
 APPLICATION NOTE

R01AN0664EJ0213 Rev.2.13 Page 1 of 39

Mar 16, 2015

Renesas USB MCU

USB Host Human Interface Device Class Driver (HHID) using Basic Mini Firmware

Introduction

This document is an application note describing use of the USB Host Human Interface Device Class Driver (HHID)

built using the USB Basic Mini Firmware of the Renesas USB MCU.

Target Device

RL78/G1C, R8C/3MK, R8C/34K

This program can be used with other microcontrollers that have the same USB module as the above target devices.

When using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

This program has been evaluated using the corresponding MCU’s Renesas Starter Kit board.

Contents

1. Overview ... 2

2. Register Class Driver .. 4

3. Software Configuration ... 4

4. Host HID Sample Application Program (APL) ... 8

5. Human Interface Device Class (HID) .. 21

6. USB Host Human Interface Device Class Driver (HHID) .. 22

7. Limitations .. 38

R01AN0664EJ0213
Rev.2.13

Mar 16, 2015

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 2 of 39

Mar 16, 2015

1. Overview

This application note describes the USB Host Human Interface Device Class Driver (HHID) and the sample application

using USB Basic Mini Firmware (refer to the Chapter 1.2).

1.1 Functions and Features

The USB Host Human Interface Device Class Driver (HHID) conforms to the USB Human Interface Device Class

specification (HID from now on and description). It and enables communication with a HID peripheral device.

This class driver is intended to be used in combination with the USB Basic Mini Firmware provided from Renesas

Electronics.

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Class Definitions for Human Interface Devices Version 1.1

3. HID Usage Tables Version 1.1

[http://www.usb.org/developers/docs/]

4. User's Manual: Hardware

5. USB Basic Mini Firmware Application Note (Document No.R01AN0326EJ)

Available from the Renesas Electronics Website

・ Renesas Electronics Website

[http://www.renesas.com/]

・ USB Devices Page

[http://www.renesas.com/prod/usb/]

1.3 Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

API : Application Program Interface

APL : Application program

cstd : Prefix for peripheral & host common function of USB-BASIC-F/W

Data Transfer : Generic name of Control transfer, Bulk transfer and Interrupt transfer

HCD : Host control driver of USB-BASIC-F/W

HDCD : Host device class driver (device driver and USB class driver)

HEW : High-performance Embedded Workshop

HHID : Host human interface device

HID : Human interface device class

HM : Hardware Manual

hstd : Prefix for host function of USB-BASIC-F/W

KBD : Keyboard device

MGR : Peripheral device state manager of HCD

MSE : Mouse device

PP : Pre-processed definition

RSK : Renesas Starter Kit

Scheduler : Used to schedule functions, like a simplified OS

Scheduler Macro : Used to call a scheduler function

SW1/SW2/SW3 : User switches on RSK

Task : Processing unit

USB : Universal Serial Bus

USB-BASIC-FW : USB-BASIC-F/W

 (Peripheral & Host USB Basic Mini Firmware(USB low level) for Renesas USB

MCU)

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 3 of 39

Mar 16, 2015

1.4 How to Read This Document

To run the demo, start by reading “USB Host Human Interface Device Class Driver (HHID) Installation Guide for USB

Basic Mini Firmware”.

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to

look up information on functionality and interfaces as needed for your particular solution.

Chapter 4 explains how the default host HID demo application works. You will change this to create your own solution.

Understand how all code modules are divided into tasks, and that these tasks pass messages to one another. This is so

that functions (tasks) can execute in the order determined by a scheduler and not strictly in a predetermined order. This

way more important tasks can have priority. This plus the use of a function callback mechanism enables the USB code

to be non-blocking. The task mechanism is described in Chapter 1.2 above "USB Basic Mini Firmware Application

Note".

 All HID tasks are listed in Chapter 3.4.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 4 of 39

Mar 16, 2015

2. Register Class Driver

A class driver must be registered with the USB-BASIC-F/W. Please consult function usb_hapl_registration() in

r_usb_hhid_apl.on how to register a class driver with USB-BASIC-F/W. For details, please refer to USB Basic Mini

Firmware application note.

3. Software Configuration

3.1 Module Configuration

The HHID comprises the HID class driver and the device drivers for mouse and keyboard.

Figure 3.1 shows the structure of the HHID software modules. Table 3-1 lists the modules and an overview of each.

HHIDRSK driver

LED output driver

Key input driver

LCD output driver

USB Host Control Driver (HCD)

LCD/LED/KEY (H/W) USB Host controller (H/W)

USB Host class driver

User application (APL)

USB-BASIC-F/W

Manager (MGR)

Figure 3.1 Module Structure

Table 3-1 Module Function Descriptions

Module Name Description Notes

APL User application program.

Board (RSK) switches initiate communication with attached HID
devices and control suspend/resume.

The LCD displays the information received from the HID device.

Created

by the

customer.

HHID The registered device class driver checks operation of the connected

device. The USB-BASIC-F/W checks whether the connected device

enables for HHID. The following data transfers are requested of

USB-BASIC-F/W by the APL.

1) Control of connected device by HID requests

2) Data transfer with connected device

Transfer results are notified to APL by a callback function.

USB-BASIC-F/W USB Basic Mini Firmware (Host Hardware Control & Device state

Management)

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 5 of 39

Mar 16, 2015

3.2 Overview of Application Program Functions

The main functions of the host demo application:

1. Data is received from the connected USB peripheral device and is displayed on the LCD.

a) When a USB mouse is connected (Mouse mode), the displacement values of the X and Y axes are shown on

the LCD. An LED is toggled by pressing the mouse buttons.

b) When a USB keyboard is connected (Keyboard mode), show one character of the key input data from the USB

keyboard report. Moreover, the NumLock LED is turned on when the device is in the configured state and the

NumLock LED is turned off when the device is in the suspended state.

2. Suspends/Resume of USB device operations.

a) The USB device is suspended and resumed alternately when SW3 on the RSK is pressed.

b) Resume is executed when a remote wakeup signal is received from a USB device.

Switch input operation is described in Table 3-2.

Table 3-2 User switch input operation

Switch Function Description Switch Number

Data transfer start Start ongoing requests for report reception. SW2

State change Change the following USB state.

In data reception wait state (resumed), go to Suspend

state.

