

## Chapter 3

# A SERIES OF SHORT EGS5 TUTORIALS =

EGS is a powerful system which can be used to produce very complex Monte Carlo simulations. In spite of some complexity, the user's interface with the system is, in principle, very simple. In the following series of tutorial programs, we use various aspects of the user interface in what we refer to as "EGS5user codes." In these user codes we will introduce some basic scoring techniques. Formal documentation in the form of EGS5 and PEGS user manuals can be found in Appendices B and C, respectively.

These tutorials are written under the assumption that the reader is generally familiar with the contents of the EGS5 and PEGS user manuals, although a complete understanding of the manuals is not required. In fact, the purpose of these tutorials is to make these manuals more understandable. Although the programs presented here are very simple in construction, it should become clear that with various extensions (generally of a bookkeeping nature), a wide range of powerful programs can be constructed from these tutorial examples. For brevity, we sometimes present only partial source listings of these user codes in the following sections. The complete source code for each tutorial can be found in the EGS5 distribution. Note also that the results from these tutorial programs may be slightly different on machines with different word lengths, different floating-point hardware, or different compiler optimizations.

### 3.1 Tutorial 1 (Program tutor1.f)

The geometry of the first seven tutorials is the same. Namely, a semi-infinite slab of material is placed in a vacuum and a pencil beam of photons or electrons is incident normal to the surface. The slab is in the X-Y plane and the particles are incident at the origin traveling along the Z-axis. In the first problem, a beam of 20 MeV electrons is incident on a 1 mm thick plate of tantalum.

In order to use EGS5 to answer the question "What comes out the far side of the plate?", we have created the user code (tutor1.f) shown below. Also provided is the PEGS5 input file required for this run (see Appendix C for a description of how to construct PEGS5 input files).

```
!
                   tutor1.f *
                 ******
! An EGS5 user code. It lists the particles escaping from the back
  of a 1 mm Ta plate when a pencil beam of 20 MeV electrons
 is incident on it normally.
! For SLAC-R-730/KEK Report 2005-8: A simple example which 'scores'
 by listing particles
 The following units are used: unit 6 for output
! ******************************
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|12
  ----- main code -----
! Step 1: Initialization
!-----
    implicit none
    -----
    EGS5 COMMONs
    -----
    include 'include/egs5_h.f'
                                    ! Main EGS "header" file
    include 'include/egs5_bounds.f'
    include 'include/egs5_media.f'
    include 'include/egs5_misc.f'
    include 'include/egs5_thresh.f'
    include 'include/egs5_useful.f'
    include 'include/egs5_usersc.f'
    include 'include/randomm.f'
    bounds contains ecut and pcut
    media contains the array media
    misc contains med
    thresh contains ae and ap
    useful contains RM
```

```
usersc contains estepe and estepe2
    common/geom/zbound
    real*8 zbound
    geom passes info to our howfar routine
                                           ! Arguments
    real*8 ein, xin, yin, zin,
         uin, vin, win, wtin
    integer iqin,irin
    integer i,j
                                           ! Local variables
    character*24 medarr(1)
    -----
    Open files
    open(UNIT= 6,FILE='egs5job.out',STATUS='unknown')
    call counters_out(0)
    ! Step 2: pegs5-call
!-----
    ==========
    call block_set
                      ! Initialize some general variables
    ==========
    _____
    define media before calling PEGS5
    _____
    nmed=1
    medarr(1)='TA
    do j=1,nmed
      do i=1,24
       media(i,j)=medarr(j)(i:i)
      end do
    end do
! nmed and dunit default to 1, i.e. one medium and we work in cm
    chard(1) = 0.1d0
                       ! optional, but recommended to invoke
                       ! automatic step-size control
    Run KEK version of PEGS5 before calling HATCH
    (method was developed by Y. Namito - 010306)
ļ
    ______
```

```
write(6,100)
100
    FORMAT(' PEGS5-call comes next'/)
    ========
    call pegs5
    =======
! Step 3: Pre-hatch-call-initialization
|-----
    nreg=3
    nreg : number of region
    med(1)=0
    med(3)=0
    med(2)=1
! Vacuum in regions 1 and 3, ta in region 2
    ecut(2)=1.5
! Terminate electron histories at 1.5 MeV in the plate
    pcut(2)=0.1
! Terminate
           photon histories at 0.1 MeV in the plate
           Only needed for region 2 since no transport elsewhere
           ecut is total energy = 0.989 MeV kinetic energy
    Set parameter estepe and estepe2
    _____
    estepe=0.10
    estepe2=0.20
    write(6,110) estepe, estepe2
110
    FORMAT(1X, 'ESTEPE at EKMAX: ',F10.5,' (estepe)',
          /,1X,'ESTEPE at ECUT: ',F10.5,' (estepe2)')
    Random number seeds. Must be defined before call hatch
    or defaults will be used. inseed (1- 2^31)
    _____
    luxlev = 1
    inseed=1
    write(6,120) inseed
   FORMAT(/,' inseed=',I12,5X,
120
            ' (seed for generating unique sequences of Ranlux)')
    =========
    call rluxinit ! Initialize the Ranlux random-number generator
    ==========
|-----
! Step 4: Determination-of-incident-particle-parameters
!-----
! Define initial variables for 20 MeV beam of electrons incident
```

```
! perpendicular to the slab
     iqin=-1
           Incident charge - electrons
ļ
           20 MeV kinetic energy
     ein=20.511
     xin=0.0
     yin=0.0
     zin=0.0
     Incident at origin
     uin=0.0
     vin=0.0
     win=1.0
!
           Moving along z axis
     irin=2
           Starts in region 2, could be 1
!
           weight = 1 since no variance reduction used
     Weight = 1 since no variance reduction used
! Step 5: hatch-call
1-----
! Maximum total energy of an electron for this problem must be
! defined before hatch call
     emaxe = ein
     write(6,130)
130
    format(/' Start tutor1'/' Call hatch to get cross-section data')
     _____
!
     Open files (before HATCH call)
     _____
     open(UNIT=KMPI,FILE='pgs5job.pegs5dat',STATUS='old')
     open(UNIT=KMPO,FILE='egs5job.dummy',STATUS='unknown')
     write(6,140)
140
    FORMAT(/,' HATCH-call comes next',/)
     =======
     call hatch
     =======
     -----
     Close files (after HATCH call)
     _____
     close(UNIT=KMPI)
     close(UNIT=KMPO)
    Pick up cross section data for ta
     write(6,150) ae(1)-0.511, ap(1)
150
    format(/' Knock-on electrons can be created and any electron ',
```

```
*'followed down to' /T40,F8.3,' MeV kinetic energy'/
   *' Brem photons can be created and any photon followed down to',
   */T40,F8.3,' MeV')
! Compton events can create electrons and photons below these cutoffs
! Step 6: Initialization-for-howfar
    zbound=0.1
    plate is 1 mm thick
! Step 7: Initialization-for-ausgab
!-----
! Print header for output - which is all ausgab does in this case
    write(6,160)
   format(/T19, 'Kinetic energy(MeV)', T40, 'charge', T48,
   *'angle w.r.t. z axis-degrees')
|-----
! Step 8: Shower-call
! Initiate the shower 10 times
    do i=1,10
     write(6,170) i
170
     format(' Start history', I4)
     call shower(iqin,ein,xin,yin,zin,uin,vin,win,irin,wtin)
!-----
! Step 9: Output-of-results
l-----
! Note output is at the end of each history in subroutine ausgab
    end do
    stop
    end
!-----last line of main code-----
!-----ausgab.f-----
T-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! Required subroutine for use with the EGS5 Code System
! In general, ausgab is a routine which is called under a series
! of well defined conditions specified by the value of iarg (see the
! egs5 manual for the list). This is a particularly simple ausgab.
! Whenever this routine is called with iarg=3 , a particle has
! been discarded by the user in howfar
! we get ausgab to print the required information at that point
```

```
subroutine ausgab(iarg)
    implicit none
                                     ! Main EGS "header" file
    include 'include/egs5_h.f'
    include 'include/egs5_stack.f'
                                ! COMMONs required by EGS5 code
    integer iarg
                                               ! Arguments
    real*8 angle, ekine
                                      ! Local variables
    if (iarg.eq.3) then
! Angle w.r.t. z axis in degrees
      angle=acos(w(np))*180./3.14159
      if (iq(np).eq.0) then
       ekine=e(np)
      else
       ekine=e(np)-0.511
! Get kinetic energy
      end if
      write(6,100) ekine,iq(np),angle
100
      format(T21,F10.3,T33,I10,T49,F10.1)
    end if
    return
    end
!-----last line of ausgab.f-----
!-----howfar.f------
l-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! -----
! Required (geometry) subroutine for use with the EGS5 Code System
! The following is a general specification of howfar
   given a particle at (x,y,z) in region ir and going in direction
   (u,v,w), this routine answers the question, can the particle go
   a distance ustep without crossing a boundary
         If yes, it merely returns
         If no, it sets ustep=distance to boundary in the current
         direction and sets irnew to the region number on the
         far side of the boundary (this can be messy in general!)
   The user can terminate a history by setting idisc>0. here we
   terminate all histories which enter region 3 or are going
   backwards in region 1
                            1
```

```
| Region 2 | Region 3
   Region 1
                                 | e- or photon ====>
   vacuum
                       Ta
                                        vacuum
subroutine howfar
     implicit none
     include 'include/egs5_h.f'
                                            ! Main EGS "header" file
     include 'include/egs5_epcont.f'
                                     ! COMMONs required by EGS5 code
     include 'include/egs5_stack.f'
     common/geom/zbound
     real*8 zbound
     geom passes info to our howfar routine
     real*8 tval
                                           ! Local variable
     if (ir(np).eq.3) then
       idisc=1
       return
! Terminate this history: it is past the plate
! We are in the Ta plate - check the geometry
     else if (ir(np).eq.2) then
       if (w(np).gt.0.0) then
! Going forward - consider first since most frequent
! tval is dist to boundary in this direction
         tval=(zbound-z(np))/w(np)
         if (tval.gt.ustep) then
           return
! Can take currently requested step
         else
          ustep=tval
           irnew=3
          return
         end if
    end of w(np)>0 case
    Going back towards origin
       else if (w(np).lt.0.0) then
    Distance to plane at origin
         tval=-z(np)/w(np)
         if (tval.gt.ustep) then
          return
    Can take currently requested step
         else
           ustep=tval
           irnew=1
```

```
return
         end if
    End w(np)<0 case</pre>
    Cannot hit boundary
        else if (w(np).eq.0.0) then
       end if
! End of region 2 case
! In regon with source
  This must be a source particle on z=0 boundary
      else if (ir(np).eq.1) then
        if (w(np).gt.0.0) then
         ustep=0.0
         irnew=2
         return
        else
! It must be a reflected particle-discard it
         idisc=1
         return
        end if
! End region 1 case
     end if
      end
          ------last line of howfar.f------
ELEM
&INP EFRACH=0.05, EFRACL=0.20,
      IRAYL=0,IBOUND=0,INCOH=0,ICPROF=0,IMPACT=0 &END
TA
                             TA
TA
ENER
&INP AE=1.50, AP=0.10, UE=20.611, UP=20.0 &END
TEST
&INP &END
PWLF
&INP &END
DECK
&INP &END
```

