USER'S MANUAL

for
WINPEST

The Windows” interface to PEST - the popular parameter estimation pro-
gram for professional groundwater modelling using Visual MODFLOW.

SAWInPEST: [D-\VMODNTATUTORIAL\VALLEY PST]

File DOptions Parameters Wiew Yalidate

S-HBF- [y v S w[AAL

PEST Log| Phi | Sensiiviy {Paiameters | Lambda | Valley.pet | Calo. vs. Obs. | Residuals | Jacobian | Conelation | ¢ *
Farameters vs. iteration no

a—
o i
K] B EAWInPEST: [D:\WMODNTATUTORIAL\VALLEY PST |
T B Ele Dptions Comelation View alidate
]
£ S-EHE-|» 1 nv- G- w[AQK
E - i PEST Logl Phi | Sensitiwlyl F‘alametersl Lambdal \u’alley.pstl Calc. ws. Dhs.l Hesidualsl Jacabian C IC |+
i Correlation coefiicient matrix
B - Positive
J i ’ * + = Negstive] I
] =
1 [T N|‘....¢
1 8 1 z
m o o - _an—
Vi S
toration number=r/a ,% MWwinPEST: [D:\WMODNTATUTORIALAVALLEY PST] M=l E3 & *
—_— File Options Calc. vsObs Miew Yalidate
Mot Running -
S .’
PEST Lngl Phi I Sensitwityl P I Lambda : Calc. ws. Obs. | F\asidualsl Jacnhianl Ennelatmnl Cnvamancel Al
Calculated vs. Observed(weighted) .’
@
3
=@ _ |
20 A
= i
o
= i
L]
@
S —
= 4
@
= [[e R T
488 s08 528 548
Observed
|Dhsarvad=n#a |Ea\culated=m‘a ‘
|Nat Running

01999, Watermark Numerical Computing & Waterloo Hydrogeologic Inc.

DISCLAIMER OF WARRANTY

This manual and associated software are sold “as is” and without warranties as to perfor-
mance or merchantability. The seller’s salespersons may have made statements about
this software. Any such statements do not constitute warranties.

This program is sold without any express or implied warranties whatsoever. No warranty
of fitness for a particular purpose is offered. The user is advised to test the program thor-
oughly before relying on it. The user assumes the entire risk of using the progranfAny
liability of seller or manufacturer will be limited exclusively to replacement of diskettes
defective in materials or workmanship.

Waterloo Hydrogeologic Inc.
180 Columbia Street West - Unit 1104
Waterloo, Ontario, CANADA
N2L 3L3

Phone (519) 746 1798
Fax (519) 885 5262

Email: techsupport@flowpath.com
Web: www.flowpath.com

Visual MODFLOW is a trademark, owned by Waterloo Hydrogeologic Inc. Microsoft is a registered
trademark, and Windows is a trademark of the Microsoft Corporation. Borland is a trademark of Bor-
land International, Inc. EXml is a trademark of CUESoft. Adobe, the Adobe logo and Acrobat are reg-
istered trademarks of Adobe Systems, Inc. MODFLOW and MODPATH are trademarks of the United
States Geological Survey. MT3DMS is a trademark of The University of Alabama. MT3D96 and
MT3D99 are trademarks of S.S. Papadopulos and Associates Inc. RT3D is a trademark of the Pacific
Northwest National Laboratory and the United States Department of Energy. PEST is a trademark of
Watermark Numerical Computing.

WINnPEST User’s Manual

0 1999 Waterloo Hydrogeologic Inc.
All Rights Reserved. No part of this document may be photocopied, reproduced, or translated by any
means without the prior written consent of Waterloo Hydrogeologic Inc.

Visual MODFLOW

[0 1999 Waterloo Hydrogeologic Inc.
All Rights Reserved.

WInPEST Manual 01/08/99 ii

Table of Contents

1 - INtroduction 10 PEST ...ooiiiiiiceeee et 1
WAt PEST DOBS....ceeeiiiiiiiiiiiiis e e et e e e e e ettt e ettt s s s e e e e e e e e e e e e eeeeeessaetsnsaaaseaeaeaeeaaaeeeennennnes 2
HOW PEST WOIKS ... ittt ettt e e e e et e e e e e e et e e e e e e et e e e e e e eaaaaaes 4

Parameter Definition and RECOGNITION..........ccooiiiiiiiiiiiiiiii e 4
Observation Definition and ReCOgNItIONoovviviiiiiiiiiiie e 5
The Parameter Estimation AlQOrithm..........ooooi e 5

2 - The Mathematics Of PESTc..cociiiiiieiee e, 9
Parameter Estimation for Linear MOAEIlSuuuuuiiiiiiiiiiieei e 9
Adding Observation WeIgNtsS...........ooviiiiiiiiiiiiie e e e e e e e e e e e eeeaaaees 12
Using Prior Information to Improve Parameter Estimation Process............ccccc....... 14
Extending Linear Parameter Estimation to Non-Linear Models................ccccceeeennn. 15
The Marquardt Parameteroooiiiiiiiiiiiiiiiie ettt e e e e e e e e eeeeeeeannnes 18
oY= T Lo (=T g Yox= 1] o RSP 20
The Marquardt LamBaacooooiiiiiiiie e e e e e e e e eeeeaenens 20
Optimum Length of the Parameter Upgrade VECIOrcuuvveiiiiiiiiieeeeeeeeeeeeeeiiiinnnns 21

3 - PEST's Implementation of the Method.............c..ccoeeevveenenee.. 23
Explanation of Parameter OPerationS..............uueiiiiiiiieieeeeeeeeeeeeeeisiens s e e e e e e e e aeeees 23

Parameter TransSformMationooooiiiiiiiiiiiii e e e e e e eeeeeeees 23
Fixed and Tied Parameters...........uuuuuuiiiiiieee ettt e e e e e e eeernae s 24
Upper and Lower Parameter BOUNGS............uuuuiiiiiiiiieeeeeeeeeeeceeceiiiis s e e e e e e e e e eeees 25
SCAIE AN OFfSEL ...t e e e e e e e e e e e rerraana 26
Parameter Change LIMITS oot e e e e e e e 27
Damping of Parameter ChanQEsScoiiiiiii e e e e e e e e e e e 30
Temporary Holding of Insensitive Parameters............oooovviiiiiiiiiiiiiee e 31
ODSEIVALION GIOUPS.....cciiiiiiiiiiiiiiiiieaa e e e e e e e e e e e et ettt aabbaa e e e e e e e e e e eeeeeeeeesssenbnnnna e as 32
TerminNAtioN CrILEIIA........eieeeeeie et e e e e e e e e e e e e e e e e s e e e e e eaeaeeeeeeeesnsnnnnnns 33
The Calculation Of DErVALIVESccciiiiiieiieeeeeeeeer e e e e e e e 34
Forward and Central DIiffer&NCES.uuu i 34
Parameter Increments for Calculating Derivativesooviiiiiiiiiiiiiiiiiine e 38
How to Obtain Derivatives YOU Can TrUSE..........uuuuuiiiiiiiieeeeeeeee e e e e e e 40

Table of Contents iii

PEST with MODFLOW and MT3Doiiiiiiiiiiiiiiieee e 42

Parameter SEIECHION..........oiiiiieee e e e e e e e e 42
Modifying Model INPUL FIIES ... 43
Visual MODFLOW'’S Template FilesSccovvveiiiiiiiiieiee e 45
Reading OULPUL FIlESeeeiiiiiiie e e e e e e e e e e e e e e e e e aaaees 45
PEST INSIIUCHION FlESiiiiieiie e 45
Interpolating Model Outcomes to Borehole Locationscccoovvvvvvivviiiiiiiiicceneneeenn, 46
MODFLOW and MT3D Output TimMiNgoooeeiiiiiieeeece e e e 47
MODBORE and MT3BORE Spatial Interpolationcccccceeiiiiiiiiiiiiiiiiiii e, 47
MODBORE and MT3BORE as an Aid t0 CONtOUNNGcuvvvieeeieeeeieeeeeeeeeeeeeeeeeeeeeeeee, 49
Using MODBORE and MT3BORE With PESTcccooiiiiiiiiiiiiiiieeee e 49
4 - PEST in Visual MODFLOW............ccceueueueeeereeeessececeeaeeeans 51
Assigning Observations t0 Model OULPULScoooeiiiiiiiiiiiiiie e 51
Head and Concentration ODSErVatioNSccooeeeeeiiiiiiieeiiiiiiiess e e e e e e e e e e e e eeeeaeanenns 51
FIOW ODSEIVALIONSot e e e e e e e e e e e e e eeeeaarnnnn s 53
(@] 011 V7= Ui [0 g I T 01U o PP 56
Choosing the Parameters t0 OPtiMIZEooiiiiii i 57
P aAIAIMEBTEIS ... 59
P AAIMEBTET ... ananna 59....
PEST Name - PARNME ...ttt e e e e e et e e e eab e e aaee 59
Transformation - PARTRANS and ISTIedTO........occciviiiiiiieieeee e 59
Param. Group - PARGNP.......cc e e e e 60
I T] Vo T = A 4 - [60
INitial Value - PARVALL......ooiiiiieiiie e e e e et s s s s e e e e e e e e e e e e e eeaeeeennan e e as 61
Min and Max - PARLBND and PARUBND.............coocciiiiiiiiiiiiiiiieeeee e aaaaaaa e 61
Scale and Offset - SCALE and OFFSETooociiiiiiiieeeeeeeeeeeeeeeeee e 62
ParameEter GIOUPSuu ettt e e ettt e e e e e e et e e e e e e eena e e e e eeennnnns 62
= 1= T {0 1] o PP 62.......
PEST Name - PARGPNME ... 62
INCE. TYPE - INCT Y P ottt e e e et e e e e e aabneeaeene 62
INCreMENt - DERINC ... e r e e e e e e e aa e 63
Min. INCr. - DERINCLBooiiiiie e 63
FD Method - FORCEN...... ..ottt e e e e 63
Incr. Multiplier - DERINCMUL........ooiieiiee e e e e 64
Central FD Method - DERMTHDcooiiiieiecc et e e 65
AsSIgNING Prior INFOrMatioN..........oooiiiieece e e e e e e e e e e e e eeeeanenne 65
Assigning the ODbjJective FUNCLION...........ooiiiiiii e 67
Controlling the PEST RUNcoiiiiieeeesee ettt e e e e e e e e e e e e e e e eeaeenenennnnns 68
V=T o U= Tge | =T 4 oo F- PSSR 69

iv Table of Contents

Initial Lambda - RLAMBDAL. ... oottt ettt e ettt et e e e e e e e e e e eeaeenees 69

