
Next Generation Software Configuration

Management System

Nathan DeBardeleben
Stacey Dorsey

Kim Hazelwood
Jonathan Perry

June 19, 1998

Chapter 1

Abstract

As companies move towards larger software projects, management of these
projects becomes a crucial issue. Software management can take on many mean-
ings, from revision control to dependency tree specification. The dependency
tree specification side of software management has been chiefly controlled by
the UNIX Make command. This lightweight, text-based program allows users
to specify dependencies between files and then to execute the Make command.
Make evaluates which files have changed since the last compile and then recom-
piles only the files that depended upon the changed files. This concept allows
for only parts of large software projects to be recompiled, reducing the amount
of time and resources consumed.

There are many properties that are missing from the UNIX Make environ-
ment. Make is not user-friendly. The dependency graph has no visual repre-
sentation, which can make managing large projects difficult. More importantly,
Make does not allow for files to be distributed across the network. This is be-
coming a more important part of the software development world as companies
have branches throughout the world where many teams are working together
on a project.

In this paper a design is presented of a Next Generation Software Configu-
ration Management System. The traditional features of Make are incorporated
and expanded upon. Background information in the configuration management
field is presented to show some of the many uses of configuration management
today and the future. Examples of Make are given so as to be referenced
throughout and used to explain how the system presented here meets the re-
quirements of being upwardly compatible with Make. Formal specification is
employed to describe the design of the system and show that it allows for such
functions as saving, loading, editing, viewing, and compiling a dependency tree.
Specifications for converting a datafile from Make are also given to allow for a
way for users to convert existing projects into the native format of this prod-
uct. Some screenshots from a sample graphical user interface are also presented.
These are to be used as guidelines for what the functionality and look of the
implemented product should be.

1

There are many properties which were set to be accomplished in this project.
Generality, self-realization, efficiency, portability, and software reuse were just a
few of these. These terms are explained and then it is described how they were
met with this design. Some sample code for communicating across the network
is presented with test cases to facilitate the implementation. Finally, a glossary
of new and important terms is presented as well.

While the Make program has ruled the UNIX environment for many years,
it has many deficiencies which are becoming more and more apparent as pro-
grammers begin to work on larger projects. These must be corrected, and a
design for the solution is presented herein.

2

Contents

1 Abstract 1

2 Background 6

3 Example Makefiles 9
3.1 A Simple Makefile . 9
3.2 A More Complex Makefile . 12
3.3 Introduction of Terms . 14

4 Comprehensive Description 16
4.1 File Locality . 16

4.1.1 Non-Locality Resolution 16
4.1.2 File Retrieval . 17

4.2 Specification of the Network . 17
4.3 Revision Control . 20
4.4 Manager . 20

4.4.1 Definitions . 20
4.4.2 Manager State Schema . 21
4.4.3 System Schemas . 23
4.4.4 Node Schemas . 28
4.4.5 File Schemas . 36
4.4.6 Compilation Specification 43
4.4.7 Saving and Loading . 47
4.4.8 Converting . 48

4.5 The Datafile . 52
4.6 Datestamps . 56
4.7 Compilation . 58

4.7.1 Compilation Order Rules 58
4.7.2 Compilation Procedure 58

4.8 Graphical User Interface . 61

5 Project Properties 66
5.1 Statement of Need . 66
5.2 Expected Market . 67

3

5.3 Formal Methods . 67
5.4 Test Specifications . 67
5.5 Self-Realization . 67
5.6 Portability . 68
5.7 Software Reuse . 68
5.8 Efficiency . 68
5.9 Generality . 69

A Specific Requirements Paper 70
A.1 Overview . 70
A.2 Features . 70

A.2.1 Local . 70
A.2.2 Network . 71

A.3 Graphical User Interface . 72
A.4 Paper . 72
A.5 Properties . 73
A.6 Conclusion . 73

B URL Class Example 74

C Definitions and Descriptions 77

4

List of Figures

3.1 A Simple Makefile . 10
3.2 Directed Acyclic Graph : A Simple Makefile 11
3.3 A More Complex Makefile . 13
3.4 Directed Acyclic Graph : A More Complex Makefile 14

4.1 Adding Goals and Files to the System 63
4.2 Viewing Goals and Files of the System 64
4.3 Compiling Goals in the System 65

5

Chapter 2

Background

”For programmers drowning in a sea of constantly changing source code, soft-
ware configuration management promises to be a much-needed lifeboat.” [Cronk,
p. 45] As the software development process grows larger and more complex con-
figuration management is almost a necessity to developing high quality products.

In a paper by Salvatore Salamone several reasons have been established of
why having a Configuration Management system is a good idea. The reasons
he lists are that it masks complexity of the network from users, reduces user
options making LAN support easier, reduces training costs, facilitates changes
when applications move or devices are added to the network, keeps users from
trying to run programs their PCs cannot support, enforces uniform corporate
image in customer service settings, and tightens securities. He goes on to give
some good examples of situations where each of these apply [Salamone, p. 160].

With today’s fast paced technology the process of software development is
becoming a larger and a more complex process. To manage this complexity,
Configuration Management systems have moved to the forefront for controlling
and managing the process of software development. There are many desirable
features of a Configuration Management system. Many of the features do exist
in current CM systems although some exist more than others and no single
system seems to contain all the features desired [Dart, pp. 3-4].

Three qualities currently exist in many configuration management systems.
They are version control, a check-out/check-in facility, and a buffered-compare
program [Buckley, p. 56]. ”Version control is the ability to store multiple ver-
sions of the same file under controlled, restricted-access conditions. [Buckley,
p. 56]” The check-out/check-in capability keeps more than one user from mod-
ifying the same file. The buffered-compare program compares the old and new
files and provides as output ”a complete delineation of the additions and dele-
tions. [Buckley, p. 59]”

There are also four desirable capabilities which would be good to have in
a CM system. These are establishing a standards-checking program, imple-
menting an automated problem-reporting system, automating the generation
of configuration status accounting reports and providing an automated metrics

6

acquisition and reporting capability [Buckley, p. 59]. The features come from
both the management and product side of the software development process.
A standards-checking program checks all files to make sure they all conform
to project standards and will generate a problem report if one is found that
doesn’t conform. The automated problem-reporting system is somewhat self
explanatory. It will keep the project on track by getting problems reported
quickly. The next desirable feature, automating the generation of configuration
status accounting reports, gives details such as the status of change proposals
and the revision levels of configuration documentation. This feature is desirable
for larger projects such as in industry where the projects can become quite large.
Finally, the desirable feature of providing an automated metrics acquisition and
reporting capability provides reports on two types of metrics, those ”relating
to the software configuration management process itself, and project metrics
providing insight into the software development process.” [Buckley, p. 61]

The majority of these features do exist in different CM systems, for instance
Aide-De-Camp (ADC) is an existing system which provides change sets for
distribution of change. This system also integrates problem reports and change
requests providing some of the features from the management side of the process.

Another existing CM system is Adele. Adele has basic features of data-
modeling, interface checking, and representing families of products [Dart, p. 32].
”Since the system knows of the dependency graph, it can assist in composing a
configuration. [Dart, p. 32]” Through this, the system can detect incomplete or
inconsistent descriptions.

Another existing system offering some desirable features is CCC, Softool’s
Change and Configuration Tool. Also offering some management features, CCC
provides conventions that go along with the waterfall model which is widely
used in industry today. It offers online support of documentation standards and
change requests [Dart, p. 32].

A system which offers more features is DSEE, Domain Software Engineering
Environment. ”DSEE provides derived object code management as well as
source version control, system modeling, configuration threads, version selection
based attributes, releases of configurations, system building, (reusable) object
pools, task lists for tracking tasks to be done and those completed, and alerts
for notifying users for certain events. [Dart, p. 34]” This system offers features
from both the management side and the product side of the process.

Finally, just to mention a couple more systems of the many existing, we
have RCS and DMS which are both version control systems, DMS being for
files distributed across different platforms [Dart, pp. 11-12].

When considering the design of a Configuration Management system, one
needs to think carefully of the criteria for choosing a software configuration
management system. The system needs to offer features that are desirable in
the market and will help a company develop the best software with the lowest
overhead. It has been established that there are two main cost factors that must
be considered when a company is deciding on a Configuration Management sys-
tem, one ”the hardware resources necessary to achieve acceptable performance”
and two ”the human resources needed to administer and maintain the SCM

7

system. [Midha, p. 163]” These things must be considered to create a product
that will excel in the marketplace and to have a product be chosen over other
Configuration Management systems.

Looking toward the future of Configuration Management it has been dis-
covered that the software development process upon which Configuration Man-
agement has been built is evolving to a new level. In industry today and in
the recent past the Waterfall Model is widely used in the software development
process but ”the software industry however, is now tackling problems that the
waterfall model cannot handle. [Bersoff, p. 106]” With these problems new
models will be developed which will cause a change in needs from a Configura-
tion Management system. New needs will arise and new systems will need to
be developed to accommodate those needs.

The product described below is one which offers some of the established
features of a CM system along with the advantage of product development with
a team spread out across a network. The product’s features are more towards
the product side of the process and more away from the upper management
side.

8

Chapter 3

Example Makefiles

One of the major objectives of the Configuration Management System is that
it should be a logical extension of Make. Before moving any further in the
specification of the system, it would be appropriate to introduce some sample
makefiles that will be used as a reference point for further discussion. In addi-
tion, the scrutinization of these existing makefiles should ensure that the final
design is complete and contains all of the functionality of the existing Make
system. This approach seems to be a logical starting point for specifying the
total system due to the fact that many design decisions must take into account
the current functionality of makefiles while also providing network accessibility
for the system.

The introduction of these makefiles will also provide a means for introducing
and defining several key terms that will be frequently used from this point
forward.

3.1 A Simple Makefile

The makefile shown next in Figure 3.1 was taken from the GnuMake Online
Manual. This makefile introduces the dependencies surrounding a sample ex-
ecutable, called EDIT. Although this example is clearly referring to a system
programmed in the C programming language, the final Configuration Manage-
ment system should be language independent. The second example will portray
an arbitrary system that is not based on any specific programming language.

As shown in Figure 3.2, EDIT has eight dependencies, each of which has a
list of their own subsequent dependencies.

EDIT has associated with it a command for compiling and creating itself, as
do EDIT’s nine dependencies. Any node in the tree which has any commands
associated with it is referred to as a goal. All other nodes are referred to as
files. This concept will be explained in more detail in Section 3.3.

As the makefile from Figure 3.1 is scrutinized further, it becomes apparent
that makefiles have uses other than strictly stating compilation rules. The clean

9

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

main.o : main.c defs.h
cc -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
cc -c insert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o : files.c defs.h buffer.h command.h
cc -c files.c

utils.o : utils.c defs.h
cc -c utils.c

clean :
rm edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

Figure 3.1: A Simple Makefile

10

command contained within the makefile is independent of the EDIT executable
and all of its sub-dependencies. Thus it can be said that the clean command is
an independent goal. In this case, clean serves the purpose of removing all of
the object files and therefore has nothing to do with compilation. This concept
becomes an important factor in design decisions. The final implementation
clearly must have the ability to deal with several, sometimes independent, goals.

The entire system contained in the makefile in Figure 3.1 can be graphi-
cally represented with the following model. Certainly, this model should be
used as an example of the graphical representation that should be produced by
the Configuration Management system and available to the user. The specific
methodology for producing this model from the given dependencies is left to
the programmer, as this methodology would vary depending on the language by
which the representation is created. Figure 3.2 simply serves as a prototype of
what may be implemented.

Figure 3.2: Directed Acyclic Graph : A Simple Makefile

Looking at this representation, it should be noted that each circle represents
a goal and each square represents a file. In addition, the clean function is
properly represented as an independent goal, with no connections to EDIT
itself.

Although a traversal down the y-axis of this picture implies a deeper depen-
dency and therefore a difference in the compilation order is implied, the same
is not true for the x-axis. Nodes on the same level of the y-axis (i.e. main,
kbd, command, etc.) can be compiled in any possible order, or all in parallel,
if possible. Therefore, a traversal to the left or right on the x-axis carries no
implications for compilation order.

Finally, although this example does not depict the case where a file has a goal
as its dependant, that case is certainly allowed and will be clearly represented
in the next, more complex, example makefile.

11

3.2 A More Complex Makefile

The purpose of the previous makefile was to provide a simple example, which
can be referenced throughout the remainder of the text. The example lacked
complexity, however, and it is therefore the goal of the next example makefile
presented in Figure 3.3 to illustrate the extent to which the final Configuration
Management system may be used. It further depicts the system’s capability for
dealing with such cases.

The example in Figure 3.3 contains three top-level goals : SYSTEM, PRINT,
and SIZE. The *.fil extension is merely a generic representation of any given
source file. Similarly, the *.obj extension refers to any object file. These ex-
tensions were contrived to illustrate the fact that this system is intended to be
platform independent, therefore any arbitrary language may be implemented in
the makefile.

While PRINT and SIZE are independent goals, the SYSTEM goal contains
an intricate web of dependencies, which is best portrayed in the following graph-
ical representation, Figure 3.4.

12

system : proj1 proj2 proj3
cc proj1.obj proj2.obj proj3.obj

proj1 : alpha proj1.fil
cc alpha.obj proj1.fil

proj2 : alpha proj2.fil
cc alpha.obj proj2.fil

proj3 : stats.fil data.fil beta
cc stats.fil data.fil beta.obj

alpha: alpha.fil help.fil
cc -c alpha.fil help.fil

beta: beta.fil var.fil
cc -c beta.fil var.fil

help.fil : link
cc -o link.obj

beta.fil : link
cc -o link.obj

link : psi.fil gamma.fil delta.fil
cc -c psi.fil gamma.fil delta.fil

psi.fil : sigma.fil
cc -c sigma.fil

gamma.fil : sigma.fil
cc -c sigma.fil

delta.fil : sigma.fil
cc -c sigma.fil

print:
lpr -Plpp system.bmp

size:
ls | wc > dataset.size

Figure 3.3: A More Complex Makefile

13

Figure 3.4: Directed Acyclic Graph : A More Complex Makefile

This complex set of dependencies will become useful when the compilation
methodology is explained later in Section 4.7. For now, it should simply be noted
that files have as dependants both files and goals, sometimes simultaneously;
and this is also the case for goals.

