LENESAS APPLICATION NOTE

RO1ANO0664EJ0213
Renesas USB MCU Rev.2.13

Mar 16, 2015

USB Host Human Interface Device Class Driver (HHID) using Basic Mini Firmware

Introduction

This document is an application note describing use of the USB Host Human Interface Device Class Driver (HHID)
built using the USB Basic Mini Firmware of the Renesas USB MCU.

Target Device
RL78/G1C, R8C/3MK, R8C/34K

This program can be used with other microcontrollers that have the same USB module as the above target devices.
When using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

This program has been evaluated using the corresponding MCU’s Renesas Starter Kit board.

Contents
1. OVEIVIEW c.uuuiiniiiieeiiiiiinnnieeeeiiiisisssstseesiisssssssssseesssssssssssssessassssssssssssssasesssssssnns 2
2. LY = a0 LT T L= Nt 4
3. Software CONfiGUrationeeresesaeeassssssssssssssssssssssssssssnssnsssnsnnnnnnnnnnnnnnnn 4
4. Host HID Sample Application Program (APL)cccccceeeririeccrssnneenessssesssnnsessssssssssnnssssssssssssnnsessssssssssnnnnens 8
5. Human Interface DevVice Class (HID)ccciiiiiiiiiiiiiiiiiiiiiiiieiiieieeeneeeeeeeeeeeeeeeeeeeeeeeeseesseeeseesssssesssessessssesssssssnes 21
6. USB Host Human Interface Device Class Driver (HHID)cccceeeiiiiiiiiiiisssiessisssesssssssssssssssssssssssssssssssessssenns 22
7. T T = 14T T 4 TN 38

RO1AN0664EJ0213 Rev.2.13 Page 1 of 39

Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

1.

Overview

This application note describes the USB Host Human Interface Device Class Driver (HHID) and the sample application
using USB Basic Mini Firmware (refer to the Chapter 1.2).

11

Functions and Features

The USB Host Human Interface Device Class Driver (HHID) conforms to the USB Human Interface Device Class
specification (HID from now on and description). It and enables communication with a HID peripheral device.

This class driver is intended to be used in combination with the USB Basic Mini Firmware provided from Renesas
Electronics.

Related Documents

Universal Serial Bus Revision 2.0 specification

USB Class Definitions for Human Interface Devices Version 1.1

HID Usage Tables Version 1.1
[http://www.usb.org/developers/docs/]

User's Manual: Hardware

USB Basic Mini Firmware Application Note (Document No.RO1ANO326EJ)
Available from the Renesas Electronics Website

+ Renesas Electronics Website
[http://www.renesas.com/]

+ USB Devices Page

1.3

[http://www.renesas.com/prod/usb/]

Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

API

APL

cstd

Data Transfer
HCD

HDCD

HEW

HHID

HID

HM

hstd

KBD

MGR

MSE

PP

RSK

Scheduler
Scheduler Macro
SWI1/SW2/SW3
Task

USB
USB-BASIC-FW

Application Program Interface

Application program

Prefix for peripheral & host common function of USB-BASIC-F/W
Generic name of Control transfer, Bulk transfer and Interrupt transfer
Host control driver of USB-BASIC-F/W

Host device class driver (device driver and USB class driver)
High-performance Embedded Workshop

Host human interface device

Human interface device class

Hardware Manual

Prefix for host function of USB-BASIC-F/W

Keyboard device

Peripheral device state manager of HCD

Mouse device

Pre-processed definition

Renesas Starter Kit

Used to schedule functions, like a simplified OS

Used to call a scheduler function

User switches on RSK

Processing unit

Universal Serial Bus

USB-BASIC-F/W

(Peripheral & Host USB Basic Mini Firmware(USB low level) for Renesas USB
MCU)

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015

Page 2 of 39
RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

1.4 How to Read This Document
To run the demo, start by reading “USB Host Human Interface Device Class Driver (HHID) Installation Guide for USB
Basic Mini Firmware”.

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to
look up information on functionality and interfaces as needed for your particular solution.

Chapter 4 explains how the default host HID demo application works. You will change this to create your own solution.

Understand how all code modules are divided into tasks, and that these tasks pass messages to one another. This is so
that functions (tasks) can execute in the order determined by a scheduler and not strictly in a predetermined order. This
way more important tasks can have priority. This plus the use of a function callback mechanism enables the USB code
to be non-blocking. The task mechanism is described in Chapter 1.2 above "USB Basic Mini Firmware Application

Note".
Al HID tasks are listed in Chapter 3.4.

RO1ANO664EJ0213 Rev.2.13 Page 3 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

2. Register Class Driver

A class driver must be registered with the USB-BASIC-F/W. Please consult function usb_hapl_registration() in
r_usb_hhid_apl.on how to register a class driver with USB-BASIC-F/W. For details, please refer to USB Basic Mini
Firmware application note.

3. Software Configuration

3.1 Module Configuration
The HHID comprises the HID class driver and the device drivers for mouse and keyboard.

Figure 3.1 shows the structure of the HHID software modules. Table 3-1 lists the modules and an overview of each.

User application (APL)

USB Host class driver

LED output driver

USB-BASIC-F/W

Manager (MGR)

Key input driver

USB Host Control Driver (HCD)

LCD/LED/KEY (H/W) USB Host controller (H/W)

Figure 3.1 Module Structure

Table 3-1 Module Function Descriptions

Module Name Description Notes

APL User application program. Created
Board (RSK) switches initiate communication with attached HID by the
devices and control suspend/resume. customer.
The LCD displays the information received from the HID device.

HHID The registered device class driver checks operation of the connected
device. The USB-BASIC-F/W checks whether the connected device
enables for HHID. The following data transfers are requested of
USB-BASIC-F/W by the APL.
1) Control of connected device by HID requests
2) Data transfer with connected device
Transfer results are notified to APL by a callback function.

USB-BASIC-F/W | USB Basic Mini Firmware (Host Hardware Control & Device state
Management)

RO1AN0664EJ0213 Rev.2.13 Page 4 of 39

Mar 16, 2015

RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

3.2 Overview of Application Program Functions
The main functions of the host demo application:

1. Data is received from the connected USB peripheral device and is displayed on the LCD.

a) When a USB mouse is connected (Mouse mode), the displacement values of the X and Y axes are shown on
the LCD. An LED is toggled by pressing the mouse buttons.

b) When a USB keyboard is connected (Keyboard mode), show one character of the key input data from the USB
keyboard report. Moreover, the NumLock LED is turned on when the device is in the configured state and the
NumLock LED is turned off when the device is in the suspended state.

2. Suspends/Resume of USB device operations.
a) The USB device is suspended and resumed alternately when SW3 on the RSK is pressed.
b) Resume is executed when a remote wakeup signal is received from a USB device.

