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Global Arrays

» Developed over 20 years

» Under active development and focusing on preparing for
future exascale platforms

» Available across platforms from PCs to leadership
machines

» Easy access to distributed data on multiprocessor
machines

m High programmer productivity

» Library available from: http://www.emsl.pnl.gov/docs/
global
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Outline of the Tutorial

» Overview of parallel programming

» Introduction to Global Arrays programming model
» Basic GA commands

» Advanced features of the GA Toolkit

» Current and future developments in GA

o
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Why Parallel?

» When to Parallelize:
m Program takes too long to execute on a single processor
m Program requires too much memory to run on a single processor

m Program contains multiple elements that are executed or could be
executed independently of each other

» Advantages of parallel programs:

m Single processor performance is not increasing. The only way to
improve performance is to write parallel programs.

m Data and operations can be distributed amongst N processors

instead of 1 processor. Codes execute potentially N times as
quickly.

» Disadvantages of parallel programs:
m They are bad for your mental health
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Parallel vs Serial

» Parallel codes can divide the work and memory required
for application execution amongst multiple processors

» New costs are introduced into parallel codes:
m Communication
m Code complexity
m New dependencies

o
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Communication

» Parallel applications require data to be communicated
from one processor to another at some point

» Data can be communicated by having processors
exchanging data via messages (message-passing)

» Data can be communicated by having processors directly
write or read data in another processors memory
(onesided)
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Data Transfers

» The amount of time required to transfer data consists of
two parts

m Latency: the time to initiate data transfer, independent of
data size

m Transfer time: the time to actually transfer data once the
transfer is started, proportional to data size

Latency Data Transfer

Because of latency costs, a single large message
is preferred over many small messages

o
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Parallel Efficiency

» Strong Scaling:

For a given size problem, the time to execute is inversely proportional
to the number of processors used. If you want to get your answers
faster, you want a strong scaling program.

» Weak Scaling:

If the problem size increases in proportion to the number of
processors, the execution time is constant. If you want to run larger
calculations, you are looking for weak scaling.

» Speedup:

The ratio of the execution time on N processors to the execution time
on 1 processor. If your code is linearly scaling (the best case) then
speedup is equal to the number of processors.

» Strong Scaling and Weak Scaling are not incompatible. You can have

both.
7
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Sources of Parallel Inefficiency

» Communication

m Message latency is a constant regardless of number of
processors

m Not all message sizes decrease with increasing numbers of
processors

m Number of messages per processor may increase with number of
processors, particularly for global operations such as
synchronizations, etc.

» Load Imbalance

m Some processors are assigned more work than others resulting in
processors that are idle

Note: parallel inefficiency is like death and taxes. It's inevitable. The
goal of parallel code development is to put off as long as possible the
point at which the inefficiencies dominate.
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Increasing Scalability

» Design algorithms to minimize communication
m Exploit data locality
m Aggregate messages

» Overlapping computation and communication

m On most high end platforms, computation and communication use
non-overlapping resources. Communication can occur
simultaneously with computation

m Onesided non-blocking communication and double buffering
» Load balancing

m Static load balancing: partition calculation at startup so that each
processor has approximately equal work

m Dynamic load balancing: structure algorithm to repartition work
while calculation is running. Note that dynamic load balancing
generally increases the other source of parallel inefficiency,
communication.
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Outline of the Tutorial

» Overview of parallel programming

» Introduction to Global Arrays programming model
» Basic GA commands

» Advanced features of the GA Toolkit

» Current and future evelor |
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Distributed Data vs Shared Memory
Shared Memory:

Data is in a globally accessible address space, any processor

can access data by specifying its location using a global
index

Data is mapped out in
a natural manner
(usually
corresponding to the
original problem) and
access is easy.
Information on data
locality is obscured
and leads to loss of
performance.

(150,200?3?/
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Distributed vs Shared Data View

Distributed Data:

Data is explicitly associated with each processor, accessing
data requires specifying the location of the data on the

processor and the processor itself.

Data locality is explicit
but data access is
complicated.
Distributed computing
is typically
implemented with
message passing

(e.g. MPI)

(0xf5670,P0),

(0xf32674,P5
O

Q

o
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Global Arrays

Distributed dense arrays that can be accessed through a
shared memory-like style

Physically distributed data

single, shared data structure/
global indexing

Y e.g., access A(4,3) rather than
buf(7) on task 2

Global Address Space S

o
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Creating Global Arrays

integer array _ minimum block size
handle character string  on each processor

\ ~o |

g_a = NGA_Create(type, ndim, dims, name, chunk)

_— |

float, double, int, etc. array of dimensions

dimension
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One-sided Communication

i Message Passing:
l Message requires cooperation
. on both sides. The processor
receive  send _ sending the message (P1) and
the processor receiving the
message passing message (PO) must both
MPI participate.

One-sided Communication:
Once message is initiated on
—‘ sending processor (P1) the
] ] sending processor can
- continue computation.
- put g Receiving processor (P0) is
not involved. Data is copied
directly from switch inte
one-sided communication memiory on PO.
EM, ARMCE, MPI-2-1S %/
Poci ot
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Remote Data Access in GA vs MPI

Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then
pack data in local message
buffer
send block of data to
message buffer on PO
else if (me = P0) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer
endif
end loop

local data on PO to local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, Id);

Y

Global Array Global upper Local buffer

handle and lower and array of

indices of data strides
patch

o
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Onesided vs Message Passing

» Message-passing
m Communication patterns are regular or at least predictable
m Algorithms have a high degree of synchronization
m Data consistency is straightforward

» One-sided
m Communication is irregular
o Load balancing
m Algorithms are asynchronous
o But also can be used for synchronous algorithms
m Data consistency must be explicitly managed

o
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GLOBAL ARRAY MODEL OF COMPUTATIONS

Shared Object Shared Object
D
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Global Arrays vs. Other Models

Advantages:

» Inter-operates with MPI

m Use more convenient global-shared view for multi-
dimensional arrays, but can use MPI model wherever needed

» Data-locality and granularity control is explicit with GA’s
get-compute-put model, unlike the non-transparent
communication overheads with other models (except MPI)

» Library-based approach: does not rely upon smart compiler
optimizations to achieve high performance

Disadvantage:
» Data consistency must be explicitly managed
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Global Arrays (cont.)

v

Shared data model in context of distributed dense arrays

Much simpler than message-passing for many
applications

Complete environment for parallel code development
Compatible with MPI

Data locality control similar to distributed memory/
message passing model

Extensible
Scalable

v

vwvyy

vy

o
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Data Locality in GA
What data does a processor own?
NGA_Distribution(g_a, iproc, lo, hi);
Where is the data?
NGA_ Access(g_a, lo, hi, ptr, Id)

Use this information to organize calculation so that
maximum use is made of locally held data

o
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Example: Matrix Multiply

. _ global arrays

= . representing
matrices
nga put nga_get
| — = 2 ® H
dgemm
local buffers on the
processor |

o
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Matrix Multiply
(a better version)

more scalable!

_ (less memory,
* higher parallelism)
atomic accumulate get
_ ==
- - il
dgemm
local buffers on the
processor |

o
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Application Areas

Immigration
Biowarfare wice

WMD Rﬁﬂ\’

Financial . L
ransactions

Border Crossings

Shipping

el

electronic structure chemistry

bioinformatics visual analytics

Major area

Vi ya

smoothed particle (CCOCTTTT LTIl 1t
hydrodynamics material sciences molecular dynamics

hydrology

Others: financial security forecasting, astrophysics, biology, climate analysis

o
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Recent Applications
ScalaBLAST

C. Oehmen and J. Nieplocha. ScalaBLAST: "A scalable

implementation of BLAST for high performance data-
intensive bioinformatics analysis." IEEE Trans. Parallel

Distributed Systems, Vol. 17, No. 8, 2006

Parallel Inspire

Krishnan M, SJ Bohn, WE Cowley, VL Crow, and J Nieplocha,
"Scalable Visual Analytics of Massive Textual Datasets”,
Proc. IEEE International Parallel and Distributed

Processing Symposium, 2007.

