Abstract

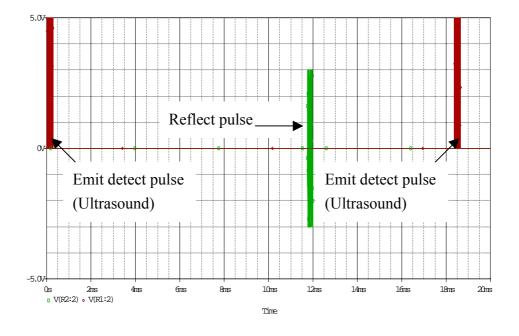
There is so many blind persons that use a blind stick to help their dally walking or life. But the blind stick will be hit some person when the blind stick waggling. So there is need to develop new walking stick that the stick can be detected the obstacle stealthy. So the bat are the very best object to learn at to stealthy detected the obstacle. From observe the bat, we have a conclusion that use a ultrasound for the detected the obstacle is a good way to do and the new walking stick is use ultrasound theory of the bat perform by the microproccer and the electronic component. This walking stick can be help the blind persons or the person hit by the old waggling blind stick.

3

Aims

This Electronic Walking Stick for the Blind is use to help the blind person to detect obstacle and depressions in front of him. After detect an object in front of the blind person the Electronic Walking Stick will be sound a the tone of warning signal and warning signal will change gradually when the blind person get closer to the obstacle. Also if too close to the object it will generate a vibration signal with the vibrator.

4


Scope

In our project, we will focus on the ultrasound propagation technique, sound speed. And follow are the basic theory the ultrasound propagation technique sound speed in the free air

Pulse-echo technique.

This technique is a means of underwater Echolocation developed by the military for locating submarines. Brief pulses of ultrasound, ranging from 21kHz to 50 kHz, are emitted in narrow, intense beams. The pulses hit to hard surface it makes the echoes of these pulses, returning at different time intervals depending on the Speed of Sound in the medium. Form the timing from travel time between measurements to surface can be converted the distance between each other.

Here are the times schedule of the pulse-echo technique detect method. ⁵

The speed of the ultrasound in the air

In 1816, the mathematician Laplace proposed that the speed of a longitudinal wave in a gas is given by

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}}$$

Where p is the pressure of the gas, **p** the density, and is a dimensionless constant(the ratio of the specific heats of the gas: this is covered in the unit Thermal properties)

In the Atmospheric pressure, =1.4, P = 0.76x13600x9.8 Pa, p

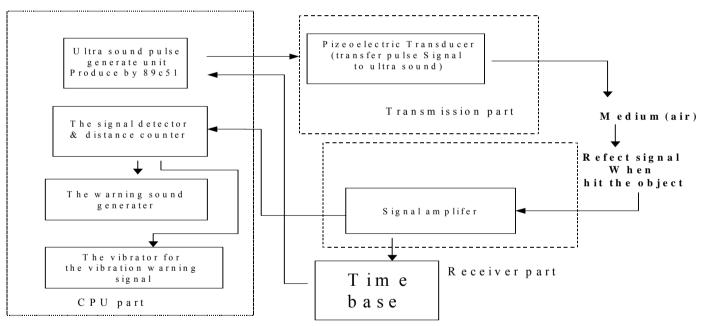
$$v = \sqrt{\frac{14 \times 0.76 \times 13600 \times 9.8}{1.29}}$$
 6

 $v = 332 \text{ ms}^{-1}$, it means that the ultrasonic will traffic in the air is 332m per second.

Specification

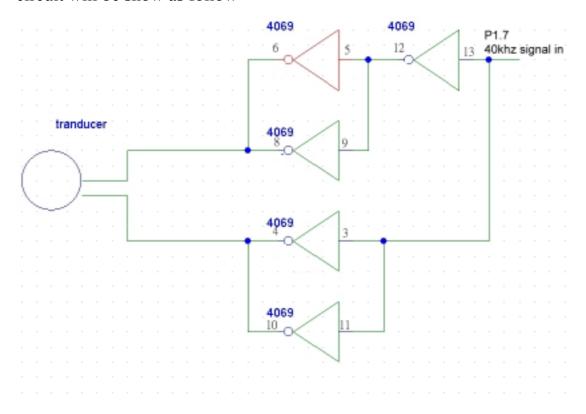
Supply voltage: 12v(supply by high voltage battery VA23GA)