Switch input operation is described in Table 3-2.

Table 3-2 User switch input operation

Switch Function Description Switch Number

Data transfer start Start ongoing requests for report reception. SW2

State change Change the following USB state. SW3
In data reception wait state (resumed), go to Suspend
state.
In Suspend state, go to data reception wait state
(Resume).

RO1AN0664EJ0213 Rev.2.13 Page 5 of 39

Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

3.3 File Configuration List

3.3.1 Folder Structure
The folder structure of the files supplied with the device class is shown below.

The source codes dependent on each MCU and evaluation board are stored in each hardware resource folder
(\devicename\src\HwResource).

[RL78/G1C, R8C]

+ (Integrated development environment) [CS+, HEW, IAR Embedded Workbench, €? studio]

+(MCU name) Project File
+ HOST Build result
+ src
+——— HIDFW [Human Interface Device Class driver | See Table 3-3
| + inc Common header file of HID driver
| + src HID driver
+————SmplMain [Sample Application]
| + APL Report display application
+————USBSTDFW [Common USB code that is used by all USB firmware |
| + inc Common header file of USB driver
| + src USB driver
+——— HwResource [Hardware access layer; to initialize the MCU |
+ inc Common header file of hardware resource
+ SIC Hardware resource
RO1AN0664EJ0213 Rev.2.13 Page 6 of 39

Mar 16, 2015

RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

3.3.2 File Structure

Table 3-3 shows the file structure provided in the HHID.

Table 3-3 File Structure

Folder File Name Description Notes
HIDFW!/inc r_usb_class_usrcfg.h USB host HID user definition

HIDFW!/inc r_usb_hhid_define.h HHID type definitions and macro definitions

HIDFW!/inc r_usb_hhid_api.h HHID prototype, external reference

HIDFW/src r_usb_hhid_api.c HHID API functions

HIDFW/src r_usb_hhid_driver.c HHID driver functions

SmplMain main.c Main loop function

SmplMain/APL | r_usb_hhid_apl.c Sample application program

3.4 System Resources
34.1

System Resource Definitions

Table 3-4 lists the Task ID and the task priority definitions used to register HHID in the scheduler. These are defined in

the r_usb_ckernelid.h header file.

See 1.4 for why tasks are used.

Table 3-4 List of Scheduler Registration IDs

Scheduler registration task Description Notes
USB_HHID_TSK HHID (R_usb_hhid_task)
Task ID: USB_HHID_TSK
Task priority: 2
USB_HCD_TSK HCD (R_usb_hstd_HcdTask)
Task ID: USB_HCD_TSK
Task priority: O
USB_MGR_TSK MGR (R_usb_hstd_MgrTask)
Task ID: USB_MGR_TSK
Task priority: 1
Mailbox ID / Default receive task Message description Notes
USB_HHID_MBX HHID -> HHID / APL -> HHID mailbox ID
/ USB_HHID_TSK
USB_HCD_MBX HCD task mailbox ID
/ USB_HCD_TSK
USB_MGR_MBX MGR task mailbox ID
/[USB_MGR_TSK
RO1ANO664EJ0213 Rev.2.13 Page 7 of 39

Mar 16, 2015

RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4. Host HID Sample Application Program (APL)

The host demo application performs display of received USB data when connected to a HID peripheral device. The
HHID application complies with the USB Human Interface Device Class specifications. See Chapter 1.2 item 2 and 3.

4.1 Operating Environment
The Figure 4.1 and Figure 4.2 show a sample operating environment for the software.

HID host USB communication Peripheral HID device
‘A
LCD
P?RBT USB USB
A PORT keyboard
NumLock LED
On / Off

HHID
+

USB-BASIC-F/W

Figure 4.1 Example Operating Environment with a connected keyboard.

USB communication

HID host Peripheral HID device
X/Y motion data
RSK Board “X: 10, Y: -20”
LCD
USB
10 -20 Button data usB
PORT “Right click” PORT USB mouse
LED
012
E":":l LEDQO: left click
| LEDZ1.: right click
) LED2: wheel click
HHID
+
USB-BASIC-F/W

Figure 4.2 Example Operating Environment with a connected mouse.

RO1ANO664EJ0213 Rev.2.13 Page 8 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4.1.1 Report reception

When the USB_HHID_GET_REPORT_PIPEO macro in the r_ush_class_usrcfg.h file is made active, report reception is
made possible by the control transfer GET_REPORT request.

4.2 Description of Application Program Processing
The following lists application operation with respect to Figure 4.4, on page 12.

HID peripheral device attachment. (Corresponding to Process No.0-1)

Whether a connected device is a mouse or a keyboard is automaticallydetermined. The distinction between the two
is done using binterfaceProtocol of the Configuration descriptor (Refer to Table 4-1). Ther application program
does not analyze the report descriptor.

Data Communication
e Start (Process 1-1):
Communication with a USB device is started when SW?2 is pressed (Refer to Table 3-2).

e Complete (Process 2-1):
Communication with a USB device is completed when the callback function is generated from the HHID.

Operation
e During Data Communication (Process 3-1):
Analyzes reports received from the peripheral device and displays them on LCD (Refer to Table 4-2).

e During Suspend state (Process 2-2):
Data communication is terminated and the USB device is suspended when SW3 is pressed (Refer to Table
3-2).

e During Resume (Process 4-1):
USB device is resumed and data communication restarts when SW3 is pressed (Refer to Table 3-2).

Table 4-1 Mode Switching

binterfaceProtocol | Mode Description

0x01 Keyboard Mode Indicates that a keyboard device is connected

0x02 Mouse Mode Indicates that a mouse device is connected

else not possible to operate | Not recognized as an operable HID device connection.

Table 4-2 Operation During Data Communication

Mode Description
Keyboard Mode Display of received key data (key code to ASCII conversion)
Mouse Mode Display of received coordinate data

4.3 Endpoint Specifications
The endpoints use by the HHID is shown in Table 4-3.

Table 4-3 Endpoint Specifications

Endpoint Number Pipe Number Transfer Method Description
0 0 Control In/Out Standard request, class request
Follows received 6 Interrupt In Data transfer from device to host

Descriptor from
attached device

The Endpoint numbers are determined by the device’s endpoint descriptors.

RO1ANO664EJ0213 Rev.2.13 Page 9 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

4.4 Allowed HID Peripherals

44.1 Supported Features
Full-Speed/Low-Speed keyboard s .

Three button mouse (FullSpeed/LowSpeed).

4.4.2 Non-supported Features

Devices with built-in HUB, or composite devices.

4.5 List of APL Functions

Table 4-4 lists the functions of the sample application.

