
Teaching HCI to make it come alive
Harold Thimbleby

Future Interaction Technology Lab
Swansea University

Wales
h.thimbleby@swansea.ac.uk

ABSTRACT
We review how to teach effectively in higher education (covering
both the literature and the author’s own opinions), with particular
reference to HCI and using real life-and-death examples, based on
simple medical design issues. Students are motivated because
even elementary HCI knowledge empowers them to make a real
and significant difference in the world.

 “When I see how much education can be reformed,
I have hope that society may be reformed.”

Gottfried Wilhelm Leibniz

“The main part of intellectual education
is not the acquisition of facts

but learning how to make facts live.”
Oliver Wendell Holmes, Jr.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education, Curriculum, Information systems
education, Literacy. K.7.4 [Professional Ethics]: Codes of good
practice.

General Terms
Management, Design, Human Factors.

Keywords
Teaching and learning. HCI (human-computer interaction).
Human error. Medical device design. Calculators.

1. INTRODUCTION
It is obvious that the world could be a better place, and of all the
things that need improving, user interfaces are near the top of the
list (they’re the top of my list anyway), not least because their bad
design makes other things worse: for example, a bad web site user
interface might cause users to make expensive errors, or a bad car
radio design might so distract a driver from attending to the road
that they have an accident. Many user interfaces are bad, and their
faults, at least to those who know HCI and can see the faults, are
so obvious that they ought to be a point of high leverage where we
should invest to improve things. A badly designed web site can
detrimentally influence millions of people: it has a huge and

invisible social cost. (If you do not believe user interfaces are bad,
read on or read Press On [24].)
If user interfaces are bad and we have the processes and
knowledge to do better, then somehow HCI education has failed
the developers (or marketing people or managers…) who create
current poor systems — it has certainly failed the users of these
systems, and the people affected detrimentally by them.

Questions about understanding a subject are rarely addressed in
the literature about that subject. Kline [11] presents many ways
that our academic culture undervalues pedagogy — pedagogy
being one way of understanding and thinking about a subject.
While many organisations have research arms, many universities
have essentially no research in-house in one of their core
activities: teaching. The instructions for formatting this paper (the
ACM computing classification system) gave an explicit list of
topics, but they did not expect to classify articles that talk about
how any subject is acquired, understood, used or let alone taught;
they expected topics like “human factors,” not the topics of
thinking about or reflecting about “human factors,” whether
teaching, communicating or using it. It’s as if just stating facts are
sufficient; as if nobody needs to think about how facts are
presented or learnt, whether by readers of papers or by students.
(This view will be encountered again, below, as an expression of
Ramsden’s Theory 1.)
How then should we teach and think about teaching HCI?
Teaching is the highest form of understanding; if we do not
understand how to teach, we do not understand our subject. If we
are not thinking about teaching, we are not thinking about
communicating. Even the most hardened researchers must be
concerned about the impact their research papers have; in fact,
their research papers must surely aim to teach their readers new
ideas and new ways of thinking about their subject. This isn’t so
different from wanting to teach students.

According to Ramsden’s excellent survey [17], teachers (for
instance, teachers of HCI) consider there are three approaches:
one, that teaching is telling or transmitting facts; two, that
teaching is organising student activity; and, three, that teaching is
about making learning possible. That is, teachers (lecturers,
professors) adopt an explicit or implicit theoretical stance to
teaching and learning, and that teachers can be divided into
roughly three classes depending on their approach to teaching,
namely these three theories.

Many HCI textbooks are encyclopaedias of knowledge about HCI
techniques, as if their authors fall into a Theory 1 approach, or
into a style that supports an assumed Theory 1 style of teaching.
The teacher’s job, using such books, is to teach the students the
facts of HCI, preferably as presented in the particular book.
Theory 1 encourages a style of thinking that every fact must be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HCIed, April 2–4, 2008, Rome, Italy.
Copyright 2008 ACM 1-58113-000-0/00/0008…$5.00.

covered, that it is the teacher’s (or the textbook author’s) job to
provide all facts that need teaching.

Different subjects and different stages of learning in those
subjects call for different approaches. One can imagine that in an
early anatomy or geography course there are indeed a lot of
independent facts to learn, but these facts give way to deeper
learning if the student progresses. Similarly in HCI, there are
indeed many important facts to learn — what is affordance? what
is contextual design? what is immersion? — before one can build
deeper knowledge and understanding.
 There are of course many more examples where Theory 1 is
entirely appropriate, most obviously at elementary levels when the
student is not expected to have (or want) any understanding of the
subject. We have all been there. A student might be taught to
“always end a sentence with a full stop.” At school, there may be
no room for debate on this fact. Yet when the student becomes a
designer, they will discover that posters often have sentences
without full stops, and that one can decide not on rigid grammar
but on visual criteria, or perhaps on unrelated criteria such as
whether your client will pay. In fact, because language is
necessarily taught in elementary ways to young learners, many of
us have grown up thinking that our use of language is rigidly
constrained by what we were taught [4]. We’ve learnt that it’s just
non-negotiable rules — unrelated facts. Perhaps this formative
learning experience during a major part of our lives, learning our
own language, has influenced our approach to all other learning
and teaching?