3.3 Introduction of Terms

Throughout this document certain terms are used which are in need of definition.
Figure 3.4 shows a graphical representation of the more complex makefile from
Figure 3.3. In this drawing it can be seen that some nodes have multiple parents,
such as Link, Sigma.fil, and Alpha. These nodes create a problem when viewing
the dependency graph as a tree. It also makes a depth first search impossible
because nodes would be hit multiple times. With these nodes spread out across
the network, this could be an intensive and unacceptable task.

14

The graph is therefore what is termed Directed Acyclic Graph, or a DAG.
There are formulas for converting a DAG into a spanning tree so that a depth-
first search can be performed. In this way, no node would be hit more than once.
However, other methods than this were used to solve this problem. These will
be discussed more when the compilation algorithm is explained in Section 4.7.

All the objects in Figure 3.2 and Figure 3.4 are called nodes. These are
objects which have parents and children and some form of identification. This
identification can be through a name, a number, or another form but it is
imperative that there be a way to distinguish a particular node from another.
As can be seen from Figure 3.2 and Figure 3.4, there are two different shapes on
the graphs. The round nodes are called goals and the square ones are termed
files.

Goals are not physical entities. They are not located anywhere on the net-
work. They cannot be copied, they have no date when they were last updated.
However, they do have commands associated with them. These commands are
executed when it is determined that a goal must be updated. This process
will be explained in more detail in the specification of the Manager and the
compilation procedure, in the Section 4.4.6.

Files, on the other hand, do have location. They can be copied, and most
importantly, they have a date associated with them when they were last modi-
fied. This date is retrieved through the standard POSIX interface and allows for
the system to determine if a file has changed since the last time it recorded its
date. In this way, an extremely large system which takes a long time to compile
for the first time would take considerably less then next time if only one file has
changed. The system would recognize that only one file has changed and then
update only the files which depended upon it. This concept is not a new one.
It is used as the basis for the UNIX Make program. However, Make does not
allow for files to be located throughout the network. This is overcome in the
solution provided in this document as well as expanding on some of the other
capabilities of Make.

15

Chapter 4

Comprehensive Description

4.1 File Locality

The main aspect of the configuration management system is that it allows for
compilation of large software projects, such as the UNIX Make program. Make
lacks the ability to have files stored on any network in the world. This property
is becoming more and more important in the programming world today and
managing these projects is becoming increasingly difficult with a tool such as
Make.

In order to accomplish this goal of allowing software components to exist
anywhere on the Internet, the Software Configuration Management system in-
corporates several remote/network features. The features will be extremely
useful in the case where a large project exists whose files are dispersed across
several networks, as is often the case in industry.

4.1.1 Non-Locality Resolution

All out-of-date files are brought to the local host for recompilation. Files are
brought locally and compiled in order to avoid architectural incompatibilities.
The CM system will include the ability to query the datestamp of a remote file
in order to determine its status (up-to-date / out-of-date.) The result of this
query will determine whether or not the remote source file should be brought
to the local host for compilation. It should be noted that only remote source
files are brought to the local host. Object files are not brought to the local host
because the architectural differences between the remote server and the local
host will typically render an object file useless.

As the datestamp on a file is queried, see Section 4.6, it is determined whether
or not the object file stored in the local object directory is up-to-date. If it is
determined that a remote file has been updated, that file will be brought to the
local host and compiled. Following compilation, the local copy of the remote
file will be destroyed in order to avoid naming conflicts or confusion in the
datestamp system (see Section 4.6). Furthermore, the object file resulting from

16

compilation will be stored in a preselected object file directory on the local host
and will replace any outdated version of itself. This location will be determined
by querying the OBJECT FILE attribute located in the datafile, as described
in Section 4.5.

4.1.2 File Retrieval

A goal of this product is to allow for any file to be located anywhere in the
world as long as it is reachable. This is accomplished by using Uniform Resource
Locators, or URLs. These are a standard way of locating a file and have some
of the following protocols: Hyper Text Transfer Protocol (HTTP), File Transfer
Protocol (FTP), and FILE. HTTP is commonly used for the World Wide Web,
while FTP has been around for a long time and provides the ability issue some
basic commands to transfer files to and from a specific site. FILE is another
URL which points to a file on the local machine.

Some examples of the syntax of these three protocols follow.

http://www.clemson.edu/clemweb/index.html
ftp://shredder.parl.eng.clemson.edu/pub/dev/Main.java
file:/usr/X11RC/include/X11/Composite.h

The compilation operation that the user can invoke will traverse the de-
pendency tree that they have provided. When it gets to a file, there must be a
decision made if that file is a new file and therefore must be updated and recom-
piled (if it’s a recompilable file). For this to be possible, the system must know
the location of these files on the network using one of the protocols through a
URL. The system can then locate that file and compare the date it was last
modified with the date stored in the system that it was last modified. Since
there is a record of all the dates last modified of all the files, in this way it can
be determined if a file has changed.

Should it be determined that a file has been changed, that file is retrieved to
the local system where it is used in the compilation process. After this process,
the new date of the file is recorded in the system which now recognizes the file
as being up to date.

4.2 Specification of the Network

The above discussion about how files are retrieved and dates checked requires
specification. This is done through the specification of a simple network that is
either connected, or not connected to a URL. What follows is the specification
of that network.

Before the network can be specified, some sets must be established and
defined for use.

There is a set of Uniform Resource Locators (URLs) that contain all the
valid URLs that can be formed. This set contains many URLs that are not
actually linked to any location, it is merely a set of all valid formatted URLs.

17

The set is named [URL]. There is another set of URLs that actually link to
specific files. This set is named [VALID URL]. Note that:

VALID URL ∈ URL

The network can be specified by a simple state schema which determines if
a connection is currently established.

Network
connected : boolean

The initial state of the network must be established to be disconnected.

Network Init
Network ′

connected = false

For a connection to be made to a specific URL that URL must be specified
to the connect schema. This operation will succeed if the URL is a valid one,
however, it will fail if it is not.

A response type is now defined to allow for callers to understand the success
or failure of an operation.

Response := SUCCESS | FAILURE

Connect OK
∆Network
someURL? : URL
res ! : Response

connected = false
connected ′ = true
someURL? ∈ VALID URL
res ! = SUCCESS

In the instance that the given URL to connect to is not valid, the operation
must fail. This error condition is outlined next.

Connect ERROR
ΞNetwork
someURL? : URL
res ! : Response

connected = false
someURL? �∈ VALID URL
res ! = FAILURE

18

Connect=̂Connect OK ∧ Connect ERROR

Once connected, the date of the URL can be obtained. This operation will
fail if the connection has not been established. There is a set of all dates [DATE]
of which the return type will be a member of.

GetDate OK
∆Network
date! : DATE
r ! : Response

connected = true
r ! = SUCCESS

GetDate ERROR
ΞNetwork
r ! : Response

connected = false
r ! = FAILURE

GetDate=̂GetDate OK ∧GetDate ERROR

Should the date be satisfactory to warrant retrieval of the file, the file can be
taken from the URL. This operation also requires being connected to the URL
for success. The file that can be returned is from the set of all files [FILE].

GetFile OK
∆Network
file! : FILE
r ! : Response

connected = true
r ! = SUCCESS

GetFile ERROR
ΞNetwork
r ! : Response

connected = false
r ! = FAILURE

GetFile=̂GetFile OK ∧ GetFile ERROR

19

Finally, there must be a way to disconnect from the URL. This operation
does not necessarily require already being connected as it will perform nothing
if there is no connection. Therefore the constraint will not be placed on the
system.

Disconnect
∆Network

connected ′ = false

4.3 Revision Control

Commonly, a Configuration Management System will provide for revision con-
trol. A common example of this is RCS (Revision Control System). Revision
Control Systems allow for a user to access older versions of a file, which have
since been replaced by newer versions. RCS also ensures that no two users are
able to edit a file at the same instant. This functionality, while often useful, is
outside the scope of this project. It would be nearly impossible to verify that
no two users are accessing a remote file at any given instant without a perma-
nent connection to the remote system. This approach is not feasible given the
fact that numerous remote systems may be accessed within one file structure,
as in the case of the EDIT example. Theoretically, a permanent connection
would need to be made to each of the remote systems. The connections would
be required to monitor each of the files located in the remote system to detect
when a user is attempting to revise a given file. This is clearly not feasible, and
is therefore omitted from this Configuration Management system description.
An appropriate alternative would be for each remote system to run their own
version of revision control software.

4.4 Manager

The system is represented by what is termed the Manager. This manager could
be thought of as a single process having memory where it can store and retrieve
data. All input and output goes through this process and is handled strictly by
this process. It controls the main operations that a user would want to perform,
such as creating the dependency tree, changing the dependency tree in any way,
compiling the project, and saving and loading the project.

4.4.1 Definitions

It is important for some definitions to be established so that the specification
of the Manager will be clear. In the section describing sample makefiles, two
graphs were shown, Figure 3.2 and Figure 3.4. Every object on the graphs are
what are termed as nodes. Nodes are objects which have children and parents
but nothing else. A goal is an extension of a node. It extends the structure of

20

a node to allow for commands to be associated with a node. Goals do not exist
anywhere. They are not representations of a file that exists on the network, and
therefore do not have a location, or a last modified time. On the other hand,
files are physical objects. Files are also a special type of node. However, a file
does not have commands associated with it, it truly is a subclass of a node.
Because files exist on the network, they have locations and times when they
were last modified.

This structure is very important and employed in the compilation procedure.
Because files do not have commands associated with them, if it is determined
that a file must be updated, the file is copied to the local machine to be used
when compiled by the parent goal. The resulting commands that are executed
are done from the parent goal. This is so that a goal can depend upon many files
and only upon successfully determining which ones have been updated does it
execute its commands. This will be explained further in the compilation section,
Section 4.7.

4.4.2 Manager State Schema

Before the state of the manager can be defined, it is important to establish all
the sets and types which will be used throughout the specification.

There is a set of all possible nodes named [NODE]. There is also a set
of all commands named [COMMAND]. The same set defined in the Network
specification of URL is also defined here. Again, these URLs are merely URLs
that are correctly formed and do not necessarily correctly link to a file. This set
is named [URL]. There are also sets of all login names, [LOGIN] and passwords
[PASSWORD] to be used when logging onto an FTP site, should it be required.

When the compile operation is to be performed, it is necessary for each node
to have a state value. This state can take on exactly one of four values.

STATE := BUSY | NOT HIT | CHANGED | NOT CHANGED

The BUSY state acts as a semaphore notifying that another node has already
activated this node and therefore it cannot be reactivated. A node is activated
when its parent node reaches it and asks it to determine if it has changed or
not. The NOT HIT state means that this node has not yet been activated
and it can be activated now. Finally, the CHANGED and NOT CHANGED
states express that the node has already been activated and no longer needs to
be activated. In this case, it could have either changed, or not have changed.
The operations which use the state of a node will be explained further in the
Compilation Specification, Section 4.4.6.

Now the state schema for the manager can be defined. It has many data
members which hold all the information about the design loaded, or more specif-
ically, the dependency trees.

21

Manager
nodes : �NODE
goals : �NODE
files : �NODE
commands : �(NODE �→ �COMMAND)
locations : �(NODE �→ URL)
datestamps : �(NODE �→ Date)
nodeFiles : �(NODE �→ �NODE)
nodeGoals : �(NODE �→ �NODE)
logins : �(URL �→ (LOGIN ,PASSWORD))
states : �(NODE �→ STATE)

nodes = goals ∪ files
∀ x ∈ goals ⇒ x �∈ files
∀ y ∈ files ⇒ y �∈ goals
a �→ b ∈ logins ⇒ somenode �→ a ∈ locations
c �→ d ∈ commands ⇒ c ∈ goals
e �→ f ∈ locations ⇒ e ∈ files
g �→ h ∈ datestamps ⇒ g ∈ files
i �→ j ∈ states ⇒ i ∈ nodes

All the nodes in the system are made up of the goals and files together. No
member can be of both goals and of files. If a specific URL is bound to a login
name and password, then that URL must already be bound to a file location.
In this way it is ensured that only URLs that have a purpose in the system have
a login and password associated with them. Here it is defined that only goals
can have commands, and that only files have URL locations and datestamps.
Finally, it is shown that only valid nodes initialized in the system have states
associated with them.

The initial state of the manager can now be established for consistency.

Manager Init
Manager ′

nodes ′ = ∅
goals ′ = ∅
files ′ = ∅
commands ′ = ∅
locations ′ = ∅
datestamps ′ = ∅
nodeFiles ′ = ∅
nodeGoals ′ = ∅
logins ′ = ∅
states ′ = ∅

The initial state of the Manager must be shown not to violate the data in-
variants. The following proof accomplishes this simple task through set equality.

22

(1) nodes ′ = ∅ (premise)
(2) goals ′ = ∅ (premise)
(3) files ′ = ∅ (premise)
(4) commands ′ = ∅ (premise)
(5) locations ′ = ∅ (premise)
(6) datestamps ′ = ∅ (premise)
(7) nodeFiles ′ = ∅ (premise)
(8) nodeGoals ′ = ∅ (premise)
(9) logins ′ = ∅ (premise)

(10) states ′ = ∅ (premise)
(11) ∅ = ∅ ∪ ∅ ((1), (2), (3), set ident.)
(12) nodes = goals ∪ files (subst.)
(13) ∀ x ∈ ∅ ⇒ x �∈ ∅ ((2), (3), set ident.)
(14) ∀ x ∈ goals ⇒ x �∈ files (subst.)
(15) ∀ y ∈ ∅ ⇒ y �∈ ∅ ((3), (2), set ident.)
(16) ∀ y ∈ files ⇒ y �∈ goals (subst.)
(17) a �→ b ∈ ∅ ⇒ somenode �→ a ∈ ∅ ((9), (5), set ident.)
(18) a �→ b ∈ logins ⇒ somenode �→ a ∈ locations (subst.)
(19) c �→ d ∈ ∅ ⇒ somenode �→ c ∈ ∅ ((4), (2), set ident.)
(20) c �→ d ∈ commands ⇒ somenode �→ c ∈ goals (subst.)
(21) e �→ f ∈ ∅ ⇒ somenode �→ e ∈ ∅ ((5), (3), set ident.)
(22) e �→ f ∈ locations ⇒ somenode �→ e ∈ files (subst.)
(23) g �→ h ∈ ∅ ⇒ somenode �→ g ∈ ∅ ((6), (3), set ident.)
(24) g �→ h ∈ datestamps ⇒ somenode �→ g ∈ files (subst.)
(25) i �→ j ∈ ∅ ⇒ somenode �→ i ∈ ∅ ((1)0, (1), set ident.)
(26) i �→ j ∈ states ⇒ somenode �→ i ∈ nodes (subst.)