Smooth Particle Hydrodynamics

B. Palmer, V. Gurumoorthi, A. Tartakovsky, T. Scheibe, A
Component-Based Framework for Smoothed Particle
Hydrodynamics Simulations of Reactive Fluid Flow in Portous

Media”, Int. J. High Perf. Comput. App., Vol 24, 2010 -
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Recent Applications

T
e N
/ ,// i T~

> - Subsurface Transport Over
Multiple Phases: STOMP

8 g
Elevatiton, ft

Transient Energy Transport
Hydrodynamics Simulator:
TETHYS
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Outline of the Tutorial

» Overview of parallel programming

» Introduction to Global Arrays programming model
» Basic GA commands
» Advanced 5
» Current a

o
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Structure of GA

Application
programming

and MPI are

completely
interoperable. MPI ARMCI
Code can | Global portable 1-sided communication

contain calls operations put, get, locks, etc

to both
libraries.
[ system specific interfaces ];
LAPI, Infiniband, threads, VIA,..
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Writing GA Programs
#include <stdio.h>

» GA requires the following #include "mpi.h"

#include "ga.h"

functionalities from a message #include "macdecls.h’
passing library (MPI/TCGMSG) | int main( int arge, char **argv ) |

MPI Init( &argc, &argv );

m initialization and termination of GA Tnitialize():
processes printf( "Hello world\n" );
m Broadcast, Barrier GA Terminate () ;
= a function to abort the running S
parallel job in case of an error }
» The message-passing library has to
be

m initialized before the GA library

m terminated after the GA library is
terminated

A i1s compatible with MPI %
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Source Code and More
Information

» Version 5.0.2 available
» Homepage at http://www.emsl.pnl.gov/docs/global/

» Platforms

m IBM SP, BlueGene

m Cray XT, XE6 (Gemini)

m Linux Cluster with Ethernet, Infiniband

m Solaris
m Fujitsu
m Hitachi
m NEC
O
]

HP
Windows

o
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Documentation on Writing, Building and
Running GA programs

» For detailed information
m GA Webpage
o GA papers, APls, user manual, etc.
o (Google: Global Arrays)
o http://www.emsl.pnl.gov/docs/global/
m GA User Manual
o http://www.emsl.pnl.gov/docs/global/user.html
m GA API Documentation
o GA Webpage => User Interface

o http://www.emsl.pnl.gov/docs/global/
userinterface.html

m GA Support/Help
o hpctools@pnl.gov or hpctools@emst-pnt.gov
ailing lists: GA-User Forum, and GA Announce \;/
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Installing GA

» GA 5.0 established autotools (configure && make && make install) for building
m No environment variables are required
o Traditional configure env vars CC, CFLAGS, CPPFLAGS, LIBS, etc
m Specify the underlying network communication protocol
o Only required on clusters with a high performance network

¢ e.g. If the underlying network is Infiniband using OpenlIB protocol use:
configure --with-openib

m  GA requires MPI for basic start-up and process management
e You can either use MPIl or TCGMSG wrapper to MPI
¢ MPI is the default: configure
¢ TCGMSG-MPI wrapper: configure --with-mpi --with-tcgmsg
¢ TCGMSG: configure --with-tcgmsg
» Various “make” targets
m  “make” to build GA libraries
m  “make install” to install libraries

m  “make checkprogs” to build tests and examples
m  “make check MPIEXEC="‘mpiexec -np 4’ to run test suite

» VPATH builds: one source tree, many build trees i.e. configurations \i/
Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Compiling and Linking GA Programs

Your Makefile: Please refer to the CFLAGS, FFLAGS, CPPFLAGS, LDFLAGS
and LIBS variables, which will be printed if you “make flags”.

# Suggested compiler/linker options are as follows.

# GA libraries are installed in /Users/d3n000/ga/ga-5-0/bld openmpi shared/lib

# GA headers are installed in /Users/d3n000/ga/ga-5-0/bld openmpi shared/include
#

CPPFLAGS="-I/Users/d3n000/ga/ga-5-0/bld openmpi shared/include"

#

LDFLAGS="-L/Users/d3n000/ga/ga-5-0/bld openmpi shared/lib"

#

# For Fortran Programs:

FFLAGS="-fdefault-integer-8"

LIBS="-1lga -framework Accelerate"

#

# For C Programs:

CFLAGS=""

LIBS="-1lga -framework Accelerate -L/usr/local/lib/gcc/x86 64-apple-darwinl0/4.6.0
-L/usr/local/lib/gcc/x86_ 64-apple-darwinl0/4.6.0/../../.. -lgfortran"

#

You can use these variables in your Makefile: %
For example: gcc $(CPPLAGS) $(LDFLAGS) -o ga_test ga_test.c $(LIBS)
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Writing GA Programs
» GA Definitions and Data types
m C programs include files: ga.h, macdecls.h

m Fortran programs should include the files: mafdecils.fh,
global.fh.

#include <stdio.h>
#include "mpi.h"
#include "ga.h"
#include "macdecls.h"

int main( int argc, char **argv ) ({
/* Parallel program */
}

o
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Running GA Programs

» Example: Running a test program “ga_test” on 2 processes
for GA built using the MPI runtime

» mpirun -np 2 ga_test
» Running a GA program is same as MPI

Pacific Northwest
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11 Basic GA Operations

» GA programming model is very simple.

» Most of a parallel program can be written with
these basic calls
m GA _lInitialize, GA_Terminate
m GA Nnodes, GA_Nodeid
m GA_Create, GA_Destroy
m GA_Put, GA_Get
m GA Distribution, GA_Access
= GA_Sync

o
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GA Initialization/Termination

program main
#include “mafdecls.fh”
#include “global.fh”

» There are two functions to initialize GA: integer ierr
(o]
O Fortran call mpi_ init(ierr)
e subroutine ga_initialize() S Gy e
(o]
o subroutine ga_initialize Itd(limit) write(6,*) ‘Hello world’
m C © .
call ga_ terminate()
o void GA_Initialize() call mpi_finalize()
. TN . . d
o void GA_Initialize_Itd(size_t limit) =
m Python

e import ga, then ga.set_ memory_limit(limit)
» To terminate a GA program:
m Fortran subroutine ga_terminate()

m C void GA Terminate()
N/A ~7
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Parallel Environment - Process Information

» Parallel Environment:
m how many processes are working together (size)
m what their IDs are (ranges from 0 to size-1)

» To return the process ID of the current process:
m Fortran integer function ga_nodeid()
mC int GA_Nodeid()
m Python nodeid = ga.nodeid()

» To determine the number of computing processes:
m Fortran integer function ga_nnodes()
mC int GA_Nnodes()
m Python nnodes = ga.nnodes()

o
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Parallel Environment - Process Information

(EXAMPLE)

program main
#include “mafdecls.fh”
#include “global.fh”

integer ierr,me,nproc

call mpi init(ierr)

call ga_initialize()

me = ga_nodeid()
size = ga nnodes()

$ mpirun —np 4 helloworid

Hello world: My rank is 0 out of 4 processes/nodes
Hello world: My rank is 2 out of 4 processes/nodes
Hello world: My rank is 3 out of 4 processes/nodes
Hello world: My rank is 1 out of 4 processes/nodes