Crystal gives the example of the use of commas; they mean
different things in sentences. Occasionally, as he shows, their
multiple uses may collide, and it ceases to be obvious how to
punctuate — one has to rely on context. We shall see exactly the
same problem with user interfaces, in an example used below.
And, what is crucial, we see teaching, learning, and HCI all
coming together, in commas, of all things!

Theory 1 is necessary, but it is not necessarily sufficient. We
spent many of our formative years being taught elementary facts,
and it is understandable how we end up ourselves being teachers
who emphasise facts. If we are not careful, we end up with
students who know some facts, namely, exactly the ones we teach
them to pass their courses, but don’t they know how to think for
themselves about HCI, and are therefore unable to apply their
knowledge to the work environment they later find themselves in.
Ultimately, as students graduate and get jobs, we end up with

interactive systems — web sites, ticket machines, voice menus,
aircraft, medical equipment — that have bad user interfaces. Or as
students graduate and become academics, their views influence
how they participate in the academic community: they become
referees. The Theory 1 attitude affects referees for research papers
and research proposals [22]: a common criticism in HCI
refereeing is that some facts were missing (i.e., facts from a
different subdomain of HCI that the referee wishes to emphasise),
as opposed to some reasoning was flawed.

Ultimately, then, I believe, Theory 1 is not an effective form of
teaching for HCI. Indeed, Ramsden makes it very clear that
Theory 3 is, for most things, better.

An example of Theory 3 teaching comes from Feynman [7], who
is widely recognised as one of the most inspiring teachers of
physics. Figure 1 shows an imaginary map of all HCI ideas and
concepts within a region drawn as a grey blob; figure 2 shows
how a student might be able to reconstruct a forgotten fact from
several other remembered facts. Probably a student would use
some remembered facts, some books, and some experiments:
triangulation is somewhat of a simplification to the idea. (In
reality, HCI is so complex that lots of facts would be needed to
triangulate, and perhaps the idea might better be called
interpolation.)

The purpose of teaching a student is so that they are eventually
able to construct new knowledge — it would be a sorry state of
affairs if they could only ever know less than their teacher! Figure
3 shows how exactly the same triangulation idea works for a
student discovering new knowledge. The point is, by teaching a
student how to connect ideas together, they are empowered to
learn new things, even ideas they were not directly taught.

Feynman sees the blobs in these figures as knowledge, as known
by everyone. Instead the blobs might be used to represent the
student’s own knowledge. Then, perhaps that star in figure 3
might have been the x my friend missed. Would it not be more
useful for a student to know that x was missing and be able to
work it out, than not to think but only know what they were taught
from figure 1?

William Perry’s study of how students learn suggests that the least
sophisticated students, or students at early stages of learning a
subject, tend to want to learn true facts [15]. Students at this level
thus dovetail their expectations with the teacher’s use of the
Theory 1 approach to teaching. Unfortunately, both Theory 1 and
Perry’s low end of sophistication interact in a sort-of vicious

Fig 1. Imaginary map of all HCI
concepts.

Fig 2. Forgotten facts can be
triangulated from known facts

Fig 3. New discoveries are made by
triangulating from the known to the
unknown.

circle: they support each other, and are ideal for teachers and
students with little confidence in the subject. Neither enables the
students to go beyond the teacher, so the students are limited to
exactly what is taught. Students soon will only do work that leads
to assessment. It is but a short step to automating the assessment,
with multiple choice, to see exactly what facts that the student has
learned: once automated, the student is even denied any flexibility
in interpreting the right answers.

Teaching, at least as presented by Ramsden, is about getting
students to learn and engage with ideas. Correspondingly, we can
consider that HCI is concerned with getting users to learn and
engage with ideas about, in this case, complex interactive systems.
It’s the same thing. Research in HCI, such as Carroll’s classic
work on “minimalism” [3], suggests that users are best helped
when instruction follows four principles:

1 Choose an action-oriented approach; provide immediate
opportunity to act;

2 Anchor the ideas in a task domain; select real tasks;

3 Support error recognition and recovery; prevent mistakes
where possible;

4 Support reading to do, study and locate; be brief — don’t
spell out everything.

Of course Carroll elaborates these principles further, but it is
interesting to note that even from this summary, it is clear that
Carroll’s principle 4 manages to simultaneously contradict Theory
1 teaching and support Theory 3 teaching. HCI itself, then,
suggests that teaching HCI should provide an immediate
opportunity to act, based on real tasks, should prevent mistakes,
and be brief.

Kline suggests that the worst sort of teaching just presents
unmotivated facts [11]; the facts may be motivated for the teacher,
but to the student they seem pointless. Or take Carroll’s point 3,
above, that suggests that students might learn by making mistakes
and learning from them.
Theory 1 does not do well from Carroll’s perspective. It is hard
for a student to make a mistake when their teacher adopts Theory
1 and for them not to be simply wrong; there is no incentive to
learn from mistakes. Worse, as Theory 1 approach leads to simple
assessment, it’s likely that the only feedback students get on their
understanding is when they are formally assessed: a significant
disincentive to make mistakes or even explore around the subject.
Why would a learner make experiment, possibly making mistakes,
when doing so guarantees getting fewer marks?