Table 4-4 List of Functions of Sample Application

Function Name

Description

main

Main loop processing.

usb_hsmpl_main_init

System initialization.
Task start up processing for Host USB.

usb_hhid_MainTask

Sample application main processing.

usb_hapl_registration

HHID driver registration.

usb_hhid_class_check

Check that connected device is a HID.

usb_hsmpl device state

Application status change callback function.

usb_hhid_smpl data trans_result

Data transfer complete processing.

usb_hhid_smpl mse_data

Mouse data reception processing.

usb_hhid_smpl_val_to_str

1-byte numeric data string conversion processing.

usb_hhid_smpl kbd_data

Keyboard data reception processing.

usb_hhid_smp_status_set

Sample application mode setting processing.

usb_hhid_smpl_get hid_descriptor

HID descriptor processing.(not used).

usb_hhid_smpl_get report_descriptor

Report descriptor getting processing.(not used).

usb_hhid_smpl_get physical_descriptor

Physical descriptor getting processing.(not used).

usb_hhid_smpl_kbd_led_ctl

Keyboard LED ON/OFF control.

usb_hhid_smpl_set report

SET REPORT request processing.(not used).

usb_hhid_smpl get report

GET REPORT request processing.(not used).

usb_hhid_smpl_set idle

SET IDLE request processing.(not used).

usb_hhid_smpl get idle

GET IDLE request processing.(not used).

usb_hhid_smpl_set_protocol

SET PROTOCOL request processing.(not used).

usb_hhid_smpl_get_protocol

GET PROTOCOL request processing.(not used).

usb_hsmpl_class_result

HID class request callback function.

usb_hhid_smpl_get report_result

GET REPORT request callback function.

usb_hhid_smpl_kbd_led_ctl_result

SET REPORT request callback function.

RO1AN0664EJ0213 Rev.2.13
Mar 16, 2015

RENESAS

Page 10 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4.6 Host Application Task Sequence
The following explains how the LCD display is updated, and state transition controls.

46.1 Displayed Information
The application displays the USB device connection state and the content of reports received on the LCD.

When a keyboard is connected, the character of the last key pressed on the keyboard is displayed.

When a mouse is connected, the X/Y motion data is displayed. Values between -128 to 127 are displayed (right
justified).

If the content of a received report is NULL (no key press on the keyboard or no XY motion from the mouse), the
display on the LCD is not updated. The LCD display state transition is shown in Figure 4.3.

(2) Initial display at power-on

|| DETACH
USB mouse USB keyboard
(2) USB mouse attachment (3) USB keyboard attachment
USB MSE USB KBD
ATTACH ATTACH
l Receive report l Receive report
(4) USB mouse receive report display (5) USB keyboard receive report display
12
A

(6) Detachment display
USB
DETACH

Figure 4.3 The Transition of the Display State on the LCD

RO1ANO664EJ0213 Rev.2.13 Page 11 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4.6.2 State Transitions
Figure 4.4 shows the application state transition. Each block is a program “state”.

[Process No. 0-0] [Process No. 7-0]
Power-on USB [DETACH
DETACH
DETACH
0. Initialization 7. Detach
(USB_HHID_APL_CLOSE)
|
USB MSE
ATTACH Device \ |
-
Attach [Process 0-1]
|
USB KBD USB keyboard or USB mouse attachment
ATTACH (USB_STS_CONFIGURED)
1. Open (configured) 6. Control transfer complete
[Process 1-1] 4
Press the data [Hrocess 6-1]
transfer start switch Data transmission started by RSK SW2 . . [Process 2-3]
. ugb_hhid_MainTask()
press (Report receive request) Control transfer complete
usb_hhid_MainTask() Foe Ex)
A 4 <& usb_hhid_smpl_get_report_result ()
)l)
k[Z.Receivewait P
Ll -
[J
I [Process 2-2]

[Process 1-1]

Press the state

A Data transmission terminated and peripheral
change switch

Receive report)
device suspended . (RSK SW3 pressed.)

usb_hhid_smpl_data_trans_result()

usb_hhid_MainTask()

i
- A 4
3. Receive
4. Suspend
[Process 4-1]
102 Press the state Peripheral device resume by RSK SW3
[Process3-1] change switch press or remote wakeup

usb_hhid_smp_status_set

Received data is displayed (USB_HHID_APL_OFFSET_RESUME)
on the LCD and Report v
receive request

A 5. Resume

usb_hhid_MainTask()

!explanatory note | [Process 5-1]

Report receive request

! State User LCD [Processxx] | usb_hhid_MainTask()
| oparation display process number |

Figure 4.4 Application State Transitions

RO1ANO664EJ0213 Rev.2.13 Page 12 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4.7 SW Processing Flow Graphs
The following shows the application task processing flow overview.

usb_hhid_
AppTask

Mode setting
Open state Receive wait Receive state
state
Data transfer Data transfer start Displ ve dat
start switch OFF switch OFF ISplay r:ec(tje_lvel ata
Switch data — Switch data — (repqr) Isplay
usb_hhid_MseData()
or
Data transfer State change usb_hhid KbdData()
start switch ON switch ON ‘
USB data transfer Change mode setting
Report length forcible termination (Receive wait state)
acquisitionR_usb_hhid_ usb_hhid_ ‘
TransferEnd()
GetReportlength(‘ USB data transfer
\ : - (receive report)
Change mode setting Change mode setting .
(Recei .) (S d) R_usb_hhid_
eceive \?’alt state uspen‘ state PipeTransferExample()
Initial LCD message Change device state
(suspend)
\ R_usb_hstd_
USB data transfer ChangeDeviceState()
(receive report)
R_usb_hhid_
PipeTransferExample()
4
Return
Else
Mode setting
Control transfer complete Suspend state Resume state
State
- State change Change mode setting
Change mode setting switch OFE (Receive wait state)
(Receive wait state))
Switch data
State change USB data Itransfer
switch ON (receive
report)R_usb_hhid_
Change device state PipeTransferExample()
(resume)
R_usb_hstd_
ChangeDeviceState()
<
Return
Figure 4.5 Application Task Processing Flow Overview
RO1ANO0664EJ0213 Rev.2.13 Page 13 of 39

Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

4.8 Sequences charts APL-HHID-HCD
The operation sequence of the sample application program is described below.

4.8.1 Startup to HID Device Attachment

The sequence from sample application program startup through completion of enumeration, application task startup,
and completion of pipe control register setting is illustrated in Figure 4.6

C HW Reset processing) (HHID) (USB-BASIC-F/W)

1
MCU Initialization Explanatory
O Task Start (Receive Massage)
| O Send Message
Main task Start main task @ Task Stop (Return to mainloop)
— Processing function
APL R System call function (Send Message)

Processing (Program executing)

