack Cohen’s death in 1996, Stockwell assumed the role of principal
investigator of the SU project and has remained in this capacity to the present.

The project has also has had extensive technical help from the worldwide SU user commu-
nity. Among those who should be singled out for mention are Tony Kocurko at Memorial Uni-

versity in Newfoundland, Toralf Foerster of the Baltic Sea Research Institute in Warnemuende
Germany, Stewart A. Levin, John Anderson, and Joe Oravetz at Mobil Oil, Joe Dellinger at
Amoco, Matthew Rutty, Jens Hartmann, Alexander Koek, Michelle Miller of the University of

Southern California at Chico, Berend Scheffers, and Guy Drijkoningen, Delft, Dominique Rous-
set, Pau and Marc Schaming, Strasbourg, Matt Lamont, Curtin University, Australia, Wenying

Cai at the University of Utah, Brian Macy of Phillips Petroleum, Robert Krueger of Terrasys,
Torsten Shoenfelder of the University of Koeln, Germany, Ian Kay of the Geological Survey

of Canada, Dr. Toshiki Watanabe of the University of Kyoto. Our apologies in advance for
undoubtedly omitting mention of other deserving contributors to SU—we promise to include

you in future updates of this manual!
We especially thank Barbara McLenon for her detailed suggestions on the text and also for

her excellent design of this document, as well as the SU pamphlets, and other materials, which
we distribute at public meetings.

In Memoriam

Dr. Jack K. Cohen passed away in October 1996. The Seismic Unix package exists owing to
his knowledge of seismic processing, his creativity, and his desire to make a lasting contribution

to the scientific community. He will surely be missed by all who had contact with him in the
mathematical, geophysical, and SU-user communities.

Preface

In the 5 years that have elapsed since the first version of this manual was distributed, there
have been numerous changes in the SU package. These changes have been a result of both
in-house activities here at CWP and, equally important, to the many contributions of code,

bug fixes, extensions, and suggestions from SU users outside of CWP. After reviewing these
many changes and extensions, and after much discussion with members of the worldwide SU

user community, it has become apparent that a new manual was necessary.
This new version began in preparation for a short course on SU at the CREWES project at

the University of Calgary. Many of the items that were in the original manual, such as infor-
mation about obtaining and installing the package, have been have been moved to appendices.

Additional sections describing the core collection of programs have been added. The entire
manual has been expanded to include more detailed descriptions of the codes.

The intent is that you will be able to find your way around the package, via the help
mechanisms, that you will learn to run the programs by running the demos, and finally will be
able to see how to begin writing SU code, drawing on the source code of the package.

xi

xii ACKNOWLEDGMENTS

Chapter 1

About SU

In 1987, Jack K. Cohen and Shuki Ronen of the Center for Wave Phenomena (CWP) at the
Colorado School of Mines (CSM) conceived a bold plan. This plan was to create a seismic

processing environment for Unix-based systems, written in the C language, that would extend
the Unix operating system to seismic processing and research tasks. Furthermore, they intended

that the package be freely available as full source code to anyone who would want it.

They began with a package called SY, started by Einar Kjartansson while he was a gradu-
ate student at Jon Claerbout’s Stanford Exploration Project (SEP) in the late seventies, and
improved while he was a professor at the University of Utah in the eighties. In 1984 Einar

returned to SEP to baby sit the students (and Jon’s house) while Claerbout went for a summer
vacation. Einar introduced SY to Shuki Ronen, then a graduate student at SEP (a day before

Claerbout returned from vacation and Einar left back to Utah). Ronen further developed SY
from 1984 to 1986. Other students at SEP started to use it and contributed code and ideas.

SY was inspired by much other software developed at SEP and benefited from the foundations
laid by Clarbout and many of his students; Rob Clayton, Stew Levin, Dave Hale, Jeff Thorson,

Chuck Sword, and others who pioneered seismic processing on Unix in the seventies and early
eighties.

In 1986, when Ronen accepted a one year visiting professorship at CSM he was encouraged

by Claerbout to disseminate whatever SEP ideas and software he cared for. In the days before
Internet and ftp, SY was on a 9 track tape in the trunk of the car he drove from California to
Colorado. Ronen went to CSM to replace Jack Cohen who went on sabbatical. Fortunately

for SU, Jack’s sabbatical lasted only two months, instead of the whole year initially planned,
because of the poor health of Jack’s son Dan. Upon Jack’s return to CWP, he became interested

in SY. This package was a sharp departure from the commercial seismic processing software
that was available at the time. The industry standard at the time was to use Fortran programs

on VAX-VMS based systems.

By the time Cohen and Ronen created the first version of SU in 1987 the sponsors of CWP
had already begun showing interest in the package. The availability of Unix-based workstations

combined with the influx of Unix-literate geophysicists from the major academic institutions,
shifted the industry to using primarily Unix-based systems for research and for processing,
increasing the interest in Unix-based software, including SU.

Until September of 1992, SU was used primarily in-house at CWP. Earlier versions of SU

had been ported to CWP sponsor companies, even providing the basis for in-house seismic pro-
cessing packages developed by some of those companies! Once SU became generally available

1

2 CHAPTER 1. ABOUT SU

on the Internet, it began to be used by a much broader community. The package is used by
exploration geophysicists, earthquake seismologists, environmental engineers, software develop-

ers and others. It is used by scientific staff in both small geotechnical companies and major
oil and gas companies, and by academics and government researchers, both as a seismic data

processing and software development environment.

1.1 What SU is

The SU package is free software, meaning that you may have unrestricted use of the codes for
both processing and software development, provided that you honor the license that appears

at the beginning of this manual and as the file LEGAL STATEMENT in the current release
of the package. (This latter file takes precedence). The package is maintained and expanded

periodically, with each new release appearing at 3 to 6 month intervals, depending on changes
that accumulate in the official version here at CWP. The package is distributed with the full

source code, so that users can alter and extend its capabilities. The philosophy behind the
package is to provide both a free processing and development environment in a proven structure

that can be maintained and expanded to suit the needs of a variety of users.
The package is not necessarily restricted to seismic processing tasks, however. A broad

suite of wave-related processing can be done with SU, making it a somewhat more general
package than the word “seismic” implies. SU is intended as an extension of the Unix operating
system, and therefore shares many characteristics of the Unix, including Unix flexibility and

expandibility. The fundamental Unix philosophy is that all operating system commands are
programs run under that operating system. The idea is that individual tasks be identified, and

that small programs be written to do those tasks, and those tasks alone. The commands may
have options that permit variations on those tasks, but the fundamental idea is one-program,

one-task. Because Unix is a multi-tasking operating system, multiple processes may be strung
together in a cascade via “pipes” (|).

This decentralization has the advantage of minimizing overhead by not launching single
“monster” applications that try to do everything, as is seen in Microsoft applications, or in

some commercial seismic utilities, for example.
Unix has the added feature of supporting a variety of shell languages, making Unix, itself,

a meta-language. Seismic Unix benefits from all of these attributes as well. In combination
with standard Unix programs, Seismic Unix programs may be used in shell scripts to extend
the functionality of the package.

Of course, it may be that no Unix or Seismic Unix program will fulfill a specific task. This
means that new code has to be written. The availability of a standard set of source code,

designed to be readable by human beings, can expedite the process of extending the package
through the addition of new source code.

1.2 What SU is not

The SU package is not a graphical user interface driven utility at this time, though there

are several possibilities including Java and TCL/TK scripts, which may be exploited for this
purpose in the future. Because most commercial seismic processing packages are GUI-based, it

is unavoidable that users will expect SU to be similar to these packages. However, this is not
a fair comparison, for several reasons.

1.3. OBTAINING AND INSTALLING SU 3

As mentioned above, SU is an extension of the Unix operating system. Just as there are no
GUI driven Unix operating systems that give full access to all of the capabilities of Unix from

menus, it is not reasonable to expect full access to Seismic Unix through such an interface. At
most, any SU interface will give limited access to the capabilities of the package.

SU is not a replacement for commercial seismic packages. Commercial seismic software
packages are industrial-strength utilities designed for the express purpose of production-level

seismic processing. If you do commercial-level processing, and have dedicated, or plan to
dedicate funds to purchase one or more license of such commercial software, then it is unlikely

that you will be able to substitute SU for the commercial utility.
However, SU can be an important adjunct to any commercial package you use. Where

commercial packages are used for production work, SU often has found a place as a proto-
typing package. Also, if new code needs to be written, SU can provide a starting base for
new software applications. Indeed, the availability of seismic processing capability may encour-

age non-processors to experiment with processing, non-software-developers to experiment with
software development, and non-researchers to engage in research.

SU is not confined to seismic applications. It may find use, both in geophysical and more
general signal processing applications. It certainly can be useful for teaching students about

“wave related” signal processing and, particularly, Fourier transform properties. This can
include radar, non-seismic acoustics, and image processing, just to name a few.

Another thing that SU is not, at least in its current version, is a 3D package. However, it
is not, expressly a 2D package, either, as there are numerous filtering and trace manipulation

tasks that are the same in 2D as in 3D. It is likely, however, that there will be 3D applications
in future releases of SU. A single 3D migration code appeared first in Release 32, which will
hopefully set the stage for new developments.

1.3 Obtaining and Installing SU

Because the coding standards of SU stress portability, the package will install on any system

that is running some form of the Unix operating system, and has a decent version of “make”
and an ANSI C compiler. The programs GNU Make and GCC may be substituted for these
respective programs on most systems.1

New releases of SU are issued at 3 to 6 month intervals, depending upon the accumulation
of changes in the home version at CWP. Old releases are not supported. However, if materials

appear to break between releases, please contact me (John Stockwell) by email so that we can
fix the problem.

Instructions for obtaining and installing SU may be found in Appendix A of this manual.

1Remarkably, a software package called CYGWIN32, recently released by the GNU project, provides enough
Unix-like functionality, so that SU may be ported to Windows NT, with no changes to the SU source code or
Makefiles!

4 CHAPTER 1. ABOUT SU

Chapter 2

Help facilities

Like the Unix operating system, Seismic Unix may be thought of as a language (or meta-

language). As with any language, a certain amount of vocabulary must be mastered before
useful operations may be performed. Because the SU contains many programs, there must

be a “dictionary” to permit the inevitable questions about vocabulary can be answered. It is
intended that this manual be the beginning of such a dictionary.

SU does not have “man pages,” in the same way that Unix does, but it does have equiv-
alent internal documentation mechanisms. There is a general level help utilities which give

an overview of what is available. For information about specific aspects of a particular code,
the majority of the programs contain a selfdoc—a self-documentation paragraph, which will
appear when the name of the program is typed on the commandline, with no options.

(In all of the examples that follow, the percent sign “%” indicates a Unix commandline
prompt, and is not typed as part of the command.)

The following tools provide internal documentation at various levels of detail for the main
programs, shell scripts, and library functions in the package:

• SUHELP - list the CWP/SU programs and shells

• SUNAME - get name line from self-docs and location of the source code

• The selfdoc - is an internal documentation utility which exists in the majority of executable

mains and shell scripts. The selfdoc is seen by typing the name of the program or shell
script on the commandline with no arguments, and without redirection of input or output

via pipes | or Unix redirects > <, For non-executables (library routines) and for programs
without the selfdoc feature, there is a dummy selfdoc included which provides a database
of information about those items, as well,

• SUDOC - get DOC listing for code

• SUFIND - get info from self-docs

• GENDOCS - generate complete list of selfdocs in latex form

• suhelp.html - is an HTML global overview of SU programs by subject matter,

• SUKEYWORD – guide to SU keywords in segy.h

This chapter discusses each of these utilities, with the intent of showing the reader how to
get from the most general to the most specific information about SU programs.

5

6 CHAPTER 2. HELP FACILITIES

2.1 SUHELP - List the Executable Programs and Shell Scripts

For a general listing of the contents of SU, which includes each executable (that is, each main
program and shell script) in the package type:

% suhelp

CWP PROGRAMS: (no self-documentation)

ctrlstrip fcat maxints t

downfort isatty pause upfort

PAR PROGRAMS: (programs with self-documentation)

a2b kaperture resamp transp vtlvz

b2a makevel smooth2 unif2 wkbj

farith mkparfile smoothint2 unisam

ftnstrip prplot subset unisam2

h2b recast swapbytes velconv

press return key to continue

....

Please type suhelp or see Appendix B for the full text.

Another useful command sequence is:

% suhelp | lpr

which will the output from suhelp to the local print.

2.2 SUNAME - Lists the Name and Short Description of Every
Item in SU

A more complete listing of the contents of the CWP/SU package may be obtained by typing

% suname

----- CWP Free Programs -----

CWPROOT=/usr/local/cwp

Mains:

In CWPROOT/src/cwp/main:

* CTRLSTRIP - Strip non-graphic characters

* DOWNFORT - change Fortran programs to lower case, preserving strings

* FCAT - fast cat with 1 read per file

* ISATTY - pass on return from isatty(2)

* MAXINTS - Compute maximum and minimum sizes for integer types

* PAUSE - prompt and wait for user signal to continue

* T - time and date for non-military types

* UPFORT - change Fortran programs to upper case, preserving strings

In CWPROOT/src/par/main:

2.3. THE SELFDOC - PROGRAM SELF-DOCUMENTATION 7

A2B - convert ascii floats to binary

B2A - convert binary floats to ascii

DZDV - determine depth derivative with respect to the velocity ",

FARITH - File ARITHmetic -- perform simple arithmetic with binary files

FTNSTRIP - convert a file of floats plus record delimiters created

H2B - convert 8 bit hexidecimal floats to binary

KAPERTURE - generate the k domain of a line scatterer for a seismic array

MAKEVEL - MAKE a VELocity function v(x,y,z)

MKPARFILE - convert ascii to par file format

PRPLOT - PRinter PLOT of 1-D arrays f(x1) from a 2-D function f(x1,x2)

RAYT2D - traveltime Tables calculated by 2D paraxial RAY tracing

RECAST - RECAST data type (convert from one data type to another)

REGRID3 - REwrite a [ni3][ni2][ni1] GRID to a [no3][no2][no1] 3-D grid

RESAMP - RESAMPle the 1st dimension of a 2-dimensional function f(x1,x2)

...

Please type: suhelp or see Appendix B for the full text.

2.3 The Selfdoc - Program Self-Documentation

There are no Unix man pages for SU. To some people that seems to be a surprise (even

a disappointment) as this would seem to be a standard Unix feature, which Seismic Unix
should emulate. The package does contain an equivalent mechanism called a selfdoc or self-

documentation feature.

This is a paragraph that is written into every program, and arranged so that if the name
of the program is typed on the commandline of a Unix terminal window, with no options or
redirects to or from files, the paragraph is printed to standard error (the screen).

For example:

% sustack

SUSTACK - stack adjacent traces having the same key header word

sustack <input >output [Optional parameters]

Required parameters:

none

Optional parameters:

key=cdp header key word to stack on

normpow=1.0 each sample is divided by the

normpow’th number of non-zero values

stacked (normpow=0 selects no division)

verbose=0 verbose = 1 echos information

Note: The offset field is set to zero on the output traces.

Sushw can be used afterwards if this is not acceptable.

The first line indicates the name of the program sustack and a short description of what

the program does. This is the same line that appears for the listing of sustack in the suname
listing. The second line

8 CHAPTER 2. HELP FACILITIES

sustack <stdin >stdin [Optional parameters]

indicates how the program is to be typed on the commandline, with the words “stdin” and
“stdout” indicating that the input is from the standard input and standard output, respectively.

What this means in Unix terms is that the user could be inputting and outputting data via
diskfiles or the Unix “redirect in” < and “redirect out” > symbols, or via pipes |.

The paragraphs labeled by “Required parameters:” and “Optional parameters” indicate

the commandline parameters which are required for the operation of the program, and those
which are optional. The default values of the Optional parameters are given via the equality

are the values that the program assumes for these parameters when data are supplied, with no
additional commandline arguments given. For example: “key=cdp” indicates that sustack will

stack over the common depth point gather number field, “cdp.” (The shell script sukeyword
tells the choices of keyword that are available.)

2.4 SUDOC - List the Full Online Documentation of any Item

in SU

As has been alluded to in previous sections of this manual, there is a database of selfdocumen-
tation items that is available for each main program, shell script, and library function. This

database exists in the directory $CWPROOT/src/doc and is composed of all of the selfdocu-
mentation paragraphs of all of the items in SU.

Because not all all items with selfdocs are executable, an additional mechanism is nec-

essary to see the selfdoc for these items. For example, information about the Abel trans-
form routines, located in $CWPROOT/src/cwp/lib/abel.c (on the system at CWP, CWP-
ROOT=/usr/local/cwp) is obtained via

% sudoc abel

In /usr/local/cwp/src/cwp/lib:

ABEL - Functions to compute the discrete ABEL transform:

abelalloc allocate and return a pointer to an Abel transformer

abelfree free an Abel transformer

abel compute the Abel transform

Function prototypes:

void *abelalloc (int n);

void abelfree (void *at);

void abel (void *at, float f[], float g[]);

Input:

ns number of samples in the data to be transformed

f[] array of floats, the function being transformed

Output:

at pointer to Abel transformer returned by abelalloc(int n)

g[] array of floats, the transformed data returned by

abel(*at,f[],g[])

2.4. SUDOC - LIST THE FULL ONLINE DOCUMENTATION OF ANY ITEM IN SU 9

Notes:

The Abel transform is defined by:

Infinity

g(y) = 2 Integral dx f(x)/sqrt(1-(y/x)^2)

|y|

Linear interpolation is used to define the continuous function f(x)

corresponding to the samples in f[]. The first sample f[0] corresponds

to f(x=0) and the sampling interval is assumed to be 1. Therefore, the

input samples correspond to 0 <= x <= n-1. Samples of f(x) for x > n-1

are assumed to be zero. These conventions imply that

g[0] = f[0] + 2*f[1] + 2*f[2] + ... + 2*f[n-1]

References:

Hansen, E. W., 1985, Fast Hankel transform algorithm: IEEE Trans. on

Acoustics, Speech and Signal Processing, v. ASSP-33, n. 3, p. 666-671.

(Beware of several errors in the equations in this paper!)

Authors: Dave Hale and Lydia Deng, Colorado School of Mines, 06/01/90

Here we see that sudoc shows information about the routines, including their names, usage

information (via the function prototype), some theory of how the items are used, published
references, and finally the author’s names.

As an another example, type:

% sugabor

SUGABOR - Outputs a time-frequency representation of seismic data via

the Gabor transform-like multifilter analysis technique

presented by Dziewonski, Bloch and Landisman, 1969.

sugabor <stdin >stdout [optional parameters]

Required parameters:

if dt is not set in header, then dt is mandatory

Optional parameters:

dt=(from header) time sampling interval (sec)

fmin=0 minimum frequency of filter array (hz)

fmax=NYQUIST maximum frequency of filter array (hz)

beta=3.0 ln[filter peak amp/filter endpoint amp]

band=.05*NYQUIST filter bandwidth (hz)

alpha=beta/band^2 filter width parameter

verbose=0 =1 supply additional info

Notes: This program produces a muiltifilter (as opposed to moving window)

representation of the instantaneous amplitude of seismic data in the

time-frequency domain. (With Gaussian filters, moving window and multi-

filter analysis can be shown to be equivalent.)

An input trace is passed through a collection of Gaussian filters

10 CHAPTER 2. HELP FACILITIES

to produce a collection of traces, each representing a discrete frequency

range in the input data. For each of these narrow bandwidth traces, a

quadrature trace is computed via the Hilbert transform. Treating the narrow

bandwidth trace and its quadrature trace as the real and imaginary parts

of a "complex" trace permits the "instantaneous" amplitude of each

narrow bandwidth trace to be compute. The output is thus a representation

of instantaneous amplitude as a function of time and frequency.

Some experimentation with the "band" parameter may necessary to produce

the desired time-frequency resolution. A good rule of thumb is to run

sugabor with the default value for band and view the image. If band is

too big, then the t-f plot will consist of stripes parallel to the frequency

axis. Conversely, if band is too small, then the stripes will be parallel

to the time axis.

Examples:

suvibro | sugabor | suximage

suvibro | sugabor | suxmovie n1= n2= n3=

(because suxmovie scales it’s amplitudes off of the first panel,

may have to experiment with the wclip and bclip parameters

suvibro | sugabor | supsimage | ... (your local PostScript utility)

If you compare this output to the output from typing:

% sudoc sugabor

You will see the same output as above, preceeded by a line showing the location of the
source code, and followed by the additional paragraphs:

Credits:

CWP: John Stockwell, Oct 1994

Algorithm:

This programs takes an input seismic trace and passes it

through a collection of truncated Gaussian filters in the frequency

domain.

The bandwidth of each filter is given by the parameter "band". The

decay of these filters is given by "alpha", and the number of filters

is given by nfilt = (fmax - fmin)/band. The result, upon inverse

Fourier transforming, is that nfilt traces are created, with each

trace representing a different frequency band in the original data.

For each of the resulting bandlimited traces, a quadrature (i.e. pi/2

phase shifted) trace is computed via the Hilbert transform. The

bandlimited trace constitutes a "complex trace", with the bandlimited

trace being the "real part" and the quadrature trace being the

"imaginary part". The instantaneous amplitude of each bandlimited

trace is then computed by computing the modulus of each complex trace.

2.5. SUFIND - FIND SU ITEMS WITH A GIVEN STRING 11

(See Taner, Koehler, and Sheriff, 1979, for a discussion of complex

trace analysis.

The final output for a given input trace is a map of instantaneous

amplitude as a function of time and frequency.

This is not a wavelet transform, but rather a redundant frame

representation.

References: Dziewonski, Bloch, and Landisman, 1969, A technique

for the analysis of transient seismic signals,

Bull. Seism. Soc. Am., 1969, vol. 59, no.1, pp.427-444.

Taner, M., T., Koehler, F., and Sheriff, R., E., 1979,

Complex seismic trace analysis, Geophysics, vol. 44,

pp.1041-1063.

Chui, C., K.,1992, Introduction to Wavelets, Academic

Press, New York.

Trace header fields accessed: ns, dt, trid, ntr

Trace header fields modified: tracl, tracr, d1, f2, d2, trid, ntr

There is more information in the sudoc listing, than in the selfdoc listing. The selfdoc
is intended as a quick reference, whereas the sudoc listing can provide additional information

that we do not necessarily want to see everytime we are, say, simply wanting to know what a
particular parameter means, for example.

2.5 SUFIND - Find SU Items with a Given String

The “doc” database (located in $CWPROOT/src/doc) may also be searched for specific strings,
or topics. The shell script sufind serves this purpose. If you type sufind with no options, you
will see

% sufind

sufind - get info from self-docs about SU programs

Usage: sufind [-v -n -P<command_pattern>] string

("string" can be an "egrep" pattern)

"sufind string" gives brief synopses

"sufind -v string" verbose hunt for relevant items

"sufind -n name_fragment" searches for command name

"sufind -P<pattern> string"

gives brief synopses by searching for "string" among

commands/libraries whose names match the "pattern"

showing that there is some sophisticated functionality which may help you find items of a

particular type in the SU package.
As an example of this, let’s say that you are looking for programs that use the fast Fourier

transform algorithms in SU, type

12 CHAPTER 2. HELP FACILITIES

% sufind fft

FFTLAB - Motif-X based graphical 1D Fourier Transform

Usage: fftlab

HANKEL - Functions to compute discrete Hankel transforms

hankelalloc allocate and return a pointer to a Hankel transformer

hankelfree free a Hankel transformer

PFAFFT - Functions to perform Prime Factor (PFA) FFT’s, in place

npfa return valid n for complex-to-complex PFA

npfar return valid n for real-to-complex/complex-to-real PFA

SUAMP - output amp, phase, real or imag trace from

(frequency, x) domain data

suamp <stdin >stdout mode=amp

SUFFT - fft real time traces to complex frequency traces

suftt <stdin >sdout sign=1

SUFRAC -- take general (fractional) time derivative or integral of

data, plus a phase shift. Input is TIME DOMAIN data.

sufrac power= [optional parameters] <indata >outdata

SUIFFT - fft complex frequency traces to real time traces

suiftt <stdin >sdout sign=-1

SUMIGPS - MIGration by Phase Shift with turning rays

sumigps <stdin >stdout [optional parms]

SUMIGTK - MIGration via T-K domain method for common-midpoint stacked data

sumigtk <stdin >stdout dxcdp= [optional parms]

SURADON - forward generalized Radon transform from (x,t) -> (p,tau) space.

suradon <stdin >stdout [Optional Parameters]

2.5. SUFIND - FIND SU ITEMS WITH A GIVEN STRING 13

For more information type: "program_name <CR>"

The final line of this output ends with a symbol meant to indicate that the user is to type a

carriage return.1 As you can see, there is a mixed collection of programs which are either demos
of the CWP/SU prime factor fft routines (pfafft), libraries containing the routines, or programs

that use fft routines.

2.5.1 Getting information about SU programs

A more specific example would be to use sufind to look for dip moveout (DMO) programs:

% sufind dmo

SUDMOFK - DMO via F-K domain (log-stretch) method for common-offset gathers

sudmofk <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

SUDMOTX - DMO via T-X domain (Kirchhoff) method for common-offset gathers

sudmotx <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [optional parms]

SUDMOVZ - DMO for V(Z) media for common-offset gathers

sudmovz <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

SUFDMOD2 - Finite-Difference MODeling (2nd order) for acoustic wave equation

sufdmod2 <vfile >wfile nx= nz= tmax= xs= zs= [optional parameters]

SUSTOLT - Stolt migration for stacked data or common-offset gathers

sustolt <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

The last two “hits” are spurious, but we see that three DMO programs have been found.
Now use the self-doc facility to get more information about sudmofk:

% sudmofk

SUDMOFK - DMO via F-K domain (log-stretch) method for common-offset gathers

sudmofk <stdin >stdout cdpmin= cdpmax= dxcdp= noffmix= [...]

Required Parameters:

cdpmin minimum cdp (integer number) for which to apply DMO

cdpmax maximum cdp (integer number) for which to apply DMO

dxcdp distance between adjacent cdp bins (m)

noffmix number of offsets to mix (see notes)

1The phrase “carriage return” refers to an older technology, the typewriter. Ask your parents (or grandparents)
for further details.

14 CHAPTER 2. HELP FACILITIES

Optional Parameters:

tdmo=0.0 times corresponding to rms velocities in vdmo (s)

vdmo=1500.0 rms velocities corresponding to times in tdmo (m/s)

sdmo=1.0 DMO stretch factor; try 0.6 for typical v(z)

fmax=0.5/dt maximum frequency in input traces (Hz)

verbose=0 =1 for diagnostic print

Notes:

Input traces should be sorted into common-offset gathers. One common-

offset gather ends and another begins when the offset field of the trace

headers changes.

The cdp field of the input trace headers must be the cdp bin NUMBER, NOT

the cdp location expressed in units of meters or feet.

The number of offsets to mix (noffmix) should typically equal the ratio of

the shotpoint spacing to the cdp spacing. This choice ensures that every

cdp will be represented in each offset mix. Traces in each mix will

contribute through DMO to other traces in adjacent cdps within that mix.

The tdmo and vdmo arrays specify a velocity function of time that is

used to implement a first-order correction for depth-variable velocity.

The times in tdmo must be monotonically increasing.

For each offset, the minimum time at which a non-zero sample exists is

used to determine a mute time. Output samples for times earlier than this

mute time will be zeroed. Computation time may be significantly reduced

if the input traces are zeroed (muted) for early times at large offsets.

Trace header fields accessed: ns, dt, delrt, offset, cdp.

By using sufind in conjunction with the selfdoc feature (or sudoc), and choosing smart strings
to search on, it is possible to find a great deal of detailed information about SU’s facilities.

2.6 GENDOCS - An Instant LaTeX Document Containing All

Selfdocs

The ultimate shell script for exploiting the sudoc database is gendocs. Typing:

% gendocs -o

will generate the 528+ page document “selfdocs.tex”, which is in LaTeX format. You may

process this using LaTeX on your system. Obviously, you must really be sure that you want to
print this document, considering its size. However, it does contain all of the self-documentations

for all CWP/SU programs, library routines, and shell scripts, and may be a useful one-to-a-lab
type reference.

2.7 Suhelp.html

Long-time SU contributor, Dr. Christopher L. Liner of the University of Tulsa, created the
following document which may be accessed from the CWP/SU web site, or from his location

2.7. SUHELP.HTML 15

of:

http://www.mcs.utulsa.edu/~cll/suhelp/suhelp.html

SeismicUn*x

Version 33 (5 April 1999)

An HTML Help Browser

* This is a help browser for the SeismicUn*x free software package

developed and maintained by the Center for Wave Phenomena at the

Colorado School of Mines. The SU project is directed at CWP by John

Stockwell.

* The author of this help facility is Dr. Christopher Liner (an alumnus

of CWP) who is a faculty member in the Department of Geosciences at The

University of Tulsa.

* Last updated January 16, 1998

o The arrangement below is by funtionality

o Clicking on a program name pulls up the selfdoc for that item

o Your web browser’s Find capability is useful if you have a

fragment in mind (e.g. sort or nmo)

o While programs may logically apply to more than one catagory

below, each program appears only once

1. Functional Listing

1. Data Compression

2. Editing, Sorting and Manipulation

3. Filtering, Transforms and Attributes

4. Gain, NMO, Stack and Standard Processes

5. Graphics

6. Import/Export

7. Migration and Dip Moveout

8. Simulation and Model Building

9. Utilities

* Alphabetical name list * 280 items

* List is for scanning only, it * For further info on an

does not pull up the selfdoc of interesting item use your

a selected item. browser’s find command, then

follow the link

--

Data Compression

Discrete Cosine Transform

* dctcomp * dctuncomp

16 CHAPTER 2. HELP FACILITIES

Packing * supack1 * suunpack1

* supack2 * suunpack2

* wpc1comp2 * wpc1uncomp2

Wavelet Transform * wpccompress * wpcuncompress

* wptcomp * wptuncomp

* wtcomp * wtuncomp

Go to top

...

To see the full listing see Appendix B or point your web browser to the http address above.

2.8 Demos

The SU package contains a suite of demos, which are shell scripts located in the directory
$CWPROOT/src/demos.

The instructions for accessing the demos are located in the $CWPROOT/src/demos/README

• The Making Data demos shows the basics of making synthetic data shot gathers and

common offset sections using susynlv. Particular attention is paid to illustrating good
display labeling.

• The Filtering/Sufilter demo illustrates some real data processing to eliminate ground roll

and first arrivals. The demos in the Filtering subdirectories give instructions for accessing
the data from the CWP ftp site.

• The Deconvolution demo uses simple synthetic spike traces to illustrate both dereverber-
ation and spiking decon using supef and other tools. The demos include commands for
systematically examining the effect of the filter parameters using loops.