Adjustment Factor - RLAMEACuuiiiis et s s s e e e e e e e e e e e e eaanee s 69
Sufficient Phi Ratio - RHIRATSUFR ... 70
Limiting Relative Phi Reduction - PHIREDLAM.........ceum uiiiiiiiiiiiiiiieeeeee e 70
Maximum Trial Lambdas - NUMLAM ... e e e e 70
Parameter Change CONSIIAINTSooeuiiiiiiiiiiiie e ettt e e e e e e e e eeeeeeeee 71
Max relative parameter change - RELPARMAX ..., 72
Max factor parameter change - FACPARMAX ..ot 72
Use-if-less Fraction - FACORIGcoooiiiii e 72
Method Separation Value - PHIREDSWH ... 73
Precision - PRECIS ...ttt e e e e e e e s e s e e e e e e e e e e e eeeees 73
TerminNAtioN CrILEIIA.......ciieeeeiei ettt e e e e e e e e e e e e e et e e s e e e e e eeaaeeeeeeeeensnnnnnns 74
Overall Iteration Limit - NOPTMAX ..ot e e e e e e 74
Negligible Reduction - PHIREDSTP.......ccooiiiiiiiiieeeiisn et e e e 74
Max “No reduction” Iterations - NPHISTPc.ooviiiiiiiiiiiiiiin e 74
Max Unsuccessful Iterations - NPHINOREcoooviiiiiiiiiiiiiiicenn et 74
Negligible Relative Change - RELPARSTPcooi ittt ea e 74
Max “No change” Iterations - NRELPARooiiiiiiiiiiiicireerere e 75
Output Control - ICOV, ICOR, IEIGccoiiiiiiei i 75
Enable Restart - RSTFLEcoovoiiiiiiiiiiiiie e e et s e e e e e e e e e e e aaeeeeannnnnnes 75
Starting the PEST RUNooiiiie s e e e e e e e e e e e e e e e e eeas 76
AT S Y I e (o £ USRS 79
S - Evaluating the PEST RUNc.ceoouieiiee e 83
PEST OUIPUL FIlES ...t e e e e e e e e e e e e et e e e e e eaaaaaas 83
The Parameter Value File........cooooiiiiieiiiee e e e e e e e e e e e e e eeaaaaeees 83
The Parameter SENSILIVILY FIleciiiiii i 84
The ReSIAUAIS FIlecoveeieee e e 85
(@11 [T @ 101 o] U1 A] PSRRI 85
LI =3 A LI 0 [TN =T o o] o 85
THE INPUL DALA STuuuiiiiiei i e et e e e e e e et s e e e e e e e e e e e aeeeeeeennnnes 86
The Parameter Estimation RECOIdcoiiiiiiiiiiiii e 86
Optimized Parameter Values and Confidence Intervals............cccceovveiiiiiiieiiiiiieeeinnnn, 87
Observations, Prior Information and Residuals..............cccovvvvviiiiiiiiiiiiiie e, 88
The CoVarianNCe MaliX........iiiiiiiiiiie e e e e e e e e e e e e e e 88
The Correlation COeffiCieNt MAtriXuiiiiieeieeeeeeeeee e e e e e e e e e e e eeaaaaeane 89
The Normalized Eigenvector Matrix and the Eigenvalues...........ccccccceevieieiieeeieennnee, 89
6 - Troubleshooting PEST ..o 91
RUN-TIME EITOIS .. e e e e e e 1..... 9

Table of Contents \%

Considerations for MODFLOW and MT 3Dieii e 92

Parameter Transformations and BOUNAS.............cooevvviiiiiiiiiii e 93
DIy MOEI CeIIS ...ttt e e e e e e e e e e eaeeeeeeennees 94
Optimising Parameters for MODFLOW and MT3D Togethercccoevvvvvvvvvivvnnnns 95
If PEST WON't OPUIMIZE ...ceeieieeeeeeie sttt e e e e e e e e e e e e e e e eenaeaeeannnnn s 96
Obtaining Sufficient Precision of the Derivativesccccvvvvvviiiiiiiiiiie e, 97
Derivative Precision in MODFLO coiiiiiiiiiiiiice ettt 97
Derivative precision in MT 3Do e e e e e e e e e aee s 99
High Parameter Correlationouuuiiiiiiiiiiie et e e e e e e e e e e e eeeeenannnen 101
Inappropriate Parameter Transformationccccceeeeieiiiieieeeeiiccee e 102
Highly Non-linear Problems ... 102
D oto] o111 018 T 10 I3 ad 0] o] [T 1 o S 103
Parameter Change Limits Set Too Large or Too Smallcccccoevviieeiiiiiiiiiieiiiinnnns 103
Poor Choice of Initial Parameter ValUesScoovieiiiiiiiiiiiiiieeiis e 104
Observations are Insensitive to Initial Parameter Values............ccccccevviiiiieeeeeeneeee, 104
Poor Choice of Initial Marquardt Lambda...........ccccoeviiiiieiiiiiiiiccceses e 104
Upgrade Vector Dominated by Insensitive Parametersccccceevveevviviiiiieeeevvnnnnnn. 105
HOIAING ParameterS.......ooooiiiiieeiieii et e e e e e e e e e e e e e e e bbb s 106
The Parameter Hold File............cccoiiiiiiii 107
Re-starting PEST €XECULIONcvviiiiiiiiiieee s e e e e e e e e e e e e ee et s s e e e e e e e e e e eeeeeeeaennnsennnnns 108
Appendix A, PEST INpUt FileSccooiiiii e, 111
PEST TeMPIAE FIlES ...eveeeei et a e e e e 111
Visual MODFLOW'’S Template Filesoooeeviiiiiiiiiii e 114
Working Directly with MODFLOW/MT3D File€Scccoooiiiiiiiiiiiieiee e 115
Working with files created by Visual MODFLOWcccevviiiiiiiiiiiiiie e 116
Multi-Array Parameters and Tied Parameterscccccovvvvevviiiiiiiiiie e 117
Fixed and Transformed Parameterso 117
Template File Syntax and CommMaNdSeeuiiiiiiiiiieeeiieeeceeer e e e e e 118
The Parameter DeIIMILEI..........vii i 118
Parameter NAIMES e e e e e e et e e e e ar bbb as 118
Setting the Parameter Space Widthuueuiiiiiii e 118
How PEST Fills a Parameter Space with a NUMDbEr..............ooooiiiiiiiiieeeeee e, 120
The Same Parameter in Different FileSccuvviiiiiiiii e 121
PEST Instruction Files for OULPUL...........cooei i 122
Precision in Model QULPUL FIlES.........coooiiiii e 122
How PEST Reads Model OULPUL FIlES........uuiiiii e 122
The Marker DeIIMIETcccei e e e e e e e e e e e e e e eeeeeannnnes 123
ObSErVAtiON NAIMES.....ciiiiiiie e e e e e e et e e e e e aaa e 124

Vi Table of Contents

THE INSITUCTION SE1T....ceeiiiiiiiiiiiiie aaaaaees

PrMANY MarKEEoeee ettt e e e e e e e e e e e e e aaaaaaaaaaaaeas 25..... 1

LINE AGVANCE ..oeeeeee ettt e e e e e e e e e e e e e e s 126.....

Y= TeTo] a0 F= 1Y\ F= U = PP 127

LAY T (=TS o = o 128.....

A e ————— 129

FIXed ODSEIVALIONS ... e aeees 129

Semi-Fixed ODSEIVAtIONS.........ciiiiiiiie e e e e e e e 131

NON-FiXed ODSEIVALIONScciei i 132

CONLINUALION ...t e e e e e e e e e e e aaeaaaaaaaeaaaesseaaesaassaeananannnnes 135.
Creating and Checking an INnstruction File ... 136

The PEST CONrOl Fileccooviieeee e 136
Appendix B, A PEST Run RecCordccccooevviiiieiiiiiieeic e 141
THE INPUE DA STuiiiiiii ittt e e e e e e e e e e e e e e eeeeeneeees 141
The Parameter EStimation RECOIccoeeeiiiiiiiieeeie e 141
Optimized Parameter Values and Confidence Intervals...........cccoeeeiiiiieiiiiiiieeninnnnn, 144
Observations, Prior Information and Residuals..............ccviiiiiiiiiiiiii e, 145
The CovarianCe MALIIX..........veeeieiiiiiiise e e e e e e e e e et e e e e et e e e e e e e eeeeeeeeeeeeeasnennnnnns 146
The Correlation COeffiCient MatriXccoeiiieieeeeiieieiieeeeeiirse e e e e e e e e, 146
The Normalized Eigenvector Matrix and the Eigenvalues.............cccccceeeeiiiinieeennennn. 147
The PEST Run Record for the Control file in AppendiX A........cccceeeeiiiieeeeiieiieeeeennnns 148
INOEX e 157
Vil

Table of Contents

viii Table of Contents

1 - Introduction to PEST

There is a mathematical model for just about everything. Computer programs have
been written to describe the flow of water in channels, the flow of electricity in
conductors of strange shape, the growth of plants, the population dynamics of ants, the
distribution of stress in the hulls of ships and on and on. Modeling programs generally
require the following four types of data, although the distinction between them may not
always be clear:

» Fixed data. These data define the system. For example, in a ground water
model the shape of the aquifer is fixed, as are the whereabouts of any extraction
and injection wells.