$ mpirun —np 4 python helloworld.py

Hello world: My rank is 0 out of 4 processes/nodes
Hello world: My rank is 2 out of 4 processes/nodes
Hello world: My rank is 3 out of 4 processes/nodes
Hello world: My rank is 1 out of 4 processes/nodes

write(6,*) ‘Hello world: My rank is ' + me + ' out of ' +

& size + ‘processes/nodes’

call ga_terminate()
call mpi finilize()
end

o
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GA Data Types
» C Data types

m C_INT - int

m C LONG - long

m C FLOAT - float

m C DBL - double

m C SCPL - single complex

m C DCPL - double complex
» Fortran Data types

m MT_F_INT - integer (4/8 bytes)

= MT_F REAL - real

= MT F DBL - double precision

m MT_F_SCPL - single complex

m MT_F DCPL - double complex

o
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Creating/Destroying Arrays

» To create an array with a regular distribution:
m Fortran logical function nga_create(type, ndim, dims, name,
chunk, g_a)
m C int NGA_Create(int type, int ndim, int dims]],
char *name, int chunkf[])
m Python g a = ga.create(type, dims, name=
int pgroup=-1)

, chunk=None,

character*(*) name - a unique character string [input]
integer type - GA data type [input]
integer dims() - array dimensions [input]
integer chunk() - minimum size that dimensions
should be chunked into [input]
integer g_a - array handle for future references [output]
dims (1) 5000

dims (2) = 5000

chunk (1) = -1 'Use defaults 7
chunk (2) = -1 \g/
if (.not.nga create(MT_F DBL,2,dims,’Array A’, chunk,g a)) Pacific Northwest

+ call ga_error(“Could not create global array A”,g a) NATIONAL LABORATORY
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Creating/Destroying Arrays (cont.)

» To create an array with an irregular distribution:
m Fortran logical function nga_create irreg (type, ndim,
dims, array_name, map, nblock, g_a)

m C int NGA_Create _irreg(int type, int ndim, int dimsJ],
char* array_name, nblock[], map[])

m Python g a = ga.create irreg(int gtype, dims, block, map,

name="", pgroup=-1)
character*(*) name - a unique character string [input]
integer type - GA datatype [input]
integer dims - array dimensions [input]
integer nblock(*) - no. of blocks each dimension is divided into  [input]
integer map(*) - starting index for each block [input]
integer g a - integer handle for future references [output]

o
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Creating/Destroying Arrays (cont.)

» Example of irregular distribution:

m The distribution is specified as a Cartesian product of distributions for
each dimension. The array indices start at 1.

» The figure demonstrates distribution of a 2-dimensional array 8x10 on
6 (or more) processors. block[2]={3,2}, the size of map array is s=5
and array map contains the following elements map={1,3,7, 1, 6}.

o The distribution is nonuniform because, P1 and P4 get 20 elements
each and processors P0,P2,P3, and P5 only 10 elements each.

5 5

block(l) = 3
block (2) = 2

map (2)
map (3)
map (4)
if (.not.nga create_irreg(MT_F DBL,2,dims, &
—~— "Array A’ ,map,block,g a)) & /
call ga_error(“Could not create array A”,g_a) %/

Pacific Northwest
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Creating/Destroying Arrays (cont.)

» To duplicate an array:
m Fortran logical function ga_duplicate(g_a, g_b, name)
mC int GA_Duplicate(int g_a, char *name)
m Python ga.duplicate(g_a, name)

» Global arrays can be destroyed by calling the function:

m Fortran subroutine ga_destroy(g_a)
mC void GA Destroy(int g_a)

m Python ga.destroy(g_a)

call nga_create (MT_F _INT,dim,dims,

. ar ‘array a’ ,chunk,g a)

integer g_a, g_b; - -

character(*) name: call ga duplicate(g_a,g b, ‘array b’)
name - a character string [input] call ga_destroy(g_a)

g_a - Integer handle for reference array [input]

g b - Integer handle for new array [output]

o
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Put/Get

» Put copies data from a local array to a global array section:
m Fortran subroutine nga_put(g_a, lo, hi, buf, Id)
m C void NGA_Put(int g_a, int lo[], int hi[], void *buf, int Id[])
m Python ga.put(g_a, buf, lo=None, hi=None)

» Get copies data from a global array section to a local array:
m Fortran subroutine nga_get(g_a, lo, hi, buf, Id)
m C void NGA Get(int g_a, int lo[], int hi[], void *buf, int Id[])
m Python buffer = ga.get(g_a, lo, hi, numpy.ndarray buffer=None)

integer
integer
Double precision/complex/integer
integer

g_a global array handle [input]
lo(),hi() limits on data block to be moved [input]
buf local buffer [output]
Id() array of strides for local buffer [input]

Pacific Northwest
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Put/Get (cont.)

» Example of put operation:

m transfer data from a local buffer (10 x10 array) to (7:15,1:8)
section of a 2-dimensional 15 x10 global array into /lo={7,1},
hi={15,8}, |[d={10}

global

double precision buf (10,10)

call nga put(g_a,lo,hi,buf, 1d)

local

hi
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Atomic Accumulate

» Accumulate combines the data from the local array
with data in the global array section:

m Fortran subroutine nga_acc(g_a, lo, hi,
buf, Id, alpha)

m C void NGA Acc(int g_a, int lo[],
int hi[], void *buf, int Id[], void *alpha)

m Python ga.acc(g_a, buffer, lo=None, hi=None,
alpha=None)

integer g_a array handle [input]
integer lo(), hi() limits on data block to be moved [input]
double precision/complex buf local buffer [input]
integer Id() array of strides for local buffer [input]

double precision/complex alpha arbitrary scale factor [input]

o
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Atomic Accumulate (cont)

global

local

ga(i,j) = ga(i,j)+alpha*buf(k,|)

o
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Sync
» Sync is a collective operation

» |t acts as a barrier, which synchronizes all the processes

and ensures that all outstanding Global Array operations
are complete at the call

» The functions are: — —
m Fortran subroutine ga_sync() — .|~
mC void GA_Sync() —_ '

m Python ga.sync() — —

GA_sync is the main
mechanism in GA for
guaranteeing data
consistency
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Global Operations

» Fortran subroutine ga brdcst (type, buf, lenbuf, root)

subroutine ga igop(type, x, n, op)

subroutine ga dgop(type, X, n, op)

’ C void GA Brdcst (void *buf, int lenbuf, int root)
void GA Igop(long x[], int n, char *op)
void GA Dgop (double x[], int n, char *op)

> Python buffer = ga.brdcst (buffer, root)
buffer = ga.gop(x, op)

S
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GLOBAL ARRAY MODEL OF COMPUTATIONS

Shared Object Shared Object
D
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Locality Information

» Discover array elements held by each processor
m Fortran nga distribution(g_a,proc,lo,hi)

m C

void NGA_Distribution(int g_a, int proc, int *lo, int *hi)

m Python Io,hi = ga.distribution(g_a, proc=-1)

integer
integer
integer
integer

g_a array handle [input]
proc processor ID [input]
lo(ndim) lower index [output]
hi(ndim) upper index [output]

do iproc = 1, nproc
write(6,*) ‘Printing g _a info for processor’, iproc
call nga_distribution(g_a,iproc,lo,hi)
do j = 1, ndim
write(6,*) j,lo(j), hi(3)
end do
dnd do

o
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Example: Matrix Multiply

/* Determine which block of data is locally owned. Note that
the same block is locally owned for all GAs. */

NGA Distribution(g_c, me, lo, hi);

/* Get the blocks from g a and g b needed to compute this block in
g c and copy them into the local buffers a and b. */