Start USB-BASIC-F/W
R_usb_hstd_HcdOpen()

Register HHID class driver Return
R_usb_hstd_DriverRegistration()

Start HHID task Return
R_usb_hhid_DriverStart()

Return
Start task scheduling (main loop)
i < HID device attach
Application task HHID task R Ldffriﬁ?ﬁc?;vsk
usb_hhid_MainTask R_usb_hhid_task RiusbihstdngrTask
usb_hhid_class_check() Enumeration)
R_usb_hhid_ClassCheck() (2:: Rz‘é'r?sgesc”p“’“
?5 Get Configuration Descriptor)
Return
Enumeration processing
usb_hhid_enumeration_sequence() Get StringDescriptor, etc »
_______________________)
Check OK
R_usb_hstd_ReturnEnuMGR()
usb_hsmpl_device_state() ®
operates by the context of
USB-BASIC-FW. Configuard call-back Enumeration
' usb_hsmpl_device_state() (SET_CONFIGURATION)
Pipe registration / Pipe configuration
USB_$TS_CONFIGURED R_usb_hhid_SetPipeRegistration() o
. Set three pipes
! " It IN
| Return
usb_shhid_apl_function = Return ”

USB_HHID_APL_INIT

Continue with data communication sequence.

Figure 4.6 Startup to HID Device Attachment Sequence

RO1ANO664EJ0213 Rev.2.13 Page 14 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

4.8.2

Data Communication

Figure 4.7 and Figure 4.8 show the data transfer sequence that is connected by the keyboard device. The case where the
report is received by the interrupt transfer is Figure 4.7. The case where the report is received by the control transfer is

Figure 4.8.

APL

HHID

USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

usb_shhid_apl_function = 8)
USB_HHID_APL_INIT

LCD display as

“KBD ATTACH”

Judgment of connected device.
R_usb_hhid_get_hid_protocol()

usb_shhid_apl_function = (@)

USB_HHID_APL_KBD_OPEN

usb_shhid_apl_function =
USB_HHID_APL_KBD_RX_WAIT]

Class request SetReport
R_usb_hhid_class_request()

usb_shhid_apl_function =
USB_HHID_APL_KBD_OPEN

USB_HID_SET_REPORT

Class request SetProtocol
R_usb_hhid_class_request) _ _ _ _
usb_shhid_apl_function =
USB_HHID_APL_KBD_RX_WAIT
USB_HID_SET_PROTOCOL

Data transmit request (receive report)
R_usb_hhid_PipeTransferExample()

USB_HHID_TCMD_DATA_TRANS

USB_DATA_OK / USB_DATA_READING /
USB_DATA_SHT
Command notification

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()

Interrupt-IN transfer
R_usb_hstd_TransferStart()

transmit end call-back

usb_hhid_smpl_data_trans_result()

usb_shhid_apl_function=C
USB_HHID_APL_KBD_RX

usb_shhid_apl_function =
USB_HHID_APL_KBD_RX

LCD display of value acquired
from input report

Data transmit request (receive report)
R_usb_hhid_PipeTransferExample()

SET_REPORT
Command notification

usb_hhid_InTransferResult()

transmit end call-back

usb_hhid_smpl_kbd_led_ctl_result()

SET_PROTOCOL
Command notification

transmit end call-back

usb_cstd_DummyFunction()

Interrupt IN transfer
Transfer end

Control transfer
Transfer end

Control transfer
Transfer end

Continue with data communication sequence.

Figure 4.7 Interrupt-IN Communication Sequence by KBD

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015

RENESAS

Page 15 of 39

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

HHID

USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

usb_shhid_apl_function = é) LCD display as

USB_HHID_APL_INIT

usb_shhid_apl_function =

“KBD ATTACH”

Judgment of connected device.
R_usb_hhid_get_hid_protocol()

Class request SetReport
R_usb_hhid_class_request()

“usb_shhid_apl_function=
USB_HHID_APL_KBD_OPEN

)

USB_HHID_APL_KBD_OPEN) Class request SetProtocol

usb_shhid_apl_function =

R_usb_hhid_class_request()

usb_shhid_apl_function =
USB_HHID_APL_KBD_RX_WAIT

Data transmit request (receive report)
R_usb_hhid_class_request()

USB_HHID_APL_KBD_RX_WAIT]

usb_shhid_apl_function

USB_HHID_APL_KBD_RX

<

USB_HID_SET_REPORT

USB_HID_SET_PROTOCOL

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()

USB_HID_GET_REPORT
R_usb_hstd_TransferStart()

transmit end call-back

usb_hhid_smpl_get_report_result()

ush_shhid_apl_function =
USB_HHID_APL_KBD_RX

= 0 LCD display of value acquired

from input report

Data transmit request (receive report)
R_usb_hhid_class_request()

® SET REPORT
Command notification

transmit end call-back

usb_hhid_smpl_kbd_led_ctl_result()

SET_REPORT
P Command notification

transmit end call-back

usb_hhid_smpl_kbd_led_ctl_result()

Control transfer
Transfer end

Control transfer
Transfer end

Control transfer
Transfer end

Continue with data communication sequence.

Figure 4.8 Control transfer Communication Sequence by KBD

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015

RENESAS

Page 16 of 39

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

Figure 4.9 and Figure 4.10 show the data transfer sequence that is connected by the mouse device. The case where the
report is received by the interrupt transfer is Figure 4.9. The case where the report is received by the control transfer is

Figure 4.10.

APL

HHID

USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

usb_shhid_apl_function =
USB_HHID_APL_INIT

LCD display as
“MSE ATTACH”
Judgment of connected device.

R_usb_hhid_get_hid_protocol()

<

usb_shhid_apl_function =
USB_HHID_APL_MSE_OPEN

usb_shhid_apl_function =
USB_HHID_APL_MSE_RX_WAIT

usb_shhid_apl_function =
USB_HHID_APL_MSE_OPEN

Data transmit request (receive report)
R_usb_hhid_PipeTransferExample()

usb_shhid_apl_function =
USB_HHID_APL_MSE_RX_WAIT
USB_HHID_TCMD_DATA_TRANS

USB_DATA_OK / USB_DATA_READING /
USB_DATA_SHT

Interrupt-IN transfer
R_usb_hstd_TransferStart()

transmit end call-back

Command notification

usb_hhid_smpl_data_trans_result()

USB_HHID_APL_MSE_RX

usb_shhid_apl_function =
USB_HHID_APL_MSE_RX

b_shhid_apl_function = C . .
peo-sneap uncion)LCD display of value acquired

from input report

Data transmit request (receive report)
R_usb_hhid_PipeTransferExample()

usb_hhid_InTransferResult()

Interrupt IN transfer
Transfer end

Continue with data communication sequence.