» Parameters.These are the properties of the system. Parameters for a ground
water model include the hydraulic conductivity and storage capacity of the
porous media through which the water flows. A model may have many
parameters. Each pertaining to one particular attribute of the system which
affects the model’s response to an input or disturbance. In spatial models a
system property may vary from place to place. Hence the parameter data
needed by the model may include either individual values of a property for
certain model subregions, or values which describe the manner in which the
property is spatially distributed.

» Disturbances These are the quantities which "drive" the system, for example
recharge data in a groundwater model, and the source and location of
contaminants. Like parameters, disturbances may be spatially dependent.

» Control data. These data provide settings for the numerical solution method
by which the system equations are solved. Examples are the specifications of a
finite element mesh, the convergence criteria for a preconditioned conjugate
gradient matrix equation solver, and so on.

The purpose of a mathematical model is to produce numbers. These numbers are the
model's predictions of what a natural or man-made system will do under a certain
disturbances. It is for the sake of these numbers that the model was built, be it a ten-line

program involving a few additions and subtractions, or a complex numerical procedure
for solving a set of nonlinear partial differential equations.

Where a model simulates reality, often the model-user does not know what the reality
is. In fact, models are often used to infer reality. For example, if a ground water model
is able to reproduce the variations in borehole water levels over time (a quantity which
can be obtained by direct observation), the hydraulic conductivity values that we assign
to different parts of the model domain to achieve this match are likely correct. This is
fortunate, as it is often difficult or expensive to measure hydraulic conductivity directly.

Parameter{d

Outputs

M AV

x describes system configuration

Inputs

gAY

0=M (x,p,i)

Figure 1.1: Typical model structure.

What PEST Does

PEST is all about using existing models to infer aspects of reality that may not be
amenable to direct measurement. In general, its use falls into the following two broad
categories:

* Interpretation . An experiment is often set up to specifically infer some
property of a system, often by disturbing the system in some way (e.g. a
pumping test). The model is then used to relate the disturbance and system
properties to values that can be measured (e.g. piezometer measurements). The
measured data may then be interpreted based on the premise that, for a known
disturbance, it is possible to estimate the system properties from the
measurement set (e.g. hydraulic conductivity from piezometer data)

 Calibration . If a system is disturbed, and this disturbance is simulated in a
model, it should be possible to adjust the model’'s parameters until the model
output corresponds to field measurements taken during the disturbance. If so,
we often conclude that the model will represent the system's behavior in
response to other disturbances - disturbances which we may not be prepared to

2 Chapter 1 - Introduction to PEST

do in practice. A model is said to be "calibrated" when its parameters have been
adjusted in this fashion.

The purpose of PEST is to assist in data interpretation and in model calibration. PEST
will adjust model parameters and disturbances (hereafter referred to only as parameters)
until the fit between model outputs and laboratory or field observations is optimized.
While this is nothing new, the usefulness of PEST lies in its ability to perform this
optimization forany model that reads its input data from one or more ASCII (i.e. text)
input files and writes the outcomes of its calculations to one or more ASCII output files.
Thus a model does not have to be recast as a subroutine and recompiled before it can be
used within a parameter estimation procP&ST adapts to the model, the model

does not need to adapt to PEST.

Thus PEST, as a nonlinear parameter estimator, can exist independently of any
particular model, yet can be used to estimate parameters for a wide range of model
types. This model-independence makes PEST unique. PEST can turn just about any
existing computer model into a powerful nonlinear estimation package, be it a
homemade model based on an analytical solution to a simple physical problem, or a
sophisticated numerical solver for a complex boundary-value problem.

Models produce numbers. If there are field or laboratory measurements corresponding
to some of these numbers, PEST can adjust model parameters such that the
discrepancies between the pertinent model-generated numbers and the corresponding
measurements are minimized. It does this by running the model as many times as is
necessary to determine this optimal set of parameters. You, as the model user, must tell
PEST what the adjustable parameters are. Once PEST is provided with this
information, it can rewrite the model-input files using whatever parameters are
appropriate at any stage of the optimization process. You must also tell PEST what
model output values correspond to your observations. Thus, each time it runs the
model, PEST is able to read the model outcomes that correspond to field or laboratory
observations. After calculating the mismatch between the two sets of numbers, and
evaluating how best to correct that mismatch, it adjusts the model-input data and runs
the model again.

However, for PEST to take control of an existing model and optimize its parameters the
following conditions must be met:

» The input files containing the parameters that PEST is required to adjust must
be in ASCII (i.e. text) format.

» The output files containing the model outcomes that complement field or
laboratory measurements must be in ASCII (i.e. text) format.

» The model must be able to run from a typed command line and must not require
user intervention during the run (see below for further details).

» The Gauss-Marquardt-Levenberg nonlinear estimation technique used in PEST
requires that the output values generated by the model, which correspond to the
observations, must change smoothly and continuously for all input parameter
values. That is the relationship between the input parameters and the output

What PEST Does 3

“observations” must be continuously differentiable.

How PEST Works

PEST can be subdivided into three functionally separate components whose roles are:

parameter definition and recognition,
observation definition and recognition, and
parameter estimation algorithm.

Though the details of PEST will be described in later chapters, these three components
are discussed briefly so you can become acquainted with PEST's capabilities.

Parameter Definition and Recognition

Of the masses of data that may be in a model's input files, those humbers must be
identified which PEST is free to alter and optimize. Fortunately, this is a simple
process, which can be carried out using input file templates. If a model requires, for
example, five input files, and two of these contain parameters, which PEST is free to
adjust, then a template file must be prepared for these two input files. Visual
MODFLOW constructs the necessary template files depending on the parameters that
you chose. Then whenever PEST runs the model it copies the template to the model
input file, putting the proper parameter value into the template as it does so.

With respect to the parameter template files the following points are noteworthy:

During a PEST run a parameter can remain fixed if desired. Thus, while the
parameter may be identified in the template file, PEST will not adjust its value
from the value you supply at the beginning of the parameter estimation process.
One or a number of parameters can be "tied" to a "parent" parameter. In this
case, only the parent parameter is actually optimized and the tied parameters are
simply varied with this parameter, maintaining a constant ratio to it.

PEST requires that upper and lower bounds be supplied for all parameters that
are neither fixed nor tied. This information is vital to PEST, for it informs PEST

of the range of permissible values that a parameter can take. For example,
parameters such as hydraulic conductivity and solute concentration should
never be have negative values.

For many models it has been found that the amount of time needed to find an
optimum set of parameters can be greatly reduced if the logarithms of certain
parameters are optimized, rather than the parameters themselves.

Finally, parameters adjusted by PEST can be scaled and offset. Thus you may
wish to subtract 273.15 from an absolute temperature before writing that
temperature to a model input file, which requires Celsius degrees.

Chapter 1 - Introduction to PEST

Observation Definition and Recognition

Of the masses of data produced by a model, only a handful of numbers may actually
correspond to "observations". For example, a groundwater model may calculate head
values at thousands of nodes of a finite-difference grid, however, head measurements
may be available at only a handful of piezometers. PEST must be able to identify a
handful of numbers out of the thousands that may be written to the model's output file.
Unfortunately, the template concept used for model input files will not work for model
output files since model output files may change from run to run, depending on
parameter values. However, if a person is capable of locating a pertinent model output
amongst the other data on a model output file, then so too is a computer. All PEST
requires is an instruction file be provided detailing how to find those observations.

Once interfaced with a model, PEST's role is to minimize the weighted sum of squared
differences between model-generated observation values and those actually measured
in the laboratory or field. This sum of weighted, squared, model-to-measurement
discrepancies is referred to as the "objective function". Weighting these discrepancies
allows you to make some observations more important than others. Weights should be
inversely proportional to the standard deviations of observations. "Trustworthy"”
observations having a greater weight than those that can be less trusted. Also, if
observations are of different types (e.g. head measurements and stream baseflo
values) the weights assigned to each type should reflect the relative magnitude of the
guantities. In this way, larger numbers will not dominate the parameter estimation
process just because the numbers are large. An observation can be provided with a
weight of zero if you do not wish it to affect the optimization process at all.

The Parameter Estimation Algorithm

The Gauss-Marquardt-Levenberg algorithm used by PEST is described in detail in the
next chapter. However, a summary of the parameter estimation process is provided
here.

For linear models (i.e. models for which observations are calculated from parameters
through a matrix equation with constant parameter coefficients), optimization can be
achieved in one step. However for non-linear problems (most models fall into this
category), parameter estimation is an iterative process. At the beginning of each
iteration the relationship between model parameters and model-generated observations
is linearised by formulating it as a Taylor series expansion about the current best
parameter set. Hence the derivatives of all observations with respect to all parameters
must be calculated. This “linearised” problem is then solved for a better parameter set,
and the new parameters tested by running the model again. By comparing the changes
in parameters to the improvement in the objective function, PEST can tell whether it is
worth doing another optimization iteration. If so the whole process is repeated.

At the beginning of a PEST run, you must supply a set of initial parameter values.
These are the values that PEST uses at the start of its first optimization iteration. For

How PEST Works 5

many problems only five or six optimization iterations will be required for model
calibration or data interpretation. In other cases, convergence will be much slower
Often the proper choice of whether and what parameters should be logarithmically
transformed can have a pronounced effect on the optimization efficiency. The
transformation of some parameters may turn a highly nonlinear problem into a
reasonably linear one.

Derivatives of observations with respect to parameters are calculated using finite
differences. During every optimization iteration the model is run once for each
adjustable parameter, a small user-supplied increment being added to the parameter
value prior to the run. The resulting observation changes are divided by this increment
to calculate their derivatives with respect to the parameter. This is repeated for each
parameter. This technique of derivative calculation is referred to as the method of
"forward differences".

Derivatives calculated in this way are only approximate. If the increment is too large
the approximation will be poor. If the increment is too small round-off errors will

detract from derivatives accuracy. Both of these effects will degrade optimization
performance. To combat such inaccuracy, PEST allows derivatives to be calculated
using the method of "central differences". Using this method, two model runs are
required to calculate a set of observation derivatives with respect to any parameter. For
the first run an increment is added to the current parameter value, while for the second
run the increment is subtracted. Hence three observation-parameter pairs are used in the
calculation of any derivative (the third pair being the current parameter value and
corresponding observation value). The derivative is calculated either by (i) fitting a
parabola to all three points, (ii) constructing a best-fit straight line for the three points or
(iii) by simply using finite differences on the outer two points (its your choice).