Q.E.D.
It is important for every operation to have a return value of either success

of failure. In this way, errors can be passed back to the calling procedures upon
implementation. This will allow for the caller of these operations to handle
errors accordingly. For instance, if a user tries to establish that a particular
node A is a child of another node B when A is already a child of B, then an
error will be passed back. This will allow an error message to be displayed,
should the implementation call for that.

A response type is now defined to allow for callers to understand the success
or failure of an operation.

RESPONSE := SUCCESS | FAILURE

4.4.3 System Schemas

There are several operations which are performed upon the system. Unlike the
operations elsewhere, these operations do not affect nodes already established.
AddTopLevelGoal is a schema which allows for the creation of root goals of the

23

project. There may be many root goals, or in a simple case there might only be
a single root. GetGoals and GetFiles are schemas which provide for a way to get
the sets of all the goals and files in the system. This is commonly useful when
constructing a graph where perhaps it is important to know how many nodes
there will be in the total system. ChangeNode is an operation which allows for a
system-wide change of a node into another node. While this operation does not
allow for a user to convert a node into an already existing node, it will be useful
in some instances. Finally, DeleteNode is very similar to ChangeNode is that
it causes a system-wide change. In this case, however, a given node is deleted
throughout the system, destroying all references to it everywhere.

Each operation will be more specifically described and defined now.
Users must be able to add what are termed Top Level Goals to the system.

These goals are ones that have no parents, they are roots. It is important that
this system have ways to add multiple top level goals, or have multiple roots.
This is so that simple operations of commands that have no children can also
be part of the system. It also allows for multiple trees and creates more than
just an environment for compiling and managing a project but also a robust
managing environment for several projects at a time. This could become an
issue when several people are working on the same project at the same time,
but need seperate dependency trees. For instance, one person could be managing
a product A which has a dependency tree. Two other people could be managing
products B and C, which also have dependency trees and perhaps depend on
each others products. There could be three data files with three different trees,
or simply one data file with three different trees. Of course this system would
allow for both methods, but more importantly is the latter.

The operation that follows allows for adding of a top level goal. Of course
the goal to be added cannot already be a node in the system. Upon successfully
adding this node to the system, its children goals and files are set to be the
emptyset.

AddTopLevelGoal OK
∆Manager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ nodes
nodes = nodes ∪ aNode?
goals = goals ∪ aNode?
aNode? �→ ∅ ∈ nodeGoals ′

aNode? �→ ∅ ∈ nodeFiles ′

res ! = SUCCESS

The operation to add a top level goal could fail should the node trying to be
added already exist in the system. It is important to keep only one copy of all
goals and one copy of all files in the system. It is also imperative that there are
not nodes which are goals and files. The schema which describes this operations
follows.

24

AddTopLevelGoal ERROR
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? ∈ nodes
res ! = FAILURE

For completeness, the prepositional anding of these operations creates the
complete operation to add a top level goal to the system. This convention is
used throughout this specification and is explained here for clarity.

AddTopLevelGoal=̂AddTopLevelGoal OK ∧ AddTopLevelGoal ERROR

The project contains many nodes. Some of those nodes are files, while others
are goals. The distinction between the two is slight but important. A schema
is next presented which allows for the retrieval of all the goals in the system.
These operations will always succeed, but could possibly return as its output
the emptyset if there are no goals yet in the system.

GetGoals
ΞManager
out ! : �NODE
res ! : RESPONSE

out ! = goals
res ! = SUCCESS

In conjunction with the GetGoals schema is the GetFiles schema. This op-
eration, like the previous one, can return the emptyset if there are no initialized
file nodes in the system.

GetFiles
ΞManager
out ! : �NODE
res ! : RESPONSE

out ! = files
res ! = SUCCESS

The changing of a node in the system requires searching out all references
to that node and changing it. If, for instance, the set NODE were names, then
this would essentially change the name of a node throughout the system. For
this operation to be successful, the node to change must exist already in the
system. The new name of the node must also not be a node already in the
system. While this latter restriction might be harsh, since it disallows for a user
to change two nodes in the tree to the same name, this operation would almost

25

always fail if this were the case. This operation, therefore, is provided for taking
one node out of the system and replacing it with another.

The ChangeNode operation checks to see if the node to change is a file or a
goal, and then changes the node as required. It also accomplishes changing the
name throughout the system by converting the old node to the new node in the
commands, locations, datestamps, nodeFiles, and nodeGoals members.

ChangeNode OK
∆Manager
whichNode? : NODE
newNode? : NODE
res ! : RESPONSE

whichNode? ∈ nodes
whichNode? �∈ nodes ′

newNode? �∈ nodes
newNode? ∈ nodes ′

whichNode? ∈ goals ⇒ whichNode? �∈ goals ′ ∧ newNode? ∈ goals ′

whichNode? ∈ files ⇒ whichNode? �∈ files ′ ∧ newNode? ∈ files ′

whichNode? �→ x ∈ commands ⇒ whichNode? �→ x �∈ commands ′∧
newNode? �→ x ∈ commands ′

whichNode? �→ y ∈ locations ⇒ whichNode? �→ y �∈ locations ′∧
newNode? �→ y ∈ locations ′

whichNode? �→ z ∈ datestamps ⇒ whichNode? �→ z �∈ datestamps ′∧
newNode? �→ z ∈ datestamps ′

whichNode? �→ a ∈ nodeFiles ⇒ whichNode? �→ a �∈ nodeFiles ′∧
newNode? �→ a ∈ nodeFiles ′

∀ i �→ j ∈ nodeFiles | whichNode? ∈ j ⇒ i �→ j �∈ nodeFiles ′∧
i �→ (j/whichNode?) ∪ newNode? ∈ nodeFiles ′

whichNode? �→ b ∈ nodeGoals ⇒ whichNode? �→ b �∈ nodeGoals ′∧
newNode? �→ b ∈ nodeGoals ′

∀ k �→ l ∈ nodeGoals | whichNode? ∈ k ⇒ l �→ k �∈ nodeGoals ′∧
k �→ (l/whichNode?) ∪ newNode? ∈ nodeGoals ′

res ! = SUCCESS

This operation to change an old node into a new node can fail in two ways.
One way in which this can happen is if the node to change is not a node in the
system at all. It therefore cannot be changed to a new node. The schema which
describes this error behavior follows.

ChangeNode ERROR1
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ nodes
res ! = FAILURE

26

The operation can also fail if the node to change an existing node into is
already in the system. Therefore, only new nodes to the system can be the
targets of this operation. To complete this operation, the next schema handles
this error.

ChangeNode ERROR2
ΞManager
whichNode? : NODE
newNode? : NODE
res ! : RESPONSE

whichNode? ∈ nodes
newNode? ∈ nodes
res ! = FAILURE

ChangeNode=̂ChangeNode OK ∧ChangeNode ERROR1 ∧ChangeNode ERROR2

Any node of the system must be able to be deleted. This operation must
be complete in its extent and remove all traces of that node throughout the
system. All commands associated with that node, the datestamp, location,
and children of that node must be removed. The children of the node are not
deleted themselves, just the reference that those are the children of the given
parent node must be deleted. Then, any parents which refer to the given node
must be modified so that they no longer have the given node as a child.

The schema which performs all of these operations is defined next. It requires
that the given node to delete be a node in the system for the operation to
succeed. Then, it performs all of the deletes that were mentioned above.

DeleteNode OK
∆Manager
aNode? : NODE
res ! : RESPONSE

aNode? ∈ nodes
aNode? �∈ nodes ′

aNode? ∈ goals ⇒ aNode? �∈ goals ′

aNode? ∈ files ⇒ aNode? �∈ files ′

aNode? �→ a ∈ commands ⇒ aNode? �→ a �∈ commands ′

aNode? �→ b ∈ locations ⇒ aNode? �→ b �∈ locations ′

aNode? �→ c ∈ datestamps ⇒ aNode? �→ c �∈ datestamps ′

aNode? �→ n ∈ nodeGoals
n �= ∅ ⇒ aNode? �→ n �∈ nodeGoals ′ ∧ aNode? �→ ∅ ∈ nodeGoals ′

∀w �→ x ∈ nodeGoals | aNode? ∈ x ⇒ w �→ x �∈ nodeGoals ′ ∧ w �→ x/aNode? ∈ nodeGoals ′

aNode? �→ m ∈ nodeFiles
m �= ∅ ⇒ aNode? �→ m �∈ nodeFiles ′ ∧ aNode? �→ ∅ ∈ nodeFiles ′

∀ y �→ z ∈ nodeFiles | aNode? ∈ z ⇒ y �→ z �∈ nodeFiles ′ ∧ y �→ z/aNode? ∈ nodeFiles ′

res ! = SUCCESS

27

This operation can fail if the given node is not a node in the system. The
schema which describes this behavior follows.

DeleteNode ERROR
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ nodes
res ! = FAILURE

DeleteNode=̂DeleteNode OK ∧ DeleteNode ERROR

4.4.4 Node Schemas

The vast majority of operations in the system are performed on a specific node.
These allow for the changing and querying of all the nodes in the system. Some
of these nodes are goals, while some are files.

The AddNodeGoal and AddNodeFile operations add children to a specific
node and initialize these new nodes in the system. GetNodesGoals and GetN-
odesFiles provide ways to get the sets of children of a node. These are vital in
any operation that traverses the dependency tree such as the compile operation
or the displaying of the tree graphically to the user. The GetNodesCommands
schema allows for the retrieval of the commands of a specific goal. This is also
vital in determining what operations to execute should it be deemed necessary.
Similarly, the ChangeCommand and DeleteCommand operations bring about
change in the list of commands associated with a node. Finally, the DeleteN-
odeNode schema provides a way to break the line between two nodes. It does
not actually delete the target node, as it possibly has multiple parents.

These operations are defined more concisely next.
There is a specific date named NEW DATE. This date is defined to be so

early in time that reasonably any date when compared to this date will be newer
than this date. For instance, January 1, 0000 would be a good choice or on
UNIX systems, the 32-bit date of all zeros which would be the beginning of
the UNIX clock would be another good choice. There is also a specific location
given as the default to all files named NEW LOCATION. A reasonable choice
for this location would be the current directory on the local machine. This is
used to insure that every file has a location, even if the user does not specify it
explicitly.

There must be an operation to add a file as a child of a specified node.
This operation requires that the input node be a node in the system. It also
has the ability to add the input file node to the system if it is not already in
the system. This is important because there should not be duplicates of any
node; so if this node is becoming a child of its second parent, it is already in
the system. To accommodate this, a method is provided for placing a node
into the system without requiring a separate schema. It also ensures that the

28

file that is to be added will have a parent, and therefore will not be Top Level.
The children of this new file, should it be a new file to the system, are set to
the emptyset as well. A check is performed that disallows a node from placing
multiple dependencies on the same file. In this way, the file node to add cannot
already be a child of this node. If the file to add has no datestamp it is given
the date defined above, NEW DATE. Similarly, if the file defined above has no
location, it is given the location defined above, NEW LOCATION. Finally, the
operation places the file as a child file of the given node.

AddNodeFile OK
∆Manager
aNode? : NODE
aFile? : NODE
res ! : RESPONSE

aNode? ∈ nodes
aFile? �∈ nodes ⇒ aFile? ∈ nodes ′

aFile? �∈ files ⇒ aFile? ∈ files ′ ∧ aFile? �→ ∅ ∈ nodeGoals ′∧
aFile? �→ ∅ ∈ nodeFiles ′

aNode? �→ b ∈ nodeFiles ⇒ aFile? �∈ b
aFile? �→ x �∈ datestamps ⇒ aFile? �→ NEW DATE ∈ datestamps ′

aFile? �→ y �∈ locations ⇒ aFile? �→ NEW LOCATION ∈ locations ′

aNode? �→ z ∈ nodeFiles ⇒ aNode? �→ z �∈ nodeFiles ′ ∧ aNode? �→ z ∪ aFile? ∈ nodeFiles ′

aNode? �→ a �∈ nodeFiles ⇒ aNode? �→ aFile? ∈ nodeFiles ′

res ! = SUCCESS

One way this operation could fail is simply if one attempts to add a child
to a nonexistent node. It therefore cannot have children until it has been cre-
ated either through a top level goal or through performing an AddNodeGoal on
another node.

AddNodeFile ERROR1
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ nodes
res ! = FAILURE

The last way the operation could fail is if the node is already a child; adding
the node as a child again would create duplicate children. This ensures it is
ensured that any node will not have multiple dependencies on the same file.

29

AddNodeFile ERROR2
ΞManager
aNode? : NODE
aFile? : NODE
res ! : RESPONSE

aNode? ∈ nodes
aNode? �→ b ∈ nodeFiles ⇒ aFile? ∈ b
res ! = FAILURE

AddNodeFile=̂AddNodeFile OK ∧AddNodeFile ERROR1 ∧ AddNodeFile ERROR2

Similar to the AddNodeFile operation outlined above, this operation adds a
goal child to a node. It requires that the input node, to which a goal will be
added to, already be in the system. If the goal to add as a child of the given
node is not in the system already, this operation will create the goal. Unlike
the AddNodeFile operation defined above, the goal child for this operation does
not get the NEW DATE and NEW LOCATION stamps defined for it. This
is because goals do not have dates or locations.

