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ABSTRACT

Bluetooth is a technology for short range wireless data and realtime two-way voice transfer
providing data rates up to 3 Mb/s. It can be used to connect almost any device to another
device. Bluetooth-enabled devices, such as mobile phones, headsets, PCs, laptops, printers,
mice, and keyboards, are widely used all over the world. Already in 2006, the one billionth
Bluetooth device was shipped, and the volume is expected to increase rapidly in the near
future. The target volume for 2010 is as high as two billion Bluetooth devices. Therefore, it is
very important to keep Bluetooth security issues up-to-date.

As an interconnection technology, Bluetooth has to address all traditional security
problems, well known from distributed networks. In addition, security issues in wireless ad-
hoc networks are much more complex than those of more traditional wired or centralized
wireless networks. Moreover, Bluetooth networks are formed by radio links, which means
that there are additional security aspects whose impact is not yet well understood.

The aim of our work is to evaluate security threats in Bluetooth-enabled systems. Our
research work concentrates on practical aspects of Bluetooth security. It can be roughly
divided into four parts.

First, weaknesses of Bluetooth security are studied based on a literature review, and a
Bluetooth security laboratory environment for implementing Bluetooth security attacks in
practice has been built.

Secondly, different types of attacks against Bluetooth security are investigated and the
feasibility of some of them are demonstrated in our research laboratory. Countermeasures
against each type of attack are also proposed.

Thirdly, some of the existing Bluetooth security attacks are enhanced and new attacks are
proposed. To carry out these attacks in practice, Bluetooth security analysis tools are
implemented. Countermeasures that render these attacks impractical are also proposed.

Finally, a comparative analysis of the existing Man-In-The-Middle attacks on Bluetooth is
presented, a novel system for detecting and preventing intrusions in Bluetooth networks is
proposed, and a further classification of Bluetooth-enabled ad-hoc networks is provided.

Universal Decimal Classification: 004.056, 004.725.5, 004.732
Inspec Thesaurus: ad hoc networks; personal area networks; Bluetooth; security; security of
data; telecommunication security
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Abbreviations and notations

3DES Triple Data Encryption Standard; TDES
ACL Asynchronous Connection-Less

ACO Authenticated Ciphering Offset

AES Advanced Encryption Standard

AFH Adaptive Frequency Hopping

ASCII American Standard Code for Information Interchange
ATM Automated Teller Machine

BD_ADDR Bluetooth Device Address

BER Bit-Error-Rate

BNEP Bluetooth Network Encapsulation Protocol
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DID Disclosure, Integrity and DoS

DoS Denial-of-Service

DSA Digital Signature Algorithm

DSS Digital Signature Standard

DVD Digital Versatile Disc; Digital Video Disc
ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

EDR Enhanced Data Rate

EFS Encrypting File System

EncFS Encrypted Filesystem



eSCO Extended Synchronous Connection-Oriented

FHS Frequency Hop Synchronization

FHSS Frequency Hopping Spread Spectrum
FINEID Finnish Electronic Identification

gdc Greatest common divisor

GF Galois Field

GSM Global System for Mobile communications
HCI Host Controller Interface

HEC Header Error Check

HID Human Interface Devices

HMAC A keyed-Hash Message Authentication Code
HV1 High-quality Voice 1

IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

iff If and only if

IMEI International Mobile Equipment Identity
10 Input/Output

1P Internet Protocol

IPSec Internet Protocol Security

IRC Internet Relay Chat

IrDA Infrared Data Association

ISM Industrial, Scientific, and Medical

v Initialization Vector

J2ME Java 2 Micro Edition

Ka Unit key

Kas Combination key

Kc Encryption key

Kinit Initialization key

KSA Key Scheduling Algorithm

L2CAP Logical Link Control and Adaptation Protocol
L2TP Layer 2 Tunneling Protocol

LAP Lower Address Part

LC Link Controller

LM Link Manager



LMP Link Manager Protocol

MAC Message Authentication Code
MD5 Message-Digest 5

MITM Man-In-The-Middle

mod modulo

NAK Negative Acknowledgement

NAP Nonsignificant Address Part

NFC Near Field Communication

NIST National Institute of Standards and Technology
NSA National Security Agency

NTFS New Technology File System
OBEX Object Exchange Protocol

OOB Out-Of-Band

PCMCIA Personal Computer Memory Card International Association
PDA Personal Digital Assistant

PDF Portable Document Format

PDU Protocol Data Unit

PHY Physical layer

PKI Public Key Infrastructure

PIN Personal Identification Number

PL Path Loss

PPP Point-to-Point Protocol

QoS Quality-of-Service

RAND Pseudorandom number

RC4 Rivest Cipher 4; Ron's Code 4; ARCFOUR
RC5 Rivest Cipher 5; Ron's Code 5
RC6 Rivest Cipher 6; Ron's Code 6
ReiserFS Reiser Filesystem

RF Radio Frequency

RFCOMM Radio Frequency Communication
RSA Rivest-Shamir-Adleman

RSSI Received Signal Strength Indicator
RX Receiver

SAFER+ Secure And Fast Encryption Routine +



SCO
SDP
Seattle
SHA
SIG
SIS
SRES
SSH
SSH1
SSH2
SSL
SSP
TCP
TCP/IP
TCS
TI
TLS
TX
UAP
UDP
USB
USRP
UWB
WAV
WEP
Wi-Fi
WLAN
XML
XOR

Synchronous Connection-Oriented
Service Discovery Protocol
Bluetooth 3.0

Secure Hash Algorithm

Special Interest Group

Symbian Installation System

Signed Response

Secure Shell

Secure Shell 1; SSH-1

Secure Shell 2; SSH-2

Secure Sockets Layer

Secure Simple Pairing

Transmission Control Protocol
Transmission Control Protocol / Internet Protocol
Telephony Control protocol Specification
Texas Instruments

Transport Layer Security
Transmitter

Upper Address Part

User Datagram Protocol

Universal Serial Bus

Universal Software Radio Peripheral
Ultra-Wideband

Waveform

Wired Equivalent Privacy

Wireless Fidelity

Wireless Local Area Network
Extensible Markup Language
Exclusive OR
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1 INTRODUCTION

The use of wireless communication systems and their interconnections via networks have
grown rapidly in recent years. Because RF (Radio Frequency) waves can penetrate obstacles,
wireless devices can communicate with no direct line-of-sight between them. This makes RF
communication easier to use than wired or infrared communication, but it also makes
eavesdropping easier. Moreover, it is easier to disrupt and jam wireless RF communication
than wired communication. Because wireless RF communication can suffer from these new

threats, additional countermeasures are needed to protect against them.

Excluding mobile phone-related data transfer, there are three popular wireless data transfer
technologies widely used all over the world: Bluetooth [Blu07a], WLAN (Wireless Local
Area Network) [IEE07] and IrDA (Infrared Data Association) [Inf05]. Bluetooth and WLAN
are wireless RF communication systems, while IrDA is a wireless infrared communication

system. Our work focuses on the security of Bluetooth technology.

Bluetooth is a technology for short range wireless data and realtime two-way voice transfer
providing data rates up to 3 Mb/s. Almost any device can be connected to another device by
using Bluetooth. Many kinds of Bluetooth devices, such as mobile phones, headsets, PCs,
laptops, printers, mice and keyboards, are widely used all over the world. Already in 2006, the
one billionth Bluetooth device was shipped [Blu06a], and the volume is expected to increase
rapidly in the near future. According to the Bluetooth SIG (Special Interest Group), the target
volume for 2010 is as high as two billion Bluetooth devices. Therefore, it is very important to

keep Bluetooth security issues up-to-date.

As an interconnection technology, Bluetooth has to address all traditional security problems,
well known from distributed networks [And01]. In addition, security issues in wireless ad-hoc
networks are much more complex than those of more traditional wired or centralized wireless
networks. Moreover, Bluetooth networks are formed by radio links, which means that there

are additional security aspects whose impact is not yet well understood.
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The aim of our work is to evaluate security threats in Bluetooth-enabled systems. Our
research work can be roughly divided into four parts. First, weaknesses of Bluetooth security
are studied and a Bluetooth security laboratory environment for implementing Bluetooth
security attacks in practice has been built. Secondly, different types of attacks against
Bluetooth security are investigated and the feasibility of some of them are demonstrated in
our research laboratory. Countermeasures against each type of attack are also proposed.
Thirdly, new Bluetooth security analysis tools are implemented, new attacks against
Bluetooth security are presented, and countermeasures that render these attacks impractical
are proposed. Finally, a comparative analysis of the existing MITM (Man-In-The-Middle)
attacks on Bluetooth is provided, a novel system for detecting and preventing intrusions in
Bluetooth networks is described, and a further classification of Bluetooth-enabled ad-hoc

networks is provided.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of Bluetooth
technology. Different Bluetooth versions are explained and a brief survey of the future of
Bluetooth is given. Bluetooth communication, special characteristics of Bluetooth, and

Bluetooth protocols are also explained.

Chapter 3 is a digest of various topics in cryptography and network security which are
relevant in the context of this thesis. An overview of symmetric cryptography is given and
some widely used symmetric encryption methods are explained. Basic notions of public-key
cryptography and some widely used public-key encryption methods are also presented.
Moreover, an overview of message authentication and hash functions is given. Digital
signatures, MITM attacks, and public key certificates are also explained. To set the scene for
the main content of the thesis, network security issues are discussed and some guidelines for

successfully implementing data security policy are given.

Chapter 4 gives an overview of Bluetooth security, and the existing Bluetooth security
architecture is explained. Moreover, vulnerabilities of Bluetooth networks are discussed, and

reasons for these vulnerabilities are explained.
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Chapter 5 gives a detailed description of our Bluetooth security laboratory in which several
Bluetooth security attacks were demonstrated. Bluetooth equipment used in several security

attacks are also introduced.

Chapter 6 is dedicated to our practical experiments. It describes our new Bluetooth security
analysis tools and introduces new attacks against Bluetooth security, which we were able to
devise and carry out in practice by using these tools. On the positive side, the chapter
proposes countermeasures against these attacks, and it also provides Bluetooth vulnerability
evaluation. In addition, a comparative analysis of the existing MITM attacks on Bluetooth is
provided, including our two MITM attacks on Bluetooth SSP (Secure Simple Pairing).
Moreover, our novel Intrusion Detection and Prevention System for Bluetooth Networks is
described, and a further classification of Bluetooth-enabled ad-hoc networks depending on a

risk analysis within each classified group is provided.

Finally, Chapter 7 concludes the thesis and sketches future work.
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2 INTRODUCTION TO BLUETOOTH TECHNOLOGY

Bluetooth operates at 2.4 GHz frequency in the free ISM-band (Industrial, Scientific, and
Medical) by using frequency hopping. Bluetooth frequency hopping uses a maximum of 79
different Baseband frequencies to avoid channels that suffer from interference. It also enables

a large number of Bluetooth devices to operate in the same 2.4 GHz ISM-band.

Section 2.1 gives a brief overview of different Bluetooth versions. Bluetooth communication
is described in Section 2.2. Section 2.3 explains the special characteristics of Bluetooth

medium. Bluetooth protocols are outlined in Section 2.4.

2.1 Bluetooth versions

The preliminary work for developing Bluetooth technology started in 1994, when Ericsson
began researching the possible ways of replacing cables between accessories and mobile
phones with wireless links. Ericsson quickly realized the potential market for Bluetooth
products, but worldwide cooperation was needed for the products to succeed. Therefore, the
Bluetooth SIG [Blu07b] was founded in February 1998 by Ericsson, Nokia, IBM, Intel and
Toshiba. 3Com, Lucent, Microsoft and Motorola joined the Bluetooth SIG in December 1999.
These nine members of the Bluetooth SIG are known as the Bluetooth SIG Promoters. They
are responsible for upper-level SIG administration, and for providing manpower to run the
marketing, qualification and legal processes. Currently, the Bluetooth SIG has over 10000
member companies. [Blu07b, Mor02]

The first public version of Bluetooth specification, Bluetooth 1.04 [Blu99a], was released in
July 1999. Many device manufacturers had difficulties in making their Bluetooth 1.0A
compatible products interoperable. Therefore, the Bluetooth 1.0B specification [Blu99b] was
released later in the same year (December 1999) to fix the interoperability problems. The
Bluetooth 1.1 specification [Blu01] was released in February 2001. It fixed many errors that
were found in the Bluetooth 1.0B specification and added support for unencrypted
communication as well as support for RSSI (Received Signal Strength Indicator). RSSI is a

18



measurement of the received radio signal strength that is used for controlling power in

Bluetooth devices. It can also be used for Bluetooth positioning purposes, for example.

The Bluetooth 1.2 specification [Blu03] was released in November 2003. It included major

improvements such as: [Blu03]

o AFH (Adaptive Frequency Hopping): AFH further improves the original Bluetooth
frequency hopping method FHSS (Frequency Hopping Spread Spectrum) by avoiding
the use of channels that suffer from interference. A maximum of 59 "bad" channels
can be switched off during the communication session, i.e. only 20 different "good"
channels are required. AFH also gives higher transmission speeds in practice by

decreasing the need for retransmissions.

o eSCO (extended Synchronous Connection-Oriented): eSCO improves the voice quality

of Bluetooth audio links by allowing retransmissions of corrupted packets.

e Optional QoS (Quality-of-Service) improvements: QoS improvements further enhance

the capabilities for error detection, flow controlling and synchronization.

The Bluetooth 2.0+EDR (Enhanced Data Rate) specification [BluO4a] was released in
November 2004. The main improvement was the introduction of EDR, which provides data
rates up to 3 Mb/s. The original Bluetooth data rate before EDR was 1 Mb/s. According to the
Bluetooth SIG, EDR has the following effects on Bluetooth communication: [BluO4a,
Blu04b]

Three times faster transmission speed (up to 10 times in certain cases).

e Lower power consumption through a reduced duty cycle.

Simplification of multilink scenarios due to more available bandwidth.

Further improved BER (Bit-Error-Rate) performance.

19



New Bluetooth versions are backward-compatible with the older versions. The latest public
version of Bluetooth specification, Bluetooth 2.1+EDR [Blu07a], was released in July 2007. It

provides many improvements such as: [Blu07a]

e Encryption Pause Resume: Encryption Pause Resume will further enhance security by
allowing encrypted links to change their encryption keys periodically. Master-slave
role switches (Section 2.2 explains the master-slave relationship) will also be possible

on an encrypted link.

e [Extended Inquiry Response: Extended Inquiry Response will provide more
information, such as the name of the device and a list of supported services, during the

inquiry procedure, allowing better device filtering before the connection is established.

e SSP: SSP (see Section 4.1) radically improves the Bluetooth pairing experience by
simplifying the pairing process from the user's point of view. It will also increase the
strength of security by providing the protection against both passive eavesdropping
attacks and MITM attacks (active eavesdropping attacks). The Bluetooth SIG expects

that this feature will significantly increase the use of Bluetooth technology.

e NFC (Near Field Communication) [NFC0O8] as an OOB (Out-Of-Band) channel: In
order to provide protection against MITM attacks, SSP either uses NFC as an OOB
channel or asks the user to compare two six-digit numbers. Such a comparison can
also be thought as an OOB channel which is not controlled by the MITM. However,
when NFC radio interface is available, SSP supports the automatic creation of secure

Bluetooth connections.

o Sniff Subrating: Sniff Subrating will further reduce the power consumption of
Bluetooth devices. For example, it will increase the battery life of HID (Human
Interface Devices) devices, such as mice and keyboards, by 3 to 10 times compared

with the battery life times of older Bluetooth HID devices.

e QoS improvements: QoS improvements will further enhance the quality of audio and

video transmissions.
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The next version of Bluetooth specification, currently codenamed Seattle [Hol06, Wal05]
(also referred to as Bluetooth 3.0), is expected to enable very fast data transfer rates (up to 480
Mb/s) by adopting UWB (Ultra-Wideband) radio technology [Blu0O6b]. In addition, Seattle
will provide low-power idle modes of Bluetooth to save batteries. Moreover, Seattle will
provide ultra low power Bluetooth by including Wibree [Nok08] as a part of the specification.
Expected use cases for ultra low power Bluetooth include sports sensors, wrist watches,
wireless keyboards, toys and medical devices [Nok08]. Seattle is also expected to further
enhance the security of Bluetooth by including AES (Advanced Encryption Standard; see
Section 3.1). Seattle is expected to be released by the Bluetooth SIG in 2009. [Blu06b, Hol06,
Wal05]

The combination of a radio using little power in idle mode and a high data rate radio for
transmitting bulk data could be the start of software radios. Therefore, Bluetooth versions
after Seattle will provide an excellent signalling channel for enabling the software radio
concept. Software radio is the technique of getting code as close to the antenna as possible,
i.e. radio hardware issues are turned into software issues. The main idea in software radio is
that software defines the transmitted waveforms and it also demodulates the received
waveforms. In traditional radios, the processing is done with analog circuitry or with analog

circuitry combined with digital chips.

Figure 1 illustrates Bluetooth device shipments so far (years 2000-2007) and the Bluetooth
SIG's near-future predictions (years 2008-2010) [BluO6a, Blu0O8a]. It is worth noting that
Bluetooth 2.1+EDR devices have only been available in the mass markets since the first half
of 2008. It means that at the end of 2007, there were approximately 1.9 billion (1.9x10%)
Bluetooth devices in use without SSP's improved security features. Moreover, it is expected
that consumers will be able to buy these older Bluetooth devices for many years to come. In
fact, it can take even a decade before the existing Bluetooth devices will be replaced by new

and more secure ones.
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Estimated times when different Bluetooth versions were available in the mass markets:
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Figure 1. Bluetooth device shipments so far and near future predictions. [BluO6a, Blu08a]

2.2 Bluetooth communication

Connection types define the ways Bluetooth devices can exchange data. Bluetooth has three
connection types: ACL (Asynchronous Connection-Less), SCO (Synchronous Connection-

Oriented) and eSCO.

ACL links are for symmetric (maximum of 1306.9 kb/s for both directions) or asymmetric
(maximum of 2178.1 kb/s for send and 177.1 kb/s for receive) data transfer. Retransmission

of packets is used to ensure the integrity of data.
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SCO links are symmetric (maximum of 64 kb/s for both directions) and are used for
transferring realtime two-way voice. Retransmission of voice packets is not used. Therefore,

when the channel BER is high, voice can be distorted.

eSCO links are also symmetric (maximum of 864 kb/s for both directions) and are used for
transferring realtime two-way voice. Retransmission of packets is used to ensure the integrity
of data (voice). Because retransmission of packets is used, eSCO links can also carry data
packets. However, they are mainly used for transferring realtime two-way voice. Bluetooth
1.2 (or later) devices can use eSCO links, but they must also support SCO links to provide
backward-compatibility.

Bluetooth devices that communicate with each other form a piconet. The device that initiates
a connection is the piconet master. One piconet can have a maximum of seven active slave
devices and one master device. All communication within a piconet goes through the piconet
master. The clock of the piconet master and frequency hopping information are used to
synchronize the piconet slaves with the master. Two or more piconets together form a
scatternet, which can be used to eliminate Bluetooth range restrictions. A scatternet
environment requires that different piconets must have a common device, called a scatfernet
member, to relay data between the piconets. Figure 2 illustrates Bluetooth communication

network topology when either ACL or SCO/eSCO links are used. [Blu07a]

Scatternet

a) b)

Scatternet

Figure 2. a) Bluetooth topology when ACL links are used. b) Bluetooth
topology when SCO or eSCO links are used. [Blu07a]
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When ACL links are used (see Figure 2a), a scatternet member can be a slave in many
piconets. Device A is the master for piconet 1, and devices B, C, D and E are equal slaves for
that piconet. Device F is the master for piconet 2, and devices E, G and H are equal slaves for
that piconet. Piconets 1 and 2 together form a scatternet. Piconets 1 and 2 are not
synchronized with each other and the scatternet member must multiplex between these two

piconets.

When SCO or eSCO links are used (see Figure 2b), the scatternet member must be a slave for
piconet 1 and master for piconet 2. If, for example, master A's clock runs at slightly slower
rate than the clock of the common device E, master A's timeslots are drifting slowly to the
right. To avoid an eventual overlap of timeslots, the common device E must periodically
delay the exchange of voice packets by a pair of timeslots. Only the master device is allowed
to delay the exchange of voice packets for SCO or eSCO links. Device A is the master for
piconet 1, and devices B, C, D and E are equal slaves for that piconet. Device E is the master
for piconet 2, and devices F, G and H are equal slaves for that piconet. Piconets 1 and 2

together form a scatternet.

2.3 Special characteristics of the Bluetooth medium

Bluetooth is a wireless RF communication system using mainly omnidirectional antennas.
Communication with other Bluetooth devices is possible within the range, and no direct line-
of-sight between the communicating Bluetooth devices is required. This capability makes
Bluetooth communication much easier to use than the traditional cable-based communication
or very short range direct line-of-sight infrared communication, but on the other hand it also

makes eavesdropping much easier.

The design goals for Bluetooth technology have been simplicity, compatibility, inexpensive
and compact microchips, fast data transfer, globality, secure communication, and low power
consumption. Simplicity means that a Bluetooth device must be as easy as possible to use.
Compatibility means manufacturer-independent interoperability between different Bluetooth
devices, and it also means backward-compatibility with older Bluetooth versions (see Section

2.1). Bluetooth microchips are also very compact (roughly 5 mm x 5 mm of size) and cheap
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(roughly $2.50 per microchip [Tan06]). The latest public version of the Bluetooth
specification, Bluetooth 2.1+EDR, supports data rates up to 3 Mb/s. The next version of the
Bluetooth specification (Seattle) is expected to provide data rates up to 480 Mb/s. Globality
means that Bluetooth can be used all over the world using the same free ISM-band. Bluetooth
has built-in security measures at the link level to provide the secure communication for the
piconet. Bluetooth microchips also have low power consumption, which is why they are
widely used in many different kinds of mobile devices. Moreover, Seattle will provide ultra
low power Bluetooth by including Wibree as a part of the specification. This will allow future

Bluetooth devices to connect to an entire new range of tiny battery-powered devices.

There are three Bluetooth device classes: class 1, class 2 and class 3. The maximum transmit
powers for class 1, class 2 and class 3 devices are 100 mW (20 dBm, i.e. 20 decibels relative
to one milliwatt), 2.5 mW (4 dBm), and 1 mW (0 dBm) respectively. According to the
Bluetooth specification [Blu07a], the reference sensitivity level of a Bluetooth device has to

be -70 dBm or better.

The range of Bluetooth devices depends on the class of devices at both ends, the sensitivity
levels at both ends, and the level of obstacles. The quantity » is the so-called PL (Path Loss)
exponent that can be adjusted to account for the amount of clutter in the path between the
transmitter and the receiver. The level of obstacles can be roughly divided into four
categories: none (a free space without clutter in the transmit-receive path; n=2.0), light (a
lightly cluttered path such as an office environment with moveable walls; n=2.5), moderate (a
moderately cluttered path such as an office environment with fixed walls; #=3.0), or heavy (a
heavily cluttered path in which the density of the materials used in the building's construction

is very high; n=4.0). [Mor02]

The most common case is a moderate level of obstacles, which is why the Bluetooth
specification promises that the range of a Bluetooth device is from 10 meters (class 3 device)
to 100 meters (class 1 device) indoors when the level of obstacles is moderate. For
application, as well as from the security analysis point of view, it is interesting to know how

long is the range of Bluetooth devices.
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Several assumptions must be made before proceeding with the range calculations. These
assumptions reflect the typical characteristics of Bluetooth devices and can be summarized as
follows. First, let us assume that a Bluetooth transmitter's (TX) power is either 0 dBm (class 3
device) or 20 dBm (class 1 device). The most common TX power for Bluetooth devices is 0
dBm (1 mW). Secondly, let us also assume that a Bluetooth receiver's (RX) sensitivity level is
either -70 dBm (standard sensitivity level) or -80 dBm (enhanced sensitivity level). Finally,
let us assume that Bluetooth transmit and receive antennas each have a gain of 0 dBi (decibels
relative to an isotropic source). Table 1 presents the range of Bluetooth devices with these
prerequisites by using the formula d=10"""*"'" yhere d is the range of Bluetooth devices,
PL is the Path Loss value, and #» is the PL exponent. A more precise definition of the range

calculations can be found in [Mor02].

Level of obstacles: | n: | TX power (dBm): | RX sensitivity (dBm): | PL: | Range (m):
Nomne 2.0 0 =70 70 32
None 2.0 0 -80 80 100
None 2.0 20 =70 90 316
None 2.0 20 -80 100 1000
Light 25 0 -70 70 16
Light 25 0 -80 80 40
Light 2:9 20 -70 90 100
Light 25 20 -80 100 251

Moderate 3.0 0 -70 70 10
Moderate 30 0 -80 30 22
Moderate 3.0 20 =70 90 46
Moderate 3.0 20 -80 100 100
Heavy 4.0 0 -70 70 6
Heavy 4.0 0 -80 80 10
Heavy 4.0 20 -70 90 18
Heavy 4.0 20 -80 100 32

Table 1. The range of Bluetooth devices. [Mor(02]

Bluetooth devices can form ad-hoc networks of several devices in which no fixed
infrastructure is needed. This can be very useful in, for example, meetings where all

participants have Bluetooth-compatible laptops which can share files with each other without
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a traditional cable-based interconnection network. On the other hand, security issues in ad-hoc
networks are much more complex than those in more traditional wired or centralized wireless

networks.

2.4 Protocols

A Bluetooth protocol stack is illustrated in Figure 3. Protocols below the HCI (Host
Controller Interface) are built-in to the Bluetooth microchip, and protocols above the HCI are
located as a part of the host device's software package. A HCI is needed between the
hardware and software protocols. The purpose of the HCI is to enable the manufacturer-
independent combining of Bluetooth chips (Host Controller) and the actual host device. The

HCI takes care of security communication between the host and the Bluetooth module.

[ OBEX ] upp | TCP

IP
|AT commands| | Ppp | | BNEP | | SDP |
TCS binary
Audio
RFCOMM | (SCO/eSCO)
|
| 1.2CAP |
HCl | LMP & LM |
Baseband & 1.C
. <11

Figure 3. Bluetooth protocol stack. [Blu07a]

Baseband and LMP (Link Manager Protocol) together enable the physical RF connection.
The LC (Link Controller) is a state machine that defines the current state of the Bluetooth
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device. A Bluetooth device can be in low-power mode for saving batteries, in the connected
state for normal piconet operation, or in the paging state for the master to bring new slaves to
the piconet, for example. The LC has a pseudorandom number generation capability, methods
for managing security keys, and the capability for providing the mathematical operations

needed for authentication and encryption.

The LM (Link Manager) acts as a liaison between the application and the LC on the local
device, and it also communicates with the remote LM via PDUs (Protocol Data Units) using
the LMP, i.e. the LM communicates with three different entities during a Bluetooth session:
the local host through the HCI, the local LC (local operations), and the remote LM (link
configuration, link information, and link management operations). The PDU is acknowledged
at the Baseband level, but it is acted upon by the LM. The local LM usually resides on the
Bluetooth module as a complete host-module implementation. The remote LM can be defined
as the LM at the other end of the Bluetooth link. The LM also has several commands for

handling security issues. [Blu07a, Mor(02]

SCO and eSCO links are used for transferring realtime two-way voice (see Section 2.2). They
are established directly from the Baseband level, so the overhead of upper layer protocols
does not cause any delays for realtime two-way voice connections. Four packet types have
been defined for SCO links, whereas eSCO links support seven packet types [Blu07a]. One of
these 11 packet types, SCO link's HV1 (High-quality Voice 1), is really interesting from the
security point of view, because one single HV1 SCO link reserves all Bluetooth piconet
resources and therefore makes various DoS (Denial-of-Service) attacks possible (see

Subsection 4.2.3 and Section 6.9).

The L2CAP (Logical Link Control and Adaptation Protocol) is a software module that
normally resides on the host. It fits upper layer protocols to the Baseband, i.e. it acts as a
conduit for data on the ACL link between the Baseband and host applications. The L2CAP
also offers CO (Connection-Oriented, from master to one slave and from slave to master) and
CL (Connection-Less; from master to multiple slaves) services, and it is defined only for ACL

links. Lower layer protocols do not have to know how layers above the LZCAP work and vice
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versa. The L2CAP can initiate security procedures when a CO or a CL channel connection

attempt is made. [Mor02]

The SDP (Service Discovery Protocol) is used to find the services of Bluetooth devices in the
range. RFCOMM (Radio Frequency Communication) emulates serial ports over the L2CAP,

and therefore it is possible to use existing serial port applications via Bluetooth.

The OBEX (Object Exchange Protocol) [Inf03] is used to exchange objects, such as calendar
notes, business cards and data files, between devices by using the client-server model. The
OBEX supports six simple and self-explanatory operations: Connect (choose your partner,
negotiate capabilities and establish connection), Disconnect (terminate connection), Put (push
objects to the server), Get (pull objects from the server), Abort (abort an object exchange that

is in progress), and SetPath (set server's directory path to a new value).

The TCS (Telephony Control protocol Specification) binary defines the call control signalling
for the establishment/release of speech and data calls between Bluetooth devices. It also
provides functionality for exchanging signalling information that is unrelated to ongoing calls.

Many AT commands are also supported for transmitting control signals for telephony control.

The BNEP (Bluetooth Network Encapsulation Protocol) is used to provide networking
capabilities for Bluetooth devices. It allows IP (Internet Protocol) packets to be carried in the
payload of L2CAP packets. The IP is a network layer protocol in the TCP/IP (Transmission
Control Protocol/Internet Protocol) protocol suite. TCP and UDP (User Datagram Protocol)
are transport layer core protocols used in the TCP/IP protocol suite. PPP (Point-to-Point
Protocol) can also be used to provide TCP/IP networking capabilities for Bluetooth devices,
but it is slower, i.e. it works over RFCOMM whereas BNEP works directly over the L2CAP,

and therefore PPP is rarely used now.

More information about Bluetooth technology and its protocols can be found in [Blu07a,

GPS04, Haa00, Mor02].
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3 CRYPTOGRAPHY AND NETWORK SECURITY BASICS

Information can be stored in many different forms: for example, in people's memories, printed
on a paper, in digital form, or as a physical artifact. Our work focuses only on digital
information (data) and its security in wireless Bluetooth networks. Dozens of Bluetooth
security attacks (see Subsections 4.2.1-4.2.4) have been developed by various researchers and
hackers in recent years, and Bluetooth security threats are finally (but slowly) being taken
more seriously by some Bluetooth device manufacturers, by some Bluetooth device users, and
by the Bluetooth SIG. To enable better understanding of the special characteristics of
Bluetooth security, we first provide a general overview of cryptography and network security

(see Sections 3.1-3.5).

The use of computer systems and their interconnections via networks have grown rapidly in
recent decades. This has increased the dependence of both individuals and organizations on
the information stored and communicated using these systems. Therefore, it is very important
to protect data and resources from disclosure, to guarantee the authenticity of data and
messages, and to protect systems from network-based attacks. Fortunately, the disciplines of
cryptography and network security have matured, which has led to the development of

practical and readily available applications to enforce network security. [Sta03]

Data security means that data, data processing and data transfer are secure. Computer security
is the generic name for the collection of tools designed to protect data against hackers and

attackers. Network security is needed to protect data during transmission. [Pf103, Sta03]

The general aims of data security are confidentiality, integrity, nonrepudiation, and
availability. Confidentiality means the protection of data from unauthorized disclosure.
Integrity means the assurance that data received is exactly as sent by an authorized entity.
Nonrepudiation provides protection against denial by one of the entities involved in a
communication of having participated in all or part of the communication. Availability means
that data can be used when needed, data can be obtained fast enough, and data can be used

easy enough. [IET00, ITU91, Pf103, Sta03]
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An attacker can use many different methods against security: some examples are interruption
of service, interception of data, modification of data, and fabrication of data. Interruption of
service can be achieved by destroying hardware, for example. Such an attack breaks
availability. Interception of data by some kind of eavesdropping is an attack against
confidentiality. Modification of data compromises data integrity. Fabrication of data

threatens authenticity. [Pf103, Sta03]

Cryptology involves cryptography (also referred to as encryption methodology) and
cryptanalysis (also referred to as analysis of the encrypted messages). Techniques used for
decrypting a message without any knowledge of the encrypting details fall into the area of
cryptanalysis. [Pfl03, Sch96, Sta03]

Already in antiquity, encryption was used in warfare and diplomacy. The ancient encryption
methods are insufficient nowadays, but some of their ideas are utilized in the new encryption
methods. Encryption schemes are used to keep messages or stored data secret. Symmetric
encryption (also referred to as conventional encryption, single-key encryption or secret key
encryption) was the only type of encryption in use prior to the development of public-key
encryption (also referred to as asymmetric encryption). Symmetric encryption methods in
general use a secret encryption key for both encryption and decryption. Public-key encryption
methods use a public key for encryption and a private key for decryption. Even though public-
key encryption methods have some advantages in many applications, symmetric encryption
methods are not obsolete. Typically, public-key cryptography is used for authentication and
session key exchange, while symmetric cryptography is efficiently used for the encryption of

data streams. [BucO1, Pf103, Sch96, Sta03]

Section 3.1 gives an overview of symmetric cryptography and explains some widely used
symmetric encryption methods. An overview of public-key cryptography is given and some
widely used public-key encryption methods are explained in Section 3.2. Section 3.3 gives an
overview of message authentication and hash functions. Digital signatures, MITM attacks,
and public key certificates are explained in Section 3.4. Section 3.5 discusses network

security, and it also gives some guidelines for successfully implementing data security policy.
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3.1 Symmetric cryptography

The cryptosystem is called symmetric if the encryption key is equal to the decryption key, or

if the decryption key can be easily computed from the encryption key. If, for example, Alice

and Bob use a symmetric cryptosystem, they must exchange the secret key before they start

communicating. Therefore, secure key exchange is very important. The secret key must be

kept secret, because anybody who knows the secret key also knows or can determine the

corresponding decryption key. [BucO1, Sta03]

The main concepts of the symmetric encryption scheme are: [Buc01, Pf103, Sta03]

1.

Plaintext: The plaintext is the original intelligible message or data that is fed into the

encryption algorithm as input.

Encryption algorithm: The encryption algorithm performs various substitutions and
transformations on the plaintext. The process of disguising a message in such a way as

to hide its substance is called encryption (also referred to as enciphering).