This user code produces the following output file called **egs5job.out6** (a copy of this file is included with the EGS5 distribion, named **tutor1.out**).

```
PEGS5-call comes next

ESTEPE at EKMAX: 0.10000 (estepe)

ESTEPE at ECUT: 0.20000 (estepe2)

inseed= 1 (seed for generating unique sequences of Ranlux)
```

Start tutor1

Call hatch to get cross-section data

HATCH-call comes next

EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.

Knock-on electrons can be created and any electron followed down to  $$0.989\ \mathrm{MeV}$$  kinetic energy Brem photons can be created and any photon followed down to  $$0.100\ \mathrm{MeV}$$ 

|                | Kinetic energy(MeV) | charge | angle w.r.t. z axis-degrees |
|----------------|---------------------|--------|-----------------------------|
| Start history  | 1                   |        |                             |
| ř              | 3.125               | 0      | 1.4                         |
|                | 0.172               | 0      | 1.7                         |
|                | 14.779              | -1     | 19.9                        |
| Start history  | 2                   |        |                             |
| Ĭ              | 5.841               | 0      | 39.7                        |
|                | 0.337               | 0      | 40.2                        |
|                | 11.707              | -1     | 33.3                        |
| Start history  | 3                   |        |                             |
| ,              | 3.507               | 0      | 21.6                        |
|                | 14.378              | -1     | 58.6                        |
| Start history  | 4                   |        |                             |
|                | 2.446               | 0      | 1.4                         |
|                | 15.503              | -1     | 11.7                        |
| Start history  | 5                   |        |                             |
|                | 0.341               | 0      | 1.4                         |
|                | 17.119              | -1     | 31.9                        |
| Start history  | 6                   | _      |                             |
|                | 17.843              | -1     | 31.1                        |
| Start history  | 7                   | _      | 02.12                       |
|                | 1.480               | 0      | 30.1                        |
|                | 16.508              | -1     | 30.1                        |
| Start history  | 8                   | _      | 33.1                        |
|                | 0.188               | 0      | 34.7                        |
|                | 17.381              | -1     | 33.9                        |
| Start history  | 9                   | =      |                             |
|                | 0.874               | 0      | 1.4                         |
|                | 1.409               | 0      | 1.6                         |
|                | 0.496               | 0      | 64.8                        |
|                | 13.599              | -1     | 64.5                        |
| Start history  |                     | -      | 01.0                        |
| 23410 11120019 | 17.440              | -1     | 69.2                        |
|                | 11.110              | -      | 00.2                        |
|                |                     |        |                             |

By keeping track of many of these histories, we could answer a lot of questions about what comes out the far side of the plate, but it should be recognized that these are all bookkeeping extensions to the problem – the physics itself already accomplished with EGS5 and the relatively small amount of user code listed above. The scoring routine for this problem is the simplest possible; namely, it outputs on the file some of the parameters of the various particles leaving the plate.

In addition, this user code includes examples of the following items that are discussed in detail in the EGS5 User Manual (Appendix B).

- The use of include statements to use values defined by parameter statements and to allow easy insertion of COMMONS.
- The technique required in order to define the array MEDIA.
- The definition of calling PEGS5 to produce material data used by user code.
- The definition of seeds for the RANLUX random number generator.
- The definition of calling parameters for the SHOWER routine.
- A very simple AUSGAB routine.
- A simple HOWFAR routine.

### 3.2 Tutorial 2 (Program tutor2.f)

In this example we use the same geometry as above, but we want the fraction of the incident energy that is reflected from, transmitted through, and deposited in the plate. The coding is essentially the same as tutor1 except that COMMON/SCORE/ and a new array ENCORE are defined at Step 1 in the sequence of steps required in the construction of a user code MAIN program, as described in the EGS5 User Manual of Appendix B. The latter is initialized to zero (Step 7) and subsequently output on the file (Step 9). The AUSGAB routine is considerably different as shown below.

```
! For IARG=0, an electron or photon step is about to occur and we
! score the energy deposited, if any. Note that only electrons
! deposit energy during a step, and due to our geometry, electrons
! only take steps in region 2 - however there is no need to check.
! For IARG=1,2 and 4, particles have been discarded for falling
! below various energy cutoffs and all their energy is deposited
! locally (in fact EDEP = particles kinetic energy).
! For IARG=3, we are discarding the particle since it is in
  region 1 or 3, so score its energy.
subroutine ausgab(iarg)
     implicit none
     include 'include/egs5_h.f'
                                           ! Main EGS "header" file
     include 'include/egs5_epcont.f'
                                     ! epcont contains edep
     include 'include/egs5_stack.f'
                                     ! stack contains x, y, z, u, v,
                                     ! w, ir and np
     common/score/escore(3)
     real*8 escore
     integer iarg
                                                      ! Arguments
     integer irl
                                                 ! Local variables
     if (iarg.le.4) then
       irl=ir(np)
   Pick up current region number
       escore(irl)=escore(irl)+edep
     end if
     return
     end
!------last line of ausgab.f-------
```

AUSGAB is still very simple since all we need to do is to keep track of the energy deposited in the three regions. The variable EDEP (available through COMMON/EPCONT/) contains the energy deposited during a particular step for a variety of different IARG-situations, as described in the comments above and further elaborated upon in Appendix B. In this example, but not always, we can sum EDEP for any value of IARG up to 4. The following is the output provided by **tutor2** (named tutor2.out in distribution file).

```
PEGS5-call comes next
```

ESTEPE at EKMAX: 0.10000 (estepe)
ESTEPE at ECUT: 0.20000 (estepe2)

```
inseed= 1 (seed for generating unique sequences of Ranlux)
ranlux luxury level set by rluxgo : 1 p= 48
ranlux initialized by rluxgo from seed 1

Start tutor2
Call hatch to get cross-section data

HATCH-call comes next

EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.

Knock-on electrons can be created and any electron followed down to

0.989 MeV kinetic energy

Brem photons can be created and any photon followed down to

0.100 MeV
```

```
Fraction of energy reflected from plate= 0.857%
Fraction of energy deposited in plate= 12.622%
Fraction of energy transmitted through plate= 86.521%

Total fraction of energy accounted for= 100.000%
```