In Suspend state, go to data reception wait state

(Resume).

SW3

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 6 of 39

Mar 16, 2015

3.3 File Configuration List

3.3.1 Folder Structure

The folder structure of the files supplied with the device class is shown below.

The source codes dependent on each MCU and evaluation board are stored in each hardware resource folder

(\devicename\src\HwResource).

[RL78/G1C, R8C]

 ＋(Integrated development environment) [CS+, HEW, IAR Embedded Workbench, e2 studio]

 ＋(MCU name) Project File

 ＋ HOST Build result

 ＋ src

 ＋――― HIDFW [Human Interface Device Class driver] See Table 3-3

 ｜ ＋――― inc Common header file of HID driver

 ｜ ＋――― src HID driver

 ＋―――SmplMain [Sample Application]

 ｜ ＋――― APL Report display application

 ＋―――USBSTDFW [Common USB code that is used by all USB firmware]

 ｜ ＋――― inc Common header file of USB driver

 ｜ ＋――― src USB driver

 ＋――― HwResource [Hardware access layer; to initialize the MCU]

 ＋――― inc Common header file of hardware resource

 ＋―――src Hardware resource

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 7 of 39

Mar 16, 2015

3.3.2 File Structure

Table 3-3 shows the file structure provided in the HHID.

Table 3-3 File Structure

Folder File Name Description Notes

HIDFW/inc r_usb_class_usrcfg.h USB host HID user definition

HIDFW/inc r_usb_hhid_define.h HHID type definitions and macro definitions

HIDFW/inc r_usb_hhid_api.h HHID prototype, external reference

HIDFW/src r_usb_hhid_api.c HHID API functions

HIDFW/src r_usb_hhid_driver.c HHID driver functions

SmplMain main.c Main loop function

SmplMain/APL r_usb_hhid_apl.c Sample application program

3.4 System Resources

3.4.1 System Resource Definitions

Table 3-4 lists the Task ID and the task priority definitions used to register HHID in the scheduler. These are defined in

the r_usb_ckernelid.h header file.

See 1.4 for why tasks are used.

Table 3-4 List of Scheduler Registration IDs

Scheduler registration task Description Notes

USB_HHID_TSK HHID (R_usb_hhid_task)

Task ID: USB_HHID_TSK

Task priority: 2

USB_HCD_TSK HCD (R_usb_hstd_HcdTask)

Task ID: USB_HCD_TSK

Task priority: 0

USB_MGR_TSK MGR (R_usb_hstd_MgrTask)

Task ID: USB_MGR_TSK

Task priority: 1

Mailbox ID / Default receive task Message description Notes

USB_HHID_MBX

/ USB_HHID_TSK

HHID -> HHID / APL -> HHID mailbox ID

USB_HCD_MBX

/ USB_HCD_TSK

HCD task mailbox ID

USB_MGR_MBX

/ USB_MGR_TSK

MGR task mailbox ID

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 8 of 39

Mar 16, 2015

4. Host HID Sample Application Program (APL)

The host demo application performs display of received USB data when connected to a HID peripheral device. The

HHID application complies with the USB Human Interface Device Class specifications. See Chapter 1.2 item 2 and 3.

4.1 Operating Environment

The Figure 4.1 and Figure 4.2 show a sample operating environment for the software.

RSK Board

USB

PORT

USB

PORT
USB

keyboard

HHID

+

USB-BASIC-F/W

Key data

“A“

A

LCD

USB communicationHID host Peripheral HID device

NumLock LED

On / Off

Figure 4.1 Example Operating Environment with a connected keyboard.

USB communication

RSK Board

HID host
Peripheral HID device

USB

PORT

USB

PORT USB mouse

X/Y motion data

“X: 10, Y: -20”

Button data

“Right click”
10 -20

LCD

LED

0 1 2
LED0: left click

LED1: right click

LED2: wheel click

HHID

+

USB-BASIC-F/W

Figure 4.2 Example Operating Environment with a connected mouse.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 9 of 39

Mar 16, 2015

4.1.1 Report reception

When the USB_HHID_GET_REPORT_PIPE0 macro in the r_usb_class_usrcfg.h file is made active, report reception is

made possible by the control transfer GET_REPORT request.

4.2 Description of Application Program Processing

The following lists application operation with respect to Figure 4.4, on page 12.

・ HID peripheral device attachment. (Corresponding to Process No.0-1)

Whether a connected device is a mouse or a keyboard is automaticallydetermined. The distinction between the two

is done using bInterfaceProtocol of the Configuration descriptor (Refer to Table 4-1). Ther application program

does not analyze the report descriptor.

Data Communication

 Start (Process 1-1):

Communication with a USB device is started when SW2 is pressed (Refer to Table 3-2).

 Complete (Process 2-1):

Communication with a USB device is completed when the callback function is generated from the HHID.

Operation

 During Data Communication (Process 3-1):

Analyzes reports received from the peripheral device and displays them on LCD (Refer to Table 4-2).

 During Suspend state (Process 2-2):

Data communication is terminated and the USB device is suspended when SW3 is pressed (Refer to Table

3-2).

 During Resume (Process 4-1):

USB device is resumed and data communication restarts when SW3 is pressed (Refer to Table 3-2).

Table 4-1 Mode Switching

bInterfaceProtocol Mode Description

0x01 Keyboard Mode Indicates that a keyboard device is connected

0x02 Mouse Mode Indicates that a mouse device is connected

else not possible to operate Not recognized as an operable HID device connection.

Table 4-2 Operation During Data Communication

Mode Description

Keyboard Mode Display of received key data (key code to ASCII conversion)

Mouse Mode Display of received coordinate data

4.3 Endpoint Specifications

The endpoints use by the HHID is shown in Table 4-3.

Table 4-3 Endpoint Specifications

Endpoint Number Pipe Number Transfer Method Description

0 0 Control In/Out Standard request, class request

Follows received

Descriptor from

attached device

6 Interrupt In Data transfer from device to host

The Endpoint numbers are determined by the device’s endpoint descriptors.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 10 of 39

Mar 16, 2015

4.4 Allowed HID Peripherals

4.4.1 Supported Features

Full-Speed/Low-Speed keyboard s .

Three button mouse (FullSpeed/LowSpeed).

4.4.2 Non-supported Features

Devices with built-in HUB, or composite devices.