• The Sorting Traces Tutorial is an interactive script that reinforces some of the basic UNIX
and SU lore discussed in this document. The interactivity is limited to allowing you to set

the pace. Such tutorials quickly get annoying, but we felt that one such was needed to
cover some issues that didn’t fit into our standard demo format. There is also a standard,

but less complete, demo on this topic.

• The next step is to activate the Selecting Traces Demo. Then proceed to the NMO Demo.

Beyond that, visit the Demo directories that interest you. The demos directory tree is still

under active development—please let us know if the demos are helpful and how they can be
improved.

2.9 Other Help Mechanisms

• SUKEYWORD - List SU Header Field Key Words Many of the SU programs that draw
on header field information have the parameter “key=” listed in their selfdocs, with the
reference to “keywords.” The SU keywords are based on the SEGY trace header fields.
(This will be explained later, in the sections on tape reading and data format conversion.)
To find out what these header fields are, and what they stand for in the SU data type,
type:

2.9. OTHER HELP MECHANISMS 17

% sukeyword -o

Please see Appendix B for the full text of the output. See Section 3.5.3 for details on

the usage of this command. A number of programs sort data, window data, and display
data by making use of the values in the SU header fields, making sukeyword an oft-used

utility.

• The essence of SU usage is the construction of shell programs to carry out coordinated
data processing. The su/examples directory contains a number of such programs. By

the way, the terms “shell scripts,” “shell programs,” “shell files,” and “shells,” are used
interchangeably in the UNIX literature.

• The faq directory contains a growing collection of answers to frequently asked questions
about SU, including detailed information about tape reading, data format questions, and

seismic processing tips.

• The text book, Theory of Seismic Imaging, by John A. Scales, Samizdat Press, 1994, is
available in our anonymous ftp site in both 300 and 400 dots per inch PostScript for-
mat: pub/samizdat/texts/imaging/imaging_300dpi.ps.Z or imaging_400dpi.ps.Z.

The exercises in this text make extensive use of SU.

You should not hesitate to look at the source code itself. Section 10.2 explains the key SU

coding idioms. Please let us know if you discover any inconsistencies between the source and
our documentation of it. We also welcome suggestions for improving the comments and style

of our codes. The main strength of the SU package is that it is a source-code product. No
commercial package can give you the source code, for obvious reasons.

You may direct email to: john@dix.mines.edu if you have comments, questions, suggestions

regarding SU, or if you have your own SU-style programs to contribute to the package.

18 CHAPTER 2. HELP FACILITIES

Chapter 3

Core Seismic Unix Programs

The core of the Seismic Unix program set performs a broad collection of tasks, which may be
viewed as being common to a large collection of research and processing disciplines. Many,

however, are purely seismic in nature, and are indicated as such in the text.

Some of these tasks include

• input/output issues

• data format conversion,

• setting, viewing, and editing trace header fields

• viewing SU data,

• windowing, sorting, and editing the data.

• general operations,

• transform and filtering operations,

• seismic operations on SU data.

It is the intent of the chapters that follow is to deal with many of these issues. Please note
that more detailed information about any of the programs discussed can be obtained by typing
the name of the program on the commandline with no arguments,

% programname

or by typing:

% sudoc programname

to see the selfdoc information.

This chapter does not cover all SU programs, but just a sufficient number such that a person
with some Unix experience can get started with the package. Once you get the idea of how

SU is used, then you may draw on the help facilities to discover additional programs in the
package.

19

20 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

3.1 Reading and Writing Data to and from Tapes

Reading tapes is more of an art than a science. This is true in general, and is especially true for

SU. The variability of hardware formats, as well as the variability of data format types, makes
the creation of a “general tape reading utility” a challenging, if not impossible, proposition.

The following programs are useful for the specialized data input and output tasks related

to geophysical applications, as well as to the internal SU data format

• BHEDTOPAR - convert a Binary tape HEaDer file to PAR file format

• DT1TOSU - Convert ground-penetrating radar data in the Sensors & Software X.dt1
GPR format to SU format

• SEGDREAD - read an SEG-D tape

• SEGYCLEAN - zero out unassigned portion of header

• SEGYREAD - read an SEG-Y tape

• SEGYHDRS - make SEG-Y ascii and binary headers for segywrite

• SEGYWRITE - write an SEG-Y tape

• SETBHED - SET the fields in a SEGY Binary tape HEaDer file

• SUADDHEAD - put headers on bare traces and set the tracl and ns fields

• SUSTRIP - remove the SEGY headers from the traces

• SUPASTE - paste existing SEGY headers on existing data

The following programs are useful for general data input, output, and data type conversion,

which may also find use in tape reading,

• A2B - convert ascii floats to binary

• B2A - convert binary floats to ascii

• FTNSTRIP - convert Fortran floats to C-style floats

• H2B - convert 8 bit hexidecimal floats to binary

• RECAST - RECAST data type (convert from one data type to another)

• TRANSP - TRANSPose an n1 by n2 element matrix

3.1. READING AND WRITING DATA TO AND FROM TAPES 21

3.1.1 The SEGY format and the SU data format

The data format that is expected by all programs in the CWP/SU package whose names begin
with the letters ‘su’ (with the exception of the program subset), consists of “SEGY traces

written in the native binary format of the machine you are running the programs on.” To
understand what this phrase means, we must understand what the SEGY standard is.

In the early 1980’s, the most common data storage format was SEG-Y. This is the Society
of Exploration Geophysicists Y format which is described in the SEG’s publication Digital Tape

Standards . The format is still widely used, today, though there is no guarantee that the format
is used “by the book.”

The SEGY data format consists of 3 parts. The first part is a 3200 byte EBCDIC card image

header which contains 40 cards (i.e. 40 lines of text with 80 characters per line) worth of text
data describing the tape. The second part is a 400 byte binary header containing information

about the contents of the tape reel. The third portion of the SEG-Y format consists of the
actual seismic traces. Each trace has a 240 byte trace header . The data follow, written in one
of 4 possible 32 formats in IBM floating point notation as defined in IBM Form GA 22-6821.

(Note, this “IBM format” is not the common IEEE format found on modern IBM PC’s.)

The SU data format is based on the trace portion of the SEGY format. The primary
difference between the SEGY traces and SU traces is that the data portion of the SU format

are floats, written in the native binary float format of the machine you are running SU on. SU
data consists of the SEGY traces only ! The ebcdic and binary reel headers are not preserved

in the SU format, so simply redirecting in a SEGY file will not work with any SU program.
To convert SEGY data into a form that can be used by SU programs, you will need to use

segyread.

3.1.2 SEGYREAD - Getting SEG-Y data into SU

The program segyread is used to convert data from the SEGY format to the SU format. If
you type:

% segyread

You will see the selfdoc for this program.

When reading a SEGY tape, or datafile, you will need to be aware of the byte-order (endian)
of the machine you are running on. The so-called “big-endian” or high-byte IEEE format is

found on SGI, SUN, IBM RS6000, and all Motorola chip-based systems. The “little-endian”
or low-byte systems are systems that are based on Intel and Dec chips. You will also need to

know what Unix device your tape drive is.
A typical execution of segyread on a big-endian machine, looks like this:

% segyread tape=/dev/rmt0 verbose=1 endian=1 > data.su

More often you will have to use the following

% segyread tape=/dev/rmt0 verbose=1 endian=1 | segyclean > data.su

for reading a tape on a big-endian platform.
There are optional header fields (bytes 181-240) in the SEGY trace headers. There is no

standard for what may go in these fields, so many people have items that they place in these
fields for their own purposes. SU is no exception. There are several parameters used by SU

22 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

graphics programs that may be stored in these fields. The program segyclean zeros out the
values of the optional header fields so that SU graphics programs don’t become confused by

this information.

There are additional issues, such as whether or not your device is buffered or unbufferd (i.e.

9 track 1/2 reel tape, or 8mm Exabyte) tape which may have to be experimented with when
you actually try to read a tape. Also, if you are trying to read a tape on a different system

than the one it was made on, you may simply not be able to read the tape.

The most common problem with reading tapes is matching the density that the tape was
written in, with the tapedrive that the tape is being read on. Some systems, for example

Silicon Graphics (SGI) systems, have many tape devices, which support different hardware
configurations and tape densities. Other systems, most notably recent versions of Linux have

an improved version of the Unix command “mt” which has a “setdensities” option. In either
case, it is common for tapes to be made using the default settings of a tape drive, or its default

densities.
As a last resort in all tape reading situations, it is often possible to use the Unix device-to-

device copying program dd to make an image of the entire tape on disk

% dd if=/dev/rmtx of=filename bs=32767 conv=noerror

where “/dev/rmtx” is replaced with your tapedrive device and “filename” is some file name you

choose. If this works, then the next step is to try using segyread as above, with “tape=filename.”
If dd fails, then it is likely that the hardware format of your tapedrive is not compatible with

your tape.

Of course, the best way to prevent tape reading problems is to make sure that you talk to
the person who is writing the tape before they write it. On SGI systems, in particular, there

are so many possible choices for the type of tape format, that the person who is making the
tape must have information about the platform that the tape is intended to be read on, before

they can make a tape that is guaranteed to be readable.

3.1.3 SEG-Y abuses

Unfortunately, there are formats which are called “SEGY” but which are not true to the SEG’s
standards for SEGY. One common variation is to honor most of the SEGY convention, but

have the traces be in an IEEE format.
Such data would be read via:

% segyread tape=/dev/rmt0 verbose=1 endian=1 conv=0 | segyclean > data.su

where the “conv=0” tells the program not to attempt the IBM to float conversion.

DOS SEGY

There is also a “DOS SEGY” format which is similar to the previous format, with the exception
that the traces and headers are all written in a little-endian format. On a big-endian machine,
the command to read such a dataset would be

% segyread tape=/dev/rmt0 verbose=1 endian=0 conv=0 | segyclean > data.su

will read the data. Note, that endian=0 is set to swap the bytes. (All of the bytes, header and
data are in the swapped format.) On a little-endian machine, the procedure is

3.1. READING AND WRITING DATA TO AND FROM TAPES 23

% segyread tape=/dev/rmt0 verbose=1 endian=1 conv=0 | segyclean > data.su

with endian=1, in this case preventing byteswapping.

In each case, if we had a diskfile with some ‘filename’, we would use “tape=filename.”

Landmark BCM2D format in SEISWORKS

Commercial seismic software can be sources of non-standard SEGY formats. In addition to
non-standard usage of the official header fields, commercial variations on SEGY may employ

definitions of parts of the optional SEGY header fields.
A remedy for this problem, supplied by Matthias Imhoff of Virginia Tech, is a remapping

feature in segyread, which allows nonstandard fields to be remapped into compatible locations
in the SU header. The options remap= allows the destination SU header fields to be specified,

while byte= specifies the byte location in the SEGY trace header, and its data type.
For the example of Landmark BCM2D format, header fields 73 and 77 are floats, but these

are int’s in the standard SEGY format and are hence also int’s in the SU format. BCM2D also
has to header fields set as longs at bytes 181 and 185. The following usage of segyread

% segyread tape=... remap=d1,d2,gelev,selev byte=73f,77f,181l,185l > ...

The floats at 73 and 77 are mapped to d1 and d2, while the long integers at 181 and 185

are mapped to gelev and selev, which are integers in the SU format. By selecting compatible
destination fields, no precision is lost.

3.1.4 SEGYWRITE - Writing an SEGY Tape or Diskfile

The companion program to segyread is segywrite. This program permits data to be written

either to a tape or a diskfile in a number of variations on the SEGY format. This program is
useful for putting data into a form that can be read by commercial seismic packages. Before

showing examples of how segywrite is used, there are several preprocessing steps that must
be discussed in preparation for actually writing a tape.

3.1.5 SEGYHDRS - make SEG-Y ascii and binary headers for segywrite

To write a tape in exactly the SEGY format as specified by the SEG’s Digital Tape Standards
book, you will need to supply the ASCII and binary tape reel header files which will become the

EBCDIC and binary tape reel headers in the SEGY tape or file. These are the files “header”
and “binary” created by segywrite.

If you don’t have the “binary” and “header” files, then you must create them with the
program segyhdrs (pronounced SEG Y headers) The command

% segyhdrs < data.su

will write the files “header” and “binary” in the current working directory. As an example,
make some test data with suplane and then run segyhdrs on it

% suplane > data.su

% segyhdrs < data.su

You will see the files binary and header appear in your current working directory.
The program has options that will allow you to set the values of binary header fields. These

fields may be seen by typing:

24 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

% sukeyword jobid

int jobid; /* job identification number */

int lino; /* line number (only one line per reel) */

int reno; /* reel number */

short ntrpr; /* number of data traces per record */

short nart; /* number of auxiliary traces per record */

unsigned short hdt; /* sample interval in micro secs for this reel */

unsigned short dto; /* same for original field recording */

...

where “jobid” is the first binary header field.
The file “header” is an ASCII file which may be edited with a normal text editor. You can

put anything in there, as long as the format is 40 lines of 80 characters each. Segywrite will
automatically convert this program The default header file created by segyhdrs looks like this

C This tape was made at the

C

C Center for Wave Phenomena

C Colorado School of Mines

C Golden, CO, 80401

C

...

C

C

3.1.6 BHEDTOPAR, SETBHED - Editing the binary header file

The binary header file must be converted to an ASCII form, to be edited. The program
bhedtopar permits the “binary” file to be written in the form of a “parfile”

% bhedtopar < binary outpar=binary.par

which for the case of the header file created for the test SU data appears as follows

jobid=1

lino=1

reno=1

ntrpr=0

nart=0

hdt=4000

...

The values that are assigned to the various header files may be edited, and be reloaded into the
header file via setbhed

% setbhed bfile=binary par=binary.par

3.2. DATA FORMAT CONVERSION 25

Individual header field values may also be set. For example

% setbhed bfile=binary par=binary.par lino=3

which uses the contents of binary.par but with the field lino set to 3.
Finally, the tape may be written via a command sequence like this

% segywrite tape=/dev/rmtx verbose=1 < data.su

taking care to note that the files “header” and “binary” are in the current working directory.
You may use different names for these files, if you wish. Segywrite has a “bfile=” and an

“hfile=” option to permit you to input the files by the different names you choose.

3.1.7 SEGDREAD - Other SEG formats

There are other SEG formats (SEG-A, SEG-B, SEG-X, SEG-C, SEG-D, SEG-1, and SEG-2).
Of these, SEG-D, SEG-B, and SEG-2 are the types that you will most commonly encounter.

There is a segdread program which supports only 1 of the vast number of variations on SEG-D.
In the directory $CWPROOT/Third Party/ is a seg2segy conversion program which may

be used to convert SEG-2 format to SEG-Y. Future plans are to create a seg2read program,
which will be similar to segyread and segdread.

3.1.8 DT1TOSU - Non-SEG tape formats

Currently, there is only one non-SEG tape format that is completely supported in the SU

package, and two others which are supported through third-party codes which have not yet been
integrated into the package. This is the Sensors & Software DT1 format, via dt1tosu, which is
a GPR (ground penetrating radar) format. In the $CWPROOT/src/Third Party directory are

two additional non-SEG conversion programs, these are segytoseres and bison2su. Future
plans include incorporating each of these codes into the main CWP/SU package.

3.2 Data Format conversion

Often, it is necessary to transfer data from other systems, or to input data which may be in
a variety of formats. A number of tools and tricks are available in SU for dealing with these
issues.

The following programs may be useful for such conversion problems

• A2B - convert ascii floats to binary

• B2A - convert binary floats to ascii

• FTNSTRIP - convert Fortran floats to C-style floats

• FTNUNSTRIP - convert C-style floats to Fortran-style floats

• H2B - convert 8 bit hexidecimal floats to binary

• RECAST - RECAST data type (convert from one data type to another)

• TRANSP - TRANSPose an n1 by n2 element matrix

26 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

• FARITH - File ARITHmetic – perform simple arithmetic with binary files

• SUADDHEAD - put headers on bare traces and set the tracl and ns fields

• SUSTRIP - remove the SEGY headers from the traces

• SUPASTE - paste existing SEGY headers on existing data

• SWAPBYTES - SWAP the BYTES of various data types

• SUSWAPBYTES - SWAP the BYTES in SU data to convert data from big endian to

little endian byte order, and vice versa

The purpose of this section is to discuss situations where these programs may be used.

3.2.1 A2B and B2A - ASCII to Binary, Binary to ASCII

Of all of the formats of data, the most transportable (and most space consuming) is ASCII.

No matter what system you are working on, it is possible to transport ASCII data to and from
that system. Also, because text editors support ASCII, it is usually possible to data entry and

data editing in the simplest of text editors.
Such data probably come in a multicolumn format, separated either by spaces or tabs. To

convert such a, say 5 column, dataset into binary floats, type:

% a2b < data.ascii n1=5 > data.binary

The reverse operation is

% b2a < data.binary n1=5 > data.ascii

3.2.2 FTNSTRIP - Importing Fortran Data to C

Often, because Fortran is a popular language in seismic data processing, data may be obtained
that was either created or processed in some way with Fortran. Binary data in Fortran are
separated by beginning-of-record and end-of-record delimiters. Binary data created by C pro-
grams do not have any such delimiters. To use Fortran data in a C program requires that the
Fortran labels be stripped off, via

ftnstrip < fortdata > cdata

This will produce C-style floats, most of the time. The program assumes that each record of

fortran data is preceded and followed by an integer listing the size of the record in bytes. There
have been fortran data types which have had only one or the other of these integer markers,

but having both a beginning-of-record (BOR) and an end-of-record (EOR) markers seems to
be standard today.

3.2. DATA FORMAT CONVERSION 27

3.2.3 Going from C to Fortran

It is fairly easy to transport data made with Fortran code to C, however, it may not be so easy
to go the other way. On the SGI Power Challenge, it is possible to read a file of C-floats called

“infile” via, open and read statements that look like:

OPEN(99,file=’infile’,form=’system’)

DO i=1,number

READ(99) tempnumber

Array(i)=tempnumber

END DO

CLOSE(99)

The statement ”form=’system’” does not work on all machines, however, as it is likely that
this is not standard Fortran. The general format command to read in binary is ”form=’unformatted’”.

This may not work on other systems, (for example, SUN). Indeed, it may not be generally guar-
anteed that you can read binary files in Fortran that have been created with a C-programs (as

in SU).
If you have problems with binary and the input files are not too big you could convert to

ASCII (using ’b2a’) and use formatted I/0

OPEN(99,file=’infile’)

DO i=1,number

READ(99,*) tempnumber

Array(i)=tempnumber

END DO

CLOSE(99)

FTNUNSTRIP - convert C binary floats to Fortran style floats

However, another possibility is to make “fake” Fortran floats with a C-program. Such a program
is ftnunstrip.

This program assumes that the record length is constant throughout the input and output
files. In fortran code reading these floats, the following implied do loop syntax would be used:

DO i=1,n2 READ (10) (someARRAY(j), j=1,n1) END DO Here n1 is the number of samples
per record, n2 is the number of records, 10 is some default file (fort.10, for example) which is

opened as form=’unformatted’. Here “someArray(j)” is an array dimensioned to size n1.
Please note that the Fortran style of having BOR and EOR markers is smart, if used

properly, but is stupid if used incorrectly. The Fortran READ statement finds out from the
BOR marker how many bytes will follow, reads the number of values specified, keeping track
of the number of bytes. When it finishes reading, it compares the number of bytes read to

the number of bytes listed in the EOR value, and can effectively trap errors in bytes read, or
premature EOR.

Because there is an additional “sizeof(int)” (usually 4 bytes) at the beginning and end of
every record, it is smart to have as few records as is necessary. The worst case scenario is to

28 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

have every value of data be a record, meaning that the size of the file could be 2/3 BOR and
EOR markers and 1/3 data!

3.2.4 H2B - Importing 8 Bit Hexidecimal

The issue of converting 8 bit hexidecimal may seem to be one that would not come up very
often. However 8 bit hex is a common format for bitmapped images (grayscale PostScript) and
if you wish to take a scanned image and turn it into floats for further processing, then it will

come up.1

If you have a scanned image, written as a 256 level grayscale bitmapped PostScript image,
then the bitmap portion is in 8 bit hex. By removing all of the PostScript commands, and
leaving only the bitmap then the command

% h2b < hexdata > floatdata

will convert the bitmap into a form that can be viewed and processed by programs in the
CWP/SU package.

3.2.5 RECAST - Changing Binary Data Types

Of course, C supports a variety of types, and instead of having a bunch of program to convert
each type into every other type, there is a program called “recast” that will do the job for a
large collection of these types.

Types supported by recast for input and output:

• float - floating point

• double - double precision

• int - (signed) integer

• char - character

• uchar - unsigned char

• short - short integer

• long - long integer

• ulong - unsigned long integer

For example, to convert integers to floats

% recast < data.ints in=int out=float > data.floats

The name of this program derives from the fact that an explicit type conversion in the C-

language is called a “cast.”

1This issue came up originally, when a student had destroyed an original dataset, by accident, but only had
a bit-mapped PostScript image of the data. Using h2b it was possible to recover the data from the PostScript
file.

3.2. DATA FORMAT CONVERSION 29

3.2.6 TRANSP - Transposing Binary Data

In the course of any of the operations, it is often necessary to transpose datasets. In particular,
data which are represented in a multi-column ASCII format, will likely need to be transposed
after being converted from ASCII to binary with a2b. The reason for this is that it is convenient

to have the fast dimension of the data be the time (or depth) dimension for seismic purposes.
Our example above was a 5 column dataset, which you might think of as 5 seismic traces,

with the same number of samples in each trace, side by side in the file. The processing sequence

% a2b < data.ascii n1=5 > data.binary

will result in a file with the fast dimension being in the trace number direction, rather than the
number of samples direction The additional processing sequence

% transp < data.binary n1=5 > data.transp

will put the data in the desirable form of the fast dimension being in the number of samples

direction, so that each trace is accessed successively.

3.2.7 FARITH - Performs simple arithmetic on binary data.

It is often necessary to perform arithmetical operations on files, or between two files of binary

data. The program farith has been provided for many of these tasks.
Some of the tasks for single files supported by farith include

• scaling value,

• polarity reversal,

• signum function,

• absolute value,

• exponential,

• logarithm,

• square root,

• square,

• inverse (punctuated),

• inverse of square (punctuated),

• inverse of square root (punctuated).

Binary operations (operations involving two files) include value by value

• addition,

• subtraction,

• multiplication,

30 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

• division,

• cartesian product.

Seismic operations (which assume files consist of wavespeeds) include

• slowness perturbation (difference of inverses of files),

• sloth perturbation (difference of inverses of files),

Examples of using farith are

% farith in=data.binary op=pinv out=data.out.bin

% farith in=data1.binary in2=data2.binary op=add > data.out2.bin

3.3 Trace Header Manipulation

The data format of SU inherits the seismic trace headers from SEGY data. If your data are

not SEGY, but are created by conversion from some other type, there is a minimum collection
of headers that you will need to set, for the data to be compatible with commonly used SU
programs.

The issues of interest in this section are:

• adding trace headers,

• removing trace headers,

• pasting trace headers back on,

3.3.1 SUADDHEAD - Adding SU Headers to Binary Data

Once data have been put in the correct form, that is to say, an array of C-style floats organized

with the fast dimension in the direction of increasing sample number per trace, then it is
necessary to add headers so that these data may be accessible to other SU programs.

If the data are SEGY, SEGD, DT1, or Bison/Geometrics data, read from a tape or diskfile,
then the programs segyread, segdread, dt1tosu, or bison2su will have set the trace header
values so that the output will be “SU data.”

For data read from some other means, such as an ASCII dataset by a2b, headers have to
be added, this is done by using suaddhead. If our dataset consists of a file of binary C-style

floats with, say 1024 samples per trace, then the command sequence

% suaddhead < data.bin ns=1024 > data.su

will yield the SU datafile “data.su.”

3.3.2 SUSTRIP - Strip SU headers SU data

The inverse operation to suaddhead is sustrip. Sometimes, you will have data with SU headers
on it, but you may want to export the data to another program that does not understand SU
headers. The command sequence

% sustrip < data.su head=data.headers >data.bin

will remove the SU headers and save them in the file “data.headers.”

3.4. BYTE SWAPPING 31

3.3.3 SUPASTE - Paste SU Headers on to Binary Data

Having performed an operation on the binary data, we may want to paste the headers back on.
This is done with supaste. The command sequence

% supaste < data.bin head=data.headers >data.su

will paste the headers contained in data.headers back on to the data.

3.4 Byte Swapping

Even the best of human intentions can be circumvented. This is the case with the IEEE
floating point data format. The implementation of the IEEE standard by chip manufacturers

has resulted in two types of commonly encountered data types. These are called “big-endian”
(high-byte) or “little-endian” (low-byte) types. Little-endian machines are Intel or Dec-based,

whereas big-endian is every other chip manufacturer.

Transporting data (either regular floating point, or SU data) requires that the bytes be
swapped, in order for the data to be read. Two issues are necessary to address. These are the

issues of swapping the bytes in

• normal floating point data,

• SU data.

Two programs are provided to perform these tasks. These are

• SWAPBYTES - SWAP the BYTES of various data types

• SUSWAPBYTES - SWAP the BYTES in SU data to convert data from big endian

3.4.1 SWAPBYTES - Swap the Bytes of Binary (non-SU) Data

If you transport binary data (data without SU headers) between platforms of a different “en-

dian” (that is to say, the IEEE byte-order), from the one you are working on, then you will
have to swap the bytes to make use of that data.

This problem arises because the order of the mantissa and exponent of binary data comes in
two different possible order under the IEEE data standard. The so-called “big-endian” or high-

byte IEEE format is found on SGI, SUN, IBM RS6000, and all Motorola chip-based systems.
The “little-endian” or low-byte systems are systems that are based on Intel and Dec chips.

The program swapbytes is provided to do this for a variety of data format types, but not
SU data. For example,

% swapbytes < data.bin in=float >data.swap

will swap the bytes in a file of containing C-style floating point numbers.

3.4.2 SUSWAPBYTES - Swap the Bytes of SU Data

If you transport SU data (data with SU headers) between systems, you have to swap both the
data and the SU headers. The program suswapbytes is provided to do this. The command
sequence

32 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

% suswapbytes < data.su format=0 > data.su.swapped

will swap data in the SU format from a machine of the reverse endian to the byte order of your
system.

The command sequence

% suswapbytes < data.su format=1 > data.su.swapped

will swap data in the SU format that is in your system’s byte order to the opposite byte order.

You would use this if you were transporting your SU data from you system to another system
of the opposite byte order.

3.5 Setting, Editing, and Viewing Trace Header Fields

Seismic data can have a large number of parameters associated with it. In SU data (following
the example of the SEG-Y format) the values of these parameters are stored in the header fields

of the traces. There are a number of programs which access the header fields allowing you to
set, view, and modify those fields for a variety of purposes.

The tasks of interest are

• adding SU headers,

• stripping SU headers off of data and then pasting them back on,

• identifying SU keywords,

• viewing the range of SU header values,

• setting specified SU header fields,

• computing a third header field from the values of two given fields,

• getting the values of header fields,

• editing specific header fields,

all of which are necessary, and may come under the heading of “geometry setting.”

The following list of programs will be discussed in this chapter

• SUADDHEAD - put headers on bare traces and set the tracl and ns fields

• SUSTRIP - remove the SEGY headers from the traces

• SUPASTE - paste existing SEGY headers on existing data

• SUKEYWORD – guide to SU keywords in segy.h

• SURANGE - get max and min values for non-zero header entries

• SUSHW - Set one or more Header Words using trace number, mod and integer divide to
compute the header word values or input the header word values from a file

• SUCHW - Change Header Word using one or two header word fields

3.5. SETTING, EDITING, AND VIEWING TRACE HEADER FIELDS 33

• SUGETHW - Get the Header Word(s) in SU Data

• SUEDIT - examine segy diskfiles and edit headers

• SUXEDIT - examine segy diskfiles and edit headers

Some of these items were discussed in the previous section, but for completeness, let’s recap
what these programs do, with a bit more information.

3.5.1 SUADDHEAD - add SU (SEGY-style) Trace Headers

To add headers to a datafile consisting of C-style binary floating point numbers do:

% suaddhead < data.bin ns=1024 > data.su

or for some other type, such as integers, use recast

% recast < data.ints in=int out=float | suaddhead ns=1024 > data.su

Here we have used a pipe | to cascade the processing flow.
If the data are integers were originally from Fortran, then this is a likely processing flow:

% ftnstrip < data.fortran | recast in=int out=float | suaddhead ns=1024 > data.su

Other variations are obviously possible.

3.5.2 SUSTRIP and SUPASTE - Strip and Paste SU Headers

% sustrip < data.su head=data.head > data.strip

... other processing that doesn’t change the number of traces ...

% supaste < datanew.strip head=data.head > datanew.su

See the discussion of sustrip and supaste above.

3.5.3 SUKEYWORD - See SU Keywords

The next 5 programs that are discussed in this section have the option “key=” in their selfdocs
and the reference to the trace header field “keywords.” As has been discussed in Chapter 2,
sukeyword is used to determine just what these header keywords are. Typing:

% sukeyword -o

shows this list. (You may also see this list in Appendix B.) However, of the 80+ fields which
are defined in the SU header, only a relatively small subset are used most of the time. These
fields are given by the sukeyword listing as

int tracl; /* trace sequence number within line */

int tracr; /* trace sequence number within reel */

int cdp; /* CDP ensemble number */

int cdpt; /* trace number within CDP ensemble */

...

short trid; /* trace identification code:

... 1 = seismic data

int offset; /* distance from source point to receiver

34 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

...

int sx; /* X source coordinate */

int sy; /* Y source coordinate */

int gx; /* X group coordinate */

int gy; /* Y group coordinate */

short counit; /* coordinate units code:

...

short delrt; /* delay recording time, time in ms between

initiation time of energy source and time

when recording of data samples begins

(for deep water work if recording does not

start at zero time) */

unsigned short ns; /* number of samples in this trace */

unsigned short dt; /* sample interval; in micro-seconds */

...

/* local assignments */

float d1; /* sample spacing for non-seismic data */

float f1; /* first sample location for non-seismic data */

float d2; /* sample spacing between traces */

float f2; /* first trace location */

It is a good idea to be aware of this collection when using data derived either from modeling
programs or from field datasets.

3.5.4 SURANGE - Get the Range of Header Values

A useful piece of information about trace headers is to see the range of values of the headers in
a given dataset. Typing,

% surange < data.su

will return the ranges of all SU header fields that are nonzero. For example:

% suplane | surange

32 traces:

tracl=(1,32) tracr=(1,32) offset=400 ns=64 dt=4000

The program suplane generates a test pattern whose header values simulate a common-offset

dataset. The default parameters for suplane are to make 32 traces, with 64 samples per trace
at 4 ms (4000 microseconds by SEG convention) sampling, with offset=400. The output consists

of three intersecting lines of spikes.
Please note that corrupt data may show really strange values for a large number of the

header fields. Detecting such a problem is one of the primary uses of surange.