Secret key: The secret key is also input into the encryption algorithm that produces a

different output depending on the specific key being used at the time.

Ciphertext: The ciphertext is a scrambled message produced as an output that depends

on the plaintext and the secret key.

Decryption algorithm: The decryption algorithm is essentially the encryption
algorithm run in reverse. It produces the original plaintext by using the ciphertext and
the secret key. The process of restoring the plaintext from the ciphertext is called

decryption (also referred to as deciphering).
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The security of a symmetric cryptosystem depends on two things: the strength of the
algorithm and the length of the key. There are two general approaches for attacking a
symmetric encryption scheme: [Sch96, Sta03]

1. Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm and perhaps
some knowledge of the general characteristics of plaintext or even some sample
plaintext-ciphertext pairs. The main aim is to exploit the characteristics of the
algorithm in an attempt to deduce a specific plaintext or to deduce the key being used.
If the key (or even a part of the key) is discovered, all future and past messages

encrypted with that key are compromised.

2. Brute-force attack: An attacker tries every possible key value on a piece of ciphertext
until an intelligible translation into plaintext is obtained. On average, half of all

possible key values must be tried to achieve success.

The amount of information in a message is measured by the entropy of that message. The
entropy of a message measured in bits is log, n, where » is the number of possible meanings
in which each meaning is equally likely. The entropy of a message also measures its
uncertainty. For example, the entropy of a message indicating the day of the week is
log, 7=2.8 bits, ie. 000=Monday, 00/=Tuesday, 0l0=Wednesday, 0//=Thursday,
100=Friday, 101=Saturday, /10=Sunday, and 7/ is unused. Similarly, a four-number long
password that is widely used in various applications, such as in ATMs (Automated Teller
Machines) for withdrawing money or in mobile phones for unlocking the phone, achieves

only 4xlog, 10=13.3 bits of entropy. [Sch96]

Shannon postulated already in 1945 (his 1949 paper [Sha49] appeared originally as a
classified report in 1945) that a good symmetric encryption method is based on two
operations: [Sha49]

e Diffusion: Diffusion spreads the influence of a plaintext symbol as evenly as possible

in the ciphertext block. Therefore, it is difficult to make statistical conclusions.
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e Confusion: Confusion aims to make the relation between a key and a ciphertext as

complicated as possible.

Based on the ideas of Shannon, Feistel proposed in 1973 that the following principles and
parameters should be applied when designing good encryption algorithms: [Fei73]

e Block size: A larger block size increases security, but it also decreases speed.

e Key size: A larger key size increases security, but it also decreases speed.

e Rounds: Multiple rounds increase security.

e  Round function: A more complex round function makes cryptanalysis more difficult.
o Subkey generation: Greater complexity increases security.

An encryption scheme is said to be computationally secure if the following two criteria are

met: [Sta03]

1. The cost of breaking the cipher exceeds the value of the encrypted data: It is important

to define the adequate level of security in different situations.

2. The time required to break the cipher exceeds the useful lifetime of the data: Data are

useless for an attacker when the cipher has been broken.

The DES (Data Encryption Standard) is a symmetric encryption method developed by IBM.
The standard was accepted in 1977 and the latest version of the standard [NIS99] is from
1999. Originally, DES should have used 128-bit keys, but on the recommendation of the NSA
(National Security Agency) the key length of 56 bits was chosen. The DES is a block cipher
method, because it encrypts data in 64-bit blocks. It is intended to be implemented by
hardware. Encryption is done in three phases. First, the initial permutation rearranges the bits
to produce the permuted input. Secondly, the 16 rounds of the same function involve both
permutation and substitution operations. For each of the 16 rounds, a subkey K; (i=1,...,16) is
produced by the combination of a left circular shift and a permutation. The permutation

operation is the same for each round, but a different subkey is produced because of the
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repeated iteration of the key bits. The output of the last round consists of 64 bits that are a
function of the input plaintext and the key. The left and right halves of the output are swapped
to produce the preoutput. Finally, the preoutput is passed through the inverse initial
permutation to produce the 64-bit ciphertext. For decryption, the same algorithm is used, but
the application of subkeys is reversed. The 56-bit DES is no more secure. It was first broken
in 1998 with a specially designed machine, the EFF DES Cracker [Ele98], by exhaustive
search in 56 hours. Later in the same year, a distributed.net project [Dis08] managed to solve
the task in 22 hours. The insufficient security of the DES has motivated researchers to

develop alternatives to it. [BucO1, Pfl03, Sch96, Sta03]

The DES is efficient in hardware implementations and it can be made secure by using 3DES
(Triple DES; also referred to as TDES) coding [NIS04]. In 3DES, two keys K; and K are
needed, and they are applied in the following way. The plaintext block is coded by using K;
and the result is decoded by using K,. Because K, is a "wrong" key, the result is not the
original plaintext. This result is coded again by using K;, which finally produces the result of
the 3DES coding. Because 3DES keys have 112 bits, the number of different 3DES keys is
quadratic to the number of DES keys. Currently 3DES is the de-facto standard in banking.
[NIS04, Sta03]

Blowfish [Sch94a, Sch94b] is a block cipher method developed by Bruce Schneier in 1993. It
is freely distributed, unlike DES, which is patented. The main features of Blowfish are the
following. Blowfish is fast, because it needs only 18 clock cycles per byte on a 32-bit
microprocessor. It is also simple to implement and compact (it needs only 5 kB of memory).
Blowfish has an adjustable key length from 32 to 448 bits, which allows a tradeoff between
higher speed and higher security. From the original key, eighteen 32-bit subkeys and four
256-element S-boxes (an S-box, i.e. a Substitution box, substitutes input bits and produces
output bits) of 32-bit words are formed. An S-box transforms an 8-bit number (position
0,...,255) into a 32-bit word (in that position). Blowfish encryption consists of 17 phases.
Each phase consists of XOR, addition modulo 2*’, and S-box operations. Decryption is
identical to encryption, except that 18 subkeys are used in reverse order. Blowfish is

considered secure. [Sch94a, Sch94b, Sch96, Sta03]
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Ron Rivest has developed a sequence of encryption algorithms called RCi (i=1/,2,3,...). Let us
take a closer look at two of them: RC4 (Rivest Cipher 4; also referred to as Ron's Code 4 or
ARCFOUR) [Riv92a] and RC6 (Rivest Cipher 6; also referred to as Ron's Code 6) [RRS98].

RC4 encodes data byte-by-byte, i.e. it is a stream cipher, not a block cipher. It is a widely
used algorithm, because RC4 is used in the WEP (Wired Equivalent Privacy) protocol that is
part of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard (i.e. the
popular WLAN standard), and it is also used in the SSL (Secure Sockets Layer) standard that
has been defined to protect Internet traffic. The RC4 algorithm was originally secret, but it
was leaked to the Internet in 1994 [Cyb94]. RC4 works in the following way. It has an
adjustable key length from 1 to 256 bytes (8 to 2048 bits), which is used to initialize a 256-
byte state vector S with elements S/i] (i=0,1,...,255). At all times S contains a permutation of
all 8-bit numbers from 0 through 255. For encryption and decryption, a byte k is generated
from S by selecting one of the 255 entries in a systematic way. As each value of k is
generated, the entries in S are permuted again. To encrypt data, the value &k is XORed with the
next byte of plaintext. To decrypt data, the value k is XORed with the next byte of ciphertext.
RC4 is essentially a pseudorandom number generator that is initialized with the secret key.
Many papers, such as [FIM00, KMP98, MaS01, MiT98], have been published about
analyzing methods of attacking against RC4, but these approaches are not practical against
RC4 with a reasonable key length such as 128 bits. A more serious problem was reported in
2000 when Jesse Walker showed in his paper [Wal00] that the WEP protocol is insecure.
Another paper [FMS01] also demonstrated WEP's shortcomings in 2001, and it made clear
that the original WEP protocol was no more secure. In essence, the problem is not with the
RC4 itself, but with the way in which keys are generated in the WEP protocol for use as input
to the RC4. [Cyb94, FMSO01, Riv92a, RRS98, Sch96, Sta03, Wal00]

RC6, from 1998, is the latest of Ron Rivest's encryption algorithms, and it was also his
candidate for the AES contest. RC6 is a block cipher derived from RC5 (Rivest Cipher 5; also
referred to as Ron's Code 5) [Riv94]. RC6 is adjusted by parameters w (word length in bits), »
(number of rounds), and b (the length of encryption key in bits). Typical values are w=32,

r=20 and b=128. Basic operations are addition, subtraction, multiplication modulo 2", XOR,
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rotation to the left by log w bits, and rotation to the right by log w bits. RC6 is easy to
program and fast. [Riv94, RRS98]

SAFER+ (Secure And Fast Encryption Routine +) [MKK98] was developed by Massey et al.
in 1998. It was also submitted as a candidate for the AES contest, but the cipher was not
selected as a finalist. SAFER+ is a block cipher with the following main features. It has a
block size of 128 bits and three different key lengths (128, 192 and 256 bits). Bluetooth uses
SAFER+ with a 128-bit key as an algorithm for authentication and key generation (see
Section 4.1). It consists of nine phases (eight identical rounds and the output transformation)
and a KS4 (Key Scheduling Algorithm) in the following way. KSA produces 17 different 128-
bit subkeys. Each round uses two subkeys and a 128-bit input word from the previous round
to calculate a 128-bit word that is a new input word for the next round. The last subkey is
used in the output transformation, which is a simple bitwise XOR of the last round's output
with the last subkey. Although some optimizations for faster breaking of SAFER+ exist (for
example, in [ShWO05]), it is considered secure. [Blu07a, MKK98, ShW05]

AES [NIS01] was published by the NIST (National Institute of Standards and Technology) in
2001 after the evaluation process of the AES contest. Rijndael was the winner of the contest
and the NIST selected it as the algorithm for AES. AES is a symmetric block cipher that is
intended to replace DES as the approved standard for a wide range of applications, but this
process will take many years. The NIST anticipates that 3DES will remain an approved
algorithm for the foreseeable future, at least for U.S. government use. The future version of
Bluetooth, Seattle (see Section 2.1), is expected to improve the security of Bluetooth by
including AES. [NISO01, Pfl03, Sta03, Wal05]

AES encryption consists of 10-14 rounds in which data blocks are processed step-by-step in
the following way (except the final round; it is noteworthy that AES decryption is symmetric
to AES encryption): [NISO1, Pf103, Sta03]

1. Byte substitution: Byte substitution uses an S-box to perform a byte-by-byte
substitution of the block.

2. Row shifting: Row shifting is a simple permutation.
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3. Column mixing: Column mixing is a substitution, which makes use of arithmetic over
GF(2*). Galois Field GF(2°) is a finite field of 256 elements, which can be denoted by

strings of eight bits or by hexadecimal notation.

4. Round key adding: Round key adding is a simple bitwise XOR of the current block
with a portion of the expanded key.

The final round of the AES encryption (and AES decryption) is slightly different: [NISO1,
P1103, Sta03]

1. Byte substitution.
2. Row shifting.
3. Round key adding.

The main features of AES are the following. It is considered secure. AES is very fast and
compact (about 1 kB of code). Its block size is multiples of 32 (typically 128 bits) and its key
length is also multiples of 32 (typically 128, 192 or 256 bits). Moreover, AES has a very neat
algebraic description. [NISO1, P{103, Sta03]

3.2 Public-key cryptography

The invention of public-key cryptography in 1976 by Diffie and Hellman [DiH76a, DiH76b]
was a major milestone in the history of cryptography. The difficulty of symmetric encryption
lies in the distribution of secret keys. In public-key cryptosystems, the encryption key and the
decryption key are distinct, and the computation of a decryption key from the encryption key
is infeasible. Therefore, the encryption key can be made public. If, for example, Bob wants to
receive encrypted messages, he publishes an encryption key and keeps the corresponding
decryption key secret. Anyone can use the public key (encryption key) to encrypt messages
for Bob, but only Bob can decrypt the messages by using his private key (decryption key).
[BucO1, P103, Sta03]
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The main concepts of the public-key encryption scheme are: [Buc01, Pfl03, Sch96, Sta03]

1.

Plaintext: The plaintext is the original intelligible message or data fed into the

encryption algorithm as input.

Encryption algorithm: The encryption algorithm performs various transformations on

the plaintext.
Public key: The public key is used for encryption.
Private key: The private key is used for decryption.

Ciphertext. The ciphertext is a scrambled message produced as an output, which

depends on the plaintext and the public key.

Decryption algorithm: The decryption algorithm accepts the ciphertext and the

matching private key, and produces the original plaintext.

As with a symmetric encryption scheme (see Section 3.1), a public-key encryption scheme

may be vulnerable to a brute-force attack. The countermeasure is also the same: the key size

must be large enough to make brute-force attacks impractical, but small enough for practical

encryption and decryption. Another way to attack a public-key encryption scheme is to find a

way to compute the private key from the given public key. In this attack, any given algorithm

is suspect. The history of cryptanalysis shows that a problem which seems almost impossible

to solve from one perspective can have a (simple) solution if the problem is looked at in an

entirely different way. [Pfl03, Sch96, Sta03]

Table 2 summarizes and compares the main aspects of symmetric and public-key encryption

(see also the descriptions of symmetric and public-key encryption schemes in Sections 3.1

and 3.2). [Sta03]
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Symmetric encryption:

Public-key encryption:

Needed to work:
1.

The same algorithm with the
same key is used for encryption
and decryption.

The sender and receiver must
share the algorithm and the key.

Needed to work:

1.

One algorithm is used for
encryption and decryption with a
pair of keys, one for encryption
and one for decryption.

The sender and receiver must

each have one of the matched
pair of keys (not the same one).

Needed for security:
1.

The key must be kept secret.

It must be impossible or at least
impractical to decrypt a
message if no other information
is available.

Knowledge of the algorithm plus
samples of ciphertext must be
insufficient to determine the key.

Needed for security:

1.

2.

One of the two keys must be
kept secret.

It must be impossible or at least
impractical to decrypt a message
if no other information is
available.

Knowledge of the algorithm plus
one of the keys plus samples of
ciphertext must be insufficient to
determine the other key.

RSA (Rivest-Shamir-Adleman) was developed in 1977 by Rivest, Shamir and Adleman, and it
was published in 1978 [RSA78]. The RSA algorithm works in the following way: [BucO1,

Table 2. The main aspects of symmetric and public-key encryption. [Sta03]

Pf103, RSA78, Sch96, Sta03]

Choose two large (odd) primes p and ¢ (typically more than 100 decimal digits), and
compute the product n=pq when ¢ (n)=(p—1)(q—1). The number # is called the RSA
modulus. In number theory, ¢ (n) is used to denote the number m of those numbers
less than » in which ged(m,n)=1, i.e. the numbers m and » do not have common
divisors. The notation c=gcd(a,b) means that the number ¢ is the greatest common

divisor of the numbers a and b, iff (if and only if) a mod ¢ = 0, b mod ¢ = 0, and there

is no greater number fulfilling these conditions.

Choose an (odd) integer e with /<e<¢ (n) and gcd(e, ¢ (n))=1. The number e is called

the encryption exponent. The public encryption key is (e,n).

40




e Compute an integer d with /<d<¢ (n) and de=1 mod ¢ (n) (notation a=b mod m iff

(a-b) mod m=0 is used). The private decryption key is (d,n). The number d is called

the decryption exponent.

e Number x (plaintext) is encrypted by computing c=x° mod n, where x<¢ (n).

e Ciphertext ¢ is decrypted by computing x=c* mod n.

Without knowing the factorization n=pgq, there is no obvious way of solving the decryption
key (d,n). Breaking an RSA encryption has been a popular sport among researchers. 512-bit
encryption RSA-155 (512 bits is 155 decimal digits) was first broken on 22.8.1999 by a group
of researchers [RSA99]. This was accomplished by using 292 workstations for seven months,
altogether 35.7 processor years. Approximately seven million-fold time and 2650 times more
memory would be needed for breaking the 1024-bit (309 decimal digits) RSA [RSA04,
Sta03]. RSA numbers were originally spaced at intervals of 10 decimal digits between one
and five hundred digits, but when computers and algorithms became faster, the naming
convention was changed so that the trailing number indicates the number of bits (for example,
640-bit encryption RSA4-640 has 193 decimal digits). RSA-640 was first broken on 2.11.2005
by Bahr, Boehm, Franke and Kleinjung [RSAO0S5]. According to the submitters, breaking took
approximately thirty 2.2 GHz-Opteron-CPU (Central Processing Unit) years (over five
months of calendar time). RSA Laboratories recommends 1024-bit key for corporate use and
2048-bit key for applications that require extremely high security. In order to break RSA
faster, a new faster algorithm for the factorization should be invented. Currently, the best
breaking method has been a systematic search of factor candidates. It is also speculated that
quantum computation may change the speed of factorization if it becomes available in a few

decades. [RSA04, RSA05, RSA99, Sta03]

Diffie-Hellman key exchange [DiH76a, DiH76b] is based on the use of discrete logarithm. Let
us assume that Alice and Bob want to use a symmetric encryption system to keep their
communication over an insecure channel secret. In order to do that, they must first exchange a
common secret key. The Diffe-Hellman key exchange system allows Alice and Bob to use

their insecure communication channel for the key exchange. Everyone can listen to the key
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exchange, but the information obtained cannot be used for the secret key construction.
Bluetooth versions up to 2.0+EDR use a password authenticated multi-party Diffie-Hellman
key exchange (see Section 4.1). [Blu07a, Buc01, DiH76a, DiH76b, Sta03]

The Diffie-Hellman key exchange works in the following way: [BucO1, DiH76a, DiH76b,
Sta03]

e Choose a prime p and a number g<p, which is a primitive root of p. Numbers p and g

are public.

e User 4 chooses the private key S4<p and computes the public key J, = g mod p.

Therefore, the whole public key of user 4 is (p,g,J4).

The public key can be used for sharing a common secret key in the following way: [BucO1,

DiH76a, DiH76b, Sta03]

e User 4 sends the public key (p,g,J4) to user B and user B sends (p,g,Jp) to user A.

e User 4 computes J;* = g**  and user B computes J5* = g* .

o g% = g%5% s their common secret key (to be used for symmetric encryption), which

is difficult for others to invent, even if they know p, g, J4 and J3.

The Diffie-Hellman problem is the following. A primitive root of p is needed. To find one, we
need a method that is faster than trying all numbers g<p and computing all powers of g. If this
were possible, breaking the code would also be possible. As long as the Diffie-Hellman
problem is difficult to solve, no eavesdropper can figure out the secret key from the publicly

known information. [BucO1, Sta03]

As described earlier, the key length for secure RSA use has increased rapidly over recent
years. Therefore, applications using RSA also have a heavier processing load than before.
ECC (Elliptic Curve Cryptography) [Kob87, Mil85] is based on the mathematical properties
of elliptic curves, and it appears to offer equal security to RSA for a much smaller key size

[JuM97]. Bluetooth 2.1+EDR improves the security of pairing (see Section 4.1) by using
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ECDH (Elliptic Curve Diffie-Hellman) public-key cryptography [Blu07a]. ECDH is a key
agreement protocol for allowing two communicating parties to establish a common secret key
over an unsecured channel. It is a variant of the Diffie-Hellman key exchange protocol using

ECC. [Blu07a, Buc01, JuM97, Kob87, Mil85, Sta03]

An elliptic curve over real numbers IR is a set of points (x,y) that satisfy an equation
y'=x’+ax+b, where x,y,a,bek. Every elliptic curve also contains an element O, which is
called the point at infinity (also referred to as the zero point). Calculations over real numbers
are slow and inaccurate due to rounding error. Therefore, elliptic curves with x,y,a,be]R are
not usable in practice. Instead, elliptic groups modulo p (where p is a prime) are defined in the
following way. Two non-negative integers a,b<p, which satisfy 4a’+27b%=0 mod p, are
chosen. E,(a,b) denotes the elliptic group modulo p, where elements (x,y) are pairs of non-
negative integers less than p satisfying both y°=x’+ax+b mod p and the point at infinity O. It
is worth noting that now the number of points on the elliptic curve is not infinite. Moreover, it
is not clear even how to connect these discrete points to make their graph look like a curve.
Therefore, the geometrical definition of operations on these points cannot be used. Instead,
the algebraic rules can be used for elliptic curve groups modulo p for making computations

precise. [Buc01, JuM97, Kob87, Mil85]

The ECC cryptosystem can be defined in the following way. The domain parameters (known

to all participants) are: [JuM97, Kob87, Mil85]

o A prime number p and parameters a and b defining the elliptic group of points
Ey(a,b).

o A generator point G on E,(a,b): The important criterion for selecting G is that the
smallest value of n (n is called the order of the point G), for which nG=0, be a very

large number.

The private key is an integer k, where 2<k<n—2. The public key is the point Q=kG. A key
exchange between, for example, Alice and Bob can be performed with ECC as an analogue to
a Diffie-Hellman key exchange. It works in the following way. Alice's keys are (k4 Q) and
Bob's keys are (kg Op). Alice computes the secret key K=k, Op and Bob computes the secret

43



key K=kpQ4. Both calculations produce the same result, because K=k, QOp=ky*(ksG)=
kg *(k4sG)=kpQ4=K. Therefore, Alice and Bob can use K for the symmetric encryption of
messages, for example, with 3DES, Blowfish or AES. [Buc01, JuM97, Kob87, Mil85]

ECC encryption and decryption can work in the following way, for example. The plaintext
message m has to be represented as a point P, on E,(a,b). Various straightforward techniques
of transforming the message m into coordinates on the elliptic curves exist. When Alice wants
to encrypt and send P, to Bob, she chooses a positive integer k& and produces the ciphertext
Cn={kG,P,,+kQp}. Bob can decrypt the ciphertext by calculating P,+kQp—kp*(kG)=
P +k*(kgG)—kp*(kG)=P,,. Finally, Bob decodes the plaintext message m from the point P,
Although the theory of ECC has been around for some time, it is only recently that ECC
products have begun to appear. Therefore, the confidence level in ECC is not yet as high as

that in RSA. [Buc01, JuM97, Kob87, Mil85, Sta03]

3.3 Message authentication and hash functions

Authentication is used for assuring that the communicating entity is the one that it claims to
be. The best-known example of identification and authentication is the login procedure, where
the identity is authenticated by a password. Another example of authentication is the digital
signature. Authentication can be used, for example, to protect against masquerading/
impersonating (messages are inserted into the network from a fraudulent source), content
modification (for example, insertion, deletion or transposition), sequence modification
(modification to a sequence of messages), and timing modification (delay or replay of

messages). [Buc01, Pf103, Sta03]
There are many ways to authenticate: [BucO1, Pfl03, Sta03]

e Encryption: The whole message encrypted with the secret key of the sender proves the
authenticity of the sender, because only the real sender has that key. It also proves the
originality of the message, because after encryption nobody else can change and

encrypt it.
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e Hash function: A public hash function forms a constant length code from the message.
The hash value is appended to the message and it proves the originality of the

message.

o MAC (Message Authentication Code; also referred to as cryptographic checksum):
MAC is a constant length code formed from the message and the secret key. It is

appended to the message to prove the originality of the message.

MD5 (Message-Digest 5) [Riv92b] is a hash function developed by Ron Rivest in 1991. It
processes the message in blocks of 512 bits and outputs a code of 128 bits long. MDS5 works
in the following way. At the beginning, 1 to 512 padding bits are appended so that the length /
(greater than 512) is 448 (mod 512). After padding bits, 64 bits of the number / mod 2% are
appended so that the length of the message is divisible by 512. Intermediate results (and
ultimately also the final result) are stored in a buffer that consists of four 32-bit registers. The
initial values of the registers are A4=67452301, B=EFCDAB89, C=98BADCFE and
D=10325476 in hexadecimal. Now, let the 512 bits of the block be X/1...16]. Registers will
be updated by the formula 4,B,C,D=f(4,B,C,D,X[1...16],T[1...64]), where T[i] is the 32-bit
representation of the integer part of 2*’|sin i| (where i is in radians). The value of f is
computed in 16 phases of the form a=b+((a+g(b,c,d)+X[ p (i)]+T[i])<<<s), where a, b, ¢
and d are the registers 4, B, C and D in certain order, depending on the phase. Depending on
the phase, g is one of the functions F(b,c,d)=(brc)v (—bArd), G(b,c,d)=(brd)v (cA —d),
H(b,c,d)=b®c®Dd, or I(b,c,d)=c® (bv —d), where @ is XOR, A is AND, v is OR, and —
is NOT. The rotation of bits s positions to the left is denoted as <<<s. Addition modulo 2% is

denoted as +. Depending on the phase, p is one of the functions p, (i)=i, p, (i)=(1+5i) mod
16, p,(i)=(5+3i) mod 16, or p,(i)=7i mod 16. Finally, the output (128-bit code) is read in
registers 4, B, C and D. [Pfl03, Riv92b, Sch96, Sta03]

MDS5 is no longer considered secure, because an attacker can generate hash collisions by
modifying one or more messages. A hash collision is a situation that occurs when two distinct
inputs into a hash function produce identical outputs. In August 2004, collisions for the full

MD5 were announced [WFL04]. In March 2005, new results appeared in which MDS5
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collisions were constructed in a few hours on a typical notebook PC [KIi05, LWWO05]. MD5
is still used in many applications. For many cases the security of MDS5 is appropriate.

However, it is highly recommendable to use better hash functions than MDS5 when possible.

A 160-bit hash function SHA-1 (Secure Hash Algorithm 1) was published in 1995 by NIST
[NIS95]. SHA-1 has some resemblance to MDS5. It also processes message in 512-bit blocks,
but it uses five 32-bit registers, i.e. 5x32 bits=160 bits. SHA-1 works in the following way.
At the beginning, 1 to 512 padding bits are appended so that the length / (greater than 512) is
448 (mod 512). After padding bits, 64 bits of the number / mod 2% are appended so that the
length of the message is divisible by 512. The initial values of the five registers are
A=67452301, B=EFCDAB89, C=98BADCFE, D=10325476 and E=C3D2EIF0 in
hexadecimal. The following 80 constants K; will be used: the integer part of 22 for
0<i<19, the integer part of 223 for 20<i<39, the integer part of 25 for 40<i<59, and the

integer part of 2°A/10 for 60<i<79. 512-bit block is split in sixteen 32-bit words. New values
for the registers are computed in four rounds (round number j=/,2,3,4). The output of one
round is A,B,C,D,E=(A,B,C,D,E)+fj(4,B,C,D,E,W[1...80]), where W[i] is a 32-bit word
derived from the 512-bit block. The first 16 W words are taken directly from the 512-bit
message block. The remaining W words are defined in the following way:
W=W—16® Wi 14® W,_s® W,_3<<<[ (for 16<t<79). Each round consists of 20 phases of the
form A,B,C,D,E=(E+g(B,C,D)+(A<<<5)+W,+K,),A4,(B<<<30),C,D, where g; is of the form
J1=g(B,CD)=(BAC)v (=BAD) for 0<t<19, fr=g(B,C.D)=B@®C®D for 20<t<39,
f3=g«(B,CD)=(BAC)v (BAD)v(CAD) for 40<t<59, or f,=g(B,C.D)=B®C®D for
60<¢t<79. Finally, the output (160-bit code) is read in registers 4, B, C, D and E. [NIS95,
Pf103, Sch96, Sta03]

Due to the greater number of bits (160 vs. 128 bits) and phases (20 vs. 16 phases), SHA-1 is
more secure than MD5. However, collisions on SHA-1 can be found with 2% operations
(comparable with a brute-force search with a complexity of 2%) as was demonstrated in
August 2005 [WYYO05]. The current situation calls for more reliable hash functions. The
viable options could be, for example, SHA-224, SHA-256, SHA-384 and SHA-512 [NIS02].
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Some experts propose that a contest for hash function proposals should be started, as was

done with AES earlier.

HMAC (a keyed-Hash Message Authentication Code) is an authentication algorithm
developed by Bellare, Canetti and Krawczyk in 1996 [BCK96a, BCK96b]. It defines how the
secret key is used for authentication, but it does not define what hash function should be used
(usually MD5 or SHA is chosen). HMAC (as well as any MAC) can be used to
simultaneously verify both the infegrity of data and the authenticity of the message. It works
in the following way. A message is processed as b-bit blocks and the result of hashing is an -
bit number. The length of the secret key should be at least » bits. If the size of the secret key
is smaller than b bits, zeros are added as a prefix until the length b is reached. The padding
block called ipad is constructed by repeating b/8 times the bit string 00110110. Also, the
padding block called opod is constructed by repeating b/8 times the bit string 0/011010. The
block value (n-bit code) is computed by H((K® opad) o H((K® ipad) o m;)), where m; is the
block to be processed, o is the concatenation operation, H is the hash function, and X is the
secret key. The security of HMAC obviously depends on the hash function being used, on the
size of the secret key, and on the quality of the secret key. [BCK96a, BCK96b, Sta03]

3.4 Digital signatures, MITM attacks and public key certificates

It is not always enough that a sender and a receiver protect themselves against third parties.
Sometimes they also need to protect themselves against each other, which is the purpose of
the digital signature. A good digital signature should have the following properties. A
signature depends on the contents of the message and it is unique to the sender, i.e. forging
and denial should be prevented. In addition, a signature is relatively easy to produce and
recognize. Moreover, falsification of the signature should be unfeasible. A combination of
some of the following techniques are used for digital signatures: symmetric encryption,
public-key encryption, hashing, timestamps (for proving the freshness of the messages and the
correct order of events), many different kinds of serial numbers, and reliable third party

offering authentication and signature services. [Pfl03, Sch96, Sta03]
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Digital signature can be implemented in the following way, for example (the so-called direct

digital signature): [Sch96, Sta03]

1. The signature is the whole message or its hash code encrypted with the common

secret key.

2. If the confidentiality of the message must also be guaranteed, it can be done by
further encrypting the whole message plus the signature with the common secret key

or with the public key of the receiver.

The reliability of a direct digital signature depends on how well the common secret key is
kept secret. If the sender wants to deny the message later on, she can always say that the
secret key has leaked to the wrong hands. Therefore, a digital signature can be made more

reliable if a reliable arbiter is available. [Sch96, Sta03]

In August 1991, the NIST proposed a DSA (Digital Signature Algorithm) for use in their DSS
(Digital Signature Standard) [NIS91]. The DSS was revised in 1993 [NIS94], and it was
further updated in 1996 and 2000. The original DSS algorithm implements a digital signature
by using SHA hashing. The latest version of the DSS [NIS00] also incorporates digital
signature algorithms based on RSA and ECC. [NIS00, NIS91, NIS94, Sch96]

The original DSS algorithm works in the following way: [NIS00, NIS91, NIS94, Pf103,
Sch96, Sta03]

e Construct a public key (p,¢,g) in the following way: let p be a prime, 2° '<p<2*,
where 512<1.<1024 is a multiple of 64. Let g be a prime that is a factor of (p—1) and

219<q<2"" Let g=h"""" mod p, where h? """ mod p>1.

o Construct a pair (x,y) of private and public keys for the user in the following way: let

x be a prime (0<x<gq) and y=g" mod p.

e Construct a secret session key k, where 0<k<gq is random or pseudorandom.
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e Construct a signature in the following way: let r=(gk mod p) mod g and

s=(k"!(h(m)+rx)) mod q. Send moros.

e At the receiving end, verification is performed in the following way: compute w=s "’
mod q, t=h(m)w mod q, u=rw mod q, and v=(g"y" mod p) mod q. If r=v, the

verification is completed successfully, i.e. the signature is validated.

Let us assume that Alice and Bob are communicating with each other and they want to secure
their communication by using some public-key encryption method. In a MITM attack,
Mallory (an attacker) intrudes between Alice and Bob. Mallory can eavesdrop on messages,
modify messages, delete messages and generate new messages between Alice and Bob in
such a way that his presence is unrevealed, i.e. Alice and Bob do not know that the link
between them is compromised by Mallory. Mallory is also able to imitate Bob when talking
to Alice and vice versa. This simple example of a MITM attack works in the following way:

[Pf103, Sch96]

1. Alice sends her public key to Bob, but Mallory is able to intercept it. Mallory sends
Bob his own public key for which he has the matching private key. Now Bob wrongly
thinks that he has Alice's public key.

2. Bob sends his public key to Alice, but Mallory is able to intercept it. Mallory sends
Alice his own public key for which he has the matching private key. Now Alice
wrongly thinks that she has Bob's public key.

3. Alice sends Bob a message encrypted with Mallory's public key, but Mallory is able
to intercept it. Mallory decrypts the message with his private key, keeps a copy of the
message, re-encrypts the message with Bob's public key, and sends the message to

Bob. Now Bob wrongly thinks that the message came directly from Alice.