#### 3.3 Tutorial 3 (Program tutor3.f)

The geometry in this example is similar to the previous two but the problem is very different. Here we investigate the energy response function for a 2.54 cm thick slab of NaI when a 5 MeV beam of photons is incident on it. In this case the final scoring and binning is done at the end of each history (i.e., after all the descendants from each initial photon have been tracked completely). The following shows the change required (at Step 8 and 9) and the new AUSGAB routine.

```
! Step 8: Shower-call
!-----
! Initiate the shower ncase times
    ncase=10000
    do i=1,ncase
        ehist = 0.0
! Zero energy deposited in this history
        call shower(iqin,ein,xin,yin,zin,uin,vin,win,irin,wtin)
! Increment bin corresponding to energy deposited in this history
        ibin= min0 (int(ehist/bwidth + 0.999), 25)
        if (ibin.ne.0) then
        ebin(ibin)=ebin(ibin)+1
        end if
end do
```

```
! Step 9: Output-of-results
l-----
! Pick up maximum bin for normalization
    binmax=0.0
    do j=1,25
      binmax=max(binmax,ebin(j))
    end do
    write(6,160) ein,zbound
    format(/' Response function'/' for a',F8.2,' MeV pencil beam of',
   *'photons on a',F7.2,' cm thick slab of NaI'/ T6,
   *'Energy counts/incident photon')
    do j=1,48
      line(j)=', '
    end do
! Blank entire output array
    do j=1,25
      icol=int(ebin(j)/binmax*48.0+0.999)
      if (icol.eq.0) icol=1
      line(icol)='*'
! Load output array at desired location
      write(6,170) bwidth*j,ebin(j)/float(ncase),line
170
      format(F10.2,F10.4,48A1)
      line(icol)=','
! Reblank
    end do
    stop
    end
!-----
!-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! Required subroutine for use with the EGS5 Code System
! -----
! In this AUSGAB routine for TUTOR3, we score the energy deposited
! in the detector region, region 2
! For IARG=0, an electron or photon step is about to occur and we
! score the energy deposited, if any. Note that only electrons
! deposit energy during a step, and due to our geometry, electrons
! only take steps in region 2 - however there is no need to check
 this here
! For IARG=1,2 and 4, particles have been discarded for falling below
! various energy cutoffs and all their energy is deposited locally
 (in fact EDEP = particles kinetic energy). This only happens in
```

l -----

```
! region 2. For IARG=3, we are discarding the particle since it is
  in region 1 or 3, so we do not score its energy
! EHIST keeps track of the total energy deposited during each
! history. In the main routine it is zeroed at the start of each
! history and binned at the end of each history.
subroutine ausgab(iarg)
     implicit none
     include 'include/egs5_h.f'
                                           ! Main EGS "header" file
                                     ! epcont contains edep
     include 'include/egs5_epcont.f'
     include 'include/egs5_stack.f'
                                     ! stack contains x, y, z, u, v,
                                     ! w, ir and np
     common/score/ehist
     real*8 ehist
     integer iarg
                                                      ! Arguments
     if (iarg.le.2 .or. iarg.eq.4) then
       ehist=ehist + edep
     end if
     return
     end
!-----last line of ausgab.f-----
The following is the output provided by tutor3 (named tutor3.out in distribution file).
PEGS5-call comes next
ESTEPE at EKMAX: 0.10000 (estepe)
ESTEPE at ECUT:
                  0.20000 (estepe2)
inseed=
                       (seed for generating unique sequences of Ranlux)
ranlux luxury level set by rluxgo : 1
                                      p= 48
ranlux initialized by rluxgo from seed
Start tutor3
Call hatch to get cross-section data
HATCH-call comes next
EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
```

Knock-on electrons can be created and any electron followed down to  $$0.189~{\rm MeV}$$  kinetic energy Brem photons can be created and any photon followed down to  $$0.010~{\rm MeV}$$ 



## 3.4 Tutorial 4 (Program tutor4.f)

This program examines the <u>dependence of EGS5 results on electron step-size</u>. Recall that for electrons with low initial energies, the limitations inherent in the EGS4 transport mechanics mandated that the user specify quite small electron step-sizes (defined in terms of the fractional energy loss over a step, ESTEPE) in order to assure converged results. As noted in Chapter 2, the transport mechanics algorithm of EGS5 naturally mitigates these dependencies. In addition, EGS5 provides several prescriptions for user selection of step-sizes based on material and region geometries.

As in EGS4, the program **tutor4.f** is based on **tutor2.f**, but <u>with a 2 mm slab of silicon as the medium and 2.0 MeV for the incident electron energy.</u> In addition to scoring transmitted, deposited and reflected energy, the number of transmitted and reflected electrons are tallied in **tutor4.f**. The

example problem actually consists of four distinct runs, two using step-size specification based on fractional energy loss (EFRACH and EFRACL) and two using a user specified "characteristic dimension" for the given medium.

Recall that multiple-scattering step-sizes in EGS5 are defined in terms of the scattering strength accumulated over the given distance, and can be specified by the parameters EFRACH and EFRACL, which correspond to the fractional energy loss over the step at the upper energy range of the problem UE and the lower energy limit AE, respectively. Thus EFRACH and EFRACL, which are set in the PEGS input file, pgs5job.pegs5inp, correspond to ESTEPE from EGS4. In the first tutor4.f example, the material in the slab is named "SI with long steps" and EFRACH and EFRACL are set to 0.30. It should be noted that these values were chosen to be artificially high (the defaults in EGS5 are 0.05 and 0.20, respectively) to help illustrate step-size dependence, since on this problem, EGS5 shows little dependence on step-size with the default values). In the second example, the material is switched to one named "SI with short steps," and EFRACH and EFRACL are set to be 0.01 and 0.02, respectively. (Thus this example problem also illustrates a method for creating different "media" which are actually the same material with different physics options invoked.)

In the third pass through **tutor4.f**, the first material is again used, but the step-size is selected by the specification of a "characteristic dimension," CHARD. When CHARD is positive, EGS5 ignores step-sizes which correspond to EFRACH and EFRACL and instead automatically chooses values of the initial scattering strength which provide converged values for electron tracklength (to within 1-2% accuracy) for electrons impinging on an semi-infinite cylinder of diameter CHARD. The final example in **tutor4.f** demonstrates the mechanism for specifying smaller steps by specifying region dependent scale factors K1HSCL and K1LSCL, if greater than 1-2% accuracy is required.