3.5.5 SUGETHW - Get the Values of Header Words in SU Data

Having header fields on data means that there are many additional pieces of information to be

kept track of, besides just the seismic data, themselves. If you read data from a SEGY format
tape, segyread will preserve the trace header information in the main part of the SEGY header.

3.5. SETTING, EDITING, AND VIEWING TRACE HEADER FIELDS 35

We saw above that surange would permit us to see the min and max header values over an
entire dataset. However, we often need to see the values of trace header fields, trace by trace,

and in an order that we choose.
The program sugethw (pronounced, SU get header word) is just such a utility. For example,

the command sequence:

% sugethw < data.su key=keyword1,keyword2,... | more

Will dump the values of each of the header fields specified by the keywords listed.
A more tangible example, using suplane data input via a pipe | is

% suplane | sugethw key=tracl,tracr,offset,dt,ns | more

tracl=1 tracr=1 offset=400 dt=4000 ns=64

tracl=2 tracr=2 offset=400 dt=4000 ns=64

tracl=3 tracr=3 offset=400 dt=4000 ns=64

tracl=4 tracr=4 offset=400 dt=4000 ns=64

tracl=5 tracr=5 offset=400 dt=4000 ns=64

tracl=6 tracr=6 offset=400 dt=4000 ns=64

tracl=7 tracr=7 offset=400 dt=4000 ns=64

...

There is no requirement regarding the order of the key words specified, or the number of
keywords, as long as at least one is specified.

If, for some reason, you need to dump the values in binary format, an example, again using
suplane data

% suplane | sugethw key=tracl,tracr,offset,dt,ns output=binary > file.bin

outputs the values sequentially in order of keyword given, trace by trace.

For “geometry setting,” you may want to use a command sequence (again illustrated by

piping suplane data into sugethw)

% suplane | sugethw key=tracl,tracr,offset,dt,ns output=geom > hdrfile

The contents of hdrfile may be viewed via

% more hdrfile

1 1 400 4000 64

2 2 400 4000 64

3 3 400 4000 64

4 4 400 4000 64

5 5 400 4000 64

...

where only the first 5 rows of data have been shown.

36 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

3.5.6 SUSHW - Set the Header Words in SU Data

The program sushw (pronounced, SU set header word) is an all purpose utility for setting the
value of seismic trace headers. This program permits the user to set one or more trace header
words. A common use of sushw is to just set a particular field to one value. For example,
sometimes data don’t have the “dt” field set. Let’s say that the data are sampled at 2 ms, By
using sukeyword, we see that dt is in microseconds

% sukeyword dt

...skipping

unsigned short ns; /* number of samples in this trace */

unsigned short dt; /* sample interval; in micro-seconds */

...

This means that the following command sequence will set all dt values to 2000 microseconds

% sushw < data.su key=dt a=2000 > data.out.su

A more tangible example can be seen by piping suplane data into sushw

% suplane | sushw key=dt a=2000 | sugethw key=dt | more

161 wenzel> suplane | sushw key=dt a=2000 | sugethw key=dt | more

dt=2000

dt=2000

dt=2000

dt=2000

dt=2000

...

From the selfdoc for sushw we see that the following optional parameters are defined

Optional parameters ():

key=cdp,... header key word(s) to set

a=0,... value(s) on first trace

b=0,... increment(s) within group

c=0,... group increment(s)

d=0,... trace number shift(s)

j=ULONG_MAX,ULONG_MAX,... number of elements in group

These extra options permit more complicated operations to be performed. This is necessary,
because often there is a relationship between header fields and the position of the trace within
the dataset. The value of the header field is computed by the following formula

i = itr + d

val(key) = a + b * (i % j) + c * (i / j)

where itr is the trace number (first trace has itr=0, NOT 1)

3.5. SETTING, EDITING, AND VIEWING TRACE HEADER FIELDS 37

where percent % indicates the “modulo” function and / is division.
For example if we want to set the sx field of the first 5 traces to 6400, the second 5 traces

to 6300, decrementing by -100 for each 5 trace groups

% sushw < data.su key=sx a=6400 c=-100 j=5 > data.new.su

Again, piping in suplane data into sushw

% suplane | sushw key=sx a=6400 c=-100 j=5 | sugethw key=sx | more

sx=6400

sx=6400

sx=6400

sx=6400

sx=6400

sx=6300

sx=6300

sx=6300

sx=6300

sx=6300

sx=6200

sx=6200

...

As another example, if we wanted set the “offset” fields of each group of 5 traces to
200,400,...,6400

% sushw < data.su key=offset a=200 b=200 j=5 > data.out.su

As before, piping suplane data into sushw yields the following

% suplane | sushw key=offset a=200 b=200 j=5 | sugethw key=offset | more

offset=200

offset=400

offset=600

offset=800

offset=1000

offset=200

38 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

offset=400

offset=600

offset=800

offset=1000

offset=200

...

We can perform all 3 operations with one call to sushw, via:

% sushw < data.su key=dt,sx,offset a=2000,6400,200 b=0,0,200 c=0,-100,0 j=0,5,5 > newdata.su

Or with suplane data piped in

% suplane | sushw key=dt,sx,offset a=2000,6400,200 b=0,0,200 c=0,-100,0 j=0,5,5 |

sugethw key=dt,sx,offset | more

dt=2000 sx=6400 offset=200

dt=2000 sx=6400 offset=400

dt=2000 sx=6400 offset=600

dt=2000 sx=6400 offset=800

dt=2000 sx=6400 offset=1000

dt=2000 sx=6300 offset=200

dt=2000 sx=6300 offset=400

dt=2000 sx=6300 offset=600

dt=2000 sx=6300 offset=800

dt=2000 sx=6300 offset=1000

dt=2000 sx=6200 offset=200

dt=2000 sx=6200 offset=400

...

As you can see, it is natural to use pipes and redirects to control job flow, but this becomes

ungainly on a single command line. Later in this document, we will see how to construct
complicated processing sequences in the controlled environment of shell scripts.

3.5.7 Setting Geometry - Converting Observers’ Logs to Trace Headers

There is an often unpleasant task called “setting geometry” which must be performed on field
data. Often, a SEGY tape will have only a rudimentary set of header fields set in the data.

3.5. SETTING, EDITING, AND VIEWING TRACE HEADER FIELDS 39

The rest of the information (shot location, geophone location, etc...) will be supplied in the
form of observers’ logs.

For setting geometry, you may wish to dump a specific collection of header fields of interest
into a file, read the file into a text editor or spreadsheet program so that you can make changes.

For example, if you have some file “sudata” which has some header fields set incorrectly or
incompletely then the following command sequence illustrates a possible way of working with
such data. You begin by reading the selected header fields into a file “hdrfile”.

% sugethw < sudata output=geom key=key1,key2,... > hdrfile

Now edit the ASCII file hdrfile with any editor, setting the fields appropriately. Convert hdrfile
to a binary format via:

% a2b < hdrfile n1=nfields > binary_file

were “nfields” is the number of header fields in the “key=..” list above. Then load the new file
of header fields via:

% sushw < sudata infile=binary_file key=key1,key2,... > sudata.edited

Again, “key=key1,key2,...” here is the same list as in the sugethw statement above. The
finished product is the file sudata.edited.

If you are just beginning to set the header fields, you may build the ASCII header file
“hdrfile” any way you want. This could be with your favorite text editor, or with a spreadsheet

program. It is not important how the ascii file is created, as long as it is in multi-column ASCII
format for the sequence above.

Of course, if you have the header values in a file consisting of C-style floats, (which you can
make either from a C-program, or from Fortran data with ftnstrip) listed trace-by-trace, then
you already have the “binary file” and need only execute the final sequence.

3.5.8 SUCHW - Change (or Compute) Header Words in SU Data

Some header fields such as “cdp” may be computed from existing header fields. The program
suchw provides this functionality.

From the selfdoc of suchw,

...

key1=cdp,... output key(s)

key2=cdp,... input key(s)

key3=cdp,... input key(s)

...

a=0,... overall shift(s)

b=1,... scale(s) on first input key(s)

c=0,... scale on second input key(s)

d=1,... overall scale(s)

we can see that this program uses the values of 2 header fields, key2 and key3, to compute a
third, key3, via the equation

...

val(key1) = (a + b * val(key2) + c * val(key3)) / d

..

40 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

For example, to shift the values of the cdp header field by a constant amount, say −1

% suchw <data >outdata a=-1

or to add a constant amount, say 1000, to a header field, say “tracr,”

% suchw key1=tracr key2=tracr a=1000 <infile >outfile

Another possible example is that of setting the “gx” field by summing the offset and “sx”
(shot point) values using sushw and then computing the “cdp” field by averaging the “sx”
and “gx.” Here, we are using the actual cpp locations as the cdp numbers, instead of the
conventional 1, 2, 3, ... enumeration

% suchw <indata key1=gx key2=offset key3=sx b=1 c=1 |

% suchw key1=cdp key2=gx key3=sx b=1 c=1 d=2 >outdata

It is possible to perform both operations in one call via:

% suchw<indata key1=gx,cdp key2=offset,gx key3=sx,sx b=1,1 c=1,1 d=1,2 >outdata

3.5.9 SUEDIT and SUXEDIT - Edit the Header Words in SU Data

Finally, it may be that you wish to examine, and possibly change just few headers. For this
purpose, we have suedit and suxedit. the SU editing programs are executed via:

% suedit diskfile (open for possible header modification if writable)

% suedit <diskfile (open read only)

and permit the interactive viewing and editing of the header fields.
For example, making test data with suplane

% suplane > data.su

% suedit data.su

yields the following

32 traces in input file

tracl=32 tracr=32 offset=400 ns=64 dt=4000

> <------- prompt for interactive use

The commands that may be used interactively in suedit and suxedit may be seen by
typing a question mark (?) at the prompt. For example

32 traces in input file

tracl=32 tracr=32 offset=400 ns=64 dt=4000

> ?

n read in trace #n

<CR> step

+ next trace; step -> +1

- prev trace; step -> -1

dN adv N traces; step -> N

% percentiles

r ranks

p [n1 [n2]] tabplot

! key=val modify field

? print this file

q quit

>

3.5. SETTING, EDITING, AND VIEWING TRACE HEADER FIELDS 41

This program allows the user to view traces as a tabplot of the data sample values or view or
change individual header values

The program suxedit is similar to suedit, with the addition of X-windows graphics for
plotting traces

% suxedit diskfile (open for possible header modification if writable)

% suxedit <diskfile (open read only)

% suxedit data.su

32 traces in input file

tracl=32 tracr=32 offset=400 delrt=5 ns=64 dt=4000

> ?

n read in trace #n

<CR> step

+ next trace; step -> +1

- prev trace; step -> -1

dN adv N traces; step -> N

% percentiles

r ranks

p [n1 [n2]] tabplot

g [tr1 tr2] ["opts"] wiggle plot

f wig plot Fourier Transf

! key=val modify field

? print this file

q quit

Again, the options of this program are largely self-explanatory. Please note that the selfdoc is
more informative than the help menu given by typing the question mark “?.”

42 CHAPTER 3. CORE SEISMIC UNIX PROGRAMS

Chapter 4

Viewing SU Data in X-Windows and
PostScript

The Seismic Unix package has a small collection of graphics utilities for plotting data, both in
general C-style float format, and in SU format, both in the X-windows environment, for screen

viewing and in the PostScript form for hard copy.
The types of plotting that are available in SU are

• contour plots,

• gray or colorscale image plots,

• wiggle trace plots,

• line or symbol graphs,

• movies,

• 3D cube plots (PostScript only).

These programs have lengthy selfdocs, reflecting the large number of options for selecting the
appearance and labeling of the plots. However, functionality such as windowing data, should be

done via the programs subset or suwind as a preprocessing step before the data are actually
sent to the plotting program. These plotting programs are purposely not designed to window

data, as raw seismic datasets are often huge.
Also, following the “small is beautiful” philosophy of Unix, we have seprate, but more or

less equivalent codes for generating PostScript output for hardcopy plotting.

4.1 X-Windows Plotting Programs

X-windows provides a unified environment for the creation of screen graphics routines, which
can be quite portable, provided that the code is written using only the items that can be
guaranteed to come with the general distributions of X.

Therefore, all of our X-windows codes are written using straight X calls, or with the X-
Toolkit. While coding in such widget sets as Motif is easier in many respects, the code that

results is not nearly as portable. There are often great differences between the implementation
of commercial widget sets on various platforms.

43

44 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

4.1.1 Plotting General Floating Point Data

The programs that are used for viewing general floating point data (data without SU headers)
in the X-window environment are

• XCONTOUR - X CONTOUR Plot of f(x1,x2) via vector plot call,

• XIMAGE - X IMAGE plot of a uniformly-sampled function f(x1,x2),

• XWIGB - X WIGgle-trace plot of f(x1,x2) via Bitmap,

• XGRAPH - X GRAPHer Graphs n[i] pairs of (x,y) coordinates,

• XMOVIE - image one or more frames of a uniformly sampled function f(x1,x2).

Try the following. Make some binary data by stripping the headers off of some SU data.
For example

% suplane | sustrip > data.bin

n1=64 n2=32 d1=0.004000

nt=64 ntr=32 dt=0.004000

ns=64

The items which follow indicate that the dimensions of the data set are “n1=64” by “n2=32.” Now view
these data in each of the plotting programs listed above (except xgraph) via:

% xcontour < data.bin n1=64 n2=32 title="contour" &

% ximage < data.bin n1=64 n2=32 title="image" &

% xwigb < data.bin n1=64 n2=32 title="wiggle trace" &

% xmovie < data.bin n1=64 n2=32 title="movie" &

Please note that the ampersand “&” is a Unix command telling the working shell to run the program
in background.

To test xgraph, make an ASCII file containing a double column listing of pairs of data to be plotted
such as the following

1 1

2 1.5

3 3

4 8

10 7

Call this file “data.ascii” Then use a2b to convert the file to binary and then plot it with xgraph

% a2b < data.ascii n1=2 > data.bin

n=5

% xgraph < data.bin n=5

Note that the “n=5” that is echoed by a2b is the same as the input to xgraph.
When you are finished, and wish to get rid of the windows, you may click on the window and type

the letter “q,” for quit. On some systems, you may have to actually select the “destroy” option by
clicking and dragging on the square in the upper left hand side of the window frame.

Please note that all of these programs have a huge number of options, reflecting a fairly large
collection of functionalities. See the selfdoc of each of these programs by typing

% programname

or

% sudoc programname

4.1. X-WINDOWS PLOTTING PROGRAMS 45

4.1.2 X-Windows Plotting of SU Data

To plot data that are in the SU format, a number of programs (many of which have parallel functionality
to those already discussed) have been created. These are

• SUXCONTOUR - X CONTOUR plot of Seismic UNIX tracefile via vector plot call,

• SUXIMAGE - X-windows IMAGE plot of an SU data set,

• SUXWIGB - X-windows Bit-mapped WIGgle plot of an SU data set,

• SUXGRAPH - X-windows GRAPH plot of an SU data set,

• SUXMOVIE - X MOVIE plot of an SU data set,

• SUXMAX - X-windows graph of the MAX, min, or absolute max value on each trace of an SU
data set.

Rather than maintain multiple codes, each of these programs actually calls one or more of the X-windows
graphics programs listed in the previous subsection. Please note, that the selfdoc of the non-SU version
of a given graphics program also applies to the SU version, meaning that, these programs also have a
large functionality.

You may test each of these programs using suplane data via:

% suplane | suxcontour title="contour" &

% suplane | suximage title="image" &

% suplane | suxwigb title="wiggle trace" &

% suplane | suxgraph title="graph" &

% suplane | suxmovie title="movie" &

% suplane | suxmax title="max" &

Again, note that the ampersand “&” is a Unix command telling the working shell to run the program in
background. When you are finished, and wish to get rid of the windows, you may click on the window
and type the letter “q,” for quit. On some systems, you may have to actually select the “destroy” option
by clicking and dragging on the square in the upper left hand side of the window frame.

4.1.3 Special Features of X-Windows Programs

To find out all of the many options of these programs, please see their selfdocs, by typing the names of
each of these programs on the commandline:

% suxcontour

% suxwigb

% suximage

% suxmovie

% suxmax

In addition, the names of the non-SU versions of some of these programs may be typed to yield
additional information

% xcontour

% xwigb

% ximage

% xmovie

However there are some properties that these programs have that can only be illustrated with
examples.

46 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

Plotting wiggle traces in true offset with SUXWIGB

It is possible to plot wiggle traces in true offset, that is to say, to take the values for the horizontal
dimension of the wiggle plot from the values in the header. This is done with the “key=” parameter.

For example, lets make some test data with suplane and plot it using the “key=offset” via:

% suplane | suchw key1=offset key2=tracl a=0 b=100 | suxwigb key=offset &

The result is a plot with the x2 axis labeled in the values of the offset header field (which count by
100’s).

Making a movie with SUXMOVIE

It is possible to make movies of seismic data with suxmovie. An example of this is to make several
synthetic data panels with suplane appending each successive panel with the double redirect sign “¿¿”

% suplane > junk1.su

% suplane | suaddnoise sn=20 >> junk1.su

% suplane | suaddnoise sn=15 >> junk1.su

% suplane | suaddnoise sn=10 >> junk1.su

% suplane | suaddnoise sn=5 >> junk1.su

% suplane | suaddnoise sn=3 >> junk1.su

% suplane | suaddnoise sn=2 >> junk1.su

% suplane | suaddnoise sn=1 >> junk1.su

% suxmovie < junk1.su n2=32 title="frame=%g" loop=1 &

The final command has “n2=32” set to show that there are 32 traces per frame of data. The usage
of “%q” permits the frame number to be listed as part of the title, and “loop=1” runs the movie in a
continuous loop.

To make the movie go faster or slower, simply enlarge or shrink the window by clicking and dragging
on the lower right corner of the plot. Clicking the far-right mouse button once will freeze the frame, and
clicking it a second time will start the movie again.

4.1.4 PostScript Plotting Programs

To complement our collection of X-Windows plotting utilities are a collection of very similar PostScript
codes. The idea was to create PostScript plotting codes which would correspond to each of the X-
Windows codes listed above.

4.1.5 PostScript Plotting of General Floating Point Data

The programs that are used for PostScript plotting of general floating point data (data without SU
headers) are

• PSCONTOUR - PostScript CONTOURing of a two-dimensional function f(x1,x2),

• PSIMAGE - PostScript IMAGE plot of a uniformly-sampled function f(x1,x2),

• PSCUBE - PostScript image plot of a data CUBE,

• PSGRAPH - PostScript GRAPHer Graphs n[i] pairs of (x,y) coordinates,

• PSMOVIE - PostScript MOVIE plot of a uniformly-sampled function f(x1,x2,x3),

• PSWIGB - PostScript WIGgle-trace plot of f(x1,x2) via Bitmap,

• PSWIGP - PSWIGP - PostScript WIGgle-trace plot of f(x1,x2) via Polygons.

4.1. X-WINDOWS PLOTTING PROGRAMS 47

Again, you may create binary data to test these programs by stripping off the headers of some
suplane data.

% suplane | sustrip > data.bin

n1=64 n2=32 d1=0.004000

nt=64 ntr=32 dt=0.004000

ns=64

The dimensions of the data are n1=64 samples per trace by n2=32 traces.

% pscontour < data.bin n1=64 n2=32 title="contour" > data1.eps

% psimage < data.bin n1=64 n2=32 title="image" > data2.eps

% pscube < data.bin n1=64 n2=32 title="cube plot" > data4.eps

% pswigb < data.bin n1=64 n2=32 title="bitmap wiggle trace" > data3.eps

% pswigp < data.bin n1=64 n2=32 title="wiggle trace" > data4.eps

% psmovie < data.bin n1=64 n2=32 title="movie" > data5.eps

The output files contain Adobe Level 2 Encapsulated PostScript. You should be able to view these files
with any standard X-windows PostScript previewer (such as “ghostview”).

Please note, that the output from “psmovie” may not work on your system. This output works under
NeXTStep, but is multi-page Encapsulated PostScript, which is not generally supported by PostScript
devices.

To test psgraph, make an ascii file containing a double column listing of pairs of data to be plotted
such as the following

1 1

2 1.5

3 3

4 8

10 7

Call this file “data.ascii” Then use “a2b” to convert the file to binary and then plot it with psgraph

% a2b < data.ascii n1=2 > data.bin

n=5

% psgraph < data.bin n=5 > data6.eps

Note that the “n=5” that is echoed by a2b is the same as the input to psgraph. This permits the
following trick to be used

% a2b < data.ascii outpar=junk.par n1=2 > data.bin

% psgraph < data.bin par=junk.par > data6.eps

to yield the same output.

4.1.6 PostScript Plotting of SU Data

Just as there are X-Windows codes for plotting SU data, there are also codes for making PostScript
plots of these data. The programs for PostScript graphics are

• SUPSCONTOUR - PostScript CONTOUR plot of an SU data set

• SUPSIMAGE - PostScript IMAGE plot of an SU data set

• SUPSCUBE - PostScript CUBE plot of an SU data set

• SUPSGRAPH - PostScript GRAPH plot of an SU data set

48 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

• SUPSWIGB - PostScript Bit-mapped WIGgle plot of an SU data set

• SUPSWIGP - PostScript Polygon-filled WIGgle plot of an SU data set

• SUPSMAX - PostScript of the MAX, min, or absolute max value on each trace of a SU data set

We can use suplane data to test each of these programs as we did with the X-Windows codes

% suplane > junk.su

% supscontour < junk.su title="contour" > data1.eps

% supsimage < junk.su title="image" label1="sec" label2="trace number" > data2.eps

% supscube < junk.su title="cube plot" > data4.eps

% supswigb < junk.su title="bitmap wiggle trace" > data3.eps

% supswigp < junk.su title="wiggle trace" > data4.eps

% supsmovie < junk.su title="movie" > data5.eps

% supsmax < junk.su title="max" > data5.eps

The output files contain Adobe Level 2 Encapsulated PostScript, and is compatible with TeX, LaTeX,
and many draw tools. You will need to use a PostScript previewer, such as GhostScript or Ghostview
to view these files on the screen.

Please note again, that programs for which there is a non-SU version, have selfdoc information which
applies to these codes, as well.

4.2 Additional PostScript Support

There are several additional tools for supporting PostScript operations in SU. These are

• PSBBOX - change BoundingBOX of existing PostScript file

• PSMERGE - MERGE PostScript files

• MERGE2 - MERGE2 PostScript figures onto one page

• MERGE4 - MERGE4 figures onto one page

• PSLABEL - output PostScript file consisting of a single TEXT string on a specified background.
(Use with psmerge to label plots.)

• PSMANAGER - printer MANAGER for HP 4MV and HP 5Si Mx Laserjet PostScript printing

• PSEPSI - add an EPSI formatted preview bitmap to an EPS file

The programs psbbox, pslabel, psmerge, merge2, and merge4 are designed to help in con-
structing figures made from SU-style graphics programs, and are not guaranteed to work with EPS files
generated by other means.

4.2.1 PSBBOX - Changing the BoundingBox

For example, create test PostScript data with suplane and supswigb via

% suplane | supswigb > junk1.eps

where the “.eps” extension is chosen as a reminder that this is encapsulated PostScript. Let’s say that
there is too much white-space surrounding this figure. To fix this problem, we want to change the size
of the BoundingBox at the top of the file. For example

% more junk1.eps

4.2. ADDITIONAL POSTSCRIPT SUPPORT 49

shows the dimensions of the BoundingBox

%!PS-Adobe-2.0 EPSF-1.2

%%DocumentFonts:

%%BoundingBox: 13 31 603 746

...

We could manually edit this, but with psbbox we can type:

% psbbox < junk1.eps llx=40 lly=80 urx=590 ury=730 > junk2.eps

Original: %%BoundingBox: 13 31 603 746

Updated: %%BoundingBox: 40 80 590 730

to yield a smaller BoundingBox, with correspondingly less white space.

4.2.2 PSMERGE, MERGE2, MERGE4 - Merging PostScript Plots

It is often useful to merge several plots to make a compound figure. The program psmerge is the general
tool in SU provided for this. There are two additions shell scripts, which call psmerge called merge2
and merge4. If we make a couple of test datasets

% suplane > junk.su

% suplane | sufilter > junk1.su

and display these by various means

% supswigb < junk.su title="Wiggle trace" label1="sec" label2="trace number" > junk1.eps

% supsimage < junk.su title="Image Plot" label1="sec" label2="trace number" > junk2.eps

% supscontour < junk.su title="Contour Plot" label1="sec" label2="trace number" > junk3.eps

% supswigb < junk1.su title="Filtered" label1="sec" label2="trace number" > junk4.eps

we now have 4 PostScript files which can be merged to make new plots.
Merging 2 plots may be done via:

% merge2 junk1.eps junk2.eps > junk.m2.eps

while merging all 4 plots may be done via

% merge2 junk1.eps junk2.eps junk3.eps junk4.eps > junk.m4.eps

Of course, neither merge2 nor merge4 are robust enough to handle all plot sizes, so you may need
to manually merge plots with psmerge. Also, if you want to overlay plots, such as a graph on top of a
wiggle trace plot, then you will also need to use psmerge.

Here is an example of creating plots and merging them with psmerge. Because the command
sequence is ungainly for typing on the commandline it is expressed as a shell script

#! /bin/sh

shell script for demonstrating PSMERGE

make data

suplane > junk.su

suplane | sufilter > junk1.su

make PostScript Plots of data

supswigb < junk.su wbox=6 hbox=2.5 \

title="Wiggle trace" label1="sec" label2="traces" > junk1.eps

50 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

supscontour < junk.su wbox=2.5 hbox=2.5 \

title="Contour Plot" label1="sec" label2="traces" > junk3.eps

supswigp < junk1.su wbox=2.5 hbox=2.5 \

title="Filtered" label2="traces" > junk4.eps

merge PostScript plots

psmerge in=junk1.eps translate=0.,0. \

in=junk3.eps translate=0.0,3.7 \

in=junk4.eps translate=3.3,3.7 > junk5.eps

echo "You may view the files: junk1.eps, junk3.eps, junk4.eps, junk5.eps"

echo "with your PostScript Previewer"

exit 0

In this case, the original files were made small to fit within an 8-1/2” by 11” window. However, psmerge
has the capability of scaling plots. (This is how the merge2 and merge4 shells work. You can examine
the texts of these for further information by typing

% more $CWPROOT/bin/merge2

or

% more $CWPROOT/bin/merge4

An additional example of merging 3 plots of different sizes is given by the following shell script

#! /bin/sh

shell script for demonstrating PSMERGE

make data

suplane > junk.su

suplane | sufilter > junk1.su

make PostScript Plots of data

supswigb < junk.su wbox=7 hbox=4 \

title="Wiggle trace" label1="sec" label2="traces" > junk1.eps

supscontour < junk.su \

title="Contour Plot" label1="sec" label2="traces" > junk3.eps

supswigp < junk1.su label1="sec" \

title="Filtered" label2="traces" > junk4.eps

merge PostScript plots

psmerge in=junk1.eps translate=0.,0. scale=.6,.6 \

in=junk3.eps scale=.4,.4 translate=0.0,3.7 \

in=junk4.eps scale=.4,.4 translate=3.3,3.7 > junk5.eps

echo "You may view the files: junk1.eps, junk3.eps, junk4.eps, junk5.eps"

echo "with your PostScript Previewer"

exit 0

In this case, the plots are of normal size, and are then scaled to fit within an 8-1/2” by 11” window.

4.3. TRACE PICKING UTILITIES 51

4.3 Trace Picking Utilities

For lack of a better location to discuss this is the subject, we will now list“trace picking” utilities. The
X-Windows wiggle trace, image, and contour plotting programs all have the attribute that by placing
the cursor on the point to be picked and typing the letter ‘s’ the coordinates of the point are saved in
memory. When the letter ‘q’ is typed, the values are saved in a user-specified file “mpicks.”

There are two additional programs which are dedicated to picking issues. These are

• XPICKER - X wiggle-trace plot of f(x1,x2) via Bitmap with PICKing

• SUXPICKER - X-windows WIGgle plot PICKER of an SU data set

• SUPICKAMP - pick amplitudes within user defined and resampled window

with “xpicker” being the non-SU data version which “suxpicker” calls. The xpicker/suxpicker programs
are interactive tools for picking. The program “supickamp” is a simple automated picking program,
which seeks the largest amplituded within a user-specified window.

See demos in $CWPROOT/src/demos/Picking for more information about “supickamp.”

4.4 Editing SU Data

Once the data are read in, and the headers are set properly, then there will often be manipulation and
data editing issues to be dealt with.

It is often necessary to perform tasks of varying so that data may be

• windowed,

• sorted,

• truncated,

• tapered,

• zeroed,

• made uniform in number of samples,

• concatenated,

which are dataset editing issues.
This section, therefore will deal with the following programs

• SUWIND - window traces by key word

• SUSORT - sort on any segy header keywords

• SURAMP - Linearly taper the start and/or end of traces to zero.

• SUTAPER - Taper the edge traces of a data panel to zero.

• SUNULL - create null (all zeroes) traces

• SUZERO – zero-out data within a time window

• SUKILL - zero out traces

• SUMUTE - mute above (or below) a user-defined polygonal curve with the distance along the
curve specified by key header word

• SUVLENGTH - Adjust variable length traces to common length

• SUVCAT - append one data set to another (trace by trace)

which provide a variety of trace editing utilities.

52 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

4.4.1 SUWIND - window traces by key word

It is very common to view or process only a subset of a seismic dataset. Because seismic data have a
number of parameters that we may want to window the data about, “suwind” has been written.

Windowing by trace header field

In its simplist usage, “suwind” permits the user to set min and max values of a specific header field

key=tracl Key header word to window on (see segy.h)

min=LONG_MIN min value of key header word to pass

max=LONG_MAX max value of key header word to pass

For example, windowing suplane data by trace number yields

% suplane | suwind key=tracl min=5 max=10 | sugethw key=tracl | more

tracl=5

tracl=6

tracl=7

tracl=8

tracl=9

tracl=10

On a large dataset, the “count” parameter should be used, instead of setting the max value. If you set
an explicit “max” value, suwind will have to go through the entire dataset to capture all possible traces
with values between the min and max value, because the program assumes that multiple occurrences of
trace labeling are possible. For example, compare

% suplane ntr=100000 | suwind key=tracl min=5 max=10 | sugethw tracl | more

(it’s ok to type “control-c” after a few minutes) with

%suplane ntr=100000 | suwind key=tracl min=5 count=5 | sugethw tracl | more

where suplane has been set to create 100000 traces in each case.
More sophisticated windowing, (decimating data, for example)

j=1 Pass every j-th trace ...

s=0 ... based at s (if ((key - s)%j) == 0)

can be illustrated with suplane data by showing every 2nd trace

% suplane | suwind key=tracl j=2 | sugethw key=tracl | more

tracl=2

tracl=4

tracl=6

4.4. EDITING SU DATA 53

tracl=8

tracl=10

...

or by every 2nd trace, based at 1

% suplane | suwind key=tracl j=2 s=1 | sugethw key=tracl | more

tracl=1

tracl=3

tracl=5

tracl=7

tracl=9

...