102[0] = 10[0]; 102[1] = 0; hi2[0] = hi[0]; hi2[1] = dims[0]-1;
NGA Get(g a, lo2, hi2, a, 1d);
103[0] = 0; 103[1] = lo[1]; hi3[0] = dims[1]-1; hi3[1] = hi[1];

NGA _Get(g_b, lo3, hi3, b, 1d);
/* Do local matrix multiplication and store the result in local
buffer c. Start by evaluating the transpose of b. */
for (i=0; 1 < hi3[0]-103[0]+1; i++)
for (§=0; § < hi3[1]-103[1]+1; j++) - [ ]
btrns[j][i] = b[i][J];
/* Multiply a and b to get c */ — °
for(i=0; i < hi[0] - 1lo[0] + 1; i++) {

for (j=0; j < hi[l] - lol[l] + 1; J++) {
cli]l[J] = 0.0;
for (k=0; k<dims[0]; k++) nga_put nga_get
cli][J] = cl[i]1[J] + alillkl*btrns[3j][k]; e —

} E = PS
}
/* Copy ¢ back to g c */ .
NGA Put(g_c, lo, hi, ¢, 1d); dgemm I

7
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New Interface for Creating Arrays

» Developed to handle the proliferating number of properties
that can be assigned to Global Arrays

Fortran

integer function ga create handle ()

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

subroutine

ga set data(g a, dim, dims, type)

ga set array name (g _a, name)

ga_ set chunk (g a, chunk)

ga set irreg distr(g a, map, nblock)
ga_set ghosts (g a, width)

ga set block cyclic(g a, dims)

ga set block cyclic proc grid(g a,

dims, proc grid)

logical function ga allocate(g a)
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New Interface for Creating Arrays

C int GA Create handle()
volid GA Set data(int g a, int dim, int *dims,
int type)
vold GA Set array name (int g a, char* name)
vold GA Set chunk(int g a, 1int *chunk)
vold GA Set irreg distr(int g a, int *map,
int *nblock)
volid GA Set ghosts(int g a, 1int *width)
vold GA Set block cyclic(int g a, 1int *dims)

volid GA Set block cyclic proc grid(int g a, int
*dims,

int *proc grid)

int GA Allocate(int g a)

S
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New Interface for Creating Arrays

Python handle = ga.create handle ()
ga.set data(g a, dims, type)
ga.set array name (g a, name)
ga.set chunk (g a, chunk)
ga.set 1rreg distr (g _a, map, nblock)
ga.set ghosts (g a, width)
ga.set block cyclic(g a, dims)
ga.set block cyclic proc grid(g a, dims,

proc grid)

bool ga.allocate(int g a)

S
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New Interface for Creating Arrays (Cont.)

integer ndim,dims (2) ,chunk (2)
integer g a, g b
logical status

ndim = 2

dims (1) = 5000
dims (2) = 5000
chunk (1) = 100
chunk (2) = 100

Create global array A using old interface
status = nga_create (MT_F DBL, ndim, dims, chunk, ‘array A’, g_a)
Create global array B using new interface

g_b = ga_create_handle()

call ga_set data(g_b, ndim, dims, MT F DBL)
call ga _set chunk(g b, chunk)

call ga_set name(g_b, ‘array B')

call ga allocate(g_b) - .
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Basic Array Operations

» Whole Arrays:
m To set all the elements in the array to zero:

e Fortran subroutine ga_zero(g_a)
o C void GA_Zero(int g_a)
e Python ga.zero(g_a)
m To assign a single value to all the elements in array:
e Fortran subroutine ga_fill(g_a, val)
o C void GA _Fill(int g_a, void *val)
o Python ga.fill(g_a, val)
m To scale all the elements in the array by factorval.
o Fortran subroutine ga_scale(g_a, val)
o C void GA_ Scale(int g_a, void *val)
e Python ga.scale(g_a, val)

Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Basic Array Operations (cont.)

» Whole Arrays:

m To copy data between two arrays:

o Fortran subroutine ga_copy(g_a, g_b)
o C void GA_Copy(intg_a, int g_b)
e Python ga.copy(g_a, g b)

m Arrays must be same size and dimension

m Distribution may be different

“g.a’ “g_b" call ga create(MT_F INT,ndim,dims,
- - ‘array A’ ,chunk a,g_a)
0 1 2 call nga_ create (MT_F INT,ndim,dims,
0 1 ‘array B’ ,chunk b,g b)
3 4 5
= — S 3 4 . Initialize g a ....
6 7 8 call ga _copy(g_a, g_b)
6 7
Global Arrays g_a and g_b distributed on a 3x3 process grid ..\ .0
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Basic Array Patch Operations

» Patch Operations:
m The copy patch operation:

e Fortran subroutine nga_copy_patch(trans, g_a, alo, ahi,
g_b, blo, bhi)

o C void NGA Copy_patch(char trans, int g_a,
int alof], int ahi[], int g_b, int blo[], int bhi[])

e Python ga.copy(g_a, g_b, alo=None, ahi=None,

blo=None, bhi=None, bint trans=False)
m Number of elements must match

‘g_a” ‘g_b”
0 1 2
Copy 0 1I_ L ‘2
3| 4 5 | 1
: : = 3T 15
— = | — |
6| 7 8 T :
6 7 8
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Basic Array Patch Operations (cont.)

» Patches (Cont):
m To set only the region defined by /o and hi to zero:

e Fortran subroutine nga_zero_patch(g_a, lo, hi)
o C void NGA Zero patch(int g_a, int lo[] int hi[])
e Python ga.zero(g_a, lo=None, hi=None)
m To assign a single value to all the elements in a patch:
o Fortran subroutine nga_fill_patch(g_a, lo, hi, val)
o C void NGA_Fill _patch(int g_a, int Io[], int hi[], void *val)
o Python ga.fill(g_a, value, lo=None, hi=None)

o
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Basic Array Patch Operations (cont.)

» Patches (Cont):

m To scale the patch defined by lo and hi by the factor val:

e Fortran

o« C

e Python

subroutine nga_scale patch(g_a, lo, hi, val)

void NGA Scale patch(int g_a, int lo[], int hif],
void *val)

ga.scale(g_a, value, lo=None, hi=None)

m The copy patch operation:

e Fortran

o C

e Python

subroutine nga_copy_patch(trans, g_a, alo, ahi,
g_b, blo, bhi)
void NGA_Copy_patch(char trans, int g_a,
int alof], int ahi[], int g_b, int blo[], int bhi[])
ga.copy(g_a, g_b, alo=None, ahi=None,
blo=None, bhi=None, bint trans=False)
Pac‘ﬂ%o"it?;?%m
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Outline of the Tutorial

» Overview of parallel programming
» Introduction to Global Arrays programming model
» Basic GA commands

» Advanced features of the GA Toolkit

» Current and future developments in GA
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Scatter/Gather

» Scatter puts array elements into a global array:
m Fortran subroutine nga_scatter(g_a, v, subscrpt_array, n)
m C void NGA_Scatter(int g_a, void *v, int *subscrpt_array(],
int n)
m Python ga.scatter(g_a, values, subsarray)
» Gather gets the array elements from a global array into a local array:
m Fortran subroutine nga_gather(g_a, v, subscrpt_array, n)
m C void NGA_Gather(int g_a, void *v, int *subscrpt_array(],
int n)
m Python values = ga.gather(g_a, subsarray, numpy.ndarray
values=None)

integer g_a array handle [input]
double precision v(n) array of values [input/output]
integer n number of values [input]
integer subscrpt_array location of values in global array [input]
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Scatter/Gather (cont.)