It is normally best to commence an optimization run using the more economical
forward difference method, allowing PEST to switch to central differences when the
going gets tough. PEST will make the switch automatically according to a criterion,
which you supply.

In the course of the estimation process PEST writes what it is doing to the screen. PEST
simultaneously writes a more detailed run record to a file. You can stop PEST execution
at any time and recommence execution exactly where it was interrupted. Alternatively,
you can shut down PEST completely at any stage and restart it later at either the
beginning of the optimization iteration in which it was interrupted or at that point

within the current or previous iteration at which it last attempted to upgrade parameter
values.

As it calculates derivatives, PEST records the sensitivity of each parameter with respect
to the observations. If PEST’s performance is being hindered by the behavior of certain

parameters (normally the most insensitive ones), these parameters can be temporarily

held at their current values while PEST calculates a suitable upgrade vector for the rest
of the parameters. If desired, PEST can be requested to repeat its determination of the

parameter upgrade vector with additional parameters held fixed. Variables governing

Chapter 1 - Introduction to PEST

the operation of the Gauss-Marquardt-Levenberg method in determining the optimu
upgrade vector can also be adjusted prior to repeating the calculation. Thus you can
interact with PEST, assisting it in its determination of optimum parameter values in
difficult situations.

At the end of the parameter estimation process (the end being determined either by
PEST or by you) PEST records the optimized value of each adjustable parameter
together with its 95% confidence interval. It tabulates the set of field measurements,
their optimized model-calculated counterparts, and the difference between each pair.
Then it calculates and prints the parameter covariance matrix, the parameter correlation
coefficient matrix and the matrix of normalized eigenvectors of the covariance matrix.

How PEST Works 7

Chapter 1 - Introduction to PEST

2 - The Mathematics of PEST

Parameter Estimation for Linear Models

Let us assume that a natural or man-made system can be described by the linear
eguation

Xb=c (2.1)

In equation (2.1X is am x n matrix, i.e. it is a matrix witmrows anch columns. The
elements oK are constant and hence independent of the elemelntsaafector of

ordern that we assume holds the system paramete&rsa vector of orden containing
numbers which describe the system's response to a set of disturbances embodied in the
matrix X, and for which we can obtain corresponding field or laboratory measurements
by which to infer the system parameters comprigir{lote that for many problems to

which PEST is amenable, the system parameters may be contaiaddrihe

disturbances may comprise the elements. &fevertheless, in the discussion which

follows, it will be assumed for the sake of simplicity thdtolds the syste

parameters.)

Most models generate a wealth of data for which we usually only have a handful of
corresponding field measurements. Therefore, we will use the word "observations" to
describe the elements of the ved@ven though the model in fact, generatess we
include in the vectot only those model outcomes for which there are complementary
field measurements, it is appropriate to distinguish them from the remainder of the
model outcomes by referring to them as the "model-generated observations". The
complementary set of field or laboratory data is referred to as "measurements” or as
"experimental observations" in the following discussion.

Let it be assumed that the elementX afre all known. For most models these elements
will include the effects of such things as the system dimensions, physical, chemical or
other constants which are considered immutable, independent variables such as time

Parameter Estimation for Linear Models 9

10

and distance etc. For example, equation (2.1) may represent the response of the system
at different times, where the response at finecalculated using the equation

Xpaby + X0, ... X, b, =¢; (2.2)

wherexpi is the element ok found at itsp'th row and'th column. AsX hasm rows,
there aram such equations, one for eachmwfifferent times. Hence for arpy at least
one of thex,; depends on time.

Suppose thah s greater than, that is we are capable of observing the syste
response (and hence providing elements for the vectirmore times than there are
parameters in the vectbr Common sense tells us that we should be able to use the
elements ot to infer the elements &f.

Unfortunately we cannot do this by recasting equation (2.1) as another matrix equation
with b on the right-hand side, &sis not a square matrix and hence not directly
invertible. But you may ask, "Have we not made a rod for our own back by measuring
the system response at more times than there are parameter values, i.e. eldrfénts of
If b were of the same order @asX would indeed be a square matrix and may well be
invertible. If so, it is true that an equation could be formulated which solves for the
elements ob in terms of those af. However, what if we then made just one more
measurement of the system at a time not already represented xnheatrix X? We

would now haven + 1 values of. Whichn should we use in solving fof? And what

would we do if we obtained (as we probably would) slightly different estimates for the
components ab depending on which of then + 1 values ot we used in solving for

b? The problem becomes even more acute if the information redundancy is greater than
one.

Actually, as intuition should readily inform us, redundancy of information is a bonus
rather than a problem, for it allows us to determine not just the eleménitsutfsome
other numbers which describe how well we can trust the elemeimts bis
"trustworthiness" is based on the consistency with whiclmtb&perimental
measurements satisfy theequations expressed by equation (2.1) whem thatimal
parameter values are substituted for the elemertis of

We define this optimal parameter set as that for which the sum of squared deviations
between model- generated observations and experimental observations is reduced to a
minimum. The smaller this number is (referred to as the "objective function”) the
greater is the consistency between model and observations and the greater is our
confidence that the determined parameter set is the correct one. Expressing this
mathematically, we wish to minimize, where® is defined by the equation

® = (c- Xb) (c— Xb) (2.3)

Chapter 2 - The Mathematics of PEST

andc now contains the set of laboratory of field measurements. The "t" superscript
indicates the matrix transpose operation. It can be shown that thelvécaor
minimizes® of equation (2.3) is given by

b=(x'x) X (2.4)

Provided that the number of observatiomgquals or exceeds the number of
parameters, the matrix equation (2.4) provides a unique solution to the parameter
estimation problem. Furthermore, as the maii%{ is positive definite under these
conditions, the solution is relatively easy to obtain numerically.

The vectolb expressed by equation (2.4) differs frbrof equation (2.1) (the equation
which defines the system) in that the former is actually an estimate of the latter because
¢ now contains measured data. In facbf equation (2.4) is the "best linear unbiased"
estimator of the set of true system parameters appearing in equation (2.1). As an
estimator, it is one particular realization of thdimensional random vector

calculated, through equation (2.4), from thalimensional random vectaorof

experimental observations, of which the actual observatians but one particular
realization If 62 represents the variance of each of the elemewtétioé elements af

being assumed to be independent of each otherbﬁman be calculated as

g=—2 25

(m-n) (2.5)
where (- n), the difference between the number of observations and the number of
parameters to be estimated, represents the number of "degrees of freedom" of the
parameter estimation problem. Equation (2.5) showsothist directly proportional to
the objective function and thus varies inversely with the goodness of fit between
experimental data and the model-generated observations calculated on the basis of the
optimal parameter set. It can further be shown thia}, @{e covariance matrix dfis
given by

C(b)=c?(X'X)™ (2.6)

Notice that, even though the elements afe assumed to be independent (so that the
covariance matrix of contains only diagonal elements, all equattin the present

case), () is not necessarily a diagonal matrix. In fact, in many parameter estimation
problems parameters are strongly correlated, the estimation process being better able to
estimate one or a number of linear combinations of the parameters than the individual

Parameter Estimation for Linear Models 11

parameters themselves. In such cases some parameter variances (parameter variances
constitute the diagonal elements obL) may be large even though the objective
function ® is reasonably low. If parameter correlation is extreme, the mx{#) of

equation (2.6) may become singular and parameter estimation becomes impossible.

There are two matrices, both of which are derived from the parameter covariance
matrix C), which better demonstrate parameter correlation thapitSelf. The first
is the correlation coefficient matrix whose elemepjtsare calculated as

o

P = ’—0” 7, (2.7)

whereg;; represents the element at thle row and'th column of C). The diagonal
elements of the correlation coefficient matrix are always 1. Off-diagonal elements

range between -1 and 1. The closer are these off-diagonal elements to 1 or -1, the more
highly are the respective parameters correlated.

The second useful matrix is comprised of columns containing the normalized
eigenvectors of the covariance matrib)C(f each eigenvector is dominated by one
element, individual parameter values are well resolved by the estimation process.
However if predominance within each eigenvector is shared between a number of
elements (especially for those eigenvectors whose eigenvalues are largest), the
corresponding parameters are highly correlated.

Adding Observation Weights

12

The discussion so far presupposes that all observations are equally weighted in the
parameter estimation process. However this will not always be the case as some
measurements may be more uncertain than others.

Another problem arises where observations are of more than one type. For example,
you may have a set of head measurements at several piezometers and a couple of strea
baseflow measurements. However, the units for these two quantities are different (m
and /s respectively) and hence the numbers used to represent them may be of vastly
different magnitudes. Under these circumstances the quantity with the numerically
larger value will dominate the estimation process if the objective function is defined by
equation (2.3). This will be especially unfortunate if the quantity represented by the
smaller values is, in fact, measured with greater reliability than that represented by the
larger numbers.

This problem can be overcome if a weight is supplied with each observation. The larger
the weight pertaining to a particular observation the greater the contribution that the
observation makes to the objective function. If the observation weights are housed in an
m-dimensional, square, diagonal matfxwvhosei'th diagonal elemer; is the square

Chapter 2 - The Mathematics of PEST

of the weightw; attached to théth observation, equation (2.3) defining the objective
function is modified as follows:

® = (c— Xb)'Q(c— Xb) (2.8a)

Or, to put it another way,

m

O =Y (wr)? (2.8b)

1=1

Wherer; (thei'th residual) expresses the difference between the model outcome and the
actual field or laboratory measurement for itheobservation. Equation (2.8a) is
equivalent to:

® =(c- Xb)'P™*(c— Xb) (2.9)
Where,
p=q =9 (2.10)
o

C(c) represents the covariance matrix of tikelimensional observation random vector

c of which our measurement vectois a particular realization. Becau@as a diagonal
matrix, so too i$, its elements being the reciprocals of the corresponding elements of
Q. The assumption of independence of the observations is maintained through insisting
thatQ (and henc®) have diagonal elements only, the element3 bking the squares

of the observation weights. These weights can now be seen as being inversely
proportional to the standard deviations of the field or laboratory measurements to which
they pertain. (Note that the weights as defined by equation (2.8) are actually the square
roots of the weights as defined by some other authors. However they are defined as
such herein because it has been found that users, when assigning weights to
observations, find it easier to think in terms of standard deviations than variances,
especially when dealing with two or three different observation types of vastly different
magnitude.)