4.5 List of APL Functions

Table 4-4 lists the functions of the sample application.

Table 4-4 List of Functions of Sample Application

Function Name Description

main Main loop processing.

usb_hsmpl_main_init System initialization.

Task start up processing for Host USB.

usb_hhid_MainTask Sample application main processing.

usb_hapl_registration HHID driver registration.

usb_hhid_class_check Check that connected device is a HID.

usb_hsmpl_device_state Application status change callback function.

usb_hhid_smpl_data_trans_result Data transfer complete processing.

usb_hhid_smpl_mse_data Mouse data reception processing.

usb_hhid_smpl_val_to_str 1-byte numeric data string conversion processing.

usb_hhid_smpl_kbd_data Keyboard data reception processing.

usb_hhid_smp_status_set Sample application mode setting processing.

usb_hhid_smpl_get_hid_descriptor HID descriptor processing.(not used).

usb_hhid_smpl_get_report_descriptor Report descriptor getting processing.(not used).

usb_hhid_smpl_get_physical_descriptor Physical descriptor getting processing.(not used).

usb_hhid_smpl_kbd_led_ctl Keyboard LED ON/OFF control.

usb_hhid_smpl_set_report SET REPORT request processing.(not used).

usb_hhid_smpl_get_report GET REPORT request processing.(not used).

usb_hhid_smpl_set_idle SET IDLE request processing.(not used).

usb_hhid_smpl_get_idle GET IDLE request processing.(not used).

usb_hhid_smpl_set_protocol SET PROTOCOL request processing.(not used).

usb_hhid_smpl_get_protocol GET PROTOCOL request processing.(not used).

usb_hsmpl_class_result HID class request callback function.

usb_hhid_smpl_get_report_result GET REPORT request callback function.

usb_hhid_smpl_kbd_led_ctl_result SET REPORT request callback function.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 11 of 39

Mar 16, 2015

4.6 Host Application Task Sequence

The following explains how the LCD display is updated, and state transition controls.

4.6.1 Displayed Information

The application displays the USB device connection state and the content of reports received on the LCD.

When a keyboard is connected, the character of the last key pressed on the keyboard is displayed.

When a mouse is connected, the X/Y motion data is displayed. Values between -128 to 127 are displayed (right

justified).

If the content of a received report is NULL (no key press on the keyboard or no XY motion from the mouse), the

display on the LCD is not updated. The LCD display state transition is shown in Figure 4.3.

(1) Initial display at power-on

DETACH

(2) USB mouse attachment

USB MSE

ATTACH

(3) USB keyboard attachment

USB KBD

ATTACH

(4) USB mouse receive report display

 -1 2

(5) USB keyboard receive report display

A

(6) Detachment display

USB

DETACH

USB mouse USB keyboard

Receive report Receive report

Figure 4.3 The Transition of the Display State on the LCD

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 12 of 39

Mar 16, 2015

4.6.2 State Transitions

Figure 4.4 shows the application state transition. Each block is a program “state”.

[Process No. 0-0]

Power-on
DETACH

USB MSE

ATTACH

USB KBD

ATTACH

 -1 2

A

USB

DETACH

0. Initialization 7. Detach
(USB_HHID_APL_CLOSE)

[Process No. 7-0]

DETACH

1. Open (configured) 6. Control transfer complete

2. Receive wait

3. Receive
4. Suspend

5. Resume

[Process 0-1]

USB keyboard or USB mouse attachment
(USB_STS_CONFIGURED)

[Process 1-1]

Data transmission started by RSK SW2

press (Report receive request)
usb_hhid_MainTask()

Device

Attach

Press the data

transfer start switch

[Process 1-1]

Receive report

usb_hhid_smpl_data_trans_result()

[Process3-1]

Received data is displayed

on the LCD and Report

receive request

usb_hhid_MainTask()

[Process 4-1]

Peripheral device resume by RSK SW3

press or remote wakeup

usb_hhid_smp_status_set

(USB_HHID_APL_OFFSET_RESUME)

[Process 2-2]

Data transmission terminated and peripheral

device suspended . (RSK SW3 pressed.)

usb_hhid_MainTask()

Press the state

change switch

Press the state

change switch

[Process 6-1]

usb_hhid_MainTask()
[Process 2-3]

Control transfer complete

Foe Ex)

usb_hhid_smpl_get_report_result ()

explanatory note

State
User

oparation
LCD

display

[Process x-x]

process number

[Process 5-1]

Report receive request

usb_hhid_MainTask()

Figure 4.4 Application State Transitions

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 13 of 39

Mar 16, 2015

4.7 SW Processing Flow Graphs

The following shows the application task processing flow overview.

usb_hhid_

AppTask

Mode setting

Receive wait

state

Switch dataSwitch data

Open state

Data transfer

start switch OFF

USB data transfer
(receive report)

R_usb_hhid_
PipeTransferExample()

State change

switch ON

USB data transfer

forcible termination

usb_hhid_
TransferEnd()

Change device state

(suspend)

R_usb_hstd_
ChangeDeviceState()

Data transfer start

switch OFF
Display receive data

(report) display

usb_hhid_MseData()
or

usb_hhid_KbdData()

Receive state

Change mode setting
(Receive wait state)

USB data transfer
(receive report)

R_usb_hhid_
PipeTransferExample()

Return

Control transfer complete

state

Change mode setting
(Receive wait state)

Suspend state

Switch data

State change

switch ON

State change

switch OFF

Change device state
(resume)

R_usb_hstd_
ChangeDeviceState()

Resume state

Change mode setting
(Receive wait state)

USB data transfer
(receive

report)R_usb_hhid_
PipeTransferExample()

Return

Mode setting

Data transfer

start switch ON

Else

Change mode setting
(Receive wait state)

Report length

acquisitionR_usb_hhid_
GetReportLength()

Initial LCD message

Change mode setting
(Suspend state)

Figure 4.5 Application Task Processing Flow Overview

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 14 of 39

Mar 16, 2015

4.8 Sequences charts APL-HHID-HCD

The operation sequence of the sample application program is described below.

4.8.1 Startup to HID Device Attachment

The sequence from sample application program startup through completion of enumeration, application task startup,

and completion of pipe control register setting is illustrated in Figure 4.6

HHID USB-BASIC-F/W

Continue with data communication sequence.