As Ong has suggested [14], ever since the invention of the
alphabet (one of the earliest technologies) we have taken it for
granted that knowledge can be written down. If it can be written
down, we can teach what is written. But that is Theory 1. Rather,
ask why do we lecture if we have books? The answer is that we
should not teach facts: that encourages shallow learning. Instead,
we need to motivate, make accessible, enthuse. Just as Carroll’s
work suggests, we need to get students engaged with real tasks as
quickly as possible. Why do students go to lectures when they
could read books or read off the web? Somehow the interaction
and excitement of the lecturer is supposed to rub off in a way that
the textualised book or web page does not permit. Teaching is
performance, not instilling facts. Books, web sites, computerised
teaching tools as an end in themselves turn teaching into dead
text.

How do we get students into real activities? How can we do that
when, at least at the beginning, they do not know enough HCI to
reason or apply what they know: they don’t know enough. Well,
actually, they do: we can ramp them up.

2. PERSONAL VALUES
We, whether students or teachers, are all different and we all have
different perspectives to bring to the teaching and learning forum.
As teachers, we have had formative experiences as students
ourselves, and sometimes we emphasise personal values rather
than ones supported by good pedagogy. I am no exception.

Of Ramsden’s theories, then, I lean towards Theory 3, but that
isn’t everything. Here are some further factors, emphases, I
consider very important — but I offer no scholarship to back up
my prejudices, only my own limited experience. My experience,
as is obvious, influences the experience of my students and even
the students who choose to come on my courses. This biased
sampling will reinforce my prejudices, even when they are
misleading me. Indeed, I know that not everybody agrees with
me; these are my values, not my unqualified recommendations.

Teaching and learning is fun. If people are not enjoying what they
are doing, this in itself is demotivating. If students enjoy their
work, they will do it better, they will be more committed to
working on it, working hard, and thinking deeply about it. And
work that a student has done that they have enjoyed will be more
enjoyable to mark.

Teaching and learning is fire. It’s not just fun, it’s serious fun: fire
in our hearts, fire that spreads, fire that lights the imagination. It’s
about things we feel strongly about — nothing luke warm. By
teaching we light up many students and are more effective than in
ordinary jobs where we would have no such leverage. In each
class we want to inspire especially those students who are sparked
by the subject and are going to carry the flames forward. (Later in
this article, I present some ideas that fire me up.)

Teaching and learning is exploration. I know the terrain, but I
want students to find things out for themselves, and even find out
things I don’t know. Because my lectures are interactive, I was
once told the students like leading me down garden paths. The
students think they are distracting me; but I know we are
exploring the HCI issues of what they are interested in.
Teaching and learning is research. The students can find out
things, test ideas, and find out things none of us knew to start
with. The problem with this style of teaching is that it is hard to
predetermine outcomes; it is certainly nearly impossible to
provide notes beforehand. (But notes fall into the Theory 1 view.)
This stance makes it particularly difficult to support students with
certain needs, such as dyslexics, who benefit from more prepared
material and (for example) material presented in different media.

Teaching and learning is formative. The students want feedback
from me about their achievements; I want feedback from them
about my teaching — and both of us want it formatively, not at
the end of the course. I believe I can do better, and I encourage
students to give me feedback, to point out mistakes or things they
like. Indeed, as Carroll [3] wanted with user training, if students
can recognise my mistakes, I am lifting them from passive
learning to active participation. By discussing mistakes in
lectures, they are learning much more useful attitudes and skills.

Teaching and learning is open. There are many horrible
arguments for being secretive about teaching and learning. Failure

is private. Success causes envy. People may steal my good ideas.
It surprises me how rarely teachers share insights into each others’
work — even if they know about it. I feel I am intruding when I
go to other lecturer’s classes! (And no colleague has been to one
of my own classes for a long time.) I am increasingly assessing
students in open ways: for example, asking them to do
coursework as posters, not essays. Then an afternoon’s
“conference” can both have me marking the coursework (and
interacting helpfully with the students at the same time), as the
system requires, but more importantly each student sees the
quality of each other student’s work. They learn by my creating
open processes.

Teaching and learning is reflective. I teach how I teach and why I
choose particular approaches, and I teach how students may learn
better, and I do this within the HCI course. We all then engage
consciously with the teaching and learning process, and
renegotiate changes each time I teach. I encourage students to
think explicitly about how they want to be successful.