Following is the source code (except for subroutine HOWFAR, which is not changed from tutor2.f) used by tutor4.f.

```
|-----
!----- main code -----
!-----
! Step 1: Initialization
    implicit none
    EGS5 COMMONs
    -----
    include 'include/egs5_h.f'
                                       ! Main EGS "header" file
    include 'include/egs5_bounds.f'
    include 'include/egs5_media.f'
    include 'include/egs5_misc.f'
    include 'include/egs5_thresh.f'
    include 'include/egs5_useful.f'
    include 'include/egs5_usersc.f'
    include 'include/randomm.f'
    bounds contains ecut and pcut
    media contains the array media
    misc contains med
    thresh contains ae and ap
    useful contains RM
    usersc contains estepe and estepe2
    common/geom/zbound
    real*8 zbound
    geom passes info to our howfar routine
    common/score/escore(3),iscore(3)
    real*8 escore
    integer iscore
    real*8 ein,xin,yin,zin,
                                            ! Arguments
          uin, vin, win, wtin
    integer iqin,irin
                                       ! Local variables
    real*8 anorm, total
   * tarray(2),tt,tt0,tt1,cputime
    integer loop, i, j, ncase
    character*24 medarr(2)
    real etime
    _____
```

```
!
    Open files
     open(UNIT= 6,FILE='egs5job.out',STATUS='unknown')
     do loop = 1,4
     _____
     call counters_out(0)
     ==============
!-----
! Step 2: pegs5-call
l-----
     ==========
     call block_set
                               ! Initialize some general variables
     ==========
! nmed and dunit default to 1, i.e. one medium and we work in cm
     if(loop.eq.3) then
      chard(1) = 0.20d0
                          ! optional, but recommended to invoke
      chard(2) = 0.20d0
                          ! automatic step-size control
     else if(loop.eq.4) then
      chard(1) = 0.20d0
                         ! optional, but recommended to invoke
      chard(2) = 0.20d0
                         ! automatic step-size control
      k1Hscl(2) = 0.25d0
      k1Lsc1(2) = 0.25d0
                       ! to reduce step size in a region
      chard(1) = 0.00d0
                          ! optional, but recommended to invoke
                          ! automatic step-size control
      chard(2) = 0.00d0
     write(6,100) loop, chard(1)
100 FORMAT(72('*'),/,
    *'Initializing EGS5, loop = ',I1,': charD = ',f5.2,/,
    *72('*'),/)
     if(loop.eq.1) then
ļ
     define media before calling PEGS5
     nmed=2
     medarr(1)='SI with long steps
     medarr(2)='SI with short steps
     do j=1,nmed
      do i=1,24
        media(i,j)=medarr(j)(i:i)
      end do
     end do
```

```
Run KEK version of PEGS5 before calling HATCH
     (method was developed by Y. Namito - 010306)
     write(6,110)
     FORMAT(' PEGS5-call comes next'/)
110
     _____
     call pegs5
     =======
     endif
     if(loop.lt.3) then
       write(6,120) loop,medarr(loop)
     FORMAT(' Using media number ',i1,', ',a24,' for this run',/)
120
     else if(loop.eq.4) then
       write(6,130) k1Hscl(2),k1Lscl(2)
     FORMAT(' Scaling step-sizes by ',F4.2,' and ',F4.2,' at upper ',
    * ' and lower energy limits',/)
     endif
! Step 3: Pre-hatch-call-initialization
     nreg=3
     nreg: number of region
     med(1)=0
     med(3)=0
     if(loop.eq.2) then
       med(2)=2
     else
       med(2)=1
     endif
! Vacuum in regions 1 and 3, Si in region 2
     ecut(2)=0.700
! Terminate electron histories at .700 MeV in the plate
     pcut(2)=0.010
! Terminate
             photon histories at 0.01 MeV in the plate
!
             Only needed for region 2 since no transport elsewhere
ļ
             ecut is total energy = 0.189 MeV kinetic energy
     _____
     Set parameter estepe and estepe2
     _____
     estepe=0.01
     estepe2=0.05
     write(6,140) estepe, estepe2
140
     FORMAT(1X, 'ESTEPE at EKMAX: ',F10.5,' (estepe)',
```

```
/,1X,'ESTEPE at ECUT: ',F10.5,' (estepe2)')
     Random number seeds. Must be defined before call hatch
     or defaults will be used. inseed (1- 2^31)
     luxlev=1
     inseed=1
     kount=0
     mkount=0
     do i = 1, 25
       isdext(i) = 0
     end do
     write(6,150) inseed
150 FORMAT(/,' inseed=',I12,5X,
             ' (seed for generating unique sequences of Ranlux)')
     call rluxinit! Initialize the Ranlux random-number generator
! Step 4: Determination-of-incident-particle-parameters
! Define initial variables for 2 MeV beam of electrons incident
! perpendicular to the slab
     iqin=-1
           Incident charge - electrons
           2 MeV kinetic energy
     ein=2.d0 + RM
     xin=0.0
     yin=0.0
     zin=0.0
     Incident at origin
     uin=0.0
     vin=0.0
     win=1.0
           Moving along z axis
     irin=2
           Starts in region 2, could be 1
           weight = 1 since no variance reduction used
     Weight = 1 since no variance reduction used
!-----
! Step 5: hatch-call
I-----
! Maximum total energy of an electron for this problem must be
! defined before hatch call
     emaxe = ein
```

```
write(6,160)
160
    FORMAT(/' Start tutor4'/' Call hatch to get cross-section data')
     .____
    Open files (before HATCH call)
    ______
    open(UNIT=KMPI,FILE='pgs5job.pegs5dat',STATUS='old')
    open(UNIT=KMPO,FILE='egs5job.dummy',STATUS='unknown')
    write(6,170)
170
    FORMAT(/,' HATCH-call comes next',/)
    ========
    call hatch
    ========
    Close files (after HATCH call)
    close(UNIT=KMPI)
    close(UNIT=KMPO)
   Pick up cross section data for ta
    write(6,180) ae(1)-RM, ap(1)
    FORMAT(/' Knock-on electrons can be created and any electron',
   *'followed down to' /T40,F8.3,' MeV kinetic energy'/
   *' Brem photons can be created and any photon followed down to',
   */T40,F8.3,' MeV')
! Compton events can create electrons and photons below these cutoffs
! Step 6: Initialization-for-howfar
!-----
    zbound=0.2
    plate is 2 mm thick
|-----
! Step 7: Initialization-for-ausgab
    do i=1,3
      iscore(i)=0
      escore(i)=0.d0
! Zero scoring array before starting
    end do
|-----
! Step 8: Shower-call
|-----
    tt=etime(tarray)
    tt0=tarray(1)
```

```
! Initiate the shower ncase times
    ncase=50000
    do i=1,ncase
     call shower(iqin,ein,xin,yin,zin,uin,vin,win,irin,wtin)
    end do
    tt=etime(tarray)
    tt1=tarray(1)
    cputime=tt1-tt0
!-----
! Step 9: Output-of-results
I-----
    write(6,190) cputime,ncase
190
    FORMAT('CPU time = ',1X,G15.5,' sec for ',18,' cases')
    anorm = 100./float(ncase)
    write(6,200) iscore(1)*anorm,iscore(3)*anorm
200
   FORMAT(/,
   *' Fraction of electrons reflected from plate=',T50,F10.1,'%',/,
   *' Fraction of electrons transmitted through plate=',T50,F10.1,'%')
! Normalize to % of total input energy
    anorm = 100./((ein-RM)*float(ncase))
    total=0.0
    do i=1.3
     total=total+escore(i)
    write(6,210) (escore(i)*anorm,i=1,3),total*anorm
210 FORMAT(/,/,
   * 'Fraction of energy reflected from plate=',T50,F10.1,'%'
   */ 'Fraction of energy deposited in plate=',T50,F10.1,'%'/
   *' Fraction of energy transmitted through plate=',T50,F10.1,'%'/
   *T50,11('-')/' Total fraction of energy accounted for=', T50,
   *F10.1,'%'/)
    end do ! do four times through
    stop
       ------last line of main code-----
!-----
!-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! -----
! Required subroutine for use with the EGS5 Code System
l -----
! In this AUSGAB routine for TUTOR4, we score the energy deposited
```

```
in the various regions and count transmitted and reflected
  electrons.
! For IARG=0, an electron or photon step is about to occur and we
! score the energy deposited, if any. Note that only electrons
! deposit energy during a step, and due to our geometry, electrons
! only take steps in region 2 - however there is no need to check.
! For IARG=1,2 and 4, particles have been discarded for falling
! below various energy cutoffs and all their energy is deposited
! locally (in fact EDEP = particles kinetic energy).
! For IARG=3, we are discarding the particle since it is in
! region 1 or 3, so score its energy, and if it is an electron,
! score it's region.
subroutine ausgab(iarg)
     implicit none
                                            ! Main EGS "header" file
     include 'include/egs5_h.f'
     include 'include/egs5_epcont.f'
                                     ! COMMONs required by EGS5 code
     include 'include/egs5_stack.f'
     common/score/escore(3), iscore(3)
     real*8 escore
     integer iscore
     integer iarg
                                                       ! Arguments
     integer irl
                                                 ! Local variables
     if (iarg.le.4) then
       irl=ir(np)
  Pick up current region number
       escore(irl)=escore(irl)+edep
   Pick up energy deposition/transmission/reflection
       if (iarg.eq.3 .and. iq(np).eq.-1) then
         iscore(irl)=iscore(irl)+1
   Pick up electron transmission/reflection
       end if
     end if
     return
     end
!----- of ausgab.f-----
```

Following is the PEGS input file required by **tutor4.f**, which specifies two versions of the same material (silicon), one with long step-sizes and one with short step-sizes.

```
ELEM
&INP EFRACH=0.30, EFRACL=0.30,
      IRAYL=0, IBOUND=0, INCOH=0, ICPROF=0, IMPACT=0 & END
SI with long steps
                                                SI
SI
ENER
&INP AE=0.700, AP=0.010, UE=2.521, UP=2.1 &END
PWLF
 &INP
       &END
DECK
 &INP
       &END
ELEM
&INP EFRACH=0.01, EFRACL=0.01,
      IRAYL=0.IBOUND=0.INCOH=0.ICPROF=0.IMPACT=0 &END
SI with short steps
SI
ENER
&INP AE=0.700, AP=0.010, UE=2.521, UP=2.1 &END
PWLF
 &INP
       &END
DECK
 &INP
       &END
```

Following is the output produced by **tutor4.f**, showing that the severe step-size dependence exhibited by EGS4 on this problem is greatly diminished in EGS5. Recall that in the **tutor4** example of EGS4, runs using the default step-size algorithm predicted 1.3% reflection and 49.21.0%, EGS4 returned values of 6.4% reflection and 61.3% transmission. In contrast, EGS5 runs using very long multiple scattering steps (corresponding to 30% energy loss over the steps, loop 1 of the problem) yield values for reflection (8.3%) and transmission (66.6%) which are fairly close to EGS5 results using 1% energy loss (7.6% and 64.3% for reflection and transmission, respectively, loop 2 of the problem). This demonstrates the power of the modified random hinge approach. In addition, the significant discrepancies between the 1% energy loss results from EGS4 and EGS5 further illustrate the shortcomings of the EGS4 transport mechanics model, even at very small electron step sizes.

The results from the third loop of this example show that the expected 1-2are determined automatically by EGS5 using the characteristic dimension of 2 mm for this problem. Note that for this distance and at this energy, the step-sizes selected by EGS5 for silicon are roughly 15-20 times as large as those used in the 1% energy loss run (loop two), thus providing significant speedup (a factor of 4, as seen from the output) for calculations at this level of accuracy.