HID device attach

Start main task

R_usb_hhid_ClassCheck()

Configuard call-back

usb_hsmpl_device_state()

Pipe registration / Pipe configuration
R_usb_hhid_SetPipeRegistration()

Set three pipes
Int IN

HW Reset processing

Main task

Return

Enumeration

（Get Device Descriptor，

 Set Address,

　Get Configuration Descriptor)

Enumeration

（SET_CONFIGURATION)

APL

MCU Initialization

Register HHID class driver
R_usb_hstd_DriverRegistration()

Return

Start HHID task
R_usb_hhid_DriverStart()

Return

Start USB-BASIC-F/W
R_usb_hstd_HcdOpen()

Start task scheduling (main loop)

Enumeration processing

usb_hhid_enumeration_sequence()

Check OK

R_usb_hstd_ReturnEnuMGR()

Get StringDescriptor，etc

Return

Return

USB-BASIC-F/W

R_usb_hstd_HcdTask
R_usb_hstd_MgrTask

HHID task

R_usb_hhid_task
Application task

usb_hhid_MainTask

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.

usb_hhid_class_check()

Return

usb_shhid_apl_function =

USB_HHID_APL_INIT

Explanatory

 Task Start (Receive Massage)

 Send Message

 Task Stop (Return to mainloop)

Processing function

System call function (Send Message)

Processing (Program executing)

USB_STS_CONFIGURED

Figure 4.6 Startup to HID Device Attachment Sequence

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 15 of 39

Mar 16, 2015

4.8.2 Data Communication

Figure 4.7 and Figure 4.8 show the data transfer sequence that is connected by the keyboard device. The case where the

report is received by the interrupt transfer is Figure 4.7. The case where the report is received by the control transfer is

Figure 4.8.

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

Judgment of connected device.

R_usb_hhid_get_hid_protocol()

Interrupt-IN transfer
R_usb_hstd_TransferStart()

Interrupt IN transfer

Transfer end
transmit end call-back

usb_hhid_smpl_data_trans_result()
usb_hhid_InTransferResult()

USB_DATA_OK / USB_DATA_READING /
USB_DATA_SHT
Command notification

usb_shhid_apl_function =

USB_HHID_APL_INIT

SET_PROTOCOL
Command notification

Class request SetReport
R_usb_hhid_class_request()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()USB_HID_SET_REPORT

usb_cstd_DummyFunction()

usb_shhid_apl_function =

USB_HHID_APL_KBD_OPEN
Class request SetProtocol
R_usb_hhid_class_request()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()USB_HID_SET_PROTOCOL

usb_shhid_apl_function =

USB_HHID_APL_KBD_OPEN

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

Data transmit request (receive report)

R_usb_hhid_PipeTransferExample()

USB_HHID_TCMD_DATA_TRANS

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX

Data transmit request (receive report)

R_usb_hhid_PipeTransferExample()

Control transfer

Transfer end

LCD display of value acquired
from input report

LCD display as
“KBD ATTACH”

transmit end call-back

Control transfer

Transfer end

SET_REPORT
Command notification

usb_hhid_smpl_kbd_led_ctl_result()

transmit end call-back

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

SW2

Figure 4.7 Interrupt-IN Communication Sequence by KBD

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 16 of 39

Mar 16, 2015

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

Judgment of connected device.

R_usb_hhid_get_hid_protocol()

usb_hhid_smpl_get_report_result()

usb_shhid_apl_function =

USB_HHID_APL_INIT

Class request SetReport
R_usb_hhid_class_request()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()USB_HID_SET_REPORT

usb_shhid_apl_function =

USB_HHID_APL_KBD_OPEN Class request SetProtocol
R_usb_hhid_class_request()

USB_HID_SET_REPORT
R_usb_hstd_TransferStart()USB_HID_SET_PROTOCOL

usb_shhid_apl_function =

USB_HHID_APL_KBD_OPEN

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

Data transmit request (receive report)

R_usb_hhid_class_request()

USB_HID_GET_REPORT

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX

USB_HID_GET_REPORT
R_usb_hstd_TransferStart()

LCD display of value acquired
from input report

Data transmit request (receive report)

R_usb_hhid_class_request()

LCD display as
“KBD ATTACH”

Control transfer

Transfer end

SET_REPORT
Command notification

usb_hhid_smpl_kbd_led_ctl_result()

transmit end call-back

Control transfer

Transfer end
transmit end call-back

SET_REPORT
Command notification

usb_hhid_smpl_kbd_led_ctl_result()

Control transfer

Transfer end
transmit end call-back

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

SW2

Figure 4.8 Control transfer Communication Sequence by KBD

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 17 of 39

Mar 16, 2015

Figure 4.9 and Figure 4.10 show the data transfer sequence that is connected by the mouse device. The case where the

report is received by the interrupt transfer is Figure 4.9. The case where the report is received by the control transfer is

Figure 4.10.

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

Judgment of connected device.

R_usb_hhid_get_hid_protocol()

Interrupt-IN transfer
R_usb_hstd_TransferStart()

usb_shhid_apl_function =

USB_HHID_APL_INIT

usb_shhid_apl_function =

USB_HHID_APL_MSE_OPEN

usb_shhid_apl_function =

USB_HHID_APL_MSE_OPEN

Data transmit request (receive report)

R_usb_hhid_PipeTransferExample()

USB_HHID_TCMD_DATA_TRANS

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX

Data transmit request (receive report)

R_usb_hhid_PipeTransferExample()

LCD display of value acquired
from input report

LCD display as
“MSE ATTACH”

Interrupt IN transfer

Transfer end
transmit end call-back

usb_hhid_smpl_data_trans_result()
usb_hhid_InTransferResult()

USB_DATA_OK / USB_DATA_READING /
USB_DATA_SHT
Command notification

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX_WAIT

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX_WAIT

SW2

Figure 4.9 Interrupt-IN Communication Sequence by MSE

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 18 of 39

Mar 16, 2015

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

Judgment of connected device.