Teaching and learning are paradoxical. I have learnt many
complex things, like speaking and walking without anybody really
trying to teach me; and I’m glad I learnt these things before
school. School “taught” me lots of things I have not, in the end,
learnt, and it put me off many other things, like speaking French.
Conversely, I have taught many complex things by not trying to
teach at all. My children know how to solder, but I didn’t teach
them in any way a university would recognise, with notes,
assessments or learning outcomes; it was a lot easier than that, and
they never said they’d only comply if I marked them.
Less is more. I could extend this list indefinitely, but less is more.
You, the reader, must surely have started to have ideas about
teaching and learning (you don’t have to agree with me), and if I
carry on with my ideas you will lose your own ideas. The last
point, less is more, applies recursively. If as teachers we put more
effort in to teaching — writing more detailed notes, say — the
more we do the less we leave for the students, and the less we
leave for the lecturing to unfold in the dynamic relationship we
create with the students. Then, the less the students own of what
we teach.

Teaching and learning don’t stop. There’s always more. I want at
least some of my students to learn more than I know. One
consequence of this view is that, where possible, I use coursework
rather than examinations. With exams, there is a fixed syllabus
represented by the questions, and at some stage you have to start
playing games with the students: in a revision class, for instance,
you can’t really tell them the answers to the questions you’ve set.
You then get into complex political games, which are made worse
by “marking schemes” and other devices. With coursework
(portfolios and other techniques) you as a teacher always want the
students to do as well as possible, and there is no need to hold
back on telling the answers — you want the students to know, so
they can go beyond them. Conversely, the students don’t ask, “do
we need to learn this for the exams?” as anything and everything
you teach can help in their coursework (and, later, in their real
world work) — there are virtually no exams in the real world, so
why teach to them?

3. LIFE & DEATH EXAMPLES IN HCI
I want to teach an important subject where students can identify
with the problems, and feel that they can recognise the faults and
start to see solutions that they could be part of. HCI is ideal for
this sort of teaching. It is ideal for interactive lectures that involve

students; it is ideal for encouraging students to bring gadgets that
they are frustrated with, and then to enable them to see how the
principles of HCI can go beyond problems to solutions. Some
students will go on to work where they can influence future
design. All of the students graduating from an HCI course will
have some influence on design decisions; they will know about
user centred design, individual differences, etc, and they will
influence others to do better.

Imagine a picture of a patient in an intensive care unit in a
hospital — in the lecture environment, this could be a picture
displayed for the class to see. Imagine, then, the patient is
surrounded by gadgets: ventilator, syringe pumps, and so on. Even
the bed they are lying on has numerous buttons. Who in the class
has been in intensive care, perhaps to see a relative? Don’t we
want those gadgets to be safe and easy to use?

Interactive medical devices are safety-critical devices whose
correct operation is essential. Errors in their design or use can lead
to medical incidents, including death. Medical error is a major
problem, though not widely recognised. In paediatrics, a study
showed that 55% of patients received incorrect drug doses,
approximately 10% of which were potential adverse events [10].

The problems are not just technical, or problems associated with
using complex devices (that, for example, might be solved by
better training); in studies, 58% of nurses make calculation errors
when doing relatively simple drug dosage calculations [19];
alarming comments such as “The potential for serious clinical
errors caused by faulty calculation of dosage by house staff
officers is high” [16] are routine in the literature.

The UK Medicines and Healthcare products Regulatory Agency’s
safety guidance says “an increasing number of incidents that
result in significant morbidity or mortality arise out of user/device
interface problems or because of poor practices” [13]. The
problems are exacerbated by poor and over-complex device
design — bad HCI. Clinicians accept as routine using
workarounds, such as switching off and on devices to recover
from errors — often losing data (e.g., body weight) in doing so.
Indeed, there are many near misses that are not reported as design
problems because they do not lead to adverse clinical incidents.
Around 10% of hospital intravenous pump uses have errors, and
1% have serious outcomes [8]. HCI will have a significant impact,
then, particularly with the substantial skills and background that I
bring to the area.
Medical errors are in fact worse than AIDS, car accidents and
other high-profile social problems [6], by a factor of over two:
they are under-reported partly because of litigation problems, and
also partly because medical errors are typically resolved through
private settlement. “Near misses” are not reported, because
clinicians do not recognise device design problems as such, and
because near misses have no clinical consequences that need to be
reported. Often, too the operator (such as the responsible nurse) is
blamed, or their training and management is blamed. Thus the
root causes of the medical incident — which includes technology
problems — are not properly addressed. Moreover, incident
investigations after an adverse clinical incident often ignore
technical factors; if a device “operates as designed” it is taken to
be correct, and problems in its use are then supposed to be due to
operator problems, even if those operator problems may (to us) be
a symptom of bad design!

As a case in point, in a commissioned human factors study of a
clinical procedure, numerous human factors problems with an

infusion pump were identified, but rather than criticise the device
design, however, the conclusion drawn was that hospitals should
perform human factors studies and better train nurses to conform
to the device design requirements [9]. From HCI (e.g., as codified
in ISO13047, for instance) this is exactly the wrong way around:
device design should be based on a clear understanding of the
user’s tasks and behaviour. The student can see that what they are
learning could change the world.

Of course, there are also hospital management and operator
problems [e.g., 2] and better teaching can improve performance
[e.g., 5], whether or not device design is improved: each should be
considered a defense, in the sense of Reason [18], and hence part
of proper professional clinical practice. What seems beyond the
reach of clinical practice, however, is to improve the HCI.