The results from loop four of this problem demonstrate that by using K1HSCL and K1LSCL (see Appendix B for details) to scale step-sizes, a higher degree of accuracy can be recovered without the complete loss of the efficiency provided by the characteristic dimension method.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

PEGS5-call comes next

Using media number 1, SI with long steps for this run

ESTEPE at EKMAX: 0.01000 (estepe)
ESTEPE at ECUT: 0.05000 (estepe2)

inseed= 1 (seed for generating unique sequences of Ranlux)

ranlux luxury level set by rluxgo : 1 p= 48 ranlux initialized by rluxgo from seed

Start tutor4

Call hatch to get cross-section data

HATCH-call comes next

EGS SUCCESSFULLY 'HATCHED' FOR 2 MEDIA.

WARNING in RMSFIT: no characteristic dimension input for media 1

Using old data from pgs5job.msfit with:

efrach, efrachl = 3.0000E-01 3.0000E-01

WARNING in RMSFIT: no characteristic dimension input for media 2

Using old data from pgs5job.msfit with:

efrach, efrachl = 1.0000E-02 1.0000E-02

Knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy

Brem photons can be created and any photon followed down to

0.010 MeV

CPU time = 24.557 sec for 50000 cases

| Fraction of electrons reflected from plate=      | 8.3%   |
|--------------------------------------------------|--------|
| Fraction of electrons transmitted through plate= | 66.6%  |
|                                                  |        |
|                                                  |        |
| Fraction of energy reflected from plate=         | 4.0%   |
| Fraction of energy deposited in plate=           | 59.3%  |
| Fraction of energy transmitted through plate=    | 36.7%  |
| -                                                |        |
| Total fraction of energy accounted for=          | 100.0% |
|                                                  |        |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Initializing EGS5, loop = 2: charD = 0.00

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Using media number 2, SI with short steps for this run

ESTEPE at EKMAX: 0.01000 (estepe)
ESTEPE at ECUT: 0.05000 (estepe2)

inseed= (seed for generating unique sequences of Ranlux) ranlux luxury level set by rluxgo : 1 p = 48ranlux initialized by rluxgo from seed Start tutor4 Call hatch to get cross-section data HATCH-call comes next EGS SUCCESSFULLY 'HATCHED' FOR 2 MEDIA. WARNING in RMSFIT: no characteristic dimension input for media Using old data from pgs5job.msfit with: efrach, efrachl = 3.0000E-01 3.0000E-01 WARNING in RMSFIT: no characteristic dimension input for media Using old data from pgs5job.msfit with: efrach, efrachl = 1.0000E-02 1.0000E-02 Knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy Brem photons can be created and any photon followed down to 0.010 MeV CPU time = 130.60 50000 cases sec for Fraction of electrons reflected from plate= 7.6% Fraction of electrons transmitted through plate= 64.3% Fraction of energy reflected from plate= 3.4% Fraction of energy deposited in plate= 62.1% Fraction of energy transmitted through plate= 34.5% Total fraction of energy accounted for= 100.0% \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Initializing EGS5, loop = 3: charD = 0.20 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ESTEPE at EKMAX: 0.01000 (estepe) ESTEPE at ECUT: 0.05000 (estepe2) inseed= (seed for generating unique sequences of Ranlux) 1 ranlux luxury level set by rluxgo: 1 p = 48ranlux initialized by rluxgo from seed Start tutor4 Call hatch to get cross-section data HATCH-call comes next

2 MEDIA.

EGS SUCCESSFULLY 'HATCHED' FOR

Knock-on electrons can be created and any electron followed down to  $$\textsc{0.189}$\ \textsc{MeV}$$  kinetic energy

Brem photons can be created and any photon followed down to  $$0.010\ \text{MeV}$$ 

<u>CPU time = 28.263</u> <u>sec</u> for 50000 cases

Fraction of electrons reflected from plate= 7.9%
Fraction of electrons transmitted through plate= 65.1%

Fraction of energy reflected from plate= 3.5%
Fraction of energy deposited in plate= 61.1%
Fraction of energy transmitted through plate= 35.3%

Total fraction of energy accounted for= 100.0%

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Initializing EGS5, loop = 4: charD = 0.20

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### Scaling step-sizes by 0.25 and 0.25 at upper and lower energy limits

ESTEPE at EKMAX: 0.01000 (estepe)
ESTEPE at ECUT: 0.05000 (estepe2)

inseed= 1 (seed for generating unique sequences of Ranlux)

Start tutor4

Call hatch to get cross-section data

HATCH-call comes next

EGS SUCCESSFULLY 'HATCHED' FOR 2 MEDIA.

Knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy

Brem photons can be created and any photon followed down to

0.010 MeV

<u>CPU time = 53.031 sec</u> for 50000 cases

Fraction of electrons reflected from plate= 7.5%
Fraction of electrons transmitted through plate= 64.1%

Fraction of energy reflected from plate= 3.3%
Fraction of energy deposited in plate= 62.4%
Fraction of energy transmitted through plate= 34.4%

Total fraction of energy accounted for= 100.0%

### 3.5 Tutorial 5 (Program tutor5.f)

In this program we give an example that includes Rayleigh scattering and which makes use of a variable called LATCH (contained in COMMON/STACK/). LATCH can be set for any particle on the "stack" of particles being transported, and it is passed on to all its progeny. This provides a simple procedure for keeping track of the histories of particles. In this case we make use of LATCH to keep track of how often photons from an incident 50 keV beam are Compton or Rayleigh scattered while passing through a 0.5 cm slab of water.

The program also demonstrates the use of the IAUSFL array of flags (in COMMON/EPCONT/). By setting the appropriate flags, the user can cause the EGS5 system to call the AUSGAB subroutine in any combination of 31 well specified situations (see Appendix B). By default, EGS calls AUSGAB only 5 out of the possible 31 situations. Here, by setting IAUSFL(18) and IAUSFL(24) from 0 (default) to 1 in the main program, we cause EGS to call AUSGAB with IARG=17 and IARG=23 (i.e., just before a Compton or a Rayleigh scattering event, respectively). We make use of these calls to set some flags associated with each photon rather than for scoring any variables. A complete listing of tutor5.f, except for HOWFAR routine which is similar to the other examples, is given below.