Transmit & receiver frequency: 40kHz Detect method: pulse –echo technique

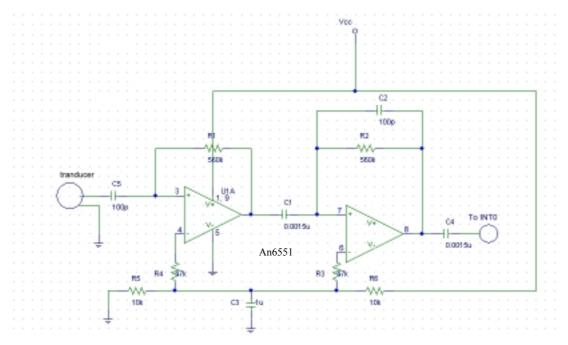

Sampling rate: 1 time/second

Detect range: 10 feet Accuracy: +/- 1 feet

⁸Detect angle: 45°


Design

Block/system level diagram for hardware


-Circuit diagram

The hardware part will be break down to three parts to discuss The first part is transmission part, the 40khz ultrasound that generate by the microproccer, that though the 4069 and the sin wave that will transmit the ultrasonic though by the transducer, 4069 that is a hex inverter buffer to use to buffering and shaping the pulse more like than the sin wave. The circuit will be show as follow

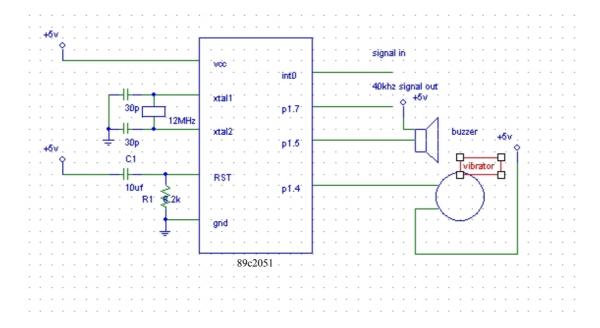
10

As follow is the receiver part circuit:

The first stage of the amplifier gain 10, and the second stage amplifier gain 13 times total gain is gain 10 *13 = 130, about 40db gain and output to the microproceer.

The first stage of the amplifier is the high pass filter the 100p cap. Is use to filtering the noise under the 40khz signal, the resistor of the cap. is xc

$$= 1/2$$
 f* c


For example at 37khz or below xc = 1/2 37k * 100p = 43k or bigger, the resistor is good enough to limit the current to flow to amplifier. The second stage amplifier will call by VCVS- voltage controlled voltage source amplifier. This is one of the types of the butterworth filter. And RC

factor can defined by follow equation c = 1/2 fo R, as r =

560k, freq(fo) = 40khz, c = 11/2 *40khz *560k = 100p. As upper result, second stage is a bandpass filter that selected 40khz signal.

¹0

Here are third parts of the hardware, the CPU part:

The CPU P1.7 generate a 3ms width 40khz pulse signal to the transmission part, after that the INT0 wait to receive a signal from the receiver part. Whatever the receiver part have a signal or not, that the CPU will generate a sound about every signal second to indicate the CPU is running properly. If a reflect signal was pick up at the receiver part, the burst sound will be generate. If the reflect signal is very close, a signal will send to P1.4 to control the vibrator to vibrate.

¹1

-Part list

Туре	Part number	Amount
Resistor	8.2k	1
	560k	2
	47k	2
	10k	2
Capacitor	10uf	1
	30pf	2
	1uf	1
	0.0015u	2
	100p	2
IC	7805	1
	7809	1
	89c2051	1
	4069	1
	An6551	1
Crystal oscillator	12MHz	1
Buzzer	5V	1
Vibrator	5V	1
Ultrasound		
transducer	400ST160	1
	400SR160	1