There are numerous problems with device design, particularly
computational issues (such as drug dosage calculation: see
example below), and you want students to identify with these
problems and see that they could really make a difference. The
medical community is not thinking about these issues; our HCI
students could be the ones to improve health!
Tell a story … consider a cancer nurse asked to program an
infusion pump for a patient requiring a dose of the chemotherapy
drug fluorouracil. The nurse goes to the hospital pharmacy with
the order, and returns with a labelled bag of diluted fluorouracil.
The nurse’s task is now to calculate from the pharmacy data a
dose in millilitres per hour to programme an infusion pump to
deliver that dose rate over the coming four days. The relevant
numbers and units are 5250mg of fluorouracil diluted to
45.57mg/mL, and to be delivered over 4 days. Because the
infusion pump uses units of mL/hr, the nurse must calculate
5250/45.57 as the volume to be delivered, and at an appropriate
rate for over 24×4 hours. They would do a calculation as follows:

!

5250

45.57
(4 " 24)

This calculation will be done by the nurse using a calculator, and
will be checked by a second nurse as a precaution. If using a
calculator, the nurse must convert the calculation into a sequence
of operations (button presses or mouse clicks, if it is a PC-based
calculator) to perform this calculation. For example, AC 5250 ÷
45.57 ÷ (4×24) = will obtain the correct result 1.2. However, we
can imagine it likely that the nurse does not have a calculator with
brackets available, and instead they should do AC 5250 ÷ 45.57 ÷
4 ÷ 24 =. One wonders what nurse knows that dividing by a
product is equivalent to repeated division (and note that the term 4
÷ 24 in the sequence of operations does not calculate the quotient
4/24); far more likely, then, that the nurse will calculate 4×24
either on paper or use the calculator and store the result in the
calculator’s memory. One would then anticipate doing AC 5250 ÷
45.57 ÷ MRC = to get the right answer.

This is all familiar work, but it is showing how “simple”
interaction is in fact much more complex once it is analysed. We
could digress into task/action maps, GOMS and other areas.

In this example, 4×24 is perhaps easy enough to do mentally or
perhaps the nurse can remember 96 without using the calculator’s
memory, but in general a drug dose calculation (e.g., a pharmacy
dilution) will be harder than these figures suggest — and in any
case it is wise to independently double-check with a calculator.
How then can we work out 4×24 and store it in memory? A

typical basic calculator like the Casio HS8V has a memory. Like
many such calculators it does not have a single store-in-memory
key; it has an add-to-memory key instead. In order to store a
number to memory, then, the memory must first be set to zero,
otherwise the number stored will be undefined. If the nurse starts
to calculate 4×24 before zeroing the memory, it is essentially
impossible to store the result correctly. In fact, to be correct, the
nurse must do the following sequence of operations: AC MRC
MRC 4 × 24 MPLUS 5250 ÷ 45.57 ÷ MRC =. The button MRC
must be pressed twice, and on some calculators, AC must be
pressed more than once.

In computer science terms what the nurse has just done is called
compiling [e.g., 1]; the nurse has compiled a formula into a
sequence of machine code operations (button presses) to execute
the calculation. To compile correctly, the semantics of the target
machine (here, the calculator) must be known; but unfortunately
there are no published calculator semantics to help — and we
know many calculators are very different (and, worse,
mathematically wrong) despite even looking alike [21]. Clearly
compiling is a non-trivial task for a user, and indeed one can
imagine it is especially difficult for people trained as nurses rather
than as computer scientists.

Conventional calculators have numerous usability problems, some
due to their ergonomics, some due to their programming, and
some due to “feature interaction” — inevitable problems due to
their design. The small size of typical LCD displays creates
ergonomic problems: users may misread results, for example
confusing 4 and 9 (which may be indistinguishable if the top
segment of a 7 segment display is not visible to the user). If
incorrect buttons are pressed (e.g., – instead of +) there will be no
error, just the wrong result. The user can typically only see the
result and not the formula that leads to it; worse, if the = button is
not pressed, the LCD will be incorrect.

Examples of feature interaction include the multiple roles of
operators. Users may make mistakes, so multiple operator use
may retain only the last used operator: operators are then both
mathematical operators and editing operators. Thus ×– would be
treated as (edited to) –. This makes performing a calculation like
4×–5 difficult (this is a simple example to show the nature of the
problem) because it is evaluated as 4–5; unless the user knows the
± key, or is able to transform 4×–5 into a different calculation,
such as 4×5 and then mentally change sign, the feature interaction
is deeply confusing.
Here, we have got a problem redolent of commas: the user’s
actions, pressing buttons, means different things even though they
are pressing the same buttons. The first press defines just a
mathematical operator; the second press is also a correction. The
designers wanted to permit correction, but by doing so they
implicitly forbade a user being able to enter sequences of
operators. Perhaps they thought that – – really means + so should
never be used, but they forgot that ×– does mean something more
interesting than –. Worse, when we look at the frequency of use,
these situations arise so rarely that users will not know what is
going on; they won’t be familiar with the complex semantics.
Typically, they will simply want to do sums, not experiment and
learn how to use the calculator. Indeed, people use calculators
because they do not know the correct result, so they may think the
answer (in the example) really is –1 instead of –20, believing the
calculator is correct; it usually is.