R_usb_hhid_get_hid_protocol()

usb_shhid_apl_function =

USB_HHID_APL_INIT

usb_shhid_apl_function =

USB_HHID_APL_MSE_OPEN

usb_shhid_apl_function =

USB_HHID_APL_MSE_OPEN

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX LCD display of value acquired
from input report

LCD display as
“MSE ATTACH”

Data transmit request (receive report)

R_usb_hhid_class_request()

USB_HID_GET_REPORT
USB_HID_GET_REPORT
R_usb_hstd_TransferStart()

Control transfer

Transfer end

Data transmit request (receive report)

R_usb_hhid_class_request()

usb_hhid_smpl_get_report_result()

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX

transmit end call-back

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX_WAIT

usb_shhid_apl_function =

USB_HHID_APL_MSE_RX_WAIT

SW2

Figure 4.10 Control transfer Communication Sequence by MSE

4.8.3 HID Device Detach

The sequence when the HID device is detached is illustrated in Figure 4.11.

APL HCDC USB-BASIC-F/W

Detach detected

Initialized pipe information table

Return

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.

usb_shhid_apl_function =

USB_HHID_APL_CLOSE

R_usb_hhid_DriverStop()

(*driver->statediagram)
usb_hsmpl_device_state()

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

usb_shhid_apl_function =

USB_HHID_APL_CLOSE

Figure 4.11 Device Detach Sequence

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 19 of 39

Mar 16, 2015

4.8.4 HID Device Suspended, Resumed

Figure 4.12 shows the suspend sequence. Figure 4.13 shows the resume sequence.

.

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

USB_HHID_APL_MSE_RX_WAIT
Data transfer termination

R_usb_hhid_TransferEnd()
R_usb_hstd_TransferEnd()SW3

Interrupt IN transfer

Termination end
transmit end call-back

usb_hhid_smpl_data_trans_result()
usb_hhid_InTransferResult()

USB_DATA_STOP
Command notification

Change device state request (suspended)

R_usb_hhid_ChangeDeviceState()
R_usb_hstd_MgrChangeDeviceState()

usb_shhid_apl_function =

USB_HHID_APL_KBD_SUSPEND

USB_HHID_APL_MSE_SUSPEND

Return

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.
(*driver->statediagram)

usb_hsmpl_device_state()

Figure 4.12 HID Device Suspend Sequence

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 20 of 39

Mar 16, 2015

APL HHID USB-BASIC-F/W

Continue from startup to HID device attachment sequence.

Continue with data communication sequence.

usb_shhid_apl_function =

USB_HHID_APL_KBD_SUSPEND

USB_HHID_APL_MSE_SUSPEND

SW3

Change device state request (suspended)

R_usb_hhid_ChangeDeviceState()
R_usb_hstd_MgrChangeDeviceState()

usb_shhid_apl_function =

USB_HHID_APL_KBD_RESUME

USB_HHID_APL_MSE_RESUME

usb_shhid_apl_function =

USB_HHID_APL_KBD_RESUME

USB_HHID_APL_MSE_RESUME

Data transmit request (receive report)

R_usb_hhid_PipeTransferExample()

usb_shhid_apl_function =

USB_HHID_APL_KBD_RX_WAIT

USB_HHID_APL_MSE_RX_WAIT

Return

usb_hsmpl_device_state()

operates by the context of

USB-BASIC-FW.
(*driver->statediagram)

usb_hsmpl_device_state()

Figure 4.13 HID Device Resume Sequence

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 21 of 39

Mar 16, 2015

5. Human Interface Device Class (HID)

This software conforms to the Human Interface Device Class specification, as specified in the document listed in

Chapter 1.2. The HID class consists primarily of devices that are used by humans to control the operation of computer

input devices. Typical examples of HID class devices include:

 Keyboards and pointing devices - for example: standard mouse devices, trackballs, and joysticks.

 Front-panel controls - for example: knobs, switches, buttons, and sliders.

 Controls that might be found on devices such as telephones, VCR remote controls, games or simulation devices -

for example: data gloves, throttles, steering wheels, and rudder pedals.

5.1 Basic Functions

The main functions are as follows.

1. Verify that connected devices are of type HID.

2. Inquire about the capabilities and state of a device.

3. Set the state of output and feature items.

4. Contro the transfer of data from the HID peripheral device.

5.2 HID Class Requests (Host to Device)

The software supports the following HID class requests.

Table 5-1 HID Requests

Request Code Description Support

Get_Report 0x01 Receives a report from the HID device Yes

Set_Report 0x09 Sends a report to the HID device Yes

Get_Idle 0x02 Receives a duration (time) from the HID device No

Set_Idle 0x0A Sends a duration (time) to the HID device No

Get_Protocol 0x03 Reads a protocol from the HID device No

Set_Protocol 0x0B Sends a protocol to the HID device No

Get_Report_Descriptor Standard Transmit a report descriptor Yes

Get_Hid_Descriptor Standard Transmit a HID descriptor Yes

For details concerning the Requests, refer to Chapter 7 in “USB Device Class Definitions for Human Interface Devices”,

Revision 1.1

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 22 of 39

Mar 16, 2015

6. USB Host Human Interface Device Class Driver (HHID)

6.1 Basic Functions

This software conforms to the Human Interface Device class specification. See Chapter 1.2 item 2 and 3.

The main functions of HHID are to:

1. Send class requests to the HID peripheral

2. Transfer data from the HID peripheral

6.2 HHID Task Description

This task receives messages in mailbox USB_HHID_MBX and performs processing according to the type of message.

Table 6-1 shows processing according to message type.

Table 6-1 Processing according to Received HHID Message Type

Message Processing Message Source

USB_HHID_TCMD_OPEN Gets the string descriptor

and sets the pipe

according the

enumeration sequence.

R_usb_hhid_ClassCheck().

USB-BASIC-F/W and HHID check

the connected device via this

callback function during the

enumeration.

USB_HHID_TCMD_DATA_TRANS Start Interrupt-IN transfer.

Notifies the application

when the data transfer is

completed.

R_usb_hhid_PipeTransferExample().

When Interrupt-IN transfer is

completed this API function is

executed.

USB_HHID_TCMD_CLASS_REQ The HID class request is

issued according to the

demand of the application

program shown by the

argument. Notifies the

application when the

control transfer is

completed.

R_usb_hhid_class_request().

This API function is called from the

sample function which issues the

class request.

6.3 Target Peripheral List (TPL)

A host class driver is not required to support operation of all USB peripherals of the class. It is up to the manufacturer

of the host to determine what peripherals to support and provide a list of those peripherals. This is called the “Target

Peripheral List (TPL)”.