implicit none

```
EGS5 COMMONs
     -----
     include 'include/egs5_h.f'
                                               ! Main EGS "header" file
     include 'include/egs5_bounds.f'
     include 'include/egs5_epcont.f'
     include 'include/egs5_media.f'
     include 'include/egs5_misc.f'
     include 'include/egs5_stack.f'
     include 'include/egs5_thresh.f'
     include 'include/egs5_useful.f'
     include 'include/egs5_usersc.f'
     include 'include/randomm.f'
     bounds contains ecut and pcut
     epcont contains iausfl
     media contains the array media
     misc contains med
     stack contains latchi
     thresh contains ae and ap
     useful contains RM
     usersc contains estepe and estepe2
     common/geom/zbound
     real*8 zbound
     geom passes info to our howfar routine
     common/score/count(3),entot(3)
     real*8 count, entot
     real*8 ein,xin,yin,zin,
                                         ! Arguments
            uin, vin, win, wtin
     integer iqin,irin
     real*8 anorm
                                              ! Local variables
     integer i,j,ncase
     character*24 medarr(1)
!
     Open files
     open(UNIT= 6,FILE='egs5job.out',STATUS='unknown')
     _____
     call counters_out(0)
     _____
! Step 2: pegs5-call
```

```
call block_set
                                 ! Initialize some general variables
     _____
     define media before calling PEGS5
     _____
     nmed=1
     medarr(1) = 'H20
     do j=1,nmed
       do i=1,24
        media(i,j)=medarr(j)(i:i)
       end do
     end do
! nmed and dunit default to 1, i.e. one medium and we work in cm
                          ! optional, but recommended to invoke
     chard(1) = 0.5d0
                          ! automatic step-size control
     Run KEK version of PEGS5 before calling HATCH
     (method was developed by Y. Namito - 010306)
     write(6,100)
100
    FORMAT(' PEGS5-call comes next'/)
     =======
     call pegs5
     ========
|-----
! Step 3: Pre-hatch-call-initialization
     nreg=3
     nreg: number of region
     med(1)=0
     med(3)=0
     med(2)=1
! Regions 1 and 3 are vacuum, region 2, H2O
     ecut(2)=1.5
     Terminate electron histories at 1.5 MeV in the slab
     pcut(2)=0.010
     Terminate
                photon histories at 0.01 MeV in the slab
     iraylr(2)=1
     Turn on rayleigh scattering in the slab
! Note, above three parameters need to be set for all regions in which
! there is particle transport - just region 2 in this case
```

```
Set parameter estepe and estepe2
    estepe=0.10
    estepe2=0.20
    write(6,110) estepe, estepe2
    FORMAT(1X, 'ESTEPE at EKMAX: ',F10.5,' (estepe)',
          /,1X,'ESTEPE at ECUT: ',F10.5,' (estepe2)')
    Random number seeds. Must be defined before call hatch
    or defaults will be used. inseed (1- 2^31)
    _____
    luxlev=1
    inseed=1
    write(6,120) inseed
   FORMAT(/,' inseed=',I12,5X,
           ' (seed for generating unique sequences of Ranlux)')
    _____
    call rluxinit ! Initialize the Ranlux random-number generator
    ==========
! Step 4: Determination-of-incident-particle-parameters
!-----
! Define initial variables for 50 keV beam of photons normally incident
! on the slab
    iqin=0
    Incident photons
           50 keV
    ein=0.050
    xin=0.0
    yin=0.0
    zin=0.0
    Incident at origin
    uin=0.0
    vin=0.0
    win=1.0
    Moving along z axis
    irin=2
    Starts in region 2, could be 1
    wtin=1.0
    weight = 1 since no variance reduction used
    latchi=0
    latch set to zero at start of each history
!-----
! Step 5: hatch-call
```

```
-----
! Maximum total energy of an electron for this problem must be
! defined before hatch call
     emaxe = ein + RM
     write(6,130)
130
    format(/' Start tutor5'/' Call hatch to get cross-section data')
ı
!
     Open files (before HATCH call)
     open(UNIT=KMPI,FILE='pgs5job.pegs5dat',STATUS='old')
     open(UNIT=KMPO,FILE='egs5job.dummy',STATUS='unknown')
    write(6,140)
140
    format(/,' HATCH-call comes next',/)
     =======
     call hatch
     =======
     ._____
    Close files (after HATCH call)
     close(UNIT=KMPI)
    close(UNIT=KMPO)
   Pick up cross section data for water
    write(6,150) ae(1)-0.511, ap(1)
150 format(/' Knock-on electrons can be created and any electron',
    *'followed down to' /T40,F8.3,' MeV kinetic energy'/
    *' Brem photons can be created and any photon followed down to',
    */T40,F8.3,' MeV')
! Compton events can create electrons and photons below these cutoffs
! Step 6: Initialization-for-howfar
!-----
    zbound=0.5
    Plate is 0.5 cm thick
! Step 7: Initialization-for-ausgab
!-----
    do i=1,3
      count(i)=0.0
      entot(i)=0.0
! Zero scoring array at start
     end do
! We want to set flags in ausgab every time a rayleigh scattering
```

```
! or Compton scattering occurs. Set the flags in iausfl(comin
 epcont) to signal the egs system to make the appropriate calls
    iausfl(18)=1
    iausfl(24)=1
! Step 8: Shower-call
!-----
! Initiate the shower ncase times
    ncase=10000
    do i=1,NCASE
      call shower(iqin,ein,xin,yin,zin,uin,vin,win,irin,wtin)
    end do
!-----
! Step 9: Output-of-results
l-----
! Normalize to % of photon number
    anorm = 100./float(ncase)
    do i=1,3
      if (count(i).ne.0) then
       entot(i)=entot(i)/count(i)
   Get average energies
      end if
    end do
    write(6,160) ein*1000.,zbound, pcut(2), (anorm*count(i),entot(i),
   *i=1,3)
format(/' For', F6.1,' keV photons incident on', F4.1,'cm of H2O',
   *' with PCUT=',F5.3,' MeV' //' Transmitted primaries=',T40,F8.2,
   *'% ave energy=',F10.3,' MeV'// 'Fraction Rayleigh scattering=',
   *T40,F8.2,'% ave energy=',F10.3,' MeV' //
   *' Fraction Compton scattering only=',T40,F8.2,'% ave energy=',
   *F10.3, 'MeV'//)
    stop
    end
!------last line of main code------
!-----ausgab.f-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! Required subroutine for use with the EGS5 Code System
l -----
! In this AUSGAB routine for TUTOR5 we both set flags whenever there is
! a scattering event and then count histories when they have come
! through the slab , according to what kind of scattering they have
! undergone.
! The logic is as follows
```

```
set FLAG2 if a Rayleigh event occurs
  The FLAGS are the units and thousands digits in the parameter LATCH
  When a history is terminated, increment various counters according
  to whether no flags are set - i.e. its a primary, FLAG2 is set,
  i.e. it has Rayleigh scattered or FLAG1 is set and FLAG2 is not set
   i.e. only Compton scattering has occurred.
subroutine ausgab(iarg)
     implicit none
     include 'include/egs5_h.f'
                                              ! Main EGS "header" file
     include 'include/egs5_stack.f'
                                        ! COMMONs required by EGS5 code
     common/score/count(3),entot(3)
     real*8 count, entot
     integer iarg
                                                          ! Arguments
     integer jj
                                                     ! Local variable
     if (iarg.eq.17) then
! A Compton scatter is about to occur
       latch(np)=latch(np)+1
     else if (iarg.eq.23) then
! A Rayleigh scatter is about to occur
       latch(np)=latch(np)+1000
   If a history has terminated because leaving the slab, score it
! Particle has left slab
     else if (iarg .eq. 3) then
       if (ir(np).eq.3 .or. ir(np) .eq. 1) then
    It is transmitted or reflected
         jj=0
         if (latch(np) .eq. 0) then
      No scattering - a primary
           jj=1
         else if (mod(latch(np),10000)-mod(latch(np),100) .ne. 0) then
      at least one Rayleigh scatter
           jj=2
         else if (mod(latch(np),100) .ne. 0) then
      at least one Compton scatter without Rayleigh
      debug
         else
           write(6,1080) jj,latch(np)
1080
           format(' jj,latch(np)=',2I10)
         end if
         if (jj .ne. 0) then
```

set FLAG1 if a Compton event occurs

```
count(jj) = count(jj) + 1.
           entot(jj) = entot(jj) + e(np)
         end if
    End region 3 block
       end if
! End iarg 3 block
     end if
     return
     end
!-----last line of ausgab.f-----
Following is the output provided by tutor5.f.
PEGS5-call comes next
ESTEPE at EKMAX:
                   0.10000 (estepe)
ESTEPE at ECUT:
                   0.20000 (estepe2)
                        (seed for generating unique sequences of Ranlux)
inseed=
                 1
ranlux luxury level set by rluxgo : 1
                                        p= 48
ranlux initialized by rluxgo from seed
Start tutor5
Call hatch to get cross-section data
HATCH-call comes next
RAYLEIGH OPTION REQUESTED FOR MEDIUM NUMBER 1
EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
Knock-on electrons can be created and any electron followed down to
```

For 50.0 keV photons incident on 0.5cm of H2O with PCUT=0.010 MeV

Brem photons can be created and any photon followed down to

| 88.89% | ave energy= | 0.050 MeV                                              |
|--------|-------------|--------------------------------------------------------|
| 0.95%  | ave energy= | 0.049 MeV                                              |
| 8.60%  | ave energy= | 0.046 MeV                                              |
|        | 0.95%       | 88.89% ave energy= 0.95% ave energy= 8.60% ave energy= |

0.010 MeV kinetic energy

0.010 MeV

## 3.6 Tutorial 6 (Program tutor6.f)



One of the important features of the EGS5 Code System is that the user has direct control over the geometry in which the radiation transport takes place, and rather complex geometries can be described in a very simple manner with the aid of geometry subprograms. Subroutine HOWFAR, in the previous examples, was made more detailed than necessary for demonstration purposes. One can greatly simplify things, particularly for the simple slab geometry case, as shown in the following excerpts from **tutor6**.

```
tutor6.f *
  An EGS5 user code. It lists the particles escaping from the back
  of a 1 mm Ta plate when a pencil beam of 20 MeV electrons
  is incident on it normally.
  NOTE: This program is the same as TUTOR1.f except that the
         geometry subroutine (HOWFAR) is simplified by the use of
         the general purpose geometry subroutines PLAN2P.
! Step 6: Initialization-for-howfar
! Define the coordinates and the normal vectors for the two planes.
! Information required by howfar (and auxiliary geometry subprograms)
! and passed through common/pladta/
! First plane (the x-y plane through the origin)
     pcoord(1,1)=0.0
     pcoord(2,1)=0.0
     pcoord(3,1)=0.0
! Coordinates
     pnorm(1,1) = 0.0
     pnorm(2,1) = 0.0
     pnorm(3,1) = 1.0
! Normal vectors
! Second plane (note: slab is 1 mm thick)
     pcoord(1,2)=0.0
     pcoord(2,2)=0.0
     pcoord(3,2)=0.1
```

```
! Coordinates
     pnorm(1,2) = 0.0
     pnorm(2,2) = 0.0
     pnorm(3,2) = 1.0
! Normal vectors
        -----howfar.f------
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|
l -----
! Required (geometry) subroutine for use with the EGS5 Code System
! The following is a general specification of howfar. Essentially
! it is the same as that given in tutor1.f with the following
! exception: 1) Particles must be initially begin in region 2 and are
             discarded when that enter region 1 or 3 (no check
             is made on w(np)).
           2) The coding is much simplified (i.e., modular)
             As a result of using auxiliar geometry subprogram
             plan2p (which calls plane1 and chgtr which require
             commons epcont, pladta, and stack).
   The user can terminate a history by setting idisc>0. Here we
   terminate all histories which enter region 3 or are going
   backwards in region 1
   Region 1
                    Region 2
                                      Region 3
                               | e- or photon ====>
                                      vacuum
   vaciiim
! DESCRIPTION - PLAN2P is generally called from subroutine HOWFAR
   whenever a particle is in a region bounded by two planes that
   ARE parallel. Both subroutines PLANE1 and CHGTR are called
   by PLAN2P (the second PLANE1 call is not made if the first
   plane is hit, or if the trajectory is parallel).
     NPL1
           = ID number assigned to plane called first (input)
     NRG1
           = ID number assigned to region particle trajectory
            will lead into
     ISD1
         = 1 normal points towards current region (input)
           = -1 normal points away from current region (input)
     NPL2 = Same (but for plane called second)
           = Same (but for plane called second)
     NRG2
     ISD2
           = Same (but for plane called second)
```

```
subroutine howfar
     implicit none
     include 'include/egs5_h.f'
                                             ! Main EGS "header" file
     include 'include/egs5_epcont.f'
                                       ! epcont contains irnew, ustep
                                       ! and idisc
     include 'include/egs5_stack.f'
                                       ! stack contains x, y, z, u, v,
                                       ! w, ir and np
!
     Auxiliary-code COMMONs
     ______
     include 'auxcommons/aux_h.f'
                                        ! Auxiliary-code "header" file
     include 'auxcommons/pladta.f'
                                                ! Local variable
     integer irl
     irl=ir(np)
                            ! Set local variable
     if (irl.ne.2) then
       idisc=1
                     ! Terminate this history if not in plate
     else
                     ! We are in the Ta plate - check the geometry
       call plan2p(irl,irl+1,1,irl-1,irl-1,-1)
     end if
     return
     end
!-----last line of howfar.f------
```