Figure 4.9 Interrupt-IN Communication Sequence by MSE

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015

RENESAS

Page 17 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

D P

Continue from startup to HID device attachment sequence.

usb_shhid_apl_function = LCD display as
USB_HHID_APL_INIT “MSE ATTACH”

Judgment of connected device.
R_usb_hhid_get_hid_protocol()

<

usb_shhid_apl_function =
USB_HHID_APL_MSE_OPEN
usb_shhid_apl_function =))
USB_HHID_APL_MSE_OPEN J Data transmit request (receive report)
R_usb_hhid_class_request()

usb_shhid_apl_function =
USB_HHID_APL_MSE_RX_WAIT

—HHID AP _MSE_RA USB_HID_GET_REPORT
usb_shhid_apl_function = USB_HID_GET_REPORT ¢ R _usb_hstd_TransferStart) _
USB_HHID_APL_MSE_RX_WAIT

transmit end call-back Control transfer
(¢ - Transfer end
usb_hhid_smpl_get_report_result()
usb_shhid_apl_function =
USB_HHID_APL_MSE_RX

o=

usb_shhid_apl_function= O . .
USB_HHID_APL_MSE_RX LCD display of value acquired

from input report
Data transmit request (receive report)
R_usb_hhid_class_request()

Continue with data communication sequence.

Figure 4.10 Control transfer Communication Sequence by MSE

4.8.3 HID Device Detach
The sequence when the HID device is detached is illustrated in Figure 4.11.

Heoe FE—

Continue from startup to HID device attachment sequence.

tsb_hsmpl_device_state(]
operates by the context of

USB-BASIC-FW.

(*driver->statediagram)
usb_hsmpl_device_state()

R_usb_hhid_DriverStop()

| Initialized pipe information table

usb_shhid_apl_function = Return
usb_shhid_apl_function = USB_HHID_APL_CLOSE
USB_HHID_APL_CLOSE

Continue with data communication sequence.

Figure 4.11 Device Detach Sequence

RO1ANO664EJ0213 Rev.2.13 Page 18 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

4.8.4

HID Device Suspended, Resumed

Figure 4.12 shows the suspend sequence. Figure 4.13 shows the resume sequence.

USB-BASIC-F/W

HHID

usb_shhid_apl_function =

Continue from startup to HID device attachment sequence.

USB_HHID_APL_KBD_RX_WAIT

USB_HH ID_APL_MSE_RX_WAIS

o

B R _usb_hstd_TransferEnd()_ _
Change device state request (suspended)
- B_.U_SE_.I‘?_hI_d‘_EZh_a.nfg eDevicestate() . _ R_usb_hstd_MgrChangeDeviceState()
® usb_shhid_apl_functon= = @B - — . T . .=
USB_HHID_APL_KBD_SUSPEND
USB_HHID_APL_MSE_SUSPEND

Data transfer termination
R_usb_hhid_TransferEnd()

USB_DATA_STOP

Al transmit end call-back
Command notification

Interrupt IN transfer

, usb_hhid_InTransferResult() Termination end
usb_hhid_smpl_data_trans_result()

sb_hsmpl_device_state(
operates by the context of

USB-BASIC-FW.

(*driver->statediagram)
usb_hsmpl_device_state()

Return

J
%
!

Continue with data communication sequence.

Figure 4.12 HID Device Suspend Sequence

RO1AN0664EJ0213 Rev.2.13
Mar 16, 2015

Page 19 of 39
RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

usb_shhid_apl_function =
USB_HHID_APL_KBD_SUSPEND

Change device state request (suspended)
USB_HHID_APL_MSE_SUSPE?D R_usb_hhid_ChangeDeviceState()

sb_hsmpl_device_state(
operates by the context of

USB-BASIC-FW.

(*driver->statediagram)
usb_hsmpl_device_state()

usb_shhid_apl_function =
USB_HHID_APL_KBD_RESUME

Return
USB_HHID_APL_MSE_RESUME
usb_shhid_apl_function = Data transmit request (receive report)
USB_HHID_APL_KBD_RESUME

R _usb_hhid_PipeTransferExample
USB_HHID_APL_MSE_RESUME __.__‘_._,__P__ ———————— B—o—
- - = - usb_shhid_apl_function =
USB_HHID_APL_KBD_RX_WAIT
USB_HHID_APL_MSE_RX_WAIT

Continue with data communication sequence.

Figure 4.13 HID Device Resume Sequence

RO1AN0664EJ0213 Rev.2.13
Mar 16, 2015

Page 20 of 39
RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

5. Human Interface Device Class (HID)

This software conforms to the Human Interface Device Class specification, as specified in the document listed in
Chapter 1.2. The HID class consists primarily of devices that are used by humans to control the operation of computer
input devices. Typical examples of HID class devices include:

e Keyboards and pointing devices - for example: standard mouse devices, trackballs, and joysticks.
e Front-panel controls - for example: knobs, switches, buttons, and sliders.

e Controls that might be found on devices such as telephones, VCR remote controls, games or simulation devices -
for example: data gloves, throttles, steering wheels, and rudder pedals.

5.1 Basic Functions
The main functions are as follows.

1. Verify that connected devices are of type HID.

2. Inquire about the capabilities and state of a device.

3. Set the state of output and feature items.

4. Contro the transfer of data from the HID peripheral device.

5.2 HID Class Requests (Host to Device)
The software supports the following HID class requests.

Table 5-1 HID Requests

Request Code Description Support
Get_Report 0x01 Receives a report from the HID device Yes
Set_Report 0x09 Sends a report to the HID device Yes
Get_Idle 0x02 Receives a duration (time) from the HID device No
Set_Idle Ox0A Sends a duration (time) to the HID device No
Get_Protocol 0x03 Reads a protocol from the HID device No
Set_Protocol 0x0B Sends a protocol to the HID device No
Get_Report_Descriptor Standard | Transmit a report descriptor Yes
Get_Hid_Descriptor Standard | Transmit a HID descriptor Yes

For details concerning the Requests, refer to Chapter 7 in “USB Device Class Definitions for Human Interface Devices”,
Revision 1.1

RO1ANO664EJ0213 Rev.2.13 Page 21 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

6. USB Host Human Interface Device Class Driver (HHID)

6.1 Basic Functions

This software conforms to the Human Interface Device class specification. See Chapter 1.2 item 2 and 3.

The main functions of HHID are to:

1. Send class requests to the HID peripheral

2. Transfer data from the HID peripheral

6.2 HHID Task Description

This task receives messages in mailbox USB_HHID _MBX and performs processing according to the type of message.
Table 6-1 shows processing according to message type.