Software

-Program listing

```
1
     $MOD51
2
             ORG
                     00H
3
             AJMP
                     START
4
             ORG
                     03H
5
             AJMP
                     EXOISR
6
             ORG
                     100H
7
             MOV
                     SP,#60H
     START:
8
             MOV
                     IE,#00H
9
             MOV
                     R5,#0
10
              MOV
                      R6,#0
11
              MOV
                      R1,#6
12
              SETB
                      P1.5
13
14
      LOOP:
              SETB
                      P1.7
                               ;1us
              MOV
15
                      R2,#05
                               ;1us
16
              DJNZ
                      R2,$
                               ;2us on (5*2+1=11us)
17
              CLR
                      P1.7
                               ;1us
18
              MOV
                      R2,#5
                               ;1us
19
              DJNZ
                      R2,$
                               ;2us off(5*2+1=11us)
20
              DJNZ
                      R1,L00P; 25us 1peroid *5 =0.3ms
21
22
              MOV
                      R1,#12
                              ;TIME DELAY FOR THE DETECT SIGNAL PERIOD
23
      DLOOP:
              MOV
                      R2,#06
                              ;1us
24
                      R2,$
              DJNZ
                               ;2us on (5*2+1=11us)
25
              MOV
                      R2,#6
                               ;1us
26
              DJNZ
                      R2,$
                               ;2us off(5*2+1=11us)
27
                      R1,DLOOP;26us 1peroid *5 = 0.6ms
              DJNZ
28
              MOV
29
                      IE,#81H ;SETUP TO DETECT THE SIGNAL
              SETB
                      IT0
30
31
```

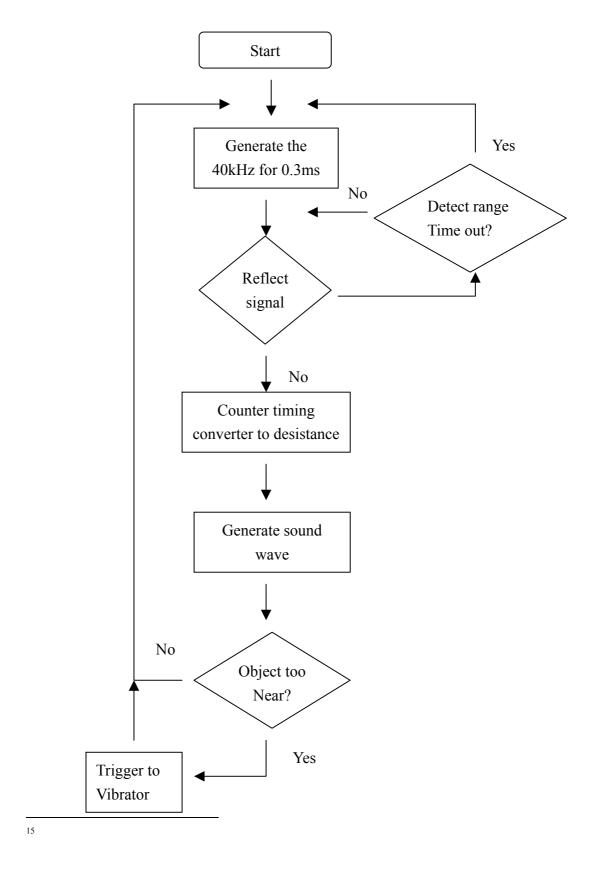
```
;LIMIT = 10 FEET +/- 1 FEET<sup>13</sup>
32
     CHECK: MOV
                    R7,#11
     CH1:
33
             DJNZ
                    R7, AD01
                                    ;CALL DELAY FOR THE 1 FEET TIME
34
             JMP
                    BACK
   AD01:
             ACALL
                    DELAY01
35
             JMP
36
                    CH1
37
38
     BACK:
             MOV
                     IE,#00H
                                   ;AFTER THE CHECKING, RESET FOR
THE INT
39
                    SOUND
                                    ; SOUND GEN PROGRAM
             ACALL
40
             AJMP
                    START
41
42
     EXOISR: MOV
                    R6,#01
                                 ;extItO program ITO USE TO RECEIVE
THE SIGNAL
43
             MOV
                    A,R5
44
             JΖ
                    RTN1
45 ECH1: DJNZ
                    ACC, ERL1
                                   ;SOUND GEN PROGRAM, EACH TIME =
0.1 * FEETS
46
            AJMP
                    RTN1
     ERL1: CLR
47
                    p1.5
             ACALL
                    SDELAY
48
49
             SETB
                    p1.5
50
             ACALL
                    SDELAY
51
             AJMP
                    ECH1
52
     RTN1:
             RETI
53
54
     DELAY01: CJNE
                    R6,#1,CHECK1 ;DELAY 1 FEET PROGRAM
55
             AJMP
                    BACK
     CHECK1: MOV
                    R1,#4 ;1us
56
57
   LOOP1: MOV
                    R2,#227 ;1us
58
             DJNZ
                    R2,$; 2us (229 * 2 +1 = 459us)
59
             DJNZ
                    R1,L00P1;2us (459 * 2 * 2 = 1836us)
60
             INC
                    R5
             RET
61
62
63
     SOUND: CLR
                    P1.5
                            ; SOUND PROGRAM FOR GEN THE SYSTEM NORMAL
SOUND
64
             MOV
                    A,R5
```

```
JΖ
                       SS4
65
66
      SS1:
               DJNZ
                       ACC, SCH1
               JMP
                       SS2
67
      SCH1:
                       SDELAY
68
               ACALL
               AJMP
69
                       SS1
70
      SS2:
               SETB
                       P1.5
71
               MOV
                       A,R5
72
      SS3:
               DJNZ
                       ACC, SCH2
73
               JMP
                       SS4
74
      SCH2:
               ACALL
                       SDELAY
75
               AJMP
                       SS3
76
      SS4:
               SETB
                       P1.5
77
               RET
78
79
      SDELAY: MOV
                       R1,#200 ;1US
                                         ; 0.1S DELAY PROGRAM
      SLOOP1: MOV
                       R2,#250 ;1US
80
81
               DJNZ
                       R2,$
                                ;2US
                                         (250* 2 + 1 = 251uS)
                       R1, SLOOP1; 2US
                                         (251* 4 *2 = 2ms)
82
               DJNZ
83
               RET
84
               END
```