TPL is composed of an array of supported VID(s) and PID(s). To not check VID (/PID), specify USB_NOVENDOR

(/USB_NOPRODUCT). Refer to the usb_gapl_devicetpl[] array in the r_usb_hhid_driver.c file for the determination

of TPL.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 23 of 39

Mar 16, 2015

6.4 Structures

6.4.1 HHID Class API Function Structure

Table 6-2 describes the HID class request parameter structure.

Table 6-2 USB_HHID_CLASS_REQUEST_PARM_t Structure

Type Member Description

usb_addr_t devadr Device address.

uint8_t bRequestCode Class request code. Refer to the Table 6-3

void* tranadr Transfer data buffer.

usb_leng_t tranlen Transfer size.

uint16_t duration Response interval time rate to Interrupt transfer (4ms units).

uint8_t set_protocol Protocol value (Boot Protocol(=0)/Report Protocol(=1)).

uint8_t* get_protocol Protocol value stored address.

usb_cb_t complete Class request processing end call-back function.

6.4.2 HHID Class Request Code

Table 6-3 describes the code of the HID class requests.

Table 6-3 HHID Class Request code

Request Type Definition Value Support

Get_Descriptor(HID) USB_HID_GET_HID_DESCRIPTOR Yes

Get_Descriptor(Report) USB_HID_GET_REPORT_DESCRIPTOR Yes

Get_Descriptor(Physical) USB_HID_GET_PHYSICAL_DESCRIPTOR Yes

Set_Report USB_HID_SET_REPORT Yes

Get_Report USB_HID_GET_REPORT Yes

Set_Idle USB_HID_SET_IDLE No

Get_Idle USB_HID_GET_IDLE No

Set_Protocol USB_HID_SET_PROTOCOL No

Get_Protocol USB_HID_GET_PROTOCOL No

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 24 of 39

Mar 16, 2015

6.4.3 HID-Report Format

(1). Receive Report Format

Table 6-4 shows the receive report format used for notifications from the HID device.

Reports are received in Interrupt-IN transfers or class request GetReport.

Table 6-4 Receive report format

Offset / Application Keyboard Mode Mouse Mode

Data length 8 Bytes 3 Bytes

0 (Top Byte) Modifier keys b0: Button 1

b1: Button 2

b2-7: Reserved

+1 Reserved X displacement

+2 Keycode 1 Y displacement

+3 Keycode 2 -

+4 Keycode 3 -

+5 Keycode 4 -

+6 Keycode 5 -

+7 Keycode 6 -

(2). Transmit Report Format

Table 6-5 shows the format of the transmit report sent to the HID device.

Reports are sent in the class request SetReport.

Table 6-5 Transmit report format

Offset / Application Keyboard Mode Mouse Mode

Data length 1 Bytes Non-support

0 (Top Byte) b0: LED 0 (NumLock)

b1: LED 1(CapsLock)

b2: LED 2(ScrollLock)

b3: LED 3(Compose)

b4: LED 4(Kana)

-

+1 ~ +16 - -

(3). Note

The report format used by HID devices for data communication is based on the report descriptor. This HID driver

does not acquire or analyze the report descriptor; rather, the report format is determined by the interface protocol

code. User modifications must conform to the HID class specifications.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 25 of 39

Mar 16, 2015

6.5 List of HHID API Functions

The HHID API is shown in Table 6-6.

Table 6-6 List of HHID API Functions

Function Description Notes

R_usb_hhid_task HHID task processing

R_usb_hhid_ClassCheck This function requests the HHID task to judge

whether the connected device is a HID device.

R_usb_hhid_DriverStart Start driver task HHID

R_usb_hhid_DriverStop Stop driver task HHID

R_usb_hhid_SetPipeRegistration Set pipe information table.

R_usb_hhid_PipeTransferExample USB data transfer request.

R_usb_hhid_TransferEnd USB data transfer termination request .

R_usb_hhid_class_request Send HID class request.

R_usb_hhid_DeviceInformation Acquire the USB state of a connected device.

R_usb_hhid_ChangeDeviceState Request USB status change of a connected device.

R_usb_hhid_GetReportLength Get the report length.

R_usb_hhid_get_hid_protocol Get Interface protocol value.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 26 of 39

Mar 16, 2015

R_usb_hhid_task

The HHID task

Format

void R_usb_hhid_task(void)

Argument

－ －

Return Value

－ －

Description

The HHID task function.

The HHID task processes requests from the application, and the results are notified to the application.

Note

Please refer to USB Basic Mini Firmware application note about task loops.

Example

void usb_apl_task_switch(void)

{

 while(1)

 {

 if(USB_FLGSET == R_usb_cstd_Scheduler()) /* Scheduler */

 {

 R_usb_hstd_HcdTask(); /* HCD Task */

 R_usb_hstd_MgrTask(); /* MGR Task */

 usb_hhid_main_task(); /* HHID Application Task */

 R_usb_hhid_task(); /* HHID Task */

 }

 else

 {

 }

 }

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 27 of 39

Mar 16, 2015

R_usb_hhid_ClassCheck

Check connected device’s descriptors

Format

void R_usb_hhid_ClassCheck (uint8_t **table)

Argument

**table Address array of the device information table

 [0] : Address of Device Descriptor

 [1] : Address of Configuration Descriptor

 [2] : Address of global variable that mean the Device Address

Return Value

－ －

Description

This function requests the HHID task to determine whether the connected device is a HID device by studying the

received descroptors. Call this function when the USB-BASIC-F/W executes the classcheck callback.

The HHID task references the endpoint descriptor(s) of the peripheral’s configuration descriptor, then edits the

Pipe Information Table, usb_ghmsc_TmpEpTbl[], and checks the pipe information of the pipes to be used.

Note

－

Example

USB_STATIC void usb_hhid_class_check(uint8_t **table)

{

 R_usb_hhid_ClassCheck(table);

 usb_shhid_smpl_devaddr = (usb_addr_t)(*table[2]);

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 28 of 39

Mar 16, 2015

R_usb_hhid_DriverStart

Start HHID driver

Format

void R_usb_hhid_DriverStart(void)

Argument

－ －

Return Value

－ －

Description

The function starts the HHID driver task.