The quantitycy2 is known as the reference variance. If all observation weights are unity
it represents the variance of each experimental measurement. If the weights are not all
unity the measurement covariance matrix is determined from equation (2.10)2With
given by equation (2.5) arl given by equation (2.8).

Adding Observation Weights 13

With the inclusion of observation weights, equation (2.4) by which the system
parameter vector is estimated becomes

b=(X'QX)™X'Qc (2.11)
While equation (2.6) for the parameter covariance matrix becomes,

C(b) =o*(X'QX)™ (2.12)

Using Prior Information to Improve Parameter Estimation Process

14

Often some independent information exists about the parameters that we wish to
optimize. This information may be in the form of unrelated estimates or of relationships
between parameters expressed in the form of equation (2.2). When this information is
included, it can lend stability to the parameter estimation process, especially when
parameters are highly correlated. Correlated parameters can lead to non-unique
parameter estimates because varying them in certain linear combinations may cause
very little change in the objective function. In some cases, this non-uniqueness can even
lead to numerical instability and failure of the estimation process. However if

something is known about at least one of the members of such a troublesome parameter
group, this information, if included in the estimation process, may remove the non-
uniqueness and provide stability

Parameter estimates will also be non-unique if there are less observations than
parameters. Equation (2.11) is not solvable under these conditions as thex\@xtix

is singular. (Note that PEST will, nevertheless, calculate parameter estimates for
reasons discussed later in this chapter.) However the inclusion of prior information,
being mathematically equivalent to taking extra measurements, may alter the numerical
predominance of parameters over observations and thus provide the system with the
ability to supply a unique set of parameter estimates.

Prior information is included in the estimation algorithm by simply adding row
containing this information to the matrix equation (2.1). This information must be of a
suitable type to be included in equation (2.1). Both simple equality, and linear
relationships of the type described by equation (2.2) are acceptable. A weight must be
included with each article of prior information. In theory, this weight should be

inversely proportional to the standard deviation of the right hand side of the prior
information equation, the constant of proportionality being the same as used for the
observations comprising the other elements of the veabequation (2.1). In

practice, however, the user simply assigns the weights according to the extent to which

Chapter 2 - The Mathematics of PEST

he/she wishes each article of prior information to influence the parameter estimation
process.

It is sometimes helpful to view the inclusion of prior parameter information in the
estimation process as the introduction of a "penalty function". The aim of the
estimation process is to lower the objective function defined by equation (2.9) to its
minimum possible value. This is done by adjusting parameter values until a set is found
for which the objective function can be lowered no further. If there is no prior
information, the objective function is defined solely in terms of the difference between
model outcomes and field measurements. However, when prior information is included,
a "penalty" equal to the square of the difference between what the right hand side of the
prior information equation should be, and what it currently is, is introduced into the
objective function. This difference is multiplied by the square of its weight before
including it in the objective function.

Extending Linear Parameter Estimation to Non-Linear Models

Most models are non-linear, i.e. the relationships between parameters and observations
are not of the type expressed by equations (2.1) and (2.2). Non-linear models must be
"linearized" for the theory presented so far to be used in the estimation of their
parameters.

To “linearize” a non-linear model, let the relationships between parameters and model-
generated observations for a particular model be represented by the fivhetltoh
mapsn-dimensional parameter space imalimensional observation space. For

reasons that will become apparent, we require that this function be continuously
differentiable with respect to all model parameters for which estimates are sought.
Suppose that for the set of parameters comprising the Wgdtee corresponding set of
model-calculated observations (generated usihg Cy, i.e.

¢, =M (by,) (2.13)

Now to generate a set of observati@nsorresponding to a parameter vedbothat
differs only slightly fro bg, Taylor's theorem tells us that the following relationship is
approximately correct, the approximation improving with proximit @b by

c=c,+J(b—-h) (2.14)

WherelJ is the Jacobian matrix &, i.e. the matrix composed ofrows (one for each
observation), the elements of each row being the derivatives of one particular
observation with respect to each of thearameters. To put it another way,is the

Extending Linear Parameter Estimation to Non-Linear Models 15

16

derivative of tha'th observation with respect to tfith parameter. Equation (2.14) is a
linearization of equation (2.13).

We now specify that we would like to derive a set of model parameters for which the
model-generated observations are as close as possible to our set of experimental
observations in the least squares sense, i.e. we wish to determine a parameter set for
which the objective functio® defined by

P=(c-¢-JI(b-h))'Qc-¢, - J(b-by)) (2.15)

is a minimum, where in equation (2.15) now represents our experimental observation
vector. Comparing equation (2.15) with equation (2.8), it is apparent that the two are
equivalent ifc from equation (2.8a) is replace twy-(cq) of equation (2.15) anll from
equation (2.8a) is replaced Hy-(bp) from equation (2.15). Thus we can use the theory
for linear parameter estimation to calculate the parameter upgrade bedtgy 6n the
basis of the vectorc(- ¢y), which defines the discrepancy between the model-calculated
observationgy and their experimental counterpastenotingu as the parameter
upgrade vector, equation (2.11) becomes

u=(J'QJ)™"J3'Q(c-c,) (2.16)
And equation (2.12) for the parameter covariance matrix becomes,
C(b)=0?(J'QN™ (2.17)

The linear equations represented by the matrix equation (2.16) are often referred to as
the "normal equations”. The matri¥@J) is often referred to as the "normal matrix".

Since equation (2.14) is only approximately correct, so too is equation (2.16). In other
words, the vectob defined by adding the parameter upgrade vactafrequation

(2.16) to the current parameter vallgss not guaranteed to be that for which the
objective function is at its minimum. Hence the new set of parameters contalned in
must then be used as a starting point in determining a further parameter upgrade vector,
and so on until, hopefully, we arrive at the globaininimum. This process requires
that an initial set of parametdsg be supplied to start off the optimization process. The
process of iterative convergence towards the objective function minimum is
represented diagrammatically for a two-parameter problem in Figure 2.1.

It is an unfortunate fact in working with non-linear problems that a global minimum in
the objective function may be difficult to find. For some models the task is made no

Chapter 2 - The Mathematics of PEST

easier by the fact that the objective function may even possess local minima, distinct
from the global minimum. Hence, it is always good to supply an initial parameter set
by, which approximates the true parameter set. A suitable choice for the initial
parameter set can also reduce the number of iterations necessary to minimize the
objective function. For large models this can mean considerable savings in computer
time. Also, the inclusion of prior information into the objective function can change its
structure in parameter space, often making the global minimum easier to find
(depending on what weights are applied to the articles of prior information). Once
again, this enhances optimization stability and may reduce the number of iterations
required to determine the optimal parameter set.

Initial parameter
estimates

Parameter #2

Contours of equal
objective function
value

Parameter #1

Figure 2.1: Iterative improvement of initial parameter values
toward the global objective function minimum.

Extending Linear Parameter Estimation to Non-Linear Models 17

The Marquardt Parameter

Equation (2.16) forms the basis of non-linear weighted least-squares parameter
estimation. It can be rewritten as

u=J'QN)"J'Qr (2.18)

Whereu is the parameter upgrade vector arnslthe vector of residuals for the current
parameter set.

Let the gradient of the objective functionin parameter space be denoted by the vector
g. Thei'th element of is thus defined as

_ 0D

9 = a_bl (2.19)

i.e. by the partial derivative of the objective function with respect tétthparameter.

The parameter upgrade vector cannot be at an angle of greater than 90 degrees to the
negative of the gradient vector. If the angle betweand g is greater than 90 degrees,

u would have a component along the positive direction of the gradient vector and
movement along would thus cause the objective function to rise, which is the
opposite of what we want. However, in spite of the fact thdefines the direction of
steepest descent @f it can be shown thatis normally a far better parameter upgrade
direction thang, especially in situations where parameters are highly correlated. In
such situations, iteratively following the direction of steepest descent leads to the
phenomenon of "hemstitching” where the parameter set jumps from side to side of a
valley in® as parameters are upgraded on successive iterations. Convergence toward
the global® minimum is then extremely slow. See Figure 2.2.

18 Chapter 2 - The Mathematics of PEST

Initial parameter .
estimates

Parameter #2

Contours of equal
objective function
value

Parameter #1

Figure 2.2: The phenomenon of “hemstitching”.

Nevertheless, most parameter estimation problems benefit from adjustit) that it
is a little closer to the direction dfj in the initial stages of the estimation process.
Mathematically, this can be achieved by including in equation (2.18) the so-called
"Marguardt parameter", named after Marquardt (1963), though the use of this
parameter was, in fact, pioneered by Levenberg (1944). Equation (2.18) becomes

u=J'QJ+al)™J'Qr (2.20)

Wherea is the Marquardt parameter anig then x n identity matrix.

It can be shown that the gradient vega@an be expressed as
g=-2J'Qr (2.21)

It follows from equations (2.20) and (2.21) that wleeis very high the direction af
approaches that of the negative of the gradient vector. Wigenero, equation (2.20)

The Marquardt Parameter 19

is equivalent to equation (2.18). Thus for the initial optimization iterations it is often
beneficial fora to assume a relatively high value, decreasing as the estimation process
progresses and the optimum valu&bos approached.

Parameter Scaling

For many problems, especially those involving different types of observations and
parameters whose magnitudes may differ greatly, the elemehtsaofbe vastly
different in magnitude. This can lead to round-off errors as the upgrade vector is
calculated through equation (2.20). Fortunately, this can be circumvented to some
extent through the use of a scaling ma&iketS be a square x n matrix with
diagonal elements only, tli¢h diagonal element & being given by

1
s =(3'Q)),? (2.22)
IntroducingS into equation (2.20) the following equation can be obtaines tor
Su=((J9'QJIS+as'S) ™" (J9)'Qr (2.23)

It can be shown that although equation (2.23) is mathematically equivalent to equation
(2.20) it is numerically far superior.