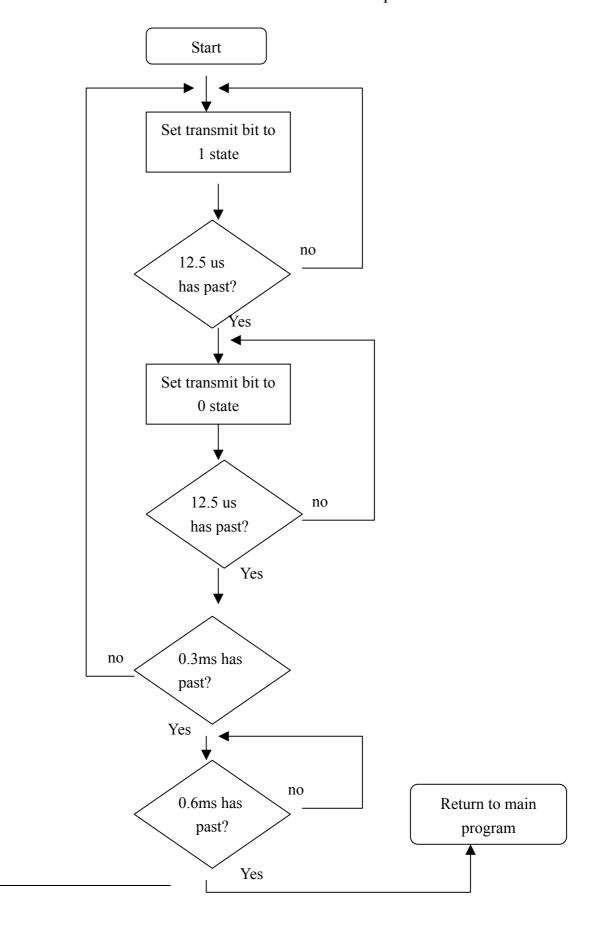
- .1-12 are the initial part of the program,
- 5. the external int pointer has been set.
- 6. the main program set to 100H prevent the data area in microproccer
- 7. the stick point set to safety data area
- 8. disable all the int
- 9-11 are use to initial the meter counter(feet)(R5)and the receive signal flag ,(R6) is use to like a flag. If receive a signal, R6 = 1.(R1) is use to determine the pulse width of the 40khz pulse that transmit for detector 12.reset the buzzer sound to off.
- .14-27 are the second part of the program, produce a 0.3ms width 40khz pulse
- 14-16 are the program produce high state of the 40khz, 14 set to high state, and then 15-16 is provide looping for a suitable waiting timing, from the way of the machine cycle, (14)1 machine cycle+ (15)1 + (16)2