4. Bob sends Alice a message encrypted with Mallory's public key, but Mallory is able
to intercept it. Mallory decrypts the message with his private key, keeps a copy of the
message, re-encrypts the message with Alice's public key, and sends the message to

Alice. Now Alice wrongly thinks that the message came directly from Bob.
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Even if the public keys of Alice and Bob are stored on a database, a MITM attack will work.
Mallory can intercept Alice's (or Bob's) database inquiry and substitute his own public key
for Bob's (or Alice's) public key. He can also somehow break into the database and substitute
his key for both Alice's public key and Bob's public key. A MITM attack works, because
Alice and Bob have no way to verify that they are truly using each other’s correct public
keys. If Mallory does not cause any noticeable delays to the communication, Alice and Bob

have no idea that Mallory has intruded between them. [P{103, Sch96]

Without any verification of the public keys, MITM attacks are generally possible (in
principle) against any message sent using public-key technology. One solution to this
problem is to use public key certificates (also referred to as digital identity certificates)
[Koh78], which use digital signatures to bind together public keys with the information of
their respective users, i.e. information such as the name of the user, the address of the user,
and so on. Each user is associated with a trusted authority, a CA (Certification Authority),
and each certificate is created by such a CA. A certificate establishes a verifiable connection
between the user and his public keys. The users know their CA's public key and therefore
they can verify the signatures of their CA. The certificate is stored in a directory. Only the
CA is allowed to write in this directory, but all users of the CA can read the information in

the directory. [Buc01, Koh78, Sch96, Sta03]

Defences against MITM attacks use authentication techniques which are based on public key
certificates, two-way authentication (also referred to as mutual authentication), secret keys,

passwords, and other methods (such as voice recognition and other biometrics). [Pfl03,

Sch96]

3.5 Network security

As described earlier, network security is needed to protect data during transmission. A
network in its simplest form consists of two devices connected across some medium (wired
or wireless) by hardware and software that enable communication. Wireless radio networks
(such as Bluetooth) have to address not only the traditional security problems found in wired

networks, but also additional security aspects that wireless communication brings along.
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Wireless radio transmissions are difficult to confine into a certain area. In addition, wireless
radio signals are quite easy to intercept, disrupt and jam. Therefore, wireless radio
communication requires additional countermeasures to those required by wired
communication. Moreover, the complexity of wireless ad-hoc networks is much higher than

that of traditional wired or centralized wireless networks. [Mor02, Pfl03, Sta03]

The creators of TCP/IP had no idea how popular it would be and for what it would be used.
Originally, it was used between researchers for sending technical messages. Currently, it is
used not only for all kinds of correspondence, but also for bank services, multimedia, running
programs over a network, and so on. TCP/IP is used by all kinds of people in all countries.
Therefore, network security is a very important issue. In layered architecture (such as
TCP/IP), network security can be improved in the physical layer (PHY), the link layer, the
network layer, the transport layer, and the application layer. The advantage of having
security in a lower layer is that all higher layers get security without any significant extra
work. However, high quality individualized security can also be achieved by application
layer solutions. In a physical layer, network security can be improved by confining wireless
signals into a certain area with directional antennas, for example, and also by using some
kind of transmit power controlling. In a link layer, network security can be improved by
using the L2TP (Layer 2 Tunneling Protocol), for example. In a network layer, network
security can be improved by using /PSec (Internet Protocol Security), for example. In a
transport layer, network security can be improved by using SSL, for example. In an
application layer, network security can be improved by using SSH (Secure Shell), for

example. [Pfl103, Sta03]

L2TP [IET99] was published in 1999 and the latest version of the protocol was published in
2005 [IETOS5a]. It is a protocol for tunneling network traffic between two peers over an
existing network (usually the Internet). L2TP does not provide confidentiality or strong
authentication by itself. Therefore, /PSec [IET05b, IET07] is often used to secure L2TP
packets by providing confidentiality, authentication and integrity. IPSec is a part of the
TCP/IP version 6 network architecture and its goal is to implement secure network
communication in the Internet. IPSec offers security to all applications, which need not even

be aware of the existence of IPSec. It also offers secure connection from device to device.
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Secure "virtual" subnetworks within a network can be built using IPSec. On the other hand,
[PSec does not secure connections from application to application. In addition, it
authenticates machines, not users. Moreover, IPSec does not protect against availability
attacks (DoS attacks). Because [PSec works on the network layer, it protects datagrams
(header, contents, or both). Authentication data can be added in optional fields between the
header and contents of the datagram to allow individual authentication for each datagram.
The contents of a datagram are protected by symmetric encryption. It is also possible to
encrypt the whole datagram and add a new header. In this way, a secure "virtual" network

within a network can be built. [IET05a, IET05b, IET07, IET99, Pf103, Sta03]

SSL [Net96] was originally implemented in 1994 by Netscape in order to improve the
security of communication between a web browser and a server. Since then, the IETF
(Internet Engineering Task Force) has taken SSL as a basis for a network protocol standard
called TLS (Transport Layer Security) [IET06]. TLS is used by web browsers such as
Netscape Navigator, Mozilla and Microsoft Internet Explorer. It is also used in web servers
such as Apache, Stronghold and Roxen. SSL is used in web browsers for electronic
commerce, for example. An SSL session starts with a negotiation for algorithm support
between the client and the server. After the negotiation, a public-key encryption-based key
exchange and certificate-based authentication is performed. The supported methods include
RSA, Diffie-Hellman, MD5 and SHA. After authentication, symmetric cryptography (and
possibly also compression) is used for data transfer. The supported methods include RC4,

DES, 3DES, Blowfish and AES. [IET06, Net96, P{103]

SSH1 (also referred to as SSH-1) was developed in 1995 by Tatu Ylénen. In December 1995,
he founded the SSH Communications Security company [SSHOS8] to market and further
develop SSH. SSH works on the application layer and it replaces earlier remote terminal
programs by a more secure alternative. SSH1 was replaced in 1996 by SSH2 (also referred to
as SSH-2), which is not compatible with SSH1. SSH uses public-key encryption for
authentication (the supported methods include RSA and Diffie-Hellman) and symmetric
encryption for encrypting data (the supported methods include DES, 3DES, Blowfish, RC4,
and AES). [Pf103, SSHO8]
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The purpose of a firewall is to isolate the local area network from the Internet so that there

remains limited access to the Internet, but there is no free access from the Internet to the local

area network. Therefore, a firewall has two purposes: [Pfl03, Sta03]

1.

To restrict access from the Internet to a PC or to a local area network.

2. To restrict access from a PC or from a local area network to the Internet.

The purpose of an antivirus software is to protect a computer system, such as a PC, laptop,

PDA (Personal Digital Assistant) or mobile phone, from malicious programs such as viruses

and worms. Four different generations of antivirus software exist: [Sta03, Ste93]

Simple scanners: A simple scanner, a so-called signature-specific scanner, requires
virus/worm signatures in order to identify them, and it is limited to the detection of
previously known viruses/worms. Another form of a simple scanner can maintain a

record of program lengths in order to find changes in lengths.

Heuristic scanners: A heuristic scanner does not need virus/worm signatures to
identify them. It uses heuristic rules for searching probable virus/worm infections.
Another form of a heuristic scanner uses integrity checking in which a checksum is
appended to all programs. If a program is infected without changing the checksum by
a virus/worm, an integrity check will reveal the change. An encrypted hash function
can be used as a countermeasure for such viruses/worms that are able to change the

checksum.

Activity traps: Third-generation antivirus programs are memory-resident programs for
identifying viruses/worms by their actions rather than their structure in infected

programs.

Full-featured protection: Fourth-generation antivirus products consist of many
different antivirus techniques, such as components for scanning, components for

activity traps, and capability for access controlling, used in conjunction.
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Most access violations occur internally by insiders in an organization. Such abuses can be
substantially decreased by using an EFS (Encrypting File System). Windows 2000, Windows
XP Professional and Windows Server 2003 include EFS as a component of the NTFS (New
Technology File System) [Bra08]. In Linux environments, for example, EncFS (Encrypted
Filesystem) [Gou08] or ReiserFS (Reiser Filesystem) [ShiO8] can be used.

On the other hand, not all information is secret. In fact, most of the information may be
publicly available, and an enterprise can publish information if it does not endanger its own
business. Security should be based on a data security policy, which is not only a solution that
concerns data and devices, but a process where risks are considered and protection is applied

as needed. [AndO1]
A data security policy can be implemented in the following way, for example: [And01]

1. Recognize objects that need protection: Objects are priorized and secured by need,

i.e. maximum level of security is not needed to all objects.

2. Recognize the threats and estimate the probabilities of the threats: Methods to protect
against the threats should also be defined.

3. Implement security cost effectively: Because data security costs, it is not reasonable to

secure data in vain.

4. Update the process when objects and/or threats change: It is important to keep a data

security policy up-to-date.

In the next chapter we give an overview of Bluetooth security by first explaining Bluetooth
security architecture. We also discuss Bluetooth network vulnerabilities and explain the

reasons for such vulnerabilities.
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4 OVERVIEW OF BLUETOOTH SECURITY

Because Bluetooth is a wireless communication system, there is always a possibility that the
transmission could be deliberately jammed or intercepted, or that false or modified
information could be passed to the piconet devices. To provide protection for the piconet, the
system can establish security at several protocol levels. Bluetooth has built-in security

measures at the link level.

Section 4.1 explains how Bluetooth security is organized. Section 4.2 discusses vulnerabilities

of Bluetooth network. Section 4.3 explains the reasons for Bluetooth network vulnerabilities.

4.1 Bluetooth security architecture

This Section explains how security issues have been taken into consideration in current public
Bluetooth specifications [Blu99a, Blu99b, BluO1, Blu03, Blu0O4a, Blu07a]. The basic
Bluetooth security configuration is done by the user, who decides how a Bluetooth device will
implement its connectability and discoverability options. The different combinations of
connectability and discoverability capabilities can be divided into three categories, or security

levels:

1. Silent: The device will never accept any connections. It simply monitors Bluetooth

traffic.

2. Private: The device cannot be discovered, i.e. it is a so-called non-discoverable
device. Connections will be accepted only if the BD ADDR (Bluetooth Device
Address) of the device is known to the prospective master. A 48-bit BD ADDR is

normally unique and refers globally to only one individual Bluetooth device.

3. Public: The device can be both discovered and connected to. It is therefore called a

discoverable device.
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There are also four different security modes that a device can implement. In Bluetooth

technology, a device can be in only one of the following security modes at a time:
1. Nonsecure: The Bluetooth device does not initiate any security measures.

2. Service-level enforced security mode: Two Bluetooth devices can establish a
nonsecure ACL link. Security procedures, namely authentication, authorization and
optional encryption, are initiated when an L2CAP CO or an L2CAP CL channel

request is made.

3. Link-level enforced security mode: Security procedures are initiated when an ACL link

is established.

4. Service-level enforced security mode: This mode is similar to mode 2, except that only
Bluetooth devices using SSP can use it, i.e. only Bluetooth 2.1+EDR (or later) devices

can use this security mode.

Authentication is used for proving the identity of one piconet device to another. The results of
authentication are used for determining the client's authorization level, which can be
implemented in many different ways: for example, access can be granted to all services, only
to a subset of services, or to some services while other services require additional
authentication. Encryption is used for encoding the information being exchanged between

Bluetooth devices in a way that eavesdroppers cannot read its contents.

Bluetooth security is based on building a chain of events, none of which provides meaningful
information to an eavesdropper, and all events must occur in a specific sequence for security
to be set up successfully. Two Bluetooth devices begin pairing with the same PIN (Personal
Identification Number) code that is used for generating several 128-bit keys, as Figure 4
illustrates. PIN code selection, for example in a personal Bluetooth network environment, i.e.
when a Bluetooth network consists of various Bluetooth devices such as a mobile phone, a
printer, a DVD (Digital Versatile Disc; also referred to as Digital Video Disc) player, a mouse
and a keyboard, can be done by using the same PIN code for all Bluetooth devices, because

the user owns and therefore also trusts all Bluetooth devices that are used in his personal
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Bluetooth network. However, each master-slave pair can have a different PIN code for
providing trusted relationship between the devices. Therefore, PIN code selection, for
example in a conference environment where two "friends" meet and want to create a
Bluetooth network between their devices, should be done by using a different PIN code for
each master-slave pair, because otherwise all other Bluetooth connections that are using the
same PIN code may be compromised, i.e. it is possible that the "friend" will use the PIN code
for eavesdropping or for attacking purposes. SAFER+ (see Section 3.1) with a 128-bit key is

used as an algorithm for Bluetooth authentication and key generation.

Device A Device B
| PIN code PIN code .
A4 A 4
IN_RAND
Initialization key (I, ;) | — Initialization key (K,,;)
v . L 4
Unit key (K ,) or L LI&—RAND N Unit key (K,) or
combination key (K )| | combination key (K,5)
y AU _RAND, SRES' 1
Authentication —<: > Authentication
ACO ACO
¥ ¥
EN_RAND
Encryption key (K.) |« — > Encryption key (K )
L Data exchange '
Encryption —<: > Encryption

Figure 4. Summary of Bluetooth security operations. [Blu07a]

An initialization key (Kin) is generated when Bluetooth devices meet for the first time and it
is used for securing the generation of other more secure 128-bit keys, which are generated
during the next phases of the security chain of events. The Kiy is derived from a 128-bit
pseudorandom number IN RAND, an L-byte (/<L</6) PIN code, and a BD_ADDR. It is
worth noting that the IN. RAND is sent via air in unencrypted form.
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The output of a certain key generation function can be expressed in terms of the function itself
and its inputs. The Ki is produced in both devices using the formula
Kini=E»(PIN'L'IN RAND). The PIN code and its length L are modified into two different
quantities called PIN'and L' before sending them to the £, function. If the PIN is less than 16
bytes, it is augmented by appending bytes from the device’s BD ADDR until the PIN' either
reaches a total length of 16 bytes or the entire BD ADDR is appended, whichever comes
first. If one device has a fixed PIN code, the BD ADDR of the other device is used. If both
devices can support a variable PIN code, the BD ADDR of the device that received the
IN_RAND is used.

The Kiy; is used to encrypt a 128-bit pseudorandom number (RAND or LK _RAND), i.c.
RAND @ Ky or LK RAND ® K1, exchanged in the next phase of the security chain of events

when a link key (a unit key or a combination key) is generated.

A unit key (K4) is produced from the information of only one device (device 4) using the
formula K,=FE>;(BD_ADDR4,RAND,). Device A encrypts the Ka with the Kipi, i.e. K4 D Kipir,
and sends it to device B. Device B decrypts the Ky with the Kiyit, i.e. (K4 ®D Kinig) ® Kinir=K4,
and now both devices have the same K, as a link key. Only devices that have limited
resources, i.e. no memory to store several keys, should use the K,, because it provides only a
low level of security. Therefore, Bluetooth specifications do not recommend using the Ka

anymore.

A combination key (K p) is dependent on two devices and therefore it is derived from the
information of both devices. The Kap is produced in both devices using the formula
Kp=E>(BD_ADDR,4, LK RAND,) @ E,;(BD_ADDRz LK RANDg). It is worth noting that
generating the Kap is nothing more than a simple bitwise XOR between two unit keys, i.e.
K4p=K,® Kp. Each device can produce its own unit key and each device also has the
BD ADDR of the other device. Therefore, two devices have to exchange only their respective

pseudorandom numbers in order to produce each other’s unit key.

Device 4 encrypts the LK RAND, with the current key K, i.e. LK RAND,® K where K can
be the Ki,i, the Ka or the Kap that was created earlier, and sends it to device B. The K is the
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Kinit if the devices create a link key for the first time together. The K is the K, if the link key
is being upgraded to a combination key, and it is the Kap if the link key is being changed.
Device B decrypts the LK RAND, with the K, i.e. (LK RAND,® K)® K=LK RAND,, and
can now produce the K4. Correspondingly, device B encrypts the LK RANDjg with the K, i.e.
LK RANDp@® K, and sends it to device 4. Device A4 decrypts the LK RANDg with the K, i.e.
(LK RAND® K)® K=LK RANDg, and produces the Kg. Finally, both devices can produce
the Kap by XORing the Ka with the Kg, i.e. K=K, ® Kp.

The next phase of the security chain of events is the challenge-response authentication in
which a claimant's knowledge of a secret link key is checked, as Figure 5 illustrates. During
each authentication, a new 128-bit pseudorandom number AU RAND is exchanged via air in
unencrypted form. Other inputs to the authentication function E; are the BD_ADDR of the

claimant and the current link key (Ka or Kap).

Verifier (Device A) Claimant (Device B)
AU_RAND, (128 b)
LMP_au_rand
(AU_RAND,) | AU_RAND,
— (128 b) >
BD_ADDRy v
(48 b) BD_ADDRg E1
(48 b)
K, or K
(128 b) E1 K, of Kug
(128 b)
—_— w —_—
3 3 A ) 3 %
oO ) X ocO
S— b m S
&2 @
N ——
Z sres’|LMP_sres 5
y
Result /‘\1 (32b)| (SRES’) g
v . I =
If Result=0
then SRES = SREYS’

Figure 5. Bluetooth challenge-response authentication. [Blu07a]
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A 32-bit result (SRES, Signed Response) and a 96-bit result (ACO, Authenticated Ciphering
Offset) are produced in both devices by the E;(AU RAND4,BD ADDRg, Link key) function,
where the Link key is the K, or the K p. The claimant sends the SRES', i.e. the SRES value
produced by the claimant, via air in unencrypted form to the verifier. The verifier compares
the generated SRES value with the received SRES value, and if these values match, the
authentication is completed successfully. The ACO is used in the next phase of the security

chain of events when an encryption key is generated.

It is worth noting that the SRES and the SRES' are 32-bit values, not 128-bit values. The 32-
bit SRES provides reasonable protection against an attacker who is trying to guess the value,
while it also reduces the chance that the PIN code will be compromised by an attacker who

has somehow determined the correct SRES value.

Figure 6 illustrates Bluetooth data encryption between two Bluetooth devices. The ACO, the
current link key (Ka or Kag) and a 128-bit pseudorandom number EN_RAND are inputs to
the encryption key generation function E; that is used for generating an encryption key (K¢).
The master (device A) generates the EN_RAND and sends it to the slave (device B) via air in
unencrypted form. The K¢ is produced in both devices using the formula

Kc=FE3(EN_RAND4,ACO,Link key), where the Link key is the K or the K.

The keystream generator function E, (see Figure 6) makes symmetric encryption possible by
generating the same cipher bit stream, or a keystream (also referred to as a running key), in
both devices. The inputs to the E, function are the K¢, the BD ADDR of the master
(BD_ADDR,), and the 26 bits of the master's real-time clock (CLKy.;). The keystream is
generated by the Eo(K¢, CLK6.,,BD_ADDR,) function that is reinitialized for every new sent
or received Baseband packet, i.e. the CLKy.; is updated for every new Baseband packet. It
means that inputs to the £, function are never identical longer than a lifetime of one Baseband

packet, and therefore a new keystream is generated for every new Baseband packet.
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Figure 6. Bluetooth data encryption. [Blu07a]

The sender encrypts the plaintext by XORing it with the keystream, i.e.
Plaintext® Keystream=Ciphertext, and sends the produced ciphertext to the receiver. The
receiver decrypts the ciphertext by XORing it with the same keystream, i.e.
Ciphertext ® Keystream=(Plaintext ® Keystream) ® Keystream=Plaintext. 1t is worth noting
that only the payload of the Bluetooth Baseband packet is encrypted (not an access code or a
header), and therefore an attacker cannot use the regularly repeating information (that is easy
to guess by the attacker) of the access code and the header in order to facilitate a cryptanalysis

of the cipher.

In Bluetooth versions up to 2.0+EDR, pairing is based exclusively on the fact that both
devices share the same PIN code or passkey. The PIN is the only source of entropy for the
shared secret. As the PINs often contain only four decimal digits, the strength of the resulting

keys is not enough for protection against passive eavesdropping on communication. Even
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with longer 16-character alphanumeric PINs, full protection against active eavesdropping
cannot be achieved: it has been shown that MITM attacks on Bluetooth communications (see

Subsection 4.2.2 and Section 6.11) can be performed [JaWO01, Kiig03, LCA04].

As already mentioned in Section 2.1, Bluetooth version 2.1+EDR adds a new specification for
the pairing procedure: SSP. Its main goal is to improve the security of pairing by providing

protection against passive eavesdropping and MITM attacks.

Instead of using (often short) passkeys as the only source of entropy for building the link
keys, SSP employs ECDH public-key cryptography (see Section 3.2). To construct the link
key, devices use public-private key pairs, a number of nonces, and the Bluetooth addresses of
the devices. Passive eavesdropping is effectively thwarted by the SSP, as running an
exhaustive search on a private key with approximately 95 bits of entropy is currently

considered to be infeasible in a short time.

In order to provide protection against MITM attacks, SSP either uses NFC as an OOB channel
(see Section 2.1), or asks for the user's help: for example, when both devices have displays
and keyboards, the user is asked to compare two six-digit numbers. Such a comparison can
also be thought of as an OOB channel which is not controlled by the MITM. If the values
used in the pairing process have been tampered with by the MITM, the six-digit integrity
checksums will differ with the probability of 0.999999.

SSP uses four association models. In addition to the two association models mentioned
previously (OOB and Numeric Comparison), models named Passkey Entry and Just Works
are defined. The Passkey Entry model is used in the cases when one device has input
capability, but no screen that can display six digits. A six-digit checksum is shown to the user
on the device that has output capability, and the user is asked to enter it on the device with
input capability. The Passkey Entry model is also used if both devices have input, but no
output capabilities. In this case the user chooses a 6-digit checksum and enters it in both
devices. Finally, if at least one of the devices has neither input nor output capability, and an

OOB cannot be used, the Just Works association model is used. In this model the user is not
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asked to perform any operations on numbers; instead, the device may simply ask the user to

accept the connection.

The choice of the association model depending on the device capabilities is shown in Table 3.
DisplayYesNo indicates that the device has a display and at least two buttons that are mapped
to "yes" and "no": using the buttons, the user can either accept the connection or decline it.

Other notation in the table is self-explanatory.

Device 1: Device 2: Association model:
DisplayYesNo DisplayYesNo Numeric Comparison*
DisplayOnly Numeric Comparison
KeyboardOnly Passkey Entry*
NolnputNoOutput | Just Works
DisplayOnly DisplayOnly Numeric Comparison
KeyboardOnly Passkey Entry*
NolnputNoOutput | Just Works
KeyboardOnly KeyboardOnly Passkey Entry*
NolnputNoOutput | Just Works
NolnputNoOutput | NolnputNoOutput | Just Worls

* The resulting link key 1s considered authenticated.

Table 3. Bluetooth device capabilities and SSP association models. [Blu07a]
SSP consists of six phases:

1. Capabilities exchange: Devices that have never met before or want to perform re-
pairing for some reason, first exchange their IO (Input/Output) capabilities (see Table

3) to determine the proper association model to be used.

2. Public key exchange: The devices generate their public-private key pairs and send the

public keys to each other. They also compute the Diffie-Hellman key.

3. Authentication stage 1. The protocol that is run at this stage depends on the

association model. One of the goals of this stage is to ensure that there is no MITM in
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the communication between the devices. This is achieved by using a series of nonces,
commitments to the nonces, and a final check of integrity checksums performed either

through the OOB channel or with the help of the user.

4. Authentication stage 2: The devices complete the exchange of values (public keys and

nonces) and verify their integrity.

5. Link key calculation: The parties compute the link key using their Bluetooth
addresses, the previously exchanged values and the Diffie-Hellman key constructed in

phase 2.

6. LMP authentication and encryption: Encryption keys are generated in this phase,
which is the same as the final steps of pairing in Bluetooth versions up to 2.0+EDR

(see Figures 4 and 6).

The contents of messages sent during the SSP are outlined in Figure 7, and the notations used

are explained in Table 4.

Notation: | Definition:
PKx | Public key of device X

SKx | Private key of device X

DHKeyv | Diffie-Hellman key generated after key exchange

Nx Nonce generated by device X

X Random number generated by device X:

equals O in the Numeric Comparison association model

Cx Commitment value from device X

f1 One-way function used to compute commitment values
2 One-way function used to compute the link key

f3 One-way function used to compute check values

One-way function used to compute numeric check values

=]

[OcapX | Input/Output capabilities of device X

Table 4. SSP protocol notations. [Blu07a]
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Initiating Non-initiating

device device
A B
Public Key Exchange
1a. PKa ’
< 1b. PKb
Compute DHKey = Compute DHKey =
P192(SKa, PKb) P192(SKb, PKa)
|
Authentication Stage 1
2a. Select random Na 2b. Select random Nb
I
3a.Setrato 0 3b. Setrbto 0
Compute commitment:
Cb = f1(PKb, PKa, Nb, 0)
< 4b. Cb
5a. Na >
< 6b. Nb
6a. Verify that
Cb = f1(PKb, Pka, Nb, 0)
7a. Compute 7b. Compute
Va = g(PKa, PKb, Na, Nb) Vb = g(PKa, PKb, Na, Nb)
8. Ask user to compare the numbers Va and Vb shown on the
displays; proceed if user confirms ‘ok’
Authentication Stage 2
9a. Compute Ea = 9b. Compute Eb =
f3(DHKey, Na, Nb, 0, IOcapA, A, B) f3(DHKey, Nb, Na, 0, |OcapB, B, A)
10a. Ea >
10b. Verify that
Ea = f3(DHKey, Na, Nb, 0, IOcapA, A, B)
< 11b. Eb
11a. Verify that
Eb = f3(DHKey, Nb, Na, 0, IOcapB, B, A)
Link key calculation
12. All parties compute link key
LK=f2(DHKey, Nmaster, Nsiave, "btlk”, BD_ADDRmaster, BD_ADDRgjave)
Encryption
13. Generate encryption keys as in legacy pairing

Figure 7. SSP with the Numeric Comparison association model. [Blu07a]
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As a result of the work of the Bluetooth SIG, SSP has gone through a series of reviews by
experts; the released version does a good job in improving the security of Bluetooth pairing.
However, it has been shown that MITM attacks against Bluetooth 2.1+EDR devices (see
Section 6.11) are also possible [HaH08, HyH07, SVAO07]. More information about Bluetooth
security can be found in [ArK03, Blu07a, FILO1, Flu02, GPS04, LMV05, LuV04, Mor02].

4.2 Bluetooth network vulnerabilities

Since there are now (and will be in the near future) billions of Bluetooth devices in use
without the SSP's improved security features (see Sections 2.1 and 4.1), malicious security
violations are not expected to decrease in the near future. On the contrary, these old Bluetooth
devices will be sold for many years to come, thus making security concerns even more
alarming. Moreover, attacks against SPP are also possible (see Section 6.11). Therefore,
Bluetooth security architecture needs to be further upgraded to prevent these new threats. The
next major security improvements are roadmapped to the upcoming Bluetooth specification,

Seattle (see Section 2.1), which is expected to be released by the Bluetooth SIG in 2009.

Security threats in distributed networks (such as Bluetooth) can be divided into three
categories: disclosure threat, integrity threat and DoS threat. Disclosure threat means that
information can leak from the target system to an eavesdropper that is not authorized to
access the information. Integrity threat concerns the deliberate alteration of information in an
attempt to mislead the recipient. DoS threat involves blocking access to a service, making it

either unavailable or severely limiting its availability to an authorized user. [Mor02]

Bluetooth security is currently a very active research area, because Bluetooth devices are
widely used all over the world. In addition to our Bluetooth research, there are several
research papers, research reports and homepages about the security vulnerabilities of
Bluetooth, i.e. descriptions of many different kinds of disclosure, integrity and DoS attacks.
Disclosure and integrity attacks typically compromise some sensitive information and
therefore can be very dangerous, while DoS attacks typically only annoy Bluetooth network

users and are considered to be less dangerous.
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Powerful directional antennas can be used to considerably increase the scanning,
eavesdropping and attacking range of almost any kind of Bluetooth attack. One very good
example of a long-distance attacking tool is the BlueSniper Rifle [Che05a, Che05b]. It is a
rifle stock with a powerful directional antenna attached to a small Bluetooth-compatible
computer, so there is no need to carry heavy laptops in a backpack just to gather data. The
scanning, eavesdropping and attacking can be done over a mile away from the target devices.
Moreover, everyone with some basic skills and a few hundred dollars can build her
BlueSniper Rifle. Therefore, the possibility that an attacker is using range enhancement for
improving the performance of DID (Disclosure, Integrity and DoS) attacks should be taken

seriously.

Nowadays it is also possible to transform a standard $30 Bluetooth dongle into a full-blown
Bluetooth sniffer [Blu07c, Mos07]. We have also verified this fact in our laboratory (see
Chapter 5) with many different CSR-based (Cambridge Silicon Radio) Bluetooth USB
(Universal Serial Bus) dongles supporting Bluetooth versions up to 2.0+EDR. In addition,
tools for reverse engineering the firmware of CSR-based Bluetooth dongles are available
[Dar07]. The tools include a disassembler for the official firmware, and an assembler that can
be used for writing a custom firmware. With these tools anyone can now write a custom
firmware for CSR-based Bluetooth dongles to include raw access for Bluetooth sniffing. The
tools also include the source code for sniffing Bluetooth under Linux. Moreover, it is
expected that in the near future the techniques for finding hidden (non-discoverable)
Bluetooth devices in an average of one minute [SpB07a, SpB07b] (see Subsection 4.2.4) will
be ported onto a standard CSR dongle via a custom firmware. This will open new doors for
practical Bluetooth security research and it will also provide a cheap basic weapon to all
attackers for Bluetooth sniffing. Therefore, it is expected that Bluetooth sniffing will soon
become a very popular sport among attackers and hackers, thus making Bluetooth security

concerns even more alarming.

Subsections 4.2.1-4.2.3 explain some typical disclosure, integrity and DoS threats. Some
typical threats which cannot be classified as only one single threat (so-called multithreats) are

explained in Subsection 4.2.4.
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4.2.1 Disclosure threats

BlueSnarfing attack [Her04, LalL04] (also referred to as BlueStumbling attack) means that an
attacker connects to the target device without alerting its owner and steals some sensitive
information such as entire phonebook, calendar notes and text messages. At least three
BlueSnarfing applications exist: Adam Laurie's BlueSnarf [Lal04], Ollie Whitehouse's
RedSnarf 1.0 [Whi04] and Bluediving Project's Bluediving 0.8 [Blu07d]. The source codes
and binaries of BlueSnarf and RedSnarf 1.0 have not been released, while the source codes
and binaries of Bluediving 0.8 have been made public. Bluediving 0.8 runs on Linux and is
based on the BlueZ [Blu08b] protocol stack. BlueZ is the official Bluetooth protocol stack for

Linux environments and is included in the Linux 2.4 (or later) kernel series.

As described in Section 2.4, OBEX can be used to exchange business cards between
Bluetooth devices using the OBEX protocol's object push feature, i.e. pushing (sending)
business cards (objects) to Bluetooth devices using the OBEX protocol's Put operation. In
most cases, this service does not require authentication. BlueSnarfing is based on the
exploitation of the OBEX protocol's object pull feature instead of the object push feature. This
feature is used for pulling (receiving) objects from Bluetooth devices using the OBEX
protocol's Get operation. BlueSnarfing attack conducts an OBEX Get request for known
filenames such as telecom/pb.vef (the phone book) or telecom/cal.vcs (the calendar file). A
detailed description of the OBEX protocol and its operations can be found in [Inf03], while a
detailed description on how to implement BlueSnarfing attack in practice can be found in

[Blu07d].

The success of BlueSnarfing attack depends very much on the vendor's implementation of the
Bluetooth protocol stack for the target device. Therefore, the attack works only if the protocol
stack of the target device is poorly implemented, i.e. there are serious flaws in the
authentication and data transfer mechanisms of some Bluetooth devices. A list of the devices
known to be vulnerable to BlueSnarfing attack without firmware/software update can be
found in [LalL04]. Moreover, BlueSnarfing is normally only possible and dangerous if the
target device's security level is set as public, i.e. the target device is discoverable, but there are

also ways to find non-discoverable devices, for example by using a Bluetooth protocol
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analyzer (see Chapter 5 and Section 6.1), brute-force scanning (see Subsection 4.2.4 and

Section 6.4), or the techniques introduced in [SpB07a] (see Subsection 4.2.4).

An Off-Line PIN Recovery attack [JaW01, Whi04] is based on intercepting the IN. RAND
value, LK RAND values, AU RAND value and SRES value, and after that trying to
calculate the correct SRES value by guessing different PIN values until the calculated SRES
equals the intercepted SRES (see Figures 4 and 5 in Section 4.1). It is worth noting that SRES
is only 32 bits long. Therefore, a SRES match does not necessarily guarantee that an attacker
has discovered the correct PIN code, but the chances are quite high especially if the PIN code
is short [GPS04, Mor02].

An Off-Line PIN Recovery attack is dangerous only if the PIN code is short and has no case-
sensitive alphanumerical characters (and perhaps some other characters as well). Moreover,
an attacker must intercept the traffic of the initial pairing process between two Bluetooth
devices when they meet for the first time (see Section 4.1). This can be arranged in many
different ways, for example by sending a Bluetooth device anonymously to the target person
as a prize in some competition. Another possible way to witness the initial pairing process is
to disrupt the connection establishment process between two devices, for example by
disrupting the PHY in such a way that a user thinks something is wrong and deletes
previously stored link keys. After that the user initiates a new pairing process and the attacker

can intercept all the required inputs for an Off-Line PIN Recovery attack.

An Enhanced implementation of Off-Line PIN Recovery attack [ShW05] is an average of 30%
faster than the original Off-Line PIN Recovery attack described in [JaW01, Whi04]. It is
based on the optimization of SAFER+ (see Section 3.1) using the algebraic manipulation of
the SAFER+ round. Three methods which can force two target devices to repeat the initial

pairing process are also proposed in [ShWO05]:

e The first method (and two other methods as well) is based on the fact that Bluetooth
specifications allow Bluetooth devices to forget a link key: when the master sends
AU _RAND to the slave during the authentication, the slave sends an "LMP not

accepted” message in return for letting the master know that it has forgotten the link
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key, i.e. the slave does not send the SRES value as in normal authentication.
Therefore, the master is convinced that the slave has lost the link key and the pairing

process is restarted.

e The second method works in the following way: at the beginning of the authentication
process, the master is supposed to send AU RAND to the slave. If an attacker sends
IN_RAND to the slave before the master sends AU RAND, the slave device is

convinced that the master has lost the link key and pairing is restarted.

e The third method works in the following way: when the master sends AU _RAND to
the slave during the authentication, the attacker sends a random SRES message to the
master, causing the authentication process to restart, and the same kind of repeated
attempts will be made. After a certain number of failed authentication attempts, the
master is expected to declare that the authentication process has failed and the pairing
process is restarted. The required number of failed authentication attempts is

implementation dependent.

These three methods require that an attacker has a custom Bluetooth device, such as a
protocol analyzer, for cloning the BD_ADDR values of the target devices, i.e. the methods are
based on the impersonation of target devices. Moreover, the Bluetooth user is required to
enter a PIN code again during the new pairing process, and therefore a suspicious user may

realize that her device is under attack. [ShW05]

An Off-Line Encryption Key Recovery attack [Whi04] extends an Off-Line PIN Recovery
attack, and is based on intercepting the IN RAND value, LK RAND values, AU RAND
value, SRES value and EN_RAND value, i.e. it requires that an attacker intercepts all the
values required for the Off-Line PIN Recovery attack and also the EN_RAND value. When
the PIN code is discovered via an Off-Line PIN Recovery attack, the attacker can produce the
required ACO by the E;(AU RAND+BD ADDRg Link key) function, where the Link key is
the K4 or the K p. After that the attacker can recover the encryption key (see Figure 6 in
Section 4.1) using the formula Kc=E3(EN_RAND,ACO,Link key), where the Link key is the
K4 or the K p. Therefore, an Off-Line Encryption Key Recovery attack is dangerous only
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when an Off-Line PIN Recovery attack or its enhanced implementation has been completed

successfully.