AddNodeGoal OK
∆Manager
aNode? : NODE
aGoal? : NODE
res ! : RESPONSE

aNode? ∈ nodes
aGoal? �∈ nodes ⇒ aGoal? ∈ nodes ′

aGoal? �∈ goals ⇒ aGoal? ∈ goals ′ ∧ aGoal? �→ ∅ ∈ nodeGoals ′∧
aGoal? �→ ∅ ∈ nodeFiles ′

aNode? �→ b ∈ nodeGoals ⇒ aGoal? �∈ b
aNode? �→ z ∈ nodeGoals ⇒ aNode? �→ z �∈ nodeGoals ′ ∧ aNode? �→ z ∪ Goal? ∈ nodeGoals ′

aNode? �→ a �∈ nodeGoals ⇒ aNode? �→ aGoal? ∈ nodeGoals ′

res ! = SUCCESS

One way this operation can fail is if the input node is not already in the
system. The schema which describes this operation follows.

AddNodeGoal ERROR1
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ nodes
res ! = FAILURE

30

The other way this operation can fail is if the input goal is already a goal
of the specified node. In this way it is disallowed for a node to depend on the
same goal twice. To handle this other error case, this next schema is defined.

AddNodeGoal ERROR2
ΞManager
aNode? : NODE
aGoal? : NODE
res ! : RESPONSE

aNode? ∈ nodes
aNode? �→ b ∈ nodeGoals ⇒ aGoal? ∈ b
res ! = FAILURE

AddNodeGoal=̂AddNodeGoal OK ∧ AddNodeGoal ERROR1 ∧ AddNodeGoal ERROR2

Each node can have as its children a set of goals and / or a set of files.
Therefore it is necessary to allow for the retrieval of the children goals of a
particular node. The input node must be a node in the system and if so, the
child goals of that node are returned. Should a node have no child goals, an
emptyset is used as output.

GetNodesGoals OK
ΞManager
whichNode? : NODE
out ! : �NODE
res ! : RESPONSE

whichNode? ∈ nodes
whichNode? �→ x ∈ nodeGoals ⇒ out ! = x
whichNode? �→ x �∈ nodeGoals ⇒ out ! = ∅
res ! = SUCCESS

If the requested node is not a node in the system, then the operation to get
a node’s children goals must fail. An operation is next defined which handles
this error condition.

GetNodesGoals ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ nodes
res ! = FAILURE

GetNodesGoals=̂GetNodesGoals OK ∧ GetNodesGoals ERROR

31

Similarly, the operation to get the child files of a particular node must be
defined. The schema takes as input a node already existing in the system and
has for its output the files that are children of that node. Again, if a particular
node has no children that are files, the emptyset is returned.

GetNodesFiles OK
ΞManager
whichNode? : NODE
out ! : �NODE
res ! : RESPONSE

whichNode? ∈ nodes
whichNode? �→ x ∈ nodeFiles ⇒ out ! = x
whichNode? �→ x �∈ nodeFiles ⇒ out ! = ∅
res ! = SUCCESS

If the input node is not contained in the system the operation must fail.
This error condition is handled with the next schema.

GetNodesFiles ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ nodes
res ! = FAILURE

GetNodesFiles=̂GetNodesFiles OK ∧ GetNodesFiles ERROR

To get the command of a node, the node requested must first be a goal
contained in the system. This is because only goals can have commands, where
files cannot. The output is in the form of a set of commands. This is done so
as to allow for multiple commands to be issued at a goal should it need to be
updated.

GetNodesCommands OK
ΞManager
whichNode? : NODE
out ! : �COMMAND
res ! : RESPONSE

whichNode? ∈ goals
whichNode? �→ x ∈ commands ⇒ out ! = x
whichNode? �→ x �∈ commands ⇒ out ! = ∅
res ! = SUCCESS

32

If the node requested is not a goal in the system, then there will be an
error. In this way the schema helps to ensure that only goals have commands
associated with them.

GetNodesCommands ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ goals
res ! = FAILURE

GetNodesCommands=̂GetNodesCommands OK ∧ GetNodesCommands ERROR

Only goals can have commands associated with them. These commands are
executed when the goal must be updated. In a typical example, these commands
might be to compile the children of a goal into some object file, perhaps move
that object file to a class directory, and then delete it from the current directory.

The operation to change the commands of a given node is specified next. It
requires that the node to change be a goal in the system. If the goal already
has associated with it a set of commands, then these commands are unbound
from that goal. Finally, the new set of commands gets bound to the goal.

ChangeCommand OK
∆Manager
whichNode? : NODE
newCommands? : �COMMAND
res ! : RESPONSE

whichNode? ∈ goals
whichNode? �→ a ∈ commands ⇒ whichNode? �→ a �∈ commands ′

whichNode? �→ newCommands? ∈ commands ′

res ! = SUCCESS

A proof of the ChangeCommand OK schema is provided next. This is used
to show that the data invariant is not violated. Here it is necessary to show that
whichNode? maps to both any arbitrary command, as well as the new command,
is valid only if whichNode? is a goal. This is again necessary because only goals
can have commands associated with them.

(1) whichNode? ∈ NODE (premise)
(2) newCommands? ⊂ �COMMAND (premise)
(3) whichNode? ∈ goals (premise)
(4) whichNode? �→ a ∈ commands ⇒ whichNode? �→ a �∈ commands ′ (premise)
(5) whichNode? �→ newCommands? ∈ commands ′ (premise)
(6) whichNode? �→ a ∈ commands ⇒ whichNode? ∈ goals ((3), (4), subst.)
(7) whichNode? �→ newCommands? ∈ commands ′ ⇒ whichNode? ∈ goals ((3), (5), subst.)

33

Q.E.D.
If the given node to change the commands associated with it is not a goal in

the system, then the operation must fail. This helps to ensure that only goals
have commands associated with them.

ChangeCommand ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ goals
res ! = FAILURE

ChangeCommand=̂ChangeCommand OK ∧ChangeCommand ERROR

Each node has associated with it children nodes. These nodes can be either
goals or files, but they are nevertheless, still nodes. The operation to delete
one of the node children of a specified node does not delete the node from the
system. It merely severs the parental link, it disowns the specified node. The
node still exists in the system. It is important to note that a node that has a
few parents can be disowned by all parents and then suddenly become a node
with no parental links but still exist in the system. This is recognized and not
prevented for several reasons. One reason is that a user might wish to disconnect
a node from the system temporarily. Perhaps it is believed that a particular
node is causing problems for the program and this is one means that the user
feels will help bug testing. Another reason is that maybe a file is no longer
needed for this particular version of the product but it may be needed to recall
an earlier version.

The operation to sever a dependency of a node upon another node is defined
next. It requires that the parent node be in the system and that the child node
specified really be a child of that parent. If these are both the case, then the
association between the two files is removed.

DeleteNodeNode OK
∆Manager
whichNode? : NODE
delNode? : NODE
res ! : RESPONSE

whichNode? ∈ nodes
delNode? ∈ nodes
whichNode? �→ x ∈ nodeGoals ∧ delNode? ∈ x ∨ whichNode? �→ y ∈ nodeFiles ∧ delNode? ∈ y
whichNode? �→ a ∈ nodeGoals ∧ delNode? ∈ x ⇒ whichNode? �→ a �∈ nodeGoals ′∧

whichNode? �→ a/delNode? ∈ nodeGoals ′

whichNode? �→ b ∈ nodeFiles ∧ delNode? ∈ x ⇒ whichNode? �→ b �∈ nodeFiles ′∧
whichNode? �→ b/delNode? ∈ nodeFiles ′

res ! = SUCCESS

34

This operation can fail in two ways. One is if the parent node is not a node
in the system. The schema which outlines this behavior follows.

DeleteNodeNode ERROR1
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ nodes
res ! = FAILURE

The other way in which this operation can fail is if the given parental node
does not have as a child of it the given child node. It, therefore, cannot be
severed and the operation must fail. The schema which outlines this follows.

DeleteNodeNode ERROR2
ΞManager
whichNode? : NODE
delNode? : NODE
res ! : RESPONSE

whichNode? ∈ nodes
whichNode? �→ x ∈ nodeGoals ∧ delNode? �∈ x ∨ whichNode? �→ y ∈ nodeFiles ∧ delNode? �∈ y
res ! = FAILURE

DeleteNodeNode=̂DeleteNodeNode OK ∧ DeleteNodeNode ERROR1∧ DeleteNodeNode ERROR2

There must be an operation to delete one of the commands associated with
a specified node. Since these commands can only be inserted through the
ChangeCommand schema which itself makes sure that the node is a goal, that
check is not needed here. This operation takes a command of a node and re-
moves it from the list of commands associated with a node. It requires that the
given node be a node that is bound to a list of commands already, and that the
given command be one of those commands. The operation is defined next.

DeleteCommand OK
∆Manager
aNode? : NODE
aCommand? : COMMAND
res ! : RESPONSE

aNode? �→ a ∈ commands
aCommand? ∈ a
aNode? �→ a �∈ commands ′

aNode? �→ a/aCommand? ∈ commands ′

res ! = SUCCESS

35

This operation can fail in two ways. One way is if the given node has no
commands associated with it at all. The schema which follows outlines this
behavior.

DeleteCommand ERROR1
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �→ a �∈ commands
res ! = FAILURE

The other way in which a node can fail is if the given node does not have
the given command associated with it. Next is the schema which describes this
operation.

DeleteCommand ERROR2
ΞManager
aNode? : NODE
aCommand? : COMMAND
res ! : RESPONSE

aNode? �→ a ∈ commands
aCommand? �∈ a
res ! = FAILURE

DeleteCommands=̂DeleteCommand OK ∧ DeleteCommand ERROR1 ∧ DeleteCommand ERROR2

4.4.5 File Schemas

Files are different from goals in several ways. One is that they actually exist in
the network and, as such, have a location. Also, because of this existence, they
have dates associated with them when they were last modified. These properties
of a file become important when determining whether a file has changed and
needs to be recompiled and if so, where to get it.

Operations must be provided to allow for interaction with these properties
of a file. The AddLogin schema provides a way to bind a login name and
password to a specific URL. This is very useful when a file’s location is on
a non-anonymous FTP site. GetFileDate and GetFileLocation provide simple
queries which return what the system believes the last modified date and the
location of the file, respectively. Another operation must be employed to get the
most current date of a file and check it against the date provided by GetFileDate.
The ChangeLogin operation is provided to change the login name and password
bound to a particular URL. ChangeDate is a very special operation which must
be protected in the final implementation. This operation allows for telling the
system the date that a file was last modified. The system then must update itself

36

accordingly. This should be called during a compilation when it is determined
that a file’s actual date is newer than the date the system has recorded. Finally,
ChangeLocation and DeleteLogin provide ways to inform the system that a
file has moved to a new location and delete a login associated with a URL,
respectively.

These operations are defined in more detail next.
Some URLs require passwords and login names such as non-anonymous FTP

sites. For this, an operation is provided to bind a login name and a password
to a URL. To succeed, the input URL must be defined as a location of one of
the files already in the system. The URL must not already have a login and
password associated with it. If that is the case, the ChangeLogin or DeleteLogin
operations should be used.

AddLogin OK
∆Manager
aURL? : URL
aLogin? : LOGIN
aPass? : PASSWORD
res ! : RESPONSE

a �→ aURL? ∈ locations
aURL? �→ b �∈ logins
logins ′ = logins ∪ (aURL?, (aLogin?, aPass?))
res ! = SUCCESS

The above schema is proven next. Here it is shown that the input URL
can only be linked to a login and password if that URL is already bound to a
location.

(1) aURL? ∈ URL (premise)
(2) aLogin? ∈ LOGIN (premise)
(3) aPass? ∈ PASSWORD (premise)
(4) a �→ aURL? ∈ locations (premise)
(5) logins ′ = logins ∪ (aURL?, (aLogin?, aPass?)) (premise)
(6) aURL? �→ (aLogin?, aPass?) ∈ logins ⇒ a �→ aURL? ∈ locations ((4), (5), subst.)

Q.E.D.
If the given URL is not bound to a file in the system, then this operation

fails. In this way it is disallowed for a user to bind a login name and password
to a random URL without that URL having a distinct purpose in the system.

37

AddLogin ERROR1
ΞManager
aURL? : URL
res ! : RESPONSE

a �→ aURL? �∈ locations
res ! = FAILURE

The operation can also fail if the given URL already has a mapping to a
login name and a password. This is handled with the following schema.

AddLogin ERROR2
ΞManager
aURL? : URL
res ! : RESPONSE

aURL? �→ a ∈ logins
res ! = FAILURE

AddLogin=̂AddLogin OK ∧ AddLogin ERROR1 ∧AddLogin ERROR2

Each file has associated with it a date when it was last updated in the system.
A file has been updated if it has changed since the time the system has recorded
it had changed. Also, even if a file has not changed, it still is marked as updated
if any of its children are updated. In this way, the property that a branch of
a tree has been updated is obtained. A file will at all times have some date
associated with it, even before its first update. This operation takes a file node
as input and returns the date. The operation requires that the node passed as
input be an existing file in the system to succeed. For more information on how
datestamps work, see Section 4.6.

GetFileDate OK
ΞManager
aNode? : NODE
aDate! : Date
res ! : RESPONSE

aNode? ∈ files
aNode? �→ x ∈ datestamps ⇒ aDate! = x
res ! = SUCCESS

Should the input node not be a file node in the system, the operation must
fail. This is one way in which it is maintained that only file nodes and not goal
nodes have dates associated with them.

38

GetFileDate ERROR
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ files
res ! = FAILURE

GetFileDate=̂GetFileDate OK ∧ GetFileDate ERROR

All files have a location associated with them. In some cases this is through
the Hyper Text Transfer Protocol (HTTP) or File Transfer Protocol (FTP).
More commonly, however, the files are likely to be located locally. This is
achieved through the FILE protocol. In this way, all file locations can be rep-
resented as a Uniform Resource Locator (URL).