Table 6-1 Processing according to Received HHID Message Type

Message

Processing

Message Source

USB_HHID_TCMD_OPEN

Gets the string descriptor
and sets the pipe
according the
enumeration sequence.

R _usb_hhid_ClassCheck().
USB-BASIC-F/W and HHID check
the connected device via this
callback function during the
enumeration.

USB_HHID_TCMD_DATA_TRANS

Start Interrupt-IN transfer.
Notifies the application
when the data transfer is
completed.

R_usb_hhid_PipeTransferExample().
When Interrupt-IN transfer is
completed this API function is
executed.

USB_HHID_TCMD_CLASS_REQ

The HID class request is
issued according to the
demand of the application
program shown by the
argument. Notifies the
application when the
control transfer is
completed.

R _usb_hhid_class_request().

This API function is called from the
sample function which issues the
class request.

6.3

Target Peripheral List (TPL)

A host class driver is not required to support operation of all USB peripherals of the class. It is up to the manufacturer
of the host to determine what peripherals to support and provide a list of those peripherals. This is called the “Target

Peripheral List (TPL)”.

TPL is composed of an array of supported VID(s) and PID(s). To not check VID (/PID), specify USB_NOVENDOR
(/USB_NOPRODUCT). Refer to the usb_gapl_devicetpl[] array in the r_usb_hhid_driver.c file for the determination
of TPL.

RO1AN0664EJ0213 Rev.2.13
Mar 16, 2015

Page 22 of 39
RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

6.4 Structures

6.4.1 HHID Class API Function Structure
Table 6-2 describes the HID class request parameter structure.

Table 6-2 USB_HHID_CLASS_REQUEST_PARM _t Structure

Type Member Description
usb_addr t devadr Device address.
uint8_t bRequestCode Class request code. Refer to the Table 6-3
void* tranadr Transfer data buffer.
usb_leng t tranlen Transfer size.
uint1l6 _t duration Response interval time rate to Interrupt transfer (4ms units).
uint8_t set_protocol Protocol value (Boot Protocol(=0)/Report Protocol(=1)).
uint8_t* get_protocol Protocol value stored address.
usb _cb t complete Class request processing end call-back function.

6.4.2 HHID Class Request Code

Table 6-3 describes the code of the HID class requests.
Table 6-3 HHID Class Request code

Request Type Definition Value Support
Get_Descriptor(HID) USB_HID_GET_HID_DESCRIPTOR Yes
Get_Descriptor(Report) USB_HID_GET_REPORT_DESCRIPTOR Yes
Get_Descriptor(Physical) USB_HID_GET_PHYSICAL_DESCRIPTOR Yes
Set_Report USB_HID_SET_REPORT Yes
Get_Report USB_HID_GET_REPORT Yes
Set_ldle USB_HID_SET_IDLE No
Get_ldle USB_HID_GET_IDLE No
Set_Protocol USB_HID_SET_PROTOCOL No
Get_Protocol USB_HID_GET_PROTOCOL No

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015

RENESAS

Page 23 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

6.4.3 HID-Report Format
(1). Receive Report Format

Table 6-4 shows the receive report format used for notifications from the HID device.
Reports are received in Interrupt-IN transfers or class request GetReport.

Table 6-4 Receive report format

Offset / Application Keyboard Mode Mouse Mode
Data length 8 Bytes 3 Bytes

0 (Top Byte) Modifier keys b0: Button 1
bl: Button 2
b2-7: Reserved

+1 Reserved X displacement

+2 Keycode 1 Y displacement

+3 Keycode 2 -

+4 Keycode 3 -

+5 Keycode 4 -

+6 Keycode 5 -

+7 Keycode 6 -

(2). Transmit Report Format

Table 6-5 shows the format of the transmit report sent to the HID device.
Reports are sent in the class request SetReport.

Table 6-5 Transmit report format

Offset / Application Keyboard Mode Mouse Mode
Data length 1 Bytes Non-support
0 (Top Byte) b0: LED 0 (NumLock) -

bl: LED 1(CapsLock)
b2: LED 2(ScrollLock)
b3: LED 3(Compose)
b4: LED 4(Kana)

+1 ~+16 - -

(3). Note

The report format used by HID devices for data communication is based on the report descriptor. This HID driver
does not acquire or analyze the report descriptor; rather, the report format is determined by the interface protocol
code. User modifications must conform to the HID class specifications.

RO1ANO664EJ0213 Rev.2.13 Page 24 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID)

6.5 List of HHID API Functions

The HHID API is shown in Table 6-6.

Table 6-6 List of HHID API Functions

Function

Description

Notes

R_usb_hhid_task

HHID task processing

R_usb_hhid_ClassCheck

This function requests the HHID task to judge
whether the connected device is a HID device.

R_usb_hhid_DriverStart

Start driver task HHID

R_usb_hhid_DriverStop

Stop driver task HHID

R_usb_hhid_SetPipeRegistration

Set pipe information table.

R_usb_hhid_PipeTransferExample

USB data transfer request.

R_usb_hhid_TransferEnd

USB data transfer termination request .

R_usb_hhid_class_request

Send HID class request.

R_usb_hhid_Devicelnformation

Acquire the USB state of a connected device.

R_usb_hhid_ChangeDeviceState

Request USB status change of a connected device.

R_usb_hhid_GetReportLength

Get the report length.

R_usb_hhid_get_hid_protocol

Get Interface protocol value.

RO1AN0664EJ0213 Rev.2.13
Mar 16, 2015

RENESAS

Page 25 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_task

The HHID task

Format
void R_usb_hhid_task(void)
Argument

Return Value

Description

The HHID task function.

The HHID task processes requests from the application, and the results are notified to the application.
Note

Please refer to USB Basic Mini Firmware application note about task loops.
Example

void usb _apl task switch(void)
{

while(1)

{

if(USB_FLGSET == R _usb_cstd Scheduler()) /* Scheduler */
{

R usb _hstd HcdTask(); /* HCD Task */

R usb _hstd MgrTask(); /* MGR Task */

usb _hhid main task(); /* HHID Application Task */

R _usb_hhid_task(); /* HHID Task */

RO1ANO664EJ0213 Rev.2.13 Page 26 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_ClassCheck

Check connected device’s descriptors

Format

void R_usb_hhid_ClassCheck (uint8_t **table)
Argument

**table Address array of the device information table

[0] : Address of Device Descriptor

[1] : Address of Configuration Descriptor

[2] : Address of global variable that mean the Device Address
Return Value

Description

This function requests the HHID task to determine whether the connected device is a HID device by studying the
received descroptors. Call this function when the USB-BASIC-F/W executes the classcheck callback.

The HHID task references the endpoint descriptor(s) of the peripheral’s configuration descriptor, then edits the
Pipe Information Table, usb_ghmsc_TmpEpTbl[], and checks the pipe information of the pipes to be used.