Every Bluetooth device has some characteristics which are unique (BD ADDR),
manufacturer specific (the first three bytes of BD_ADDR), and model specific (SDP records).
Moreover, every Bluetooth device that offers services to other Bluetooth devices will
announce its SDP records via the SDP protocol (see Section 2.4). Therefore, remote Bluetooth
devices can query other Bluetooth devices based on the offered capabilities. SDP records,
which consist of information on how to access the particular service, are returned to the
querying device. Certain values of SDP records can be used to calculate a fingerprint value

that is used for determining the device model and the firmware version of the target device.

A BluePrinting attack [HeMO04] is used to determine the manufacturer, device model and
firmware version of the target device. An attacker can use Blueprinting to generate statistics
about Bluetooth device manufacturers and models, and to find out whether there are devices
in the range of vulnerability that have issues with Bluetooth security, for example. BluePrint
0.1 [Tri06a] is a tool for performing BluePrinting attack. It runs on Linux and is based on the
BlueZ protocol stack. BluePrinting attacks work only when the BD ADDR of the target

device is known.
4.2.2 Integrity threats

Reflection attacks [LCA04] (also referred to as Relay attacks) are based on the impersonation
of target devices. An attacker does not have to know any secret information, because she only
relays (reflects) the received information from one target device to another during the
authentication (see Figure 5 in Section 4.1), i.e. a Reflection attack in Bluetooth can be seen
as a type of a MITM attack (see Section 3.4) against authentication, but not against
encryption. The only information needed is the BD ADDRSs of the target devices.

Reflection attacks are possible only when the target devices do not hear each other, i.e. the
communication between the target devices is not possible because they are out of each other's
range, and the attacker has Bluetooth devices with adjustable BD _ADDRs (for example,

protocol analyzers). Moreover, the attacker must be capable of relaying the received
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information between the devices that perform the Reflection attack, because the target devices
can be very far away from each other. These kinds of special conditions are not rare in
Bluetooth networks, because Bluetooth is a short range communication technology and it is

very likely that devices move occasionally out of each other's range.

There are two different kinds of Reflection attacks: One-Sided Reflection attack and Two-
Sided Reflection attack. Only one target device is impersonated in a One-Sided Reflection
attack, while a Two-Sided Reflection attack requires that both target devices are
impersonated. These two attacks and possible countermeasures are described in [LCA04].
Bluetooth specifications up to 2.0+EDR do not provide any proper countermeasures against
Reflection attacks, but the latest 2.1+EDR version of Bluetooth (see Section 4.1) provides
protection against these kinds of active eavesdropping attacks (MITM attacks). However, it
has been shown that MITM attacks against Bluetooth 2.1+EDR devices are also possible (see
Section 6.11). An attacker can successfully perform authentication using a Reflection attack,
but she cannot continue the attack if the target devices want to have encrypted
communication, i.e. the attacker does not know the secret PIN code, link key or encryption

key. Therefore, Reflection attacks are dangerous only when encryption is not used.

A very dangerous form of integrity threat takes place when an attacker uses a stronger RF
signal in order to displace the active piconet device. The main principle for successfully
completing an Exploitation of a stronger RF signal attack [Mor02] is to send the target
device's receiver an RF signal that is at least 11 dB stronger than the signal that the legitimate
piconet device is sending. The attack can be performed in the following way, for example. Let
us assume that the attacker 4’ wants to have a sensitive file F that is located on a server S.
First, 4" eavesdrops communication until she can identify the BD ADDR of S on which F is
located. A" also identifies the BD ADDR of device 4, which is authorized to access F.
Secondly, 4’ waits until A connects to S and is properly authenticated. Thirdly, 4’ captures the
channel of 4 by impersonating A4 and transmitting signals that are at least 11 dB stronger at
the receiver of S than those 4 was sending. Fourthly, 4’ continues to pose as 4, and finally A’
requests the desired F from S. Exploitation of a stronger RF signal attack is dangerous only

when the BD _ADDRSs of the target devices are known. [Mor02]
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A Backdoor attack [LalLL04] means that an attacker establishes a trusted relationship with the
target device through authentication, and ensures that this trusted relationship no longer
appears to be in the target device's register of paired (authenticated) devices. When the
backdoor is installed in the target device via a Backdoor attack, the attacker can continue the
attack in many different ways: for example, trying to exploit the resources of the target device
via a trusted relationship, trying to perform a BlueSnarfing attack (see Subsection 4.2.1), or
trying to slip a virus or worm to the target device (see Subsection 4.2.4). A Backdoor attack
works only if the BD ADDR of the target device is known. Moreover, the target device has to
be vulnerable to a Backdoor attack. A list of the devices known to be vulnerable to Backdoor

attacks without a firmware/software update can be found in [LaL04].
4.2.3 Denial-of-Service threats

DoS threats can be roughly divided into two parts: attacks against the PHY and attacks

against protocols above the PHY.

At the physical layer (PHY), an attacker can jam the piconet entirely or capture the channel
from the legitimate piconet device. Let us assume that a jammer wants to disrupt (jam) the
PHY by hopping along with the piconet devices and sending random data in every timeslot.
How far away can the jammer be? We can calculate the distance by making a number of

realistic assumptions such as:
1. The target piconet devices are using omnidirectional antennas with 0 dBi gain.

2. The C/I (Carrier-to-Interference ratio; also referred to as CIR) of the Bluetooth radio
must be at least 0 dB for effective jamming, i.e. jamming power is at least equal to the

desired signal's power at the target receiver.

3. All target piconet receivers have the desired signal power level of either -60 dBm or

-40 dBm.

4. The jammer's transmit power is either 20 dBm (class 1 device) or 30 dBm (Bluetooth

transmitter with a power amplifier).
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5. The level of obstacles is either light (#n=2.5) or moderate (n=3.0).
6. The jammer uses a directional antenna with a gain of 20 dBi.

Table 5 presents the range of susceptibility for the jammer on a target piconet with these
prerequisites calculated using the formula d; =107 "where d; is the range of

susceptibility for the jammer, P; is the jammer's transmit power, P, is the minimum power

needed at a target piconet receiver for jamming to occur, and # is the PL exponent. [Mor02]

Jammer's | Minimum jamming Range of
Level of obstacles: | n: | TX power | signal power at target | susceptibility for
(dBm): receiver (dBm): a jammer (m):

Laght 25 20 -40 6

Laght 2.5 30 -40 16

Light 2.5 20 -60 40

Light 25 30 -60 100
Moderate 3.0 20 -40 5
Moderate 30 30 -40 10
Moderate 3.0 20 -60 22
Moderate 3.0 30 -60 46

Table 5. The range of susceptibility for a jammer on a target piconet. [Mor02]

As Table 5 illustrates, a jammer can perform Disruption of the PHY attack [Mor02] relatively
far away from the communicating devices (up to 100 meters) by using a Bluetooth transmitter
with a power amplifier and a directional antenna with a gain of 20 dBi. This type of attack can
be very dangerous if the attacker is using a stronger RF signal to displace the existing
legitimate piconet device (see Subsection 4.2.2) and then trying to steal some sensitive

information from the target device.

Attacks on higher levels of the Bluetooth protocol stack try to exploit some of the
characteristics of higher level protocols in an attempt to occupy the attention of one or more
devices of the piconet in such a way that they are unable to serve other legitimate devices

within a reasonable time. These kinds of attacks are not normally very dangerous, because an
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attacker does not steal any information from the target device. For example, BD ADDR
Duplication attacks, SCO/eSCO attacks, Big NAK (Negative Acknowledgement) attacks,
L2CAP Guaranteed Service attacks and Battery Exhaustion attacks can be classified as
attacks against protocols above the PHY.

A BD _ADDR Duplication attack [Mor02] (see Subsection 6.8) is based on the idea that an
attacker places a bug in the range of susceptibility. The bug duplicates the BD _ADDR of the
target device. When any Bluetooth device tries to make a connection with the target device,
either the target device or both devices, i.e. the target device and the bug, will respond and
jam each other. In this way, the attacker has denied access from the legitimate device. The
most effective way to perform this attack is to duplicate the BD_ADDR of the piconet master,

because all information within the piconet goes through the master device.

A SCO/eSCO attack [Mor02] (see Subsection 6.9) is based on the fact that a realtime two-way
voice reserves a great deal of a Bluetooth piconet's attention so that the legitimate piconet
devices are not getting the service within a reasonable time. The most effective way to

perform this type of attack is to establish a SCO or an eSCO link with the piconet master.

A Big NAK attack [Mor02] (see Subsection 6.10) is based on the idea of putting the target
device on an endless retransmission loop so that the legitimate piconet devices have
considerably slowed throughput. In this attack, an attacker requests any information from the
target device and every time the requested information is received, the attacker sends NAK,

i.e. the transmission has failed.

A L2CAP Guaranteed Service attack [Mor(02] is based on the idea that an attacker requests
the highest possible data rate or the smallest possible latency from the target device so that all

other connections are refused, and all throughput is reserved for the attacker.

A Battery Exhaustion attack [Mor02] is based on the idea of occupying the target device in

such a way that it also consumes rather quickly the battery of the target device.
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4.2.4 Multithreats

There are also many attacks which cannot be classified as only one single threat. For example,
BlueBugging attacks, Blooovering attacks, On-Line PIN Cracking attacks, and Brute-Force

BD_ADDR Scanning attacks can be classified as disclosure and integrity threats.

A BlueBugging attack [Tri06b] (see Section 6.2) means that an attacker connects to the target
device (typically a Bluetooth mobile phone) without alerting its owner, steals some sensitive
information, such as an entire phonebook, calendar notes and text messages, and has full
access to the GSM (Global System for Mobile communications) AT command set, i.e. a
BlueBugging attack is based on the exploitation of AT commands. It means that the attacker
can, in addition to stealing information, send text messages to premium numbers, initiate
phone calls to premium numbers, write phonebook entries, connect to the Internet, set call

forwards, try to slip a Bluetooth virus or worm to the target device, and many other things.

A BlueBugging attack is even more dangerous than a BlueSnarfing attack, because the
attacker can do almost anything with the vulnerable target device. A BlueBugging attack is
possible and dangerous if the BD ADDR of the target device is known to the attacker.
Moreover, the Bluetooth protocol stack of the target device has to be poorly implemented, i.e.
there are serious flaws in the authentication and data transfer mechanisms of some Bluetooth
devices. A list of the devices known to be vulnerable to a BlueBugging attack without a
firmware/software update can be found in [LalL04]. Several public BlueBugging tools exist:

for example, btxml [Obe04] (see Section 6.2) and Blooover [Tri06¢, Tri06d].

Blooover [Tri06¢] and its successor Blooover II [Tri06d] are derived from Bluetooth Hoover,
because they run on handheld devices, such as PDAs or mobile phones, and are capable of
stealing sensitive information by using a BlueBugging attack. A Blooovering attack [TriO6c,
Tri06d] can be done secretly, by using only a Bluetooth mobile phone with Blooover or
Blooover II installed, for example. Blooover and Blooover II run on almost every J2ME (Java
2 Micro Edition) compatible handheld device. They are intended to serve as auditing tools
which can be used for checking whether Bluetooth devices are vulnerable or not, but they can

be used for attacking against Bluetooth devices as well. The source codes of Blooover and
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Blooover II have not been published (only binaries). A Blooovering attack is dangerous only
if the target device is vulnerable to BlueBugging. Moreover, an attacker has to know the

BD_ ADDR of the target device.

An On-Line PIN Cracking attack [Whi04] (see Section 6.3) means that an attacker is trying to
connect with the target device by guessing different PIN values. It is based on the idea of
changing the BD ADDR of the attacking device every time a PIN guess fails, i.e. the attacker
bypasses the ever increasing delay between retries. An On-Line PIN Cracking attack works
only when the target device has a fixed or short adjustable PIN code and its BD _ADDR is
known to the attacker. Bluetooth specifications up to 2.0+EDR do not provide any proper
countermeasures for On-Line PIN Cracking attacks, while Bluetooth 2.1+EDR provides SSP

(see Section 4.1) to protect against such attacks.

The 48-bit BD_ADDR is divided into three parts: 16-bit NAP (Nonsignificant Address Part),
8-bit UAP (Upper Address Part) and 24-bit LAP (Lower Address Part). The first three bytes
of BD ADDR (NAP and UAP) refer to the manufacturer of the Bluetooth chip and represent
company_id. The last three bytes of BD_ADDR (LAP), so-called company assigned, are
used more or less randomly in different Bluetooth device models. Company id values are

public information and listed in IEEE's OUI database [[EEOS].

A Brute-Force BD _ADDR Scanning attack [Whi04] (see Section 6.4) uses a brute-force
method only on the last three bytes of a BD_ADDR, because the first three bytes are publicly
known and can be set as fixed. A Brute-Force BD_ADDR Scanning attack is perhaps the
most feasible when target devices are Bluetooth mobile phones, because millions of

vulnerable Bluetooth mobile phones are used every day all over the world.

Besides a Brute-Force BD_ADDR Scanning attack, techniques for finding hidden Bluetooth
devices in an average of one minute have been proposed [SpB07a] and even implemented
[SpB07b] recently. Spill et al. also implemented an open-source Bluetooth sniffer [SpB07b]
that operates on a single channel. The USRP (Universal Software Radio Peripheral) [Ett07]
was used as a radio device to eavesdrop on Bluetooth packets. It is the hardware device

associated with the GNU Radio Project [GNUOS], which develops an open-source framework
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for implementing software radio systems, i.e. systems in which radio devices are implemented

in software.

Due to the buffering and asynchronous nature of the GNU Radio framework and the hardware
restrictions of the USRP, no working prototype of the Bluetooth sniffer that supports
frequency hopping has been implemented yet. However, the current version of the Bluetooth
sniffer is still capable of finding hidden (non-discoverable) Bluetooth devices in the range of

susceptibility in an average of one minute by using the following techniques: [SpB07a]

e First (phase;), the LAP can be determined in a straightforward manner since it is
present in every Baseband packet in the form of a constant 72-bit pattern called the
access code: it contains the 24-bit LAP along with its 34-bit checksum and 14 bits of
synchronization and error detection data. Therefore, the LAP can be simply read from
an intercepted Baseband packet and validated by its checksum. In order to eavesdrop a
Baseband packet, it is sufficient to stay tuned to a single channel and wait for a
Baseband packet to fly by. Since the channel hopping rate is very high (1600
hops/second), waiting for one second is more than enough in order to intercept a

Baseband packet.

e Secondly (phase;), each Baseband packet has a 10-bit header with an 8-bit HEC
(Header Error Check) field that is calculated from the UAP. Spill et al. noticed that it

was possible to reverse the HEC in order to reveal the UAP in almost realtime.

e Finally (phase;), since the first byte of the NAP is almost always zero in practice, the
remaining byte can be brute-forced by sending at most 256 pings to all the possible

remaining BD_ADDR combinations.

Pinging a Bluetooth device takes approximately one second. The devices also need to find
one another and identify themselves. This takes up to a second, because both devices have
unique hopping patterns and these patterns need to coincide on a frequency before
communication can take place. Therefore, it takes only an average of 4.3 minutes
(phase;tphase,tphase;~1s+0s+2sx256/2~4.3 minutes) to find a hidden Bluetooth device in
the range of vulnerability. Moreover, IEEE's OUI database [IEEO8] can be used to make
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educated guesses regarding the last byte of NAP rather than blindly brute-forcing it.
Typically, filtering the OUI list for vendor prefixes yields only a few dozen brute-force

candidates, thus further reducing the time requirement.

Spill et al. performed a practical experiment [SpB07a, SpB07b] in which they first revealed
the first four bytes (LAP and UAP) of the hidden BD_ADDR (5B:00:FA:C2) via phase; and
phase,. In phases, they filtered the OUI list for vendor prefixes ending in 5B and got 41 brute-
force candidates. In their practical experiment, it took at most two minutes to find a hidden
Bluetooth device using the techniques defined in phase;, phase, and phases. Therefore, it

takes only an average of one minute to find a hidden Bluetooth device.

Attacks based on using Bluetooth worms or viruses can be classified as integrity and DoS
threats. Recently Bluetooth worms and viruses have been often mentioned in the media, for
example in [Reu05, Sap07], because there are several Bluetooth worms and viruses, such as
Cabir [FSe06], Skulls.D [FSe05a] and Lasco.A [FSe05b], which use Bluetooth-compatible

mobile phones for infecting other Bluetooth mobile phones.

Cabir (also referred to as SymbOS/Cabir.A, EPOC/Cabir.A, Worm.Symbian.Cabir.a, or
Caribe virus) is a Bluetooth worm running in Symbian mobile phones which support the
Series 60 platform. It arrives via Bluetooth in a target mobile phone's messaging inbox as a
caribe.sis file, which contains caribe.app (main executable), flo.mdl (system recognizer), and
caribe.rsc (resource file). When the user opens the caribe.sis file and chooses to install it, the
worm activates and immediately starts searching for new Bluetooth devices to infect. When
another Bluetooth device is found, Cabir will start sending caribe.sis file to it. However, the
file will not arrive automatically in the target device, because the user has to answer "yes" to
the transfer question when the infected device, i.e. the attacking device, is still in range. It is
worth noting that Cabir only spreads itself, i.e. it is not designed to do any harmful things

such as erasing a target device's files. [FSe06]

Skulls.D (also referred to as SymbOS/Skulls.D) is a malicious SIS (Symbian Installation
System) file trojan that pretends to be Macromedia Flash player for Symbian mobile phones

which support the Series 60 platform. It arrives in the target mobile phone via Bluetooth in a
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similar way to Cabir. When the user opens the SIS file and chooses to install it, the
SymbOS/Cabir.M worm, i.e. the variation of the Cabir worm described earlier, will be
installed in the target mobile phone, both the system applications and third party applications
that are needed to disinfect viruses and worms will be disabled, and animation showing a
flashing skull picture will also be displayed on the background of the target device's display
during every application that the user is trying to use. When the worm is activated, it

immediately starts searching for new Bluetooth devices to infect. [FSe05a]

Lasco.A (also referred to as SymbOS/Lasco.A or EPOC/Lasco.A) is a Bluetooth worm and a
SIS file infecting virus running in Symbian mobile phones which support the Series 60
platform. It arrives in the target mobile phone via Bluetooth in a similar way to Cabir and
Skulls.D. When the user opens the velasco.sis file and chooses to install it, the worm activates
and immediately starts searching for new Bluetooth devices to infect. In addition to sending
itself via Bluetooth, it is also capable of inserting itself into other SIS files in the target
device. Therefore, if infected SIS files are copied to another device and installed, installation

of Lasco.A will also start. [FSe05b]

In January 2005, Brazilian software developer Marcos Velasco released all source codes of
his Lasco.A worm/virus on his homepage [Vel08], but later on removed them. Lasco.A
sources can still be downloaded from many Brazilian file servers. It means that practically
anyone can now write their own Bluetooth viruses just by modifying Lasco.A sources. In
addition, a mobile phone infected with Cabir, Skulls.D or Lasco.A will try to infect other
Bluetooth-enabled devices even if the user tries to disable Bluetooth from the device's
settings. Moreover, Bluetooth functionality in Series 60 mobile phones is independent from
the GSM side. Therefore, if the infected mobile phone is rebooted, the virus/worm will try to
spread itself even if the user does not enter the PIN code. [FSe05b, Vel08]

Normally, Bluetooth worms and viruses require that the user accepts their transfer and
installation in the target device. In addition, the target device has to be discoverable.
Bluetooth worms and viruses can be very dangerous if the target device is vulnerable to
BlueBugging, because in that way an attacker can slip in a virus or worm without alerting the

user. Therefore, if a user has a vulnerable Bluetooth device, its firmware/software should be
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updated as soon as possible. In addition, the user should not install any unknown software in
her Bluetooth device and should use antivirus/firewall software (see Section 3.5) when
possible. It is also expected that attackers will exploit the techniques for finding hidden
Bluetooth devices in an average of one minute [SpB07a, SpB07b] in order to spread viruses

and worms more efficiently.

4.3 Reasons for Bluetooth network vulnerabilities

Overall security in Bluetooth networks is based on the security of the Bluetooth medium, the
security of Bluetooth protocols and the security parameters used in Bluetooth communication.
There are several weaknesses in the Bluetooth medium, Bluetooth protocols and Bluetooth
security parameters which can significantly weaken the overall security of Bluetooth

networks.

Subsection 4.3.1 discusses Bluetooth network vulnerability to eavesdropping. Subsection
4.3.2 explains the weaknesses in the encryption mechanisms. Subsection 4.3.3 discusses
weaknesses in PIN code selection. Subsection 4.3.4 explains the weaknesses in association

models of SSP. Subsection 4.3.5 discusses the weaknesses in Bluetooth device configuration.
4.3.1 Vulnerability to eavesdropping

Because Bluetooth is a wireless RF communication system using mainly omnidirectional
antennas, an eavesdropper is often not detected. The eavesdropper and eavesdropping
equipment can be very far away from the communicating devices. Unencrypted transmissions
are always easy prey for eavesdroppers. All the contents of unencrypted transmissions can be
seen clearly. Even if Bluetooth data encryption (see Figure 6 in Section 4.1) is used, all
intercepted packets can be recorded for later cryptographical analysis, so the length of the K¢
should be as long as possible, i.e. the maximum K¢ length of 128 bits should be used when

possible.

The range of vulnerability to eavesdropping can be calculated using the formula

P,+G, +40) /(10 . o . .
de =100 n), where d, is the range of vulnerability to eavesdropping, P, is the
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transmit power of the target piconet, G, is the eavesdropper's antenna gain, and #» is the PL

exponent. A more precise definition of the range of vulnerability calculations can be found in

[Mor02].

Several assumptions must be made before proceeding with the range of vulnerability

calculations. These assumptions concern the typical physical properties of Bluetooth piconets.

The calculations presented in Table 6 are made based on the following standard assumptions:

1. The target piconet devices are using omnidirectional antennas with a 0 dBi gain.

2. The level of obstacles is either light (»=2.5) or moderate (»=3.0), and there is 20 dB

of additional attenuation on the signal as it exits the building.

3. The sensitivity level of the eavesdropper's radio is -100 dBm (enhanced sensitivity

level).

4. The eavesdropper has two antennas, one with a gain of 0 dBi (omnidirectional) and

another with a gain of 20 dBi (directional).

5. The target piconet devices use a transmit power of either 0 dBm (class 3 device) or 20

dBm (class 1 device).

Level of T 'I:arget piconet Eavesdropper's vullﬁ?':gieli(:\f-‘ for
ohstacles: TX power (dBm): | antenna gain (dBi): eavesdroppin.g (m):

Light 2.5 0 0 40

Light 25 20 0 251

Light 5 0 20 251

Light 235 20 20 1585
Moderate | 3.0 0 0 22
Moderate |30 20 0 100
Moderate | 3.0 0 20 100
Moderate | 3.0 20 20 464

Table 6. Range of vulnerability to eavesdropping. [Mor02]
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As can be seen from Table 6, it would be easy for an eavesdropper to park a car in a parking
lot at a reasonable distance (up to 1585 meters; see Table 6) from the target Bluetooth
network, for example near a company's Bluetooth network, and start to intercept all Bluetooth

activity within the range of vulnerability by using a laptop and a Bluetooth protocol analyzer.

Consider the following attack scenario. If the actual user data (the payload of a Bluetooth
Baseband packet) is sent unencrypted, all the contents of the Baseband packet (an access
code, a header and the payload) and other relevant information (packet sequence number,
direction of the transmission, frequency information and Bluetooth clock information) can be
shown clearly on the screen of the laptop by using a Bluetooth protocol analyzer, for example,

as Figure 8§ illustrates.

Bluetooth
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4 Y4
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Figure 8. An example of packet interception with a Bluetooth protocol

analyzer when Bluetooth encryption is not used. [Haa05a]

83



The access code and the header are always sent unencrypted, so even when encryption is used
an eavesdropper can always see the general piconet information, such as the piconet address
of the active slave and the Baseband packet type used, from all of the packets. Based on this
information, the eavesdropper may be able to figure out the authorization levels of the

legitimate piconet devices, i.e. which Bluetooth device has access to a certain sensitive file.

If the physical protection of the Bluetooth devices is insufficient, the intruder can steal the
device and use it to obtain the desired sensitive file. Bluetooth authenticates devices, not

users, so this is also very important to keep in mind.

The eavesdropper can also easily see whether the payload is encrypted or not. This can be
seen directly from the CRC (Cyclic Redundancy Check) field. In this example (see Figure 8),
the received CRC field matches the CRC checksum calculated from the received user data,
i.e. the payload is unencrypted. If the CRC field does not match the data, the protocol
analyzer displays the CRC field in red, for example, indicating that the payload is encrypted.

4.3.2 Weaknesses in encryption mechanisms

As described in Section 4.1, Bluetooth encryption has many strengths, but it has also a few
weaknesses. Perhaps the most significant weakness occurs when 128-bit encryption cannot be

used.

When two Bluetooth devices negotiate the parameters for encryption, the length of the
encryption key is restricted by the Bluetooth device that has the shorter maximum encryption
key length. For example, if one Bluetooth device can support only a 32-bit encryption key, the
other Bluetooth device has to adjust to the situation and also use a 32-bit encryption key —

otherwise encryption cannot be used at all.

Let us assume that an eavesdropper wants to use a brute-force method to find out a correct
encryption key. This can be done by intercepting several encrypted Baseband packets and
trying to decrypt them using a keystream generated by different experimental keys. Even
though the keystream generator function has the piconet master's BD ADDR and clock

information as additional inputs, both of these values are supposed to be known by the
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eavesdropper. The eavesdropper can mark every incoming packet with its associated clock
information before storing the packet, and if a packet contains any plaintext, the correct
keystream will reveal it. The eavesdropper can use a dictionary, for example, in his key

searching algorithm to find out when a string contains real words.

An eavesdropper can also calculate a 16-bit CRC checksum from the payload, and check
whether it matches the received CRC field. If the CRC checksums match, then decryption has
been successful (if there are no bit errors in payload caused by the packet transfer via the RF
link). Almost all commercially available Bluetooth protocol analyzers can automatically

check whether the CRC checksums match, so this is not a problem for the eavesdropper.

Table 7 illustrates an encryption weaknesses. The average search time, when using a naive
guess-and-try brute-force method, measured in seconds is 2“//n, where L is the length of the
encryption key in bits and # is the number of key search trials per second. Let us assume that
an eavesdropper can make 2°° key search trials per second (#=2"") on the processing power of
one computer, or 2*° key search trials per second (#=2"") by using parasitic computing over
the Internet, for example. Further, let us assume that the eavesdropper's key searching
algorithm can in all cases realize when the correct encryption key has been found. If the
average search time is determined by 2% trials per second, an adequate level of security can
be achieved by using a 64-bit or longer encryption key. If the average search time is
determined by 2% trials per second, an adequate level of security can be achieved by using at

least an 80-bit encryption key. [Mor02, Sta03]
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K_. length (bits): Av,el'age search time at Average search time at
‘ 220 trials per second: 24 trials per second:

3 ~ 122 mucroseconds =~ 116 picoseconds
16 ~ 31 milliseconds =~ 30 nanoseconds
24 ~ 8 seconds =~ 8 microseconds
32 ~ 34 minutes = 2 milliseconds

40 ~ 0 days = 500 milliseconds
48 = 4 years =~ 128 seconds

56 ~ 1090 years =~ 9 hours

64 ~ 278922 years =~ 97 days

72 ~ 71 muillion vears ~ 08 vears

80 =~ 18 billion years =2 17433 years

128 ~ 5.1x10% years = 4.9x1018 years

Table 7. Encryption weaknesses. [Mor02, Sta03]

Let us assume that there are four slave devices (slaves 4, B, C and D) and one master device
in a Bluetooth piconet. Slaves 4, B, C and D want to use 32-bit, 64-bit, 128-bit, and 128-bit
encryption with the master, respectively. As can be seen from Table 7, slave 4 has only
primitive protection against eavesdroppers. In addition, an eavesdropper may be able (at least
in theory) to decrypt the packets of slave B in a reasonable time, because it takes only an
average of 97 days assuming that the average search time is determined by 2*° trials per

second. All this can be achieved with a naive guess-and-try method.

A more sophisticated method for the eavesdropper would be exploiting the results described
in [ShWO05] (see Subsection 4.2.1), in which the improved method yields approximately 30%
faster decryption times: the guess-and-try method's 97 days versus the more sophisticated
method's 68 days. Moreover, if slaves 4 and B are exchanging sensitive files with slaves C

and D, the better security of slaves C and D, i.e. the protection of 128-bit encryption, is also
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lost. Therefore, if security is very important, the master should not accept encryption key

lengths shorter than 128 bits.
4.3.3 Weaknesses in PIN code selection

The weakest point in the security chain of events (see Figure 4 in Section 4.1) of Bluetooth
versions up to 2.0+EDR is the first phase, when a user selects a PIN code. The PIN code can
be as long as 128 bits (16 bytes), so it can contain up to sixteen 8-bit characters. However,
long PIN codes are quite hard to remember, so users usually use only four digits. This makes
an eavesdropper's work much easier, because she needs to go through only 10000 possible
PIN values and witness the initial pairing process between the target devices in order to get all
the required information for various attacks (see Subsections 4.2.1-4.2.4). It is worth noting
that the attacker needs only an average of 5000 PIN guesses to find out the correct value when
a four-digit PIN code is used (see Section 3.1). On the other hand, if the user decides to use
sixteen 8-bit characters, it is very likely that she will write down the PIN code on a piece of

paper. This is another weak point, because this piece of paper must be kept secret.

A 16-digit PIN code composed of the characters 0,...,9 achieves /6%log, 10=53 bits of
entropy, while a PIN code of 16 -case-sensitive alphanumerical characters yields
16%log, 62=95 bits of entropy when a 62-character set is used, i.e. the 62-character set
consists of the characters 0,...,9, 'a’....,'z" and '4’...,'Z". Therefore, a Bluetooth PIN code that
achieves 128 bits of entropy can be provided by using sixteen 8-bit characters, i.e. a 256-
character set is used (/6 xlog, 256=128 bits). For example, the extended ASCII (American
Standard Code for Information Interchange) character set has 256 characters (2°=256), so

there are eight bits of entropy for each 8-bit character (byte).

Two devices become paired when they start communicating with the same PIN code,
generate the same link key, and then use the link key for authenticating at least the current
communication session (see Figures 4 and 5 in Section 4.1). When devices are paired, they
can either store their link keys for use in subsequent authentications, or discard them and
repeat the pairing process each time they connect. If the link keys are stored, the devices are

bonded. Users that are using bonded Bluetooth devices do not have to remember long PIN
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codes. On the other hand, these bonded devices can be a security risk if the physical

protection of the devices is insufficient.

Many different kinds of Bluetooth devices, such as headsets, keyboards and printer adapters,
have very short fixed PIN codes, often only four digits long. This is clearly a big security risk,
so Bluetooth device manufacturers should take security issues more seriously. We strongly
recommend that the sixteen 8-bit character PIN codes should be used when possible.
However, in case of a limited User Interface, it may not be possible to use the 256-character
set for providing a PIN code that achieves 128 bits of entropy. Moreover, user understanding
of security issues is very important for protecting sensitive data against eavesdroppers and
hackers. Many users have no idea how to configure their Bluetooth devices’ security settings

correctly.
4.3.4 Weaknesses in association models of SSP

As described in Section 4.1, Bluetooth 2.1+EDR specification supports SSP to improve the
security of pairing by providing protection against passive eavesdropping and MITM attacks
(see Section 3.4). SSP uses four association models: OOB, Numeric Comparison, Passkey
Entry and Just Works (see Section 4.1). The choice of association model depends on the

device’s 10 capabilities (see Table 3 in Section 4.1).

Perhaps the most significant weakness occurs when at least one of the devices has neither
input nor output capability and an OOB cannot be used. In this case, the Just Works
association model is used, in which the user is simply asked to accept the connection.

Therefore, the Just Works association model clearly provides no MITM protection.

SSP consists of six phases: Capabilities exchange, Public key exchange, Authentication stage
1, Authentication stage 2, Link key calculation, and LMP authentication and encryption (see
Section 4.1). The last phase in SSP is the same as the final steps of pairing in Bluetooth
versions up to 2.0+EDR (see Figures 4 and 6 in Section 4.1). Just as in the Bluetooth versions
up to 2.0+EDR, the weakest point in a Bluetooth 2.1+EDR device's security chain of events is
the first phase. Instead of selecting a PIN code, Bluetooth 2.1+EDR devices will exchange

their 1O capabilities (see Table 3 in Section 4.1) to determine the proper association model to
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be used. If an OOB, Numeric Comparison or Passkey Entry association model is used, the
MITM protection will be automatically provided. However, it has been shown that MITM
attacks against Bluetooth 2.1+EDR devices are possible by forcing the victim devices to use
the Just Works association model (see Section 6.11). This can be done by using one of the
three different MITM attack scenarios that are defined in [HyHO07]. By far the best way to
prevent MITM attacks is to use NFC as an OOB channel (see Section 2.1).

4.3.5 Weaknesses in device configuration

The default settings of Bluetooth devices usually provide no security at all: the device is set as
discoverable (i.e. public security level) and nonsecure (i.e. nonsecure security mode).
Therefore, an attacker can discover the BD_ADDR of the target device in a few seconds and
perform various attacks (see Subsections 4.2.1-4.2.4) against it. It is worth noting that
Bluetooth is rarely switched on by default, so a user has to switch it on from the device's
settings before any Bluetooth attacks against that device are possible. Moreover, many users
want to save the batteries of their Bluetooth devices so Bluetooth is often switched off when

there is no need to use it for a long time.

It is very important that users know how to configure their Bluetooth devices correctly to
achieve the best available level of security. In addition, Bluetooth device manufacturers
should implement their Bluetooth devices in a more secure way by default factory settings:
for example, if a device uses a fixed PIN code, it should be as long as possible and also as
hard as possible to guess. If both communicating devices support SSP and NFC, NFC should
always be used as an OOB channel. Moreover, application layer key exchange and encryption
methods (see Chapter 3) can be used as an extra security in addition to the Bluetooth built-in

security (see Section 6.1).