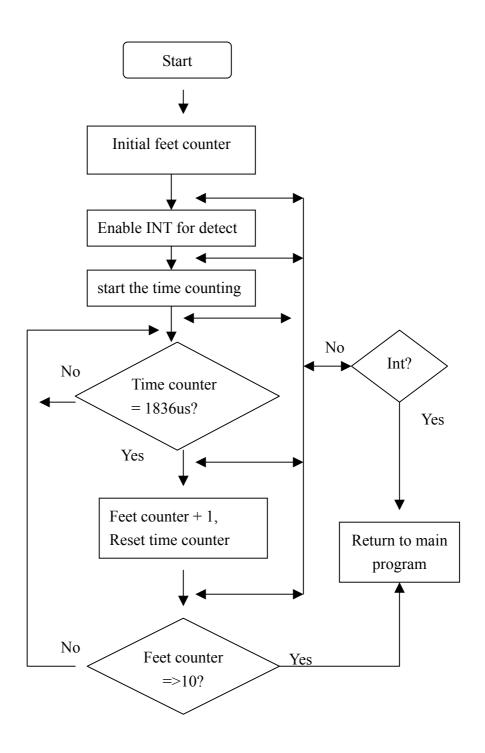
17-20 are the program produce low state of the 40khz, the method as use as 14-16, two of them will add to the full cycle = 12us + 12us = 24us, nearly to the 40khz, 1/25us = 40khz, 1/24us = 38khz, because that the 40khz = 1/25us/2 = 12.5us(half on/off cycle) in 12Mhz clock, the machine cycle = 1us, the IC can't provide less than 1us clock.

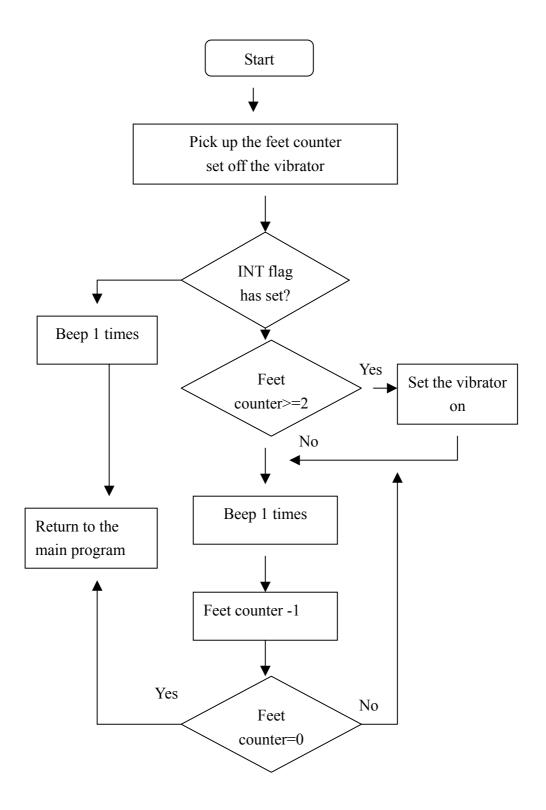
- 21 is use the looping provide 0.3ms timing 24us * 6 times * 2machine cycle(2us) = 0.3ms
- 22-27 is use to do the looping to prevent the cross talk of the two sensor because the transmits will need two time so the looping will use 0.6ms 29-38,42-61 is the receiver program
- 29, 30 is use to setup the Int0 and enable the trigger, 32 R7 is use to limit the detect range(10feet+/-1feet)
- 33 & 34 is use observe that the detect range has been out now.
- 35 is use to call 1 feet time counter delay to counter feet.


So 38khz is the best resolution to this situation.