There is a similar problem with the decimal point (a frequent
factor in dosage errors). Entering 3.2.1 on a calculator generally
gets 32.1, but on the Graseby 3400, a medical device, although the
user manual says “it works like a calculator,” entering 3.2.1 gets
3.1 — losing the 2, and reporting no error to the user.

Each decimal point on this medical device is taken to zero the
decimal part of any number being entered (hence the intermediate
step 3.2. gets 3.0, silently) — with final results differing by more
than a factor of ten compared to a calculator. Whereas on a
calculator, entering decimal points loses no digits, but starts the
decimal part of the number. Despite the manual saying they are
the same, in fact the two approaches are completely different
ways to handle the ambiguity of the dot meaning two different
things. It’s the comma problem again in another guise. We do not
know whether this difference matters clinically, but it seems very
sloppy that user manuals are misleading. We need to do
experiments to find out. Our students need to do experiments to
find out.

Students, however, assume that calculators “just work” and
therefore they are not objects of serious study as such: it’s Perry’s
early levels again — there is a right and wrong way of using
calculators and students should know the right way (Ramsden’s
Theory 1 again). But at higher levels of intellectual sophistication
in Perry’s levels, the students see that “the right way” is a naïve
view of HCI.

The example shows that interacting with a calculator is non-
trivial, induces latent errors, yet is amenable to computer science
(here, compiling). In fact, the example above was based very
closely on a real case, where a patient died in 2006 as a result of
the above calculation having an error in the execution of the 4×24
step [9]. Students can obtain this report, or find other similar
reports on the internet [e.g., 20], and critique them.

As this example came from a real case, it is interesting to look at
the interactive device involved in the fatal incident. The infusion
pump itself was an Abbott AIM Plus. In the mode where the nurse
should enter mL/hr, the display option is incorrectly shown as
mL; moreover, the HELP button provides information on 2 out of
3 options — which does not include the incorrectly labeled mL
(mL/hr) option! The pharmacy computer printed the label on the
fluorouracil bag, including many numbers 1.2mL/hr, 28.8, 50, etc.
Both nurses incorrectly calculated 28.8 (i.e., a factor of 24 too
high), yet this incorrect number had been calculated by the
pharmacy, presumably in case the infusion pump in use was
calibrated in mL/day. The label would have provided
confirmation bias for the nurses and reduced their attention to
relevant detail; indeed, the cognitive load of compiling a complex
calculation would have reduced their vigilance generally.

The analysis of this incident [9] performed a human factors study
of the Abbott pump. Five chemotherapy nurses worked through a
scenario similar to the actual incident. All five nurses had
significant problems, including repeating the errors that led to the
fatality. It took the analysis maybe an afternoon to establish that
nurses had problems. What should one conclude? That nurses
should be better trained? That hospitals should do more careful
procurement? That designers should do human factors studies
before releasing products? All of these! What should one
conclude? That HCI understanding is missing from the entire
process, from the earliest concept, even to the final report after the
something has gone dreadfully wrong.

The Abbott AIM does do some things that are recommended by
good HCI practice. For example, it provides dose reviews. We can
imagine that the designer was taught in their HCI course that
validation is important, so the AIM validates the numbers the user
entered. If the user enters 28.8, later the device says (not in so
many words) “is 28.8 what you really meant?” Unfortunately that
is merely recycling a simple HCI fact in the design, not thinking it
through.

The report [9] criticises the design for merely reviewing numbers
entered rather than numbers calculated from them; that is, the
Abbott confirmed the nurse had entered 28.8 — which is what the
nurse mistakenly intended to enter, so telling them what they
wanted and expected is not very good validation — but if it had
calculated that at this rate the volume of drug to be infused (which
the pump knows) would be consumed in four hours, the nurse
would most probably have been alarmed as the infusion should
have lasted four days (96 hours). The way the AIM pump is
currently designed, it does not make the user think. The user
entered 28.8. Did you mean to enter 28.8? Isn’t that just what I
said? Of course, I said 28.8. Yes. The device has engaged with the
user at a Theory 1 level. What fact did you teach me? Please
confirm. Nobody thinks. Nobody realises that the facts can be
triangulated to new facts. In this case, the AIM pump had several
facts — such as the rate of drug delivery and the volume of the
drug available. A simple triangulation could calculate that it will
only run for four hours. The nurse (we presume) knows it is for
four days, but the device never asked if anything made sense.