In the following two chapters we examine security attacks in more depth. In Chapter 5 we
explain our Bluetooth security laboratory in which several security attacks were
demonstrated. In Chapter 6 we explain practical experiments carried out in our Bluetooth
security laboratory. We describe new Bluetooth security analysis tools and introduce new

Bluetooth security attacks. Based on practical experience, we propose countermeasures
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against these attacks and provide Bluetooth vulnerability evaluation. In addition, we provide a
comparative analysis of the existing MITM attacks on Bluetooth. Moreover, we describe a
novel system for detecting and preventing intrusions in Bluetooth networks, and we also
provide a further classification of Bluetooth-enabled ad-hoc networks depending on a risk

analysis within each classified group.
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5 THE BLUETOOTH SECURITY LABORATORY

Our research work deals with weaknesses in the Bluetooth medium, Bluetooth protocols and

Bluetooth security parameters. Currently, weaknesses in Bluetooth security parameters seem

to be the biggest problem in Bluetooth security (see Subsections 4.2.1-4.2.4 and Section 4.3).

Our practical research work requires a testing environment and Bluetooth equipment in order

to get results. Therefore, we built our Bluetooth research laboratory environment for

implementing and demonstrating Bluetooth security attacks in practice (see Sections 6.1-

6.11).

Our Bluetooth research laboratory environment consists of the following hardware:

A CATC (LeCroy) Protocol Analyzer System 2500H [Lec07]: Due to the branching
hierarchical protocol structure of Bluetooth technology (see Figure 3 in Section 2.4), it
is one of the most complicated protocols from a design and analysis point of view. To
simplify the analysis process, a Bluetooth protocol analyzer is needed. Our CATC
Protocol Analyzer System 2500H is a flexible and efficient integrated environment
providing features such as 512 MB of recording memory, Hi-Speed USB 2.0 Interface
to the host PC/laptop, upgradeable firmware/BusEngine/Baseband, and support for
plug-in modules. We also have two LeCroy Bluetooth 1.1/1.2 compatible radio units
as plug-in modules for the CATC Protocol Analyzer System 2500H (see Figures 9 and
10). It is similar to two separate Bluetooth protocol analyzers, but better because of a
common Bluetooth clock, i.e. separate traces are easier to combine after the capture. In
addition, eavesdropping (see Figure 8 in Subsection 4.3.1) and jamming of Bluetooth
scatternet (see Figure 2 in Section 2.2) or two separate piconets can be done
simultaneously. Moreover, our Bluetooth protocol analyzer can emulate any Bluetooth
device and it can also clone any BD ADDR. Therefore, it is a good tool for
implementing Bluetooth security attacks in practice. However, the price of a CATC
Protocol Analyzer System 2500H with two radio units is very high: some tens of

thousands of dollars. Our protocol analyzer works only in Windows environments.
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A Frontline FTS4BT Wireless Bluetooth Protocol Analyzer & Packet Sniffer [Fro08]:
Our FTS4BT Protocol Analyzer currently supports Bluetooth versions up to 2.1+EDR.
It runs on a laptop or a PC using finger-sized Bluetooth USB ComProbes as the air
sniffing hardware. Therefore, it provides a very easy and flexible mobile Bluetooth
sniffing environment for various practical Bluetooth security experiments. Our
FTS4BT is equipped with three ComProbes: it is equivalent to three Bluetooth
protocol analyzers, thus making simultaneous eavesdropping of several piconets or an
entire scatternet possible. However, the price of FTS4BT Protocol Analyzer with three
ComProbes is quite high: over ten thousand dollars. In addition, it is only a sniffer and
therefore it does not support the BD ADDR cloning feature. Moreover, it works only
in Windows environments with the official sniffing software. However, as described
in Section 4.2, it is possible to transform a standard $30 Bluetooth dongle into a full-
blown Bluetooth sniffer [Blu07d, Mos07] and sniff Bluetooth traffic also in Linux
environments by using the tool called fromtline [Dar07]. We verified this in our
laboratory by replacing (upgrading) the official firmwares of various CSR-based
Bluetooth USB dongles with the official FTS4BT ComProbe firmwares, then sniffing
with them in Windows via the official FTS4BT software and in Linux via the frontline
tool. We also tested how the official FTS4BT ComProbes will sniff in Linux, and they
proved to work without any problems. Surprisingly, the $30 Bluetooth USB dongles
also worked as if they were the original FTS4BT ComProbes, i.e. without any
problems, both in Windows and in Linux. Therefore, it is a very economical solution
to transform dozens of standard Bluetooth USB dongles to work as a Bluetooth
protocol analyzer in Linux environments. In addition, the source code of the frontline
tool has been released, thus finally giving everyone a chance to do practical Bluetooth
security research. It is also possible to write custom firmwares that include the
techniques for finding hidden Bluetooth devices in an average of one minute [SpB07a,
SpB07b], thus making the free Linux protocol analyzer a very powerful and practical
research tool. Moreover, in Linux environments it is very easy to add a frontline tool
to support BD ADDR cloning feature to make impersonation attacks and research

possible.

92



Bluetooth user devices: Our practical research work requires several Bluetooth devices
in order to get results. Therefore, we have Bluetooth software development Kkits,
Bluetooth USB adapters, Bluetooth PCMCIA (Personal Computer Memory Card
International Association) cards, Bluetooth Hands-Free and Headset devices,
Bluetooth mobile phones, a Bluetooth mouse, a Bluetooth keyboard, Pocket PCs with
Bluetooth CF (Compact Flash) cards, Pocket PCs with embedded Bluetooth chips, and

Bluetooth printer adapters.

Bluetooth scatternet environment: In order to create a real Bluetooth communication
environment, we need Bluetooth network traffic. Therefore, we have /4 PCs and
several laptops. The PCs are connected with each other via Bluetooth, i.e. they form a
Bluetooth scatternet. The laptops are mobile workstations and can be connected to any
PC via Bluetooth. We also have a server PC for storing and restoring harddisk images
when needed. The physical protection of Bluetooth devices is also very important to
prevent unauthorized use of bonded Bluetooth devices. Therefore, we have a locker
for safely storing Bluetooth equipment when they are not used. This environment

clearly provides a very easy and fast way to start a new Bluetooth research project.

Our Bluetooth research laboratory environment also has the following software:

LeCroy BTTracer/Trainer v2.2 software [Lec07]: It is needed in the PC/laptop that is
using the protocol analyzer. The software also provides CATC Scripting Language
[Lec04], which allows users to create C language scripts that work with LeCroy
protocol analyzers. It is quite easy to automate the use of a protocol analyzer by
creating a suitable script to do the desired work. CATC Scripting Language supports
all the functionality of our Bluetooth protocol analyzer. Therefore, it is an easy and

efficient way for implementing Bluetooth security attacks in practice.

Frontline FTS4BT v.8.7.12.0 software [Fro08]: It is needed in the laptop or PC that is

using the FTS4BT protocol analyzer in Windows environment.
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A Frontline v. 1.1.1.1 tool [Dar07]: It is needed in the laptop (or PC) that is using the
official FTS4BT ComProbes or modified $30 Bluetooth dongles in Linux

environments for Bluetooth sniffing.

Bluetooth Chat Software [Haa05a]: We created our own IRC-style (Internet Relay
Chat) [TIRCOS8] chat software that consists of BTChatd (a Bluetooth Chat server for
Linux), BTChat (a Bluetooth Chat client for Linux) and BTChatJava (a Bluetooth
Chat Java client for Linux and Windows). Bluetooth Chat Software runs on
Linux/Windows and it requires only normal PCs/laptops and Bluetooth USB dongles
to work. It provides an easy way to demonstrate the importance of data encryption,
and to show how easy it is for an eavesdropper to intercept all packets exchanged via

air (see Section 6.1).

An On-Line PIN Cracking Script [Haa05b]: Our proof-of-concept Bluetooth security
analysis tool that makes an On-Line PIN Cracking attack [Haa05b, Whi04] possible
(see Subsection 4.2.4 and Section 6.3). The script was created using the CATC
Scripting Language.

An On-Line PIN Cracking Security Analysis Tool [Haa07a]: Our new proof-of-concept
Bluetooth security analysis tool that also makes an On-Line PIN Cracking attack
possible, and works in Linux environments (see Subsection 4.2.4 and Section 6.3)

instead of Windows, i.e. an expensive Bluetooth protocol analyzer is not required.

A Brute-Force BD_ADDR Scanning Script [Haa05b]: Our proof-of-concept Bluetooth
security analysis tool that makes a Brute-Force BD_ADDR Scanning attack [Haa05b,
Whi04] possible (see Subsection 4.2.4 and Section 6.4). The script was created using
CATC Scripting Language.

A BTPrinterBugging via Packet Interception Security Analysis Tool [Haa07b]: Our
new proof-of-concept Bluetooth security analysis tool that makes BTPrinterBugging

via Packet Interception attack (see Subsection 6.7.1) possible.
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e A BTPrinterBugging via Impersonation Security Analysis Tool [Haa07b]: Our new
proof-of-concept Bluetooth security analysis tool that makes a BTPrinterBugging via

Impersonation attack (see Subsection 6.7.2) possible.

e A BTPrinterBugging via Access Denial Security Analysis Tool [Haa07b]: Our new
proof-of-concept Bluetooth security analysis tool that makes a BTPrinterBugging via

Access Denial attack (see Subsection 6.7.3) possible.

e A BTPrinterBugging via Access Denial Security Analysis Tool Il [Haa07b]: Our new
proof-of-concept Bluetooth security analysis tool that also makes a BTPrinterBugging
via Access Denial attack possible, and works in Linux environments (see Subsection
6.7.3) instead of Windows, i.e. an expensive Bluetooth protocol analyzer is not

required.

e A BD ADDR Duplication Security Analysis Tool [HaaO7a]: Our new proof-of-
concept Bluetooth security analysis tool that makes a BD ADDR Duplication attack
(see Subsection 4.2.3 and Section 6.8) possible.

o A SCO/eSCO Security Analysis Tool [Haa07a]: Our new proof-of-concept Bluetooth
security analysis tool that makes SCO/eSCO attack (see Subsection 4.2.3 and Section
6.9) possible.

o A Big NAK Security Analysis Tool [Haa07a]: Our new proof-of-concept Bluetooth
security analysis tool that makes a Big NAK attack (see Subsection 4.2.3 and Section
6.10) possible.

Figure 9 illustrates some equipment in our Bluetooth research laboratory: the Bluetooth
scatternet environment consisting of several Bluetooth compatible PCs, Bluetooth USB
dongles, Bluetooth PCMCIA card, Bluetooth headset, Bluetooth mobile phone, and Bluetooth
protocol analyzer with two radio units. All research work and practical experiments were

performed in our Bluetooth security laboratory using our Bluetooth equipment.
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Figure 9. Bluetooth scatternet environment and several

Bluetooth devices with adjustable or fixed PIN codes.

Figure 10 illustrates a typical attack where an attacker is eavesdropping unencrypted
Bluetooth communication by using a laptop and a Bluetooth protocol analyzer (see Figure 8
in Subsection 4.3.1 for more details). In this example, a Bluetooth-compatible PC and PDA

are exchanging data files via Bluetooth using a nonsecure security mode.

An attacker is eavesdropping Bluetooth communication

Figure 10. A typical eavesdropping attack with a Bluetooth protocol analyzer.
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6 PRACTICAL EXPERIMENTS AND VULNERABILITY
EVALUATION

In this chapter we discuss why several Bluetooth security attacks are possible and
demonstrate them in our practical experiments. Bluetooth vulnerability evaluation is also
provided. We analyse the results of the practical experiments, draw conclusions, and propose
countermeasures. In addition, we introduce new security analysis tools and present new
attacks against Bluetooth security. We also propose countermeasures that render these attacks
impractical, although without totally eliminating their potential danger. The scripts and/or
source codes of our security analysis tools exist, but they will not be released in any public
domain because they can be very dangerous due to their efficiency. Moreover, we provide a
comparative analysis of the existing MITM attacks on Bluetooth, describe our novel system
for detecting and preventing intrusions in Bluetooth networks, and also provide further
classification of Bluetooth-enabled ad-hoc networks depending on a risk analysis within each

classified group.

Section 6.1 explains our practical experiment, Interception of Packets attack [Haa05a], in
which we demonstrate the importance of data encryption and show how easy it is for an
eavesdropper to intercept all packets exchanged via air. Another practical experiment,
BlueBugging attack [Haa06], in which we demonstrate the dangerousness of a BlueBugging

attack (see Subsection 4.2.4), is explained in Section 6.2.

Section 6.3 introduces our On-Line PIN Cracking Security Analysis Tools [Haa05b, Haa07a]
which are, as far as we know, the only security analysis tools for On-Line PIN Cracking so
far. Our Brute-Force BD_ADDR Scanning Security Analysis Tool [Haa05b], which can be
used for discovering hidden (non-discoverable) Bluetooth devices, is introduced in Section

6.4.

Section 6.5 explains our new Bluetooth security attack, BTKeylogging attack [Haa05b], which
can be used against Bluetooth-enabled keyboards. Another new Bluetooth security attack,

BTVoiceBugging attack [Haa05b], in which legitimate Bluetooth-enabled devices can be used
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as bugging devices, is explained in Section 6.6. Section 6.7 introduces our BT PrinterBugging
Security Analysis Tools [Haa07b], which make attacks against Bluetooth-enabled printers

practical.

Our BD ADDR Duplication Security Analysis Tool [HaaO7a], which can be used for
performing BD ADDR Duplication attacks (see Subsection 4.2.3), is explained in Section
6.8. Section 6.9 introduces our SCO/eSCO Security Analysis Tool [Haa07a], which can be
used for performing SCO/eSCO attacks (see Subsection 4.2.3). Our Big NAK Security
Analysis Tool [Haa07a], which can be used for performing Big NAK attacks (see Subsection
4.2.3), is explained in Section 6.10.

Section 6.11 introduces our new attacks on Bluetooth SSP, BT-Niiio-MITM attack [HyHO7]
and BT-SSP-Printer-MITM attack [HaH08], and it also provides a comparative analysis of the
existing MITM attacks on Bluetooth [HaH08] including our two MITM attacks on Bluetooth
SSP. Our novel Intrusion Detection and Prevention System for Bluetooth Networks [Haa08a],
which can be used for detecting and preventing intrusions in Bluetooth networks, is described
in Section 6.12. Finally, Section 6.13 provides Further Classification of Bluetooth-enabled
Ad-hoc Networks [Haa08b] depending on a risk analysis within each classified group.

6.1 Interception of Packets attack

The purpose of the practical experiment was to demonstrate the importance of data
encryption, and to show how easy it is for an eavesdropper to intercept all packets exchanged
via air. The equipment needed for our practical experiment were a laptop connected to the
LeCroy BTTracer/Trainer protocol analyzer [Lec07], LeCroy BT Tracer/Trainer v2.2 software
[Lec07], our Bluetooth Chat Software, and PCs with Bluetooth USB dongles (see Chapter 5).

All PCs had a Bluetooth USB adapter and Bluetooth protocol stack up and running. One PC
was the piconet master running BTChatd over BlueZ in Linux. The other seven PCs were
piconet slaves running BTChat in Linux or BTChatlJava in Linux/Windows. Figure 11
illustrates the startup of the BlueZ protocol stack (see rows 1-3, where the notation Acid

means HCI daemon and sdpd means SDP daemon) when encryption is not used (i.e. a
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nonsecure security mode), startup of BTChatd (see rows 4-8), and connection establishments

of seven slaves (see rows 9-15).

(1)
(2)
(3)
(4)
(3)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

May 27 10:25:25 itmw-ope24 hcid[7092]: HCI daemon ver 2.4 started
May 27 10:25:25 itmw-ope24 bluetooth: hecid startup succeeded
May 27 10:25:25 itmw-ope24 bluetooth: sdpd startup succeeded

May 27 10:25:31 itmw-ope24 btchatd:
May 27 10:25:31 itmw-ope24 btchatd:
May 27 10:25:31 itmw-ope24 btchatd:
May 27 10:25:31 itmw-ope24 btchatd:
May 27 10:25:31 itmw-ope24 btchatd:
May 27 10:25:55 itmw-ope24 btchatd:
May 27 10:26:52 itmw-ope24 btchatd:
May 27 10:27:07 itmw-ope24 btchatd:
May 27 10:27:32 itmw-ope24 btchatd:
May 27 10:27:48 itmw-ope24 btchatd:
May 27 10:28:02 itmw-ope24 btchatd:
May 27 10:29:32 itmw-ope24 btchatd:

Serial Port service registered

Logging chat to /tmp/btlog.txt

BtCHATD, BlueZ RFCOMM chat server running!
Waiting for connection on RFCOMM channel 10
Tuomas Kepanen, kepanen@cs.uku.fi
Connection from [00:05:4E:00:68:64]
Connection from [00:05:16:48:0C:F5]
Connection from [00:05:16:48:12:4C]
Connection from [00:05:16:48:0C:F2]
Connection from [00:05:16:48:0C:F3]
Connection from [00:05:16:48:10:58]
Connection from [00:05:16:48:12:55]

Figure 11. The startup of the BlueZ protocol stack when encryption is not used, the

startup of BTChatd, and connection establishments of seven slaves. [Haa05a]

BTChatd, BTChat and BTChatJava use RFCOMM to emulate a standard serial port. The chat

software is implemented on top of the RFCOMM, because it is supported in every Bluetooth

protocol stack, and applications over the RFCOMM are easy to implement. Because the

piconet master is in a nonsecure security mode, each of the slaves can establish a connection

without authentication, authorization and encryption, i.e. the link is unprotected.

Figure 12 illustrates the chat session between the active piconet slaves using BTChatJava on

Windows when encryption is not used. The purpose of the chat software is to enable IRC-

style communication between a maximum of seven active piconet slaves via the piconet

master, which only relays messages to all the connected slaves.

99



= BTCHAT, rfcomm

Keijo= Hi, is there anyhody?
pilotti1 2= Hi Keijo, I'm here!

ohn= Hi all, we are here for a secret meeting!
Eve> | think we are safe, hecause | don't see any eavesdroppers nearby...
Peter=Well, you never know where they are hiding!
Max= That's right, eavesdropper can be at the parking lot with his laptop and protocol
analyzer
Keijo=We don't have encryption on, so | suggest that we stop this meeting now!

Figure 12. The chat session between the active piconet

slaves when encryption is not used. [Haa05a]

An eavesdropper has to synchronize with the piconet master in order to intercept the packets
exchanged via air. Commercially available Bluetooth protocol analyzers, such as LeCroy's
Bluetooth protocol analyzer, usually require only a brief contact with the piconet master to
extract the BD ADDR of the master and hop sequence information. It can be done by using a
general inquiry in which all devices in range will return their FHS (Frequency Hop
Synchronization) packets, for example. Therefore, if the security level of the piconet master is

set as public, the required synchronization with the master can be done very quickly.

On the other hand, a serious eavesdropper does not want to transmit anything that might
disclose her location or intentions. It is also possible to synchronize with the piconet's hop
sequence without transmitting at all. It can be done in the following way, for example. The
eavesdropper listens to one of the 32 inquiry hop frequencies in order to detect an inquiry.

When one is detected, the eavesdropper's radio begins to hop along with the inquirer, checks
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each response frequency, and records the FHS packet of each responder. In this way, over a
period of time, the eavesdropper will discover the identities of the Bluetooth devices that are

within the range of vulnerability.

More difficult for an eavesdropper is the situation where all the target piconet devices are
configured as non-discoverable devices, because no inquiries will occur in the range of
vulnerability, i.e. the security level is set as private for each device. In this case, the
eavesdropper has to monitor traffic on various hop frequencies perhaps over a long period of
time in order to intercept a page or FHS packet. A page packet informs the eavesdropper that
a page process, including the transmission of FHS packet, is taking place. It is also possible to
use several receivers in parallel to increase the probability of intercepting all useful
information: for example, 79 receivers will intercept all Bluetooth activity within the range of
vulnerability. Moreover, as described in Section 4.2 and in Subsection 4.2.4, techniques for
finding hidden Bluetooth devices in an average of one minute have been developed. It is
expected that in the near future they will be ported onto a standard CSR dongle via a custom

firmware.

Figure 13 illustrates the results of an Interception of Packets attack when encryption is not
used. It is very clear that an eavesdropper can easily understand the content of the intercepted
data and save it to a text file for later use, for example. The same message is shown several
times on the screen of the eavesdropper's laptop, because the piconet master relays all
messages to all participants of the chat session, i.e. the eavesdropper has to synchronize only
with the piconet master in order to eavesdrop on a chat session between all active piconet
slaves. The 16-bit CRC field calculated from the Baseband packet payload also matches the
received CRC field, because our Bluetooth protocol analyzer displays the CRC field in white,
i.e. white in the CRC field is used to indicate the match between the CRC checksums, while
red indicates a mismatch between the CRC checksums. Now the eavesdropper knows for sure

that the messages are being sent via a nonsecure link.
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Figure 13. The results of an Interception of Packets

attack when encryption is not used. [Haa05a]

Figure 14 illustrates the startup of the BlueZ protocol stack (see rows 1-5) when encryption is
used (Bluetooth security mode 2 is used), the startup of BTChatd (see rows 6-10), and the
connection establishments of the piconet slaves (see rows 11-30, where the notation sha
means the BD_ADDR of the source device, i.e. the BD ADDR of the master device, and dba
means the BD_ADDR of the destination device).
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(1) May 27 12:11:23 itmw-ope24 hcid[7374]: HCI daemon ver 2.4 started

(2) May 27 12:11:23 itmw-ope24 hecid[7374]: Starting security manager 0O

(3) May 27 12:11:23 itmw-ope24 bluetooth: hcid startup succeeded

(4) May 27 12:11:23 itmw-ope24 sdpd[7380]: sdpd v1.5 started

(5) May 27 12:11:23 itmw-ope24 bluetooth: sdpd startup succeeded

(6) May 27 12:11:25 itmw-ope24 btchatd: Serial Port service registered

(7) May 27 12:11:25 itmw-ope24 btchatd: Logging chat to /tmp/btlog.txt

(8) May 27 12:11:25 itmw-ope24 btchatd: BtCHATD, BlueZ RFCOMM chat server running!

(9) May 27 12:11:25 itmw-ope24 btchatd: Waiting for ceonnection on RFCOMM channel 10

(10) May 27 12:11:25 itmw-ope24 btchatd: Tuomas Kepanen, kepanenics.uku.fi

(11) May 27 12:11:40 itmw-ope24 hcid[7374]: link_key_request (sba=00:05:16:48:0C:FD, dba=00:05:4E:00:68:64)
(12) May 27 12:11:40 itmw-ope2d4 hcid[7374]: pin_code request (sha=00:05:16:48:0C:FD, dba=00:05:4E:00:68:64)
(13) May 27 12:11:40 itmw-ope24 hcid[7374]: link key notify (sba=00:05:16:48:0C:FD)

(14) May 27 12:11:40 itmw-ope24 hecid[7374]: Saving link key 00:05:16:48:0C:FD 00:05:4E:00:68:64

(15) May 27 12:11:40 itmw-ope24 btchatd: Connection frem [00:05:4E:00:68:64]

(16) May 27 12:14:14 itmw-ope2d hcid[7374]: link_key_request (sba=00:05:16:48:0C:FD, dba=00:05:16:48:0C:F5)
(17) May 27 12:14:14 itmw-ope24 hcid[7374]: pin_code_request (sba=00:05:16:48:0C:FD, dba=00:05:16:48:0C:F5)
(18) May 27 12:14:14 itmw-ope2d4 hcid[7374]: link_key notify (sba=00:05:16:48:0C:FD)

(19) May 27 12:14:14 itmw-ope24 hcid[7374]: Saving link key 00:05:16:48:0C:FD 00:05:16:48:0C:F5

(20) May 27 12:14:14 itmw-ope24 btchatd: Connection from [00:05:16:48:0C:F5]

(21) May 27 12:16:13 itmw-ope24 hcid[7374]: link_key_request (sba=00:05:16:48:0C:FD, dba=00:05:16:48:12:4C)
(22) May 27 12:16:13 itmw-ope2d4 hcid[7374]: pin_code request (sha=00:05:16:48:0C:FD, dba=00:05:16:48:12:4C)
(23) May 27 12:16:13 itmw-ope24 hcid[7374]: link_key_notify (sba=00:05:16:48:0C:FD)

(24) May 27 12:16:13 itmw-ope24 hecid[7374]: Saving link key 00:05:16:48:0C:FD 00:05:16:48:12:4C

(25) May 27 12:16:13 itmw-ope24 btchatd: Connection frem [00:05:16:48:12:4C]

(26) May 27 12:17:02 itmw-ope24 hecid[7374]: link key request (sba=00:05:16:48:0C:FD, dba=00:05:16:48:0C:F2)
(27) May 27 12:17:02 itmw-ope24 hcid[7374]: pin_code_request (sba=00:05:16:48:0C:FD, dba=00:05:16:48:0C:F2)
(28) May 27 12:17:02 itmw-ope2d4 hcid[7374]: link_key notify (sba=00:05:16:48:0C:FD)

(29) May 27 12:17:02 itmw-ope24 hcid[7374]: Saving link key 00:05:16:48:0C:FD 00:05:16:48:0C:F2

(30) May 27 12:17:02 itmw-ope24 btchatd: Connection from [00:05:16:48:0C:F2]

Figure 14. The startup of the BlueZ protocol stack when encryption is used, the startup
of BTChatd, and the connection establishment of the piconet slaves. [Haa05a]

The startup of the BlueZ protocol stack illustrated in rows 1-5 is similar to that in Figure 11
except that now a Bluetooth security manager (see row 2) is also needed, i.e. if any part of
Bluetooth security takes place automatically, a security manager should be part of the host
software package. The startup of BTChatd illustrated in rows 6-10 is also similar to that in
Figure 11. The Bluetooth devices used in the chat session have never met before, so they do
not have the link key, as rows 11-12, 16-17, 21-22 and 26-27 illustrate. Because the piconet
master is in the service-level enforced security mode (Bluetooth security mode 3 can also be
used if desired), all slaves must enter the PIN code (see rows 12, 17, 22 and 27, in which the
master requests each slave to enter the PIN code) that matches with the master's PIN code.

After this, the initialization key and the combination key can be generated (see Section 4.1).

The master and each slave perform two-way authentication using the generated combination
key, and the results of authentication are used to generate the 128-bit encryption key. Then
both ends of the link store the combination key (see rows 13-14, 18-19, 23-24 and 28-29) for

later use (i.e. the devices are bonded) and encrypt all data transferred via air. The next time
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the same bonded devices communicate with the same master device, they will use the stored

combination key for authentication and encryption key generation.

Piconet slaves have a similar chat session again as illustrated in Figure 12, but now the data is
encrypted with 128-bit encryption keys. It makes the eavesdropper's work very hard (see
Table 7 in Subsection 4.3.2). The eavesdropper has to synchronize again with the piconet
master in order to intercept the packets exchanged via air. Even if encryption is used, all

packets can be intercepted and stored for later cryptographical analysis.

Figure 15 illustrates the results of an Interception of Packets attack when encryption is used.
Now an eavesdropper cannot understand the contents of the intercepted data. The 16-bit CRC
field calculated from the Baseband packet payload does not match the received CRC field, so
our Bluetooth protocol analyzer displays the CRC field in red to indicate the mismatch
between the CRC checksums. Now the eavesdropper knows for sure that the messages are
encrypted.

An access code and a header are always unencrypted
_A

2405 | 166074964 B 0x0 | 0xB12033F44D9896E9 | OxA 0d| 03

Data X
00*003000F01t0p00 38.800 us 00571423 6549

&) Freq | BTClock B0 Flow Argn Seqn HEC |L CH|L2FL |Len

/N

Data field CRC field does not
1S nonsense match with data

BTClock DM WHFLM
166074265 IR 0% |0612033-4409696E9] 0cA ||| 06 | 0@ | 1 | 0 | 1 |0 ||l 1 |12 |00~000003:00
BTClock

T CAC DM W‘LCH L Lenm
166074972 [l 04 [:8120337 440989669 ot {5 06 | 0@ [ 1 [ 0 [ 1 [ooE][Luaul] o | 11 [io°0oovo'Os
98800us | 00571426 1530

Figure 15. The results of an Interception of Packets attack when encryption is used. [Haa05a]
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The countermeasures for an Interception of Packets attack are: [Haa06]

Data/voice encryption: All sensitive material should be encrypted with a 128-bit

encryption key to prevent unauthorized use (see Table 7 in Subsection 4.3.2).

Private or silent security level: BD _ADDR should not be public, because it is more
difficult for an attacker to synchronize with the piconet's hop sequence when the
security level is set as private or silent. If there is no need to use the Bluetooth device

for a long time, Bluetooth can be switched off completely.

Increasing user understanding of security issues: A user should be aware of Bluetooth

security architecture and know how to set it up successfully (see Section 4.1).

Minimization of transmit powers: Sensitive data should be sent using as small transmit
power as possible. On the other hand, this increases the range of susceptibility to

jamming (see Table 5 in Subsection 4.2.3).

Careful selection of place: This is very important especially when two devices meet

for the first time and generate initialization keys (see Figure 4 in Section 4.1).

Using only long PIN codes: Sixteen 8-bit character PIN codes should be used when
possible (see Subsection 4.3.3). If a Bluetooth device, such as a headset, a keyboard or
a printer adapter, has a fixed PIN code, it should be as long as possible and as hard as

possible to guess.

Using additional security at application level: Application layer key exchange and
encryption methods (see Chapter 3) can be used as extra security in addition to the
Bluetooth built-in security: indeed, our open PKlI-based (Public Key Infrastructure)
Mobile Payment System [HHHO06] can be seen as an example of a real world
Bluetooth-enabled system that uses application layer key exchange and encryption
methods to secure communication on top of the existing Bluetooth security measures.
Although all data exchanged via Bluetooth is encrypted using built-in encryption with

128-bit keys (see Table 7 in Subsection 4.3.2), we use Bluetooth as an untrusted
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transport medium. All sensitive data is encrypted on the application level. The
integrity and freshness of messages is ensured by digital signatures, timestamps, and
nonces. Compared with other mobile payment systems, the main advantage of our
system is that it does not require any mediator. This reduces the total cost of a
payment. Our system utilizes a governmental PKI infrastructure, namely FINEID
(Finnish Electronic Identification), making it an affordable solution, since
administration of the system is provided by the government. Furthermore, as citizens
have adopted this system for secure electronic transactions, it has a high level of
trustworthiness. Our system is built using Java to gain the best possible portability
across device platforms. Our solution provides strong authentication of
communicating parties, integrity of data, non-repudiation of transactions, and
confidentiality of communication. Based on the governmental PKI, the system is open
to all merchants, financial institutions and mobile users. More details about our open

PKI-based Mobile Payment System can be found in [HHHO6].

6.2 BlueBugging attack

Our other practical experiment, BlueBugging attack [Haa06], demonstrates the dangerousness
of a BlueBugging attack (see Subsection 4.2.4). The equipment needed for the practical
experiment were a laptop with Linux Fedora Core 3 and BlueZ protocol stack [BluO8b]
installed, one Bluetooth 1.1 compatible USB dongle, and an unmodified Bluetooth 1.1
compatible Nokia 6310i mobile phone [Nok02] (see Chapter 5). In addition, a special tool,
btxml [Obe04], was installed on the laptop.

Andreas Oberritter's btxml is a tool for a BlueBugging attack. It is capable of stealing the
contents of the target mobile phone via Bluetooth and outputting the data in a standard XML
(Extensible Markup Language) format. Originally, btxml was designed to work for Nokia
6310 and 63101 mobile phones, but it also works for Ericsson T610 and T681 mobile phones,
and may work for some other Bluetooth mobile phones as well. It simply uses GSM AT
commands over a RFCOMM connection, and no initial pairing process is required between

the attacking device and the target device.
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The purpose of this practical experiment was to determine the average time required for a
BlueBugging attack by using btxml. Figure 16 illustrates the results of this experiment (see

rows 1-27).

(1) <?xml version="1.0" encoding="UTF-8"?>
{2) <phone btaddr="00:02:EE:B0:29:4D" name="Nokia 6310i'">

(3) <manufacturer>Nokia</manufacturer>

(4) <model>Nokia 6310i</model>

(5) <revision>V5.50 03-03-03 NPL-1 (c) NMP. </revision>

(6) <imei>351453208359469</imei>

(7) <phonebook name="ME" size="500'">

(8) <contact>

(92) <name>Test contact number</name>

(10) <number>+358501234567</number>

(11) </contact>

(12) <contact>

(13) <name>Another contact number</name>
(14) <number>+358447654321</number>

(15) </contact>

(16) <contact>

(17) <name>Yet another contact number</name>
(18) <number>+358112233445</number>

(19) </contact>

(20) </phonebook>

(21) <msgstorage name='""ME">

(22) <message>"STO UNSENT","", This is a test message for btxml program..</message>
(23) <message>"STO UNSENT","", This is another test message...</message>
(24) </msgstorage>

(25) <msgstorage name="SM">

(26) </msgstorage>

(27) </phone>

Figure 16. The results of a BlueBugging attack using btxml. [Haa06]

As Figure 16 illustrates, BD _ADDR (see row 2), a user-friendly name (a 1-248 byte user-
defined string describing a Bluetooth device; see row 2), the device manufacturer (see row 3),
device model (see row 4), firmware version (see row 5), IMEI (International Mobile
Equipment Identity) code (see row 6) as well as the entire phonebook (see rows 7-20) and all
text messages (see rows 21-26) can be easily discovered and stolen. IMEI can be used for

illegal mobile phone cloning.

A BlueBugging attack was repeated 50 times and the average time required for one successful
attack when the target mobile phone had three contact numbers and two text messages stored
was about 10.7 seconds. For half of the time btxml was performing an inquiry scan, i.e.
searching for Bluetooth devices in range. Therefore, the actual time for connecting and
stealing information is only about five seconds per BlueBugging attack if the BD ADDR of
the target device is known beforehand. Based on the results of this practical experiment, we

can assume that the average time required for a BlueBugging attack varies from five seconds
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up to several minutes, depending on the amount of information, such as pictures, music files,

text messages, phonebook entries and calendar notes, stored on a vulnerable Bluetooth device.

A BlueBugging attack is very dangerous, because millions of vulnerable Bluetooth devices

[Her04, LaL04, LHHO04, Sap06, Sap07, Spe04], especially Bluetooth mobile phones, are used

every day all over the world.

The countermeasures for a BlueBugging attack, in addition to those described in Section 6.1,

are: [Haa06]

Updating latest firmware/software on vulnerable Bluetooth devices: For example,
most of the Bluetooth mobile phone firmware/software versions since summer 2004
are assumed to be safe against a BlueBugging attack and several other Bluetooth
security attacks, because most mobile phone manufacturers fixed Bluetooth security
flaws (i.e. flaws in the authentication and data transfer mechanisms) of their bad

Bluetooth firmware/software implementations during summer 2004.