- 38 is use to disable the input signal after the counting feet.
- 42-52 is a Int0 service routine,
- 42 is use to set the flag(R6) to Ack. the main program that is the signal is receive
- 45-52 is use to feet counter to generate the sound, when the less feet has been count, the sound will be generate more frequently. There is about 0.1 second generate in every period.
- 54-61 is a delay program to counter the 1 feet ultrasound transmits in the air the ultrasound transmits has been cal to 1836us.
- 39-40,63-84 is the sound generate program
- 39-40 is use to call the sound program to generate system normal "beep" sound(no detect)
- 63-84 is the procedure that generate single beep sound.
- 63 is use to enable the sound
- 64-84 is the procedure that make a 0.5s delay.


 $^{^{14}}$ machine cycle * 5 = 12us. 14


-Flowchart


The flowchart of the main program¹⁵

The flowchart of the transit a 0.3ms 40khz ultrasound pulse 16

User manual

- 1. Plug in the power
- 2. When the system normal, a beep sound will be generate in very single second.
- 3. Apply the ultrasound sensor to the obstacle, you will hear a burst "beep" sound, the burst will indicate your location to the obstacle, the sound will be "beep" more frequently, for example the obstacle will "beep" 2 times when the obstacle at 10 feet.

 4 times when the obstacle at 8feet etc. When the obstacle is close to 2 feet, the vibrator will be vibrating. 19

Test procedure

Test instrument: 10MHz or above oscillopscope

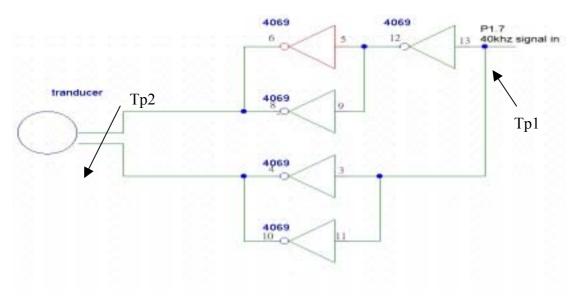
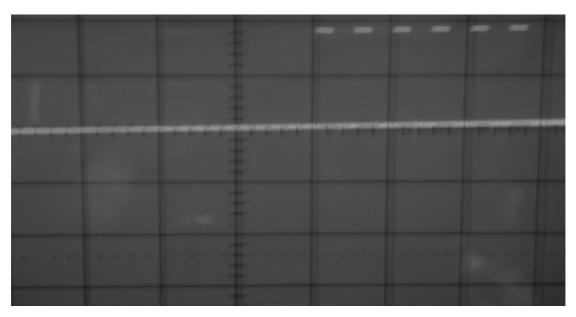
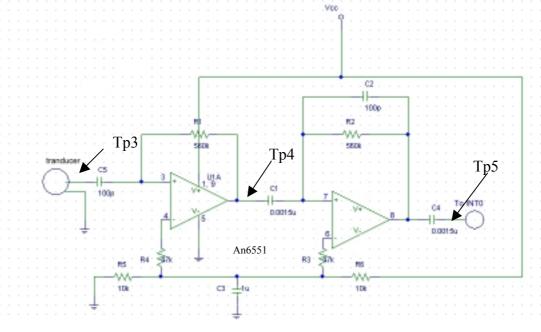
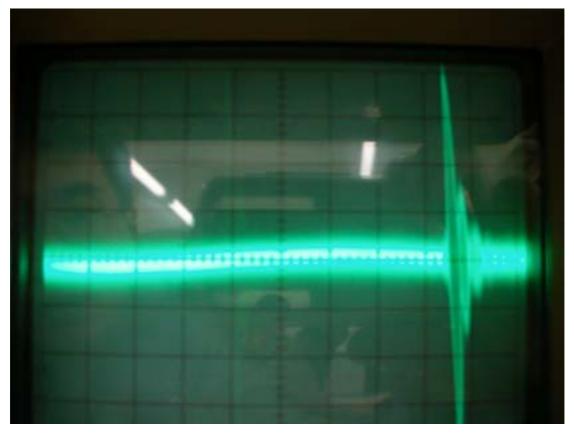
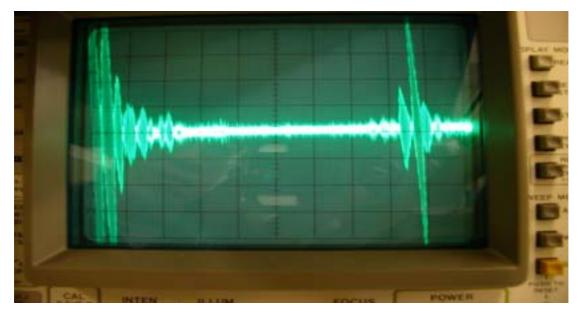



Fig 1.