Accepting and rejecting traces is also possible with “suwind.”

...

reject=none Skip traces with specified key values

... accept=none Pass traces with specified key values(see notes)

The reject parameter is a straightforward rejecting of numbered traces. For example

suplane | suwind key=tracl reject=3,8,9 | sugethw key=tracl | more

tracl=1

tracl=2

tracl=4

tracl=5

tracl=6

tracl=7

tracl=10

tracl=11

tracl=12

traces 3, 8, and 9 are rejected.
The accept option is a bit strange–it does not mean accept only the traces on the accept list! It

means accept these traces, even if they would otherwise be rejected. For example:

suplane | suwind key=tracl reject=3,8,9 accept=8 | sugethw key=tracl

| more

54 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

tracl=1

tracl=2

tracl=4

tracl=5

tracl=6

tracl=7

tracl=8

tracl=10

tracl=11

....

If you want to accept only the traces listed, then you need to set “max=0”

% suplane | suwind key=tracl accept=8 max=0 | sugethw key=tracl | more

tracl=8

Only trace 8 is passed in this example.
The count parameter overrides the accept parameter, so you can’t specify count if you want true

unconditional acceptance.
See the demos in $CWPROOT/src/demos/Selecting Traces for specific examples.

Time gating

The second issue windowing is time gating. In fact, when people want to window data, they often want
to do both trace and time gating.

Options for vertical windowing (time gating):

tmin = 0.0 min time to pass

tmax = (from header) max time to pass

itmin = 0 min time sample to pass

itmax = (from header) max time sample to pass

nt = itmax-itmin+1 number of time samples to pass

The result of setting either “itmin and itmax” or “tmin and tmax” will be to create a time gate which
is to the nearest sample. If you want to time gate to an arbitrary (inter-sample) window, then this is a
problem in data resampling and “suresamp” is the program of choice.

4.4.2 SUSORT - sort on any SEGY header keywords

One of the advantages of working in the Unix operating system is that when a superior Unix system call
for a particular operation exists, it is advantageous to use that call to perform the necessary task. Such
a task is sorting, and the Unix “sort” command is just such a utility.

Susort takes advantage of the Unix system sort command to permit the sorting of traces by header
field key work.

For example, sorting data (with values in ascending order) for two fields (cdp and offset) would be
done via:

4.4. EDITING SU DATA 55

% susort <indata.su >outdata.su cdp offset

In decending order for, offset, and ascending order for cdp

% susort <indata.su >outdata.su cdp -offset

Note: Only the following types of input/output are supported Disk input to any output, but pipe input
to disk output.

Please see the demo in $CWPROOT/src/demos/Sorting Traces for specific examples of trace sorting.

4.4.3 SURAMP and SUTAPER - tapering data values

Many seismic processing algorithms will show spurious artifacts resulting from sharp edges on a dataset.
Tapering the amplitudes on the edges of a dataset is the one of the easiest ways of suppressing these
artifacts. For this purpose, we have “sutaper” to taper the edges of the dataset (for example here, linear
taper over 5 traces on each end of the dataset)

% sutaper <diskfile >stdout ntaper=5

and “suramp” to smooth the beginning and/or end of traces (for the example here, ramp up from 0 to
tmin=.05 seconds, and ramp down from tmax=1.15 seconds to the end of the traces

% suramp <diskfile tmin=.05 tmax=1.15 >stdout

4.4.4 SUKILL, SUZERO, SUNULL, SUMUTE - zeroing out data

It is often useful to zero out noisy traces, or traces on the edge of a dataset (abrupt analog to tapering),
or to create null traces as separators to be used between successive panels of data in plotting.

SUKILL - zero out traces

To zero out a block of traces type,

% sukill <stdin >stdout min=MIN_TRACE count=COUNT

where COUNT is the number of traces to be zeroed, and MIN TRACE is the minimum trace number
in the block of traces.

SUNULL - Create a Panel of Empty traces

It is sometimes necessary to create a panel of zero value traces. To create a panel of traces of NTR
traces with NT time samples

% sunull nt=NT ntr=NTR <stdin >stdout min=MIN_TRACE count=COUNT

SUZERO – zero-out data within a time window

To zero out data within a time window, use “suzero”

% suzero itmin=MIN_TIME_SAMPLE itmax=MAX_TIME_SAMPLE <indata.su > outdata.su

56 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

SUMUTE - Surgically Muting Data

The last collection of programs perform a form of crude muting of the data. For a more precise muting
operation, there is “sumute” which can perform surgical muting of SU data. The program may be used
by specifying trace header field to mute on via the “key=” parameter,

% sumute <indata.su >outdata.su key=KEYWORD xmute=x1,x2,x3,... tmute=t1,t2,t3,...

An suplane data example of this is to compare original suplane data, made by

% suplane | suxwigb &

with surgically muted data

% suplane | sumute key=tracl xmute=1,10,12 tmute=.06,.1,.11 | suxwigb &

This says to mute every arrival above the polygonal curve defined by the curve defined by the xmute=
and tmute= values.

The program also permits the x,t values to be input from binary files by setting the options “nmute,
xfile, and tfile” as listed in a portion of the selfdoc for this program

...

nmute= number of x,t values defining mute

xfile= file containing position values as specified by

the ‘key’ parameter

tfile= file containing corresponding time values (sec)

...

=tracl use trace number instead

ntaper=0 number of points to taper before hard

mute (sine squared taper)

below=0 =1 to zero BELOW the polygonal curve

...

Please note also that “above” and “below” refer to the appearance on a seismic plot, such as the suxwigb
plot and not to the time values.

4.4.5 SUVCAT and CAT - Concatenating Data

There are two possible ways of appending one dataset onto another (concatenating). The first way would
be to append one dataset to another, so that the traces from the second file simply follow the traces of
the first file. This is done with the Unix “cat” command via:

% cat data1.su data2.su > data3.su

In addition, it may be necessary to renumber the traces via:

% cat data1.su data2.su | sushw key=tracl a=1 > data3.su

so that the tracl parameter is monotonically increasing.
The second way of appending one dataset to another is to “vertically” append each trace of the

second dataset to the end of the first dataset. This is done via “suvcat.”

% suvcat data1.su data2.su > data3.su

In this case, no modification of the header fields should be necessary.

4.4. EDITING SU DATA 57

4.4.6 SUVLENGTH - Adjust Variable Length Traces to a Common Number
of Samples

Sometimes the data consists of traces which have different numbers of samples on each trace. The
program “suvlength” We can construct an example of this with suplane data

% suplane nt=64 > data1.su

% suplane nt=32 > data2.su

% cat data1.su data2.su > data3.su

Attempts to use any SU program on the resulting file “data3.su” will probably result in failure, because
most SU programs require that the number of samples be constant on a panel of data. Applying
“suvlength” fixes this problem

% suvlength ns=64 < data3.su > data4.su

% suxwigb < data4.su title="Test of suvlength" &

by making all of the traces the same length.

58 CHAPTER 4. VIEWING SU DATA IN X-WINDOWS AND POSTSCRIPT

Chapter 5

General Operations on SU Data

Beyond the task of editing SU data are operations level codes which perform

• gaining,

• resampling,

• unary operations (arithmetic operations involving a single data file),

• binary operations (arithmetic operations involving two data files),

The purpose of this section, therefore will be to discuss the programs

• SUADDNOISE - add noise to traces,

• SUGAIN - apply various types of gain to display traces,

• SUOP - do unary arithmetic operation on segys,

• SUOP2 - do a binary operation on two data sets,

that perform these operations

5.0.7 SUADDNOISE - Add noise to SU data

While it may seem that having a program that adds noise to seismic data is counterproductive, it is
often useful for testing purposes to have the capability of simulating noise.

It is also useful for demonstration purposes, and many of the demos below use suaddnoise to “fill
in the blanks” in the suplane testpattern. A couple of examples of the output of this program, using
suplane data

% suplane | suxwigb title="no noise" &

% suplane | suaddnoise | suxwigb title="noise added" &

% suplane | suaddnoise sn=2 | suxwigb title="noise added" &

5.0.8 SUGAIN - Gaining to SU data

There are numerous operations which come under the heading of gaining, which “sugain” performs.
These operations include

• scaling the data,

• multiplying the data by a power of time,

• taking the power of the data,

59

60 CHAPTER 5. GENERAL OPERATIONS ON SU DATA

• automatic gain control,

• trapping noise spiked traces,

• clipping specified amplitudes or quantiles,

• balancing traces by quantile clip, rms value, or mean,

• scaling the data,

• biasing or debiasing the data.

The heirarchy of the operations is stated by the following equation

out(t) = scale * BAL{CLIP[AGC{[t^tpow * exp(epow * t) * (in(t)-bias)]^gpow}]}

You may see what sugain does by running the following examples using suplane data. Noise has
been added with “suaddnoise” to make the affects of AGC apparent. Type only the items following the
percent %. Create some SU data (with noise added, via)

% suplane | suaddnoise > data.su

% suxwigb < data.su title="Ungained Data" &

% sugain < data.su scale=5.0 | suxwigb title="Scaled data" &

% sugain < data.su agc=1 wagc=.01 | suxwigb title="AGC=1 WAGC=.01 sec &

% sugain < data.su agc=1 wagc=.2 | suxwigb title="AGC=1 WAGC=.1 sec &

% sugain < data.su pbal=1 | suxwigb title="traces balanced by rms" &

% sugain < data.su qbal=1 | suxwigb title="traces balanced by quantile" &

% sugain < data.su mbal=1 | suxwigb title="traces balanced by mean" &

% sugain < data.su tpow=2 | suxwigb title="t squared factor applied" &

% sugain < data.su tpow=.5 | suxwigb title="square root t factor applied" &

Please note, on your terminal window, there will be a message with “clip=” some number, for example:

xwigb: clip=1

This indicates the amplitude value above which traces are clipped. You may think of this as the value
of the maximum on the trace.

5.0.9 SUOP - Unary Arithmetic Operations on SU Data

Occassionally we want to apply mathematical functions or other operations which go beyond gaining to
data. Such operations might include

• absolute value,

• signed square root,

• square,

• signed square,

• signum function,

• exponential,

• natural logarithm,

• signed common logarithm,

• cosine,

61

• sine,

• tangent,

• hyperbolic cosine,

• hyperbolic sine,

• hyperbolic tangent,

• divide trace by Max. Value,

• express trace values in decibels: 20 * slog10 (data)

• negate values,

• pass only positive values,

• pass only negative values.

Operations involving logarithms are “punctuated” meaning that if the contains 0 values, 0 values are
returned.

Examples of suop using SU plane data may be easily run

% suplane | suaddnoise > data.su

% suop < data.su op=abs | suxwigb title="absolute value" &

% suop < data.su op=ssqrt | suxwigb title="signed square root" &

% suop < data.su op=sqr | suxwigb title="signed square" &

...

Please type:

% suop

to see the selfdoc and the other options.

5.0.10 SUOP2 - Binary Operations with SU data

To perform operations two SU datasets, the progam “suop2” has been provided. Some of the opperations
supported are to compute the

• difference,

• sum,

• product,

• quotient,

• difference of a panel and a single trace,

• sum of a panel and a single trace,

• product of a panel and a single trace,

• quotient of a panel and a single trace.

The first 4 options assume that there are the same number of traces in each SU datafile. In the last 4,
it is assumed that there is only a single trace in the second file.

From the selfdoc of “suop2” please note that there are 8 equivalent shell scripts commands which
perform these operations

62 CHAPTER 5. GENERAL OPERATIONS ON SU DATA

...

susum file1 file2 == suop2 file1 file2 op=sum

sudiff file1 file2 == suop2 file1 file2 op=diff

suprod file1 file2 == suop2 file1 file2 op=prod

suquo file1 file2 == suop2 file1 file2 op=quo

For: panel "op" trace operations:

suptsum file1 file2 == suop2 file1 file2 op=ptsum

suptdiff file1 file2 == suop2 file1 file2 op=ptdiff

suptprod file1 file2 == suop2 file1 file2 op=ptprod

suptquo file1 file2 == suop2 file1 file2 op=ptquo

...

All of these call “suop2” to perform the computation.

Try the following. Make two files of SU data with “suplane”

% suplane > junk1.su

% suxwigb < junk1.su | suxwigb title="Data without noise" &

% suplane | suaddnoise > junk2.su

% suxwigb < junk2.su | suxwigb title="Data with noise added" &

% suop2 junk2.su junk1.su op=diff | suxwigb title="difference" &

Note, that the filenames must appear before the “op=.”

5.1 Transform and Filtering Operations

A major aspect of seismic research and seismic processing is related to operations which are based on
mathematical transform methods. In particular, much of seismic processing would not exist without
numerical Fourier transforms. Filtering is a related subject, because the majority of filters are applied
in the frequency domain, or are at least representable mathematically as frequency domain operations.

In addition to standard Fourier transforms, there are a couple of other transforms, such as the Hilbert
transform, and the Gabor transform which are also included in the SU package. These items may find
more use as educational tools, rather than processing tools.

5.1.1 Fourier Transform Operations

There are Fourier transform operations for both 1D and 2D applications in the SU package. The 1D
transforms provide spectral (either amplitude or phase) information about each trace in a panel of seismic
data.

The 2D transforms include the seismic F-K variety, assuming that the fast dimension of the input
data is temporal, and the second dimension is spatial, and the non-seismic K1-K2 variety, in which the
input is assumed to be purely spatial (x1,x2) data.

5.1.2 1D Fourier Transforms

• SUFFT - fft real time traces to complex frequency traces

• SUIFFT - fft complex frequency traces to real time traces

• SUAMP - output amp, phase, real or imag trace from (frequency, x)

• SUSPECFX - Fourier SPECtrum (T to F) of traces domain data

5.1. TRANSFORM AND FILTERING OPERATIONS 63

The program “sufft” produces the output of the Fourier transform operation as a complex data type.
The program “suifft” is designed to accept complex input as would be generated by sufft to perform the
inverse Fourier transform. The cascade of these operations is not quite an non-operation, because there
is zeropadding which is automatically implemented for the transforms. Also, the header fields will not
quite be right for seismic data. For example, try:

% suplane | suxwigb title="Original Data" &

% suplane | sufft | suifft | sushw key=d1,dt a=0,4000 | suxwigb &

The result is the same as the input, except there are more samples on the traces due to zero-padding
required for the transform.

To view the amplitude and phase spectra, and the real and imaginary parts of the of the output of
sufft, do the following

% suplane | sufft | suamp mode=amp | suxwigb title="amplitude" &

% suplane | sufft | suamp mode=phase | suxwigb title="phases" &

% suplane | sufft | suamp mode=real | suxwigb title="real" &

% suplane | sufft | suamp mode=imag | suxwigb title="imaginary" &

SU data has a format which allows for the storage of the real and imaginary parts of data in a complex
datatype. To see the header field settings for that format, type:

% suplane | sufft | surange

sufft: d1=3.571428

32 traces:

tracl=(1,32) tracr=(1,32) trid=11 offset=400 ns=72

dt=4000 d1=3.571428

You will notice that the setting for the trace id (trid) is 11. Typing:

% sukeyword trid

...

11 = Fourier transformed - unpacked Nyquist

xr[0],xi[0],...,xr[N/2],xi[N/2]

...

shows that trid=11 how the data are arranged in the output of the fft.
Of course, most of the time, we only want to have a quick look at the amplitude spectrum of a

seismic trace, or a panel of seismic traces. For these purposes use “suspecfx”

% suplane | suspecfx | suximage title="F-X Amplitude Spectrum" &

which directly displays the amplitude spectra of each trace of the input SU data.

5.1.3 2D Fourier Transforms

Seismic data are generally at least 2D datasets. If the data really are data in (time, space) coordinates,
then the output should be in (frequency, wavenumber), the F-K domain. However, there are applications
where we consider the data to be in two spatial dimensions (x1,x2) meaning that the output is in (k1,k2)

We have the programs

• SUSPECFK - F-K Fourier SPECtrum of data set

• SUSPECK1K2 - 2D (K1,K2) Fourier SPECtrum of (x1,x2) data set

For each of these cases. Examples using suplane data are easily run using

64 CHAPTER 5. GENERAL OPERATIONS ON SU DATA

% suplane | suspecfk | suximage title="F-K Amplitude Spectrum" &

% suplane | suspeck1k2 | suximage title="K1-K2 Amplitude Spectrum" &

Please note, as these are display programs, so the intent is that plots of the output should appear correct
when compared with a plot of the original data. The effect of the 2D Fourier transform on a line of
spikes is to produce a line of spikes normal to the original line, if the (k1,k2) data are plotted on the
same plot as the (x1,x2) data,

5.2 Hilbert Transform, Trace Attributes, and Time-Frequency

Domain

A number of classical techniques for representing instantaneous trace attributes have been created over
the years. Many of these techniques involve the construction of a quadrature trace to be used as the
imaginary part of a “complex trace” (with the real part, being the real data). The quadrature trace
is created with the Hilbert transform following the construction of the so-called “allied function.” This
representation permits “instantaneous amplitude, phase, and frequency” information to be generated
for a dataset, by taking the modulus, phase, and time derivative of the phase, respectively. An alternate
approach is to perform multi-filter analysis on data, to represent it as a function of both time and
frequency.

Tools in SU which perform these operations are

• SUHILB - Hilbert transform

• SUATTRIBUTES - trace ATTRIBUTES instantanteous amplitude, phase, or frequency

• SUGABOR - Outputs a time-frequency representation of seismic data via the Gabor transform-like
multifilter analysis,

To generate the Hilbert transform of a test dataset, try

% suplane | suhilb | suxwigb title="Hilbert Transform" &

This program is useful for instructional and testing purposes.

To see an example of “trace attributes” with “suattributes” it is necessary to make data which has
a strong time-frequency variability. This is done here with “suvibro” which makes a synthetic vibroseis
sweep. Compare the following:

% suvibro | suxgraph title="Vibroseis sweep" &

% suvibro | suattributes mode=amp | suxgraph title="Inst. amplitude" &

% suvibro | suattributes mode=phase unwrap=1.0 | suxgraph title="Inst. phase" &

% suvibro | suattributes mode=freq | suxgraph title="Inst. frequency" &

which show, respectively, instantaneous amplitude, phase, and frequency.

To see the synthetic vibroseis trace in the time-frequency domain, try the following:

% suvibro | sugabor | suximage title="time frequency plot" &

The result is an image which shows the instantaneous or apparent frequency increasing from 10hz to
60hz, with time, exactly as stated by the default parameters of “suvibro.”

See the demos in $CWPROOT/src/demos/Time Freq Analysis and $CWPROOT/src/demos/Filtering/Sugabor
for further information.

5.3. RADON TRANSFORM - TAU P FILTERING 65

5.3 Radon Transform - Tau P Filtering

The Radon or “tau-p” transform, as it is sometimes called in geophysical literature is useful for a variety
of multiple suppression, and other “surgical” data manipulation tasks. The programs

• SUTAUP - forwared and inverse T-X and F-K global slant stacks

• SUHARLAN - signal-noise separation by the invertible linear transformation method of Harlan,
1984

• SURADON - compute forward or reverse Radon transform or remove multiples by using the
parabolic Radon transform to estimate multiples and subtract.

• SUINTERP - interpolate traces using automatic event picking

are provided to make use of this transform. You may tests using suplane data as we have with other
programs to see the output from each of these codes. Both “suinterp” and “suradon” have some sophis-
ticated options which my require some experimentation.

See also the demos in $CWPROOT/src/demos/Tau P for examples.

5.4 1D Filtering Operations

A large part of what is called seismic processing, may be thought of as being “filtering.” There are
filtering operations for 1D applications in the SU package that span simple filtering tasks, to more
sophisticated tasks including deconvolution and wavelet shaping operations. These operations are 1D,
in that they are applied trace by trace.

Several types of filtering operations that arise in seismic processing are

• zero bandpass, bandreject, lowpass, and highpass , and notch filtering,

• minimum or zero phase Butterworth filtering,

• Wiener prediction error (deconvolution),

• Wiener wavelets shaping,

• convolution,

• crosscorrelation,

• autocorrelation,

• data resampling with sinc interpolation,

• fractional derivatives/integrals,

• median filtering,

• time varying filtering.

The programs that are provided to meet these needs are:

• SUFILTER - applies a zero-phase, sine-squared tapered filter

• SUBFILT - apply Butterworth bandpass filter

• SUACOR - auto-correlation

• SUCONV, SUXCOR - convolution, correlation with a user-supplied filter

• SUPEF - Wiener predictive error filtering

• SUSHAPE - Wiener shaping filter

• SURESAMP - Resample in time,

66 CHAPTER 5. GENERAL OPERATIONS ON SU DATA

• SUFRAC – take general (fractional) time derivative or integral of data, plus a phase shift. Input
is TIME DOMAIN data.

• SUMEDIAN - MEDIAN filter about a user-defined polygonal curve with the distance along the
curve specified by key header word

• SUTVBAND - time-variant bandpass filter (sine-squared taper)

5.4.1 SUFILTER - applies a zero-phase, sine-squared tapered filter

The program sufilter provides a general purpose zero-phase filtering capability for the usual tasks of
bandpass, bandreject, lowpass, highpass, and notch filtering. Examples of each of these using sufilter
data are provided

% suplane | sufilter f=10,20,30,60 amps=0,1,1,0 | suxwigb title="10,20,30,60 hz bandpass" &

% suplane | sufilter f=10,20,30,60 amps=1,0,0,1 | suxwigb title="10,20,30,60 hz bandreject" &

% suplane | sufilter f=10,20,30,60 amps=1,1,0,0 | suxwigb title="10,20 hz lowpass" &

% suplane | sufilter f=50,60,70 amps=1,0,1 | suxwigb title="60 hz notch" &

The filter is polygonal, with the corners of the polygon defined by the vector of frequency values
defined by array of f= values, and a collection of amplitude values, defined by the array of amps=
values. The amplitudes may be any floating point numbers greater than, or equal to zero. The only
rule is that there must be the same number of amps values, as f values. The segments are sine-squared
tapered between f values of different amplitude. It is best to select bf f values such that tapering to zero
is done over an octave to prevent ringing.

With suplane, sufilter provides a way of easily generating bandlimited testpattern data in SU
format.

5.4.2 SUBFILT - apply Butterworth bandpass filter

An alternative to sufilter is subfilt, which applies a Butterworth filter to data.

% suplane | subfilt fstoplo=10 fpasslo=20 fpasshi=30 fstophi=60 | suxwigb title="10,20,30,60 hz bandpass bfilt" &

\subsection{SUACOR - auto-correlation}

This program is used to compute the autocorrelation of a trace.

This process is useful to see the size of a wavelet, or the repetitions

of the wavelet, as an aid in choosing the {\bf maxlag\/} parameter

of {\bf supef}. {\bf Suacor\/} is also useful for determining the

frequency range of data in terms of the power spectrum. For example

try

{\small \begin{verbatim}

% suplane | sufilter | suacor | suspecfx | suxwigb &

5.4. 1D FILTERING OPERATIONS 67

5.4.3 SUCONV, SUXCOR - convolution, correlation with a user-supplied
filter

The standard operations of convolution and cross correlation may be performed with suconv and sux-
cor, respectively. The filter may be supplied as a vector input on the commandline, or as a file containing
a single trace in SU format. In addition to taking the input as a single trace, it is possible to supply a
panel of filters, each to be used trace by trace on a panel of SU data.

An example of correlating a vibroseis sweep may be seen by creating vibroseis-like data, with suvi-
bro, suplane and suconv. To make “vibroseis” suplane data

% suvibro > junk.vib.su

% suplane | suconv sufile=junk.vib.su > plane.vib.su

Because surange tells us that

% surange < junk.vib.su

1 traces:

tracl=1 ns=2500 dt=4000 sfs=10 sfe=60

slen=10000 styp=1

there are 2500 samples on the vibroseis sweep, we can do the following correlation

% suxcor < plane.vib.su sufile=junk.vib.su |

suwind itmin=2500 itmax=2563 | sushw key=delrt a=0.0 > data.su

(this line is broken to make it fit on the page here, the real

command is typed on a single line)

The value of itmin=sweeplength and itmax=sweeplength+nsout where nsout is the number of
samples expected in the output. The final step using sushw is to set the trace delay to 0. Choosing it-
min=sweeplength will ensure that the data start at the correct value. Choosing nsout=sweeplength-
nsin, where nsin is the number of samples in the input, will yield the correct number of samples to
keep.

5.4.4 SUPEF - Wiener predictive error filtering

The prediction error filtering method, also known as Wiener filtering, is the principle process of tradi-
tional Wiener-Levinson deconvolution. The reason that this subsection is not headed “deconvolution”
is because there are two additional issues that have to be addressed before prediction error filtering can
be used for effective deconvolution. These issues are preprocessing of the data, and postprocess filtering.
Indeed, much feedback has come back claiming that supef doesn’t work properly, when in fact, it simply
being used improperly. (This is our fault, for not supplying sufficient documentation.)

Using supef , itself, generally requires that the value of maxlag be set. This may be determined by
first establishing the size of the wavelet being spiked, through application suacor.

As the preprocessing step, you will probably need to use sugain to remove any decay in amplitudes
with time that may result from geometric spreading.

As a postprocessing step, you need to remove any increase in frequency content which has occurred
due to the whitening effect of the prediction error filter. The demos in the demos/Deconvolution directory
demonstrate the functioning of the program. However, these examples are a bit unrealistic for field data.
For example, in the demos, the data are spiked, and then reverberations are removed via a cascaded of
supef calls with maxlag=.04 and minlag=.05 maxlag=.16, respectively. However on field data, we
would probably only use a single pass of the filter to remove reverberations, or to spike arrivals.

The prediction error filter has a spectral whitening effect, which is likely to put high frequencies in
the data that were not there originally. These must be filtered out. It is a good idea to assume that
there is a loss of frequency information, and design the parameters for the postprocessing filtering, using
sufilter to slightly reduce the frequency content from its original values.

68 CHAPTER 5. GENERAL OPERATIONS ON SU DATA

Also, an added feature of the Release 32 version of supef is the mixing parameter, which permits
the user to apply a weighted moving average to the autocorrelations that are computed as part of the
prediction error filter computation. This can provide additional stability to the operation.

5.4.5 SUSHAPE - Wiener shaping filter

The demos in demos/Deconvolution also contain a demonstration of the Wiener shaping filter sushape.

2D Filtering Operations

Filtering in the (k1,k2) domain, and the (F,K) domain is often useful for changing dip information in
data. The programs

• SUKFILTER - radially symmetric K-domain, sin2̂-tapered, polygonal filter

• SUK1K2FILTER - symmetric box-like K-domain filter defined by the cartesian product of two
sin2̂-tapered polygonal filters defined in k1 and k2

• SUKFRAC - apply FRACtional powers of i—k— to data, with phase shift

• SUDIPFILT - DIP–or better–SLOPE Filter in f-k domain

provide the beginnings of a set of K-domain and F-K-domain filtering operations.

5.4.6 SURESAMP - Resample Data in Time

Often data need to be resampled to either reduce or increase the number of samples for processing or
data storage. For seismic data, the smart way of doing this is by the method of sinc interpolation. The
program “suresamp”

• SURESAMP - Resample in time

performs this operation.
See the demos in $CWPROOT/src/demos/Filtering for further information about filtering in SU.

Chapter 6

Seismic Modeling Utilities

An important aspect of seismic exploration and research are programs for creating synthetic data. Such
programs find their use, both in the practical problem of modeling real data, as well as in the testing of
new processing programs. A processing program that will not work on idealized model data will likely
not work on real seismic data.

Another important aspect of modeling programs is the fact that many seismic processing algorithms
(such as migration) may be viewed as inverse processes. The first step in such an inverse problem may
be to create a method to solve the forward problem, and then formulate the solution to the inverse
problem as a “backpropagation” of the recorded data to its position in the subsurface.

There are two parts to the seismic modeling task. The first part is the construction of background
wavespeed profiles, which may consist of uniformly sampled arrays of floating point numbers. The second
part is the construction of the synthetic wave information which propagates in that wavespeed profile.

Because of the intimate relationship between seismic modeling and seismic processing, background
wavespeed profiles created for modelling tasks, may also be useful for processing tasks.

Of course, if some simple assumptions are made, it may be possible for background wavespeed
information to be built into the modeling program.

6.1 Background Wavespeed Profiles

There are many approaches to creating background wavespeed profiles. For many processes, it may be
that a simple array of floating point numbers, each representing the wavespeed, slowness (1/wavespeed),
or sloth (slowness squared) on a uniformly sampled grid will be sufficient.

However, more advanced techniques may involve wavespeed profile generation in triangulated or
tetrahedrized media.

6.2 Uniformly Sampled Models

In Seismic Unix there are several programs which may be used to generate background wavespeed profile
data. Often, such data need to be smoothed.

These programs are:

• UNISAM - UNIformly SAMple a function y(x) specified as x,y pair

• UNISAM2 - UNIformly SAMple a 2-D function f(x1,x2)

• MAKEVEL - MAKE a VELocity function v(x,y,z)

• UNIF2 - generate a 2-D UNIFormly sampled velocity profile from a layered model. In each layer,
velocity is a linear function of position.

69

70 CHAPTER 6. SEISMIC MODELING UTILITIES

• SMOOTHINT2 - SMOOTH non-uniformly sampled INTerfaces, via the damped least-squares
technique

• SMOOTH2 - SMOOTH a uniformly sampled 2d array of data, within a user- defined window, via
a damped least squares technique

• SMOOTH3D - 3D grid velocity SMOOTHing by the damped least squares

Please see the selfdoc of each of these programs for further information. Also see the demos in
$CWPROOT/src/Velocity Profiles

6.3 Synthetic Data Generators

There are a number of programs for generating synthetic seismic and seismic-like data in the SU package.
These are

• SUPLANE - create common offset data file with up to 3 planes

• SUSPIKE - make a small spike data set

• SUIMP2D - generate shot records for a line scatterer embedded in three dimensions using the
Born integral equation

• SUIMP3D - generate inplane shot records for a point scatterer embedded in three dimensions
using the Born integral equation

• SUFDMOD2 - Finite-Difference MODeling (2nd order) for acoustic wave equation

• SUSYNCZ - SYNthetic seismograms for piecewise constant V(Z) function True amplitude (pri-
maries only) modeling for 2.5D

• SUSYNLV - SYNthetic seismograms for Linear Velocity function

• SUSYNVXZ - SYNthetic seismograms of common offset V(X,Z) media via Kirchhoff-style model-
ing

• SUSYNLVCW - SYNthetic seismograms for Linear Velocity function for mode Converted Waves

• SUSYNVXZCS - SYNthetic seismograms of common shot in V(X,Z) media via Kirchhoff-style
modeling

Of these, only sufdmod2, susynvxz, and sysnvxzcs require an file of input wavespeed. The other programs
use commandline arguments for wavespeed model input.