Requiring an additional Bluetooth-independent reauthentication always prior to the

access of a sensitive information or service.

Automatic power off capability: Bluetooth devices with fixed PIN codes should
automatically (when possible) turn their power off if no successful connection attempt

is made within some predetermined time.

Using RF signatures: Every transmitter has a unique RF signature [Mor02, Sha06],
which can be used to differentiate legitimate devices from devices that have alien RF
signatures. For this, a sample RF signature is needed from each legitimate device in
order to detect alien RF signatures. Bluetooth devices can be equipped with signal
processing capabilities to check every RF signature before accepting any connections.
On the other hand, this kind of countermeasure can be very expensive if dozens of

Bluetooth devices must support it.
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6.3 On-Line PIN Cracking Security Analysis Tools

Our On-Line PIN Cracking Security Analysis Tools, On-Line PIN Cracking Script [Haa05b]
and On-Line PIN Cracking Tool [Haa07a], are (as far as we know) the only security analysis

tools for an On-Line PIN Cracking attack (see Subsection 4.2.4) implemented so far.

In our first experiment, we successfully performed an On-Line PIN Cracking attack by using
a laptop connected to the LeCroy's Bluetooth protocol analyzer [Lec07] with one Bluetooth
1.1 compatible radio unit and Nokia's Bluetooth 1.1 compatible Wireless Headset HDW-2
[Nok03]. A second radio unit will not speed up the process, because only one PIN trial can be
performed with the same headset at the same time. However, it can be used for On-Line PIN
Cracking with another headset or other Bluetooth device that has a fixed PIN code. LeCroy
BTTracer/Trainer v2.2 software [Lec07], which provides CATC Scripting Language [Lec04]

(see Chapter 5), was also used in this practical experiment.

CATC Scripting Language was used for creating our On-Line PIN Cracking Script, which
works in the following way: [Haa05b]

1. Change the local BD ADDR of the protocol analyzer and set a PIN value for the next
PIN trial. In this way, the ever increasing delay between retries is bypassed by

changing the BD ADDR of the attacking device every time a PIN guess fails.
2. Create a basic ACL link between the protocol analyzer and the target device.

3. Perform authentication with the target device by using the PIN value set in step 1. If
authentication fails, go back to step 1. Otherwise, On-Line PIN Cracking has been

completed successfully.

The success of our practical experiment is based on the fact that most Bluetooth headsets use
only four-digit fixed PIN codes. Figure 17 illustrates an example of a successful On-Line PIN

Cracking attack using our On-Line PIN Cracking Script (see rows 1-25).
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)

HCTI_Evt> Write Authentication_Enable Complete
TCI_Evt> CATC_SetBdAddr Complete

BD_ADDR : 000000002330
HCI_Evt> PIN Code_Request

PIN reply : 2330
HCI_Evt> Connection_Error

Error : Authentication Failure
TCI_Evt> CATC_SetBdAddr_Complete

BD_ADDR : 000000002331
HCI_Evt> PIN Code_Request

PIN reply : 2331
HCI_Evt> Connection_Error

Error : Authentication Failure
TCI_Evt> CATC_SetBdAddr_Complete

BD_ADDR : 000000002332
HCI_Evt> PIN Code_Request

PIN reply : 2332
HCI_Evt> Pairing Complete

BD_ADDR : 00038935446F
HCI_Evt> Connection_Complete

BD_ADDR : 00038935446F

HCTI Handle : 0x000B
HCI_Evt> Disconnection_Complete

BD_ADDR : 00038935446F

Reason : No Connection

Figure 17. An example of a successful On-Line PIN Cracking attack. [Haa05b]

As Figure 17 illustrates, the protocol analyzer is set to require authentication for each

connection with the target device (see row 1). The BD_ADDR value of the protocol analyzer

is changed to a new value after every failed authentication attempt (see rows 2-3, 8-9 and 14-

15). Two failed authentication attempts are performed with the target device (see rows 4-7

and 10-13). The third authentication attempt is successful (see rows 16-22) and therefore

disconnection with the target device can be performed (see rows 23-25). Now an attacker has

discovered the fixed PIN code of the target device and further attacks (see Subsections 4.2.1-

4.2.4) against that device can be performed.
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In our practical experiment, the average time required for one PIN trial was 4.7 seconds
including the BD ADDR change after every PIN trial. Therefore, the average On-Line PIN
Cracking time, i.e. the time for 5000 PIN trials (see Subsection 4.3.3) using Bluetooth 1.1
compatible devices was 6.5 hours (5000%4.7s=23500s=6.5 hours). The same practical
experiment with Bluetooth 1.2 or 2.0+EDR devices would have been faster to perform,
because Bluetooth specifications 1.2 and 2.0+EDR support faster (less than two seconds per
device) connection establishment. Assuming that the average time required for one PIN trial
using Bluetooth 1.2 or 2.0+EDR compatible devices is 2.0 seconds, the average On-Line PIN
Cracking time for all 5000 PIN trials can be as short as 2.8 hours (5000x2.0s=10000s~2.8

hours).

Since our On-Line PIN Cracking Script runs only in Windows environments and requires an
expensive special hardware, we decided to implement another version of the On-Line PIN

Cracking Security Analysis Tool in order to eliminate these restrictions.

This new On-Line PIN Cracking Tool [Haa07a] works in Linux environments. It requires the
BlueZ protocol stack [BIuO8b] and at least one Bluetooth USB dongle to work, i.e. an
expensive Bluetooth protocol analyzer is not required. The best performance with the new
On-Line PIN Cracking Tool can be achieved when two Bluetooth USB dongles are used
simultaneously for an On-Line PIN Cracking attack, i.e. the second USB dongle changes its
BD_ADDR while the first USB dongle is performing the On-Line PIN Cracking attack and

vice versa.

Our On-Line PIN Cracking Tool uses the standard tools shipped with BlueZ and our own
modifications of some BlueZ tools. Manufacturer-specific commands are used to change the
BD_ADDR of the attacking device every time the PIN guess fails, i.e. not all Bluetooth USB
dongles are supported by our security analysis tool. The supported manufacturers are CSR, TI
(Texas Instruments), Ericsson and Zeevo, i.e. most Bluetooth USB dongles in the market

support our On-Line PIN Cracking Tool.

Changing the BD_ADDR value of a typical Bluetooth USB dongle takes only an average of

two seconds, which is much faster than the time required for one PIN trial. This allows us to
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use a simple parallerization technique to speed up the attack, which works as follows. The
average time for one PIN trial (excluding the BD ADDR change) with our On-Line PIN
Cracking Tool is ten seconds for the "old" Bluetooth 1.0/1.1 devices and four seconds for the
"new" Bluetooth 2.0+EDR devices, which support faster connection establishment. Therefore,
a second Bluetooth USB dongle can be used to save an average of two seconds per PIN trial,
i.e. the attack can be performed 17%-33% faster (100%x2/12=17% and 100%x2/6=33%) by
using two Bluetooth USB dongles in parallel. Figure 18 illustrates our On-Line PIN Cracking

Tool in action (see rows 1-16).

(1) PIN Code for the Next PIN Trial Is: 1232

(2) Connecting to the Remote Bluetooth Device..

(3) Can't create connection: Input/output error

(4) New (Local) BD_ ADDR Will Be: 29:29:29:29:29:29
(5) Local BD ADDR Has Been Changed to New Value!
(6) Device Reset Has Been Completed Successfully!
(7) PIN Code for the Next PIN Trial Is: 1233

(8) Connecting to the Remote Bluetooth Device..

(9) Can't create connection: Input/output error
(10) New (Local) BD_ADDR Will Be: 30:30:30:30:30:30
(11) Local BD_ADDR Has Been Changed to New Value!
(12) Device Reset Has Been Completed Successfully!
(13) PIN Code for the Next PIN Trial Is: 1234

(14) Connecting to the Remote Bluetooth Device..
(15) Authentication Has Been Successfully Completed!
{(16) PIN Code of the Remote Bluetooth Device Is: 1234

Figure 18. The On-Line PIN Cracking Tool in action. [Haa(07a]

As Figure 18 illustrates, the On-Line PIN Cracking Tool works in a similar way as the On-
Line PIN Cracking Script described in Figure 17. The local BD ADDR value of the attacking
device is changed to a new value after every failed authentication attempt (see rows 4-6 and
10-12). Two failed authentication attempts are performed with the target device (see rows 1-3
and 7-9). The third authentication attempt is successful (see rows 13-16) and therefore an

attacker has discovered the secret PIN code of the target device.
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The On-Line PIN Cracking Script is faster than the On-Line PIN Cracking Tool, because it
runs on a special hardware, LeCroy's Bluetooth protocol analyzer [Lec07], which can use a
Bluetooth radio much more efficiently than a normal PC with a Bluetooth USB dongle. On
the other hand, it is also a much more expensive approach to On-Line PIN Cracking, thus

making our On-Line PIN Cracking Tool a very economical solution.

An On-Line PIN Cracking attack is very feasible and dangerous if the fixed PIN code of the
target device is short and has no case-sensitive alphanumerical characters (and perhaps some
other characters as well). In addition, an attacker does not necessarily need to go through all
PIN values in one day. She can continue the attack some other day when the target device is
back within the range of vulnerability. Moreover, Bluetooth specifications up to 2.0+EDR do
not provide any proper countermeasures for On-Line PIN Cracking attacks. Therefore, all
countermeasures (if any) are up to the device manufacturer. However, Bluetooth 2.1+EDR

provides SSP (see Section 4.1) to protect against On-Line PIN Cracking attacks.

One countermeasure for an On-Line PIN Cracking attack, provided that all countermeasures

from Sections 6.1-6.2 are in place, seems to be:

e Requiring a button press from the user always prior to accepting the connection
establishment: A Bluetooth connection is accepted only if the user physically confirms

the connection establishment by pressing a button.

6.4 Brute-Force BD_ADDR Scanning Security Analysis Tool

The main features of a Brute-Force BD_ADDR Scanning attack were described in Subsection
4.2.4. RedFang [Whi03] is a security analysis tool for finding non-discoverable Bluetooth
devices by brute-forcing the last three bytes of BD_ADDR and doing a name inquiry. It runs
on Linux and requires a BlueZ protocol stack [BluO8b] and at least one Bluetooth USB

dongle to work.
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Based on the idea of [Whi03], we designed, implemented and tested our own tool to carry out
this attack. Our Brute-Force BD_ADDR Scanning Security Analysis Tool [Haa05b] is on
average four times faster than RedFang, because it runs on a special hardware, LeCroy's
Bluetooth protocol analyzer [Lec07], which can use Bluetooth radio much more efficiently

than a normal PC with a Bluetooth USB dongle.

We successfully performed a Brute-Force BD_ADDR Scanning attack using LeCroy's
Bluetooth protocol analyzer [Lec07] with one Bluetooth 1.1 compatible radio unit and an
unmodified Bluetooth 1.1 compatible Nokia 6310i mobile phone [Nok02]. LeCroy
BTTracer/Trainer v2.2 software [Lec07], which provides CATC Scripting Language [Lec04]

(see Chapter 5), was also used in our practical experiment.

We used CATC Scripting Language to create our Brute-Force BD _ADDR Scanning Script,
which works in the following way: [Haa05b]

1. Set the scanning area.

2. Set remote BD ADDR for the next BD _ADDR trial, i.e. set a BD ADDR value for

the next connection attempt.

3. Try to create a basic ACL link between the protocol analyzer and a remote device by
using the BD_ADDR value set in step 2. If the connection attempt fails, go back to
step 2. Otherwise, the Brute-Force BD ADDR Scanning Script has found a non-
discoverable device (see Section 4.1). Perform a remote name inquiry and a
disconnection with the target device. If there is more scanning left to do, go back to

step 2.

All scanning information can be stored in a logfile for later analysis. Figure 19 illustrates an
example of a successful Brute-Force BD ADDR Scanning attack using our Brute-Force

BD_ADDR Scanning Script (see rows 1-19).
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(1) Remote BD ADDR for this trial is: 0002eeb0294b
(2) HCI_Evt> Connection_ Error

(3) Error : Page Timeout

(4) Remote BD ADDR for this trial is: 000Z2eeb0294c
(5) HCI_Evt> Connection_ Error

(6) Error : Page Timeout

(7) Remote BD ADDR for this trial is: 000Z2eeb0294d
(8) HCI_Evt> Connection_ Complete

(9) BD ADDR : OOO2EEB0294D

(10) HCI Handle : 0x0004

(11) HCI_Evt> Remote Name Request Complete

(12) BD ADDR : OOO2EEB0294D

(13) Name : "Nokia 6310i"

(14) HCI_Evt> Disconnection_ Complete

(15) BD ADDR : OOO2EEB0294D
(16) Reason : No Connection

(17) Remote BD ADDR for this trial is: 0002eeb0294e
(18) HCI Evt> Connection Error
(19) Error : Page Timeout

Figure 19. An example of a successful Brute-Force BD_ADDR Scanning attack. [Haa05b]

As Figure 19 illustrates, the remote BD_ADDR value is changed to a new value (see rows 1,
4, 7 and 17) after every connection attempt if there is more scanning left to do. Two failed
connection attempts are performed (see rows 2-3 and 5-6) before the successful connection
establishment (see rows 8-10) in which a remote name inquiry (see rows 11-13) and
disconnection (see rows 14-16) with the target device is also performed. Now an attacker has
discovered the BD _ADDR of the target device, and further attacks (see Subsections 4.2.1-
4.2.4) against that device can be performed. Because there is more scanning left to do, the
remote BD ADDR value is changed again to a new value (see row 17), and a new connection

attempt is performed (see rows 18-19).

In our practical experiment, the total time for scanning through 2000 BD_ADDRs was 174
minutes and 20 seconds. Hence, the average time required for one reliable BD ADDR trial is
5.2 seconds (10460s/2000~5.2 seconds). The average scanning time for all 8388608
BD_ADDR trials (i.e. a 24-bit address space gives 16777216 different BD_ADDR values and
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an attacker needs on average 8388608 BD_ADDR guesses to find out the correct value) with
Brute-Force BD_ADDR Scanning Script is 1.4 years (8388608%5.235~43872420s~1.4 years)
when using only one radio unit. A second radio unit or another LeCroy Bluetooth protocol
analyzer can be used to speed up the scanning process. If, for example, 25 compact size
LeCroy Merlin II [Lec07] protocol analyzers are used for a Brute-Force BD__ADDR Scanning
attack with our Brute-Force BD_ADDR Scanning Script, it takes on average 20.3 days
(43872419.84s/25=1754897s~20.3 days).

For comparison, RedFang needs as much as 100 concurrent Bluetooth USB dongles to
achieve the same result, and it is very likely that due to greater RF interference they will not
work as reliably as 25 concurrent protocol analyzers, i.e. there are only 79 different Baseband
frequencies and therefore 100 concurrent Bluetooth USB dongles within the range will cause
RF interference. Moreover, an attacker has to use a laptop or laptops with several USB hubs

to make this kind of attack feasible.

Brute-Force BD ADDR Scanning attacks can be feasible and dangerous if an attacker has
enough resources, namely equipment, money, time and will, and good software tools such as
Brute-Force BD_ADDR Scanning Script or RedFang. In addition, the attacker has to know
the manufacturer of the target device, because brute-forcing a 48-bit address space is not
feasible. Moreover, just discovering the BD_ADDR of the target device will not give access
to any sensitive files. Therefore, some additional attacks must also be performed and the

target device must be somehow vulnerable to them.

A Brute-Force BD ADDR Scanning attack is perhaps most feasible when target devices are
Bluetooth mobile phones, since Nokia is the world's leading mobile phone manufacturer.
Another good guess for the mobile phone's manufacturer is Motorola, which is the world's
second largest mobile phone manufacturer. Moreover, millions of vulnerable Bluetooth
mobile phones [Her04, Lal.04, LHHO04, Sap06, Sap07, Spe04] are used every day all over the

world.
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An attacker can also try to use a virus that turns all infected Bluetooth-compatible PCs and
laptops into scanning devices to speed up the Brute-Force BD ADDR Scanning attack.
Moreover, the attacker can speed up the searching process and increase the probability of
finding several Bluetooth mobile phones by first scanning discoverable mobile phones. Based
on the BD_ADDRs of the discoverable Bluetooth mobile phones, the attacker can determine
the most commonly used company_assigned values (see Subsection 4.2.4) in this particular
geographical area, and scan first the BD _ADDRs that are near those of the discoverable
mobile phones. It is very likely that the BD _ADDR values are almost the same within the
same geographical area, because the process of assigning company assigned values is not

completely random.

Several practical experiments in our Bluetooth security laboratory showed that when testing
Brute-Force BD_ADDR Scanning even with very small scanning ranges, such as scanning
only 100 or 200 BD ADDRs that are near the BD ADDR of our laboratory's Bluetooth
mobile phone, typically several additional Bluetooth mobile phones were discovered

accidentally.

It is worth noting that besides RedFang and Brute-Force BD _ADDR Scanning Script,
techniques for finding hidden Bluetooth devices in an average of one minute have been
developed (Section 4.2 and Subsection 4.2.4), and it is expected that in the near future they

will be ported onto a standard CSR dongle via a custom firmware.

The countermeasures for a Brute-Force BD_ADDR Scanning attack seem to be the same as

described in Sections 6.1-6.2.

6.5 BTKeylogging attack

Our new Bluetooth security attack, BTKeylogging attack [Haa05b], extends both the Brute-
Force BD_ADDR Scanning attack (see Subsection 4.2.4 and Section 6.4) and On-Line PIN
Cracking attack (see Subsection 4.2.4 and Section 6.3). In most cases, a BTKeylogging attack
is carried out on a wireless connection between a Bluetooth keyboard, which is also used for

typing a PIN code during the initial pairing process, and a PC. This new attack is possible
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when the target keyboard has a fixed or short adjustable PIN code and its BD ADDR is
known to an attacker. Moreover, the attacker must witness the initial pairing process between
the target keyboard and the target computer. There are different ways to arrange or force

target devices to repeat the initial pairing process (see Subsection 4.2.1).

If an attacker uses a Brute-Force BD_ADDR Scanning attack to discover the BD ADDRs of
the target devices (the keyboard and the computer) and then an On-Line PIN Cracking attack
to discover the fixed or short adjustable PIN code of the target keyboard, she can use the
keyboard as a keylogger by intercepting all packets (i.e. all keypresses) sent via air and
decrypting them. A BTKeylogging attack also requires that the attacker intercepts the
IN_RAND value, LK RAND values, AU RAND value, and EN_RAND value (see Figures

4, 5 and 6 in Section 4.1). Thereafter, all intercepted information can be decrypted.

A BTKeylogging attack was performed in the following way. We discovered the BD ADDRSs
of the target devices via a Brute-Force BD ADDR Scanning attack, and we also discovered
the fixed PIN code of the target keyboard via an On-Line PIN Cracking attack. We also used
a Bluetooth protocol analyzer (see Chapter 5) to intercept all the required information (the
IN RAND value, LK RAND values, AU RAND value, and EN_RAND value) for the
BTKeylogging attack. Then the keyboard was used as a keylogger by intercepting all

keypresses.

We also successfully decrypted all the intercepted information. As described in Section 4.1,
Kinit can be produced by the formula K;,;=FE»(PIN',L'IN_RAND). It can be used to decrypt
the intercepted LK_RAND values (LK RAND, and LK _RANDg), i.e. (LK _RAND ® Kjy;1) @
Kini=LK_RAND. Kup can be produced using the formula K,z=K,® Kz=FE>;(BD_ADDR,,
LK RAND,)® E>;(BD_ADDRp LK RANDg), and ACO <can be produced by the
E, (AU RAND,BD ADDRgK,5) function. K¢ can be produced using the formula
Kc=E3(EN_RAND4ACO,K,p), and finally the keystream can be generated by the
Eo(K¢,CLK 6.,,BD_ADDR ) function.
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Each intercepted Baseband packet can be decrypted by XORing its encrypted payload with
the correct keystream, i.e. Ciphertext® Keystream=(Plaintext® Keystream)® Keystream=
Plaintext. It is also worth noting that each intercepted Baseband packet must be stamped with
the associated CLKys.; value before storing it (most commercially available Bluetooth
protocol analyzers automatically support this feature) in order to produce the correct

keystream for each Baseband packet.

Another way of performing a BTKeylogging attack is to use an Off-Line PIN Recovery attack
(see Subsection 4.2.1) instead of an On-Line PIN Cracking attack to discover the fixed or
short adjustable PIN code of the target keyboard. This approach requires that an attacker
intercepts the IN_ RAND value, LK RAND values, AU RAND value, SRES value, and
EN_RAND value, i.e. it requires that the attacker intercepts the SRES value in addition to the
values in the example described above. Then the attacker tries to calculate the correct SRES
value by guessing different PIN values until the calculated SRES is equal to the intercepted
SRES. The SRES can be produced by the E;(AU RANDBD _ADDRg K p) function, i.e. the
same function that also produces ACO. As described in Subsection 4.2.1, a SRES match does
not necessarily guarantee that the attacker has discovered the correct PIN code, but the
chances are quite high especially if the PIN code is short. The other phases of a

BTKeylogging attack in this approach are the same as described in our example above.

Some Bluetooth keyboards allow users to change the PIN code of the keyboard, but
unfortunately in most cases this new secret PIN code has to be typed at the computer side.
Then it is sent via the Bluetooth link to the keyboard and stored. This is clearly a big security
risk, because an attacker can intercept the new PIN code by using a Bluetooth protocol
analyzer. It means that the attacker will not even need to perform an On-Line PIN Cracking

attack or Off-Line PIN Recovery attack to discover the new PIN code.

One countermeasure for a BTKeylogging attack, in addition to those described in Sections

6.1-6.3, is: [Haa05b]

o Changing the PIN code without sending the new PIN code via a Bluetooth link: PIN
code changing should be done directly using the keyboard itself without any help form
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the target computer. This can be done by pressing a particular button for a
predetermined time (for example, 10 seconds), typing the desired new PIN code, and
then pressing the same button again to accept the PIN code storage, for example. It is
worth noting that the same new PIN code must also be typed at the computer side

using a traditional wired keyboard.

6.6 BTVoiceBugging attack

Another new Bluetooth security attack, BTVoiceBugging attack [Haa05b], also extends both a
Brute-Force BD_ADDR Scanning attack (see Subsection 4.2.4 and Section 6.4) and an On-
Line PIN Cracking attack (see Subsection 4.2.4 and Section 6.3). This attack is possible when
the target device has a fixed or short adjustable PIN code, its BD ADDR is known to an
attacker, and it has support for SCO or eSCO links (see Section 2.2).

The main features of the attack are as follows. If an attacker uses a Brute-Force BD ADDR
Scanning attack to discover the BD ADDR of the target device and then an On-Line PIN
Cracking attack to discover the fixed or short adjustable PIN code of the target device, it is
possible to open a two-way realtime SCO or eSCO link with the target device. This means
that a Bluetooth headset, for example, can be used as a bugging device. In such a case, the
attacker can listen to sensitive conversations (for example, important business or other
meetings taking place in the vicinity of the target device) via a SCO or eSCO link, and she
can also record these conversations for later use. The target device could also be a Bluetooth-
enabled PC or laptop with a microphone and speakers located in the conference room where

the business meeting is taking place.

Because the link between the attacking device and the target device is two-way, it is also
possible to send voice packets, such as a lubricious voice message or a funny music song, to
the target device. However, a BT VoiceBugging attack does not make it possible to eavesdrop
on the voice communication of another SCO or eSCO link that the same target device is using
simultaneously with another device. Therefore, in order to eavesdrop on the voice

communication of two target devices, additional attacks, such as an Off-Line Encryption Key
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Recovery attack (see Subsection 4.2.1) and Interception of Packets attack (see Section 6.1),

are required.

We performed a BT VoiceBugging attack in the laboratory environment in the following way.
We discovered the BD_ADDR of the target headset via a Brute-Force BD_ADDR Scanning
attack, and we also discovered the fixed PIN code of the target headset via an On-Line PIN
Cracking attack, i.e. we obtained all the information required for a BTVoiceBugging attack.
Then we used a Bluetooth protocol analyzer (see Chapter 5) to open a two-way realtime SCO
connection with the target headset, i.e. the headset was used as a bugging device. We also
intercepted all voice packets and exported them to a WAV (Waveform) file that was stored

for later use.

We defined three different BT VoiceBugging attack scenarios in order to eavesdrop on a

typical business meeting (see Figures 20-22). The first scenario is illustrated in Figure 20.

Meeting room

Slave

Master /@ @

@ Table of the meeting room @

Figure 20. The first BTVoiceBugging attack scenario.

In this scenario, an attacker (A) has a laptop (L) and a Bluetooth protocol analyzer (P). Seven
participants (victims V1, V3, V4, V5, V6, V7 and V8) in the business meeting do not have
any Bluetooth devices with them. However, one participant (V2) has in his pocket a Bluetooth

headset (H), or any other Bluetooth device that supports a SCO/eSCO link and is also
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equipped with a microphone/speakers to enable a realtime two-way voice link of Bluetooth,
i.e. V2 is not aware that she has a "Bluetooth bugging device" in his pocket. The attacking
device (L+P) is a piconet master, because it initiates the connection with V2's headset (H).
Correspondingly, H is a piconet slave that established a realtime two-way SCO link with the

piconet master (L+P).

The second BTVoiceBugging attack scenario is illustrated in Figure 21. A, L, P, V1, V3, V4,
V5, V6, V7 and V8 in this scenario are the same as in the first scenario. A meeting
participant, V2, has a Bluetooth headset (H) and a Bluetooth-enabled mobile phone (M) in his
pocket. H is connected to M and therefore V2 is able to receive calls wirelessly via H. When
V2 is not wirelessly receiving a call, there exists only a basic ACL link between H and M, i.e.
a SCO link is automatically established only when a call is received. Therefore, if H supports
multiple connections, A can establish a realtime two-way SCO link with it and thus V2 has
again a "Bluetooth bugging device" in his pocket. H is a piconet master, because it
automatically initiates a connection with M when the power is switched on. Correspondingly,
M is a piconet slave that established a basic ACL link with the piconet master (H). The
attacking device (L+P) is also a piconet slave, because it joins the existing piconet in which H

already is the piconet master.

Meeting room

Slave

H = Master, M = Slave
SCO link
Goro)es ew)| [@
@ Table of the meeting room @

@ 9 @

Figure 21. The second BT VoiceBugging attack scenario.
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The third BTVoiceBugging attack scenario is illustrated in Figure 22. A, L and P in this
scenario are the same as in the first scenario. None of the eight participants (victims V1, V2,
V3, V4, V5, V6, V7 and V8) in the business meeting has any Bluetooth devices on her.
However, there is a Bluetooth-enabled computer (C) equipped with a microphone (M) and
speakers (S) to enable a realtime two-way voice link of Bluetooth, i.e. the participants
(victims) are not aware that a "Bluetooth bugging device" is on the table of the meeting room.
C can be a PC in the meeting room, used to give PowerPoint presentations via a video
projector or video-conferencing services via the Internet. Alternatively, C can be a Bluetooth-
enabled laptop or PDA belonging to one of the participants (victims), equipped with M and S,
which has been taken into the meeting room "just in case", i.e. it is not necessary that a
participant is using C (or any Bluetooth services) during the meeting, but its power must be
switched on. The attacking device (L+P) is a piconet master, because it initiates a connection
with C. Correspondingly, C is a piconet slave that established a realtime two-way SCO link

with the piconet master (L+P).

Meeting room

Master

rew| @ @l @

\) Slave

@ e @

Table of the meeting room

@ @ @

Figure 22. The third BT VoiceBugging attack scenario.

The countermeasures for a BTVoiceBugging attack, provided that all the countermeasures

from Sections 6.1-6.3 are in place, are: [Haa05b]

o Switching off all unnecessary SCO/eSCO links.
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o Requiring an additional Bluetooth-independent reauthentication prior to accepting the

establishment of a SCO/eSCO link.

6.7 BTPrinterBugging Security Analysis Tools

New Bluetooth applications create new security threats, for example in printing. Bluetooth
printers and printer adapters are widely used all over the world, especially in home
environments. Sensitive infomation such as documents containing personal identification or
social security numbers, documents related to business issues, and web pages related to bank
account information, are printed via Bluetooth without considering the possible security risks.
Moreover, Bluetooth-enabled printers are in most cases always powered on, allowing long-

lasting attacks.

The typical communication range of a Bluetooth-enabled printer is up to 100 meters indoors,
because in most cases it is a class 1 device (see Section 2.3). Moreover, most Bluetooth-
enabled printers have an enhanced sensitivity level, such as -80 dBm or better, and therefore
the communication range of such printers is even higher than that of printers with a standard
sensitivity level. It means that attacks against Bluetooth-enabled printers can typically be

carried out relatively far away from the targets.

Most Bluetooth-enabled printers are configured as discoverable devices (see Section 4.1) by
the fixed factory setting, i.e. it is not possible to configure the printer as non-discoverable.
Therefore, the BD ADDR of a Bluetooth-enabled printer can typically be discoverd in a few

seconds by an attacker.

Our new BTPrinterBugging attacks are based on the idea that an attacker abuses the target
Bluetooth-enabled printer in order to do various harmful things. The attacker can, for
example, both intercept and decrypt all the information that is sent to the printer (a
BTPrinterBugging via Packet Interception attack [Haa07b]; see Subsection 6.7.1), use the
printer remotely as if it was her own (a BTPrinterBugging via Impersonation attack

[Haa07b]; see Subsection 6.7.2), deny access to the printer from the legitimate piconet users
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(a BTPrinterBugging via Access Denial attack [Haa07b]; see Section 6.7.3), and do many
other harmful things.

In Subsections 6.7.1-6.7.3 we describe our new BTPrinterBugging attacks. We demonstrate
with experimental figures that attacks against Bluetooth-enabled printers become practical by
using our security analysis tools. To remedy the situation, we propose countermeasures that

render these attacks impractical although without totally eliminating their potential danger.

The attacks make use of our new efficient implementations of security analysis tools. The

laboratory environment in which our practical experiments were performed is also described.
6.7.1 BTPrinterBugging via Packet Interception Security Analysis Tool

If an attacker wants to intercept and decrypt all the information that is sent to a Bluetooth-
enabled printer via air, the BD ADDR of the printer, the BD _ADDR of the legitimate piconet
device that is using the printer, and the secret PIN code that is used between these two target
devices must be known to the attacker. Moreover, the attacker must intercept the traffic of the
initial pairing process between these two devices when they meet for the first time (see

Section 4.1).

This kind of attack is normally possible only if the target devices are configured as
discoverable devices (see Section 4.1). However, there are also ways to find non-discoverable
devices, for example by using a Bluetooth protocol analyzer (see Section 6.1), brute-force
scanning (see Subsection 4.2.4 and Section 6.4), or the techniques for finding hidden

Bluetooth devices in an average of one minute (see Section 4.2 and Subsection 4.2.4).

Most Bluetooth-enabled printers have only four-digit fixed or short adjustable PIN codes, and
in many cases this PIN code is as naive as four zeros, i.e. "0000" in ASCII, which is definitely
almost every attacker’s first PIN code guess. In addition, based on the “user-friendly” name
(see Section 6.2) and the company id value (see Subsection 4.2.4) of a Bluetooth-enabled
printer, the attacker can determine its manufacturer and the model. With this information, it is
very easy for the attacker to download the user manual of the printer from the Internet in order

to find out the required fixed PIN code. Moreover, many Bluetooth-enabled printers have no
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support for a PIN code at all, i.e. no PIN code is available. According to the Bluetooth
specification [Blu07a], the default value of zero, i.e. "0" in ASCII, will be used as a PIN code
for Bluetooth security operations (see Section 4.1) if no PIN code is available. Therefore, “0”

is also a very good PIN guess for the attacker.

Clearly then, the PIN code of a Bluetooth-enabled printer is in most cases very easy to guess.
However, some Bluetooth-enabled printers may have fixed or adjustable PIN codes, which
are very hard to guess. In such a case, an On-Line PIN Cracking attack (see Subsection 4.2.4
and Section 6.3) or Off-Line PIN Recovery attack (see Subsection 4.2.1) can be used to

discover PIN codes.

As described in Subsection 4.2.1, there are many ways to arrange or force target devices to
repeat the initial pairing process. Therefore, the requirement to intercept the traffic of the

initial pairing process between two target devices is not a big problem for an attacker.

Let us assume the following attack scenario. First, an attacker uses a Brute-Force BD ADDR
Scanning attack or a Bluetooth protocol analyzer to discover the BD ADDRs of two target
devices. Secondly, the attacker discovers the fixed or short adjustable PIN code that is used
between the target devices via an On-Line PIN Cracking attack or Off-Line PIN Recovery
attack. Thirdly, the attacker uses a Bluetooth protocol analyzer to intercept the traffic of the
initial pairing process between the target devices. Fourthly, the attacker intercepts all the
information that is sent to the Bluetooth-enabled printer. The attacker is now able to decrypt
all the intercepted information (see Section 4.1). Finally, the attacker uses a Bluetooth

security analysis tool to produce the original information that was printed via Bluetooth.

We designed and implemented a new tool, the BTPrinterBugging via Packet Interception
Security Analysis Tool [Haa07b], which was successfully used to perform BTPrinterBugging
via Packet Interception attacks against four Bluetooth 1.1 compatible USB printer adapter

models: Conceptronic [Con08], Mentor [Bon07], Tecom [Tec07] and Belkin [Bel08§].

All these printer adapters are configured as discoverable devices by the fixed factory setting.
In addition, Conceptronic and Tecom printer adapters have no support for a PIN code at all.

Therefore, the default PIN code "0" is used when Bluetooth security operations are required
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with them. The PIN codes for Mentor and Belkin printer adapters are "1234" and "belkin",
respectively. Each of these so-called "secret PIN codes" can be easily found in the printer

adapter manual, which can be freely downloaded from the Internet.

Because all four printer adapters have either default or fixed PIN codes, all Bluetooth-enabled
devices that are using them via an encrypted link must also use the same PIN code —
otherwise printing is not possible. Moreover, all four printer adapters are class 1 Bluetooth
devices with enhanced sensitivity levels (see Section 2.3), making long-distance attacks

against them possible.