Note

－

Example

void usb_hstd_task_start(void)

{

 /* Target board initialize */

 usb_cpu_target_init();

 /* USB-IP initialized */

 R_usb_hstd_ChangeDeviceState(USB_DO_INITHWFUNCTION);

 /* HCD driver open & registratuion */

 R_usb_hstd_HcdOpen(); /* HCD task, MGR task open */

 usb_hhid_registration(); /* HHID driver registration */

 R_usb_hhid_DriverStart(); /* HHID Task Start */

 /* Scheduler initialized */

 R_usb_hstd_ChangeDeviceState(USB_DO_SETHWFUNCTION);

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 29 of 39

Mar 16, 2015

R_usb_hhid_DriverStop

Stop HHID driver

Format

void R_usb_hhid_DriverStop (void)

Argument

－ －

Return Value

－ －

Description

The function stops the HHID driver task.

Note

－

Example

USB_STATIC void usb_hsmpl_device_state(uint16_t data, uint16_t state)

{

 switch(state)

 {

 case USB_STS_DETACH:

 usb_smpl_set_suspend_flag(USB_NO);

 usb_shhid_active = USB_NO;

 usb_shhid_apl_function = USB_HHID_APL_CLOSE;

 R_usb_hhid_DriverStop();

 break;

 ・

 ・

 ・

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 30 of 39

Mar 16, 2015

R_usb_hhid_SetPipeRegistration

Pipe and Pipe Information Table setting

Format

void R_usb_hhid_SetPipeRegistration(usb_addr_t devadr)

Argument

devadr Device address

Return Value

－ －

Description

This function updates the address field of the host’s Pipe Information table. It thereby sets the hardware pipe to be

used for HID communication.

Note

1. Refer to USB Basic Mini Firmware application note for information on the Pipe Information Table.

2. Please set another field in the Pipe Information Table usb_ghmsc_TmpEpTbl[] beforehand by referring to the

endpoint descriptor.

Example

void usb_smp_task(void)

{

 ：

 R_usb_hhid_SetPipeRegistration (devadr);

 ：

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 31 of 39

Mar 16, 2015

R_usb_hhid_PipeTransferExample

USB data transfer request

Format

usb_er_t R_usb_hhid_TransferExample(uint8_t *table, usb_leng_t size, usb_cb_t complete)

Argument

*table Pointer to the data buffer area.

size Transfer data size

complete Process completion callback function

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

This function requests a data transfer of the USB-BASIC-F/W.

The data of argument “size” byte is received at the address shown in argument “*table”.

When the data reception processing is complete (data reception of "size" byte or short packet reception), the

callback function is called.

Note

1. The data transfer process results are obtained by the argument “usb_utr_t *” of the callback function.

2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr_t.

Example

usb_er_t usb_smp_task(void)

{

 uint8_t data[64]; /* Data buff */

 usb_lenguint16_t size = 64; /* Data size */

 ：

 ：

 R_usb_hhid_TransferExample(data, size,(usb_cb_t)usb_data_received);

}

/* Callback function */

void usb_data_received(usb_utr_t *mess)

{

 /* Describe the processing performed when the USB receive is completed. */

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 32 of 39

Mar 16, 2015

R_usb_hhid_TransferEnd

USB data transfer termination request

Format

usb_er_t R_usb_hhid_TransferEnd(void)

Argument

－ －

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

USB_E_QOVR Overlap (transfer end request for the pipe during transfer end.)

Description

This function requests the USB-BASIC-F/W to end a data transfer in progress.

The transfer end is notified using the callback function set when the data transfer is requested

(R_usb_hhid_PipeTransferExample, R_usb_hhid_class_request). The remaining data length of transmission and

reception, pipe control register value, and transfer status = USB_DATA_STOP are set using the argument of the

callback function (usb_utr_t).

The control transfer or the interrupt transfer is stopped according to how the USB_HHID_GET_REPORT_PIPE0

macro in the r_usb_class_usrcfg.h file is set:

 USB_HHID_GET_REPORT_PIPE0 macro enabled: Stop the control transfer.

 USB_HHID_GET_REPORT_PIPE0 macro is disabled: Stop the interrupt transfer.

Note

1. The data transmit process forced end result is obtained by the argument “usb_utr_t *” of the callback function

2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr_t.

Example

void usb_smp_task(void)

{

 /* Transfer end request */

 err = R_usb_hhid_TransferEnd(USB_PIPE6, USB_DO_TRANSFER_STP);

 return err;

 ：

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 33 of 39

Mar 16, 2015

R_usb_hhid_class_request

Send HID class request

Format

usb_er_t R_usb_hhid_class_request(USB_HHID_CLASS_REQUEST_PARM_t *pram)

Argument

*pram HID class request structure. Refer to Chapter 6.4 for the

 USB_HHID_CLASS_REQUEST_PARM_t argument structure.

Return Value

－ Error code (USB_E_OK/USB_E_ERROR)

Description

The following HID class requests can be sent to the HHID driver.

Judges the request type by the structure member bRequestCode of argument *parm.

1. Get_Descriptor(HID)

2. Get_Descriptor(Report)

3. Get_Descriptor(Physical)

4. Set_Report

5. Get_Report

6. Set_Idle

7. Get_Idle

8. Set_Protocol

9. Get_Protocol

Please refer to the sample application in r_usb_hhid_apl.c for details on how to use.

Note

1. The class request transmission result is obtained via the argument "usb_utr_t *" of the callback function.

2. Refer to USB Basic Mini Firmware application note for the Data Transfer structure usb_utr_t.

Example

void usb_hhid_smpl_set_report(uint16_t devadr, uint8_t *p_data, uint16_t

length, usb_cb_t complete)

{

 USB_HHID_CLASS_REQUEST_PARM_t class_req;

 /* SET_REPORT */

 class_req.bRequestCode = USB_HID_SET_REPORT;

 class_req.devadr = devadr;

 class_req.tranadr = p_data;

 class_req.tranlen = length;

 class_req.complete = complete;

 R_usb_hhid_class_request(class_req);

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 34 of 39

Mar 16, 2015

R_usb_hhid_DeviceInformation

Obtain USB device state and other information

Format

void R_usb_hhid_DeviceInformation(uint16_t *deviceinfo)

Argument

*deviceinfo Table address to store the device information

Return Value

－ －

Description

Obtain the connected USB device information. The following information will be stored to the address specified

by the argument "*deviceinfo":

[0]: Root port number (port 0: USB_0, port 1: USB_1)