Please see the demos in $CWPROOT/src/demos/Synthetic for further information. Also, a number
of the other demos use these programs for synthetic data generation.

6.4 Delaunay Triangulation

More sophisticated methods of synthetic data generation use assumptions regarding the nature of the
medium (as represented by the input wavespeed profile data format) to expedite computations of the
synthetic data. One such method is triangulation via the Delaunay method.

6.5. TETRAHEDRAL METHODS 71

6.4.1 Triangulated Model Building

There are two way of making triangulated models. The first is to explicitly input boundary coordinates
and wavespeed (actually sloth values) with “trimodel.” The second is to make a uniformly sampled
model, perhaps with one of the model building utilities above, and then use “uni2tri” to convert the uni-
formly sampled model to a triangulated model. (Please note, that this will work better if the wavespeed
model is smoothed, prior to conversion.) These programs are

• TRIMODEL - make a triangulated sloth (1/velocity squared) model

• UNI2TRI - convert UNIformly sampled model to a TRIangulated model

• TRI2UNI - convert a TRIangulated model to UNIformly sampled model

6.4.2 Synthetic Seismic Data in Triangulated Media

Several programs make use of triangulated models to create ray tracing, or ray-trace based synthetic
seismograms. There is also a code to create Gaussian beam synthetic seismograms in a triangulated
medium. These programs are:

• NORMRAY - dynamic ray tracing for normal incidence rays in a sloth model

• TRIRAY - dynamic RAY tracing for a TRIangulated sloth model

• GBBEAM - Gaussian beam synthetic seismograms for a sloth model

• TRISEIS - Synthetic seismograms for a sloth model

There is a comprehensive set of demos located in the directory $CWPROOT/src/Delaunay Triangulation

6.5 Tetrahedral Methods

Some new functionality will be entering SU in future releases for tetrahedral model building and ray
tracing in tetrahedral models. One code that is in the current release is

• TETRAMOD - TETRAhedron MODel builder. In each layer, velocity gradient is constant or a
2-D grid; horizons could be a uniform grid and/or added by a 2-D grid specified.

72 CHAPTER 6. SEISMIC MODELING UTILITIES

Chapter 7

Seismic Processing Utilities

There are a collection of operations which are uniquely seismic in nature, representing operations which
are designed to perform some aspect of the involved process which takes seismic data and converts it
into images of the earth.

• stacking data,

• picking data,

• velocity analysis,

• normal moveout correction,

• dip moveout correction,

• seismic migration and related operations.

7.1 SUSTACK, SURECIP, SUDIVSTACK - Stacking Data

• SUSTACK - stack adjacent traces having the same key header word,

• SURECIP - sum opposing offsets in prepared data,

• SUDIVSTACK - Diversity Stacking using either average power or peak power within windows

7.2 SUVELAN, SUNMO - Velocity Analysis and Normal Move-

out Correction

• SUVELAN - compute stacking velocity semblance for cdp gathers

• SUNMO - NMO for an arbitrary velocity function of time and CDP

Please see the demos in $CWPROOT/src/demos/Velocity Analysis and $CWPROOT/src/demos/NMO
for further information.

7.3 SUDMOFK, SUDMOTX, SUDMOVZ - Dip Moveout Cor-
rection

Dip-moveout is a data transformation which converts data recorded with offset to zero offset data. The
following programs

73

74 CHAPTER 7. SEISMIC PROCESSING UTILITIES

• SUDMOFK - DMO via F-K domain (log-stretch) method for common-offset gathers

• SUDMOTX - DMO via T-X domain (Kirchhoff) method for common-offset gathers

• SUDMOVZ - DMO for V(Z) media for common-offset gathers

perform this operation.

7.4 Seismic Migration

The subject of seismic migration is one of the most varied in seismic data processing. Many algorthms
have been developed to perform this task. Methods include Kirchhoff, Stolt, Finite-Difference, Fourier
Finite-Difference, and several types of Phase-Shift or Gazdag Migration.

Please see the demos in $CWPROOT/src/demos/Migration for further information.

7.4.1 SUGAZMIG, SUMIGPS, SUMIGPSPI, SUMIGSPLIT - Phase Shift
Migration

• SUGAZMIG - SU version of Jeno GAZDAG’s phase-shift migration for zero-offset data.

• SUMIGPS - MIGration by Phase Shift with turning rays

• SUMIGPSPI - Gazdag’s phase-shift plus interpolation migration for zero-offset data, which can
handle the lateral velocity variation.

• SUMIGSPLIT - Split-step depth migration for zero-offset data.

7.4.2 SUKDMIG2D, SUMIGTOPO2D, SUDATUMK2DR, SUDATUMK2DS
- 2D Kirchhoff Migration, and Datuming

• SUKDMIG2D - Kirchhoff Depth Migration of 2D poststack/prestack data

• SUDATUMK2DR - Kirchhoff datuming of receivers for 2D prestack data (shot gathers are the
input)

• SUDATUMK2DS - Kirchhoff datuming of sources for 2D prestack data (input data are receiver
gathers)

• SUMIGTOPO2D - Kirchhoff Depth Migration of 2D postack/prestack data from the (variable
topography) recording surface

7.4.3 SUMIGFD, SUMIGFFD - Finite-Difference Migration

• SUMIGFD - 45 and 60 degree Finite difference migration for zero-offset data.

• SUMIGFFD - Fourier finite difference migration for zero-offset data. This method is a hybrid
migration which combines the advantages of phase shift and finite difference migrations.

7.4.4 SUMIGTK - Time-Wavenumber Domain Migration

This algorthm was created by Dave Hale “on the fly” and, as far as we know, exists nowhere in else
geophysical literature.

• SUMIGTK - MIGration via T-K domain method for common-midpoint stacked data

7.4.5 SUSTOLT - Stolt Migration

This is the classic F-K migration method of Clayton Stolt.

• SUSTOLT - Stolt migration for stacked data or common-offset gathers

Chapter 8

Processing Flows with SU

8.1 SU and UNIX

You need not learn a special seismic language to use SU. If you know how to use UNIX shell-redirecting
and pipes, you are ready to start using SU—the seismic commands and options can be used just as you
would use the built-in UNIX commands. In particular, you can write ordinary UNIX shell scripts to
combine frequent command combinations into meta-commands (i.e., processing flows). These scripts
can be thought of as “job files.”

Table 8.1: UNIX Symbols

process1 < file1 process1 takes input from file1
process2 > file2 process2 writes on (new) file2
process3 >> file3 process3 appends to file3
process4 | process5 output of process4 is input to process5
process6 << text take input from following lines

So let’s begin with a capsule review of the basic UNIX operators as summarized in Table 8.1. The
symbols <, >, and >> are known as “redirection operators,” since they redirect input and output into
or out of the command (i.e., process). The symbol | is called a “pipe,” since we can picture data flowing
from one process to another through the “pipe.” Here is a simple SU “pipeline” with input “indata”
and output “outdata”:

sufilter f=4,8,42,54 <indata |

sugain tpow=2.0 >outdata

This example shows a band-limiting operation being “piped” into a gaining operation. The input data
set indata is directed into the program sufilter with the < operator, and similarly, the output data set
outdata receives the data because of the > operator. The output of sufilter is connected to the input
of sugain by use of the | operator.

The strings with the = signs illustrate how parameters are passed to SU programs. The program
sugain receives the assigned value 2.0 to its parameter tpow, while the program sufilter receives the
assigned four component vector to its parameter f. To find out what the valid parameters are for a given
program, we use the self-doc facility.

By the way, space around the UNIX redirection and pipe symbols is optional—the example shows
one popular style. On the other hand, spaces around the = operator are not permitted.

The first four symbols in Table 8.1 are the basic grammar of UNIX; the final << entry is the symbol
for the less commonly used “here document” redirection. Despite its rarity in interactive use, SU shell
programs are significantly enhanced by appropriate use of the << operator—we will illustrate this below.

75

76 CHAPTER 8. PROCESSING FLOWS WITH SU

Many built-in UNIX commands do not have a self-documentation facility like SU’s—instead, most
do have “man” pages. For example,

% man cat

CAT(1) UNIX Programmer’s Manual CAT(1)

NAME

cat - catenate and print

SYNOPSIS

cat [-u] [-n] [-s] [-v] file ...

DESCRIPTION

Cat reads each file in sequence and displays it on the stan-

dard output. Thus

cat file

displays the file on the standard output, and

cat file1 file2 >file3

--More--

You need to know a bit more UNIX lore to use SU efficiently—we’ll introduce these tricks of the trade
in the context of the examples discussed later in this chapter.

8.2 Understanding and using SU shell programs

The essence of good SU usage is constructing (or cloning!) UNIX shell programs to create and record
processing flows. In this section, we give some annotated examples to get you started.

8.2.1 A simple SU processing flow example

Most SU programs read from standard input and write to standard output. Therefore, one can build
complex processing flows by simply connecting SU programs with UNIX pipes. Most flows will end
with one of the SU plotting programs. Because typical processing flows are lengthy and involve many
parameter settings, it is convenient to put the SU commands in a shell file.

Remark: All the UNIX shells, Bourne (sh), Cshell (csh), Korn (ksh), . . . , include a programming
language. In this document, we exclusively use the Bourne shell programming language.

Our first example is a simple shell program called Plot. The numbers in square brackets at the end
of the lines in the following listing are not part of the shell program—we added them as keys to the
discussion that follows the listing.

#! /bin/sh [1]

Plot: Plot a range of cmp gathers

Author: Jane Doe

Usage: Plot cdpmin cdpmax

data=$HOME/data/cmgs [2]

8.2. UNDERSTANDING AND USING SU SHELL PROGRAMS 77

Plot the cmp gather.

suwind <$data key=cdp min=$1 max=$2 | [3]

sugain tpow=2 gpow=.5 |

suximage f2=0 d2=1 \ [4]

label1="Time (sec)" label2="Trace number" \

title="CMP Gathers $1 to $2" \

perc=99 grid1=solid & [5]

Discussion of numbered lines:

1. The symbol # is the comment symbol—anything on the remainder of the line is not executed by the
UNIX shell. The combination #! is an exception to this rule: the shell uses the file name following
this symbol as a path to the program that is to execute the remainder of the shell program.

2. The author apparently intends that the shell be edited if it is necessary to change the data set—
she made this easier to do by introducing the shell variable data and assigning to it the full
pathname of the data file. The assigned value of this parameter is accessed as $data within the
shell program. The parameter $HOME appearing as the first component of the file path name is
a UNIX maintained environment variable containing the path of the user’s home directory. In
general, there is no need for the data to be located in the user’s home directory, but the user
would need “read permission” on the data file for the shell program to succeed.

WARNING! Spaces are significant to the UNIX shell—it uses them to parse command lines. So
despite all we’ve learned about making code easy to read, do not put spaces next to the = symbol.
(Somewhere around 1977, one author’s (Jack) first attempt to learn UNIX was derailed for several
weeks by making this mistake.)

3. The main pipeline of this shell code selects a certain set of cmp gathers with suwind, gains this
subset with sugain and pipes the result into the plotting program suximage. As indicated in
the Usage comment, the cmp range is specified by command line arguments. Within the shell
program, these arguments are referenced as $1, $2 (i.e., first argument, second argument).

4. The lines within the suximage command are continued by the backslash escape character.

WARNING! The line continuation backslash must be the final character on the line—an invisible
space or tab following the backslash is one of the most common and frustrating bugs in UNIX
shell programming.

5. The final & in the shell program puts the plot window into “background” so we can continue
working in our main window. This is the X-Windows usage—the & should not be used with the
analogous PostScript plotting programs (e.g., supsimage). For example, with supsimage in place
of suximage, the & might be replaced by | lpr.

The SU plotting programs are special—their self-doc doesn’t show all the parameters accepted.
For example, most of the parameters accepted by suximage are actually specified in the self-
documentation for the generic CWP plotting program ximage. This apparent flaw in the self-
documentation is actually a side effect of a key SU design decision. The SU graphics programs call
on the generic plotting programs to do the actual plotting. The alternative design was to have
tuned graphics programs for various seismic applications. Our design choice keeps things simple,
but it implies a basic limitation in SU’s graphical capabilities.

The plotting programs are the vehicle for presenting your results. Therefore you should take
the time to carefully look through the self-documentation for both the “SU jacket” programs
(suximage, suxwigb, . . .) and the generic plotting programs (ximage, xwigb, . . .).

78 CHAPTER 8. PROCESSING FLOWS WITH SU

8.2.2 Executing shell programs

The simplest way to execute a UNIX shell program is to give it “execute permission.” For example, to
make our above Plot shell program executable:

chmod +x Plot

Then to execute the shell program:

Plot 601 610

Here we assume that the parameters cdpmin=601, cdpmax=610 are appropriate values for the cmgs data
set. Figure 8.1 shows an output generated by the Plot shell program.

0

1

2

3

4

5

T
im

e
(s

ec
)

0 100 200
Trace number

CMP Gathers 601 to 610

Figure 8.1: Output of the Plot shell program.

8.2.3 A typical SU processing flow

Suppose you want to use sudmofk. You’ve read the self-doc, but a detailed example is always welcome
isn’t it? The place to look is the directory su/examples. In this case, we are lucky and find the shell
program, Dmo. Again, the numbers in square brackets at the end of the lines shown below are not part
of the listing.

#! /bin/sh

dmo

set -x [1]

set parameters

input=cdp201to800 [2]

8.2. UNDERSTANDING AND USING SU SHELL PROGRAMS 79

temp=dmocogs

output=dmocmgs

smute=1.7

vnmo=1500,1550,1700,2000,2300,2600,3000 [3]

tnmo=0.00,0.40,1.00,2.00,3.00,4.00,6.00

sort to common-offset, nmo, dmo, inverse-nmo, sort back to cmp

susort <$input offset cdp | [4]

sunmo smute=$smute vnmo=$vnmo tnmo=$tnmo | [5]

sudmofk cdpmin=201 cdpmax=800 dxcdp=13.335 noffmix=4 verbose=1 | [6]

sunmo invert=1 smute=$smute vnmo=$vnmo tnmo=$tnmo >$temp [7]

susort <$temp cdp offset >$output [8]

Discussion of numbered lines:
The core of the shell program (lines 5-7) is recognized as the typical dmo process: crude nmo, dmo,

and then “inverse” nmo. The dmo processing is surrounded by sorting operations (lines 4 and 8). Here
is a detailed discussion of the shell program keyed to the numbers appended to the listing (see also the
discussion above for the Plot shell):

1. Set a debugging mode that asks UNIX to echo the lines that are executed. You can comment
this line off when its output is no longer of interest. An alternate debugging flag is set -v which
echos lines as they are read by the shell interpreter. You can use both modes at once if you like.

2. This line and the next two lines set filenames that, in this case, are in the same directory as the
shell program itself. Again, the reason for using parameters here is to make it easy to “clone”
the shell for use with other data sets. Those of us who work with only a few data sets at any
given time, find it convenient to devote a directory to a given data set and keep the shells used to
process the data in that directory as documentation of the processing parameters used. (SU does
not have a built-in “history” mechanism.)

3. The dmo process requires a set of velocity-time picks for the subsidiary nmo processes. Because
these picks must be consistent between the nmo and the inverse nmo, it is a good idea to make
them parameters to avoid editing mistakes. Again, note the format of SU parameter vectors:
comma-separated strings with no spaces. The nmo program (sunmo) will give an error message
and abort if the vnmo and tnmo vectors have different lengths.

4. Note that susort allows the use of secondary sort keys. Do not assume that a secondary field
that is initially in the “right” order will remain in that order after the sort—if you care about the
order of some secondary field, specify it (as this shell program does). In this line, we sort the data
according to increasing offsets and then, within each offset, we sort according to increasing cdp
number.

5. The forward nmo step.

6. The dmo step.

7. The inverse nmo step.

8. Sort back to cdp and have increasing offset within each cdp.

If you want to thoroughly understand this shell program, your next step is to study the self-docs of
the programs involved:

% sunmo

SUNMO - NMO for an arbitrary velocity function of time and CDP

80 CHAPTER 8. PROCESSING FLOWS WITH SU

sunmo <stdin >stdout [optional parameters]

Optional Parameters:

vnmo=2000 NMO velocities corresponding to times in tnmo

tnmo=0 NMO times corresponding to velocities in vnmo

...

Related shell programs are su/examples/Nmostack and su/examples/Mig.

8.3 Extending SU by shell programming

Shell programming can be used to greatly extend the reach of SU without writing C code. See, for
example, CvStack, FilterTest, FirstBreak, and Velan in su/examples.

It is a sad fact that the UNIX shell is not a high level programming language—consequently, effective
shell coding often involves arcane tricks. In this section, we’ll provide some useful templates for some of
the common UNIX shell programming idioms.

We use CvStack as an illustration. The core of this shell is a double loop over velocities and cdps
that produces velocity panels—a concept not contained in any single SU program.

Remark: For most of us, writing a shell like CvStack from scratch is a time-consuming affair. To
cut down the development time, your authors excerpt from existing shells to make new ones even when
we don’t quite remember what every detail means. We suggest that you do the same!

We won’t comment on the lines already explained in our previous two shell code examples (see
Sections 8.2.1 and 8.2.3), but instead focus on the new features used in CvStack.

#! /bin/sh

Constant-velocity stack of a range of cmp gathers

Authors: Jack, Ken

NOTE: Comment lines preceding user input start with #!#

set -x

#!# Set input/output file names and data parameters

input=cdp601to610

stackdata=cvstack

cdpmin=601 cdpmax=610

fold=30

space=1 # 1 null trace between panels

#!# Determine velocity sampling.

vmin=1500 vmax=3000 dv=150

Determine ns and dt from data (for sunull)

nt=‘sugethw ns <$input | sed 1q | sed ’s/.*ns=//’‘ [1]

dt=‘sugethw dt <$input | sed 1q | sed ’s/.*dt=//’‘

Convert dt to seconds from header value in microseconds

dt=‘bc -l <<END [2]

scale=4

$dt / 1000000

END‘

8.3. EXTENDING SU BY SHELL PROGRAMMING 81

Do the velocity analyses.

>$stackdata # zero output file [3]

v=$vmin

while [$v -le $vmax] [4]

do

cdp=$cdpmin

while [$cdp -le $cdpmax] [5]

do

suwind <$input \ [6]

key=cdp min=$cdp max=$cdp count=$fold |

sunmo cdp=$cdp vnmo=$v tnmo=0.0 |

sustack >>$stackdata

cdp=‘bc -l <<END [7]

$cdp + 1

END‘

done

sunull ntr=$space nt=$nt dt=$dt >>$stackdata [8]

v=‘bc -l <<END

$v + $dv

END‘

done

Plot the common velocity stacked data

ncdp=‘bc -l <<END

$cdpmax-$cdpmin+1

END‘

f2=$vmin

d2=‘bc -l <<END

$dv/($ncdp + $space) [9]

END‘

sugain <$stackdata tpow=2.0 |

suximage perc=99 f2=$f2 d2=$d2 \

title="File: $input Constant-Velocity Stack " \

label1="Time (s)" label2="Velocity (m/s)" &

exit [10]

Discussion of numbered lines:

1. This elaborate construction gets some information from the first trace header of the data set. The
program sugethw lists the values of the specified keys in the successive traces. For example,

% suplane | sugethw tracl ns

tracl=1 ns=64

tracl=2 ns=64

tracl=3 ns=64

82 CHAPTER 8. PROCESSING FLOWS WITH SU

tracl=4 ns=64

tracl=5 ns=64

tracl=6 ns=64

...

Although sugethw is eager to give the values for every trace in the data set, we only need it once.
The solution is to use the UNIX stream editor (sed). In fact, we use it twice. By default, sed
passes along its input to its output. Our first use is merely to tell sed to quit after it puts the first
line in the pipe. The second pass through sed strips off the unwanted material before the integer.
In detail, the second sed command reads: replace (or substitute) everything up to the characters
ns= with nothing, i.e., delete those characters.

2. We are proud of this trick. The Bourne shell does not provide floating point arithmetic. Where
this is needed, we use the UNIX built-in bc calculator program with the “here document” facility.
Here, we make the commonly needed conversion of sampling interval which is given in micro-
seconds in the SEG-Y header, but as seconds in SU codes. Note carefully the backquotes around
the entire calculation—we assign the result of this calculation to the shell variable on the left of
the equal sign, here dt. The calculation may take several lines. We first set the number of decimal
places with scale=4 and then do the conversion to seconds. The characters END that follow the
here document redirection symbol << are arbitrary, the shell takes its input from the text in the
shell file until it comes to a line that contains the same characters again. For more information
about bc:

% man bc

3. As the comment indicates, this is a special use of the output redirection symbol that has the effect
of destroying any pre-existing file of the same name or opening a new file with that name. In fact,
this is what > always does as its first action—it’s a dangerous operator! If you intend to append,
then, as mentioned earlier, use >>.

4. This is the outer loop over velocities. Another warning about spaces—the spaces around the
bracket symbols are essential.

Caveat: The bracket notation is a nice alternative to the older clunky test notation:

while test $v -le $vmax

Because the bracket notation is not documented on the typical sh manual page, we have some
qualms about using it. But, as far as we know, all modern sh commands support it—please let
us know if you find one that doesn’t.

WARNING! OK, now you know that there is a UNIX command called test. So don’t use the
name “test” for one of your shell (or C) programs—depending on your $PATH setting, you could
be faced with seemingly inexplicable output.

5. This is the inner loop over cdps.

6. Reminder: No spaces or tabs after the line continuation symbol!

7. Notice that we broke the nice indentation structure by putting the final END against the left
margin. That’s because the sh manual page says that the termination should contain only the
END (or whatever you use). In fact, most versions support indentation. We didn’t think the added
beautification was worth the risk in a shell meant for export. Also note that we used bc for an
integer arithmetic calculation even though integer arithmetic is built into the Bourne shell—why
learn two arcane rituals, when one will do? See man expr, if you are curious.

8.3. EXTENDING SU BY SHELL PROGRAMMING 83

0

1

2

3

4

5

T
im

e
(s

)

1500 2000 2500 3000
Velocity (m/s)

File: cdp601to610 Constant-Velocity Stack

Figure 8.2: Output of the CvStack shell program.

84 CHAPTER 8. PROCESSING FLOWS WITH SU

8. sunull is a program I (Jack) wrote to create all-zero traces to enhance displays of the sort produced
by CvStack. Actually, I had written this program many times, but this was the first time I did it
on purpose. (Yes, that was an attempt at humor.)

9. An arcane calculation to get velocity labeling on the trace axis. Very impressive! I wonder what
it means? (See last item.)

10. The exit statement is useful because you might want to save some “spare parts” for future use.
If so, just put them after the exit statement and they won’t be executed.

Figure 8.2 shows an output generated by CvStack.

Chapter 9

Answers to Frequently Asked
Questions

This chapter addresses questions often asked by new SU users. Some answers refer to the directory
CWPROOT. We use this symbolic name for the directory that contains the CWP/SU source code, include
files, libraries, and executables. You are asked to specify this directory name during the SU installation
procedure.

9.1 Installation questions

Complete information about the installation process is found in the README files supplied with the
distribution. Here we discuss only some commonly found installation problems.

Question 1 I get error messages about missing fgetpos and fsetpos routines, even though I am using
the GCC compiler. How do I get around this problem?

Answer 1 We’ve seen this problem most often with older SUN OS 4.xx (pre-SOLARIS). These SUN
systems may not have the fgetpos and fsetpos subroutines defined. Because these two routines are
not currently used in the SU package, we have modified the installation process to permit the user
to define a compile-time flag to circumvent this problem. Please uncomment the OPTC line in the
paragraph in Makefile.config that looks like this:

For SUN installing with GCC compiler but without GLIBC libraries

#OPTC = -O -DSUN_A -DSUN

and do a ”make remake”.

Question 2 I get error messages regarding missing strtoul, and/or strerror routines, even though I
am using the GCC compiler. How do I get around this problem?

Answer 2 Again, this is most often seen with the older SUN OS. The fix is the same as for the previous
question.

Question 3 Why do I get missing subroutine messages about ANSI C routines? Isn’t the GCC compiler
supposed to be an ANSI compiler?

Answer 3 The GCC compiler is just that, a compiler. It draws on the libraries that are present on
the machine. If the GNU libraries (this is the ”glibc” package) have not been installed, then the GCC
compiler will use the libraries that are native to the machine you are running on. Because the four
routines listed above are not available in the SUN 4. OS, GCC does not recognize them. However,
installing the GNU libraries will make the GCC compiler behave as a full ANSI C compiler.

85

86 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

Question 4 Why do I get missing subroutine messages about ANSI C routines? I can’t get the code to
compile because my compiler can’t find ”bzero” or ”bcopy”, how can I fix this?

Answer 4 You really shouldn’t be having this problem, because we try to keep to the ANSI standard,
but sometimes old style function calls creep in. The problem of rooting these things out is exacerbated
because many systems still support the old style calls.

If you have trouble installing because your compiler can’t find ”bcopy” or ”bzero” make the following
replacements.

Replace all statements of the form

bzero(a, b);

with statements of the form:

memset((void *) a , (int) ’\0’, b);

Please replace all instances of statements of the form of:

bcopy (a , b, c);

with a statements of the form:

memcpy((void *) b, (const void *) a, c);

9.2 Data format questions

In this section, we address questions about converting data that are in various formats into SU format.

Question 5 What is the data format that SU programs expect?

Answer 5 The SU data format is based on, (but is not exactly the same as) the SEG-Y format. The SU
format consists of data traces each of which has a header. The SU trace header is identical to SEG-Y trace
header. Both the header and the trace data are written in the native binary format of your machine.
You will need to use segyread to convert SEGY data to SU data.
Caution: The optional fields in the SEG-Y trace header are used for different purposes at different sites.
SU itself makes use of certain of these fields. Thus, you may need to use segyclean—see the answer to
Question 7. SU format does not have the binary and ebcdic tape headers that are part of the SEG-Y
format.

After installing the package, you can get more information on the SEG-Y/SU header by typing:

% sukeyword -o

This lists the include file segy.h that defines the SU trace header.

Question 6 Is there any easy way of adding necessary SEG-Y information to our own modeled data to
prepare our data for processing using the SU package?

Answer 6 It depends on the details of how your data was written to the file:

1. If you have a ‘datafile’ that is in the form of binary floating point numbers of the type that would
be created by a C program, then use suaddhead to put SU (SEG-Y) trace headers on the data.
Example:

% suaddhead < datafile ns=N_SAMP > data.su

9.2. DATA FORMAT QUESTIONS 87

Here, N_SAMP is the (integer) number of samples per trace in the data.

2. If your data are Fortran-style floats, then you would use:

% suaddhead < datafile ftn=1 ns=NS > data.su

See also, Question 10.

3. If your data are ASCII, then use:

% a2b n1=N1 < data.ascii | suaddhead ns=NS > data.su

Here N1 is the number of floats per line in the file data.ascii.

4. If you have some other data type, then you may use:

% recast < data.other in=IN out=float | suaddhead ns=NS > data.su

where IN is the type (int, double, char, etc...)

For further information, consult the self-docs of the programs suaddhead, a2b, and recast.

Question 7 I used segyread to read a SEG-Y tape. Everything seems to work fine, but when I plot my
data with suximage, the window is black. What did I do wrong?

Answer 7 When you read an SEG-Y tape, you need to pipe the data through segyclean to zero the
optional SEG-Y trace header field. If the SU programs see nonzero values in certain parts of the optional
field, they try to display the data as “nonseismic data,” using those values to set the plot parameters.

Another possibility is that there are a few data values that are so large that they are overwhelming
the 256 gray scale levels in the graphics. The way to get around this problem is to set perc=99 in the
graphics program. For example:

% suximage < sudata perc=99 &

This will clip data values with size in the top 1 percentile of the total data.

Question 8 I am trying to plot data with the pswigb (or pswigp, or xwigb, or . . .) program. I know
that I have data with n1=NSAMP and n2=NTRACES, but when I plot, I find that I have to set n1=NSAMP+60
for the plot to look even remotely correct. Why is this?

Answer 8 It is likely that you are trying to plot with the wrong tool. The input data format of the
programs, pswigb, pswigp, pscontour, pscube, psmovie, xwigb, xgraph, and xmovie, expect data to
consist of simple floating point numbers. If your data are SU data (SEG-Y) traces, then there is an
additional header at the beginning of each trace, which, on most computer architectures, is the same
number (240) of bytes as the storage for 60 floats.

To plot these data, use respectively: supswigb, supswigp, supscontour, supscube, supsmovie,
suxwigb, suxgraph, or suxmovie.

Also, it is not necessary to specify the dimensions of the data for these latter programs. The su-
versions of the codes determine the necessary information from the appropriate header values. (In fact,
that is all they do—the actual graphics is handled by the version without the su prefix.)

Question 9 I want to check the size of a file to see if it has the right number of values, but I am not
sure how to take the header into account. How is this done?

88 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

Answer 9 If the file consists of simple floating point numbers, then the size in bytes equals the size
of a float times the number of samples (SIZE = 4 * N_SAMP). The SU data (SEG-Y traces) also have a
header (240 bytes per trace) giving the total number of bytes as:
(240 + 4 N_SAMP) N_TRACES.
The byte count computed in this way is the number that the UNIX command ls -l shows.

Caveats: The above calculations assume that you have the conventional architecture and that the
header definition in segy.h has not been altered. Watch out as machines with 64 bit word size become
common!

Question 10 I have some data in Fortran form and tried to convert it to SU data via the following:

% suaddhead < data.fortran ns=N_SAMP ftn=1 > data.su

but this did not work properly. I am sure that my fortran data are in unformatted binary floats. What
should I do?

Answer 10 There are different ways of interpreting the term “unformatted” with regard to fortran
data. Try:

% ftnstrip < data.fortran | suaddhead ns=N_SAMP > data.su

The program ftnstrip can often succeed in converting your fortran data into C-like binary data,
even when the ftn=1 option in suaddhead fails. (Note: the program ftnunstrip may be used to take
C-style binary data and convert it to Fortran form.)

Question 11 I just successfully installed the CWP/SU package, but when I try to run the demo scripts,
I get many error messages describing programs that the shell script cannot find. How do I fix this?