These examples show that calculations and calculators are very
problematic in the medical domain. The examples also suggest
that proper attention to easily taught HCI principles could have an
enormous and very worthwhile impact on the world. Conversely it
is obvious that awareness in the medical profession and the
medical device industry of the potential for improvement is very
limited; the incident analyses cited above ignore these issues.
Reports suggest clinicians should be better trained to use the
devices; yet the standard view in usability is that the devices
should be designed to fit the users’ tasks. It is easier (and cheaper)
to blame operators and/or their training than question the whole
culture of interactive systems technology! Why aren’t devices
made simpler and consistent with clinical practice so that operator
training becomes simpler, rather than the other way around? What
are our students going to do?

Can calculators be made better? Will Thimbleby shows a
prototype calculator that appears to make dosage calculations a lot
easier [25]. There are many reasons why the calculator is good
[23], but students should be encouraged to try using it, and to
devise experiments to determine whether our intuitions about its
usability survive the rigors of the laboratory. One might also do
experiments with nurses, as they are likely to have weaker
arithmetic skills than HCI students.

Here is a real screen-shot of the calculation example shown above
taken directly from our prototype calculator:

All text was hand-written, but then morphed in a typeset font.
Note that the user has failed to provide a closing bracket “)” and
this has been supplied automatically, along with the correct

answer 1.2. The calculator reduces the size of the decimal part of
numbers, as this improves readability. The calculator is based on
sophisticated computer science: a 2D parser/compiler, a numerical
constraint satisfier, a non-proprietary (cross-platform) maths
handwriting recogniser, and graphical animation. The calculator
also has many more smoothly-interacting features we do not
describe here, including complex exponents, radicals, font scaling,
a direct manipulation memory and repository of equations, etc.

It is easy to imagine a student project might develop this
calculator to make calculations more reliable. Below is a very
simple possibility (drawn in a graphics program) that would be
displayed on an LCD in colour so the nurse’s data and the 1.2
mL/hr answer are clearly highlighted:

Notice how the calculator “knows” that days have 24 hours, thus
avoiding at least one source of error. As the nurse writes the
values 5250 etc, confirmational sound or voice feedback can be
provided; the highlighting circle might have a varying visual
texture to make it salient. Different layouts and semantic
constraints (e.g., type checking) need to be evaluated in use for
their effectiveness. Ideally, the calculator would handshake the
rate and the units with the infusion pump using Bluetooth or
IRDA, then confirm with the nurse, thus avoiding the possibility
of further keying error on the device — or, of course, the
calculator could be in the device. Further, if the calculator can
communicate with the pharmacy (and/or the EPR, electronic
patient record), then all figures on the display shown above can
either be automatically provided — hence correct — or they can
simply be confirmed (in some straight forward interaction) by the
nurse, rather than entered, thus avoiding typing/writing errors.
There are many possibilities; usability experiments will find,
evaluate and refine them. The picture is just that: a picture that is
no more than a paper prototype, yet it stimulates thinking. We
know that using conventional calculation/calculators, nurses use
the wrong dosage formula 29.5% of the time [12]; this is a source
of error that should be fixable in the same way, or similar ways, to
those illustrated above. Even such a simple sketch has great
potential value; won’t it be motivating for the student to know
their work, even as sketchy, has value?

Since current clinical papers do not explore the HCI at all, strictly
we are at present unable to say whether incidents are partly or
fully caused by bad HCI. Certainly, there is considerable scope for
student projects, particularly if any students know of any friendly
nurses who they can interview. Soon our students will be writing
projects, then writing papers, then engaging with the HCI and user
communities — and starting to change the world.

4. CONCLUSIONS
A proper concern of any subject is how people learn that subject,
for if they do not learn it successfully, then the subject fails —
certainly the academic community fails. If the subject is too
complex, obfuscated, uninteresting, dead, then it becomes at best
the isolated thinking of the few. In any subject with practical

application, such as HCI, the subject needs to be successful in the
world: it needs practitioners who understand and can apply the
subject in order to make use of it. We therefore have to focus on
pedagogy as a proper part of the discipline.

How do we teach HCI? My answer is to enthuse students with the
enormous impact HCI can make to the quality of life around them.
In this article, we looked at life-and-death stories about medical
devices because, considered as examples in HCI, they are in fact
relatively simple and uncluttered compared to examples based on,
say, consumer devices such as mobile phones (with integrated
music players, cameras, web browsers, etc). It’s also clear in this
domain that the HCI answers are not a matter of learning facts and
answering questions. There is debate to be had, and students can
get into it and start thinking, doing experiments, and triangulating
new ideas from what they are learning. From the compelling
examples shown briefly in this paper (in section 3), it is easy to
show students that they are starting to learn important, life and
death things that the world needs to know and to apply. Some of
them may go on to have a role in that in their professional careers.

Moreover, HCI is concerned with how people learn to use
complex systems effectively, and many issues in HCI can also be
presented as reflections on how HCI itself is taught; HCI is a
complex system of sorts, and students are users of sorts. Am I
teaching HCI in a way that is compatible with what I am teaching
about good HCI practice?