» Example of scatter operation:
m Scatter the 5 elements into a 10x10 global array

e Element1v[0]=5
o Element2v[1]=3
e Element3v[2]=8
o Element4 v[3]=7

e Element5v[4]=2

0o 1 2 3 4 5 6 7 8 9

subsArray[0][0] = 2

m After the scatter operation, the five elements
would be scattered into the global array as shown

in the figure.

0
1
subsArray[0][1]=3
subsArray[1][0] = 3 :
subsArray[1][1] = 4 .
subsArray[2][0] = 8 . o
subsArray[2][1] =5 0
subsArray[3][0] = 3
subsArray[3][1] =7
subsArray[4][0] =6
subsArray[4][1] = 3
integer subscript(ndim,nlen)
call nga_scatter(g_a,v,subscript,nlen) t
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Read and Increment

» Read inc remotely updates a particular element in an integer
global array and returns the original value:

m Fortran integer function nga_read_inc(g_a, subscript, inc)

m C long NGA Read inc(int g_a, int subscript[], long inc)
m Python val =ga.read_inc(g_a, subscript, inc=1)

m Applies to integer arrays only

m Can be used as a global counter for dynamic load balancing

integer g_a [input]
integer subscript(ndim), inc [input]

o
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Read and Increment (cont.)

(e]

Create task counter
status = nga_create (MT_F _INT, one,one,chunk,g counter)
call ga_ zero(g_counter)

itask = nga_read inc(g_counter, one,one)

. Translate itask into task ...

Every integer value is read
once and only once by
some processor

NGA_Read_inc
(Read and Increment)

Global Array
Global Lock
(access to data
is serialized)

ﬁ.
o .
DL AL
DR RN
A N
L) . .
NIRIR .

. . . . *e
o . . . ‘e
& $ 3 5
. . . % ..

o
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Hartree-Fock SCF

Obtain variational solutions to the electronic
Schrodinger equation

HY = EWY
within the approximation of a single Slater determinant.

Assuming the one electron orbitals are expanded as

$i(r) =Y Ciyxu(r)
u

the calculation reduces to the self-consistent eigenvalue

problem
FiuyCiy = €Dy Cry

Dyy =Y CurCui
k

Fuy =hyy + %%[2(1“/ | WA)‘ (ua) |V7L)1)a))t \{/
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Parallelizing the Fock Matrix

The bulk of the work involves computing the 4-index elements
(1 v|wA). This is done by decomposing the quadruple loop
into evenly sized blocks and assigning blocks to each
processor using a global counter. After each processor

completes a block it increments the counter to get the next
block

do 1
- ) ;)

do k

.Read and do 1 Accumulate

increment o results

counter F(1,7)=..
Evaluate _
block

o
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Gorden Bell finalist at SC09 - GA Crosses the

Petaflop Barrier

» GA-based parallel
implementation of coupled
cluster calculation
performed at 1.39
petaflops using over
223,000 processes on
ORNL's Jaguar petaflop
system

m Apraet. al., “Liquid
water: obtaining the right

answer for the right
reasons”, SC 2009.

Global Arrays is one of
two programming models
that have achieved this
level of performance
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Direct Access to Local Data

» Global Arrays support abstraction of a distributed array
object

» Object is represented by an integer handle

» A process can access its portion of the data in the
global array

» To do this, the following steps need to be taken:

m Find the distribution of an array, i.e. which part of the
data the calling process owns

m Access the data
m Operate on the data: read/write @\“- -1

|
m Release the access to the data '_0 N 1

3 4
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Access

» To provide direct access to local data in the specified patch of the
array owned by the calling process:

m Fortran subroutine nga_access(g_a, lo, hi, index, Id)
m C void NGA Access(int g_a, int lo[], int hi[],
void *ptr, int [d[])
m Python ndarray = ga.access(g_a, lo=None, hi=None)
m Processes can access the local position of the global array

e Process “0” can access the specified patch of its local position
of the array

o Avoids memory copy

7
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Access (cont.)

status = nga create(MT_F DBL,2,dims,’Array’,chunk,g_a)

call nga_distribution(g_a,me,lo,hi)

call nga_access(g_a,lo,hi,index,1d)

call do_subroutine task(dbl mb (index) ,1d (1))
call nga release(g_a,lo,hi)

subroutine do_subroutine task(a,1dl)

double precision a(1ldl, *)

Ao | 1 2
1
—
Access:
gives a 3 4 S
pointer to this
local patch
6 7 8

o
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Non-blocking Operations

» The non-blocking APls are derived from the blocking interface by
adding a handle argument that identifies an instance of the non-
blocking request.

m Fortran
e subroutine nga_nbput(g_a, lo, hi, buf, Id, nbhandle)
e subroutine nga_nbget(g_a, lo, hi, buf, Id, nbhandle)
e subroutine nga_nbacc(g_a, lo, hi, buf, Id, alpha, nbhandle)
e subroutine nga_nbwait(nbhandle)

o void NGA_NbPut(int g_a, int lo[], int hi[], void *buf, int Id[], ga_nbhdl_t* nbhandle)

o void NGA NbGet(int g_a, int lo[], int hi[], void *buf, int Id[], ga_nbhdl|_t* nbhandle)

e void NGA NbAcc(int g_a, int 0[], int hi[], void *buf, int Id[], void *alpha,
ga_nbhdl_t* nbhandle)

o int NGA_NbWait(ga_nbhdl_t* nbhandle)

m Python
e handle = ga.nbput(g_a, buffer, lo=None, hi=None)
o buffer,handle = ga.nbget(g_a, lo=None, hi=None, numpy.ndarray buffer=None)

e handle = ga.nbacc(g_a, buffer, lo=None, hi=None, alpha=None) %

e ga.nbwait(handle)
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Non-Blocking Operations

double precision bufl (nmax,nmax)
double precision buf2 (nmax,nmax)

call nga nbget(g a,lol,hil,bufl, 1ldl,nbl)
ncount = 1
do while(..... )
if (mod(ncount,2) .eq.l) then
Evaluate l1lo2, hi2
call nga nbget(g a,lo2,hi2,buf2,nb2)
call nga wait(nbl)
Do work using data in bufl
else
Evaluate lol, hil
call nga nbget(g_a,lol,hil,bufl, nbl)
call nga wait(nb2)
Do work using data in buf2

endif

end do

fic Northwest
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SRUMMA Matrix Multiplication

/ /\ Issue NB Get A and B blocks

| | ‘bl do (until last chunk)

: issue NB Get to the next blocks
wait for previous issued call
compute A*B (sequential dgemm)
NB atomic accumulate into “C”

matrix

C=A.B done

Comm.
(Overlap)

Advantages:

- Minimum memory

- Highly parallel

- Overlaps computation and communication
- latency hiding

. - exploits data locality

- patch matrix multiplication (easy to use)

- dynamic load balancing

patch matrix multiplication

http://hpc.pnl.gov/projects/srumma/

o
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SRUMMA Matrix Multiplication:
Improvement over PBLAS/ScaLAPACK

TeraFLOPs

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL

Efficiency 92.9% w.r t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs

12 -

10

Matrix size: 40000x40000

—— SRUMMA

—8— PBLAS/ScalLAPACK pdgemm

— - — Theoretical Peak

------ Perfect Scaling

512 1024 1536 2048
Processors | e
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Cluster Information

» Example:

» 2 nodes with 4 processors each. Say, there are 7
processes created.

m ga_cluster_nnodes returns 2

m ga_cluster nodeid returns 0 or 1

m ga_cluster _nprocs(inode) returns 4 or 3

m ga_cluster procid(inode,iproc) returns a processor ID

- ” ”

Node 0

—

NOde 1 Iorthwest

/ NAITIUNAL LABORATORY
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Cluster Information (cont.)