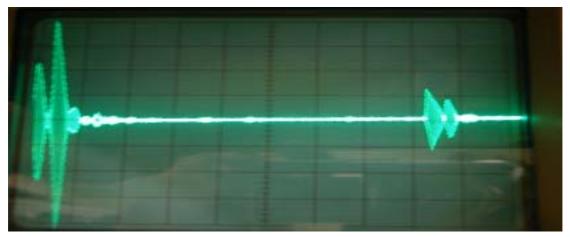
1. Apply test probe to fig1. Tp1 and tp2, the normal situation will like this

You will observe a 5V(Tp1) or $9V(Tp2) \times 6$ pulse and every single pulse period is $25us^{20}$

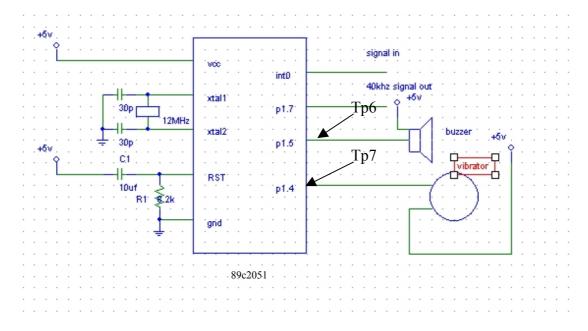




Fig2.

2. Apply test probe to fig2. Tp3 at he normal situation will like this

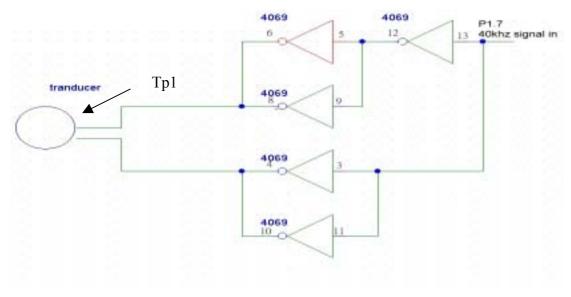

The pulse will more than 4mV and not more than 2us second pulse width

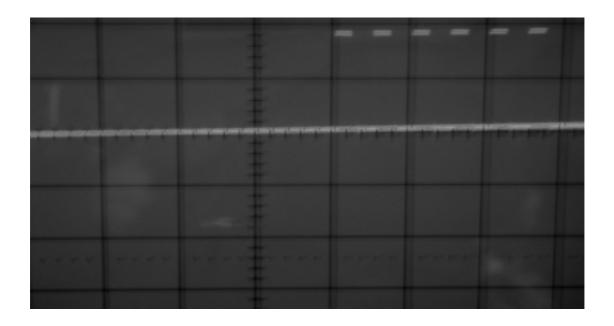
2. Apply test probe to fig2. Tp4 at he normal situation will like this (if the obstacle is hit)



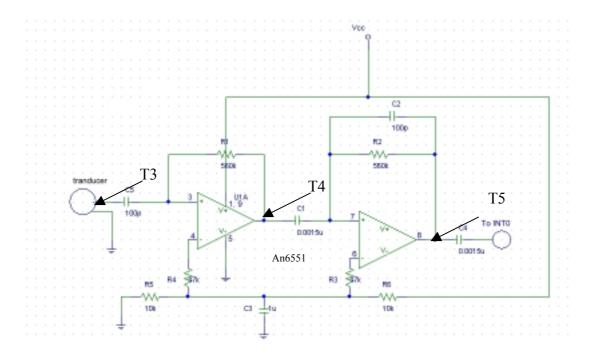
The pulse width will not less than 2ms and the level will not less than 40mv