It is, therefore, important that the location of a file can be queried. This
operation requires that the input node be a file in the system and sets as its
output the location of that file.

GetFileLocation OK
ΞManager
aNode? : NODE
aLocation! : URL
res ! : RESPONSE

aNode? ∈ files
aNode? �→ x ∈ locations ⇒ aLocation! = x
res ! = SUCCESS

The operation can fail should the input node not be contained in the set of
files that the system recognizes. The schema that handles this error condition
is defined next.

GetFileLocation ERROR
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ files
res ! = FAILURE

GetFileLocation=̂GetFileLocation OK ∧ GetFileLocation ERROR

While it might not be likely that a user needs to change the login name
or password associated with a URL, the operation to allow for this must be

39

provided. The schema shown below requires that the given URL to change be
bound to a login name and password already. This operation then removes that
bind, and rebinds the input login and password to the input URL.

ChangeLogin OK
∆Manager
aURL? : URL
aLogin? : LOGIN
aPass? : PASSWORD
res ! : RESPONSE

aURL? �→ b ∈ logins
aURL? �→ b �∈ logins ′

aURL? �→ (aLogin?, aPass?) ∈ logins ′

res ! = SUCCESS

This operation could fail if the specified URL is not already bound to a
login and password. If this is the case, the AddLogin operation should be used.
The AddLogin operation checks to be certain that the URL to bind a login and
password to is itself bound to a location. That check is not performed here
because to change a login, it must already be bound to a URL.

ChangeLogin ERROR
ΞManager
aURL? : URL
res ! : RESPONSE

aURL? �→ b �∈ logins
res ! = FAILURE

ChangeLogin=̂ChangeLogin OK ∧ ChangeLogin ERROR

Various changes can be made to the attributes of a node after its initial
creation. An obvious change that will frequently occur is the changing of the
datestamp associated with a file. Every time a user updates a file, the datestamp
will require updating. The ChangeDate function that will accomplish this task
should allow the user no means of manually altering the datestamp associated
a file. For instance, there is no reason why the user would be given an option
to change the date a file was last modified like they will be given the option
to change the location of a file. This operation, therefore, must be protected
in the implementation so that it is only accessible by the compile operation.
This operation will deem a file’s date has changed by going through the POSIX
interface and checking a file’s last modified date.

The following schema describes the system function for updating a dates-
tamp. It requires that the node to change be a file already in the system. In
this way, it is ensured that goals do not have datestamps associated with them,
since this is not allowed.

40

ChangeDate OK
∆Manager
whichNode? : NODE
newDate? : DATE
res ! : RESPONSE

whichNode? ∈ files
whichNode? �→ newDate? ∈ datestamps ′

whichNode? �→ x ∈ datestamps ′ ⇒ |x | = 1
res ! = SUCCESS

This operation will fail if invalid fields are entered for the new datestamp, if
the node does not yet exist, or if the node refers to a goal rather than a file. In
addition, the schema verifies that there is only one datestamp associated with
each file.

ChangeDate ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ files
res ! = FAILURE

ChangeDate=̂ChangeDate OK ∧ ChangeDate ERROR

Files have locations, either locally or throughout the network. Once the
user has entered the location of one of those files, however, it is feasible that
the location might change at some time. Perhaps the file is moved to a different
directory or to a different site. Therefore, an operation must be provided to
change the pointer to the location of a file.

This operation is outlined below and requires that the input node be a file.
If the file node in which to change the location of already has a location, then
it is changed over to the new location. However, if it does not have a location,
then it is given one. This should never occur since every node is given a default
location, as described in Section 4.4.4, and there is no operation to delete the
location of a file. Any file that does not have a location, is clearly no longer a
file or no longer needs to be in the system and must be deleted through other
means such as DeleteNode.

41

ChangeLoc OK
∆Manager
whichNode? : NODE
newLoc? : URL
res ! : RESPONSE

whichnode ∈ files
whichNode? �→ newLoc? ∈ locations ′

whichNode? �→ x ∈ locations ′ ⇒ |x | = 1
res ! = SUCCESS

If the user specifies a node to change that is not one of the files that currently
exists in the system, this operation must fail. This helps to ensure that only
files have locations associated with them.

ChangeLoc ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ files
res ! = FAILURE

ChangeLoc=̂ChangeLoc OK ∧ ChangeLoc ERROR

Once a login name and password have been bound to a URL there must
be an operation available to unbind them. This operation could be used, al-
beit seldomly, when a non-anonymous FTP site changes to an anonymous FTP
site and the user wants to delete the login and password references that had
previously been defined.

The operation to delete a login associated with a specific URL is specified
next. It requires that the URL to unbind be actually bound to a login already.
Since the operation to actually bind a login and password to a URL requires
itself that the URL be a valid URL in the system, that check is not needed here.

DeleteLogin OK
∆Manager
aURL? : URL
res ! : RESPONSE

aURL? �→ b ∈ logins
aURL? �→ b �∈ logins ′

res ! = SUCCESS

If, however, the given URL does not already have a login and password
associated with it, then this operation must fail. The schema which specifies
this behavior follows.

42

DeleteLogin ERROR
ΞManager
aURL? : URL
res ! : RESPONSE

aURL? �→ b �∈ logins
res ! = FAILURE

DeleteLogin=̂DeleteLogin OK ∧ DeleteLogin ERROR

4.4.6 Compilation Specification

Possibly the most important operation of the system is the compilation opera-
tion. This is similar to the Make operation. However, in the system described
here, the dependency tree will be traversed and all the nodes hit. This will allow
for a compile of the entire project that is currently loaded.

When a node hits another node, it activates that node. The activator node
then awaits all its children to be completed. At that point it can complete its
operation. To provide for a way for nodes with multiple parents not to be acti-
vated multiple times, a type of semaphore was contrived. This is accomplished
through a state variable that can take one of four states.

As mentioned in Section 4.4.2, the state is a variable which can be either
BUSY, NOT HIT, CHANGED, or NOT CHANGED. The variable is initial-
ized when a compile operation is begun and at that time all nodes are set to
NOT HIT. As nodes use their children to determine if they must recompile, the
state of their children nodes becomes very important. Therefore, there must be
an operation to get the state of a particular node. The following schema returns
the state of a node if that node currently has a state assigned to it. A node
could have no state at all if the system is not performing a compile operation.
This is done so that the states member will not be holding information during
the time when a user is merely changing or entering data.

GetState OK
ΞManager
aNode? : NODE
state! : STATE
res ! : RESPONSE

aNode? ∈ nodes
aNode? �→ x ∈ states
state! = x
res ! = SUCCESS

The operation to get the state of a node can fail if the input node is not a
node recognized by the system. The schema that outlines this error is presented
next.

43

GetState ERROR
ΞManager
aNode? : NODE
res ! : RESPONSE

aNode? �∈ nodes
res ! = FAILURE

GetState=̂GetState OK ∧ GetState ERROR

During the compilation operation, nodes will be changing their states upon
successfully being activated and updated. This is explained further in the section
on compiling. There must, therefore, be an operation to change the state of a
particular node. This operation must take as its input a valid node in the system
to be successful. Then, it changes the state associated with that node to the
new state specified as input.

ChangeState OK
∆Manager
whichNode? : NODE
newState? : STATE
res ! : RESPONSE

whichNode? ∈ nodes
whichNode? �→ x ∈ states ⇒ whichNode? �→ x �∈ states ′

whichNode? �→ newState? ∈ states ′

res ! : SUCCESS

A proof of the ChangeState OK schema follows which proves that the chang-
ing of a state variable associated with a node does not violate the data invariant
of the Manager.

(1) whichNode? ∈ nodes (premise)
(2) whichNode? �→ x ∈ states ⇒ whichNode? �→ x �∈ states ′ (premise)
(3) whichNode? �→ newState? ∈ states ′ (premise)
(4) whichNode? �→ states ⇒ whichNode? ∈ nodes ((1), subst.)

Q.E.D.
The operation will fail if the given node is not an existing node in the system

already. The schema that handles this error is presented next.

44

ChangeState ERROR
ΞManager
whichNode? : NODE
res ! : RESPONSE

whichNode? �∈ nodes
res ! : FAILURE

ChangeState=̂ChangeState OK ∧ ChangeState ERROR

The above two schemas allow for interaction with the state of a node. When
a node initializes all of its children, it becomes busy and then waits for all of its
children to no longer be busy. This algorithm is explained next.

The algorithm for executing the nodes’ commands in order is important in
the configuration manager. This method is efficient and uses recursion to cover
all of the nodes in the execution system. It also allows for parallelism so that
each node can run in parallel and communicate through its state, or semaphore
described earlier.

The algorithm is quite straightforward. The user can pick any goal from
which to begin compilation. This goal becomes the compilation root. When the
user begins compilation, the states are initialized. This sets the semaphore for
all the goals to a NOT HIT state. The schema which describes the initialization
of the compilation operation is provided next.

Init Compile
∆Manager

∀ a ∈ nodes | a �→ NOT HIT ∈ states ′

Next the compilation root sets its state to BUSY and enters the Start Spawn
operation. For each child with a state of NOT HIT, a thread is spawned for that
child with the spawnThread(node) operation. This thread will treat the child
as a new compilation root from which the process starts again. The operation
that checks the state of the child and spawns a new thread must be atomic, due
to multiple dependencies on any give node. This will prevent multiple threads
being spawned for a single child with multiple parents. The node will continue to
check the state of it’s children with the Is Busy operation. While in this state,
all the children of a node are determining if they have changed or any of their
children have changed. Upon completion, the BUSY state will change to either
CHANGED or NOT CHANGED. When the state of all of the node’s children
is CHANGED or NOT CHANGED, the node will then enter the End Spawn
operation and update it’s own state accordingly. At this point, a node evaluates
if its children have changed. If they have, then it must also set its state to
CHANGED. However, if they have not, but it is a file and has physically been
changed since the last date recorded in the system, it must also set its state

45

to CHANGED. If a node has changed and is a goal, it will then execute any
commands with the Execute Commands operation.

The next schema is used when a node is first hit. It sets its state to BUSY
and then spawns all of its children.

Start Spawn
∆Manager
whichnode? : NODE

whichnode? �→ NOT HIT ∈ states
whichnode? �→ BUSY ∈ states ′

whichnode? �→ a ∈ nodeGoals ⇒ ∀ b ∈ a | b �→ NOT HIT ∈ states ⇒ spawnThread(b)
whichnode? �→ c ∈ nodeFiles ⇒ ∀ d ∈ c | d �→ NOT HIT ∈ states ⇒ spawnThread(d)

After spawning all of its children, a node then goes into a wait state where
it waits for its children to come out of busy. Next, the operation where at least
one of a node’s children is still busy is defined.

Busy Yes
ΞManager
whichnode? : NODE
result ! : YES | NO

whichnode? �→ b ∈ nodeGoals ⇒ ∃ c ∈ b | c �→ BUSY ∈ states
whichnode? �→ d ∈ nodeFiles ⇒ ∃ e ∈ d | e �→ BUSY ∈ states
result ! = YES

The next operation is used when all of the children of a node have come
out of the BUSY state. At this point, a node needs to call the End Spawn
operation.

Busy No
ΞManager
whichnode? : NODE
result ! : YES | NO

whichnode? �→ b ∈ nodeGoals ⇒ ∀ c ∈ b | c �→ BUSY �∈ states
whichnode? �→ d ∈ nodeFiles ⇒ ∀ e ∈ d | e �→ BUSY �∈ states
result ! = NO

Is Busy =̂ Busy Yes ∨ Busy No

Upon all of a node’s children leaving the BUSY state, a node must determine
if it has itself changed, and then set its state accordingly. The schema which
represents this operation is defined next.

46

End Spawn
∆Manager
anode? : NODE

anode? �→ CHANGED ∈ states ′ ⇒ (
anode? �→ a ∈ nodeGoals ⇒ ∃ b ∈ a | b �→ CHANGED ∈ states ′ ∧
anode? �→ c ∈ nodeFiles ⇒ ∃ d ∈ c | d �→ CHANGED ∈ states ′ ∧
anode? �→ a ∈ nodeGoals ⇒ a = ∅ ∧
anode? ∈ files ⇒ (anode? �→ e ∈ datestamps ∧ anode? �→ e �∈ datestamps ′))

anode? �→ NOT CHANGED ∈ states ′ ⇒ (
anode? �→ r ∈ nodeGoals ⇒ ∀ s ∈ r | s �→ NOT CHANGED ∈ states ′ ∧
anode? �→ t ∈ nodeFiles ⇒ ∀ u ∈ t | u �→ NOT CHANGED ∈ states ′ ∧
anode? ∈ files ⇒ (anode? �→ v ∈ datestamps ∧ anode? �→ v ∈ datestamps ′))

Only goals can have commands associated with them. Therefore, upon suc-
cessfully determining that a goal has changed it must execute the commands
associated with it. Files, on the other hand, must be copied locally so that they
can be included in the compile if they have been changed or need to be updated.
The copyFile(file) function appears in the following schema which will perform
this copy to the local host.

Execute Commands
ΞManager
whichnode? : NODE

whichnode? �→ CHANGED ∈ states ⇒ (
whichnode? �→ x ∈ commands ∧ x �= ∅ ⇒ execCommands(x) ∨
whichnode? ∈ files ⇒ copyFile(whichNode?))

Finally after execution is finished, the state of the nodes is reset to empty.
This is so that there are no states allocated during the majority of the time
where a system is inactive or a user is viewing or changing dependencies. The
schema which expresses this behavior follows.

End Execute
∆Manager

states ′ = ∅

4.4.7 Saving and Loading

Some of the most essential operations in the system are the save and load
operations. These allow a user to establish their dependency tree and save it
for future use, such as upon next execution of this product. This also allows for
the data file to be distributed and other users to use the same data file that are
working on the same project.

47

Outlined previously were all the operations of adding and querying of the
system. These operations provide a clear and concise way of checking the data
structures described in the state schema for the Manager.

A save operation merely takes all of the data elements provided in the Man-
ager state schema and dumps them into the format of the data file, shown in
Section 4.5. The query operations defined previously allow for easy access to
these data elements and for this reason it is felt that the specification of this
operation is both redundant and tedious.