If o is zero, the matrixJS)!QJS + aS'Shas all its diagonal elements equal to unity. For

a non-zerax the diagonal elements af%)'QJS + aS!S will be greater than unity,

though in general they will not be equal. Let the largest elemer'8fbe denoted as

A, referred to henceforth as the "Marquardt lambda". Then the largest diagonal element
of the scaled normal matrid$)'QJS + aS!S of equation (2.23) will be 1 .

The Marquardt Lambda

20

As outlined at the end of the previous section, the largest elenw®Sds denoted as

A and referred to as the Marquardt lambda. PEST requires that the user supply an initial
value forA. During the first optimization iteration PEST solves equation (2.23) for the
parameter upgrade vectousing that user-supplied It then upgrades the parameters,
substitutes them into the model, and evaluates the resulting objective function. PEST
then tries anothe, lower by a user-supplied factor than the inkialf @ is loweredA

is lowered yet again. Howeverd was raised by reducingbelow the initiah, theni

is raised above the initial lambda by the same user-supplied factor, a new set of
parameters obtained through solution of equation (2.23), and @ mafculated. 11

Chapter 2 - The Mathematics of PEST

was lowered) is raised again. PEST uses a number of different criteria to determine
when to stop testing nels and proceed to the next optimization iteration. Normally
between one and fodrs need to be tested in this manner per optimization iteration.

At the next iteration PEST repeats the procedure, using as its shaeithgr, the\

from the previous iteration that provided the low®gif A needed to be raised from its
initial value to achieve thi®) or the previous iteration's b@steduced by the user-
supplied factor. In the vast majority of cases this process results in an overall lowering
of A as the estimation process progresses.

Testing the effects of a few differeks in this manner requires that PEST undertake a
few extra model runs per optimization iteration. However, this process makes PEST
very "robust". If the optimization procedure slows down, changiirgthis fashion

often gets the process moving again.

Optimum Length of the Parameter Upgrade Vector

Inclusion of the Marquardt parameter in equation (2.23) has the desired effect of
rotating the parameter upgrade vecatdowards the negative of the gradient vector.
However while the direction af may now be favorable, its magnitude may not be
optimum

Under the linearity assumption used in deriving all equations presented so far, it can be
shown that the optimal parameter adjustment vector is giv@ao,byhereu is
determined using equation (2.23) ghi$ calculated as

m

(C| — Gy)Vvizyi

i(wiyi)z

Where, once again, the vectorepresents the experimental observatiogpsgpresents
their current model-calculated counterpaniss the weight pertaining to observation
andy; is given by:

B= (2.24)

_ < 96,

= 2.25
(=3 (2.25)

That is

y =Ju (2.25b)

Optimum Length of the Parameter Upgrade Vector 21

22

whereJ represents the Jacobian matrix once agaby Hiblds the current parameter set
the new, upgraded set is calculated using the equation

b=h,+ fu (2.26)

Chapter 2 - The Mathematics of PEST

3 - PEST's Implementation of the Method

The previous chapter discussed the theory behind PEST, that is the method of weighted
least squares and its application to non-linear parameter estimation. This chapter
discusses the way in which the least squares method has been implemented in PEST to
provide a general, robust, parameter estimation package that is usable across a wide
range of model types. Appendix B contains a detailed description of all the PEST
control files and the parameters found in the control files.

Explanation of Parameter Operations

There are a number of parameter operations which can be performed by the user to
increase the accuracy of any WIinPEST run. The operations are as follows and are
included in the following sections.

» Parameter Transformation

» Fixed and Tied Parameters

» Upper and Lower Parameter Bounds

» Scale and Offset

» Parameter Change Limits

» Damping of Parameter Changes

» Temporary Holding of Insensitive Parameters
* Observation Groups

» Termination Criteria

Parameter Transformation

PEST allows for the logarithmic transformation of some or all parameters. Often the
parameter estimation process is much faster and more stable when PEST is asked to
estimate the log of a parameter, rather than the parameter itself.

PEST requires that each parameter be designated, in the PEST control file, as
untransformed, log-transformed, fixed or tied. The latter two options will be discussed

Explanation of Parameter Operations 23

in the next section. If a parameter is log-transformed, any prior information pertaining
to that parameter must pertain to the log (to base 10) of that parameter. Also, elements
of the covariance, correlation coefficient and eigenvector matrices calculated by PEST
pertaining to that parameter refer to the log of the parameter rather than to the
parameter itself. However, PEST parameter estimates and confidence intervals listed in
the run record file refer to the actual parameter.

You should never ask PEST to logarithmically transform a parameter that has a
negative or zero initial value, or a parameter that may become negative or zero in the
course of the estimation process. Hence, a log-transformed parameter must be supplied
with a positive lower bound.

» PEST allows you to logarithmically transform parameters, which may improve
the parameter estimation process.

» The co-variance, correlation coefficients and eigenvector values refer to[the log
of the parameter.

» However, the parameter estimates and confidence intervals refer to thg
untransformed parameter.

» Typically, parameters are log-transformed when their values can vary qver
several orders of magnitude (e.g. conductivity).

* The transformation of a parameter is defined®PB\RTRANS in the PEST
control file (projectname.p3t

Fixed and Tied Parameters

PEST allows a parameter to be declared as "fixed” and take no part in the parameter
estimation process. In this case, its value will not vary from its initial value. PEST also
allows one or more parameters to be tied (i.e. linked) to a "parent" parameter. PEST
does not estimate a value for a tied parameter. Rather PEST adjusts the parameter
during the estimation process, such that the initial ratio to the parent parameter is
maintained. Thus, tied parameters "piggyback" on their parent parameters. Note that a
parameter cannot be tied to a parameter, which is either fixed, or tied to another
parameter itself.

« PEST allows you to fix a parameter, which means it will not be part of the
estimation process.

* PEST allows you to tie a parameter to another parameter.

* The ratio of a tied parameter to its parent remains constant during the estimation
process.

« Parameters cannot be tied to other tied parameters or to fixed parameters.

* Whether a parameter is fixed or tied is definedPBYRTRANS in the PEST
control file (projectname.p$t

24 Chapter 3 - PEST's Implementation of the Method

Upper and Lower Parameter Bounds

As well as supplying an initial estimate for each parameter, you must also supply
parameter upper and lower bounds. These bounds define the maximum and minimum
values, which a parameter is allowed to assume during the optimization process.

Objective function minimum

’P

arameter trajectory

P2

P1

Figure 3.3: Example parameter trajectory for a two parameter
model

It is important that upper and lower parameter bounds be chosen wisely. Often
parameters can lie only within certain well-defined limits. For example, if the logarithm
or square root of a particular parameter is taken during a simulation, then that parameter
must never become negative or if the reciprocal is taken of a parameter, the parameter
must never be zero.

In some cases, where a large number of parameters are being estimated based on a large
number of measurements, PEST may try to adjust some parameters to extremely large
or extremely small values (especially if the measured values are not consistent). Such
extremely large or small values may result in floating point errors or difficulties with
numerical convergence. Carefully choosing parameter bounds may circumvent this
problem.

Figure 3.1 illustrates both the means that PEST uses for finding the minimum when
parameter bounds are defined and the drawback to specifying improper bounds. For
example, if a parameter upgrade vector is calculated which would cause a parameter to
move beyond its bounds, PEST will instead assign the upper or lower bound to the
parameter value. On the next iteration, if the upgrade vector would still take the
parameter outside of the current bounds, PEST temporarily fixes the parameter. Such a

Explanation of Parameter Operations 25

process is repeated for all the parameters until an upgrade vector is determined that
either moves parameters from their bounds back into the allowed parameter domain, or
leaves them fixed.

The strength of this strategy is that PEST can search along the boundaries of the
parameter domain looking for the smallest value of the objective function, even though
the global minimum of the objective function may lie outside of the parameteaimiom

The obvious drawback of setting bounds is that the global minimum might lie outside
of the bounds that you set. Therefore, it is important to chose your bounds
appropriately.

At the beginning of each new optimization iteration all temporarily-frozen parameters
are freed to allow them to move back inside the allowed parameter domain. The
stepwise, temporary freezing of parameters is then repeated.

* Itis important to chose upper and lower bounds wisely.

« If an updated parameter value is outside of its bounds, PEST temporarily holds
the parameter at its boundary value.

» The strategy that PEST uses, allows PEST to search along the bounds| of the
parameter domain looking for the minimum value of the objective functjon

» A parameter’s upper and lower bounds are definddARRLBND and
PARUBND in the PEST control filepfojectname.p3t

Scale and Offset

26

Before writing a parameter value to a model input file, PEST multiplies the value by the
scale and adds the offset. Both of which must be specified for every parameter.

The scale and offset variables can be very convenient in some situations. For example,
for a parameter, such as elevation, you may wish to redefine the parameter that PEST
optimizes as the elevation minus some datum. In this case, the result may be thickness,
which may be a more "natural" parameter for PEST to optimize than elevation. In
particular, it may make more sense to express a derivative increment as a fraction of the
thickness rather than as a fraction of the elevation. Also, the optimization process may
be better behaved if the thickness parameter is log-transformed. Again it would be
surprising if the log-transformation of elevation improved optimization performance. In
the manner just described, PEST could optimize thickness, converting this thickness to
elevation every time it writes a model input file by adding the reference elevation stored
as the parameter offset.

The scale variable is equally useful. A model parameter may be such that it is always
negative, which means it cannot be log-transformed. However if a new parameter is
defined as the negative of the model-required parameter, PEST can optimize this new
parameter, log-transforming it if necessary to enhance optimization efficiency. Just

Chapter 3 - PEST's Implementation of the Method

before it writes the parameter to a model-input file, PEST multiplies it by its SCALE
variable (-1 in this case) so that the model receives the parameter it expects.