» To return the total number of nodes that the program is running

on:
m Fortran integer function ga_cluster_nnodes()
mC int GA_Cluster _nnodes()

m Python nnodes = ga.cluster_nnodes()
» To return the node ID of the process:
m Fortran integer function ga_cluster_nodeid()
mC int GA_Cluster_nodeid()
m Python nodeid = ga.cluster_nodeid()

NO N1

o
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Cluster Information (cont.)

» To return the number of processors available on node inode:
m Fortran integer function ga_cluster_nprocs(inode)
mC int GA_Cluster_nprocs(int inode)
m Python nprocs = ga.cluster_nprocs(inode)

» To return the processor ID associated with node inode and the
local processor ID iproc:

m Fortran integer function ga_cluster procid(inode, iproc)
mC int GA_Cluster_procid(int inode, int iproc)
m Python procid = ga.cluster_procid(inode, iproc)
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Accessing Processor Memory

Node
SMP Memory

R9 R10

Ja_acCcCess

S
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Processor Groups
» To create a new processor group:
m Fortran integer function ga_pgroup_create(list, size)
m C int GA_Pgroup_create(int *list, int size)
m Python pgroup = ga.pgroup_create(list)
» To assign a processor groups:
m Fortran logical function nga_create config(
type, ndim, dims, name, chunk, p_handle, g_a)

m C int NGA_Create_config(int type, int ndim,
int dims[], char *name, int p_handle, int chunk[])

m Python g a = ga.create(type, dims, name, chunk, pgroup=-1)

integer g_a - global array handle [input]

integer p_handle - processor group handle [output]
integer list(size) - list of processor IDs in group [input]
integer size - number of processors in group [input]

] %
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Processor Groups

group A group B

+ 44
+ 44

4+

world group
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Processor Groups (cont.)

» To set the default processor group
m Fortran subroutine ga_pgroup_set default(p_handle)
m Cvoid GA Pgroup_set default(int p_handle)
m Python ga.pgroup_set default(p_handle)

» To access information about the processor group:
m Fortran
e integer function ga_pgroup _nnodes(p_handle)
e integer function ga_pgroup nodeid(p_handle)
m C
e int GA_Pgroup nnodes(int p_handle)
e int GA Pgroup nodeid(int p_handle)
m Python
e nnodes = ga.pgroup_nnodes(p_handle)
e nodeid = ga.pgroup_nodeid(p_handle)

integer p_handle - processor group handle [input]

o
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Processor Groups (cont.)

» To determine the handle for a standard group at any point
In the program:
m Fortran
o integer function ga_pgroup_get_default()
o integer function ga_pgroup get_mirror()
e integer function ga_pgroup_get world()
m C
o int GA Pgroup_get default()
e int GA_Pgroup_get mirror()
o int GA Pgroup_get world() )
= Python
o p_handle = ga.pgroup_get default()
e p_handle = ga.pgroup _get _mirror()

 p_handle = ga.pgroup_get_world() \i/
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Default Processor Group
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MD Application on Groups

Scaling of Single Parallel Task Scaling of Parallel MD Tasks on Groups

20 T T T 1200 T T T T T
1000 -
124 ——Speedup i —— Speedup
—=—|deal 800 | —=— |deal .
[oR o
5 3
o 10 + E e 600 .
0. 213
% %
400 .
5+ i
200 -
0 1 1 1 0 1 1 1 1 1
0 5 10 15 20 0 200 400 600 800 1000 1200

Number of Processors Number of Processors

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



Creating Arrays with Ghost Cells

Global Array
» To create arrays with ghost cells:
m For arrays with regular distribution:
o Fortran logical function nga_create ghosts(type,
dims, width, array _name, chunk, g_a) .
e C int int NGA _Create ghosts(int type, i
int ndim, int dims([], int width[],
char *array_name, int chunk]])
o Python g_a = ga.create_ghosts(type, dims, width,
name="", chunk=None, pgroup=-1) 4
m For arrays with irregular distribution: Sk e GhostCal Data
e n-d Fortran logical function nga_create _ghosts_irreg(type,
dims, width, array_name, map, block, g_a)
e C int NGA_Create ghosts_irreg(int type,

int ndim, int dims[], int width[],
char *array_name, int mapl], int block]])
o Python g_a = ga.create_ghosts_irreg(type, dims, width,

N1

block, map, name="", pgroup=-1)

o

integer width(ndim) - array of ghost cell widths [input] Paciﬂg&g&l:ggg?rgm
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Ghost Cells

normal global array
global array with ghost cells

Operations:

NGA Create ghosts - creates array with ghosts cells

GA Update ghosts - updates with data from adjacent processors
NGA Access ghosts - provides access to “local” ghost cell
elements

NGA Nbget ghost dir - nonblocking call to update ghosts cells

o
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Ghost Cell Update

Automatically update ghost
cells with appropriate data

from neighboring .

processors. A multiprotocol '
implementation has been T
used to optimize the |

update operation to match ﬁ
platform characteristics.
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Periodic Interfaces

» Periodic interfaces to the one-sided operations have been
added to Global Arrays in version 3.1 to support
computational fluid dynamics problems on
multidimensional grids.

» They provide an index translation layer that allows users
to request blocks using put, get, and accumulate
operations that possibly extend beyond the boundaries of
a global array.

» The references that are outside of the boundaries are
wrapped around inside the global array.

» Current version of GA supports three periodic operations:
m periodic get
m periodic put

eriodic acc %
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Periodic Interfaces

global
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Periodic Get/Put/Accumulate

v

Fortran subroutine nga_periodic_get(g_a, lo, hi, buf, Id)
C void NGA _Periodic_get(int g_a, int lo[], int hi[], void *buf, int Id[])
Python ndarray = ga.periodic_get(g_a, lo=None, hi=None, buffer=None)

Fortran subroutine nga_periodic_put(g_a, lo, hi, buf, Id)
C void NGA Periodic_put(int g_a, int lo[], int hi[], void *buf, int Id[])
Python ga.periodic_put(g_a, buffer, lo=None, hi=None)

Fortran subroutine nga_periodic_acc(g_a, lo, hi, buf, Id, alpha)

C void NGA Periodic_acc(int g_a, int lo[], int hi[], void *buf, int Id[],
void *alpha)

Python ga.periodic_acc(g_a, buffer, lo=None, hi=None, alpha=None)

7
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Lock and Mutex

» Lock works together with mutex.

» Simple synchronization mechanism to protect a critical
section

» To enter a critical section, typically, one needs to:
m Create mutexes
m Lock on a mutex
m Do the exclusive operation in the critical section
m Unlock the mutex
m Destroy mutexes
» The create mutex functions are:
m Fortran logical function ga_create_mutexes(number)
mC int GA_Create _mutexes(int number)
m Python bool ga.create_mutexes(number) \:/

Pacific Northwest
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Lock and Mutex (cont.)
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Lock and Mutex (cont.)
» The destroy mutex functions are:

m Fortran logical function ga_destroy mutexes()
m C int GA_Destroy _mutexes()
m Python bool ga.destroy mutexes()
» The lock and unlock functions are:
m Fortran

e subroutine ga_lock(int mutex)

e subroutine ga_unlock(int mutex)
m C

e void GA lock(int mutex)

e void GA unlock(int mutex)
m Python

e ga.lock(mutex)

e ga.unlock(mutex) %

Pacific Northwest
integer mutex [input] ! mutex id NATIONAL LABORATORY
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Fence

>

>

Fence blocks the calling process until all the data transfers corresponding to
the Global Array operations initiated by this process complete

For example, since ga_put might return before the data reaches final
destination, ga_init_fence and ga_fence allow process to wait until the data
transfer is fully completed

m ga_init_fence();

m ga put(g_a, ...);

m ga_fence();