The load operation is similar. The given data file in the standard format
must be searched and the data elements of the Manager must be established.
The operations were clearly defined above to allow for easy addition of the data
to the system. The task consists of parsing the data file and determining where
the elements of the data file go in the Manager and then placing them there. For
this reason, it is again felt that the specification of this operation is redundant
and unnecessary.

The level of abstraction for this system is established as above this. With
the clearly defined operations to add and query this system, there is no need to
specify the simple options of saving and loading the data file.

4.4.8 Converting

Conversion of a makefile into the native format is quite difficult. In implemen-
tation there are many aspects an ADVANCED makefile which are beyond the
scope of this project. Makefiles can be created in a manner which resembles pro-
gramming and the parsing and symantic evaluation of those files would require
so much time that it would detract from this project’s true goal. Therefore,
this product will only allow for basic makefiles to be converted. While this
might seem like a large restriction on the system, it is important to note that
the vast majority of Make users use this product to simply define a dependency
tree (not as advanced as that allowed by this product) and to compile their
product. Some even defined argument which can be invoked from the command
line. This product handles those arguments by making them Top Level Goals
with the given commands. These are then given (as with all goals) to the user
so that they can be executed upon command.

The operation to convert an arbitrary makefile into the native format is
therefore an extremely difficult one to implement. The operations to take the
data from the makefile are the ones that are not established. Once the data
has been retrieved from the makefile, it can be placed into the native format
simply by using the well defined operations defined in the specification such as
AddTopLevelGoal, AddNodeGoal, AddNodesCommands, and others.

There must be a way to get all the top level goals of a makefile. Once these
have been retrieved, the AddTopLevelGoal operation defined previously can be
used. Then, there must be operations to get all the commands of a goal, all
the other goals of a goal, and finally all the files of a goal. Since Make does
not allow for files to be located across the network, locations of the files are
irrelevant, as are logins to URL sites.

48

The state of a makefile can be established now. This uses the set [NODE]
defined in the Manager specification which is again the set of all nodes in exis-
tence. The set of commands [COMMAND] defined in the Manager specification
is also used here. The Makefile specification has all the top level goals defined in
the makefile, the files associated with a node, the goals associated with a node,
and the commands associated with a node. The strict control over whether a
file has commands is not controlled here as the makefile format controls this.
Should a user enter invalid data into a makefile, then the schemas which control
the adding of this data to the Manager system will fail.

Makefile
nodes : �NODE
goals : �NODE
files : �NODE
toplevelgoals : �NODE
nodeFiles : �(NODE �→ �NODE)
nodeGoals : �(NODE �→ �NODE)
commands : �(NODE �→ �COMMAND)

nodes = toplevelgoals ∪ goals ∪ files
∀ g ∈ goals ⇒ g �∈ files ∧ g �∈ toplevelgoals
∀ f ∈ files ⇒ f �∈ goals ∧ f �∈ toplevelgoals
∀ a ∈ toplevelgoals ⇒ a �∈ goals ∧ a �∈ files

The initial state of the Makefile can now be established for consistency.

Makefile Init
Makefile′

nodes ′ = ∅
goals ′ = ∅
files ′ = ∅
toplevelgoals ′ = ∅
nodeFiles ′ = ∅
nodeGoals ′ = ∅

A proof of the initial state of the Makefile schema is provided next. Here it
is shown that the data invariants are not violated.

49

(1) nodes ′ = ∅ (premise)
(2) goals ′ = ∅ (premise)
(3) files ′ = ∅ (premise)
(4) toplevelgoals ′ = ∅ (premise)
(5) nodeFiles ′ = ∅ (premise)
(6) nodeGoals ′ = ∅ (premise)
(7) ∅ = ∅ ∪ ∅ ∪ ∅ ((1), ident.)
(8) ∅ = toplevelgoals ∪ goals ∪ files ((2), (3), (4), subst.)
(9) nodes = toplevelgoals ∪ goals ∪ files ((1), subst.)

(10) (∀ g ∈ ∅ ⇒ g �∈ ∅ ∧ g �∈ ∅ (ident.)
(11) (∀ g ∈ goals ⇒ g �∈ files ∧ g �∈ toplevelgoals ((2), (3), (4), subst.)
(12) (∀ f ∈ ∅ ⇒ f �∈ ∅ ∧ f �∈ ∅ (ident.)
(13) (∀ f ∈ files ⇒ f �∈ goals ∧ f �∈ toplevelgoals ((2), (3), (4), subst.)
(14) (∀ a ∈ ∅ ⇒ a �∈ ∅ ∧ a �∈ ∅ (ident.)
(15) (∀ a ∈ toplevelgoals ⇒ a �∈ goals ∧ a �∈ files ((2), (3), (4), subst.)

Q.E.D.
The operation to get all the top-level goals of the makefile can now be defined.

It passes as output all the top level goals defined in the makefile. These are
usually the default (no argument) target and the command line argument targets
defined in the makefile.

Makefile GetTopLevelGoals
ΞMakefile
out ! : �NODE

out ! = toplevelgoals

Here the same response type used in the Manager specification is defined
again.

RESPONSE := SUCCESS | FAILURE

In Make, goals can have dependencies of other goals. Because of this, there
must be an operation to get the dependency goals of a specified node. This is
defined next.

Makefile GetNodesGoals OK
ΞMakefile
aNode? : NODE
out ! : �NODE
res ! : RESPONSE

aNode? ∈ goals ∨ aNode? ∈ toplevelgoals
aNode? �→ b ∈ nodeGoals
out ! = b
res ! = SUCCESS

50

This operation will fail if the given node is not either a top level goal or a
goal defined in the makefile. The schema that describes this behavior follows.

Makefile GetNodesGoals ERROR
ΞMakefile
aNode? : NODE
res ! : RESPONSE

aNode? �∈ goals ∧ aNode? �∈ toplevelgoals
res ! = FAILURE

Makefile GetNodesGoals=̂Makefile GetNodesGoals OK ∧ Makefile GetNodesGoals ERROR

Similarly, goals can have dependencies of files. Top level goals cannot have
file dependencies, however, just regular goals. Therefore, there must be an op-
eration which retrieves the file dependencies of a particular goal. This operation
is defined next.

Makefile GetNodesFiles OK
ΞMakefile
aNode? : NODE
out ! : �NODE
res ! : RESPONSE

aNode? ∈ goals
aNode? �→ b ∈ nodeFiles
out ! = b
res ! = SUCCESS

This operation will fail if the given node is not a regular goal defined in the
makefile. The schema that describes this operation follows.

Makefile GetNodesFiles ERROR
ΞMakefile
aNode? : NODE
res ! : RESPONSE

aNode? �∈ goals
res ! = FAILURE

Makefile GetNodesFiles=̂Makefile GetNodesFiles OK ∧ Makefile GetNodesFiles ERROR

Goals have associated with them commands, which are executed in the make-
file. These can be associated with either top level goals, or regular goals. Next
is the operation which defines how to get the commands associated with a given
node.

51

Makefile GetGoalsCommands OK
ΞMakefile
aGoal? : NODE
out ! : �COMMAND
res ! : RESPONSE

aGoal? ∈ goals ∨ aGoal? ∈ toplevelgoals
aGoal? �→ b ∈ commands
out ! = b
res ! = SUCCESS

This operation will fail if the given goal is not in the system. Since, in Make,
all goals have associated with them a command, there is no need to have an
error where the goal has no commands. Next is the operation which defines the
forementioned error.

Makefile GetGoalsCommands ERROR
ΞMakefile
aGoal? : NODE
res ! : RESPONSE

aGoal? �∈ goals ∧ aGoal? �∈ toplevelgoals
res ! = FAILURE

Makefile GetGoalsCommands=̂Makefile GetGoalsCommands OK∧
Makefile GetGoalsCommands ERROR

4.5 The Datafile

In order to store all of the necessary dependencies and locations of files for a
total system, a standard datafile has been established. This datafile is a textual
listing of all of the goals, files, and options for a system and is saved as a user-
defined title with a *.dat extension.

Each of the sections of the datafile will be delineated by the keywords OP-
TIONS, GOALS, and FILES. These keywords will mark the start of each sec-
tion, as shown below in the example datafile for the EDIT system introduced
in Section 3.1.

Group One June 3, 1998
Sample datafile

#--
OPTIONS

OBJECT_FILE: "/local/project/object"

52

#---
GOALS

FILENAME: "edit"
FILES:
GOALS: {"main", "kbd", "command", "display",

"insert", "search", "files", "utils"}
COMMANDS: {"cc -o edit main kbd command display

insert search files utils"}

FILENAME: "main"
FILES: {"main.c"}
GOALS:
COMMANDS: {"cc -c main.c"}

FILENAME: "kbd"
FILES: {"main.c"}
GOALS:
COMMANDS: {"cc -c kbd.c"}

FILENAME: "command"
FILES: {"command.c"}
GOALS:
COMMANDS: {"cc -c command.c"}

FILENAME: "display"
FILES: {"display.c"}
GOALS:
COMMANDS: {"cc -c display.c"}

FILENAME: "insert"
FILES: {"insert.c"}
GOALS:
COMMANDS: {"cc -c insert.c"}

FILENAME: "search"
FILES: {"search.c"}
GOALS:
COMMANDS: {"cc -c search.c"}

FILENAME: "files"
FILES: {"files.c"}
GOALS:
COMMANDS: {"cc -c files.c"}

53

FILENAME: "utils"
FILES: {"utils.c"}
GOALS:
COMMANDS: {"cc -c utils.c"}

FILENAME: "clean"
FILES:
GOALS:
COMMANDS: {"rm edit main kbd command display insert search files utils"}

#--
FILES

FILENAME: "main.c"
FILES: {"defs.h"}
GOALS:
LOCATION: "file:/usr/main.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "kbd.c"
FILES: {"command.h", "defs.h"}
GOALS:
LOCATION: "<userid>:<passwd>@ftp://usr/project/kbd.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "command.c"
FILES: {"command.h", "defs.h"}
GOALS:
LOCATION: "<userid>:<passwd>@ftp://usr/project/command.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "display.c"
FILES: {"defs.h"}
GOALS:
LOCATION: "http://www.ufl.edu/~usr/project/display.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "insert.c"
FILES: {"buffer.h", "defs.h"}
GOALS:
LOCATION: "http://www.ufl.edu/~usr/project/insert.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "search.c"
FILES: {"buffer.h", "defs.h"}
GOALS:

54

LOCATION: "http://www.yahoo.com/search.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "files.c"
FILES: {"command.h", "defs.h", "buffer.h"}
GOALS:
LOCATION: "file:/usr/project/files.c"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "utils.c"
FILES: {"defs.h"}
GOALS:
LOCATION: "http://www.ufl.edu/~usr/project/utils.o"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "command.h"
FILES:
GOALS:
LOCATION: "<userid>:<passwd>@ftp://usr/project/command.h"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "defs.h"
FILES:
GOALS:
LOCATION: "http://www.company.com/project/defs.h"
MOD_DATE: "09 Jun 1998 21:46"

FILENAME: "buffer.h"
FILES:
GOALS:
LOCATION: "file:/usr/project/buffer.h"
MOD_DATE: "09 Jun 1998 21:46"

In this datafile, the ’#’ represents a commented line. The programmers can
determine the actual symbol(s) used to mark comments, as long as a standard is
determined early in the development stage and remains consistent throughout
the system. Again, this datafile is meant to serve as a mere prototype for a final
version. It is difficult to ascertain at this point the additions or alterations that
may become necessary depending on the implementation. Quotes may need to
be added or removed from various portions of the datafile in order to comply
with the semantics of string inputs in the chosen implementation language. All
of this is acceptable and expected.

Within each section of the datafile, each node is represented as a listing of
attributes associated with that node. Strings listed in all caps followed by a
colon represent the attribute names. The value associated with each attribute
follows the colon and is, in this case, surrounded by quotes if the value is a

55

string, and surrounded by brackets if the value is a list. A blank line delineates
a single node from a consecutive node.

The OPTIONS section is a means by which the software designers may
chose to include any number of options that the user may select for the given
dependency tree. The above example lists an attribute entitled OBJECT FILE,
which is followed by a location on the local server. This option is intended to
represent the user’s desire to store all of the object files of the current design in
one given location. This option should always be activated, however a default
location of pwd/object should always be in place unless the user designates
otherwise.

Within the GOALS section, it can be noted that neither the location, nor
the modification date attributes are associated with any goal. This is because
these attributes are invalid within the context of a goal. All goals are stored on
the local server due to the various architectural restrictions that many systems
impose on a goal. Furthermore, the new datestamp system that has been de-
veloped for this system deals solely with the datestamp associated with a given
FILE (see Section 4.6). Therefore, any datestamp that could be associated with
a goal is unnecessary, and would only lead to confusion within the system, or
with the users themselves. For these reasons, the LOCATION and MOD DATE
attributes have been omitted from the GOALS section of the datafile.

The FILES section of the datafile contains a similar omission of an attribute.
The example reveals an omission of the COMMANDS attribute. The definition
of a file clearly states that a file is a freestanding source file. Simply put, a source
file cannot be generated using any form of a command or set of commands, as
its entire function is a means for some higher goal to be met. The definition
itself clearly depicts the reasoning behind this attribute exclusion.

An important property of the datafile as a whole is that while it is typically
handled by the Configuration Management system, it is also completely editable
by an outside user. Rather than launching the entire system and making ad-
justments to a dependency tree via the graphical user interface, a user has the
option of making adjustments to the datafile directly. Of course, this function-
ality opens the doors for numerous user created errors. The users manual will
recommend that only advanced users attempt to manually alter the datafile.
Furthermore, upon loading a given datafile, if it is determined that an invalid
field is contained in the datafile, the user will be notified of a corruption. This
error dialog will then specify the line on which the error occurred and provide
a brief description of the error, similar to a typical compiler.