In our practical experiments we used a USB printer with a Bluetooth USB printer adapter as
the Bluetooth-enabled printer, a laptop running a Frontline FTS4BT [Fro08] protocol analyzer
(see Chapter 5) with one Bluetooth 2.0+EDR compatible USB ComProbe as the attacking
device, and a Bluetooth-enabled laptop (Bluetooth 1.2 compatible) as the legitimate
Bluetooth-enabled device that was using the printer. Frontline FTS4BT v6.10.4.0 software

[Fro08] was also used in our practical experiments.
Our Bluetooth security analysis tool works in the following way: [Haa07b]

1. All information that is sent to the Bluetooth-enabled printer is intercepted by using a
Frontline FTS4BT protocol analyzer. If the intercepted data is encrypted, it is

automatically decrypted by the protocol analyzer.
2. Intercepted raw data is exported to a comma-separated ASCII text file (see Figure 23).

3. The ASCII text file is parsed in such a way that only payload coded in hexadecimal,

i.e. the actual intercepted user data, will remain, as shown in Figure 24.

4. Hexadecimal values in the parsed ASCII text file are used to produce the original
printed binary file that was sent earlier to the printer by the Bluetooth-enabled device,
i.e. the file produced contains the same information as the file that the user can

produce, for example, using her printer's standard "print to file" feature.
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5. Finally, the binary file produced is converted to a PDF (Portable Document Format)

file, which is the final result of our Bluetooth security analysis tool.
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Figure 23. An example of a comma-separated ASCII text file.

Figure 24. An example of a parsed ASCII text file.
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Steps 2-5 of our BTPrinterBugging via Packet Interception Security Analysis Tool can be

performed almost in realtime, especially when the exported comma-separated ASCII text file

is quite small. Even if the size of the ASCII text file is as large as two megabytes, it takes only

128



on average 15 seconds on a typical Pentium laptop to produce the PDF file containing all the

printed information.
The attack was successfully performed in the following way: [Haa07b]

1. We discovered the BD_ADDR of the non-discoverable legitimate Bluetooth-enabled
device by using a Frontline FTS4BT protocol analyzer (the attacking device). The
BD ADDR of the Bluetooth-enabled printer was discovered in a few seconds via a
general inquiry. If the Bluetooth link between the target devices is unencrypted, an
attacker needs to know only the BD_ADDR of the Bluetooth-enabled printer, because
there is no need to decrypt the intercepted information. If data decryption is needed,

both BD ADDRs must be known to the attacker (see Section 4.1).

2. We easily discovered the "secret PIN code" used between the target devices by using
the user-friendly name and the company _id value of the Bluetooth-enabled printer in

order to download the correct user manual from the Internet.

3. We used the attacking device to intercept the traffic of the initial pairing process

between the target devices.

4. We used the attacking device to intercept all the information sent to the Bluetooth-
enabled printer. All intercepted data was automatically decrypted when the encrypted

link was used.

5. We successfully used our BTPrinterBugging via Packet Interception Security Analysis

Tool to produce a PDF file, which was the result of our practical experiment.

Figure 25 illustrates the result of our practical experiment in which the legitimate user printed
a "Highly Classified Document” via Bluetooth. The same experiment was successfully
performed with each of the four Bluetooth printer adapters, namely Conceptronic, Mentor,
Tecom and Belkin, by using first an unencrypted link and then an encrypted link, i.e. a total of
eight practical experiments were successfully performed with our BTPrinterBugging via

Packet Interception Security Analysis Tool.
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Highly Classified Document 28.11.2006

Secret Agent: Henry Smith

Secret Agent ID#: 007

Personal Identification Number: 221277-243L
Social Security Number: 078-55-1120

This document must be kept secret! All this information
is highly classified and must not leak to the wrong
hands! Be wvery careful and destroy this message
immediately after reading!

Figure 25. The result of our BTPrinterBugging via Packet Interception attack. [Haa07b]

A BTPrinterBugging via Packet Interception attack is very dangerous, because an attacker can
steal sensitive information printed via Bluetooth. In addition, because Bluetooth is a wireless
RF communication system which uses mainly omnidirectional antennas, the presence of the
attacker is often not seen. Moreover, the attacker with her attacking device can be very far
away from the communicating devices, because most Bluetooth-enabled printers are class 1

devices with enhanced sensitivity levels.
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The countermeasures for a BTPrinterBugging via Packet Interception attack, in addition to

those described in Sections 6.1-6.5, are: [Haa07b]

o Switching Bluetooth off completely when it is not being used or switching the printer’s
power off when it is not being used: If there is no need to use the Bluetooth-enabled
printer for a long time, its Bluetooth functionality can be switched off or alternatively

its power can be switched off.

o Using additional security at the application level: If the user has a Bluetooth Access
Point with a Print Server providing wireless printing services via Bluetooth, it may be
possible to use application layer key exchange and encryption methods as extra

security in addition to the Bluetooth built-in security.

e Printing sensitive information via a traditional cable-based connection to the printer:
The user should not print any sensitive information via Bluetooth. Instead, the

traditional cable-based connection to the printer should be used.
6.7.2 BTPrinterBugging via Impersonation Security Analysis Tool

If an attacker wants to use the Bluetooth-enabled printer remotely as if it was her own, she
needs to know the BD ADDR of the printer and that of one legitimate piconet device that is
using the printer. In addition, the secret PIN code that is used between these two target
devices must be known to the attacker. As described in Subsection 6.7.1, in most cases the
attacker can discover this secret PIN code quite fast. Of course, the attacker must also
intercept the traffic of the initial pairing process between these two devices when they meet
for the first time, but as explained in Subsection 4.2.1 there are many different ways to
arrange or force the target devices to repeat the initial pairing process in order to intercept the

traffic of the initial pairing process.

This kind of attack is normally possible only if the target devices are configured as
discoverable devices. However, there are also ways to find non-discoverable devices (see
Subsection 6.7.1). Moreover, the attack requires that an attacker has a Bluetooth device with

an adjustable BD_ADDR, i.e. the attacking device must be capable of duplicating the

131



BD ADDR of the legitimate device that is using the printer. Some commercially available
Bluetooth protocol analyzers, such as LeCroy BTTracer/Trainer [Lec07] (see Chapter 5),
support the BD _ADDR duplication feature, so this is not a problem for the attacker.

Let us assume the following attack scenario. First, an attacker uses a Brute-Force BD ADDR
Scanning attack or a Bluetooth protocol analyzer to discover the BD ADDRs of two target
devices. Secondly, the attacker discovers the fixed or short adjustable PIN code that is used
between the target devices via an On-Line PIN Cracking attack or Off-Line PIN Recovery
attack. Thirdly, she uses a Bluetooth protocol analyzer to intercept the traffic of the initial
pairing process between the target devices. Fourthly, the attacking device impersonates the
legitimate piconet device by duplicating its BD_ADDR value. Fifthly, the attacking device
authenticates itself with the printer by using the traffic of the initial pairing process that was
intercepted in step 3. Finally, the attacker is capable of using the printer remotely as if it was

her own.

Now the attacker can abuse the printer in any way: for example, she can print funny or
lubricious pictures in order to make fun of the printer’s owner, print hundreds of pages of
random text or colorful pictures in order to waste both printing paper and powder/ink, or print
hoax documents or modified “real documents” in order to mislead the legitimate users of the

printer. In fact, the printer is often the best and most used source of information in a company.

Our new Bluetooth security analysis tool, the BTPrinterBugging via Impersonation Security
Analysis Tool [HaaO7b], was successfully used to perform BTPrinterBugging via
Impersonation attacks [Haa07b] against four Bluetooth USB printer adapter models:

Conceptronic, Mentor, Tecom and Belkin (see Subsection 6.7.1).

In our practical experiments we used a USB printer with a Bluetooth USB printer adapter as
the Bluetooth-enabled printer, a laptop connected to the LeCroy BTTracer/Trainer protocol
analyzer [Lec07] with one Bluetooth 1.1 compatible radio unit as the attacking device, and a
Bluetooth-enabled laptop (Bluetooth 1.2 compatible) as the legitimate Bluetooth-enabled

device that was using the printer. LeCroy BTTracer/Trainer v2.2 software [Lec07], which
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provides CATC Scripting Language [Lec04] (see Chapter 5), was also used in our practical

experiments.
Our Bluetooth security analysis tool works in the following way: [Haa07b]

1. We discovered the BD_ADDR of the non-discoverable legitimate Bluetooth-enabled
device by using a LeCroy BTTracer/Trainer protocol analyzer (the attacking device).
The BD_ADDR of the Bluetooth-enabled printer was discovered in a few seconds via

the general inquiry.

2. We easily discovered the "secret PIN code" by using the user-friendly name and the

company_id value of the Bluetooth-enabled printer (see Subsection 6.7.1).

3. We used the attacking device to intercept the traffic of the initial pairing process

between the target devices.

4. We used the attacking device to impersonate the legitimate piconet device by

duplicating its BD_ADDR value.

5. We used the attacking device to authenticate itself with the printer by using the traffic

of the initial pairing process that was intercepted in step 3.

6. The attacking device abused the printer by printing funny pictures, dozens of pages of

random text, and various hoax documents (see Figure 26).
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(1) Discovering the BD_ADDRs of Bluetooth Devices in Range..

(2) The following BD_ADDRs were discovered: 000B5DA45D8C, 00027242A323
(3) HCI_Evt> Remote_Name_Request_Complete

4) BD_ADDR : 000B5DA45D8C

(5) Name :"TKT-LT-M5132"

(6) User Friendly Name of Device 00 is: TKT-LT-M5132

(7) HCI_Evt> Remote_Name_Request_Complete

(8) BD_ADDR :00027242A323

(9) Name :"BELKIN_PRT_42A323"

(10) User Friendly Name of Device 01 is: BELKIN_PRT_42A323

(11) BD_ADDR of the Legitimate Bluetooth Device is: 000B5DA45D8C

(12) BD_ADDR of the Printer is: 00027242A323

(13) PIN Code of the Printer is: belkin

(14) HCI_Evt> Write_Authentication_Enable_Complete

(15) HCI_Evt> Write_Encryption_Mode_Complete

(16) TCI_Evt> CATC_SetBdAddr_Complete

(17) BD_ADDR : 000B5DA45D8C

(18) BD_ADDR of the Legitimate Bluetooth Device Is Now Successfully Duplicated!
(19) HCI_Evt> PIN_Code_Request

(20)  PIN reply : belkin

(21) HCI_Evt> Pairing_Complete

(22) BD_ADDR :00027242A323
(23) HCI_Evt> Connection_Complete

(24) BD_ADDR :00027242A323
(25) HCI Handle : 0x0002

(26) L2ZCAP Channel Successfully Established!

(27) Printing Funny Pictures, Random Text and Hoax Documents..
(28) All Printing Johs Were Successfully Completed!

(29) L2CAP Channel Successfully Disconnected!

(30) HCI_Evt> Disconnection_Complete

(31) BD_ADDR :00027242A323

(32) Reason : No Connection

Figure 26. The result of our BTPrinterBugging via Impersonation attack. [Haa07b]

As Figure 26 illustrates, the attacking device first discovers the BD ADDRs of the victim
devices (see rows 1-2 and 11-12), the user-friendly names of the victim devices (see rows 3-
10), and the "secret PIN code" of the printer (see row 13). The attacking device is set to
require authentication and encryption for each connection with the printer (see rows 14-15).
The legitimate piconet device is impersonated by duplicating its BD_ADDR value (see rows
16-18). After the successful authentication with the printer (see rows 19-25), the attacking

device abuses it by printing funny pictures, dozens of pages of random text, and various hoax
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documents (see rows 26-28). Finally, the attacking device disconnects from the printer (see

rows 29-32).

The same experiment was successfully performed with each of our four Bluetooth printer
adapters by using first an unencrypted link and then an encrypted link, i.e. eight practical
experiments were successfully performed with our BTPrinterBugging via Impersonation

Security Analysis Tool.

A BTPrinterBugging via Impersonation attack is typically not very dangerous, because an
attacker does not steal any information from the target devices. However, this kind of attack

can be very annoying if the attacker uses it to do various harmful things, as described above.

One countermeasure for a BTPrinterBugging via Impersonation attack, provided that all

countermeasures from Sections 6.1-6.5 and from Subsection 6.7.1 are in place, is: [Haa07b]

e Using an additional Bluetooth-independent reauthentication always prior to accepting
the connection establishment to the printer: If a user has a Bluetooth Access Point
with Print Server, it may be possible to configure the Bluetooth Access Point in such a
way that it always requires Bluetooth-independent reauthentication prior to accepting

the connection establishment to the printer.
6.7.3 BTPrinterBugging via Access Denial Security Analysis Tools

A BTPrinterBugging via Access Denial attack [Haa07b] extends a BTPrinterBugging via
Impersonation attack (see Subsection 6.7.2). Therefore, the prerequisites for these two attacks

are the same.

Let us assume the following attack scenario. Steps 1-5 in this attack are the same as in a
BTPrinterBugging via Impersonation attack (see Subsection 6.7.2). Finally (step 6), the
attacker is able to deny the legitimate piconet users access to the printer by making repeated
successful connection establishments to the printer, i.e. the attacker makes sure that the printer

is always busy and therefore unable to service other devices.
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Our new Bluetooth security analysis tool, the BTPrinterBugging via Access Denial Security
Analysis Tool [Haa07b], was successfully used to perform BTPrinterBugging via Access
Denial attacks against four Bluetooth USB printer adapter models: Conceptronic, Mentor,
Tecom and Belkin (see Subsections 6.7.1-6.7.2). All other hardware and software used in this
practical experiment were the same as in the BTPrinterBugging via Impersonation attack

described in Subsection 6.7.2.

Our Bluetooth security analysis tool works in the following way. Steps 1-5 are the same as in
a BTPrinterBugging via Impersonation attack (see Section 6.7.2). In step 6, the attacking
device successfully established connection with the printer, waited until the printer
automatically performed the disconnection, and made similar repeated successful connection
establishments. In this way, the attacking device denied the legitimate piconet devices access

to the printer.

The same experiment was successfully performed with each of our four Bluetooth printer
adapters by using first an unencrypted link and then an encrypted link, i.e. eight practical
experiments were successfully performed with our BTPrinterBugging via Access Denial

Security Analysis Tool.

Some Bluetooth-enabled printers never perform automatic disconnection, so an attacker can
establish basic ACL links with them which are never disconnected. In this way, the attacker
denies the legitimate piconet devices access to the printers. Some Bluetooth-enabled printers
also support multiple connections at the same time. In this case, the attacker can simply use
several Bluetooth radio units to open multiple ACL links with the printer adapter. Another
possibility is to use one Bluetooth radio unit, but open multiple L2CAP channels with the

printer in order to reserve all resources for the attacker.

We also implemented another new Bluetooth security analysis tool, BTPrinterBugging via
Access Denial Security Analysis Tool Il [Haa07b], which works in Linux environments. It
requires a BlueZ protocol stack [BIuO8b] and at least one Bluetooth USB dongle to work, i.e.
an expensive Bluetooth protocol analyzer is not required. This security analysis tool does not

require any tricks that only sophisticated protocol analyzers can do. The only required
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information is the BD_ADDR of the Bluetooth-enabled printer, i.e. an attacker does not even

have to know the secret PIN code of the Bluetooth-enabled printer.

Our BTPrinterBugging via Access Denial Security Analysis Tool II is capable of keeping
Bluetooth-enabled printers busy all the time by making repeated connection attempts to them.
In this way, the attacking device very easily denies the legitimate piconet devices access to all
Bluetooth-enabled printers. Our security analysis tool supports the automatic discovery and
recognition of Bluetooth-enabled printers in range. Another possibility is to select Bluetooth-
enabled printers manually from the list of discovered devices. If several Bluetooth-enabled
printers are detected, several Bluetooth USB dongles will also automatically be used in
parallel, i.e. one Bluetooth USB dongle is used for each detected Bluetooth-enabled printer.
This security analysis tool can also be used to perform DoS attacks against any other kinds of
Bluetooth devices, because the only information required is the BD ADDR of the target

device.

Figure 27 illustrates our BTPrinterBugging via Access Denial Security Analysis Tool II in
action (see rows 1-34). When the attacker runs the BTPrinterBugging via Access Denial
Security Analysis Tool II in Linux (see row 1), she can either manually select Bluetooth-
enabled printers from the list of the discovered devices (see rows 2-3) or alternatively use the
automatic discovery of Bluetooth-enabled printers (see rows 4-5). In this practical
experiment, the attacker chooses the automatic discovery option (see rows 6-15). Because
four Bluetooth-enabled printers are detected, four Bluetooth USB dongles are used in parallel
(see row 16). Finally, the attacking device simultaneously denies all legitimate printer users

access to all four Bluetooth-enabled printers (see rows 17-34).
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Connection to Printer Adapter #3: Connection Timed Out
Connection to Printer Adapter #4: Connection Timed Out

Figure 27. The BTPrinterBugging via Access Denial

Security Analysis Tool II in action. [Haa07b]

to create basic ACL links without

authentication, i.e. no PIN code is required prior to accepting the connection establishment

between the Bluetooth-enabled printer and a remote Bluetooth-enabled device. Therefore, an

attacker can very easily reserve all the resources of such printers by using several Bluetooth

USB dongles to establish multiple ACL links.
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BTPrinterBugging via Access Denial attacks are not very dangerous, because an attacker does
not steal any information from the target devices. However, these kinds of attacks can be very
annoying if the attacker uses them non-stop in order to permanently deny the legitimate

piconet users access to the printers.

The countermeasures for BTPrinterBugging via Access Denial attacks, in addition to those

described in Sections 6.1-6.5 and in Subsections 6.7.1-6.7.2, are: [Haa07b]

e Monitoring Bluetooth communication in order to prevent and stop attacks in progress:
Various Bluetooth security attacks in progress can be prevented and stopped by
monitoring Bluetooth communication to discover such attacks (see Section 6.12). It is
possible to detect various attacks in progress by noting any strange communication
behaviour in Bluetooth devices in range, such as unusually many repeated successful
connection establishments or failed authentication attempts, a sudden increase in

transmit powers, and unusually many NAK transmissions.

o Using a portable Bluetooth Direction-Finding device: 1t is possible to use a portable
Bluetooth Direction-Finding device to determine the area where the attacking device
performs repeated successful connection establisments or some other harmful things.
Then the attacking device can be physically sought and switched off or even

destroyed.

6.8 BD_ADDR Duplication Security Analysis Tool

The main features of a BD_ADDR Duplication attack were described in Subsection 4.2.3. The
most effective way to perform this attack is to duplicate the BD_ADDR of the piconet master,
because all information within the piconet goes through the master device. When the
BD_ADDR of the piconet master is duplicated by the bug, all connections within that piconet
will be effectively jammed due to simultaneous responses of both the target device and the

bug.

139



A BD_ADDR Duplication attack is normally possible only if the target device is configured
as discoverable (see Section 4.1). However, as we explained in Sections 6.1 and 6.4, there are
also ways to find non-discoverable devices. A BD _ADDR Duplication attack also requires
that an attacker has a Bluetooth device with an adjustable BD ADDR, because the bug must
be capable of duplicating the BD ADDR of the target device. Some commercially available
Bluetooth protocol analyzers, such as LeCroy BTTracer/Trainer [Lec07] (see Chapter 5),
support the BD_ADDR duplication feature. Therefore, it is not a problem for the attacker.
Moreover, a BD_ADDR Duplication attack requires that the bug must be capable of
impersonating the piconet master in order to respond to connection attempts of legitimate

Bluetooth devices.

Let us assume the following attack scenario. First, an attacker uses a Brute-Force BD ADDR
Scanning attack or a Bluetooth protocol analyzer to discover the BD_ ADDR of the piconet
master. Secondly, the bug duplicates the BD _ADDR of the piconet master. Finally, the bug
impersonates the piconet master in order to respond to any connection attempts from the
legitimate piconet devices. Now, the bug is capable of denying the legitimate devices access

via a BD_ADDR Duplication attack.

In our practical experiments we used an unmodified Bluetooth 1.1 compatible Nokia 6310i
mobile phone [Nok02] as the piconet master, a laptop connected to the LeCroy
BTTracer/Trainer protocol analyzer [Lec07] with one Bluetooth 1.1 compatible radio unit as
the bug, and three Bluetooth headsets (Nokia’s Bluetooth 1.1 compatible HDW-2 [Nok03],
Nokia's Bluetooth 2.0+EDR compatible HS-26W [Nok05], and Sony Ericsson's Bluetooth
2.0+EDR compatible HBH-610 [Son05]) and Epox's Bluetooth 2.0+EDR compatible USB
dongle BT-DGO7A+ [Epo05] as the legitimate piconet devices. LeCroy BTTracer/Trainer
v2.2 software [Lec07], which provides CATC Scripting Language [Lec04] (see Chapter 5),

was also used.

CATC Scripting Language was used to implement our new Bluetooth security analysis tool,
BD ADDR Duplication Security Analysis Tool [Haa07a], which was successfully used to
perform BD ADDR Duplication attacks.
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Our Bluetooth security analysis tool works in the following way: [Haa07a]

1.

We discovered the BD ADDR of the non-discoverable target mobile phone (the

piconet master) by using a LeCroy BT Tracer/Trainer protocol analyzer (the bug).
We used the bug to duplicate the BD_ADDR of the piconet master.

We used the bug to impersonate the piconet master. When any legitimate piconet
device (the headsets or the USB dongle) tried to communicate with the piconet master,
the bug simultaneously responded each time with the piconet master and therefore

together they denied the legitimate piconet devices access by jamming each other.

Figure 28 (see rows 1-30) illustrates our practical experiment in which the bug successfully

denies the legitimate piconet devices access.

(1)

(2)

(3)

(4)

(3)

(6)

(7

(8)

(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

The BD ADDR of the Piconet Master Is: 0002EEB0294D
HCI_Evt> Remote Name Request Complete
BD ADDR : 0002EEB0294D

Name : "Nokia 631041
TCI_Evt> CATC_SetBdAddr Complete
BD_ADDR : 0002EEB0294D

The Bug Has Successfully Duplicated the BD ADDR of the Piconet Master!
HCI_Evt> CATC Write PIN Response Enable Complete
OBEX_Evt> ServerDeinit Complete

Status : Success
SDP_Evt> AddProfileServiceRecord Complete
Profile . Headset Audio Gateway

HCI_Evt> Write Authentication Enable Complete
HCI_Evt> Write Encryption Mode Complete
The Bug Has Successfully Impersonated the Piconet Master!
The Bug Is Waiting for a Connection..
HCI_Evt> Connection Request
Incoming connection accepted
HCI_Evt> PIN Code Request
PIN reply : 0000
HCI Evt> Connection Error
Incoming connection failed, reason : Authentication Failure
The Bug Is Waiting for a Connection..
HCI_Evt> Connection Request
Incoming connection accepted
HCI Evt> PIN Code Request
PIN reply : 0000
HCI_Evt> Connection Error
Incoming connection failed, reason : Authentication Failure
The Bug Is Waiting for a Connection..

Figure 28. The result of our BD ADDR Duplication attack. [Haa07a]
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The bug first discovers the BD ADDR value (see row 1) and the user-friendly name of the
victim device (see rows 2-4). It impersonates the victim device by duplicating its BD ADDR
value (see rows 5-7), setting itself to require both authentication (see rows 8 and 13) and
encryption (see row 14), and emulating the Headset Audio Gateway Profile that is supported
by the victim device (see rows 9-12 and 15). Finally, the bug waits for connections from the
legitimate piconet devices (see rows 16, 23 and 30) and every time a connection request is
received, the bug performs the authentication by using an incorrect PIN code, so all

authentication attempts will fail (see rows 17-22 and 24-29).

A BD ADDR Duplication attack is typically not very dangerous, because an attacker does not
steal any information from the target devices. However, this kind of attack can be dangerous
if the attacker uses it to mislead the target devices in such a way that they delete previously

stored link keys so that the initial pairing process is restarted.

The countermeasures for a BD ADDR Duplication attack seem to be the same as those

described in Sections 6.1-6.7.

6.9 SCO/eSCO Security Analysis Tool

The main features of a SCO/eSCO attack were described in Subsection 4.2.3. The most
effective way to perform this attack is to establish a SCO or an eSCO link with the piconet

master, because all information within the piconet goes through the master device.

A SCO/eSCO attack is possible when the target device has a fixed or short adjustable PIN
code, its BD_ADDR is known to an attacker, and it has support for SCO or eSCO links (see
Sections 2.2 and 2.4). The secret PIN code of the target device can be discovered via an On-
Line PIN Cracking attack (see Subsection 4.2.4 and Section 6.3) or Off-Line PIN Recovery
attack (see Subsection 4.2.1).

A SCO/eSCO attack is normally possible only if the target device is configured as
discoverable (see Section 4.1). However, as we already discussed in Sections 6.1 and 6.4,
there are also ways to find non-discoverable devices. Moreover, a SCO/eSCO attack requires

that an attacker intercepts the traffic of the initial pairing process between two Bluetooth
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devices when they meet for the first time (see Section 4.1). As explained in Subsection 4.2.1,
there are many different ways to arrange or force the target devices to repeat the initial pairing

process, so this is not a big problem for the attacker.

Let us assume the following attack scenario. First, an attacker uses a Brute-Force BD ADDR
Scanning attack or a Bluetooth protocol analyzer to discover the BD ADDRs of the
legitimate piconet devices and the piconet master. Secondly, the attacker discovers the fixed
or short adjustable PIN codes of the legitimate piconet devices via an On-Line PIN Cracking
attack or Off-Line PIN Recovery attack. Thirdly, the attacker uses a Bluetooth protocol
analyzer to intercept the traffic of the initial pairing process between the piconet master and
one legitimate piconet device. Fourthly, the attacker duplicates the BD ADDR of the
legitimate piconet device by using a Bluetooth protocol analyzer. Fifthly, the attacker
authenticates itself with the piconet master by using the traffic of the initial pairing process
that was intercepted in step 3. Finally, the attacker opens a two-way realtime SCO or eSCO
link with the piconet master. The most effective way to perform this attack is to establish a
SCO link that uses HV1 voice packets, because in that way all the piconet master's attention is
reserved for the attacker and the legitimate piconet devices do not get service within a

reasonable time.

In our practical experiments we used an unmodified Bluetooth 1.1 compatible Nokia 6310i
mobile phone [Nok02] as the piconet master, a laptop connected to the LeCroy
BTTracer/Trainer protocol analyzer [Lec07] (see Chapter 5) with one Bluetooth 1.1
compatible radio unit as the attacking device, and three Bluetooth headsets (Nokia's HDW-2
[Nok03], Nokia's HS-26W [Nok05], and SonyEricsson's HBH-610 [Son05]) as the legitimate
piconet devices. LeCroy BTTracer/Trainer v2.2 software [Lec07], which provides CATC
Scripting Language [Lec04] (see Chapter 5), was also used.

CATC Scripting Language was used to implement our new Bluetooth security analysis tool,
SCO/eSCO Security Analysis Tool [Haa07a], which was successfully used to perform SCO

attacks.
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Our Bluetooth security analysis tool works in the following way: [Haa07a]

1. We discovered the BD ADDRs of the headsets (the legitimate piconet devices) and
the target mobile phone (the piconet master) by using a LeCroy BTTracer/Trainer

protocol analyzer (the attacking device).

2. We discovered the fixed PIN codes of the headsets by using our On-Line PIN
Cracking Security Analysis Tool (see Section 6.3).

3. We used the attacking device to intercept the traffic of the initial pairing process (see

Section 4.1) between the piconet master and one legitimate piconet device (a headset).

4. We used the attacking device to duplicate the BD ADDR of the legitimate piconet

device.

5. We used the attacking device to authenticate itself with the piconet master by using

the traffic of the initial pairing process that was intercepted in step 3.

6. We used the attacking device to open a two-way realtime HV1 SCO link with the
piconet master. In this way, the legitimate piconet devices do not get service within a

reasonable time.

The same experiment was successfully performed with each of our Bluetooth headset, i.e.
three practical experiments were successfully performed with our SCO/eSCO Security
Analysis Tool. A SCO/eSCO attack is typically not very dangerous, because an attacker does
not steal any information from the target devices. However, this kind of attack can be very
annoying if the attacker uses it non-stop to permanently deny the legitimate piconet devices

access to the piconet services.

The countermeasures for a SCO/eSCO attack seem to be the same as those described in

Sections 6.1-6.7.
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6.10 Big NAK Security Analysis Tool

The main features of a Big NAK attack were described in Subsection 4.2.3. The most effective
way to perform this attack is to request information from the piconet master, because all

information within the piconet goes through the master device.

A Big NAK attack is possible if the target device is configured to respond to every
information request, or if the attacking device is capable of impersonating one legitimate
piconet device. In addition, the BD ADDR of the target device (typically a piconet master)
must be known to an attacker. As described in Sections 6.1 and 6.4, there are many ways to
find non-discoverable devices. Moreover, if the attack requires the impersonation of the
legitimate piconet device, the secret PIN code that is used between the piconet master and the
legitimate piconet device must be known to the attacker, and the attacker must also intercept
the traffic of the initial pairing process between these two target devices when they meet for
the first time (see Section 4.1). The PIN code of the target device can be discovered via an
On-Line PIN Cracking attack as described in Subsection 4.2.4 and in Section 6.3, or an Off-
Line PIN Recovery attack as explained in Subsection 4.2.1. As explained in Subsection 4.2.1,
there are also many ways to arrange or force the target devices to repeat the initial pairing

process.

Let us assume the following attack scenario. First, an attacker uses a Brute-Force BD ADDR
Scanning attack or a Bluetooth protocol analyzer to discover the BD ADDRs of one
legitimate piconet device and the piconet master. Secondly, she discovers the PIN code that is
used between these two legitimate piconet devices via an On-Line PIN Cracking attack or
Off-Line PIN Recovery attack. Thirdly, she uses a Bluetooth protocol analyzer to intercept
the traffic of the initial pairing process between these two legitimate piconet devices.
Fourthly, the attacker duplicates the BD_ADDR of the legitimate piconet device by using a
Bluetooth protocol analyzer. Fifthly, she authenticates herself with the piconet master by
using the traffic of the initial pairing process that was intercepted in step 3. Finally, the
attacker requests information from the piconet master and every time the requested

information is received, the attacker sends NAK. In this way, the attacker puts the piconet
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master on an endless retransmission loop so that the legitimate piconet devices do not get

service within a reasonable time or at least they have considerably slowed throughput.

In our practical experiments we used an unmodified Bluetooth 1.1 compatible Nokia 6310i
mobile phone [Nok02] as the piconet master, a laptop connected to the LeCroy BTTracer/
Trainer protocol analyzer [Lec07] (see Chapter 5) with one Bluetooth 1.1 compatible radio
unit as the attacking device, and Epox's Bluetooth 2.0+EDR compatible USB dongle BT-
DGO7A+ [Epo05] as the legitimate piconet device. LeCroy BTTracer/Trainer v2.2 software
[Lec07], which provides CATC Scripting Language [Lec04] (see Chapter 5), was also used.

We implemented the new Bluetooth security analysis tool, Big NAK Security Analysis Tool
[Haa07a], using CATC Scripting Language. The tool was successfully used to perform Big
NAK attacks.

Our tool works in the following way: [Haa07a]

1. We discovered the BD_ADDRs of the Bluetooth USB dongle (the legitimate piconet
device) and the target mobile phone (the piconet master) by using a LeCroy

BTTracer/Trainer protocol analyzer (the attacking device).

2. We discovered the PIN code used between the piconet master and the legitimate
piconet device by using our On-Line PIN Cracking Security Analysis Tool (see

Section 6.3).

3. We used the attacking device to intercept the traffic of the initial pairing process

between the piconet master and the legitimate piconet device.

4. We used the attacking device to duplicate the BD ADDR of the legitimate piconet

device.

5. We used the attacking device to authenticate itself with the piconet master by using

the traffic of the initial pairing process that was intercepted in step 3.
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6. We used the attacking device to request information from the piconet master and
every time the requested information was received, the attacking device sent NAK. In
this way, the attacking device put the piconet master on an endless retransmission

loop.

A Big NAK attack is typically not very dangerous, because an attacker does not steal any
information from the target devices. However, this kind of attack can be very annoying if the
attacker uses it non-stop to deny the legitimate piconet devices access to the piconet services,

or at least in such a way that they have considerably slowed throughput.

The countermeasures for a Big NAK attack seem to be the same as those described in Sections

6.1-6.7.

6.11 MITM Attacks on Bluetooth

Our two MITM attacks on Bluetooth SSP, BT-Niiio-MITM attack [HyH07] and BT-SSP-
Printer-MITM attack [HaH08], are described in Subsections 6.11.1-6.11.2. Subsection 6.11.3
provides a comparative analysis of the existing MITM attacks on Bluetooth [HaHOS]
including our two MITM attacks on Bluetooth SSP.

6.11.1 BT-Nifio-MITM attack

We call our new attack a BT-Nifio-MITM attack [HyHO7] (also referred to as Bluetooth - No
Input, No Output - Man-In-The-Middle attack). In the attack we exploit the fact that the
devices must exchange information about their 10 capabilities during the first phase of the
SSP (See Section 4.1). The exchange is done over an unauthenticated channel, and an attacker
that controls this channel can therefore modify the information about capabilities and force
the devices to use the association model of her choice. In our attack, the devices are forced to
use the Just Works association model, which does not provide protection against MITM

attacks.

The MITM uses two separate Bluetooth devices with adjustable BD_ADDRs for the attack.
Such devices are readily available on the market. The MITM clones the BD ADDRs and
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user-friendly names of the victim devices, in order to impersonate them more plausibly. The

main features of the attack are depicted in Figure 29. We next describe three scenarios for the

attack.
Initiating
device Device 1
A (B)

MITM
Device 2

(A)

Connect to B

v

Connect to B

Connect to B

Deletes link key

<

Establish connection

Capabilities (display/keyboard)

Capabilities (no input, no output)
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Connect to A
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>
I
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z |«
2
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o
<

Establish connection

Deletes link key

Capabilities (no input, no output)

>

Capabilities (display/keyboard)

SSP with the

Just Works association model

<

Pairing complete

Pairing complete

>

Figure 29. The main features of a BT-Nifio-MITM attack. [HyHO07]

In the first scenario, the MITM first disrupts (jams) the PHY by hopping along with the

victim devices and sending random data in every timeslot. Another possibility is to jam the

entire 2.4 GHz band altogether by using a wideband signal. In this way, the MITM shuts

down all piconets within the range of susceptibility and there is no need to use a Bluetooth

chipset to generate hopping patterns. Finally, the frustrated user thinks that something is

wrong with her Bluetooth devices and deletes previously stored link keys. Then the user

initiates a new pairing process by using SSP, and the MITM can forge messages exchanged

during the IO capabilities exchange phase. When the Just Works association model has been

forced into use, the attack continues as illustrated in Figure 30. Most of the notations used in

Figure 30 have been explained above (see Table 4 in Section 4.1) and the rest are self-

explanatory.
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Figure 30. Pairing details of a BT-Niflo-MITM attack. [HyHO07]
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It is worth noting that in this first scenario two victim devices have already performed the
initial pairing, including the capabilities exchange, so link keys are saved on the devices for
use in subsequent connections, i.e. the victim devices normally use SSP without capabilities

exchange (see Section 4.1).