The actual HOWFAR code is now less than 10 lines long, the rest consisting of COMMON's and comments. For a complete understanding of how PLAN2P and its related subroutines PLANE1 and CHGTR are called and used, the reader should refer to comments in the appropriate subroutine (distributed with the EGS5 Code System). For a description of the concepts involved in modeling geometry for Monte Carlo programs in general (and EGS4 in particular), the reader may wish to refer to the document "How to Code Geometry: Writing Subroutine HOWFAR," which is provided with the EGS5 distribution.

## 3.7 Tutorial 7 (Program tutor7.f)

In this program we give an example that includes K- and L-fluorescence photons which can be possible in any material including a compound or a mixture. Here we investigate the reflected photon spectrum from 1 cm of lead when a 100 keV beam of photons is incident on it. If the **IEDGFL** flag is set to 1, fluorescence photons can be produced after K- or L-photoelectric effect

interactions in that region. A complete listing of **tutor7**, except HOWFAR routine which is the same as **tutor6.f**, is given below.

```
tutor7.f *
                  *******
! An EGS5 user code which scores the spectrum of reflection from
! 1.0 cm thick slab of lead when a 100 keV beam of photons is incident
! on it with or without fluorescence photons.
! For SLAC-R-730/KEK Report 2005-8: Example of including fluorescence
  The following units are used: unit 6 for output
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|12
!----- main code -----
! Step 1: Initialization
    implicit none
    EGS5 COMMONs
    _____
    include 'include/egs5_h.f'
                                       ! Main EGS "header" file
    include 'include/egs5_bounds.f'
    include 'include/egs5_edge.f'
    include 'include/egs5_epcont.f'
    include 'include/egs5_media.f'
    include 'include/egs5_misc.f'
    include 'include/egs5_thresh.f'
    include 'include/egs5_useful.f'
    include 'include/egs5_usersc.f'
    include 'include/randomm.f'
    bounds contains ecut and pcut
    edge contains iedgfl
    epcont contains iausfl
    media contains the array media
    misc contains med
```

```
thresh contains ae and ap
    useful contains RM
    usersc contains estepe and estepe2
    Auxiliary-code COMMONs
    _____
                               ! Auxiliary-code "header" file
    include 'auxcommons/aux_h.f'
    include 'auxcommons/pladta.f'
    common/score/bwidth,ebin(50)
    real*8 bwidth,ebin
    real*8 ein,xin,yin,zin,
                                    ! Arguments
          uin, vin, win, wtin
    integer iqin,irin
    real*8 binmax
                                          ! Local variables
    integer i,icol,j,ncase
     character*24 medarr(1)
    character*4 line(48)
    Open files
    open(UNIT= 6,FILE='egs5job.out',STATUS='unknown')
    _____
    call counters_out(0)
    _____
!-----
! Step 2: pegs5-call
    call block_set
                               ! Initialize some general variables
    _____
    define media before calling PEGS5
    nmed=1
    medarr(1)='PB
    do j=1,nmed
      do i=1,24
        media(i,j)=medarr(j)(i:i)
      end do
     end do
```

```
! nmed and dunit default to 1, i.e. one medium and we work in cm
     chard(1) = 1.0d0
                         ! optional, but recommended to invoke
                         ! automatic step-size control
     Run KEK version of PEGS5 before calling HATCH
     (method was developed by Y. Namito - 010306)
     write(6,100)
100
     FORMAT(' PEGS5-call comes next'/)
     ========
     call pegs5
     =======
1-----
! Step 3: Pre-hatch-call-initialization
    nreg=3
    nreg: number of region
     med(1)=0
     med(3)=0
     med(2)=1
! Regions 1 and 3 are vacuum, region 2, lead
     iraylr(2)=1
     Turn on rayleigh scattering in the slab
     iedgfl(2)=1
     1: Turn on fluorescence production in the slab
     0: Turn off fluorescence production in the slab
! Note, above three parameters need to be set for all regions in which
! there is particle transport - just region 2 in this case
     Set parameter estepe and estepe2
     _____
     estepe=0.10
     estepe2=0.20
     write(6,110) estepe, estepe2
110 FORMAT(' ESTEPE at EKMAX: ',F10.5,' (estepe)',
           /' ESTEPE at ECUT: ',F10.5,' (estepe2)')
     _____
     Random number seeds. Must be defined before call hatch
     or defaults will be used. inseed (1-2^31)
     luxlev=1
     inseed=1
     write(6,120) inseed
120 FORMAT(/,' inseed=',I12,5X,
```

```
' (seed for generating unique sequences of Ranlux)')
     call rluxinit! Initialize the Ranlux random-number generator
! Step 4: Determination-of-incident-particle-parameters
T-----
! Define initial variables for 100 keV beam of photons normally incident
! on the slab
     iqin=0
    Incident photons
           100 keV
     ein=0.100
    xin=0.0
    yin=0.0
    zin=0.0
    Incident at origin
    uin=0.0
    vin=0.0
    win=1.0
    Moving along z axis
    irin=2
    Starts in region 2, could be 1
    wtin=1.0
     weight = 1 since no variance reduction used
!-----
! Step 5: hatch-call
!-----
! Maximum total energy of an electron for this problem must be
! defined before hatch call
     emaxe = ein + RM
    write(6,130)
130
    format(/' Start tutor7'/' Call hatch to get cross-section data')
     Open files (before HATCH call)
    open(UNIT=KMPI,FILE='pgs5job.pegs5dat',STATUS='old')
     open(UNIT=KMPO,FILE='egs5job.dummy',STATUS='unknown')
    write(6,140)
140
    FORMAT(/,' HATCH-call comes next',/)
     ========
     call hatch
     =======
```

```
Close files (after HATCH call)
     close(UNIT=KMPI)
     close(UNIT=KMPO)
    Pick up cross section data for lead
    write(6,150) ae(1)-0.511, ap(1)
    format(/' Knock-on electrons can be created and any electron ',
    *'followed down to' /T40,F8.3,' MeV kinetic energy'/
    *' Brem photons can be created and any photon followed down to',
    */T40,F8.3,' MeV')
! Compton events can create electrons and photons below these cutoffs
!-----
! Step 6: Initialization-for-howfar
!-----
! Define the coordinates and the normal vectors for the two planes.
! Information required by howfar (and auxiliary geometry subprograms)
! and passed through common/pladta/
! First plane (the x-y plane through the origin)
     pcoord(1,1)=0.0
    pcoord(2,1)=0.0
    pcoord(3,1)=0.0
! Coordinates
    pnorm(1,1) = 0.0
    pnorm(2,1) = 0.0
    pnorm(3,1) = 1.0
! Normal vectors
! Second plane (note: slab is 1 cm thick)
    pcoord(1,2)=0.0
    pcoord(2,2)=0.0
    pcoord(3,2)=1.0
! Coordinates
    pnorm(1,2) = 0.0
    pnorm(2,2) = 0.0
    pnorm(3,2) = 1.0
! Normal vectors
! Step 7: Initialization-for-ausgab
     do i=1,50
      ebin(i) = 0.0
! Zero scoring array before starting
     end do
     bwidth = 0.002
|-----
! Step 8: Shower-call
```

```
! Initiate the shower ncase times
     ncase=10000
     do i=1,NCASE
       call shower(iqin,ein,xin,yin,zin,uin,vin,win,irin,wtin)
! Step 8: Output-of-results
I-----
! Use log10(10000.0) as maximum value
     binmax=dlog10(10000.d0)
     if (iedgfl(2).eq.1) then
       write(6,160) ein,pcoord(3,2)
160
       format(/' Reflected photon spectrum'/' for a',F8.2,
    * 'MeV pencil beam of photons on a',F7.2,
    * 'cm thick slab of lead'/' with fluorescence photon'//T6,
    * 'Energy counts/incident photon'/
    * 25X, 'log(counts for 10^4 incident photons)')
       write(6,170) ein,pcoord(3,2)
170
       format(' Reflected photon spectrum'/' for a',F8.2,
    * 'MeV pencil beam of photons on a',F7.2,
    * 'cm thick slab of lead'/' without fluorescence photon'//T6,
    * 'Energy counts/incident photon'/
    * 25X, 'log(counts for 10^4 incident photons)')
     end if
     do j=1,48
       line(j)=','
     end do
! Blank entire output array
     do j=1,50
       if(ebin(j).gt.0) then
         icol=
            int(dlog10(ebin(j)*10000.0/float(ncase))/binmax*48.0+0.999)
         if (icol.eq.0) icol=1
       else
         icol = 1
       endif
       line(icol)='*'
! Load output array at desired location
       write(6,180) bwidth*j,ebin(j)/float(ncase),line
       format(F10.4,F10.4,48A1)
180
       line(icol)=' '
! Reblank
     end do
     stop
     end
```

```
!-----last line of main code-----
!-----
T-----
!23456789|123456789|123456789|123456789|123456789|123456789|123456789|123456789|12
! Required subroutine for use with the EGS5 Code System
! -----
In this AUSGAB routine for TUTOR7 we score photons reflected
 from the slab (ir(np)=1 \text{ and } iq(np)=0).
subroutine ausgab(iarg)
   implicit none
   include 'include/egs5_h.f'
                                ! Main EGS "header" file
   include 'include/egs5_stack.f' ! COMMONs required by EGS5 code
   common/score/bwidth,ebin(50)
   real*8 bwidth,ebin
   integer iarg
                                         ! Arguments
   integer ibin,irl
                                      ! Local variable
   irl=ir(np)
                        ! Local variable
   if(irl.eq.1.and.iq(np).eq.0) then ! Photon is reflected
   Increment bin corresponding to photon energy
     ibin=min0 (int(e(np)/bwidth + 0.999), 50)
     if (ibin.ne.0) then
      ebin(ibin)=ebin(ibin)+1
     end if
   end if
   return
!-----last line of ausgab.f-----
```