4.6 Datestamps

Due to the fact that the Configuration Management system should provide for
files to be located at any accessible location in the world, a revolutionary new
system has been developed to determine whether or not a given file requires
recompilation. This new system, referred to as the Datestamp system, works
in conjunction with the datafile to produce sound methodology for overcoming

56

the dreaded ”synchronization problem.”
Before elaborating on this new datestamp concept, it may be helpful to

digress and explain how the archaic make system has handled the recompilation
decisions in the past.

The old make system would perform a series of comparisons of the time
attached to a node and each of its children. If any of a node’s children turned
out to be newer than the node itself, i.e. the child had been compiled after
the node, the node would recompile. Of course, this was a recursive operation,
where a given child would compare its own timestamp to that of its children to
determine its own need for recompilation before allowing its parent to recompile.
This system worked only because all of the files were stored on a single system.
This method clearly is not appropriate for the new network accessible system.
Various problems would arise if network clocks were not synchronized, or if
systems were located in separate time zones.

The new Datestamp system is based on a completely different foundation.
The need to recompile is determined by querying the file for it’s last recorded
modification time. This modification time is compared to the expected modifica-
tion time for that file that was stored in the datafile during the last query. If the
two times are not completely identical, this will signal the system that the file
has been updated, and all goals that depend on this file should be recompiled.

As the system is initialized, all of the datestamps are set to NEW DATE,
which is time zero (Jan.1 , 1970) in UNIX systems. Clearly, upon first pass, all of
the nodes of a design will appear out-of-date to the Configuration Management
system, because none of the last revision datestamps of the files will match their
NEW DATE stored in the datafile. Therefore, all files will recompile upon first
pass into the system. This initial recompilation is not only acceptable, but
essential, because upon an initial pass none of the remote source files would
have been brought to the local server for the necessary local compilation. In
short, none of the remote files would have local object files, so the system would
not work without these necessary object files anyway.

If, however, the user does not wish to perform this initial compilation pass
for whatever reason, they can manually enter the most recent revision time into
the datafile. In this case, the system datestamp associated with a file and its
expected datestamp located in the datafile will match, wherefore recompilation
will not occur. Similarly, if a user wishes for the system to recompile despite
the fact that a file has not been updated, a manual alteration of a datestamp
within the datafile to a value other than the actual last revision time will always
cause recompilation.

If a case arises that a remote system is not POSIX compliant and thus
cannot return or associate a last modified date with a file, a datestamp of null
will be returned. The null datestamp will never match the initial NEW DATE
associated with every file in a new system, therefore the CM system will always
bring the file to the local host and recompile.

This new Datestamp system carries many benefits. The first benefit is that
it alleviates the problem of files being stored in differing time zones. It is quite
possible that many engineers spread across the country or even across the world

57

could be working on a single project. While it is true that many systems adjust
for time zone differences, it should not be assumed that this is always the case.

Furthermore, even if all systems did adjust for time zone differences, this
would in no way eliminate the ”synchronization problem.” It is not realistic
to assume that all servers have perfectly synchronized clocks. In fact many
systems may differ by several seconds or even several minutes. Many systems
might even be flat out wrong as to the current date and time. Because the only
time comparison performed would be relative to the last time recorded by the
same remote system, synchronization is clearly not necessary.

Finally, the old make system suffers from a major flaw. An adjustment of
the system clock will produce invalid compile times. These compile times may
result in an incorrect decision not to recompile, when in fact recompilation is
necessary. In the new system, it does not matter if a revision time is newer or
older than any of the other files, it just matters if it is not the expected time for
that given file itself. This methodology is far superior in that it does not suffer
from the possible problems associated with system clock adjustment.

4.7 Compilation

4.7.1 Compilation Order Rules

One of the requirements of the Manager was that UNIX Make and Ada compi-
lation order rules be observed. The orders of compilation for both systems are
the same, only the methods in which dependencies are handled are different.
The compiler handles dependencies for Ada, while Make checks for dependen-
cies before compilation begins. Since the Manager is upwardly compatible with
Make, it also checks dependencies before execution. Software configurations in
which these rules apply can be arranged in a DAG, where each node depends
on its children. In order for any node to be compiled, its children must first
be updated so any changes will be reflected in the new compilation. A child is
updated if its modification date has changed, or if any of its children have been
updated. Ada’s compiler checks for this, as well as Make and the Manager. A
feature the Manager has that the others do not have is the ability to maintain
a configuration across a network. It can access a file through a URL and copy
it if the date has changed.

4.7.2 Compilation Procedure

In the Manager, the algorithm for compilation begins with the user choosing
a node in the DAG from which to begin compilation. This node becomes the
compilation root as mentioned in Section 4.4.6. A new thread is spawned for
each of the root’s children. Since a child can have more than one parent, the
possibility of redundant threads for that child being spawned must be managed.
Therefore a semaphore is used to let the parent know the status of the child
before spawning a new thread. The possible states a semaphore can have are

58

BUSY, CHANGED, NOT CHANGED, and NOT HIT. The parent node will
check the state of its child and spawn a thread if the state is NOT HIT. This
check/spawn operation must be atomic to prevent another parent from spawning
a thread between the time the state is checked and the thread is spawned.
The addition of this semaphore makes it necessary to set the state of all the
semaphores to NOT HIT before compilation begins to allow all of the nodes
to be processed. After the states have been set, the parent (with the top-
level goal as the first parent) sets its state to busy and spawns a thread for
all of its children whose state is NOT HIT. The parent then waits for all of
the children to end their BUSY state. If any of the parents’ children’s state is
CHANGED, or if the parent is a file and the file’s date has changed, the parent
sets its state to CHANGED. Barring these conditions, the parent will set its
state to NOT CHANGED. After the parent has changed its state, it executes
its commands or copies the file if the state has been changed to CHANGED. The
coping of the file is done so that it will be on the local machine when compiled
or needed to be included in a compile, such as would be the case with a header
file. Compilation ends when the compilation root (in most cases the root of the
tree) notices that all of its children have either changed or not changed. At this
point, it executes the commands associated with itself. Finally, all the states of
the nodes are set to NULL so as not to keep the state variable allocated when
it is not needed.

The spawnThread() operation will fork with the parent returning to wait
on it’s children, and the child calling a compile() on itself. This operation is
recursive-like in that each parent spawns all of their children and then must wait
for the children to return before it can set its own state. The leaves will spawn
no threads and set their state immediately. The new state will be determined
the same as any other node in the DAG. Once the leaves have set their state, the
parents will set their state until the top-level goal has set its state and finishes
the compile.

The following pseudocode describes this process in coded form, for increased
understanding:

void initCompile(Node rootNode)
{

setAllNodeStates(NOT_HIT);
compile(rootNode);
endCompile();

}

void compile(Node currentNode)
{

initSpawn(currentNode);
isBusy(currentNode);
endSpawn(currentNode);

}

59

void initSpawn(Node currentNode)
{

currentNode.setState(BUSY);
for i=0 to currentNode.numGoals()

if (currentNode.getGoal(i).currentState() == NOT_HIT)
spawnThread(currentNode.getGoal(i));

for j=0 to currentNode.numFiles()
if (currentNode.getFile(j).currentState() == NOT_HIT)

spawnThread(currentNode.getFile(j));
}

void isBusy(Node currentNode)
{

BOOL stillBusy = TRUE;

while(stillBusy)
{

int numberBusy;
numberBusy =0;

for i=0 to currentNode.numGoals()
if (currentNode.getGoal(i).currentState() == BUSY)

numberBusy++;
for j=0 to currentNode.numFiles()

if (currentNode.getFile(j).currentState() == BUSY)
numberBusy++;

if (numberBusy == 0)
stillBusy = FALSE;

}
}

void endSpawn(Node currentNode)
{

Bool childChanged = FALSE;

for i=0 to currentNode.numGoals()
if (currentNode.getGoal(i).currentState() == CHANGED)

childChanged = TRUE;
for j=0 to currentNode.numFiles()

if (currentNode.getFile(j).currentState() == CHANGED)
childChanged = TRUE;

if (currentNode.isFile() && currentNode.dateChanged())
currentNode.setState(CHANGED);

if (childChanged == TRUE)

60

currentNode.setState(CHANGED);
else if (childChanged == FALSE)

currentNode.setState(NOT_CHANGED);

execCommands(currentNode);
}

void execCommands(Node currentNode)
{

if (currentNode.currentState() == CHANGED)
if (currentNode.isGoal() && currentNode.getCommands() != NULL)

System(currentNode.getCommands());
else if (currentNode.isFile())

copyFile(currentNode.getLocation());
}

void endCompile();
{

setAllNodeStates(NULL);
}

4.8 Graphical User Interface

The Graphical User Interface is what allows the user to interact with the system.
The GUI should be user-friendly, and accommodate the novice as well as expert
user. The Manager’s specifications are such that the GUI can be implemented
in any language such as Java, or Visual C++. The interface will enforce data
protection with methods for the user to add, delete, or edit nodes. This prevents
the user from attempting to modify something that can not exist, such as a
goal’s location. It also prevents the user from modifying system variables such
as a file’s last modification date. The interface should be intuitive and provide
differing ways to invoke a method such as a toolbar and drop down menu. The
GUI will also provide a graphical representation of the dependency DAG as
seen in Figure 3.2. This DAG should be interactive by allowing the user to
edit, view, or compile a node in the DAG by clicking it with the mouse. Other
options or attributes of the GUI include dialog boxes for adding goals and
nodes (Figure 4.1), a hierarchy view of dependencies in the drop down menu
(Figure 4.2), and a hierarchy view of goals for compilation in the drop down
menu (Figure 4.3).

The dialog box should add the node to the DAG, then immediately prompt
the user for information on that node’s dependencies (as seen in Figure 4.1).
In this example, the sample makefile from Section 3.1 was used. The user adds
a goal by clicking the flag button or selecting add goal from the drop down
menu. The user adds Edit as the root goal and supplies any dependencies and
commands for that goal. When OK is pressed, the list of goals and files that

61

depend on Edit is parsed and a new dialog pops up for information on each
new node. In this case Main is the first goal in the list. Information for Main
is entered and a dialog for main.c pops up because Main depends on main.c.
Information for main.c is entered and a dialog for defs.h pops up. After the
information for defs.h is entered, a new dialog will pop up for Kbd, because
Main and main.c only have one child and defs.h has none. This will continue
until information for all of Edit’s children or dependencies has been entered.
Essentially, the functionality of the dialog boxes is that fields are entered in a
depth-first manner.

The hierarchy view of the dependencies (Figure 4.2) allows the user to get a
visual idea of the hierarchy and could allow the user to edit any given node. An-
other means for representing the dependency tree is the graphical representation
presented in Figure 3.2 and Figure 3.4.

The hierarchy view of the goals in Figure 4.3 allows the user to begin com-
pilation from any arbitrary goal.

The GUI must implement all of the interfaces the user requires, while re-
stricting access to those the user does not. It must also provide adequate help
for the user as well as notes on default assumptions (such as the initial date, as
explained in Section 4.4.4) and limitations. Above all, it must conform to the
Manager’s specification.

62

Figure 4.1: Adding Goals and Files to the System

63

Figure 4.2: Viewing Goals and Files of the System

64

Figure 4.3: Compiling Goals in the System

65

Chapter 5

Project Properties

There were a number of goals which were to be achieved during the course
of this project. As with any project where a set of predefined requirements
is to be met, these requirements must be shown to have been satisfied by the
implementation. What follows are the requirements and discussion on how they
have been met.

5.1 Statement of Need

These days, more and more companies have made the move toward global net-
working. Because of the speed and ease at which a company can communicate
with other parts of the country, or the world at large, it is no longer necessary
to keep even the engineers for a single project in one central location. Compa-
nies are now able to capitalize on the economic benefits of having several plants
spread across the world.

This trend has brought about a need for the Next Generation Software Con-
figuration Management systems. These systems should not only provide the
functionality of the standard Make system, but also incorporate a large degree
of network accessibility.

The Configuration Management System presented in this paper meets the
two essential goals - Make upward compatibility and complete network accessi-
bility. The new system includes corrections to most, if not all, of the previously
non-network-compliant attributes of Make while also providing a user-friendly
graphical interface. For the expert users of the product who feel speed is more
valuable than user-friendliness, the faster text-based editing procedures do the
job particularly well.

Clearly, the completed version of the system specified in this paper will soon
become an essential piece of software for any large software project. Various
companies have expressed an interest in a piece of software with the features
employed in this system.

66

5.2 Expected Market

While the initial market for this Next Generation Software Configuration Man-
agement system may be limited to large companies with projects spanning the
globe, it should soon become a standard piece of software, completely replacing
Make and other similar systems. The new method for dealing with datestamps
exhibits a functionality that could be beneficial to any given project, large or
small, local or spread across the network. This and many other features in-
cluded within the new Software Configuration Management System will quickly
distinguish it as a powerful and useful tool throughout the market.

5.3 Formal Methods

This entire paper takes on the form of a large formal specification. Over 30
Zed schemas are included in the document, which clearly define any and all
operations that will be incorporated into the final system. Some of the vital op-
erations are verified using formal proofs. Theoretically, the entire Configuration
Management system described in this document could be created completely
and correctly using the specification and text included in the document alone.

5.4 Test Specifications

Numerous prototypes are included within the text of this document. These pro-
totypes, together with the abundant sample graphics should clarify the expected
behavior of the final system to the novice user. Furthermore, the final product
calls for a thorough tutorial to familiarize a user with the expected behavior of
the system. A user’s manual is also called for, which should demonstrate the
complete functionality of the system, while serving as a handy reference tool.

These are not presented here, as this design project was not implementation
of the product but of design. Therefore, instructions on how to install the
product are impossible. However, throughout the paper the expected control
and functionality to the end user have been expressed.

5.5 Self-Realization

The final system, once created, will have the ability to manage itself, just as it
would manage any arbitrary system of files. That is, it will be self-realizable.

Self-realization is possibly the ultimate test of a product. Many products
cannot be self-realizable simply from the nature of the product. For instance,
while a type setting or word processing program can be used to write the docu-
mentation for itself, an operating system cannot be used in a self-realizable way.
This project lends itself uniquely to being extremely self-realizable. Once the
product has been implemented, then it clearly will contain many source files,

67

perhaps some header files, and design documentation. Upon successfully creat-
ing an executable, the product could then be used to manage itself by using the
interfaces defined in this document to load and manage the source, header, and
other files used by this project. In this way, the product would be self-realizable.
Lack of implementation limits the proof of this property, however.