Other scenarios, where victim devices have never met before, are easier for the MITM,
because in those cases the first phase of the attack (disrupting the PHY) can be skipped. There

can be two different scenarios for such devices: [HyH07]

1. The victim device (A or B) initiates SSP: In this scenario, the MITM waits until A or B

initiates SSP. Then the attack proceeds as illustrated in Figures 29 and 30.

2. The MITM (A’ and B’) initiates SSP: In this scenario, the MITM first initiates SSP
with the victim devices. Then the attack proceeds as illustrated in Figures 29 and 30.
Depending on the implementation of the victim devices, it may be possible to perform

SSP without asking the user to accept the connection.

Depending on the situation, the MITM can use any of these three attack scenarios. The
applicability of a certain attack scenario obviously depends on the implementation of victim
devices. After a successful attack, the MITM can intercept and modify all data exchanged

between the victim devices, and even use certain services that victim devices offer.

Suomalainen et al. [SVAOQ7] have performed a comparative analysis of Bluetooth SSP, Wi-Fi
(Wireless Fidelity) Protected Setup, Wireless USB Association Models, and HomePlugAV
security modes. They present an attack against SSP similar to our BT-Nifio-MITM Attack. In
their attack the MITM prompts one device to use the normal Numeric Comparison association
model, while forcing the other device to use the insecure Just Works association model. This
leads to one of the devices (the one which uses the Numeric Comparison association model)
treating the resulting link key as authenticated, and it might choose to trust it even for an
application which requires a high level of security. However, this attack looks somewhat
suspicious from the point of view of the user: one of the devices asks the user to compare the

integrity checksums, while the other device does not display any numbers.
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In the tests performed by Suomalainen et al. [SVAO7], only 6 users out of 40 accepted the
pairing on both devices. Compared with the attack of Suomalainen et al. [SVAO07], our BT-
Niflo-MITM attack looks less dubious: indeed, the user is only asked to confirm the pairing
on both devices by pressing a button. In addition, according to the Bluetooth specification
[BIu07a], even this confirmation request is optional, meaning that some of the manufacturers
might choose to skip it, to improve usability. Moreover, as the MITM in our attack uses two
Bluetooth devices with BD ADDRs and user-friendly names equal to those of the victim
devices, the user gets even more confident that the pairing is proceeding correctly and
securely. It is also worth noting that by using two MITM devices, SSP can be performed at
the same time with both victim devices and it also ends at the same time with both victim

devices, thus making the user even more confident.

Because it is difficult to combine high levels of security with good usability, other studies of
SSP have concentrated mostly on analyzing and improving its usability. Uzun et al. [UKA07]
have analyzed different ways of prompting the user to perform the comparison of integrity
checksums or to enter passkeys. They have also provided guidelines for designing the user
interface, to decrease the number of fatal errors and thus improve both the usability and

security of SSP.

It is difficult to create a protocol which caters for all possible types of wireless devices, as the
security of the protocol is likely to be limited by the capabilities of the least powerful or the
least secure device type. Our BT-Nifio-MITM attack is based exactly on this problem.

A countermeasure for BT-Nisio-MITM attack, provided that all countermeasures from

Sections 6.1-6.7 are in place, is: [HaHO08, HyH07]

o An additional window at the user interface level: The attack can be prevented on the
user interface level. We strongly recommend that an additional window, "The second
device has no display and keyboard! Is this true?", should be displayed at the user
interface level of SSP when the Just Works association model is to be used. The user
is asked to choose either "Proceed" or "STOP". In practice, future Bluetooth

specifications should strongly recommend Bluetooth device/software manufacturers to
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implement this new window as a security improvement of SSP. The advantage of this
approach is that the Just Works association model can still be a part of the future
Bluetooth SSP specifications without any changes. On the other hand, this

countermeasure is a clear trade-off between security and usability.
6.11.2 BT-SSP-Printer-MITM attack

We call our new attack a BT-SSP-Printer-MITM attack [HaHO08] (also referred to as a
Bluetooth - Secure Simple Pairing - Printer - Man-In-The-Middle attack). In this attack we
exploit the fact that almost all Bluetooth-enabled printers that support SSP (especially those
connected using Bluetooth USB printer adapters) will use the Just Works association model in
order to make printing user-friendly. It is not likely that users will be required to press any
printer buttons just to accept the connection establishment in the initial pairing process of
SSP. Therefore, the Just Works association model seems to be the most logical choice for
SSP-enabled printers. Our attack is possible because the Just Works association model does

not provide any protection against MITM attacks.

It is also possible that some SSP-enabled printers that have displays and buttons could use the
Numeric Comparison or the Passkey Entry association model, which provide protection
against MITM attacks. However, victim devices can be forced to use any association model
that the attacker chooses [HyHO07, SVAQ7] (see Subsection 6.11.1). Therefore, our attack
works even against SSP-enabled printers that should provide MITM protection.

The main features of the attack are depicted in Figure 31. We next describe two scenarios for

the attack.
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Figure 31. The main features of a BT-SSP-Printer-MITM attack. [HaHOS]

We assume in the first scenario that the victim devices are using the Just Works association

model. Our attack works in the following way: [HaH08]

1. The MITM disrupts the PHY: The MITM disrupts (jams) the PHY (see Subsection
6.11.1) until the frustrated user thinks that something is wrong with her Bluetooth

devices and deletes previously stored link keys.

2. The MITM impersonates the legitimate printer: Since the user has deleted the
previously stored link keys, she will initiate a new pairing process through SSP. The
SSP pairing details are illustrated in Figure 32. Most of the notations used in Figure 32
have been explained above (see Table 4 in Section 4.1) and the rest are self-
explanatory. It is worth noting that the user has deleted all information about the
legitimate printer, including its BD ADDR, so the MITM is not even required to

clone the BD_ADDR of the legitimate printer in order to impersonate it. Now the
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MITM only clones the user-friendly name of the legitimate SSP-enabled printer to
impersonate it. Moreover, the MITM must be able to disrupt the legitimate printer in
such a way that it cannot communicate with other legitimate Bluetooth devices.
Therefore, when the user seeks available Bluetooth printers in the range, the only
printer that is found will be the MITM with a different BD ADDR but the same
familiar user-friendly name. It is very likely that the user will not notice anything
strange, because BD ADDRs are much harder to remember than the user-friendly
names. Therefore, the user will most likely choose the "MITM printer" that looks
familiar to her. In this way, the MITM has replaced the legitimate printer in the
Bluetooth network with the "MITM printer" with a different BD_ADDR. It is worth
noting that by using a BD_ADDR different from that of the legitimate printer, the
MITM can also eliminate any BD_ADDR collisions that may occur, i.e. the attack

works more reliably and plausibly.

The MITM intercepts all data: When the legitimate Bluetooth devices are printing via
a Bluetooth connection, the MITM captures (receives) all data and is also capable of
decrypting it if encryption is used. Moreover, the MITM may even be capable of using

certain services that these victim devices offer.

The MITM relays the data to the legitimate printer: Finally, the MITM relays the
captured data to the legitimate printer. In this way, everything seems to work normally

from the user's point of view: all documents are printed without any problems.

We assume in the second scenario that the victim devices are using the Numeric Comparison

or the Passkey Entry association model. This attack works in the same way as our first attack

scenario except that one additional phase is required: the legitimate devices must be forced to

use the Just Works association model by using the attack scenarios described in Subsection

6.11.1. Note that since our two attack scenarios are designed against Bluetooth 2.1+EDR

(SSP-enabled) printers, a MITM device is required between the victim devices for the attacks

to work. Attacks against Bluetooth 2.0+EDR and earlier printers are easier in practice,

because the MITM device is not required. Such attack scenarios and their practical

implementations were described in Section 6.7.
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NolnputNoOutput, B’, A)
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NolnputNoOutput, A’, B)
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f3(DHKey, Nb, Na,
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10a. Ea 10a’. Ea’
4 4
10b. Verify that
Ea’ = f3(DHKey, Na, Nb, 0,
NolnputNoOutput, A’, B)
11b’. Eb’ 11b. Eb

11a. Verify that
Eb’ = f3(DHKey, Nb’, Na, 0,
NolnputNoOutput, B’, A)

I [ I

Link key calculation

12. All parties compute link key
LK:fZ(DHKEyv Nmasler, Nslaves “btlk“: BD_ADDRmasler- BD_ADDRs\ave)

Encryption
13. Generate encryption keys as in legacy pairing

Figure 32. Pairing details of a BT-SSP-Printer-MITM attack. [HaHOS]
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The countermeasures for a BT-SSP-Printer-MITM attack, in addition to those described in
Sections 6.1-6.7 and in Subsection 6.11.1, are: [HaHO08]

Just Works as an optional (not mandatory) association model: devices that cannot use
the new window at the user interface level or alternatively NFC as an OOB channel (a
better way) should implement their security either in the same way as old Bluetooth
devices (versions up to 2.0+EDR) do, or not use Bluetooth security at all (if no
sensitive data are exchanged). In this way, the implementation of the Just Works
association model can be made optional and perhaps even removed altogether from
the Bluetooth SSP specification. The one advantage of this approach is that it
eliminates all MITM attacks against the Just Works association model. Moreover, if
the Just Works association model is not supported in future Bluetooth devices, it will

not be possible to force victim devices to use it.

OOB as a mandatory association model: Future Bluetooth specifications should make
OOB a mandatory association model in order to radically improve the security and
usability of SSP. However, it is likely that such a radical change in the specification
will not be possible at once. Therefore, future Bluetooth specifications should at least
strongly recommend the use of an OOB channel (for example, NFC) to all Bluetooth

device manufacturers.

6.11.3 Comparative Analysis of Bluetooth MITM Attacks

The first MITM attack on Bluetooth was devised by Jakobsson and Wetzel [JaWO01] for

version 1.0B of the standard. However, it works with all Bluetooth versions up to 2.0+EDR,

because no major security improvements were implemented in those Bluetooth specifications.

The attack assumes that the link key used by two victim devices is known to the attacker. The

authors also showed how to obtain the link key using an "Off-Line PIN crunching attack" (see

Off-Line PIN Recovery attack in Subsection 4.2.1), by passive eavesdropping on the

initialization key establishment protocol. The MITM attack requires that both devices are

using public or private security level (see Section 4.1), i.e. both victim devices must be

connectable. In the attack, the BD ADDRSs of attacker devices must be cloned to equal the
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addresses of the victim devices. Moreover, to prevent the jamming of the communication
channel, the victim devices must be both masters or both slaves in two different piconets (see
Section 2.2). In this case they transmit in an unsynchronized manner and cannot see each
other’s messages while communicating with the attacker. After establishing connection to

both victims, the attacker sets up two new link keys.

Kiigler [Kiig03] further improves the attack of Jakobsson and Wetzel. By manipulating the
clock settings, the attacker forces both victim devices to use the same channel hopping
sequence but different clocks. In this way, the victim devices are unsynchronized, and can see

only the messages the attacker sends them.

Kiigler also shows how a MITM attack can be performed during the paging procedure. The
attacker responds to the page request of the master victim faster than the slave victim, and
restarts the paging procedure with the slave using a different clock. The master and slave use
the same channel hopping sequence, but a different offset in this sequence. The attack works
also in the case where both victim devices send and receive data packets over an encrypted
link. Even though the IV (Initialization Vector) used for encryption depends on the clock, the
last bit of the clock is unused. Therefore, the attacker can flip this last bit, forcing the victims
to use clocks which have a difference of approximately 11.65 hours. Although the integrity of
data is protected with CRCs which are appended to the plaintext prior to encryption, the
attacker can manipulate intercepted ciphertext. After modifying the ciphertext in a certain
way, the attacker updates the CRC bits (see [BGWOI1] for details); the integrity checks
performed by the victims do not detect the modification. It must be noted, however, that the

attacker does not have much time for manipulating the transmitted data.

Reflection attacks [LCA04] (also referred to as Relay attacks) aim at impersonating the victim
devices. The main features of the Reflection attacks were described in Subsection 4.2.2. The
reflection attack can be one-sided, in which only one victim device is impersonated, or two-
sided, whereby both victim devices are impersonated. The attacker must use two Bluetooth
devices with adjustable BD ADDRs (for example, protocol analyzers). In addition, the
attacker must be capable of relaying the received information between her devices, because

victim devices can be far away from each other. During the paging procedure, the attacker
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responds to the request of the first victim device (A), and initiates a connection to the second
victim device (B), posing as A. If the victim devices can hear each other, the mechanisms
described in [Kiig03] may be used to achieve this. After this, the attacks work on the LMP
layer of Bluetooth. The messages of the protocol are simply relayed by the attacker's devices.
In the case of a one-sided attack only some of the messages must be relayed, and the
connection to A is dropped when the attacker has impersonated it to B. The attacker can
successfully perform authentication by using reflection attacks, but she cannot continue the
attack if the target devices encrypt their communication. By combining reflection attacks with
a known secret PIN code, link key or encryption key, the attacker can both impersonate the

victim devices and decrypt the information transferred between them.

Victim devices can detect the attack by noticing a considerable increase in the latency of
getting the response to authentication challenge, caused by relaying. This countermeasure is

not described in the standards, and it is up to the discretion of manufacturers to provide it.

Bluetooth 2.1+EDR provides protection against the MITM attacks described in this
subsection, by means of SSP (see Section 4.1). However, we have shown that MITM attacks
against Bluetooth 2.1+EDR devices are also possible [HaH08, HyHO07], and so did [SVAO07].
Because SSP supports several association models, the selection of which depends on the
capabilities of the target devices, the attacker can force the devices to use a less secure mode
by changing the capabilities information. For example, by forcing the use of the Just Works
association model the attacker can bypass all the security checks which would normally be in
place. The association is then unauthenticated; the devices are aware of this fact, but how they
react depends on the manufacturer. If the victim devices have already established a link key,
the attacker can use jamming to disrupt the communication, and then initiate the connection
under a chosen association model with both devices. As a result, the attacker learns the link
key used by the devices and can both intercept and decrypt all data transmitted between the

devices.

In Table 8 we summarize the properties of the MITM attacks overviewed in this section. It is
interesting to note the connection of MITM attacks to other developments in the Bluetooth

security analysis. For instance, at the time when most of the MITM attacks were introduced,
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implementing them was not an easy task, as there were no devices with adjustable
BD_ ADDRs, except sophisticated and expensive protocol analyzers. Now the situation has
changed: Bluetooth devices with an adjustable BD ADDR are readily available, and
techniques for finding hidden (non-discoverable) Bluetooth devices have been invented (see

Subsection 4.2.4 and Sections 4.2, 6.1 and 6.4). Therefore, the danger of MITM attacks has

recently increased considerably.

also required

also required

MITM attack: [Vawo1] [Kigo3] [LCAD4] [SVA07] [HyHO7] [HaH08]
Attack properties:
Bluetooth versions 1.0 - 204EDR 1.0-2.0+EDR | 1.0-2.0+EDR 2.1+EDR 2.14EDR 2.1+EDR
Attack goals Impersonation, Impersonation, Impersonation Impersonation, Impersonation, Impersonation,
modification modification modification modification modification
2+1; note that a 2+1; note that a 2+1; note that a
Attacking devices 2 2 2 jamming device is jamming device is jamming device is

also required

Devices attacked

Connectable

Connectable
or non-
connectable

Connectable
or non-
connectable

Connectable
or non-
connectable

Connectable
or non-
connectable

Connectable
or non-
connectable

Any': note that
the victim

Distances Any' Any' cevices must Any' Any' Any'
be out of each
other's range
By devices: By user: one By user: no Numetric Byuser:a
By user: The attack delays in of the devices Comparison is used suspicious user
Detection entering remains getting the LMP asks to compare although both may notice the
PIN to undetected authentication numbers, the devices have difference between
renegotiate response other one displays and BD_ADDR
does not keyboards values
Policies Cryptography At the user
Main countermeasures protecting integrity Detecting At the user Atthe user interface level,
against MITM checks the delays interface level interface level modifications to SSP
attacks of packets specification

" The attacker must use two Bluetooth adapters; actual distance is limited by speed of the link between the attacker's devices.

Table 8. MITM attacks on Bluetooth: summary and comparison. [HaH08]

In general, MITM attacks are hard to prevent in wireless networks. By far the best way to stop
such attacks is to use an OOB channel, and SSP supports this option. However, the usability
of the OOB channel is of great importance: if wires must be used to pair wireless devices, one
is likely to opt for less secure but more usable options. We concur with the designers of SSP

on their suggestion to use NFC as the OOB channel.
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6.12 Novel Intrusion Detection and Prevention System

In this section, we explain how various Bluetooth security attacks in progress can be
prevented and stopped by monitoring communication to discover such attacks. Moreover, we
propose a new efficient Intrusion Detection and Prevention System [Haa08a] for Bluetooth
networks to prevent and stop attacks in progress. The proposed system is based on the set of

rules that are used to identify strange communication behaviour in Bluetooth devices.

Based on strange communication behaviour in Bluetooth devices which are performing
various security attacks, we defined a set of rules to help identify attacks in progress:

[Haa08a]

1. Unusually many repeated failed authentication attempts: This may indicate that an
attacker is using an On-Line PIN Cracking attack (see Subsection 4.2.4 and Section

6.3) to discover the secret PIN code of a victim device.

2. Unusually many repeated successful authentications and disconnections: This may
indicate that the attacker is performing a DoS attack (see Subsection 4.2.3 and

Sections 6.8-6.10).

3. Unusually many NAK transmissions: This may indicate that the attacker is performing
a Big NAK attack (see Subsection 4.2.3 and Section 6.10), thus putting the victim

device on an endless retransmission loop.

4. Unusually long delays: This may indicate that a MITM is between the communicating
parties (see Sections 3.4, 4.1 and 6.11).

5. Unusually many repeated POLL packets: This may indicate that the attacker is
keeping victim devices busy so that they will not go into sleep or low-power mode.
During the normal piconet operation, the master device can use POLL packets to
check that slave devices are still alive (i.e. up and running), and slave devices must

always respond to POLL packet.

6. Unusually high BER: This may indicate that the attacker is disrupting the PHY.
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10.

Unusually heavy traffic between two communicating parties: This may indicate that

the attacker is performing a Battery Exhaustion attack (see Subsection 4.2.3).

Sudden increase in transmit powers: This may indicate that the attacker is using a
stronger RF signal to displace the active piconet device via an Exploitation of a

stronger RF signal attack (see Subsection 4.2.2).

Two identical BD ADDRs in the range of vulnerability: This may indicate that the
attacker is using a BD ADDR Duplication attack (see Subsection 4.2.3 and Section
6.8) to deny the legitimate piconet devices access to the services. Another possibility
is that the attacker is performing an impersonation attack (for example, a
BTPrinterBugging via Impersonation attack; see Subsection 6.7.2) to mislead the

legitimate piconet devices.

An HV1 SCO link established with the piconet master when another type of SCO or
eSCO link could also have been used: This may indicate that the attacker is
performing a SCO/eSCO attack (see Subsection 4.2.3 and Section 6.9) to reserve all
piconet resources so that the legitimate piconet devices do not get service within a

reasonable time.

11. An L2CAP level request for the highest possible data rate or the smallest possible

12.

13.

latency: If such a request is accepted, all throughput is reserved for the attacker and
the legitimate piconet devices do not get service within a reasonable time, i.e. the

attacker is performing an L2ZCAP Guaranteed Service attack (see Subsection 4.2.3).

Surprising connection attempts and data transfer requests from unknown Bluetooth
devices: This may indicate that a Bluetooth virus or worm (see Subsection 4.2.4) is

trying to infect legitimate piconet devices.

A Bluetooth device requests that the length of an encryption key must be shorter than
128 bits: This may indicate that an attack against the Bluetooth encryption is in

progress (see Subsection 4.3.2).
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14. An RF signature mismatch: This indicates that some kind of attack, such as an
impersonation attack, is in progress. Every transmitter has a unique RF signature
[Mor02, Sha06] which can be used to differentiate the legitimate devices from those
that have alien RF signatures, i.e. a sample RF signature is needed from each

legitimate device in order to detect alien RF signatures.

15. SSP's Just Works association model activated between devices that could use a more
secure option (for example, Numeric Comparison or OOB): This may indicate that a
MITM is between the communicating parties. Only Bluetooth 2.1+EDR (or later)
devices support SSP (see Section 4.1).

In order to mitigate various Bluetooth security attacks, we proposed a scheme consisting of
two parts: an Intrusion Detection System and an Intrusion Prevention System. In our system a
commercially available Bluetooth protocol analyzer, such as a LeCroy BTTracer/Trainer
[Lec07] (see Chapter 5) equipped with signalling processing capabilities (some additional

signalling processing hardware is required) takes care of the intrusion detection part.

When an intrusion is detected, the protocol analyzer immediately informs the network
administrator (via Bluetooth) that the Bluetooth network is under attack. This is manual
administrative intrusion prevention, which can be used in all cases regardless of the
capabilities of the legitimate Bluetooth devices. This system also requires LeCroy
BTTracer/Trainer v2.2 software [Lec07] (or later), which provides CATC Scripting Language
[Lec04] (see Chapter 5).

The second part of our system, the Intrusion Prevention System, is a small program that runs
on all legitimate Bluetooth devices that allow programs to be installed, i.c. at least all PCs,
laptops and mobile phones should be supported. This is automatic intrusion prevention. It
requires that all legitimate Bluetooth devices must run this special program in order to receive
warning messages from our Intrusion Detection System. When a warning message is
received, devices that are under attack perform automatic disconnection and refuse any further
Bluetooth connections for a predetermined time. The Intrusion Detection System also sends

enough information (BD_ADDR, device capabilities information, the user-friendly name of
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the device, RF signature information, and so on) to the Intrusion Prevention System so that

further connections from the same origin can be refused immediately by the Intrusion

Prevention System.

Our Intrusion Detection System should work in the following way: [Haa08a]

1.

A Bluetooth protocol analyzer monitors Bluetooth communication of the legitimate
piconet devices non-stop: Protocol analyzers have all the legitimate BD ADDR values
that are allowed to communicate within the piconet and also other useful information
about such devices (device capabilities information, the user-friendly name of the

device, RF signature information, and so on).

When an intrusion is detected, either manual administrative intrusion prevention or
automatic intrusion prevention is applied. We strongly recommend that automatic
intrusion prevention should be implemented. However, if automatic intrusion
prevention is not implemented, at least Bluetooth the network administrator is alerted

immediately.

Our automatic Intrusion Prevention System should work in the following way: [Haa08a]

1.

The Intrusion Prevention System receives a warning message from the Intrusion
Detection System: When a warning message is received, automatic disconnection is

performed and further Bluetooth connections are refused for a predetermined time.

The Intrusion Prevention System also receives enough information to prevent further
attacks from the same origin: We recommend that at least the following information
about the attacking device should be received from the Intrusion Detection System and
stored in the database: the BD_ADDR value, device capabilities information, the user-

friendly name of the device, and RF signature information.

It is difficult to create an intrusion detection and prevention system that caters for all possible

types of security attacks, as the security of Bluetooth is likely to be limited by the capabilities

of the least powerful or the least secure device type. In fact, most Bluetooth security attacks

are based on precisely this problem.

163



In general, security attacks are hard to prevent in wireless networks, especially when no
intrusion detection and prevention system is used. Our proposal is intended to help Bluetooth
network administrators and Bluetooth device manufacturers to implement efficient Bluetooth

intrusion detection and prevention systems.

6.13 Further Classification of Bluetooth-enabled Ad-hoc Networks

Since ad-hoc networks have no fixed infrastructure, there are many different kinds of
Bluetooth-enabled ad-hoc networks with various security procedures and security
requirements. In this section, we further classify Bluetooth-enabled ad-hoc networks and their
security procedures/requirements depending on a risk analysis within each classified group.
We also evaluate the breaches and damage that can be inflicted by various attacks in such

scenarios.
We classified Bluetooth-enabled ad-hoc networks into five different groups: [Haa08b]

1. Personal Home Network: In a Personal Home Network, a user connects Bluetooth
devices, types initial PIN codes manually, and adds/removes Bluetooth devices

to/from the Personal Home Network herself within a relatively secure environment.

2. Personal Office Network: In a Personal Office Network, the user connects Bluetooth
devices, types initial PIN codes manually, and adds/removes Bluetooth devices

to/from the Personal Office Network herself within a relatively insecure environment.

3. Organization Network: In an Organization Network, employees use their company's
Bluetooth devices and form piconets/scatternets for information exchange within a
relatively insecure environment. Employees do not have to type any PIN codes
manually, because all link keys are stored in the organization's Bluetooth devices.
Only the company's network administrator is allowed to add/remove Bluetooth
devices to/from the Organization Network (excluding employees’ own Bluetooth
devices). Depending on the organization's data security policy, employees may or may

not be allowed to use their own Bluetooth devices in the Organization Network.
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4. Conference Network: In a Conference Network, attendees use their own Bluetooth
devices and form a piconet for information exchange within an insecure environment.
The attendees type initial PIN codes manually and add/remove Bluetooth devices

to/from the Conference Network themselves.

5. Public Network: In a Public Network, attendees use their own Bluetooth devices and

form piconets/scatternets for insecure

information exchange within a very
environment. The attendees type initial PIN codes manually if security operations are
required at all. Typically, public networks do not require any security measures.
Moreover, attendees add/remove Bluetooth devices to/from the Public Network

themselves.

Table 9 shows a risk analysis for each group and also gives an evaluation of the possible
breaches and damage that can be inflicted by various attacks in such scenarios. All text and

notations in the table are either self-explanatory or have been explained above.

New groups: | Personal Home | Personal Office Organization Conference Public
Network Network Network Network Network
Environment Relatively secure Relatively insecure Relatively insecure Insecure Very insecure
PIN codes Typically very short Typically very short Tynpically quite long Typically very short Typically no
and easy to guess and easy to guess and hard to guess and easy to guess PIN code required
Physical Closely related to Closely related
i Closely related to the Closely related to the Closely related to the physical to the
protectlon of physical protection physical protection the physical protection protection of physical
Bluetooth of home of office of organization’s conference protection of
devices facilities attendees’ user's own
hotel rooms devices
DID attacks Possible and Possible and Possible and Possible and Possible and
quite easy easy easy easy very easy
Intrusion Depends on the Typically no
. Typically no intrusion | Typically no intrusion organization's data Typically no intrusion intrusion
detection detection system detection system security policy detection system detection
system? system
Bluetooth-enabled Bluetooth-
. printers, snoopy Bluetooth-enabled enabled
Spemal Bluetooth-enabled Bluetooth-enabled employeeslvisitors, printers, snoopy printers, snoopy
weak printers, snoopy printers, snoopy employees’ Bluetooth attendeesivisitors, users of the
i neighbours employeeslvisitors devices, organization's attackers may Public Network,
points ; 2 :
Bluetooth devices can infiltrate into easy access to
be replaced by conference the network,
attacker's spying bugging devices
devices
Social security Social security Social security Social security
numbers, bank numbers, bank numbers, bank numbers,
account information, account information, account information, unpublished research Almost
What can documents relatedto | documents related to documents related to papers, documents everything,
be stolen? business issues, and business issues, and business issues, and related to business because typically
such Bluetooth such Bluetooth such Bluetooth issues, and such no security
devices that have devices that have devices that have Bluetooth devices is applied!
access to some access to some access to some that have access to
sensitive files sensitive files sensitive files some sensitive files

Table 9. A risk analysis and an evaluation of possible breaches and damage. [Haa08b]
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The security procedures (countermeasures) to prevent malicious Bluetooth devices from
stealing information from other Bluetooth devices are the same as those discussed above in

Sections 6.1-6.11.
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7 CONCLUSIONS AND FUTURE WORK

This thesis presents our studies of Bluetooth security in a research laboratory environment.
Our research work can be roughly divided into four parts. First, Bluetooth security
weaknesses were studied and a Bluetooth security laboratory environment for implementing
Bluetooth security attacks in practice was built. Secondly, different types of attacks against
Bluetooth security were investigated and the feasibility of some of them were demonstrated in
our research laboratory. Countermeasures against each type of attacks were also proposed.
Thirdly, new proof-of-concept security analysis tools were implemented, new attacks against
Bluetooth security were presented, and countermeasures that render these attacks impractical
were proposed. Finally, a comparative analysis of the existing MITM attacks on Bluetooth
was provided, a novel system for detecting and preventing intrusions in Bluetooth networks
was described, and a further classification of Bluetooth-enabled ad-hoc networks depending

on a risk analysis within each classified group was presented.

Overall security in Bluetooth networks is based on the security of the Bluetooth medium, the
security of Bluetooth protocols and the security parameters used in Bluetooth communication.
There are several weaknesses in the Bluetooth medium, Bluetooth protocols and Bluetooth
security parameters which can significantly weaken the overall security of Bluetooth
networks. Currently, weaknesses in the Bluetooth security parameters seem to be the biggest

problem in Bluetooth security.

The current level of security is insufficient in many Bluetooth devices on the market, as our
research work clearly shows. Many kinds of Bluetooth devices have very short, often only
four-digit, fixed PIN codes. This is clearly a big security risk. Therefore, Bluetooth device
manufacturers should take security issues more seriously. In addition, users’ understanding of
security issues is very important for protecting sensitive data against eavesdroppers and
hackers. Moreover, many users have no idea how to configure their Bluetooth devices'
security settings correctly. Application layer key exchange and encryption methods can also

be used as an extra security in addition to the Bluetooth built-in security.
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Many attacks, such as Reflection attacks and Interception of Packets attacks, are possible
because encryption is not used by default in many kinds of Bluetooth devices. We strongly
recommend that Bluetooth factory settings should enable encryption by default, because many
users do not know about its existence or do not know how to set it up successfully. Another
possibility is to set Bluetooth encryption as mandatory. This of course would require minor
changes to the Bluetooth specification, and it would mean that older Bluetooth devices would
also have to use encryption or communication with new devices would not be possible. On
the other hand, if backward-compatibility with old Bluetooth devices must be guaranteed,
mandatory encryption is not possible. Many attacks, such as Off-Line PIN Recovery attacks
and On-Line PIN Cracking attacks, are also possible because many kinds of Bluetooth
devices have very short fixed PIN codes containing only digits. We strongly recommend that

the allowed sixteen 8-bit character PIN codes should always be used when possible.

Dozens of attacks are also possible because many kinds of Bluetooth devices have public
security level as a fixed factory setting, so they are always discoverable. We strongly
recommend that the security level of Bluetooth devices should not be public by default or as
the fixed factory setting. The user should have at least the option of changing the factory
security level setting somehow. However, in the near future, when techniques for finding
hidden Bluetooth devices in an average of one minute are actually ported into the firmware of
a standard $30 Bluetooth USB dongle, the private security level will no longer provide

significant protection.

Since there are billions of Bluetooth devices in use without SSP's improved security features,
malicious security violations are not expected to decrease in the near future. On the contrary,
these old Bluetooth devices will be sold for many years to come, thus making security

concerns even more alarming.

SSP has gone through a series of reviews by experts, and the released version generally does
good work in improving the security of Bluetooth pairing. However, MITM attacks against
SPP are also possible, as our research work clearly shows. Therefore, Bluetooth security

architecture needs to be further updated to prevent these new threats. The next major security
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improvements are roadmapped to the upcoming Bluetooth specification (Seattle), which is

expected to be released by the Bluetooth SIG in 2009.

In general, MITM attacks are hard to prevent in wireless networks. By far the best way to stop

such attacks is to use SSP's OOB channel. We concur with the designers of SSP on their

suggestion to use NFC as the OOB channel.

The problems we want to investigate in our future research work are concerned with the

following issues:

1.

Bluetooth is a relatively new wireless technology and therefore new attacks against
Bluetooth security are likely to be found. We want to further investigate Bluetooth

security weaknesses and propose countermeasures against new attacks.

Issues related to Bluetooth user experience (ease of use) have become more and more
important in recent years. Therefore, we want to investigate how enhanced user
experience will affect Bluetooth security in various scenarios, including social aspects
and user acceptance/habits in security management. Moreover, we want to devise best

practices depending on the risk analysis within each scenario.

Since we have already proposed a new efficient Intrusion Detection and Prevention
System for Bluetooth networks, we want to implement a working prototype of such a

system and also analyse its efficiency.

Because cheap Bluetooth devices with an adjustable BD ADDR are readily available,
tools for modifying official firmwares have been released, techniques for finding
hidden Bluetooth devices in an average of one minute have been invented, and an
open-source Bluetooth sniffer for Linux environments has been released, we want to
continue our practical Bluetooth security research under Linux using these new tools.
We also want to further develop the existing open-source Bluetooth sniffer to include
the BD_ADDR duplication feature and the graphical user interface in order to make it

user-friendly.
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5. At the time when most of the Bluetooth MITM attacks were introduced, implementing
them was not an easy task, as there were no devices with adjustable BD_ADDRs,
except sophisticated and expensive protocol analyzers. Now the situation has changed,
and we want to make practical implementations of all existing Bluetooth MITM
attacks. Moreover, we want to analyse the results of the practical experiments, draw

conclusions, and propose practical countermeasures based on our findings.

6. Since there are many new emerging wireless technologies, such as ZigBee [Zig08]
and UWB, which are quite similar to Bluetooth technology, it is expected that our
work presented in this thesis can be quite easily extended to cover the security of these
new technologies. Therefore, we want to investige how various Bluetooth security
attacks and their countermeasures can be ported to support ZigBee and UWB

technologies, for example.

The research work described in this thesis is only the tip of the iceberg. Bluetooth security
intimately depends on general problems of ad-hoc network security, on physical aspects of
protecting wireless networks, on cryptographical solutions to key distribution without Trusted
Third Party or CA infrastructure, and on application layers. The research in this area
combines various skills and techniques, requires cooperation with other researchers, and also

requires a certain infrastructure.
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