Note

Example

USB_STATIC void usb hhid class check(uint8 t **table)

{
R usb hhid ClassCheck(table);
usb_shhid smpl devaddr = (usb _addr t) (*table[2]);

RO1ANO664EJ0213 Rev.2.13 Page 27 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R_usb_hhid_DriverStart

Start HHID driver

Format
void R_usb_hhid_DriverStart(void)

Argument

Return Value

Description
The function starts the HHID driver task.
Note

Example

void usb _hstd task start(void)
{

/* Target board initialize */
usb_cpu_target init();

/* USB-IP initialized */
R usb _hstd ChangeDeviceState (USB DO INITHWFUNCTION) ;

/* HCD driver open & registratuion */

R usb _hstd HcdOpen () ; /* HCD task, MGR task open */
usb_hhid registration(); /* HHID driver registration */
R usb _hhid DriverStart(); /* HHID Task Start */

/* Scheduler initialized */
R usb_hstd ChangeDeviceState (USB DO SETHWEUNCTION) ;

RO1ANO664EJ0213 Rev.2.13
Mar 16, 2015 RENESAS

Page 28 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_DriverStop

Stop HHID driver

Format
void R_usb_hhid_DriverStop (void)
Argument

Return Value
Description

The function stops the HHID driver task.
Note

Example

USB_STATIC void usb hsmpl device state(uintl6 _t data, uintl6_t state)

{
switch(state)

{
case USB _STS DETACH:

usb smpl set suspend flag(USB_NO);

usb_shhid active = USB NO;

usb _shhid apl function = USB_HHID APL CLOSE;

R usb_hhid DriverStop() ;
break;

RO1ANO0664EJ0213 Rev.2.13

Mar 16, 2015 RENESAS

Page 29 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_SetPipeRegistration

Pipe and Pipe Information Table setting

Format

void R_usb_hhid_SetPipeRegistration(usb_addr_t devadr)
Argument

devadr Device address

Return Value

Description

This function updates the address field of the host’s Pipe Information table. It thereby sets the hardware pipe to be
used for HID communication.

Note
1. Refer to USB Basic Mini Firmware application note for information on the Pipe Information Table.

2. Please set another field in the Pipe Information Table usb_ghmsc_TmpEpTbl[] beforehand by referring to the
endpoint descriptor.

Example
void wusb _smp task(void)

{

R usb hhid SetPipeRegistration (devadr);

RO1ANO664EJ0213 Rev.2.13 Page 30 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_PipeTransferExample

USB data transfer request

Format

usb_er t R_usb_hhid_TransferExample(uint8_t *table, usb_leng_t size, usb_cb_t complete)
Argument

*table Pointer to the data buffer area.

size Transfer data size

complete Process completion callback function

Return Value

USB_E_OK Success
USB_E_ERROR Failure, argument error

Description
This function requests a data transfer of the USB-BASIC-F/W.
The data of argument “size” byte is received at the address shown in argument “*table”.

When the data reception processing is complete (data reception of "size" byte or short packet reception), the
callback function is called.

Note
1. The data transfer process results are obtained by the argument “usb_utr_t *” of the callback function.
2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr _t.
Example

usb _er t usb smp task(void)

{
uint8 t data[64]; /* Data buff */
usb _lenguintl6 t size = 64; /* Data size */

R usb hhid TransferExample(data, size, (usb_cb_t)usb data_received);

}

/* Callback function */
void usb data received(usb_utr t *mess)
{
/* Describe the processing performed when the USB receive is completed. */
}

RO1ANO664EJ0213 Rev.2.13 Page 31 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_TransferEnd

USB data transfer termination request

Format
usb_er t R_usb_hhid_TransferEnd(void)

Argument

Return Value

USB E OK Success
USB_E_ERROR Failure, argument error
USB_E QOVR Overlap (transfer end request for the pipe during transfer end.)

Description
This function requests the USB-BASIC-F/W to end a data transfer in progress.

The transfer end is notified using the callback function set when the data transfer is requested
(R_usb_hhid_PipeTransferExample, R_usb_hhid_class_request). The remaining data length of transmission and
reception, pipe control register value, and transfer status = USB_DATA_STOP are set using the argument of the
callback function (usb_utr_t).

The control transfer or the interrupt transfer is stopped according to how the USB_HHID_GET_REPORT_PIPEO
macro in the r_usb_class_usrcfg.h file is set:

e USB_HHID_GET_REPORT_PIPEO macro enabled: Stop the control transfer.
e USB_HHID_GET_REPORT_PIPEO macro is disabled: Stop the interrupt transfer.

Note
1. The data transmit process forced end result is obtained by the argument “usb_utr_t *” of the callback function
2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr _t.
Example
void wusb smp task(void)

{

/* Transfer end request */
err = R usb_hhid TransferEnd (USB_PIPE6, USB_DO TRANSFER STP) ;

return err;

RO1ANO664EJ0213 Rev.2.13 Page 32 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_class_request

Send HID class request

Format

usb_er t R_usb_hhid_class_request(USB_HHID_CLASS_REQUEST_PARM _t *pram)
Argument

*pram HID class request structure. Refer to Chapter 6.4 for the

USB_HHID_CLASS_REQUEST_PARM_t argument structure.

Return Value
— Error code (USB_E_OK/USB_E_ERROR)
Description
The following HID class requests can be sent to the HHID driver.
Judges the request type by the structure member bRequestCode of argument *parm.

Get_Descriptor(HID)
Get_Descriptor(Report)
Get_Descriptor(Physical)
Set_Report

Get_Report

Set_lIdle

Get_ldle

Set_Protocol
Get_Protocol

CoNoGr~WDNER

Please refer to the sample application in r_usb_hhid_apl.c for details on how to use.
Note
1. The class request transmission result is obtained via the argument "usb_utr_t *" of the callback function.
2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr_t.
Example

void usb hhid smpl set report(uintl6 t devadr, uint8 t *p data, uintle t
length, usb cb t complete)
{
USB HHID CLASS REQUEST PARM t class_req;
/* SET REPORT */
class req.bRequestCode = USB HID SET REPORT;
class_reqg.devadr devadr;
class req.tranadr = p_data;
class reqg.tranlen length;
class reqg.complete complete;
R usb_hhid class_request(class_req);

RO1ANO664EJ0213 Rev.2.13 Page 33 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_Devicelnformation

Obtain USB device state and other information

Format

void R_usb_hhid_Devicelnformation(uint16_t *deviceinfo)
Argument

*deviceinfo Table address to store the device information

Return Value

Description

Obtain the connected USB device information. The following information will be stored to the address specified
by the argument "*deviceinfo":