Answer 11 You need to put CWPROOT/bin (where CWPROOT is /your/root/path that contains the
CWP/SU source code, include files, libraries, and executables) in your shell PATH. This is done in your
.cshrc file if you run under csh or tcsh. In Bourne shell (sh), Born Again shell (bash), or Korn shell
(ksh) the PATH variable is in your .profile file. You also need to type

% rehash

if you are running C-shell /bin/csh or TC-shell /bin/tcsh as your working shell environment, if you
have not relogged since you compiled the codes.

Question 12 How do I transfer data between SU and a commercial package, such as Promax.

Answer 12 The short answer is that you make a SEGY tape on disk file. To do convert a file called,
say, ”data.su” to a segy file do the following:

% segyhdrs < data.su

% segywrite tape=data.segy < data.su

Now use Promax to read data.segy. This file is a ”Promax tape-on-disk file in IBM Real format.”
Choose Promax menus accordingly.
For other commercial packages, use the appropriate commands to read a SEGY tape on disk file.
To go from the commercial package to SU follow the reverse steps. Create a file that is a SEGY tape
image and then use

% segyread tape=data.segy | segyclean > data.su

9.3. TAPE READING AND WRITING 89

Question 13 I would like to strip the trace headers off of some SU data, perform an operation of some
type on the bare traces and put the headers back on without losing any of the header information. How
do I do this?

Answer 13 Do the following:

% sustrip < data.su head=headers > data.binary

(Do whatever was desired to data.binary to make data1.binary)

% supaste < data1.binary head=headers > data1.su

Question 14 I have made some data on an IBM RS6000 and have transferred it to my Linux-based
PC system. The data looks ok on the RS6000, but when I try to work with it on the PC, none of the SU
programs seem to work. What is wrong?

Answer 14 The problem you have encountered is that there are two IEEE binary formats called re-
spectively ‘big endian‘ and ‘little endian‘ or, alternately ‘high byte‘ and ‘low byte‘. These terms refer to
the order of the bytes that represent the data. IBM RS6000, Silicon Graphics, NeXT (black hardware),
SUN, HP, PowerPC, any Motorola chip-based platforms are ‘big endian‘ machines, whereas, Intel-based
PCs and Dec and Dec Alpha products are ‘little endian‘ platforms.

Two programs are supplied in the CWP/SU package for swapping the bytes for data transfer. These
are swapbytes and suswapbytes.

The program swapbytes is designed to permit the user to swap the bytes on binary data that are
all one type of data (floats, doubles, shorts, unsigned shorts, longs, unsigned longs, and ints).

For data that are in the SU format, the program suswapbytes is provided.
Furthermore, within the programs segyread and segywrite there are “swap=” flags that permit the

user to specify whether the platform they are working on are “big endian” or “little endian” platforms.
In older releases of SU there were problems with the bitwise operations that would be encountered

in the wiggle-trace drawing routines. However, these problems have been fixed via the ENDIANFLAG
that appears in Makefile.config.

Question 15 How do I convert data that are in the SEG-2 format to SEGY?

Answer 15 In $CWPROOT/src/Third Party/seg2segy there are two programs that have been made
available to us by the University of Pau in France, for this purpose. These should be easy to install on
any system where SU has been installed.

Once you have converted data.seg2 to data.segy, you may read it into the SU format via:

% segyread tape=data.segy > data.su

9.3 Tape reading and writing

This section contains frequently asked questions about reading and writing SEG-Y tapes with SU.
Tape reading/writing is more of an art than a science. Here are a few tips.

1. Make sure your tape drive is set to be variable block length. If you are on an IBM RS6000, this
means you will need to use smit to set blocksize=0 on your tape device. Having the tape drive
set to some default constant blocksize (say blocksize=1024 or 512) will foil all attempts to read
an SEG-Y tape.

90 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

2. To read multiple tape files on a tape, use the non rewinding device. On an RS6000 this would be
something like /dev/rmtx.1, see man mt for details.

3. If this still doesn’t work, then try:

% dd if=/dev/rmtx of=temps bs=32767 conv=noerror

Here, /dev/rmtx (not the real name of the device, it varies from system to system) is your regular
(rewinding) tape device. In the option, bs=32767, we gave the right blocksize (216 + 1) for an
IBM/RS6000. Try bs=32765 (216 − 1) on a SUN. This will dump the entire contents of the tape
onto a single file.

Question 16 How do I write multiple SEG-Y files onto a tape?

Answer 16 Here is a shell script for writing multiple files on a tape:

#! /bin/sh

DEV=/dev/nrxt0 # non rewinding tape device

mt -f $DEV rewind

j=0

jmax=40

while test "$j" -ne "$jmax"

do

j=‘expr $j + 1‘

echo "writing tape file $j"

segywrite tape=$DEV bfile=b.$j hfile=h.$j verbose=1 buff=0 < ozdata.$j

done

exit 0

9.4 Geometry Setting

Question 17 How do I do “geometry setting” in SU?

Answer 17 There is a common seismic data manipulation task that often is called ”geometry setting”
in commercial packages in which the user converts information in the survey observers’ logs into values
in the trace headers.
The CWP/SU package does indeed, have provisions for getting and setting header fields, as well as
computing a third header field from one or two other header fields. The programs that you need to use
for this are:

sugethw (”SU get header word”)
sushw (”SU set header word”)
suchw (”SU change or compute header word”)

Type the name of each program to see the self documentation of that code.

In addition, to find out what the header field ”keywords” mentioned in these programs are: type:
sukeyword -o

You may have the information in a variety of forms. The most common and least complicated assump-
tions of that form will be made here.

9.4. GEOMETRY SETTING 91

The task requires the following basic steps.

1. Get your data into SU format. The SU format is not exactly SEGY, but it does preserve the
SEGY header information. If you are starting with SEGY data (either on tape, or on in the form
of a diskfile) then you use ”segyread” to read the data into an su file format.

For tape:

% segyread tape=/dev/rmt0 bfile=data.1 header=h.1 | segyclean > data.su

For diskfile

% segyread tape=data.segy bfile=data.1 header=h.1 | segyclean > data.su

The file data.segy is assumed here to be a ”tape image” of segy data. You have to be careful
because some commercial software will write SEGY-like data, by mimicking the layout of the
SEGY format, but this format will not be in the true IBM tape format that SEGY is defined to
be. In Promax, if you write a SEGY file in IBM Real format, then this will be true SEGY tape
image. working on.

2. If you have your data in the SU format, then you may view the ranges of the SEGY headers
(headers that are not set will not be shown) via:

% surange < data.su

3. Data often comes with some fields already set. To dump these fields in a format that is convenient
for geometry setting, you would use sugethw in the following way:

% sugethw < data.su output=geom key=key1,key2,... > hfile.ascii

The strings ”key1,key2,...” are the keywords representing the desired SEGY trace header fields.
These keywords may be listed via:

% sukeyword -o

4. Once you have dumped the desired header fields into hfile.ascii then you may edit them with the
editor of your choice. The point is that you may create a multi-column ascii file that lists the
values of specific header fields (trace by trace, as they appear in data.su) by *any* method you
wish. Each column will contain the value of a specific header field to be set.

5. Now that you have created the ascii file containing your header values, you may load these values
into data.su via:

% a2b < hfile.ascii n1=N_columns > hfile.bin

Here, N columns is the number of columns in hfile.ascii. This is to convert hfile.ascii to a binary
file.

Now use:

% sushw < data.su key=key1,key2,... infile=hfile.bin > data1.su

Here key1,key2,... are the appropriate keywords representing the fields being set, listed in the
exact order the values appear, column by column in hfile.ascii.

6. If you want to compute a third header field from two given header field values, then you may use:
suchw for this. Also, if the header fields that you want to set are systematic in some way (are
constant for each trace or vary linearly across a gather), then you don’t have to use the ”infile=”
option. You may simply give the necessary values to sushw. See the selfdocs for sushw and suchw
for examples of these.

92 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

9.5 Technical Questions

Question 18 I want to resample my data so that I have half as many traces, and half as many samples.
How do I do that?

Answer 18 To resample data, you must do the following:

1. Check that you won’t have aliasing. Do this by viewing the amplitude spectra of your data. Do
this with suspecfx

suspecfx < data.su | suxwigb

2. If the bandwidth of your data extends beyond the new nyquist frequency of your data (which, in
this example, will be half of the original nyquist frequency) then you will have to filter your data
to fit within its new nyquist bandwidth. Do this with sufilter

sufilter < data.su f=f1,f2,f3,f4 amps=0,1,1,0 > data.filtered.su

Here, the f1 f2 f3 f4 are the filter corner frequencies and amps=0,1,1,0 indicate that the filter
is a bandpass filter.

3. Now you may resample your data with suresamp:

suresamp < data.filtered.su nt=NTOUT dt=DTOUT > data.resampled.su

For your case, NTOUT is 1/2 of the original number of samples, and DTOUT is twice the time sampling
interval (in seconds) of that in the original data. Your output data should look quite similar to your
input data, with the exception that the bandwidth will change.

9.6 General

This section addresses general questions about the SU package.

Question 19 What are these funny words gelev, selev, fldr, etc. that I see in various places?

Answer 19 These are the ”keywords” that are required for many of the codes. They refer to SU (Segy)
header fields.

Type: sukeyword -o to see the whole list

Type: sukeyword keyword to see the listing for an individual

keyword

Question 20 What do the terms “little endian” and “big endian” and mean?

Answer 20 There are two IEEE binary formats, called respectively ’little endian’ and ’big endian’.
These are also called ’high byte’ and ’low byte’, respectively. These refer to the byte order in the bitwise
representation of binary data. The following platforms are ’little endian’: DEC and Intel-based PC’s.
The other common platforms are ”big endian”: IBM RS6000, Silicon Graphics, NeXT (black hardware),
SUN, HP, PowerPC, any Motorola chip-based platform.

Question 21 Why are CWP/SU releases given by integers (22, 23, 24, etc...) instead of the more
familiar decimal release numbers (1.1, 1.3, etc...)?

9.6. GENERAL 93

Answer 21 The CWP/SU release numbers are chosen to correspond to the SU NEWS email messages.
The individual codes in the package have traditional decimal release numbers (assigned by RCS), but
these are all different. The package changes in incremental, but non-uniform ways, so the standard
notation seems inappropriate. However, the user may view 24 to be 2.4. We may adopt this convention
in the future.

Remark: In the early days, we did use RCS to simultaneously update all the codes to 2.1, 3.1,
This practice died a natural death somewhere along the way.

Question 22 How often are the codes updated?

Answer 22 The CWP/SU package is updated at roughly 3-6 month intervals. We mail announcements
of these releases to all known users. Since we do not provide support for outdated versions, we urge you
to remain current.

Question 23 I have a complicated collection of input parameters for a CWP/SU program. I want to
run the command from the command line of a terminal window, but I don’t want to retype the entire
string of input parameters. What do I do?

Answer 23 CWP/SU programs that take their input parameters from the command line also have
the feature of being able to read from a “parameter file.” This is invoked by setting the parameter
par=parfile, where parfile is a file containing the desired commandline string.

For example:

suplane ntr=20 nt=40 dt=.001 | ...

is completely equivalent to the command:

suplane par=parfile | ...

if the string

ntr=20 nt=40 dt=.001

is contained in ‘parfile.’

Question 24 I can’t find an sudoc entry for the function ”ints8r,” yet the SU manual says that all
library functions have online documentation? What am I doing wrong?

Answer 24 The proper search procedure for a library function (such as ints8r) is:

% sufind ints8r

Which yields:

INTSINC8 - Functions to interpolate uniformly-sampled data via 8-coeff. sinc

approximations:

ints8c interpolation of a uniformly-sampled complex function y(x) via an

For more information type: "sudoc program_name <CR>"

The name INTSINC8 is the name of the file that contains the library function ins8c. You may now
use sudoc to find out more information via:

% sudoc intsinc8

94 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

Which yields:

In /usr/local/cwp/src/cwp/lib:

INTSINC8 - Functions to interpolate uniformly-sampled data via 8-coeff. sinc

approximations:

ints8c interpolation of a uniformly-sampled complex function y(x) via an

8-coefficient sinc approximation.

ints8r Interpolation of a uniformly-sampled real function y(x) via a

table of 8-coefficient sinc approximations

Function Prototypes:

void ints8c (int nxin, float dxin, float fxin, complex yin[],

complex yinl, complex yinr, int nxout, float xout[], complex yout[]);

void ints8r (int nxin, float dxin, float fxin, float yin[],

float yinl, float yinr, int nxout, float xout[], float yout[]);

Input:

nxin number of x values at which y(x) is input

dxin x sampling interval for input y(x)

fxin x value of first sample input

yin array[nxin] of input y(x) values: yin[0] = y(fxin), etc.

yinl value used to extrapolate yin values to left of yin[0]

yinr value used to extrapolate yin values to right of yin[nxin-1]

nxout number of x values a which y(x) is output

xout array[nxout] of x values at which y(x) is output

Output:

yout array[nxout] of output y(x): yout[0] = y(xout[0]), etc.

Notes:

Because extrapolation of the input function y(x) is defined by the

left and right values yinl and yinr, the xout values are not restricted

to lie within the range of sample locations defined by nxin, dxin, and

fxin.

The maximum error for frequiencies less than 0.6 nyquist is less than

one percent.

Author: Dave Hale, Colorado School of Mines, 06/02/89

Question 25 I have written my own SU programs and would like them to appear in the suname and
sudoc listings. How do I do this?

Answer 25 Run updatedocall (source code located in CWPROOT/par/shell). If you have put this
code under a new path, then you must add this path to the list of paths in the updatedoc script. For the
selfdoc information to be captured by the updatedoc script, you will need to have the following marker
lines at the beginning and end of the selfdoc and additional information portion of the source code of
your program.

/*********************** self documentation **********************/

/**************** end self doc ********************************/

9.6. GENERAL 95

Be sure to clone these directly out of an existing SU program, rather than typing them yourself, so that
the pattern is the exact one expected by the updatedoc script.

Question 26 I have a gray scale (not color) PostScript file made with psimage and would like to convert
it to a color PostScript format, but do not have the original binary data that I made the file from. How
do I do this?

Answer 26 You have to restore the binary file to make the new color PostScript file. Here is how you
do it. (Here, we are assuming a bit-mapped graphic as would be produced by psimage or supsimage).

1. Make a backup of your PostScript file.

2. edit the PostScript file removing everything but the hexidecimal binary image that makes up the
majority of the file. (Note, in the line preceeding the hexidecimal data portion of the file will be a
pair of numbers that represents the dimensions of the data. You will need these numbers for later
steps.)

3. use h2b to convert the hexidecimal file to binary

4. You will find that the file is flipped from the original input file. Use transp to flip the data. Note
that the n1 and n2 values that are used by transp are the dimensions of the input data, which are
the reverse of the output data. (The n1 value, is not the total number of samples, that is returned
by h2b, instead total no. values = n1× n2.)

5. You now have a 0-255 representation of your binary data which you should be able to plot again
any way you desire.

This method may be used to convert scanned images to SU format, as well, with the next step in
the procedure to be putting SU headers on the data with suaddhead.

96 CHAPTER 9. ANSWERS TO FREQUENTLY ASKED QUESTIONS

Chapter 10

How to Write an SU Program

10.1 Setting up the Makefile

The CWP/SU package uses a sophisticated Makefile structure, that you may also use when you develop
new code. You should begin any new code writing project by creating a local directory in your working
area. You should then copy the Makefile from $CWPROOT/src/su/main into that directory and make
the following changes

Change:

D = $L/libcwp.a $L/libpar.a $L/libsu.a

LFLAGS= $(PRELFLAGS) -L$L -lsu -lpar -lcwp -lm $(POSTLFLAGS)

to:

D = $L/libcwp.a $L/libpar.a $L/libsu.a

B = .

OPTC = -g

LFLAGS= $(PRELFLAGS) -L$L -lsu -lpar -lcwp -lm $(POSTLFLAGS)

Change:

PROGS = \

$B/bhedtopar \

$B/dt1tosu \

$B/segyclean \

$B/segyhdrs \

$B/segyread \

...

...

to:

PROGS = \

97

98 CHAPTER 10. HOW TO WRITE AN SU PROGRAM

$B/yourprogram

where the source code of your program is called “yourprogram.c” and resides in this directory.
You should then be able to simply type “make” and “yourprogram” will be compiled.
As a test you can try copying one of the existing SU programs, from $CWPROOT/src/su/main into

your local working directory, modifying the Makefile accordingly and typing: make.
Indeed, because all new SU programs may be viewed as beginning as clones of existing SU programs

of a similar structure, this is perhaps the best way to begin any new coding venture.

10.2 A template SU program

Although variations are usually needed, a template for a typical SU program looks like the program
listing below (we excerpted lines from the program sumute to build this template). The numbers in
square brackets at the end of the lines in the listing are not part of the listing—we added them to
facilitate discussion of the template. The secret to efficient SU coding is finding an existing program
similar to the one you want to write. If you have trouble locating the right code or codes to “clone,” ask
us—this can be the toughest part of the job!

/* SUMUTE: $Revision: 1.20 $; $Date: 2002/08/22 20:19:54 $ */ [1]

#include "su.h" [2]

#include "segy.h"

/*********************** self documentation **********************/ [3]

char *sdoc[] = {

" ",

" SUMUTE - ",

" ",

" sumute <stdin >stdout ",

" ",

" Required parameters: ",

" none ",

" ",

" Optional parameters: ",

" ... ",

" ",

" Trace header fields accessed: ns ",

" Trace header fields modified: none ",

" ",

NULL};

/**************** end self doc ***********************************/

/* Credits:

*

* CWP: Jack Cohen, John Stockwell

*/

segy tr; [4]

main(int argc, char **argv)

{

10.2. A TEMPLATE SU PROGRAM 99

int ns; /* number of samples */ [5]

...

/* Initialize */

initargs(argc, argv); [6]

requestdoc(1); [7]

/* Get parameters */

if (!getparint("ntaper", &ntaper)) ntaper = 0; [8]

/* Get info from first trace */

if (!gettr(&tr)) err("can’t read first trace"); [9]

if (!tr.dt) err("dt header field must be set"); [10]

/* Loop over traces */

do { [11]

int nt = (int) tr.ns; [12]

if (below == 0) { [13]

nmute = NINT((t - tmin)/dt);

memset((void *) tr.data, (int) ’\0’, nmute*FSIZE);

for (i = 0; i < ntaper; ++i)

tr.data[i+nmute] *= taper[i];

} else {

nmute = NINT((nt*dt - t)/dt);

memset((void *) (tr.data+nt-nmute),

(int) ’\0’, nmute*FSIZE);

for (i = 0; i < ntaper; ++i)

tr.data[nt-nmute-1-i] *= taper[i];

}

puttr(&tr); [14]

} while (gettr(&tr)); [15]

return EXIT_SUCCESS; [16]

}

Discussion of numbered lines:

1. We maintain the internal versions of the codes with the UNIX utility RCS. This item shows the
string template for RCS.

2. The file su.h includes (directly or indirectly) all our locally defined macros and prototypes. The
file segy.h has the definitions for the trace header fields.

3. The starred lines delimit the “self-doc” information—include them exactly as you find them in the
codes since they are used by the automatic documentation shells. The style of the self-doc shown
is typical except that often additional usage information is shown at the bottom and, of course,
often there are more options. Look at some existing codes for ideas.

4. This is an external declaration of an SU (SEG-Y) trace buffer. It is external to avoid wasting stack
space.

5. We usually describe the global variables at the time of declaration. Examine codes related to
yours to increase consistency of nomenclature (there is no official SU naming standard).

100 CHAPTER 10. HOW TO WRITE AN SU PROGRAM

6. The initargs subroutine sets SU’s command line passing facility (see page 75).

7. The requestdoc subroutine call specifies the circumstances under which self-doc will be echoed
to the user. The argument ‘1’ applies to the typical program that uses only standard input (i.e.
<) to read an SU trace file. Use ‘0’ for codes that create synthetic data (like suplane) and ‘2’ for
codes that require two input files (we could say “et cetera,” but there are no existing SU mains
that require three or more input files).

8. This is typical code for reading ‘parameters from the command line. Interpret it like this: “If the
user did not specify a value, then use the default value.” The subroutine must be type-specific,
here we are getting an integer parameter.

9. Read the first trace, exit if empty. The subroutine fgettr “knows about” the SU trace format.
Usually the trace file is read from standard input and then we use gettr which is a macro based
on fgettr defined in su.h. Note that this code implies that the first trace is read into the trace
buffer (here called tr), therefore we will have to process this trace before the next call to fgettr.

10. We’ve read that first trace because, we need to get some trace parameters from the first trace
header. Usually these are items like the number of samples (tr.ns) and/or the sampling interval
(tr.dt) that, by the SEGY-Y standard, are the same for all traces.

11. Since the first trace has been (typically) read before the main processing loop starts, we use a
“do-while” that reads a new trace at the bottom of the loop.

12. We favor using local variables where permitted.

13. This is the seismic algorithm–here incomplete. We’ve left in some of the actual sumute code
because it happens to contains lines that will be useful in the new code, we’ll be writing below.
You may want to call a subroutine here to do the real work.

14. fputtr and puttr are the output analogs of fgettr and gettr.

15. The loop end. gettr returns a 0 when the trace file is exhausted and the processing then stops.

16. This is an ANSI-C macro conventionally used to indicate successful program termination.

10.3 Writing a new program: suvlength

A user asked about SU processing for variable length traces. At his institute, data are collected from
time of excitation to a variable termination time. The difficulty is that SU processing is based on the
SEG-Y standard which mandates that all traces in the data set be of the same length. Rather than
contemplating changing all of SU, it seems to us that the solution is to provide a program that converts
the variable length data to fixed length data by padding with zeroes where necessary at the end of the
traces—let’s name this new program suvlength. We can make the length of the output traces a user
parameter. If there is a reasonable choice, it makes sense to provide a default value for parameters.
Here, using the length of the first trace seems the best choice since that value can be ascertained before
the main processing loop starts.

So far, so good. But now our plan runs into a serious snag: the fundamental trace getting facility,
gettr, itself assumes fixed length traces (or perhaps we should say that gettr deliberately enforces the
fixed length trace standard). But, if you think about it, you’ll realize that gettr itself has to take special
measures with the first trace to figure out its length. All we have to do is make a new trace getting
routine that employs that first trace logic for every trace. Here, we’ll suppress the details of writing the
“fvgettr” subroutine and turn to converting the template above into the new suvlength code:

/* SUVLENGTH: $Revision: 1.20 $; $Date: 2002/08/22 20:19:54 $ */

#include "su.h"

10.3. WRITING A NEW PROGRAM: SUVLENGTH 101

#include "segy.h"

/*********************** self documentation **********************/

char *sdoc[] = {

" ",

" SUVLENGTH - Adjust variable length traces to common length ",

" ",

" suvlength <variable_length_traces >fixed_length_traces ",

" ",

" Required parameters: ",

" none ",

" ",

" Optional parameters: ",

" ns output number of samples (default: 1st trace ns)",

NULL};

/**************** end self doc ***********************************/

/* Credits:

* CWP: Jack Cohen, John Stockwell

*/

/* prototype */

int fvgettr(FILE *fp, segy *tp);

segy tr;

main(int argc, char **argv)

{

int ns; /* number of samples on output traces */

/* Initialize */

initargs(argc, argv);

requestdoc(1);

/* Get parameters */

...

/* Get info from first trace */

...

...

return EXIT_SUCCESS; [16]

}

/* fvgettr code goes here */

...

Now we run into a small difficulty. Our only parameter has a default value that is obtained only after
we read in the first trace. The obvious solution is to reverse the parameter getting and the trace getting
in the template. Thus we resume:

102 CHAPTER 10. HOW TO WRITE AN SU PROGRAM

/* Get info from first trace and set ns */

if (!fvgettr(stdin, &tr)) err("can’t get first trace");

if (!getparint("ns", &ns)) ns = tr.ns;

/* Loop over the traces */

do {

int nt = tr.ns;

Now comes the actual seismic algorithm—which is rather trivial in the present case: add zeroes to the
end of the input trace if the output length is specified greater than the input length. We could write
a simple loop to do the job, but the task is done most succinctly by using the ANSI-C routine memset.
However, we confess that unless we’ve used it recently, we usually forget how to use this routine. One
solution is to cd to the su/main directory and use grep to find other uses of memset. When we did this,
we found that sumute had usage closest to what we needed and that is why we started from a copy of
that code. Here is the complete main for suvlength:

/* SUVLENGTH: $Revision: 1.20 $; $Date: 2002/08/22 20:19:54 $ */

#include "su.h"

#include "segy.h"

/*********************** self documentation **********************/

char *sdoc[] = {

" ",

" SUVLENGTH - Adjust variable length traces to common length ",

" ",

" suvlength <vdata >stdout ",

" ",

" Required parameters: ",

" none ",

" ",

" Optional parameters: ",

" ns output number of samples (default: 1st trace ns)",

NULL};

/**************** end self doc ***********************************/

/* Credits:

* CWP: Jack Cohen, John Stockwell

*

* Trace header fields accessed: ns

* Trace header fields modified: ns

*/

/* prototype */

int fvgettr(FILE *fp, segy *tp);

segy tr;

main(int argc, char **argv)

{

int ns; /* samples on output traces */

10.3. WRITING A NEW PROGRAM: SUVLENGTH 103

/* Initialize */

initargs(argc, argv);

requestdoc(1);

/* Get info from first trace */

if (!fvgettr(stdin, &tr)) err("can’t get first trace");

if (!getparint("ns", &ns)) ns = tr.ns;

/* Loop over the traces */

do {

int nt = tr.ns;

if (nt < ns) /* pad with zeros */

memset((void *)(tr.data + nt), ’\0’, (ns-nt)*FSIZE);

tr.ns = ns;

puttr(&tr);

} while (fvgettr(stdin, &tr));

return EXIT_SUCCESS;

}

#include "header.h"

/* fvgettr - get a segy trace from a file by file pointer (nt can vary)

*

* Returns:

* int: number of bytes read on current trace (0 after last trace)

*

* Synopsis:

* int fvgettr(FILE *fp, segy *tp)

*

* Credits:

* Cloned from .../su/lib/fgettr.c

*/

int fvgettr(FILE *fp, segy *tp)

...

Remark: In the actual SU, the subroutine fvgettr has been extracted as a library function and we also
made a convenience macro vgettr for the case of standard input. But these are secondary considerations
that don’t arise for most applications.

For any new SU code, one should provide an example shell program to show how the new code is to
be used. Here is such a program for X Windows graphics:

#! /bin/sh

Trivial test of suvlength with X Windows graphics

WIDTH=700

HEIGHT=900

WIDTHOFF=50

104 CHAPTER 10. HOW TO WRITE AN SU PROGRAM

HEIGHTOFF=20

>tempdata

>vdata

suplane >tempdata # default is 32 traces with 64 samples per trace

suplane nt=72 >>tempdata

suvlength <tempdata ns=84 |

sushw key=tracl a=1 b=1 >vdata

Plot the data

suxwigb <vdata \

perc=99 title="suvlength test"\

label1="Time (sec)" label2="Traces" \

wbox=$WIDTH hbox=$HEIGHT xbox=$WIDTHOFF ybox=$HEIGHTOFF &

Remove #comment sign on next line to test the header

#sugethw <vdata tracl ns | more

Appendix A

Obtaining and Installing SU

The SU package contains seismic processing programs along with libraries of scientific routines, graphics
routines and routines supporting the SU coding conventions. The package is available by anonymous
ftp at the site ftp.cwp.mines.edu (138.67.12.4). The directory path is pub/cwpcodes. The package may
also be obtained on the World Wide Web at http://www.cwp.mines.edu/cwpcodes. Take the files:

1. README BEFORE UNTARRING

2. untar me first.xx.tar.Z

3. cwp.su.all.xx.tar.Z

Here the xx denotes the number of the current release. An incremental update is also available for
updating the previous release yy to the current release xx. Take the files:

1. README BEFORE UNTARRING

2. README UPDATE

3. untar me first.xx.tar.Z

4. update.yy.to.xx.tar.Z

5. update.list

If you find that ftp times out during the transmission of the files, the package is available in smaller
pieces in the subdirectory outside usa.

For readers who are not familiar with anonymous ftp, an annotated transaction listing follows in sec-
tion A.1.

A.1 Obtaining files by anonymous ftp

Type:
% ftp 138.67.12.4 — 138.67.12.4 is our ftp site
username: anonymous — your username is “anonymous”
password: yourname@your.machine.name — type anything here

ftp> — this is the prompt you see
when you are in ftp

You are now logged in via ftp to the CWP anonymous ftp site. You may type:

105

106 APPENDIX A. OBTAINING AND INSTALLING SU

ftp> ls — to see the contents of the directories
ftp> cd dirname — to change directories to “dirname”
ftp> binary — to set “binary mode” for transferring files

You must do this before you try to transfer any
binary file. This includes all files with the form
some name.tar.Z extension.

ftp> get filename — to transfer “filename” from our site to your machine
ftp> mget pattern* — to transfer all files with names of the “pattern*”
For example:

ftp> mget *.tar.Z — will transfer all files with the form of name.tar.Z
to your machine. You will be asked whether you
really want each file of this name pattern transferred,
before ftp actually does it.

ftp> bye — to exit from ftp

A.2 Requirements for installing the package

The only requirements for installing the package are:

1. A machine running the UNIX operating system.

2. An ANSI C compiler.

3. A version of make which supports include files

4. 16-60 megabytes (depending on system) of disk space for the source and compiled binary. If space
is an issue, then the compiled binaries may be “stripped” by cd’ing to $CWPROOT/bin and
typing ”strip *”.

The package has been successfully installed on:

• IBM RS6000

• SUN SPARC STATIONS

• HP 9000 series machines

• HP Apollo

• NeXT

• Convex

• DEC

• Silicon Graphics

• PC’s running LINUX, PRIME TIME, SCO, FREE BSD, ESIX, and NeXTSTEP 486

There are README files in the distribution with special notes about some of these platforms. We
depend on the SU user community to alert us to installation problems, so if you run into difficulties,
please let us know.

The distribution contains a series of files that detail the installation process. Read them in the
following order:

LEGAL_STATEMENT --- license, legal statement

README_BEFORE_UNTARRING --- initial information

README_FIRST --- general information

README_TO_INSTALL --- installation instructions

Portability/README_* --- portability information for various platforms

README_GETTING_STARTED --- how to begin using the codes

A.3. A QUICK TEST 107

0

0.05

0.10

0.15

0.20

0.25

10 20 30

Figure A.1: Output of the suplane pipeline.

Many of these files are contained within untar me first.xx.tar.Z.