[1]: USB state (unconnected: USB_STS_DETACH, enumerated: USB_STS_DEFAULT/USB_STS_ADDRESS,

connected: USB_STS_CONFIGURED, suspended: USB_STS_SUSPEND)

[2]: Structure number (g_usb_HcdDevInfo[g_usb_MgrDevAddr].config)

[3]: Connection speed (FS: USB_FSCONNECT, LS: USB_LSCONNECT, unconnected: USB_NOCONNECT)

Notes

1. Provide an area of 4 words for the argument *deviceinfo.

2. This function is called when the device address is 0, the following information is returned.

(1) When there is not a device during enumeration (device is not connected).

table[0] = USB_NOPORT, table[1] = USB_STS_DETACH

(2) When there is a device during enumeration.

table[0] = Port number, table[1] = USB_STS_DEFAULT

Example

void usb_smp_task(void)

{

 uint16_t tbl[4];

 ：

 /* Device information check */

 R_usb_hhid_DeviceInformation(tbl);

 ：

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 35 of 39

Mar 16, 2015

R_usb_hhid_ChangeDeviceState

USB device state change request

Format

usb_er_t R_usb_hhid_ChangeDeviceState (usb_strct_t msginfo,

usb_strct_t keyword,

usb_cb_info_t complete)

Arguments

msginfo USB state to change into. States are listed below.

keyword Content depends on msginfo. For example, it would be port number if the port is to be

 disabled.

complete Callback function executed when the USB state changing ends.

Return Value

USB_E_OK Success

USB_E_ERROR Failure, argument error

Description

Set the following value to argument msginfo and request to change the device state to the USB-BASIC-F/W.

 USB_DO_PORT_ENABLE / USB_DO_PORT_DISABLE

Enable or disable a port specified by a keyword (on/off control of VBUS output).

 USB_DO_GLOBAL_SUSPEND

Suspend a port specified by a keyword.

 USB_DO_GLOBAL_RESUME

Resume a port specified by a keyword.

 USB_DO_CLEAR_STALL

Cancel STALL of the device that uses a pipe specified by a keyword.

Notes

1. When a connection or disconnection is detected by the USB-BASIC-F/W, USB-BASIC-F/W automatically does

enumeration or the detach sequence processing.

2. When changing the USB state using this function, the USB state transition callback of the driver structure

registered using the API function R_usb_hstd_DriverRegistration() is not called.

Example

void usb_smp_task(void)

{

 R_usb_hhid_ChangeDeviceState

 (USB_DO_GLOBAL_SUSPEND, USB_PORT0, usb_hsmpl_status_result);

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 36 of 39

Mar 16, 2015

R_usb_hhid_GetReportLength

Gets HID Report length

Format

uint16_t R_usb_hhid_GetReportLength(void)

Argument

－ －

Return Value

－ Max packet size

Description

This function gets the max packet size of the connected USB device.

Note

Example

void usb_smp_task(void)

{

 uint16_t usb_smp_report_length;

 ：

 usb_smp_report_length = R_usb_hhid_GetReportLength();

 ：

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 37 of 39

Mar 16, 2015

R_usb_hhid_get_interfaceprotocol

Get interface protocol value

Format

uint8_t R_usb_hhid_get_interfaceprotocol(void)

Argument

－ －

Return Value

－ Protocol code of USB device（bInterfaceProtocol）

Description

This function gets the interface protocol value of the connected USB device.

Note

1. bInterfaceProtocol is included in Interface Descriptor.

2. The protocol code of the first HID class is sent as response for the multi interface device.

Example

void usb_smp_task(void)

{

 uint8_t protocol;

 ：

 /* Gets the interface protocol value */

 protocol = R_usb_hhid_get_interfaceprotocol();

 ：

}

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 38 of 39

Mar 16, 2015

7. Limitations

The following limitations apply to HHID.

1. Only one device can connect to HHID. Please do not connect two or more devices simultaneously.

2. The HID driver must analyze the report descriptor to determine the report format. This HHID driver determines

the report format only from the interface protocol.

3. The structures contain members of different types. Depending on the compiler, this may cause address

misalignment of structure members.

Renesas USB MCU USB Host Human Interface Device Class Driver (HHID)

R01AN0664EJ0213 Rev.2.13 Page 39 of 39

Mar 16, 2015

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev.

Date

Description

Page Summary

0.00 May. 12.11 — First edition issued

2.00 Nov. 30.12 — Revision of the document by firmware upgrade

2.10 Aug. 01. 13 — RX111 is supported. Error is fixed.

2.11 Oct. 31. 13 — 1.4 Folder path fixed.

3.3.1 Folder Structure was corrected.

Error is fixed.

2.12 Mar. 31. 14 — R8C is supported. Error is fixed.

2.13 Mar. 16. 15 — RX111 is deleted from Target Device

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations
	1.4 How to Read This Document

	2. Register Class Driver
	3. Software Configuration
	3.1 Module Configuration
	3.2 Overview of Application Program Functions
	3.3 File Configuration List
	3.3.1 Folder Structure
	3.3.2 File Structure

	3.4 System Resources
	3.4.1 System Resource Definitions

	4. Host HID Sample Application Program (APL)
	4.1 Operating Environment
	4.1.1 Report reception

	4.2 Description of Application Program Processing
	4.3 Endpoint Specifications
	4.4 Allowed HID Peripherals
	4.4.1 Supported Features
	4.4.2 Non-supported Features

	4.5 List of APL Functions
	4.6 Host Application Task Sequence
	4.6.1 Displayed Information
	4.6.2 State Transitions

	4.7 SW Processing Flow Graphs
	4.8 Sequences charts APL-HHID-HCD
	4.8.1 Startup to HID Device Attachment
	4.8.2 Data Communication
	4.8.3 HID Device Detach
	4.8.4 HID Device Suspended, Resumed

	5. Human Interface Device Class (HID)
	5.1 Basic Functions
	5.2 HID Class Requests (Host to Device)

	6. USB Host Human Interface Device Class Driver (HHID)
	6.1 Basic Functions
	6.2 HHID Task Description
	6.3 Target Peripheral List (TPL)
	6.4 Structures
	6.4.1 HHID Class API Function Structure
	6.4.2 HHID Class Request Code
	6.4.3 HID-Report Format

	6.5 List of HHID API Functions

	7. Limitations