5.6 Portability

Varying levels of portability can be achieved depending on the language used
to implement this product. Portability levels could range from the restrictive
nature of an Ada program, to the limitless portability of a Java program. At this
point in time, it would be recommended that Java be used to create this system,
due to its compliance with Sun’s ’Write Once, Run Anywhere’ goal. However,
the specification is flexible enough to allow for the system to be produced by
any high-level programming language that may arise in the near future.

All operations defined within the text of this document are based on the
POSIX interface. In this respect, the Configuration Management system is
completely portable. Furthermore, this system facilitates the use of any arbi-
trary compiler, without any more effort than it would take to type the compile
command at a shell prompt.

5.7 Software Reuse

The Configuration Management system builds on numerous systems introduced
in the past. The similarities to the Make system, and the new system’s ability
to work properly given a standard makefile are but small examples. Limitless
instances of software reuse can, and should, be incorporated into the final prod-
uct. The Java Developers Toolkit includes a URL class, which could be utilized
to easily access source files on remote systems as defined in the Network Spec-
ification, Section 4.2. An example of an implementation of the URL class is
included in Appendix B. Furthermore, a means for creating the graphical node
representation as specified in the Example Makefile Section, Section 3, is cur-
rently being created in the Parallel Architecture lab at Clemson University and
could be reused in the creation of this final product.

5.8 Efficiency

Although the time it takes to query and retrieve a remote file may seem lengthy,
this drawback can be counteracted by the incorporation of vast amounts of par-
allelism that can be achieved within the typical compile operation. The fact that
the new system incorporates the use of threads during it’s execution, and will
compile various independent files simultaneously, will result in an exponential
performance increase.

68

Using the breadth-first search described in Section 4.4.6 and Section 4.7, all
of a node’s children are spawned at the same time. This allows for each thread
to be run in parallel. Then, should a particular node be slowed down by the
network for any reason, the system continues to operate and performance is not
sacrificed.

5.9 Generality

As described in Section 4.3, this system does not employ version control. While
this was not required in the design, it is becoming an important part of many
software design projects. Every attempt has been made to allow for this product
to be upgradable to employ revision control if it is necessary in later versions.

69

Appendix A

Specific Requirements
Paper

A.1 Overview

A software configuration management system will be designed. This software
package will be one that eases the job of compiling and maintaining large soft-
ware projects. Network support, Make compatibility and a user friendly in-
terface are just a few of the properties of this system. A formal specification
language will be employed to show consistency and completeness.

The advantage of this system is that it allows for users to specify a depen-
dency tree between files. These files can be source code, header files, or even
design documents. Regardless, the order of compilation and dependencies will
be maintained through using the date a file was last modified.

A.2 Features

The configuration management system has many features but most can be bro-
ken into two sections: local and network features. The local features are those
which are the core of the system while the network features allow for the retrieval
and compilation of files across the network.

A.2.1 Local

It is important that this product be compatible with existing software. The
UNIX program Make resembles this project but lacks many features which will
be implemented. As such, it is important to be compatible with Make. An
option will be provided to load an existing Makefile which will then be converted
into the native format. In this way backward-compatibility will be maintained.

When a user chooses to be given a compiled or executable version of package
the program will search the dependency tree to determine which files must be

70

recompiled and which are current. In this way, a large software project can
be easily maintained while only modified code will be recompiled. This can
be crucial in a situation where a large software team is working together on a
project and compile times could be tedious or burdensome on the network or
workstation. Should a program have a specific design document as its dependant
and the document be of newer date than the source code, it can be assumed
that the designer (not the programmer) has modified the specification. The user
will be notified of this and should then take it upon themselves to conform to
the new specifications.

Unlike other configuration management systems, this product will not be
aimed at a specific programming language. Therefore the user will be able to
specify a particular compiler and compiler options. In this way the product will
work with an arbitrary programming language, even those not yet available or
conceived.

The user will be able to specify a directory structure to place their source and
object or class files. This is an added feature that will facilitate the organization
of the project.

Finally, the project will be able to be saved. In this way, the user will have
to specify the compiler, compiler options, dependencies between files, and other
project options only once.

A.2.2 Network

In order to accomplish the goal of allowing software components to exist any-
where on the Internet, the Software Configuration Management system will
incorporate several remote/network features. These features will be extremely
useful when different portions of a project are stored on several different servers.
The system will automatically acquire any updated files from their remote lo-
cations in order to compile the entire system on a local server.

As the dependency tree is traversed, each of the date stamps on the remote
system files are queried to determine the need for recompilation following the
compilation order rules of Ada. If recompilation is deemed necessary, the remote
source file is copied to the local host using any of the available user-determined
means, such as rlogin, FTP, or HTTP. The source file is then compiled locally
and the object file is stored in a pre-selected directory. Finally, in order to
avoid redundancy and source file conflicts, the source file is deleted from the
local system.

These remote / network features will necessitate the ability to interact with
external hosts using several methods. Of course, several fields will be required
by the system for a successful interaction, such as userids, passwords, and remote
addresses.

The Configuration Management system will contain the functionality to
rlogin to a remote host by allowing the user to specify the remote host, the
userid, and the password required to obtain files from the remote host if it is
determined that recompilation is necessary. In the case of a trusted host, the
userid and password may not be necessary.

71

The Configuration Management system will have the additional functionality
to FTP to a server and transfer the necessary source files to the local host for
recompilation, providing the necessary login and password exchange.

The Configuration Management system will have the ability to access Inter-
net files via an HTTP connection if the need arises.

Any of these options may be selected by the user via the graphical user
interface while entering the initial dependencies.

A.3 Graphical User Interface

Java will be used to construct the Graphical User Interface. This will accom-
modate platform independence, as well as employ software reuse by way of the
Abstract Windowing Toolkit and provide enhanced user-friendliness.

A graphic interface will greatly enhance usability by making software func-
tions readily available to the user. Typical command line applications tend to
overwhelm a new user with the arcane details of available options. A graphical
interface will serve to decrease the learning curve for the new user and help an
experienced user attain efficiency. It will also add stability by allowing control
over program input and output.

The graphic interface will aid the user in creating, verifying, and maintaining
file interdependence.

A.4 Paper

An important feature of the final paper will be to introduce and analyze some of
the existing works with Configuration Management systems. From the technical
report Spectrum of Functionality in Configuration Management Systems by Su-
san Dart, it can be noted that some component features that currently exist are
RCS (Revision Control System) and DMS (Distributed Management System).
RCS is a version management system and DMS provides version management
for files distributed on different platforms.

Using current research, it will be shown why there is a growing need for
Configuration Management systems. Many companies and software teams are
currently creating projects which are distributed throughout the network and
Internet. These projects are too large to be managed by a single user. Therefore
the need arises for complex software to facilitate in this task.

A detailed description of how make’s capabilities will be expanded and what
new features will be offered in the product will be provided. Some of the new
features of the product will be that it will work with an existing Makefile, allow
for network access to remote files, and provide a graphical interface for creating
a dependency list.

Finally, the paper will include a formal specification for the product which
will formally specify the important and vital operations.

72

A.5 Properties

A documentation will be provided in the end product, which explains installa-
tion of the product, provides test cases, and explains how the product works.

The management system will be self-realizable in that upon successful com-
pletion of the product it will be used to manage itself. By this it is meant that
the final product will be executed and the project to manage using the config-
uration management tool will be the code for itself. This will then be used to
produce the same product that is executing.

Portability will be accomplished through the use of Java as the chief pro-
gramming language for the project. Java is accepted industry-wide as a language
that is portable with Sun’s ’Write Once, Run Anywhere’ goal. Even though the
product will not be invoking Make, it is foreseen that the product will use other
shell commands of the standard UNIX environment. At this time it cannot be
insured that the system will be portable to operating systems other than UNIX.
With most of program development being done on UNIX based machines, this
would appear to be a satisfactory limitation.

The product will employ software reuse through the user of Java’s Abstract
Windowing Toolkit. This will allow for a system independent and portable
graphical interface. With the compatibility of Make, the system will adopt
much of make’s functionality as well as the compilation order of Ada.

Efficiency will be maintained through well-defined and stable graphics pro-
vided by Java. Java is known to be slower than most other languages, but this
is the cost for portability, which is seen to be of higher value.

The product will not target any specific programming language. This will
allow for the use of different programming paradigms such as the imperative C,
the object-oriented Java, or other paradigms and their languages as long as the
languages support a dependency between programs and files. This is generally
supported by the high-level languages through a linking stage of a compiler or
through class interfaces.

A.6 Conclusion

The software configuration management system will greatly aid any company
or software team in the development of their product. This extension of com-
mon configuration management packages will expand on existing programs and
take advantage of the growing use of the Internet or local network for program
development. The final product can be used by the coders or as high up the
development ladder as the software designer who specifies the interfaces.

73

Appendix B

URL Class Example

What follows is an example implementation of the network specification specified
in Section 4.2. This implementation allows for retrieval of anonymous FTP files,
HTTP files, and files through the FILE protocol. The code is written in Java
to allow for portability and is presented here simply as an example of how the
implementation could work.

import java.net.*;
import java.io.*;
import java.util.Date;

public class GetURL {

// Gets the date of the URL specified. A null is returned if there was
// a connection error.
public Date getDate(String someURL) {
URLConnection c;
try {
URL url = new URL(someURL);
c = url.openConnection();
c.connect();

}
catch(Exception e) {
System.err.println(e);
return null;

}
return new Date(c.getLastModified());

}

// Gets fileName from the URL specified. If an error occurs, a -1
// is returned, else a 1.
public int getFile(String someURL, String fileName) {

74

URLConnection c;
try {
URL url = new URL(someURL);
c = url.openConnection();
c.connect();

}
catch(Exception e) {
System.err.println(e);
return -1;

}

try {
InputStream in = c.getURL().openStream();
OutputStream out = new FileOutputStream(fileName);
byte[] buffer = new byte[4096];
int bytes_read;
while((bytes_read = in.read(buffer)) != -1)
out.write(buffer, 0, bytes_read);

in.close();
out.close();

}
catch(Exception e) {
System.err.println(e);
return -1;

}
return 1;

}
}

A test run of this class is provided next. In this example three files are
retrieved: one through HTTP, one through FILE, and the last through an
anonymous FTP connection.

Script started on Wed Jun 3 06:08:03 1998
abyss(1)% pwd
/parl/ndebard/453/code/testing
abyss(2)% ls
GetURL.class TestURL.class typescript
abyss(3)% java TestURL
http://www.parl.eng.clemson.edu/~ndebard/index.html index.html
Connecting to URL : http://www.parl.eng.clemson.edu/~ndebard/index.html
Date of file : Tue Mar 03 08:53:32 EST 1998
Saving file as : index.html
abyss(4)% ls
GetURL.class TestURL.class index.html typescript
abyss(5)% java TestURL file:/parl/ndebard/.xinitrc xinitrc

75

Connecting to URL : file:/parl/ndebard/.xinitrc
Date of file : Wed Dec 31 19:00:00 EST 1969
Saving file as : xinitrc
abyss(6)% ls
GetURL.class TestURL.class index.html typescript xinitrc
abyss(7)% java TestURL ftp://shredder.parl.eng.clemson.edu/etc/passwd passwd
Connecting to URL : ftp://shredder.parl.eng.clemson.edu/etc/passwd
Date of file : Wed Dec 31 19:00:00 EST 1969
Saving file as : passwd
abyss(8)% ls
GetURL.class index.html typescript
TestURL.class passwd xinitrc
abyss(9)%

Script done on Wed Jun 3 06:10:22 1998

76

Appendix C

Definitions and
Descriptions

node Figure 3.2 is completely made up of nodes. These nodes can be thought
of as objects, or points on a dependency graph. Nodes maintain a relation
between their children (the nodes underneath them that they connect to)
and their parents (those nodes that connect to them from above). Nodes
do not have any innate properties but are a shell to be expanded upon by
other types of nodes.

goal node In Figure 3.2 the circles are considered goal nodes. These are an
extension of a node, which means that they know who their parents and
children are. However, a goal node has other properties as well. A goal can
have associated with it a command which is executed if it is determined
that the node must be updated. This is most often useful when a goal has
associated with it a command to compile all of its children files.

file node In Figure 3.2 the rectangles are file nodes. File nodes cannot have
commands associated with them but are an extension of a node. File
nodes have location on the network. This provides for the basic element
of the dependency tree of a software project. Because a file node actually
exists somewhere, it also has associated with it a datestamp.

datestamp A datestamp is a time and a date. Each file node has associated
with it a datestamp so that the system knows the last date when it believes
the file was last modified. The purpose of this is so that this datestamp
can be checked against the date of the file returned through the standard
POSIX interface. In this way, the system can determine if a file has
changed and therefore needs to be updated. This information is then used
to replace the old datestamp associated with the file.

77

Bibliography

[Midha] A. K. Midha, ”Software Configuration Management for the 21st Cen-
tury,” Bell Labs Technical Journal., Winter 1997, pp. 154-165.

[Salamone] S. Salamone, ”More Control, Fewer Headaches,” Byte., January
1996, pp. 159-160.

[Dart] S. Dart, ”Spectrum of Functionality in Configura-
tion Management Systems,” Carnegie Mellon University,
http://www.sei.cmu.edu/legacy/scm/tech rep/TR11 90/TOC TR11 90.html,
December 1990.

[Bersoff] E. H. Bersoff and A. M. Davis, ”Impacts of Life Cycle Models on Soft-
ware Configuration Management,” Communications of the ACM., August
1991, pp. 104-118.

[Buckley] F. J. Buckley, ”Implementing a Software Configuration Management
Environment,” Computer., February 1994, pp. 56-61.

[Cronk] R. D. Cronk, ”Get Control of Cross-Platform Development,” Datama-
tion., August 1993, pp. 45-46.

78