A.3 A quick test

Once you have completed the installation, here is a quick test you can make to see if you have a
functioning seismic system. For an X-windows machine, the “pipeline”

suplane | suxwigb &

should produce the graphic shown in Figure A.1. If you have a PostScript printer, then you should get
a hard copy version with the pipeline

suplane | supswigb | lpr

If you have Display PostScript, or a PostScript previewer, then to get a screen display, replace the lpr

command in the pipeline by the command that opens a PostScript file, for example:

suplane | supswigb | ghostview -

Another set of test pipelines are

susynlv | supsimage | lpr

susynlv | supswigb | ghostview -

108 APPENDIX A. OBTAINING AND INSTALLING SU

0

1

2

3

1 2 3 4 5 6

Figure A.2: Output of the susynlv pipeline.

Appendix B

Help Facililties

B.1 Suhelp

The full text of the output from:

% suhelp

CWP PROGRAMS: (no self-documentation)

ctrlstrip downfort fcat isatty maxints pause t upfort

PAR PROGRAMS: (programs with self-documentation)

a2b grm rayt2d smoothint2 unisam2 xy2z

b2a h2b recast subset vel2stiff z2xyz

dzdv kaperture regrid3 swapbytes velconv

farith makevel resamp transp velpert

ftnstrip mkparfile smooth2 unif2 vtlvz

ftnunstrip prplot smooth3d unisam wkbj

press return key to continue

SU PROGRAMS: (self-documented programs for SU data)

SU data is "SEGY" data run through "segyclean"

bhedtopar sudmofkcw sukdmig3d suop sustkvel

dt1tosu sudmotivz sukdsyn2d suop2 sustolt

segdread sudmotx sukfilter supack1 sustrip

segyclean sudmovz sukfrac supack2 suswapbytes

segyhdrs suea2df sukill supaste susyncz

segyread suedit sulog supef susynlv

segywrite sufdmod2 sumax supgc susynlvcw

setbhed sufft sumean supickamp susynlvfti

su3dchart sufilter sumedian suplane susynvxz

suabshw suflip sumigfd suput susynvxzcs

suacor sufrac sumigffd suquantile sutab

suaddhead sufxdecon sumiggbzo suradon sutaper

suaddnoise sugabor sumigprefd suramp sutaup

suamp sugain sumigpreffd surange sutsq

suascii sugazmig sumigprepspi surecip suttoz

suattributes suget sumigpresp sureduce sutvband

109

110 APPENDIX B. HELP FACILILTIES

suazimuth sugethw sumigps surelan suunpack1

subfilt suharlan sumigpspi suresamp suunpack2

suchart suhilb sumigpsti suresstat suvcat

suchw suifft sumigsplit sushape suvelan

sucommand suilog sumigtk sushift suvibro

suconv suimp2d sumigtopo2d sushw suvlength

sudatumfd suimp3d sumix susort suweight

sudatumk2dr suinterp sumute suspecfk suwind

sudatumk2ds suintvel sunmo suspecfx suxcor

sudipfilt suinvvxzco sunormalize suspeck1k2 suxedit

sudivcor suinvzco3d sunull suspike suzero

sudivstack suk1k2filter suocext sustack

sudmofk sukdmig2d suoldtonew sustatic

press return key to continue

Delaunay Triangulation Materials:

gbbeam normray tri2uni trimodel triray triseis uni2tri

Tetrahedra Materials:

sutetraray tetramod

X-windows GRAPHICS for Delaunay Triangulation:

sxplot

press return key to continue

Straight X-windows GRAPHICS:

lcmap scmap xepsb ximage xpsp

lprop xcontour xepsp xpicker xwigb

X-Toolkit based X-windows GRAPHICS:

xgraph xmovie xrects

Motif-based X-windows GRAPHICS:

fftlab

X-windows GRAPHICS: for SU ("segyclean"-ed SEGY) data sets

suxcontour suximage suxmovie suxwigb

suxgraph suxmax suxpicker

PostScript GRAPHICS:

psbbox pscube psgraph pslabel psmerge pswigb

pscontour psepsi psimage psmanager psmovie pswigp

PostScript GRAPHICS: for SU ("segyclean"-ed SEGY) data sets

supscontour supsgraph supsmax supswigb

supscube supsimage supsmovie supswigp

press return key to continue

B.2. SUNAME 111

Wavelet Packet Compression:

wpc1comp2 wpc1uncomp2

Wavelet Packet Compression:

wpccompress wpcuncompress

2D Discrete Cosine Transform Compression:

dctcomp dctuncomp entropy wptcomp wptuncomp wtcomp wtuncomp

press return key to continue

CWP SHELLS SCRIPTS:

Grep cwpfind overwrite time_now weekday

argv dirtree precedence todays_date why

copyright filetype replace usernames zap

cpall newcase this_year varlist

PAR SHELLS SCRIPTS:

gendocs updatedoc updatedocall updatehead

POSTSCRIPT RELATED SHELLS SCRIPTS:

merge2 merge4

SU SHELLS SCRIPTS:

lookpar rmaxdiff sudiff sufind suhelp unglitch

maxdiff suagc sudoc sufind2 sukeyword

recip suband suenv sugendocs suname

press return key to continue

Use: "suname" to list the name and a brief description of all

of the CWP codes.

Use "sufind" to find programs by keyword/name fragment.

Use: "gendocs" to compile a LaTeX document listing all self-docs.

Use: "sukeyword" to find the SEGY header field keyword definitions.

Type: "program_name <CR>" to view its self documentation

Note: not all programs listed here have the self-documentation feature

Type: "sudoc program_name" to list information for these programs.

For answers to Frequently Asked Questions, see the contents of:

/usr/local/cwp/src/faq

B.2 Suname

The full text of the output from:

112 APPENDIX B. HELP FACILILTIES

% suname

----- CWP Free Programs -----

CWPROOT=/usr/local/cwp

Mains:

In CWPROOT/src/cwp/main:

* CTRLSTRIP - Strip non-graphic characters

* DOWNFORT - change Fortran programs to lower case, preserving strings

* FCAT - fast cat with 1 read per file

* ISATTY - pass on return from isatty(2)

* MAXINTS - Compute maximum and minimum sizes for integer types

* PAUSE - prompt and wait for user signal to continue

* T - time and date for non-military types

* UPFORT - change Fortran programs to upper case, preserving strings

In CWPROOT/src/par/main:

A2B - convert ascii floats to binary

B2A - convert binary floats to ascii

DZDV - determine depth derivative with respect to the velocity ",

FARITH - File ARITHmetic -- perform simple arithmetic with binary files

FTNSTRIP - convert a file of binary data plus record delimiters created

FTNUNSTRIP - convert C binary floats to Fortran style floats

GRM - Generalized Reciprocal refraction analysis for a single layer

H2B - convert 8 bit hexidecimal floats to binary

KAPERTURE - generate the k domain of a line scatterer for a seismic array

MAKEVEL - MAKE a VELocity function v(x,y,z)

MKPARFILE - convert ascii to par file format

PRPLOT - PRinter PLOT of 1-D arrays f(x1) from a 2-D function f(x1,x2)

RAYT2D - traveltime Tables calculated by 2D paraxial RAY tracing

RECAST - RECAST data type (convert from one data type to another)

REGRID3 - REwrite a [ni3][ni2][ni1] GRID to a [no3][no2][no1] 3-D grid

RESAMP - RESAMPle the 1st dimension of a 2-dimensional function f(x1,x2)

SMOOTH2 --- SMOOTH a uniformly sampled 2d array of data, within a user-

SMOOTH3D - 3D grid velocity SMOOTHing by the damped least squares

SMOOTHINT2 --- SMOOTH non-uniformly sampled INTerfaces, via the damped

SUBSET - select a SUBSET of the samples from a 3-dimensional file

SWAPBYTES - SWAP the BYTES of various data types

TRANSP - TRANSPose an n1 by n2 element matrix

UNIF2 - generate a 2-D UNIFormly sampled velocity profile from a layered

UNISAM - UNIformly SAMple a function y(x) specified as x,y pairs

UNISAM2 - UNIformly SAMple a 2-D function f(x1,x2)

VEL2STIFF - Transforms VELocities, densities, and Thomsen parameters

VELCONV - VELocity CONVersion

VELPERT - estimate velocity parameter perturbation from covariance

VTLVZ -- Velocity as function of Time for Linear V(Z);

WKBJ - Compute WKBJ ray theoretic parameters, via finite differencing

XY2Z - converts (X,Y)-pairs to spike Z values on a uniform grid

Z2XYZ - convert binary floats representing Z-values to ascii

In CWPROOT/src/psplot/main:

B.2. SUNAME 113

PSBBOX - change BoundingBOX of existing PostScript file

PSCONTOUR - PostScript CONTOURing of a two-dimensional function f(x1,x2)

PSCUBE - PostScript image plot of a data CUBE

PSEPSI - add an EPSI formatted preview bitmap to an EPS file

PSGRAPH - PostScript GRAPHer

PSIMAGE - PostScript IMAGE plot of a uniformly-sampled function f(x1,x2)

PSLABEL - output PostScript file consisting of a single TEXT string

PSMANAGER - printer MANAGER for HP 4MV and HP 5Si Mx Laserjet

PSMERGE - MERGE PostScript files

PSMOVIE - PostScript MOVIE plot of a uniformly-sampled function f(x1,x2,x3)

PSWIGB - PostScript WIGgle-trace plot of f(x1,x2) via Bitmap

PSWIGP - PostScript WIGgle-trace plot of f(x1,x2) via Polygons

In CWPROOT/src/xplot/main:

* LCMAP - List Color Map of root window of default screen

* LPROP - List PROPerties of root window of default screen of display

* SCMAP - set default standard color map (RGB_DEFAULT_MAP)

XCONTOUR - X CONTOUR plot of f(x1,x2) via vector plot call

* XESPB - X windows display of Encapsulated PostScript as a single Bitmap

* XEPSP - X windows display of Encapsulated PostScript

XIMAGE - X IMAGE plot of a uniformly-sampled function f(x1,x2)

XIMAGE - X IMAGE plot of a uniformly-sampled function f(x1,x2)

XPICKER - X wiggle-trace plot of f(x1,x2) via Bitmap with PICKing

* XPSP - Display conforming PostScript in an X-window

XWIGB - X WIGgle-trace plot of f(x1,x2) via Bitmap

In CWPROOT/src/Xtcwp/main:

XGRAPH - X GRAPHer

XMOVIE - image one or more frames of a uniformly sampled function f(x1,x2)

XRECTS - plot rectangles on a two-dimensional grid

In CWPROOT/src/Xmcwp/main:

* FFTLAB - Motif-X based graphical 1D Fourier Transform

In CWPROOT/src/su/graphics/psplot:

SUPSCONTOUR - PostScript CONTOUR plot of a segy data set

SUPSCUBE - PostScript CUBE plot of a segy data set

SUPSGRAPH - PostScript GRAPH plot of a segy data set

SUPSIMAGE - PostScript IMAGE plot of a segy data set

SUPSMAX - PostScript of the MAX, min, or absolute max value on each trace

SUPSMOVIE - PostScript MOVIE plot of a segy data set

SUPSWIGB - PostScript Bit-mapped WIGgle plot of a segy data set

SUPSWIGP - PostScript Polygon-filled WIGgle plot of a segy data set

In CWPROOT/src/su/main:

BHEDTOPAR - convert a Binary tape HEaDer file to PAR file format

DT1TOSU - Convert ground-penetrating radar data in the Sensors & Software

SEGDREAD - read an SEG-D tape

SEGYCLEAN - zero out unassigned portion of header

SEGYHDRS - make SEG-Y ascii and binary headers for segywrite

SEGYREAD - read an SEG-Y tape

SEGYWRITE - write an SEG-Y tape

114 APPENDIX B. HELP FACILILTIES

SETBHED - SET the fields in a SEGY Binary tape HEaDer file, as would be

SU3DCHART - plot x-midpoints vs. y-midpoints for 3-D data

SUABSHW - replace header key word by its absolute value

SUACOR - auto-correlation

SUADDHEAD - put headers on bare traces and set the tracl and ns fields

SUADDNOISE - add noise to traces

SUAMP - output amp, phase, real or imag trace from

SUASCII - print non zero header values and data

SUATTRIBUTES - trace ATTRIBUTES instantanteous amplitude, phase,

SUAZIMUTH - compute trace AZIMUTH given the sx,sy,gx,gy header fields

SUBFILT - apply Butterworth bandpass filter

SUCHART - prepare data for x vs. y plot

SUCHW - Change Header Word using one or two header word fields

SUCOMMAND - pipe traces having the same key header word to command

SUCONV - convolution with user-supplied filter

SUDATUMFD - 2D zero-offset Finite Difference acoustic wave-equation

SUDATUMK2DR - Kirchhoff datuming of receivers for 2D prestack data

SUDATUMK2DS - Kirchhoff datuming of sources for 2D prestack data

SUDIPFILT - DIP--or better--SLOPE Filter in f-k domain

SUDIVCOR - Divergence (spreading) correction

SUDIVSTACK - Diversity Stacking using either average power or peak

SUDMOFK - DMO via F-K domain (log-stretch) method for common-offset gathers

SUDMOFKCW - converted-wave DMO via F-K domain (log-stretch) method for

SUDMOTIVZ - DMO for Transeversely Isotropic V(Z) media for common-offset

SUDMOTX - DMO via T-X domain (Kirchhoff) method for common-offset gathers

SUDMOVZ - DMO for V(Z) media for common-offset gathers

SUEA2DF - SU version of (an)elastic anisotropic 2D finite difference

SUEDIT - examine segy diskfiles and edit headers

SUFDMOD2 - Finite-Difference MODeling (2nd order) for acoustic wave equation

SUFFT - fft real time traces to complex frequency traces

SUFILTER - applies a zero-phase, sine-squared tapered filter

SUFLIP - flip a data set in various ways

SUFRAC -- take general (fractional) time derivative or integral of

SUFXDECON - random noise attenuation by FX-DECONvolution

SUGABOR - Outputs a time-frequency representation of seismic data via

SUGAIN - apply various types of gain to display traces

SUGAZMIG - SU version of Jeno GAZDAG’s phase-shift migration

SUGET - Connect SU program to file descriptor for input stream.

SUGETHW - sugethw writes the values of the selected key words

SUHARLAN - signal-noise separation by the invertible linear

SUHILB - Hilbert transform

SUIFFT - fft complex frequency traces to real time traces

SUILOG -- time axis inverse log-stretch of seismic traces

SUIMP2D - generate shot records for a line scatterer

SUIMP3D - generate inplane shot records for a point

SUINTERP - interpolate traces using automatic event picking

SUINTVEL - convert stacking velocity model to interval velocity model

SUINVXZCO - Seismic INVersion of Common Offset data for a smooth

SUINVZCO3D - Seismic INVersion of Common Offset data with V(Z) velocity

SUK1K2FILTER - symmetric box-like K-domain filter defined by the

SUKDMIG2D - Kirchhoff Depth Migration of 2D poststack/prestack data

SUKDMIG3D - Kirchhoff Depth Migration of 3D poststack/prestack data

B.2. SUNAME 115

SUKDSYN2D - Kirchhoff Depth SYNthesis of 2D seismic data from a

SUKFILTER - radially symmetric K-domain, sin^2-tapered, polygonal

SUKFRAC - apply FRACtional powers of i|k| to data, with phase shift

SUKILL - zero out traces

SULOG -- time axis log-stretch of seismic traces

SUMAX - get trace by trace local/global maxima, minima, or absolute maximum

SUMEAN - get the mean values of data traces ",

SUMEDIAN - MEDIAN filter about a user-defined polygonal curve with

SUMIGFD - 45-90 degree Finite difference migration for zero-offset data.

SUMIGFFD - Fourier finite difference migration for

SUMIGGBZO - MIGration via Gaussian Beams of Zero-Offset SU data

SUMIGPREFD --- The 2-D prestack common-shot 45-90 degree

SUMIGPREFFD - The 2-D prestack common-shot Fourier finite-difference

SUMIGPREPSPI --- The 2-D PREstack commom-shot Phase-Shift-Plus

SUMIGPRESP - The 2-D prestack common-shot split-step Fourier ",

SUMIGPS - MIGration by Phase Shift with turning rays

SUMIGPSPI - Gazdag’s phase-shift plus interpolation migration

SUMIGPSTI - MIGration by Phase Shift for TI media with turning rays

SUMIGSPLIT - Split-step depth migration for zero-offset data.

SUMIGTK - MIGration via T-K domain method for common-midpoint stacked data

SUMIGTOPO2D - Kirchhoff Depth Migration of 2D postack/prestack data

SUMIX - compute weighted moving average (trace MIX) on a panel

SUMUTE - mute above (or below) a user-defined polygonal curve with ",

NMO - NMO for an arbitrary velocity function of time and CDP

SUNORMALIZE - Trace balancing by rms, max, or median ",

SUNULL - create null (all zeroes) traces

SUOCEXT - smaller offset extrapolation via Offset Continuation

SUOLDTONEW - convert existing su data to xdr format

SUOP - do unary arithmetic operation on segys

SUOP2 - do a binary operation on two data sets

SUPACK1 - pack segy trace data into chars

SUPACK2 - pack segy trace data into 2 byte shorts

SUPASTE - paste existing SEGY headers on existing data

SUPEF - Wiener predictive error filtering

SUPGC - Programmed Gain Control--apply agc like function

SUPICKAMP - pick amplitudes within user defined and resampled window

SUPLANE - create common offset data file with up to 3 planes

SUPUT - Connect SU program to file descriptor for output stream.

SUQUANTILE - display some quantiles or ranks of a data set

SURADON - compute forward or reverse Radon transform or remove multiples

SURAMP - Linearly taper the start and/or end of traces to zero.

SURANGE - get max and min values for non-zero header entries

SURECIP - sum opposing offsets in prepared data (see below)

SUREDUCE - convert traces to display in reduced time ",

SURELAN - compute residual-moveout semblance for cdp gathers based

SURESAMP - Resample in time

SURESSTAT - Surface consistent source and receiver statics calculation

SUSHAPE - Wiener shaping filter

SUSHIFT - shifted/windowed traces in time

SUSHW - Set one or more Header Words using trace number, mod and

SUSORT - sort on any segy header keywords

SUSPECFK - F-K Fourier SPECtrum of data set

116 APPENDIX B. HELP FACILILTIES

SUSPECFX - Fourier SPECtrum (T -> F) of traces

SUSPECK1K2 - 2D (K1,K2) Fourier SPECtrum of (x1,x2) data set

SUSPIKE - make a small spike data set

SUSTACK - stack adjacent traces having the same key header word

SUSTATIC - Elevation static corrections, apply corrections from

SUSTKVEL - convert constant dip layer interval velocity model to the

SUSTOLT - Stolt migration for stacked data or common-offset gathers

SUSTRIP - remove the SEGY headers from the traces

SUSWAPBYTES - SWAP the BYTES in SU data to convert data from big endian

SUSYNCZ - SYNthetic seismograms for piecewise constant V(Z) function

SUSYNLV - SYNthetic seismograms for Linear Velocity function

SUSYNLVCW - SYNthetic seismograms for Linear Velocity function

SUSYNLVFTI - SYNthetic seismograms for Linear Velocity function in a factored

SUSYNVXZ - SYNthetic seismograms of common offset V(X,Z) media via

SUSYNVXZCS - SYNthetic seismograms of common shot in V(X,Z) media via

SUTAB - print non zero header values and data for non-graphic terminals

SUTAPER - Taper the edge traces of a data panel to zero.

SUTAUP - forwared and inverse T-X and F-K global slant stacks

SUTSQ -- time axis time-squared stretch of seismic traces

SUTTOZ - resample from time to depth

SUTVBAND - time-variant bandpass filter (sine-squared taper)

SUUNPACK1 - unpack segy trace data from chars to floats

SUUNPACK2 - unpack segy trace data from shorts to floats

SUVCAT - append one data set to another, with or without an ",

SUVELAN - compute stacking velocity semblance for cdp gathers

SUVIBRO - Generates a Vibroseis sweep (linear, linear-segment,

SUVLENGTH - Adjust variable length traces to common length

SUWEIGHT - weight traces by header parameter, such as offset

SUWIND - window traces by key word

SUXCOR - correlation with user-supplied filter

SUXEDIT - examine segy diskfiles and edit headers

SUZERO -- zero-out data within a time window

In CWPROOT/src/su/graphics/psplot:

SUPSCONTOUR - PostScript CONTOUR plot of a segy data set

SUPSCUBE - PostScript CUBE plot of a segy data set

SUPSGRAPH - PostScript GRAPH plot of a segy data set

SUPSIMAGE - PostScript IMAGE plot of a segy data set

SUPSMAX - PostScript of the MAX, min, or absolute max value on each trace

SUPSMOVIE - PostScript MOVIE plot of a segy data set

SUPSWIGB - PostScript Bit-mapped WIGgle plot of a segy data set

SUPSWIGP - PostScript Polygon-filled WIGgle plot of a segy data set

In CWPROOT/src/su/graphics/xplot:

SUXCONTOUR - X CONTOUR plot of Seismic UNIX tracefile via vector plot call

SUXGRAPH - X-windows GRAPH plot of a segy data set

SUXIMAGE - X-windows IMAGE plot of a segy data set

SUXMAX - X-windows graph of the MAX, min, or absolute max value on

SUXMOVIE - X MOVIE plot of a segy data set

SUXPICKER - X-windows WIGgle plot PICKER of a segy data set

SUXWIGB - X-windows Bit-mapped WIGgle plot of a segy data set

B.2. SUNAME 117

In CWPROOT/src/tri/main:

GBBEAM - Gaussian beam synthetic seismograms for a sloth model

NORMRAY - dynamic ray tracing for normal incidence rays in a sloth model

TRI2UNI - convert a TRIangulated model to UNIformly sampled model

TRIMODEL - make a triangulated sloth (1/velocity^2) model

TRIRAY - dynamic RAY tracing for a TRIangulated sloth model

TRISEIS - Gaussian beam synthetic seismograms for a sloth model

UNI2TRI - convert UNIformly sampled model to a TRIangulated model

In CWPROOT/src/xtri:

SXPLOT - X Window plot a triangulated sloth function s(x1,x2)

In CWPROOT/src/tri/graphics/psplot:

SPSPLOT - plot a triangulated sloth function s(x,z) via PostScript

In CWPROOT/src/comp/dct/main:

DCTCOMP - Compression by Discrete Cosine Transform

DCTUNCOMP - Discrete Cosine Transform Uncompression

ENTROPY - compute the ENTROPY of a signal

WPTCOMP - Compression by Wavelet Packet Compression

WPTUNCOMP - Uncompress WPT compressed data

WTCOMP - Compression by Wavelet Transform

WTUNCOMP - UNCOMPression of WT compressed data

In CWPROOT/src/comp/dwpt/1d/main:

WPC1COMP2 --- COMPress a 2D seismic section trace-by-trace using

WPC1UNCOMP2 --- UNCOMPRESS a 2D seismic section, which has been

In CWPROOT/src/comp/dwpt/2d/main:

WPCCOMPRESS --- COMPRESS a 2D section using Wavelet Packets

WPCUNCOMPRESS --- UNCOMPRESS a 2D section

Shells:

In CWPROOT/src/cwp/shell:

Grep - recursively call egrep in pwd

ARGV - give examples of dereferencing char **argv

COPYRIGHT - insert CSM COPYRIGHT lines at top of files in working directory

CPALL , RCPALL - for local and remote directory tree/file transfer

CWPFIND - look for files with patterns in CWPROOT/src/cwp/lib

DIRTREE - show DIRectory TREE

FILETYPE - list all files of given type

NEWCASE - Changes the case of all the filenames in a directory, dir

OVERWRITE - copy stdin to stdout after EOF

PRECEDENCE - give table of C precedences from Kernighan and Ritchie

REPLACE - REPLACE string1 with string2 in files

THIS_YEAR - print the current year

TIME_NOW - prints time in ZULU format with no spaces

TODAYS_DATE - prints today’s date in ZULU format with no spaces

USERNAMES - get list of all login names

VARLIST - list variables used in a Fortran program

WEEKDAY - prints today’s WEEKDAY designation

118 APPENDIX B. HELP FACILILTIES

ZAP - kill processes by name

In CWPROOT/src/par/shell:

GENDOCS - generate complete list of selfdocs in latex form

UPDATEDOC - put self-docs in ../doc/Stripped and ../doc/Headers

UPDATEDOCALL - put self-docs in ../doc/Stripped

UPDATEHEAD - update ../doc/Headers/Headers.all

In CWPROOT/src/psplot/shell:

MERGE2 - put 2 standard size PostScript figures on one page

MERGE4 - put 4 standard size PostScript plots on one page

In CWPROOT/src/su/shell:

LOOKPAR - show getpar lines in SU code with defines evaluated

MAXDIFF - find absolute maximum difference in two segy data sets

RECIP - sum opposing (reciprocal) offsets in cdp sorted data

RMAXDIFF - find percentage maximum difference in two segy data sets

SUAGC - perform agc on SU data

SUBAND - Trapezoid-like Sin squared tapered Bandpass filter via SUFILTER

SUDIFF, SUSUM, SUPROD, SUQUO, SUPTDIFF, SUPTSUM,

SUDOC - get DOC listing for code

SUENV - Instantaneous amplitude, frequency, and phase via: SUATTRIBUTES

SUFIND - get info from self-docs

SUFIND - get info from self-docs

SUGENDOCS - generate complete list of selfdocs in latex form

SUHELP - list the CWP/SU programs and shells

SUKEYWORD -- guide to SU keywords in segy.h

SUNAME - get name line from self-docs

UNGLITCH - zonk outliers in data

Libs:

In CWPROOT/src/cwp/lib:

ABEL - Functions to compute the discrete ABEL transform:

AIRY - Approximate the Airy functions Ai(x), Bi(x) and their respective

ALLOC - Allocate and free multi-dimensional arrays

ANTIALIAS - Butterworth anti-aliasing filter

AXB - Functions to solve a linear system of equations Ax=b by LU

BIGMATRIX - Functions to manipulate 2-dimensional matrices that are too big

BUTTERWORTH - Functions to design and apply Butterworth filters:

COMPLEX - Functions to manipulate complex numbers

COMPLEXD - Functions to manipulate double-precision complex numbers

COMPLEXF - Subroutines to perform operations on complex numbers.

CONVOLUTION - Compute z = x convolved with y

CUBICSPLINE - Functions to compute CUBIC SPLINE interpolation coefficients

DBLAS - Double precision Basic Linear Algebra subroutines

DGE - Double precision Gaussian Elimination matrix subroutines adapted

PFAFFT - Functions to perform Prime Factor (PFA) FFT’s, in place

FRANNOR - functions to generate a pseudo-random float normally distributed

FRANUNI - Functions to generate a pseudo-random float uniformly distributed

HANKEL - Functions to compute discrete Hankel transforms

HILBERT - Compute Hilbert transform y of x

B.2. SUNAME 119

HOLBERG1D - Compute coefficients of Holberg’s 1st derivative filter

IBMFLT_ - Convert IBM tape format to floats and back

INTCUB - evaluate y(x), y’(x), y’’(x), ... via piecewise cubic interpolation

INTL2B - bilinear interpolation of a 2-D array of bytes

INTLIN - evaluate y(x) via linear interpolation of y(x[0]), y(x[1]), ...

INTSINC8 - Functions to interpolate uniformly-sampled data via 8-coeff. sinc

INTTABLE8 - Interpolation of a uniformly-sampled complex function y(x)

MKDIFF - Make an n-th order DIFFerentiator via Taylor’s series method.

MKHDIFF - Compute filter approximating the bandlimited HalF-DIFFerentiator.

MKSINC - Compute least-squares optimal sinc interpolation coefficients.

MNEWT - Solve non-linear system of equations f(x) = 0 via Newton’s method

PFAFFT - Functions to perform Prime Factor (PFA) FFT’s, in place

POLAR - Functions to map data in rectangular coordinates to polar and vise versa

PRINTERPLOT - Functions to make a printer plot of a 1-dimensional array

QUEST - Functions to ESTimate Quantiles:

RESSINC8 - Functions to resample uniformly-sampled data via 8-coefficient sinc

RFWTVA - Rasterize a Float array as Wiggle-Trace-Variable-Area.

RFWTVAINT - Rasterize a Float array as Wiggle-Trace-Variable-Area, with

SBLAS - Single precision Basic Linear Algebra Subroutines

SCAXIS - compute a readable scale for use in plotting axes

SGA - Single precision general matrix functions adapted from LINPACK FORTRAN:

SHFS8R - Shift a uniformly-sampled real-valued function y(x) via

SINC - Return SINC(x) for as floats or as doubles

SORT - Functions to sort arrays of data or arrays of indices

SQR - Single precision QR decomposition functions adapted from LINPACK FORTRAN:

STOEP - Functions to solve a symmetric Toeplitz linear system of equations

STRSTUFF -- STRing manuplation subs

SWAPBYTE - Functions to SWAP the BYTE order of binary data

TEMPORARY_FILENAME - Creates a file name in a user-specified directory.

TRIDIAGONAL - Functions to solve tridiagonal systems of equations Tu=r for u.

VANDERMONDE - Functions to solve Vandermonde system of equations Vx=b

WAVEFORMS Subroutines to define some wavelets for modeling of seimic

XCOR - Compute z = x cross-correlated with y

XINDEX - determine index of x with respect to an array of x values

YCLIP - Clip a function y(x) defined by linear interpolation of the

YXTOXY - Compute a regularly-sampled, monotonically increasing function x(y)

ZASC - routine to translate ncharacters from ebcdic to ascii

ZEBC - routine to translate ncharacters from ascii to ebcdic

In CWPROOT/src/par/lib:

VND *VNDop(int mode, long lwmax, int ndim, long *N, long npanels,

ATOPKGE - convert ascii to arithmetic and with error checking

DOCPKGE - Function to implement the CWP self-documentation facility

EALLOC - Allocate and free multi-dimensional arrays with error reports.

ERRPKGE - routines for reporting errors

FILESTAT - Functions to determine and output the type of a file from file

GETPARS - Functions to GET PARameterS from the command line. Numeric

MODELING - Seismic Modeling Subroutines for SUSYNLV and clones

SMOOTH - Functions to compute smoothing of 1-D or 2-D input data

SUBCALLS - routines for system functions with error checking

SYSCALLS - routines for SYSTEM CALLs with error checking

120 APPENDIX B. HELP FACILILTIES

In CWPROOT/src/su/lib:

FGETTR - Routines to get an SU trace from a file

FPUTTR - Routines to put an SU trace to a file

HDRPKGE - routines to access the SEGY header via the hdr structure.