The initialize fence functions are:

m Fortran subroutine ga_init_fence()
m C void GA_Init_fence()

m Python ga.init_fence()

The fence functions are:

m Fortran subroutine ga fence()

m C void GA_Fence()

m Python ga.fence() xi/

Pacific Northwest
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Synchronization Control in Collective

Operations
» To eliminate redundant synchronization points:

m Fortran subroutine ga_mask_sync(prior_sync_mask,
post_sync_mask)

m C void GA Mask_sync(int prior_sync_mask,
int post_sync_mask)

m Python ga.mask_sync(prior_sync_mask, post_sync_mask)

logical first - mask (0/1) for prior internal synchronization [input]
logical last - mask (0/1) for post internal synchronization [input]

status = ga duplicate(g a, g b)
call ga mask(0,1)

call ga zero (g Db) |

Pacific Northwest
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Linear Algebra

» To add two arrays:

m Fortran
m C
m Python

subroutine ga_add(alpha, g_a, beta, g b, g c)
void GA_Add(void *alpha, int g_a, void *beta, intg_b, int g _c)
ga.add(g_a, g_b, g_c, alpha=None, beta=None,

alo=None, ahi=None, blo=None, bhi=None,

clo=None, chi=None)

» To multiply arrays:

m Fortran subroutine ga_dgemm(transa, transb, m, n, k, alpha, g_a, g _b,
beta, g _c)
m C void GA_Dgemm(char ta, char tb, int m, int n, int k, double
alpha, int g_a, int g_b, double beta, int g_c)
m Python def gemm(bool ta, bool tb, m, n, k, alpha, g_a, g _b, beta, g _c)
double precision/complex/integer alpha, beta - scale factor [input]
integer g a,gb,gc - array handles [input]
character*1 transa, transb [input]
integer m, n, k [input]

Pacific Northwest
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Linear Algebra (cont.)

» To compute the element-wise dot product of two arrays:
m Three separate functions for data types

o Integer
¢ Fortran ga idot(g_a, g b)
¢C GA Idot(intg_a, intg_b)

e Double precision
¢ Fortran ga ddot(g_a, g _b)
¢C GA _Ddot(intg_a, intg_b)
e Double complex
¢ Fortran ga zdot(g _a, g b)
¢C GA Zdot(intg_a, intg_b)
m Python has only one function: ga_dot(g_a, g b)

integer g agb [input]

integer GA _Idot(intg_a, intg_b)

long GA_Ldot(intg_a, intg_b) \i/
float GA_Fdot(intg_a, intg_b) .

double GA_Ddot(int g_a, int g_b) Pacific Northwest |
DoubleComplex GA_Zdot(intg_a, intg_b)
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Linear Algebra (cont.)

» To symmetrize a matrix:

m Fortran subroutine ga_symmetrize(g_a)
mC void GA _Symmetrize(int g_a)
= Python ga.symmetrize(g_a)

» To transpose a matrix:
m Fortran subroutine ga_transpose(g_a, g b)
mC void GA Transpose(intg_a, intg_b)
= Python ga.transpose(g_a, g_b)

o
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Linear Algebra on Patches

» To add element-wise two patches and save the results into another
patch:

m Fortran subroutine nga _add_patch(alpha, g_a, alo, ahi, beta,
g_b, blo, bhi, g_c, clo, chi)
m C void NGA _Add_patch(void *alpha, int g_a, int alo[], int ahif],
void *beta, int g_b, int blo[], int bhif[], int g_c, int clof], int chi[])
m Python ga.add(g_a, g b, g c, alpha=None, beta=None,
alo=None, ahi=None, blo=None, bhi=None,
clo=None, chi=None)

integer g agbgc [input]
dbl prec/comp/int  alpha, beta scale factors [input]
integer ailo, aihi, ajlo, ajhi g_a patch coord [input]
integer bilo, bihi, bjlo, bjhi g_b patch coord [input]
integer cilo, cihi, cjlo, cjhi g_c patch coord [input]

o
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Linear Algebra on Patches (cont.)

» To perform matrix multiplication:

m Fortran subroutine ga_matmul_patch(transa, transb, alpha, beta,
g_a, ailo, aihi, ajlo, ajhi,
g_b, bilo, bihi, bjlo, bjhi,
g_c, cilo, cihi, cjlo, cjhi)

m C void GA_Matmul_patch(char *transa, char* transb,
void* alpha, void *beta,
int g_a, int ailo, int aihi, int ajlo, int ajhi,
int g_b, int bilo, int bihi, int bjlo, int bjhi,
int g_c, int cilo, int cihi, int cjlo, int cjhi)

m Fortran subroutine ga_matmul_patch(bool transa, bool transb,
alpha, beta,
g_a, ailo, aihi, ajlo, ajhi,
g_b, bilo, bihi, bjlo, bjhi,
g_c, cilo, cihi, cjlo, cjhi)

integer g_a, ailo, aihi, ajlo, ajhi patch of g_a [input]

integer g_b, bilo, bihi, bjlo, bjhi patch of g_b [input]

integer g_gc, cilo, cihi, cjlo, cjhi patch of g_c [input] %
dbl prec/comp alpha, beta scale factors [input]

character*1 transa, transb transpose flags [input] Pacific Northwest

NATIONAL LABORATORY
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Linear Algebra on Patches (cont.)

» To compute the element-wise dot product of two arrays:
m Three separate functions for data types

o Integer
¢ Fortran nga_idot_patch(g_a, ta, alo, ahi, g_b, tb, blo, bhi)
¢ C NGA Idot_patch(int g_a, char* ta,

int alo[], int ahi[], int g_b, char* tb, int blof[], int bhi[])
o Double precision
¢ Fortran nga_ddot_patch(g_a, ta, alo, ahi, g_b, tb, blo, bhi)
¢ C NGA_ Ddot_patch(int g_a, char* ta,
int alo[], int ahi[], int g_b, char* tb, int blof[], int bhi[])
o Double complex
¢ Fortran nga_zdot patch(g_a, ta, alo, ahi, g_b, tb, blo, bhi)
¢ C NGA Zdot patch(int g_a, char* ta,
int alo[], int ahi[], int g_b, char* tb, int blo[], int bhi[])
m Python has only one function: ga.dot(g_a, g b,
alo=None, ahi=None, blo=None, bhi=None, bint ta=False, bint tb=False)

integer g agb [input]

integer GA _ldot(intg_a, intg_b)

long GA_Ldot(intg_a, intg_b)

float GA_Fdot(intg_a, intg_b) Pacific Northwest
double GA _Ddot(intg_a, intg_b) NATIONAL LABORATORY
DoubleComplex GA_Zdot(intg_a, intg_b)
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Block-Cyclic Data Distributions

Normal Data Distribution Block-Cyclic Data Distribution

o
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Block-Cyclic Data (cont.)

Simple Distribution Scalapack Distribution
0 1 0 10 1

Pacific Northwest
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Block-Cyclic Data (cont.)