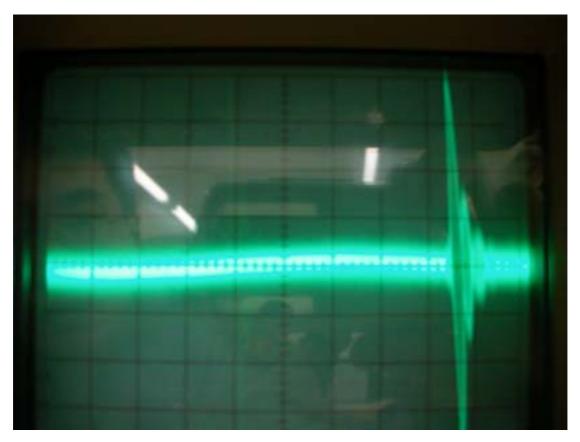
3.apply test probe to fig2. Tp5 at he normal situation will like this (if the obstacle is hit)


The pulse width will not less than 2ms and the level will not less than 1V peak to peak.²²

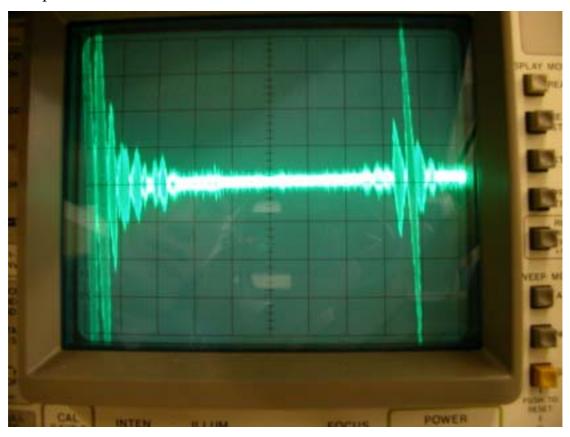

3. Apply the test probe to Tp6 & Tp7, and the result when obstacle hit, tp6 will appear a burst pulse, the single pulse width will not less then 0.1s, all of the pulse not more than 1s, when the obstacle at 10 feet, tp6 will generate 2 pulse, 1 feet will generate 10 pulse etc. when the obstacle at 2 feet or below. Tp7 will have a turn to 0v; in normal there is a 5v in Tp7.²³

Result

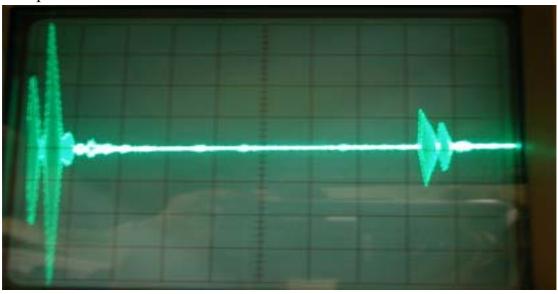

Here are the result of our observe:


At Tp1

50us per each vertical block 5v per each horizontal block²⁴



At Tp3


This record at the 5 inch that 4mv for each horizontal block 2us per each vertical block²⁵

At Tp4

This record at 3m 10mv for each vertical block 2ms per each horizontal block

At Tp4

This record at 3m 0.5v for each vertical block
2ms per each horizontal block

Comments and discussions

Our project is fail to the receiver circuit output signal was so low to detected by the microproccer. (1V peak to peak) There is more than 3.2V that can be detected by the microproccer with the buffer IC. As long as our observe, the receiver circuit is running properly. Because the receiver circuit has a large amplify (about 30db amplify), this is hard to amplify the signal to more large level. Because the slew rate is limit to the amplify action, for example, the slew rate 1v/us, it means that if the amplifier circuit is the voltage follow bandwidth 1MHz, if 10 time amplify, the bandwidth will decrease to 100kHz, if the 30db amplify, the bandwidth will decrease to very low level, we have use the two level amplifier to due the 30db amplify result but more large level will made signal distort the signal itself, because of the signal to noise ratio is not very good, about 1:2 2= noise, 4 = signal. So there is not to do with the receiver part, at now, we think that the transmit part should use follow method to improve the signal that picked up at receiver:

- 1. Parallel connection resistor to the transducer at the transmit part to matching the transducer to cause full power transfer.
- 2. Connect a amplifier between the microproccer 40kHz pulse clock output and the transducer to increase transducer voltage.

Conclusion

The electronic walking stick is a portable electronic product; the power consummation is mainly target to due with. But the transmit and receive circuit will have a great power lost, it will power down when the blind person that on the street, so the walking stick may need to design less power lost and indicate the blind person to change their battery when it was too late.²⁹