TABPLOT - TABPLOT selected sample points on selected trace

VALPKGE - routines to handle variables of type Value

In CWPROOT/src/psplot/lib:

BASIC - Basic C function interface to PostScript

PSAXESBOX - Functions to draw PostScript axes and estimate bounding box

PSAXESBOX3 - Functions draw an axes box via PostScript, estimate bounding box

PSCAXESBOX - Draw an axes box for cube via PostScript

PSCONTOUR - draw contour of a two-dimensional array via PostScript

PSDRAWCURVE - Functions to draw a curve from a set of points

PSLEGENDBOX - Functions to draw PostScript axes and estimate bounding box

PSWIGGLE - draw wiggle-trace with (optional) area-fill via PostScript

In CWPROOT/src/xplot/lib:

AXESBOX - Functions to draw axes in X-windows graphics

COLORMAP - Functions to manipulate X colormaps:

DRAWCURVE - Functions to draw a curve from a set of points

IMAGE - Function for making the image in an X-windows image plot

LEGENDBOX - draw a labeled axes box for a legend (i.e. colorscale)

RUBBERBOX - Function to draw a rubberband box in X-windows plots

WINDOW - Function to create a window in X-windows graphics

XCONTOUR - draw contour of a two-dimensional array via X vectorplot calls

In CWPROOT/src/Xtcwp/lib:

AXES - the Axes Widget

COLORMAP - Functions to manipulate X colormaps:

FX - Functions to support floating point coordinates in X

MISC - Miscellaneous X-Toolkit functions

RESCONV - general purpose resource type converters

RUBBERBOX - Function to draw a rubberband box in X-windows plots

In CWPROOT/src/Xmcwp/lib:

RADIOBUTTONS - convenience functions creating and using radio buttons

SAMPLES - Motif-based Graphics Functions

In CWPROOT/src/tri/lib:

CHECK - CHECK triangulated models

CIRCUM - define CIRCUMcircles for Delaunay triangulation

COLINEAR - determine if edges or vertecies are COLINEAR in triangulated

CREATE - create model, boundary edge triangles, edge face, edge vertex, add

DELETE - DELETE vertex, model, edge, or boundary edge from triangulated model

DTE - Distance to Edge

FIXEDGES - FIX or unFIX EDGES between verticies

INSIDE - Is a vertex or point inside a circum circle, etc. of a triangulated

NEAREST - NEAREST edge or vertex in triangulated model

PROJECT - project to edge in triangulated model

READWRITE - READ or WRITE a triangulated model

B.2. SUNAME 121

In CWPROOT/src/cwputils:

CPUSEC - return cpu time (UNIX user time) in seconds

CPUTIME - return cpu time (UNIX user time) in seconds using ANSI C built-ins

WALLSEC - Functions to time processes

WALLTIME - Function to show time a process takes to run

In CWPROOT/src/comp/dct/lib:

DCT1 - 1D Discreet Cosine Transform Routines

DCT2 - 2D Discrete Cosine Transform Routines

DCTALLOC - ALLOCate space for transform tables for 1D DCT

GETFILTER - GET wavelet FILTER type

LCT1 - functions used to perform the 1D Local Cosine Transform (LCT)

LPRED - Lateral Prediction of Several Plane Waves

WAVEPACK1 - 1D wavelet packet transform

WAVEPACK2 - 2D Wavelet PACKet transform

WAVEPACK1 - 1D wavelet packet transform

WAVETRANS2 - 2D wavelet transform by tensor-product of two 1D transforms

In CWPROOT/src/comp/dct/libutil:

BUFFALLOC - routines to ALLOCate/initialize and free BUFFers

HUFFMAN - Routines for in memory Huffman coding/decoding

PENCODING - Routines to en/decode the quantized integers for lossless

QUANT - QUANTization routines

RLE - routines for in memory silence en/decoding

In CWPROOT/src/comp/dwpt/1d/lib:

WBUFFALLOC - routines to allocate/initialize and free buffers in wavelet

WPC1 - routines for compress a single seismic trace using wavelet packets

WPC1CODING - routines for encoding the integer symbols in 1D WPC

wpc1Quant - quantize

WPC1TRANS - routines to perform a 1D wavelet packet transform

In CWPROOT/src/comp/dwpt/2d/lib:

WPC - routines for compress a 2D seismic section using wavelet packets

WPCBUFFAL - routines to allocate/initialize and free buffers

WPCCODING - Routines for in memory coding of the quantized coeffiecients

WPCENDEC - Wavelet Packet Coding, Encoding and Decoding routines

WPCHUFF -Routines for in memory Huffman coding/decoding

WPCPACK2 - routine to perform a 2D wavelet packet transform

WPCQUANT - quantization routines for WPC

WPCSILENCE - routines for in memory silence en/decoding

Shells:

Libs:

Shells:

Libs:

Shells:

Libs:

To search on a program name fragment, type:

"suname name_fragment <CR>"

For more information type: "program_name <CR>"

122 APPENDIX B. HELP FACILILTIES

Items labeled with an asterisk (*) are C programs that may

or may not have a self documentation feature.

Items labeled with a pound sign (#) are shell scripts that may,

or may not have a self documentation feature.

To find information about these codes type: sudoc program_name

B.3 Suhelp.html

This is the text listing of Chris Liner’s SU Help page.

SeismicUn*x

Version 33 (5 April 1999)

An HTML Help Browser

* This is a help browser for the SeismicUn*x free software package

developed and maintained by the Center for Wave Phenomena at the

Colorado School of Mines. The SU project is directed at CWP by John

Stockwell.

* The author of this help facility is Dr. Christopher Liner (an alumnus

of CWP) who is a faculty member in the Department of Geosciences at The

University of Tulsa.

* Last updated January 16, 1998

o The arrangement below is by funtionality

o Clicking on a program name pulls up the selfdoc for that item

o Your web browser’s Find capability is useful if you have a

fragment in mind (e.g. sort or nmo)

o While programs may logically apply to more than one catagory

below, each program appears only once

1. Functional Listing

1. Data Compression

2. Editing, Sorting and Manipulation

3. Filtering, Transforms and Attributes

4. Gain, NMO, Stack and Standard Processes

5. Graphics

6. Import/Export

7. Migration and Dip Moveout

8. Simulation and Model Building

9. Utilities

* Alphabetical name list * 280 items

B.3. SUHELP.HTML 123

* List is for scanning only, it * For further info on an

does not pull up the selfdoc of interesting item use your

a selected item. browser’s find command, then

follow the link

--

Data Compression

Discrete Cosine Transform

* dctcomp * dctuncomp

Packing * supack1 * suunpack1

* supack2 * suunpack2

* wpc1comp2 * wpc1uncomp2

Wavelet Transform * wpccompress * wpcuncompress

* wptcomp * wptuncomp

* wtcomp * wtuncomp

Go to top

Editing, Sorting and Manipulation

* suabshw

* suazimuth * suquantile

* surange

Edit + tools * subset * sushw

* suchw

* suedit * sutab

* sugethw * suwind

* sukill * suxedit

Sort * susort

* fcat * suramp

* maxdiff * surecip, recip

* suaddnoise * suresamp, resamp

Manipulate * sudiff * suswapbytes

* suflip * sutaper

* suinterp * suvcat

* sunull * suzero

* suop * swapbytes

* suop2 * transp

Go to top

Filtering, Transforms and Attributes

* suband

* supef

One-Dimensional filtering * subfilt * sushape

* suconv

* sufilter * sutvband

* sufrac * suxcor

124 APPENDIX B. HELP FACILILTIES

* sudipfilt * sumedian

Two-Dimensional filtering * sufxdecon * sukfilter

* suk1k2filter * sukfrac

* entropy

* suamp * sulog, suilog

* suattributes * suradon

* sureduce

Transforms and Attributes * suenv * suspecfk

* suhilb

* sufft, suifft * suspecfx

* sugabor * suspeck1k2

* suharlan * sutaup

* sulog, suilog * sutsq

Go to top

Gain, NMO, Stack and Standard Processes

* suagc * sunmo

* supgc

Standard Procs * sudivcor * suresstat

* sugain

* sumix * sustack

* sumute * sustatic

* unglitch

* suacor

Miscellaneous * suttoz

* suvibro

* suvlength

* dzdv

Velocity Analysis * sudivstack * suvelan

* surelan * velpert

Go to top

Graphics

X-window ... for SU format

input data * suxcontour

* suxgraph * suxmovie

(see binary form for full * suximage * suxpicker

options) * suxmax * suxwigb

X-window ... for binary * sxplot * xmovie

input data * xcontour * xpicker

* xgraph

* ximage * xwigb

Postscript ... for SU

format input data * supscontour * supsmovie (NeXT

* supscube only)

B.3. SUHELP.HTML 125

(see binary form for full * supsgraph * supswigb

options) * supsimage * supswigp

* psbbox

Postscript ... for binary * pscontour * psmovie (NeXT only)

input data * pscube * pswigb

* psgraph * pswigp

* psimage * spsplot

* fftlab

* h2b * scmap

* lcmap, lprop * su3dchart

* merge2, merge4 * suchart

Utilities + misc * prplot * supsmax

* psepsi * xrects

* psmanager * xepsb (NeXT only)

* psmerge * xepsp (NeXT only)

* pslabel * xepsp (NeXT only)

Go to top

Import/Export

* a2b

* b2a * segywrite

* bhedtopar * setbhed

* dt1tosu * suaddhead

* suascii

Import/Export * ftnstrip * suget

* ftnunstrip

* recast * suoldtonew

* segdread * supaste

* segyclean * suput

* segyhdrs * sustrip

* segyread * z2xyz

Go to top

Migration and Dip Moveout

* sugazmig * sumigps

Poststack migration * sumigfd * sumigpspi

* sumigffd * sumigsplit

* sumiggbzo * sumigtk

Prestack/Poststack migration * sukdmig2d

* sumigtopo2d

* sustolt

Prestack migration * sumigprefd * sumigprepspi

* sumigpreffd * sumigpresp

Dip Moveout * sudmofk * sudmotx

* sudmofkcw * sudmovz

126 APPENDIX B. HELP FACILILTIES

Datuming * sudatumk2dr

* sudatumk2ds

Inversion (True amp migration) * suinvvzco

* suinvzco3d

Go to top

Simulation and Model Building

* gbbeam * susyncz

* normray * susynlv

* rayt2d * susynlvcw

Simulation (aka modeling) * sufdmod2 * susynvxz

* suimp2d * susynvxzcs

* suimp3d * triray

* sukdsyn2d * triseis

* sureflpsvsh * wkbj

* makevel * trimodel

* regrid3 * uni2tri

Model Building * suintvel * unif2

* sustkvel * unisam

* tetramod * unisam2

* tri2uni * velconv

* kaperture * suspike

Utilities * smooth2 * trip (Mesa 3D item)

* smooth3d * viewer3 (Mesa 3D item)

* smoothint2 * vtlvz

* suplane * xy2z

Go to top

Utilities

* copyright * overwrite

* cpall * pause * time_now

* cpusec * precedence * todays_date

* cputime * replace * updatedoc

* ctrlstrip * rmaxdiff * updatedocall

* dirtree * sumax * updatehead

Utilities * downfort * sumean * upfort

* farith * sumedian * usernames

* filetype * sunormalize * varlist

* isatty * supickamp * wallsec

* lookpar * sushift * walltime

* maxints * suweight * weekday

* mkparfile * t * zap

* newcase * this_year

* cwpfind * sugendocs

Help utilities * gendocs * suhelp

* sudoc * suname

* sufind * sukeyword

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 127

Go to top

B.4 SUKEYWORD - list the SU datatype (SEGY) Keywords

The following is the listing put out by

typedef struct { /* segy - trace identification header */

int tracl; /* trace sequence number within line */

int tracr; /* trace sequence number within reel */

int fldr; /* field record number */

int tracf; /* trace number within field record */

int ep; /* energy source point number */

int cdp; /* CDP ensemble number */

int cdpt; /* trace number within CDP ensemble */

short trid; /* trace identification code:

1 = seismic data

2 = dead

3 = dummy

4 = time break

5 = uphole

6 = sweep

7 = timing

8 = water break

9---, N = optional use (N = 32,767)

Following are CWP id flags:

9 = autocorrelation

10 = Fourier transformed - no packing

xr[0],xi[0], ..., xr[N-1],xi[N-1]

11 = Fourier transformed - unpacked Nyquist

xr[0],xi[0],...,xr[N/2],xi[N/2]

12 = Fourier transformed - packed Nyquist

even N:

xr[0],xr[N/2],xr[1],xi[1], ...,

xr[N/2 -1],xi[N/2 -1]

128 APPENDIX B. HELP FACILILTIES

(note the exceptional second entry)

odd N:

xr[0],xr[(N-1)/2],xr[1],xi[1], ...,

xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2]

(note the exceptional second & last entries)

13 = Complex signal in the time domain

xr[0],xi[0], ..., xr[N-1],xi[N-1]

14 = Fourier transformed - amplitude/phase

a[0],p[0], ..., a[N-1],p[N-1]

15 = Complex time signal - amplitude/phase

a[0],p[0], ..., a[N-1],p[N-1]

16 = Real part of complex trace from 0 to Nyquist

17 = Imag part of complex trace from 0 to Nyquist

18 = Amplitude of complex trace from 0 to Nyquist

19 = Phase of complex trace from 0 to Nyquist

21 = Wavenumber time domain (k-t)

22 = Wavenumber frequency (k-omega)

23 = Envelope of the complex time trace

24 = Phase of the complex time trace

25 = Frequency of the complex time trace

30 = Depth-Range (z-x) traces

43 = Seismic Data, Vertical Component

44 = Seismic Data, Horizontal Component 1

45 = Seismic Data, Horizontal Component 2

46 = Seismic Data, Radial Component

47 = Seismic Data, Transverse Component

101 = Seismic data packed to bytes (by supack1)

102 = Seismic data packed to 2 bytes (by supack2)

*/

short nvs; /* number of vertically summed traces (see vscode

in bhed structure) */

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 129

short nhs; /* number of horizontally summed traces (see vscode

in bhed structure) */

short duse; /* data use:

1 = production

2 = test */

int offset; /* distance from source point to receiver

group (negative if opposite to direction

in which the line was shot) */

int gelev; /* receiver group elevation from sea level

(above sea level is positive) */

int selev; /* source elevation from sea level

(above sea level is positive) */

int sdepth; /* source depth (positive) */

int gdel; /* datum elevation at receiver group */

int sdel; /* datum elevation at source */

int swdep; /* water depth at source */

int gwdep; /* water depth at receiver group */

short scalel; /* scale factor for previous 7 entries

with value plus or minus 10 to the

power 0, 1, 2, 3, or 4 (if positive,

multiply, if negative divide) */

short scalco; /* scale factor for next 4 entries

with value plus or minus 10 to the

power 0, 1, 2, 3, or 4 (if positive,

multiply, if negative divide) */

int sx; /* X source coordinate */

int sy; /* Y source coordinate */

int gx; /* X group coordinate */

int gy; /* Y group coordinate */

short counit; /* coordinate units code:

for previous four entries

1 = length (meters or feet)

2 = seconds of arc (in this case, the

X values are longitude and the Y values

are latitude, a positive value designates

130 APPENDIX B. HELP FACILILTIES

the number of seconds east of Greenwich

or north of the equator */

short wevel; /* weathering velocity */

short swevel; /* subweathering velocity */

short sut; /* uphole time at source */

short gut; /* uphole time at receiver group */

short sstat; /* source static correction */

short gstat; /* group static correction */

short tstat; /* total static applied */

short laga; /* lag time A, time in ms between end of 240-

byte trace identification header and time

break, positive if time break occurs after

end of header, time break is defined as

the initiation pulse which maybe recorded

on an auxiliary trace or as otherwise

specified by the recording system */

short lagb; /* lag time B, time in ms between the time break

and the initiation time of the energy source,

may be positive or negative */

short delrt; /* delay recording time, time in ms between

initiation time of energy source and time

when recording of data samples begins

(for deep water work if recording does not

start at zero time) */

short muts; /* mute time--start */

short mute; /* mute time--end */

unsigned short ns; /* number of samples in this trace */

unsigned short dt; /* sample interval; in micro-seconds */

short gain; /* gain type of field instruments code:

1 = fixed

2 = binary

3 = floating point

4 ---- N = optional use */

short igc; /* instrument gain constant */

short igi; /* instrument early or initial gain */

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 131

short corr; /* correlated:

1 = no

2 = yes */

short sfs; /* sweep frequency at start */

short sfe; /* sweep frequency at end */

short slen; /* sweep length in ms */

short styp; /* sweep type code:

1 = linear

2 = cos-squared

3 = other */

short stas; /* sweep trace length at start in ms */

short stae; /* sweep trace length at end in ms */

short tatyp; /* taper type: 1=linear, 2=cos^2, 3=other */

short afilf; /* alias filter frequency if used */

short afils; /* alias filter slope */

short nofilf; /* notch filter frequency if used */

short nofils; /* notch filter slope */

short lcf; /* low cut frequency if used */

short hcf; /* high cut frequncy if used */

short lcs; /* low cut slope */

short hcs; /* high cut slope */

short year; /* year data recorded */

short day; /* day of year */

short hour; /* hour of day (24 hour clock) */

short minute; /* minute of hour */

short sec; /* second of minute */

short timbas; /* time basis code:

1 = local

2 = GMT

3 = other */

132 APPENDIX B. HELP FACILILTIES

short trwf; /* trace weighting factor, defined as 1/2^N

volts for the least sigificant bit */

short grnors; /* geophone group number of roll switch

position one */

short grnofr; /* geophone group number of trace one within

original field record */

short grnlof; /* geophone group number of last trace within

original field record */

short gaps; /* gap size (total number of groups dropped) */

short otrav; /* overtravel taper code:

1 = down (or behind)

2 = up (or ahead) */

/* local assignments */

float d1; /* sample spacing for non-seismic data */

float f1; /* first sample location for non-seismic data */

float d2; /* sample spacing between traces */

float f2; /* first trace location */

float ungpow; /* negative of power used for dynamic

range compression */

float unscale; /* reciprocal of scaling factor to normalize

range */

int ntr; /* number of traces */

short mark; /* mark selected traces */

short shortpad; /* alignment padding */

short unass[14]; /* unassigned--NOTE: last entry causes

a break in the word alignment, if we REALLY

want to maintain 240 bytes, the following

entry should be an odd number of short/UINT2

OR do the insertion above the "mark" keyword

entry */

float data[SU_NFLTS];

} segy;

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 133

typedef struct { /* bhed - binary header */

int jobid; /* job identification number */

int lino; /* line number (only one line per reel) */

int reno; /* reel number */

short ntrpr; /* number of data traces per record */

short nart; /* number of auxiliary traces per record */

unsigned short hdt; /* sample interval in micro secs for this reel */

unsigned short dto; /* same for original field recording */

unsigned short hns; /* number of samples per trace for this reel */

unsigned short nso; /* same for original field recording */

short format; /* data sample format code:

1 = floating point (4 bytes)

2 = fixed point (4 bytes)

3 = fixed point (2 bytes)

4 = fixed point w/gain code (4 bytes) */

short fold; /* CDP fold expected per CDP ensemble */

short tsort; /* trace sorting code:

1 = as recorded (no sorting)

2 = CDP ensemble

3 = single fold continuous profile

4 = horizontally stacked */

short vscode; /* vertical sum code:

1 = no sum

2 = two sum ...

N = N sum (N = 32,767) */

short hsfs; /* sweep frequency at start */

short hsfe; /* sweep frequency at end */

short hslen; /* sweep length (ms) */

short hstyp; /* sweep type code:

1 = linear

2 = parabolic

3 = exponential

4 = other */

134 APPENDIX B. HELP FACILILTIES

short schn; /* trace number of sweep channel */

short hstas; /* sweep trace taper length at start if

tapered (the taper starts at zero time

and is effective for this length) */

short hstae; /* sweep trace taper length at end (the ending

taper starts at sweep length minus the taper

length at end) */

short htatyp; /* sweep trace taper type code:

1 = linear

2 = cos-squared

3 = other */

short hcorr; /* correlated data traces code:

1 = no

2 = yes */

short bgrcv; /* binary gain recovered code:

1 = yes

2 = no */

short rcvm; /* amplitude recovery method code:

1 = none

2 = spherical divergence

3 = AGC

4 = other */

short mfeet; /* measurement system code:

1 = meters

2 = feet */

short polyt; /* impulse signal polarity code:

1 = increase in pressure or upward

geophone case movement gives

negative number on tape

2 = increase in pressure or upward

geophone case movement gives

positive number on tape */

short vpol; /* vibratory polarity code:

code seismic signal lags pilot by

1 337.5 to 22.5 degrees

2 22.5 to 67.5 degrees

3 67.5 to 112.5 degrees

4 112.5 to 157.5 degrees

5 157.5 to 202.5 degrees

6 202.5 to 247.5 degrees

7 247.5 to 292.5 degrees

8 293.5 to 337.5 degrees */

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 135

short hunass[170]; /* unassigned */

} bhed;

/* DEFINES */

#define gettr(x) fgettr(stdin, (x))

#define vgettr(x) fvgettr(stdin, (x))

#define puttr(x) fputtr(stdout, (x))

#define gettra(x, y) fgettra(stdin, (x), (y))

/* The following refer to the trid field in segy.h */

/* CHARPACK represents byte packed seismic data from supack1 */

#define CHARPACK 101

/* SHORTPACK represents 2 byte packed seismic data from supack2 */

#define SHORTPACK 102

/* TREAL represents real time traces */

#define TREAL 1

/* TDEAD represents dead time traces */

#define TDEAD 2

/* TDUMMY represents dummy time traces */

#define TDUMMY 3

/* TBREAK represents time break traces */

#define TBREAK 4

/* UPHOLE represents uphole traces */

#define UPHOLE 5

/* SWEEP represents sweep traces */

#define SWEEP 6

/* TIMING represents timing traces */

#define TIMING 7

/* WBREAK represents timing traces */

#define WBREAK 8

/* TCMPLX represents complex time traces */

#define TCMPLX 13

/* TAMPH represents time domain data in amplitude/phase form */

#define TAMPH 15

/* FPACK represents packed frequency domain data */

#define FPACK 12

/* FUNPACKNYQ represents complex frequency domain data */

#define FUNPACKNYQ 11

/* FCMPLX represents complex frequency domain data */

#define FCMPLX 10

/* FAMPH represents freq domain data in amplitude/phase form */

#define FAMPH 14

/* REALPART represents the real part of a trace to Nyquist */

#define REALPART 16

/* IMAGPART represents the real part of a trace to Nyquist */

#define IMAGPART 17

/* AMPLITUDE represents the amplitude of a trace to Nyquist */

#define AMPLITUDE 18

/* PHASE represents the phase of a trace to Nyquist */

136 APPENDIX B. HELP FACILILTIES

#define PHASE 19

/* KT represents wavenumber-time domain data */

#define KT 21

/* KOMEGA represents wavenumber-frequency domain data */

#define KOMEGA 22

/* ENVELOPE represents the envelope of the complex time trace */

#define ENVELOPE 23

/* INSTPHASE represents the phase of the complex time trace */

#define INSTPHASE 24

/* INSTFREQ represents the frequency of the complex time trace */

#define INSTFREQ 25

/* DEPTH represents traces in depth-range (z-x) */

#define TRID_DEPTH 30

/* 3C data... v,h1,h2=(11,12,13)+32 so a bitmask will convert */

/* between conventions */

/* TVERT represents the vertical component */

#define TVERT 43

/* TVHOZ1 represents the horizontal-1 component */

#define THORZ1 44

/* TVHOZ2 represents the horizontal-2 component */

#define THORZ2 45

/* TRADIAL represents the radial component */

#define TRADIAL 46

/* TTRANS represents the transverse component */

#define TTRANS 47

/* #define ISSEISMIC(id) (((id)==0 || (id)==TREAL || (id)==TDEAD || (id)==TDUMMY) ? cwp_true : cwp_false) */

#define ISSEISMIC(id) (((id)==0 || (id)==TREAL || (id)==TDEAD || (id)==TDUMMY || \

(id)==TVERT || (id)==THORZ1 || (id)==THORZ2 || \

(id)==TRADIAL || (id)==TTRANS) ? cwp_true : cwp_false)

/* FUNCTION PROTOTYPES */

#ifdef __cplusplus /* if C++, specify external linkage to C functions */

extern "C" {

#endif

int fgettr(FILE *fp, segy *tp);

int fvgettr(FILE *fp, segy *tp);

void fputtr(FILE *fp, segy *tp);

int fgettra(FILE *fp, segy *tp, int itr);

/* hdrpkge */

void gethval(const segy *tp, int index, Value *valp);

void puthval(segy *tp, int index, Value *valp);

void getbhval(const bhed *bhp, int index, Value *valp);

void putbhval(bhed *bhp, int index, Value *valp);

void gethdval(const segy *tp, char *key, Value *valp);

void puthdval(segy *tp, char *key, Value *valp);

char *hdtype(const char *key);

char *getkey(const int index);

int getindex(const char *key);

void swaphval(segy *tp, int index);

B.4. SUKEYWORD - LIST THE SU DATATYPE (SEGY) KEYWORDS 137

void swapbhval(bhed *bhp, int index);

void printheader(const segy *tp);

void tabplot(segy *tp, int itmin, int itmax);

#ifdef __cplusplus /* if C++, end external linkage specification */

}

#endif

#endif

138 APPENDIX B. HELP FACILILTIES

Appendix C

DEMOS - a brief descriptions of the
demos

The directiory $CWPROOT/src/demos contains a number of subdirectories containing ready to run
shell scripts to demostrate SU programs. This collection is nowhere as complete as it should be, and is
continually changing and being updated.

• BC Examples

• Block: Demo for the program ”block” in the free package UNCERT

• 3D Model Building:

– Tetramod: Demo for “tetra,” the seismic wavespeed model building code.

• Datuming: Examples of datuming

– Finite Difference: Traditional Finite difference Datuming

– Kirchhoff Datuming: Kirchhoff datuming

∗ Migration with topography: Migration with topographics effects

• Deconvolution: Deconvolution demos

– Wiener Levinson: prediction error filtering

– FX: frequency-wavenumber

• Dip Moveout: Dip Moveout

– Ti: Dip moveout in transversely isotropic media

• Diversity Stacking:

• Filtering: Filtering demos

– Subfilt: Butterworth filter

– Sudipfilt: Dip (slope) filtering

– Sufilter: Polygonal zero-phase frequency filtering

– Sugabor: time-frequency filtering via the Gabor transform

– Suk1k2filter: Wavenumber filtering (box)

– Sukfilter: Wavenumber filtering (annular)

– Sumedian: Median filtering

139

140 APPENDIX C. DEMOS - A BRIEF DESCRIPTIONS OF THE DEMOS

• Making Data: Making synthetic seismic profiles

– CommonOffset: Common-offset and Zero-offset datasets

– ShotGathers: Common-shot datasets

• Migration Inversion: Migration (Inversion)

• 3D Migration or inversion of 3D datasets

– Suinvco3d: Common offset migration in v(z) media

• Finite Difference: traditional Claerbout FD migration

• Fourier Finite Difference: Fourier FD migration

• Gazdag: traditional Gazdag phaseshift migration

• Kirchhoff: Kirchhoff migration

– Sukdmig2d common offset: Common-offset migration

– Sukdmig2d common shot: Common-shot migration

• Phase Shift Plus Interpolation: PSPI migration

• Split Step: Split step migration

• Stolt: Stolt migration

• Suinvvxzco: Inversion in v(x,z) media for common-offset data sets

• Sumigpsti: Phaseshift Migration in Transversely Isotropic media

• NMO: Traditional Normal Moveout correction

• Offset Continuation: Offset continuation to smaller offsets

• Picking: Trace Picking

– Supickamp: Automated picking

• Plotting: Plotting demos

– CurveOnImage: Draw a curve on an image plot

• Refraction: Refraction applications

– GRM: Generalized Reciprocal Method for a single layer

• Residual Moveout: Velocity analysis by residual moveout analysis

• SUManual: Shell scripts used to make plots in the SU User’s Manual

– Plotting: Plotting demos

∗ Psmerge: Merge PostScript files with psmerge

∗ Xmovie: Make X-windows movies with suxmovie

• Selecting Traces: Selecting traces by header values for specific operations

• Sorting Traces: Sorting traces with susort

– Demo: Sorting traces demo

– Tutorial: Sorting traces tutorial

• Statics: Static time shift corrections

141

– Residual Refraction Statics: applying residual refraction static corrections

– Residual Statics: residual source-receiver statics

• Synthetic: Making synthetic seismograms

– Finite Difference: finite difference 2D modeling

– Impulse: impulse testpatterns

– Kirchhoff: Kirchhoff modeling

– Reflectivity: Reflectivity modeling

– Tetra: Tetrahedrized models

– Tri: Triangulated models

– Wkbj: Upwind finite differencing of the eikonal equation

– CSHOT: see the demos in $CWPROOT/src/Fortran/CSHOT

• Tau P: Tau-p or slant stack filtering

– Suharlan: Bill Harlan’s slant stack noise suppression algorithm

– Sutaup: Traditional Tau-p transform

• Time Freq Analysis: operations in the time-frequency domain

• Utilities: Miscellaneous (and experimental) utilities

– Sucommand: Demo for program sucommand

• Velocity Analysis: NMO-based velocity analysis demo

• Velocity Profiles: Make velocity profiles

– Makevel: make velocity profiles with makevel

– Unif2: uniformly sampled 2D velocity profiles with unif2

– Unisam2: uniformly sampled 2D velocity profiles with unisam2

– Vel2stiff: convert velocity profiles to stiffness profiles vel2stiff

• Vibroseis Sweeps: Synthetic vibroseis sweeps with suvibro

The beginner is encouraged to run the demos in the following order:
The Making Data demo shows the basics of making synthetic data shot gathers and common offset

sections using susynlv. Particular attention is paid to illustrating good display labeling.
The Filtering/Sufilter demo illustrates some real data processing to eliminate ground roll and first

arrivals. The demos in the Filtering subdirectories give instructions for accessing the data from the
CWP ftp site.

The Deconvolution demo uses simple synthetic spike traces to illustrate both dereverberation and
spiking decon using supef and other tools. The demos include commands for systematically examining
the effect of the filter parameters using loops.

The Sorting Traces Tutorial is an interactive script that reinforces some of the basic UNIX and SU
lore discussed in this document. The interactivity is limited to allowing you to set the pace. Such
tutorials quickly get annoying, but we felt that one such was needed to cover some issues that didn’t fit
into our standard demo format. There is also a standard, but less complete, demo on this topic.

The next step is to activate the Selecting Traces Demo. Then proceed to the NMO Demo. Be-
yond that, visit the Demo directories that interest you. The demos directory tree is still under active
development—please let us know if the demos are helpful and how they can be improved.

As the user becomes more familiar with the logic of SU, then he or she may feel free to run any of
the other demos either in their original form, or the user may modify the shell scripts to his or her own
ends.