[0]: Root port number (port 0: USB_0, port 1: USB_1)

[1]: USB state (unconnected: USB_STS_DETACH, enumerated: USB_STS DEFAULT/USB_STS_ADDRESS,
connected: USB_STS_CONFIGURED, suspended: USB_STS_SUSPEND)

[2]: Structure number (g_usb_HcdDevinfo[g_usb_MgrDevAddr].config)

[3]: Connection speed (FS: USB_FSCONNECT, LS: USB_LSCONNECT, unconnected: USB_NOCONNECT)

Notes

1. Provide an area of 4 words for the argument *deviceinfo.
2. This function is called when the device address is 0, the following information is returned.
(1) When there is not a device during enumeration (device is not connected).
table[0] = USB_NOPORT, table[1] = USB_STS_DETACH
(2) When there is a device during enumeration.
table[0] = Port number, table[1] = USB_STS DEFAULT

Example

void wusb smp task(void)
{
uintlée_t tbl[4];

/* Device information check */
R usb hhid DeviceInformation(tbl);

RO1ANO664EJ0213 Rev.2.13 Page 34 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R_usb_hhid_ChangeDeviceState

USB device state change request

Format
usb_er t R_usb_hhid_ChangeDeviceState (ush_strct_t msginfo,
usb_strct_t keyword,
usb_cb_info_t complete)
Arguments
msginfo USB state to change into. States are listed below.
keyword Content depends on msginfo. For example, it would be port number if the port is to be
disabled.
complete Callback function executed when the USB state changing ends.
Return Value
USB_E_OK Success
USB_E_ERROR Failure, argument error

Description

Set the following value to argument msginfo and request to change the device state to the USB-BASIC-F/W.
e USB_DO_PORT_ENABLE / USB_DO_PORT _DISABLE
Enable or disable a port specified by a keyword (on/off control of VBUS output).
e USB_DO_GLOBAL_SUSPEND
Suspend a port specified by a keyword.
e USB_DO_GLOBAL_RESUME
Resume a port specified by a keyword.
e USB_DO_CLEAR_STALL
Cancel STALL of the device that uses a pipe specified by a keyword.

Notes

1. When a connection or disconnection is detected by the USB-BASIC-F/W, USB-BASIC-F/W automatically does
enumeration or the detach sequence processing.

2. When changing the USB state using this function, the USB state transition callback of the driver structure
registered using the API function R_usb_hstd_DriverRegistration() is not called.

Example

void wusb smp task(void)
{
R _usb_hhid ChangeDeviceState
(USB_DO_GLOBAL_ SUSPEND, USB_PORTO, usb_hsmpl status_result);

RO1ANO664EJ0213 Rev.2.13 Page 35 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_GetReportLength

Gets HID Report length

Format
uintl6_t R_usb_hhid_GetReportLength(void)
Argument
Return Value
— Max packet size

Description

This function gets the max packet size of the connected USB device.

Note
Example

void usb_smp task(void)

{
uintl6é_t usb_smp report length;

usb_smp report length = R usb_hhid GetReportLength() ;

RO1ANO664EJ0213 Rev.2.13
Mar 16, 2015 RENESAS

Page 36 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R _usb_hhid_get_interfaceprotocol

Get interface protocol value

Format

uint8_t R_usb_hhid_get_interfaceprotocol(void)
Argument
Return Value

- Protocol code of USB device (binterfaceProtocol)
Description

This function gets the interface protocol value of the connected USB device.
Note

1. DbinterfaceProtocol is included in Interface Descriptor.

2. The protocol code of the first HID class is sent as response for the multi interface device.

Example

void wusb _smp task(void)

{

uint8 t protocol;

/* Gets the interface protocol value */
protocol = R usb_hhid get_ interfaceprotocol():;

RO1ANO664EJ0213 Rev.2.13
Mar 16, 2015 RENESAS

Page 37 of 39

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

7. Limitations
The following limitations apply to HHID.
1. Only one device can connect to HHID. Please do not connect two or more devices simultaneously.

2. The HID driver must analyze the report descriptor to determine the report format. This HHID driver determines
the report format only from the interface protocol.

3. The structures contain members of different types. Depending on the compiler, this may cause address
misalignment of structure members.

RO1ANO664EJ0213 Rev.2.13 Page 38 of 39
Mar 16, 2015 RENESAS

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

RO1ANO664EJ0213 Rev.2.13 Page 39 of 39
Mar 16, 2015 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

Revision Record

Description

Rev. Date Page Summary
0.00 May. 12.11 — First edition issued
2.00 Nov. 30.12 — Revision of the document by firmware upgrade
2.10 Aug. 01. 13 — RX111 is supported. Error is fixed.
2.11 Oct. 31. 13 — 1.4 Folder path fixed.

3.3.1 Folder Structure was corrected.

Error is fixed.
2.12 Mar. 31. 14 — R8C is supported. Error is fixed.
2.13 Mar. 16. 15 — RX111 is deleted from Target Device

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or
third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality”. The recommended applications for each Renesas Electronics product depends on
the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it
in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the
development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

1

o

. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the
contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

ENESAS

SALES OFFICES Renesas Electronics Corporation http:/Avww.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India

Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations
	1.4 How to Read This Document

	2. Register Class Driver
	3. Software Configuration
	3.1 Module Configuration
	3.2 Overview of Application Program Functions
	3.3 File Configuration List
	3.3.1 Folder Structure
	3.3.2 File Structure

	3.4 System Resources
	3.4.1 System Resource Definitions

	4. Host HID Sample Application Program (APL)
	4.1 Operating Environment
	4.1.1 Report reception

	4.2 Description of Application Program Processing
	4.3 Endpoint Specifications
	4.4 Allowed HID Peripherals
	4.4.1 Supported Features
	4.4.2 Non-supported Features

	4.5 List of APL Functions
	4.6 Host Application Task Sequence
	4.6.1 Displayed Information
	4.6.2 State Transitions

	4.7 SW Processing Flow Graphs
	4.8 Sequences charts APL-HHID-HCD
	4.8.1 Startup to HID Device Attachment
	4.8.2 Data Communication
	4.8.3 HID Device Detach
	4.8.4 HID Device Suspended, Resumed

	5. Human Interface Device Class (HID)
	5.1 Basic Functions
	5.2 HID Class Requests (Host to Device)

	6. USB Host Human Interface Device Class Driver (HHID)
	6.1 Basic Functions
	6.2 HHID Task Description
	6.3 Target Peripheral List (TPL)
	6.4 Structures
	6.4.1 HHID Class API Function Structure
	6.4.2 HHID Class Request Code
	6.4.3 HID-Report Format

	6.5 List of HHID API Functions

	7. Limitations