If, as I’ve suggested, HCI is a subject with a crucial role in quality
of life, then we should take it seriously. It amazes me that taking
things seriously — particularly in higher education — often leads
to us making things private and unexciting. On the contrary, HCI
begs to be public and exciting. Why do we hide academic results
(and get bored) but get excited over football games, where success
and failure are public? People strive to get better when they get
excited, and frankly most students fail to work out how to get
excited over anything that is as private and secretive as
conventional education has become. As teachers we have a
pleasurable duty to work out with our students what is exciting.

HCI is indeed a life and death subject that is everywhere, even in
the classroom. Even when the projector doesn’t work, perhaps
especially when the teacher despairs with the projector’s terrible
HCI, then HCI becomes relevant and alive to the students.

5. ACKNOWLEDGMENTS
Just as teaching gets better when students engage with the teacher,
this paper is far better than it would have been because some of its
early readers took the trouble to engage with its author. Alan
Blackwell (Cambridge University), Paul Cairns (University of
York), and Tony Hoare (Microsoft), each made extremely
valuable comments, indeed valuable criticisms, for which I am
very grateful.

6. REFERENCES
[1] Appel, A. W. & Palsberg, J. 2002. Modern compiler

implementation in Java, Cambridge University Press.
[2] Brennan, T. A., Leape, L. L., Laird, N. M., Hebert, L.,

Localio, A. R., Lawthers, A. G., Newhouse, J. P., Weiler, P.
C. & Hiatt, H. H. 1991. “Incidence of adverse events and
negligence in hospitalized patients.” Results of the Harvard
Medical Practice Study I, New England Journal of
Medicine, 324:377–84.

[3] Carroll, J. M. ed., 1998. Minimalism: Beyond the Nurnberg

Funnel, MIT Press.
[4] Crystal, D. 2006. The fight for English, Oxford University

Press.
[5] Degnan, B. A., Murray, L. J., Dunling, C. P., Whittlestone,

K. D., Standley, T. D. A., Gupta, A. K. & Wheeler, D. W.
2006. “The effect of additional teaching on medical
students’ drug administration skills in a simulated
emergency scenario,” Anaesthesia, 61(12):1155-1160.

[6] Department of Health, UK, 2003. Design for patient safety.
[7] Feynman, R. P., Gottlieb, M. A. & Leighton, R. 2006.

Feynman’s tips on physics, Addison-Wesley.
[8] Husch M., Sullivan C., Rooney D., Barnard C., Fotis M.,

Clarke J., Noskin G., 2005. Insights for the sharp end of
intravenous medication errors: implications for infusion
pump technology, Quality and Safety in Health Care, 14:80-
86.

[9] ISMP, Institute for Safe Medication Practices, Canada,
2007. Fluorouracial Incident Root Cause Analysis.
http://www.ismp-canada.org

[10] Kaushal, R., Bates, D. W., Landrigan, C., McKenna, K. J.,
Clapp, M. D., Federico, F., Goldmann, D. A. (2001)
“Medication Errors and Adverse Drug Events in Pediatric
Patients,” Journal of the American Medical Association,
285(16):2114-2120.

[11] Kline, M. 1977. Why the professor can’t teach, St Martin’s
Press.

[12] Lesar, T. S. 1998. “Errors in the use of medication dosage
equations,” Archives of Pediatrics & Adolescent Medicine,
152:340-344.

[13] MHRA, UK Medicines and Healthcare products Regulatory
Agency, 2006. One Liners.

[14] Ong, W. 1982. Orality and literacy: the technologizing of

the word, Methuen.
[15] Perry, W. G. 1999. Forms of ethical and intellectual

development in the college years, Jossey-Bass.
[16] Potts, M. J. & Phelan, K. W. 1996. “Deficiencies in

calculation and applied mathematics skills in pediatrics
among primary care interns,” Archives of Pediatrics &
Adolescent Medicine, 150(7):748-752.

[17] Ramsden, P. 2003. Learning to teach in higher education,
2nd ed., RoutledgeFarmer, 2003.

[18] Reason, J. 1990. Human Error, Cambridge University
Press.

[19] Santamaria, N., Norris, H., Clayton, L. & Scott, D., 1996.
“Drug Dosage Calculation Abilities of Graduate Nurses,”
Joint ERA-AARE Conference.

[20] Scottish Executive, 2006. Unintended overexposure of
patient Lisa Norris during radiotherapy treatment at the
Beatson Oncology Centre, Glasgow in January 2006.

[21] Thimbleby, H. 2000. “Calculators are Needlessly Bad,”
International Journal of Human-Computer Studies,
52(6):1031-1069.

[22] Thimbleby, H. 2004. “Supporting Diverse HCI Research,”
Proceedings BCS HCI Conference, 2, edited by A. Dearden
and L. Watts, Research Press International, pp125-128.

[23] Thimbleby, H. 2006. “Applying Bohm’s ideas in the age of
intelligent environments,” International Symposium on
Intelligent Environments, pp27-33.

[24] Thimbleby, H. 2007. Press on: Principles of interaction
programming, MIT Press.

[25] Thimbleby, W. 2004. “A Novel Pen-Based Calculator and
Its Evaluation,” Proceedings of the third Nordic conference
on Human-Computer Interaction, pp445-448.