If you do not wish a parameter to be scaled and offset, enter its scale as 1 and its offset
as zero.

It should be stressed that PEST is oblivious to a parameter's scale and offset until the
moment it writes its value to a model input file. It is at this point (and only this point)

that it first multiplies by the scale and then adds the offset. The scale and offset take no
other part in the parameter estimation process. Note that fixed and tied parameters must
also be supplied with a scale and offset, just like their adjustable (log-transformed and
untransformed) counterparts.

» Before writing a parameter value to a model input file, PEST multiplies|the
value by the scale and then adds the offset.

* If you do not wish a parameter to be scaled and offset, enter its scale gs 1 and
its offset as zero.

» Fixed and tied parameters must also be supplied with a scale and offset, just like
their adjustable counterparts.

» A parameter’s scale and offset values are defined [5GlA¢. E andOFFSET]
terms in the PEST control filpiojectname.p$t

Parameter Change Limits

PEST cannot adjust a parameter above its upper bound or below its lower bound.
However, there is a further limit on parameter changes, determined &mtunt by
which a parameter is permitted to change in any optimization iteration.

If the model under PEST's control exhibits reasonably linear behavior, the updated
parameter set determined by equations (2.23), (2.24), and (2.26) will result in a
lowering of the objective function. However if the model is highly non-linear, the
parameter upgrade vector may "overshoot" the objective function minimum, and the
new value of the objective function may actually be worse than the old one. This is
because equations (2.23) and (2.24) are based on a linearity assumption which may not
extend as far into parameter space from the current parameter estimates as the
magnitude of the upgrade vector, which they predict.

To reduce the possibility of overshoot, it is good practice to place a reasonable limit on
the maximum change that any adjustable parameter is allowed to undergo in any
optimization iteration. Such limits may be defined as either relative-limited or factor-
limited. However, log-transformed parameters must be factor-limited.

If a parameter is factor-limited, the maximum allowable change of the parameter value
per iteration is defined as follows:

Explanation of Parameter Operations 27

28

Let f represent the user-defined maximum allowable parameter factor change (f must be
greater than one). Then if is the value of the parameter at the beginning of the
optimization iteration, the value of the parameter at the beginning of the next
optimization iteration, b, will lie between the limits

bo/f < b < fbg (3.1a)
if by is positive, and
fbg < b < byff (3.1b)

Upgrade Vector with
factor change limits

P

Upgrade
Vector

without factor
change limits

Y

P1

Figure 3.4: Two parameter example of how an upgrade vector
without factor change limits can overshoot the minimum of the

objective function.

if by is negative.

The implication of equation (3.1) is that a parameter subject to factor-limited changes
can never change sign.

On the other hand if the parameter change is relative-limited, the maximum allowable
change of the parameter value per iteration is defined as follows:

Let r represent the user-defined maximum allowable relative parameter change for all
relative-limited parameters. r can be any positive number. Theyisfthe value of a
relative-limited parameter at the beginning of an optimization iteration, its value b at
the beginning of the next optimization iteration will be such that

|b - kool < 7 (32)

Chapter 3 - PEST's Implementation of the Method

In this case, unlessr is less than or equal to unity, a parameter can, indeed, change sign.
However there is a danger in using a relative limit for some types of parameters. For
example, if r greater than or equal to 1, b may become a minute fractigioofdven

zero), without approaching the parameter change limit. For some parameters in some
models this will be fine, however, in other cases a parameter factor change of this
magnitude may invalidate model linearity assumptions.

In implementing the conditions set by equations (3.1) and (3.2), PEST limits the
magnitude of the parameter upgrade vector such that neither of these equations is
violated. Naturally, if only one type of parameter change limit is featured in a current
PEST run (i.e. parameters are all factor-limited or are all relative-limited) only the
pertinent one of these equations is considered.

If, in the course of an optimization run, PEST assigns to a parameter a value, which is
very small in comparison to its initial value, then either of equation (3.1) or (3.2) may
place an undue restriction on subsequent parameter adjustments. jfos drie

parameter is very small, the changes to all parameters may be set intolerably small so
that equation (3.1) or equation (3.2) is obeyed for this one parameter. To circumvent
this problem, PEST provides an additional input variable, FACORIG, which allows the
user to limit the effect that an unduly low parameter value can have in this regard. Thus,
if the absolute value of a parameter is less than FACORIG times the parameter's initial
absolute value and PEST wishes to adjust the parameter such that its absolute value will
increase, then FACORIG times its initial value is substituted into equation (3.1) and the
denominator of equation (3.2) for the parameter's current vgléesuitable value for
FACORIG varies from case to case, but 0.001 is often appropriate. Note, however, that
FACORIG is not used to adjust change limits for log-transformed parameters.

» PEST allows parameter changes to be either factor-limited or relative-limited.

» A factor-limited parameter is one whoseew valueis limited to a specified
fraction of the value from the previous iteration.

» A relative-limited parameter is one whosehangebetween iterations is
limited to a specified fraction.

* Log-transformed parameters must be factor-limited.

» Factor-limited parameters can never change sign.

» For relative-limited parameters, if the specified fraction is greater than or equal
to 1, the new value may become a minute fraction of the previous value|(or even
zero), without approaching the parameter change limit. For some models this
may invalidate the assumption of model linearity.

» To control very small changes in parameter values, the pardm€i©RI
is used as a minimum fraction for a parameter change.

e A typical value for FACORIG is 0.001.

» FACORIG is not used to adjust change limits for log-transformed parameters

* The type of parameter change limit for each parameter is defined by
PARCHGLI inthe PEST control filepfojectname.p3t

Explanation of Parameter Operations 29

* The two input variableRELPARMAX andFACPARMAX , provide the
maximum allowed relative and factor changes limits for all relative-limited and
factor-limited parameters, respectively.

Damping of Parameter Changes

30

Parameter over-adjustment and any resulting oscillatory behavior of the parameter
estimation process is further mitigated by the "damping" of potentially oscillatory
parameter changes. The method used by PEST is based on a technique described by
Cooley (1983) and used by Hill (1992). To see how it works, suppose that a parameter
upgrade vectdBu has just been determined using equations (2.23) and (2.24). Suppose,
further, that this upgrade vector causes no parameter values to exceed their bounds, and
that all parameter changes are within factor and relative limits.

For relative-limited parameters, let the parameter undergoing the proposed relative
change of greatest magnitude be parameter i. Let its proposed relative chgngerbe p
factor-limited parameters that are not log-transformed, defifer parameter j as

o=Pu; /(fb; -)
if u; and b have the same sign, and
=By /(b - by /f)
if u; and b have the opposite sign (3.3)

where bis the current value for the Goth parameter and f is the maximum allowed
factor change for all factor-limited parameters. Let the parameter for which the absolute
value of q is greatest be parameter |, and let q for this parameteiHiead]y, let the
log-transformed parameter for which the absolute valjgia$ greatest be parameter

k, and let the element 81 pertaining to this parameter Bay. Let iy, lo, Ko, Poi» Gy

andBguqy define these same quantities for the previous iteration except that, for the
previous iteration, they are defined in terms of actual parameter changes rather than
proposed ones. Now defing s, and g such that

S1 = R /Poj
if i = ig. Otherwise,
$=0 (3.4a)
S2 = q /0|
if | = 1. Otherwise,
s, =0, and (3.4b)

Chapter 3 - PEST's Implementation of the Method

S3 = Buy /Boliok
if k = ko. Otherwise,

=0 (3.4¢)
Let s be the minimum of;ss, and § and definep as:

p=(3+s)/(3 4 (3.5a)
if s=-1. Otherwise,

p = 1/(2s)) (3.5b)

Then, the oscillatory behavior of the parameter estimation process can be mitigated, by
defining a new parameter upgrade veestby

v=ppu (3.6)

Temporary Holding of Insensitive Parameters

The probability of a parameter estimation process running smoothly and efficiently
decreases with the number of parameters being estimated. Part of the reason for this lies
in the increased probability that several of the parameters are highly correlated. Under
such circumstances the normal matrix may become singular, or almost singular, which
means that the calculation of the parameter upgrade vector can become very imprecise.

In highly parameterized problems, the objective function is likely to be relatively
insensitive to some parameters in comparison to other parameters. As a result, PEST
may decide that large changes are required for certain parameters so that they can make
a contribution to reducing the objective function. However, limits are set on parameter
changes and these limits are enforced such that the magnitude (but not the direction) of
the parameter upgrade vector is reduced, if necessary.

If a parameter is particularly insensitive, it may dominate the parameter upgrade vector,
i.e. the magnitude of the change calculated by PEST for this parameter may be far
greater than that calculated for any other parameter. However, when the change for this
parameter has been reduced by its relative or factor change limits, other more sensitive
parameters may not change much at all. The result is that at the end of the optimization
iteration the objective function may have been hardly changed and subsequent
convergence may be intolerably slow.

This phenomenon can be avoided by temporarily holding troublesome (i.e. insensitive)
parameters at their current value for an iteration or two. Such parameters are then
removed from the calculation of the parameter upgrade vector. Offending parameters
can often be identified as those undergoing the maximum relative- or factor-limited
changes during an optimization iteration. PEST records this information during a run
and in WIinPEST you can view the current sensitivity of all parameters during the run.

Explanation of Parameter Operations 31

PEST records the “composite sensitivity” of each parameter to a parameter sensitivity
file after every optimization iteration. The composite sensitivity is the magnitude of the
column of the Jacobian matrix pertaining to that parameter modulated by the weight
attached to each observationSgrof equation (2.22). The parameters with the lowest
sensitivities are the most likely to cause trouble.

In some cases, it may be necessary to hold several parameters in this way. For example,
once a particular troublesome parameter has been identified and held, another
insensitive parameter may in turn dominate the parameter upgrade vector. This can
continue until the set of parameters has been reduced to a set of sensitive parameters.
Now, once the objective function has been reduced, the held parameters can be released
one at a time until the final optimized solution has been found.