The following is the output provided by **tutor7** with and without the fluorescence option (named tutor7\_w.out and tutor7\_wo.out in distribution file, respectively).

```
PEGS5-call comes next

ESTEPE at EKMAX: 0.10000 (estepe)

ESTEPE at ECUT: 0.20000 (estepe2)

inseed= 1 (seed for generating unique sequences of Ranlux)
```

Start tutor7

Call hatch to get cross-section data

HATCH-call comes next

RAYLEIGH OPTION REQUESTED FOR MEDIUM NUMBER 1

EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.

Knock-on electrons can be created and any electron followed down to  $$0.010\ \text{MeV}$$  kinetic energy

Brem photons can be created and any photon followed down to  $$0.001\ \text{MeV}$$ 

Reflected photon spectrum

for a 0.10 MeV pencil beam of photons on a 1.00 cm thick slab of lead with fluorescence photon

| Energy | counts/incid | ent pho | oton  |     |                                           |
|--------|--------------|---------|-------|-----|-------------------------------------------|
|        |              | log(co  | ounts | for | 10 <sup>4</sup> incident photons)         |
| 0.0020 | 0.0000*      |         |       |     |                                           |
| 0.0040 | 0.0000*      |         |       |     |                                           |
| 0.0060 | 0.0000*      |         |       |     | 20 L-X rays are included for Pb in egs5.  |
| 0.0080 | 0.0000*      |         |       |     | 20 L-X rays are included for 1 b in egso. |
| 0.0100 | 0.0001*      |         |       |     |                                           |
| 0.0120 | 0.0014       |         | *     |     | L-alpha-1 & L-alpha-2 10.5 keV            |
| 0.0140 | 0.0037       |         |       | *   | L-beta-1 & L-beta-2 12.6 keV              |
| 0.0160 | 0.0004       | *       |       |     | L-gamma-1 14.8 keV                        |
| 0.0180 | 0.0000*      |         |       |     |                                           |
| 0.0200 | 0.0000*      |         |       |     |                                           |
| 0.0220 | 0.0000*      |         |       |     |                                           |
| 0.0240 | 0.0000*      |         |       |     |                                           |
| 0.0260 | 0.0000*      |         |       |     |                                           |
| 0.0280 | 0.0000*      |         |       |     |                                           |
| 0.0300 | 0.0000*      |         |       |     |                                           |
| 0.0320 | 0.0000*      |         |       |     |                                           |
| 0.0340 | 0.0000*      |         |       |     |                                           |
| 0.0360 | 0.0000*      |         |       |     |                                           |
| 0.0380 | 0.0000*      |         |       |     |                                           |
| 0.0400 | 0.0000*      |         |       |     |                                           |
| 0.0420 | 0.0000*      |         |       |     |                                           |
| 0.0440 | 0.0000*      |         |       |     |                                           |
| 0.0460 | 0.0000*      |         |       |     |                                           |
| 0.0480 | 0.0000*      |         |       |     |                                           |
| 0.0500 | 0.0000*      |         |       |     |                                           |
| 0.0520 | 0.0001*      |         |       |     |                                           |
| 0.0540 | 0.0001*      |         |       |     |                                           |
| 0.0560 | 0.0000*      |         |       |     |                                           |
|        |              |         |       |     |                                           |

```
0.0580
           0.0000*
0.0600
           0.0006
0.0620
           0.0004
0.0640
           0.0002
0.0660
           0.0004
0.0680
           0.0008
                                                    10 K-X rays are included for Pb in egs5
0.0700
           0.0008
0.0720
           0.0004
                                                          K-alpha-2 72.79 keV
0.0740
           0.0490
0.0760
           0.0894
                                                             K-alpha-1 74.96 keV
0.0780
           0.0007
0.0800
           0.0011
0.0820
           0.0009
0.0840
           0.0001*
                                                       K-beta-1 84.92 keV
0.0860
           0.0378
0.0880
           0.0091
                                                    K-beta-2 87.34 keV
0.0900
           0.0001*
0.0920
           0.0000*
0.0940
           0.0000*
0.0960
           0.0000*
0.0980
           0.0000*
0.1000
           0.0005
                                Rayleigh Scattering
```

PEGS5-call comes next

ESTEPE at EKMAX: 0.10000 (estepe)
ESTEPE at ECUT: 0.20000 (estepe2)

inseed= 1 (seed for generating unique sequences of Ranlux)

Start tutor7

Call hatch to get cross-section data

HATCH-call comes next

RAYLEIGH OPTION REQUESTED FOR MEDIUM NUMBER 1

EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.

Knock-on electrons can be created and any electron followed down to

0.010 MeV kinetic energy

Brem photons can be created and any photon followed down to  $$0.001\;{\rm MeV}$$ 

Reflected photon spectrum

for a 0.10 MeV pencil beam of photons on a 1.00 cm thick slab of lead without fluorescence photon

Energy counts/incident photon

```
log(counts for 10<sup>4</sup> incident photons)
0.0020
          0.0000*
0.0040
          0.0000*
0.0060
          0.0000*
0.0080
          0.0000*
0.0100
          0.0000*
          0.0000*
0.0120
0.0140
          0.0000*
0.0160
          0.0000*
0.0180
          0.0000*
0.0200
          0.0000*
0.0220
          0.0000*
0.0240
          0.0000*
0.0260
          0.0001*
0.0280
          0.0000*
0.0300
          0.0000*
0.0320
          0.0000*
0.0340
          0.0000*
0.0360
          0.0000*
0.0380
          0.0000*
0.0400
          0.0000*
0.0420
          0.0000*
0.0440
          0.0000*
0.0460
          0.0000*
0.0480
           0.0000*
0.0500
          0.0000*
0.0520
          0.0000*
0.0540
          0.0000*
0.0560
          0.0000*
0.0580
          0.0000*
0.0600
          0.0000*
0.0620
          0.0000*
0.0640
          0.0001*
0.0660
          0.0000*
0.0680
          0.0000*
0.0700
          0.0001*
0.0720
          0.0001*
                                        71.9 keV @ 180 deg
0.0740
          0.0012
0.0760
          0.0013
0.0780
           0.0008
                                                                  Compton Scattering
0.0800
          0.0008
0.0820
          0.0002
                                        83.6 keV @ 90 deg
0.0840
          0.0003
0.0860
          0.0001*
0.0880
          0.0000*
0.0900
          0.0000*
0.0920
          0.0000*
0.0940
          0.0000*
0.0960
          0.0000*
0.0980
          0.0000*
0.1000
          0.0008
                                        Rayleigh scattering
```