» Most operations work exactly the same, data distribution
Is transparent to the user

» Some operations (matrix multiplication, non-blocking put,
get) not implemented

» Additional operations added to provide access to data
associated with particular sub-blocks

» You need to use the new interface for creating Global
Arrays to get create block-cyclic data distributions

Pacific Northwest
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Creating Block-Cyclic Arrays

» Must use new API for creating Global Arrays

m Fortran subroutine ga_set block cyclic(g_a, dims)

subroutine ga_set block cyclic_proc_grid(g_a, dims,
proc_grid)
m C void GA_Set _block_cyclic(int g_a, int dims][])
0 void GA Set block cyclic_proc _grid(g_a, dims]], proc_grid

m Python ga.set block cyclic(g_a, dims)

ga.set_block cyclic_proc_grid(g_a, block, proc_grid)

integer dimsJ] - dimensions of blocks
integer proc_grid[] - dimensions of processor grid (note that product of all proc_grid dimensions

o
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Block-Cyclic Methods

» Methods for accessing data of individual blocks

m Fortran

*length)

m Python

integer length
integer idx
integer subscript[]

subroutine ga_get block_info(g_a, num_blocks, block dims)
integer function ga_total blocks(g_a)

subroutine nga_access_block_segment(g_a, iproc, index, length)
subroutine nga_access_block(g_a, idx, index, Id)

subroutine nga_access_block _grid(g_a, subscript, index, Id)

void GA_Get _block_info(g_a, num_blocks]], block dimsJ])

int GA_Total_blocks(int g_a)

void NGA_Access block segment(int g_a, int iproc, void *ptr, int

void NGA Access_block(int g_a, int idx, void *ptr, int Id[])

void NGA Access_block_grid(int g_a, int subscript[], void *ptr, int Id[])
num_blocks,block dims = ga.get_block_info(g_a)

blocks = ga.total _blocks(g_a)

ndarray = ga.access_block _segment(g_a, iproc)

ndarray = ga.access_block(g_a, idx)

ndarray = ga.access_block grid(g_a, subscript)

- total size of blocks held on processor %

- index of block in array (for simple block-cyclic distribution) Pacific Northwest

NATIONAL LABORATORY
- location of block in block grid (for Scalapack distribution)
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Interfaces to Third Party Software Packages

» Scalapack
m Solve a system of linear equations
m Compute the inverse of a double precision matrix

» TAO
m General optimization problems

» Interoperability with Others
m PETSc
m CUMULVS

o
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Data Mapping Information

» To determine the process ID that owns the element defined
by the array subscripts:

m Fortran logical function nga_locate(g_a,
subscript, owner)

m C int NGA Locate(int g_a,
int subscript[])

® Python proc = ga.locate(g_a, subscript)

integer g_a array handle [input]
Integer subscript(ndim) element subscript [input]
integer owner process id [output]

owner=5
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Data Mapping Information (cont.)

» To return a list of process IDs that own the patch:
m Fortran logical function nga_locate region(g_a, lo,
hi, map, proclist, np)
m C int NGA _Locate region(int g_a, int lof],
int hi[], int *mapl], int procs[])
m Python map,procs = ga.locate region(g_a, lo, hi)

integer np - number of processors that own a portion of block  [output]

integer g_a - global array handle [input]

integer ndim - number of dimensions of the global array procs = {0,1,2,4,5,6}
integer lo(ndim) - array of starting indices for array section [input] map = {log, 1oy, hig, hig,
integer hi(ndim) - array of ending indices for array section [input] lojy, 105,01, higy,
integer map(2*ndim,*)- array with mapping information [output] 1oy, 10,,"hisg, hiyy,
integer procs(np) - list of processes that own a part of array section [output] 104171045, 034y, 0y,

1 1 4
1051, 105,015, 0,
, . .

o
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Outline of the Tutorial

» Overview of parallel programming

» Introduction to Global Arrays programming model
» Basic GA commands

» Advanced features of the GA Toolkit

» Current and future developments in GA

Pacific Northwest
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Profiling Capability

» Weak bindings for ARMCI and GA API
m Enable custom user wrappers to intercept these calls

» ARMCI/GA support in TAU

m On par with support for MPI
m Available in current stable TAU release

» Performance patterns for ARMCI in SCALASCA
m Analysis of traces from ARMCI/GA programs
m Available in an upcoming SCALASCA release

» Consistent naming convention (NGA )

Pacific Northwest
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Restricted Arrays

Create arrays in which only a
few processors have data or
arrays in which data is
distributed to processors in a
non-standard way

ga set restricted(g a, list, nproc)
Proces

s List Global Array

o
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Restricted Arrays

Standard data distribution User-specified distribution

4 nodes, 16 processors

Pacific Northwest
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TASCEL-Dynamic Load Balancing

I SPMD .

=fr v,:
E 2K NGNS

Task
Parallel

Termination

| oo

» Express computation as collection of tasks
m Tasks operate on data stored in PGAS (Global Arrays)
m Executed in collective task parallel phases
» TASCEL runtime system manages task execution
m Load balancing, locality optimization, etc. \;/

Pacific Northwest

» Extends Global Arrays’ execution model
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Global Pointer Arrays

» Create arrays where each array element can be an
arbitrary data object

m May be more limited in Fortran where each array object
might need to be restricted to an arbitrarily sized array of
some type

» Access blocks of array elements or single elements and
copy them into local buffers using standard put/get syntax

» Potential Applications
m Block sparse matrix
m Embedded refined grids
m Recursive data structures
Pa°‘ﬂ%o“i‘2;z‘gY

Proudly Operated by Battelle Since 1965



Global Pointer Arrays (cont.)

Pointer Array I

Pointer
Array
Data

Pacific Northwest
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Global Pointer Arrays (cont.)
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Fault Tolerance

Application

Domain Science Data Redundancy/Fault Recovery

Non-MPI

Global Arrays TCGMSG

Fault
Resilient

Fault ARMCI
Resilient

Process Fault Tolerance Non-MPI
Manager Management message
Infrastructure passing

Pacific North t
Network acific Northwest
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Fault Tolerance (cont.)

» Exploration of multiple data redundancy models for fault
tolerance

» Recent demonstrations of fault tolerance with
m Global Arrays and ARMCI

» Design and implementation of CCSD(T) using this
methodology

m Ongoing Demonstrations at PNNL booth
» Future ongoing developments for leading platforms
m Cray and IBM based systems

Pacific Northwest
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Exascale Challenges

» Node architecture will change significantly
m Multiple memory and program spaces
e Develop GA support for Hybrid Platforms

m Small amounts of memory per core forces the use of non-
SPMD programming/execution models

e Thread safety - support for multithreaded execution

m There’s not enough memory (or memory bandwidth) to fully
replicate data in private process spaces

e Distributing GA metadata within nodes
m Greater portability challenges
e Refactoring ARMCI

o
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Exascale Challenges

» Much shorter mean time between failures
m Fault tolerant GA and ARMCI

» Likely traditional SPMD execution will not be feasible

» Programming models with intrinsic parallelism will be
needed

m MPI & GA in their current incarnations only have external
parallelism

» Data consistency will be more of a challenge at extreme
scales

o
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Scalability — GA Metadata is a key

component

» GA currently allocates metadata for each global array in a
replicated manner on each process

» OK for now on petascale systems with O(10°) processes
m 200,000 x 8 bytes = 1.5 MB per global array instance
m Not that many global arrays in a typical application

PO

v

Local global array portion
owned by PO

Pointers to other processes
global array portions

n entries on each process

/

el
Local global array portion
owned by P1

~7
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Scalability — Proposed Metadata Overhead
Reduction

» Share metadata between processes on the same shared
memory domain (today’s “node”)

» Reduce metadata storage by the number of processes
per shared memory domain

Pointers to global array
PO portions Pl

Local global array portion

Local global array portion
J y P < owned by P1

owned by PO

e Pacific Northwest
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Summary

» Global Arrays supports a global address space

m Easy mapping between distributed data and original
problem formulation

» One-sided communication
m No need to coordinate between sender and receiver
m Random access patterns are easily programmed
e Load balancing
» High Performance

m Demonstrated scalability to 200K+ cores and greater than 1
Petaflop performance

» High programmer productivity

m Global address space and one-sided communication
eliminate many programming overheads

7
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Thanks

» DOE Office of Advanced Scientific and Computing
Research

» PNNL Extreme Scale Computing Initiative

o
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Discussion

o
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