After PEST calculates the Jacobian matrix, and immediately before calculating the
parameter upgrade vector, PEST looks fpraectnam.HLD file. If it does not find it,
PEST proceeds with its execution in the normal manner. However, if it finds this file, it
reads it for the current optimisation iteration. Youcan edit the .HLD file at any time and
PEST will read it at the next opportunity. Alternatively, the hold facility in WinPEST
updates this file automatically

o

» The probability of a parameter estimation process running smoothly an
efficiently decreases with the number of parameters being estimated.

« If a parameter is particularly insensitive, it may adversely dominate the
parameter upgrade vector, making convergence intolerably slow.

e This problem can be avoided by temporarily holding insensitive parameters at
their current value for an iteration or two.

» PEST looks for and reads thmjectnameHLD file after it calculates the
Jacobian matrix and immediately before it calculates the parameter upgrade
vector.

» WInPEST provides an easy means of temporarily holding parameters during a
PEST run.

Observation Groups

The objective function is calculated as the squared sum of weighted residuals
(including prior information). If is often of interest to know what contribution certain
observations, or groups of observations, make to the objective function. This is possible
through the use of “observation groups”. Each observation must be assigned to a group.
The number and names of such groups are specified by the user.

The ability to calculate the contribution made by individual observations or groups of
observations to the objective function is useful in situations where the user wishes that
different types of information contribute an approximately equal amount to the value of

32 Chapter 3 - PEST's Implementation of the Method

the objective function. This ensures that no observation group is “drowned” by other
information, or dominates the inversion process.

If prior information is used in the inversion process, PEST lists the contribution
collectively made to the objective function by all prior information items. Again, this
allows the user to assess the impact that prior information exerts on the objective
function and hence on the inversion process.

» Each observation must be assigned to an observation group.

» PEST provides the contribution made by each observation group to the|change
in the objective function.

» Likewise, PEST provides the contribution made collectively by the prio
information, if it is used.

» This information can be used to ensure that no observation group or prior
information either drowns other groups, or dominates the inversion process.

Termination Criteria

PEST uses a number of different criteria to determine when to halt the iterative process.
However, only one of them (when the objective function equals zero) guarantees that
the objective function has indeed been minimized. In difficult circumstances, any of the
other termination criteria could be satisfied even if the objective function is well above
its minimum and the parameters are far from optimal. Nevertheless, in most cases these
termination criteria do, indeed, signify convergence of the adjustable parameters to
their optimal values. In any case, PEST has to stop executing sometime and each of the
termination criteria described in this section provide as good a reason as any to stop. If
these criteria are properly set, you can be reasonably sure that when PEST terminates
the parameter estimation process, either the optimal set of parameters has been found or
further PEST execution will not find it.

There are two indicators that either the objective function is at, or very close to, its
minimum, or that further PEST execution is unlikely to get it there. The first is the
behavior of the objective function itself. If the objective function is changing very little,
or not at all, over a number of successive iterations, the time has come to cease
execution. PEST stops the process if the objective function has not changed by a
minimum amount over a specified number of iterations. Alternatively, PEST stops the
parameter iteration process if there has been no reduction in the objective function,
below its current minimum value, for a specified number of “unsuccessful” iterations.

The second indicator of either convergence to the minimum of the objective function,
or of the unlikelihood that further iterations will find a better minimum is the behavior
of the adjustable parameters. If successive iterations are not significantly changing
parameter values, there is probably little to gain in continuing with process. Therefore,

Explanation of Parameter Operations 33

PEST will stop execution if the largest relative parameter change over a specified
number of iterations has been less than a specified value.

Finally, PEST also requires an upper limit on the number of optimization iterations,
which PEST will carry out.

Other termination criteria are set internally. PEST will terminate the optimization
process if it calculates a parameter set for which the objective function is zero. PEST
will also terminate, if the gradient of the objective function with respect to all
parameters equals zero, if a zero-valued parameter upgrade vector is determined, or if
all parameters are simultaneously at their limits and the parameter upgrade vector
points out of bounds. However, if PEST is currently calculating derivatives using
forward differences and the option to use central differences is available, PEST will
switch to central differences for greater derivatives accuracy before going on to the next
iteration.

PEST terminates execution if:

* the objective function goes to zero.

« the gradient of the objective function with respect to all parameters equals zero.

» the parameter upgrade vector equals zero.

 all parameters are at their limits and the upgrade vector points out of bounds.

» the maximum number of iterations is reacHé@PTMAX).

« the objective function has not changed by a minimum amBHIREDSTP)
over a specified number of iteratioM$RHISTP).

« there has been no reduction in the objective function, below its current
minimum value, for a specified number of “unsuccessful” iterations
(NPHINORED).

* if the largest relative parameter change over a specified number of iterations
(NRELPAR) has been less than a specified vaRELPARSTP)

The Calculation of Derivatives

The following section provides information on:
* The Forward and Central Differences,
» Parameter Increments for Calculating Derivatives and,
» How to Obtain Trustworthy Derivatives.

Forward and Central Differences

The ability to calculate the derivatives of all observations with respect to all adjustable
parameters is fundamental to the Gauss-Marquardt-Levenberg method of parameter

34 Chapter 3 - PEST's Implementation of the Method

estimation. These derivatives are stored as the elements of the Jacobian matrix. Because
PEST is independent of any model of which it takes control, it cannot calculate these
derivatives using formulae specific to the model. Hence it must evaluate the derivatives
itself using model-generated observations calculated on the basis of incrementally
varied parameter values.

Accuracy in derivative calculation is fundamental to PEST's success in optimizing
parameters. Experience has shown that the most common cause of PEST's failure to
find the global minimum o in parameter space is the presence of round-off errors
incurred in the calculation of derivatives. Fortunately, on most occasions, this problem
can be circumvented by a wise choice of those input variables, which determine how
PEST evaluates derivatives for a particular model.

The PEST input variables affecting derivative calculation pertain to parameter
"groups”. In PEST, each parameter must be assigned to such a parameter group.
Assigning derivative variables to groups, rather than to individual parameters is simpler
and requires less memory. In many instances, parameters naturally fall into one or more
categories. For example, the hydraulic conductivity of each zone being estimated.
However, if you wish to treat each conductivity zone differently, as far as the derivative
calculation is concerned, this can be done by assigning each conductivity to its own

group.

The simplest way to calculate derivatives is the method of forward differencing (see
Figure 3.3).To calculate derivatives in this manner, first PEST varies each parameter in
turn by adding an increment to its current value (unless the current parameter value is at
its upper bound, in which case PEST subtracts the increment). Then PEST runs the
model, reads the altered, model-generated observations and approximates the derivative
of each observation with respect to the incrementally-varied parameter as the
observation increment divided by the parameter value increment. For log-transformed
parameters this quotient is then multiplied by the current parameter value. Hence, if
derivatives with respect to all parameters are calculated by the method of forward
differences, the filling of the Jacobian matrix requires that a number of model runs be
carried out equal to the number of adjustable parameters. As the Jacobian matrix must
be re-calculated for every optimization iteration, each optimization iteration requires at
least as many model runs as there are adjustable parameters (plus at least another one tc
test parameter upgrades). The calculation of derivatives is by far the most time-
consuming part of PEST's parameter estimation procedure.

If the parameter increment is properly chosen (see below), this method can work well.
However, as the minimum of the objective function is approached, often to reach this
minimum PEST must calculate the parameters with a greater accuracy than that
available by the method of forward differences. Thus, PEST also allows for derivatives
to be calculated using three parameter values and corresponding observation values
rather than two, as are used in the method of forward differences. Experience shows
that derivatives calculated in this way are accurate enough for most occasions, so long
as the parameter increments are chosen wisely. As three-point derivatives are normally
calculated by adding an increment to the current parameter value and then subtracting

The Calculation of Derivatives 35

36

the same increment, the method is referred to as the method of "central" differences. If
a parameter value is at its upper bound or lower bound, the parameter increment is
subtracted or added, respectively, once and then twice, the model being run each time.

PEST uses one of three methods to calculate central derivatives (see Figure 3.3). In the
first or "outside" method, only the two outer parameters are used to calculate the
derivative of the objective function with respect to the current parameter value. This
method yields a more accurate derivative value than the forward difference method
because the (unused) current parameter value is at the center of the finite difference
interval (except where the parameter is at its upper or lower bound). The second
method is to define a parabola through the three parameter-observation pairs and to The
four alternative methods of derivative calculation in PEST calculate the derivative of
this parabola with respect to the incrementally varied parameter at the current value of
that parameter. This method, referred to as the "parabolic" method, can yield very
accurate derivatives if model-calculated observation values can be read from the model
output file with sufficient precision. The third method is to define a least-squares
straight line of best fit through the three parameter-observation pairs and to calculate
the derivative as the slope of this line.This method may work best where model-
calculated observations cannot be read from the model output file with great precision,
because of either deficiencies in the model's numerical solution method, or because the
model writes numbers to its output file using a limited number of significant figures.

If central derivatives are used for all parameters, each optimization iteration requires
that at least twice as many model runs be carried out as there are adjustable parameters.
If the central method is used for some parameters and the forward method for others,
the number of model runs will lie somewhere between the number of adjustable
parameters and twice the number of adjustable parameters.

Chapter 3 - PEST's Implementation of the Method

Forward Derivatives

Current value

Incremented value

-
Pi

ojA Parbolic Central Derivatives

Current value

Incremented value

RN
"
o
o
N
o

Decremented
value

-
P

]

Outside Central Derivatives

Current value

Incremented value

Decremented
value

-
P

O.A Best-fit Central Derivatives

Current value

Incremented value

*

.0
Decremented ™
value

-
P

Figure 3.5: The four alternative methods of derivative calculation

in PEST

parameter groups.

forward differences.

* PEST can calculate derivatives using forward differences or central
differences, but using central differences requires twice as many modellruns as

* Round-off errors during the calculation of derivatives are the most common
cause of PEST's failure to find the global minimum of the objective fungtion.
e PEST variables that control the calculation of derivatives pertain only tp

The Calculation of Derivatives

37

Parameter Increments for Calculating Derivatives

38

PEST provides considerable flexibility in the way parameter increments are chosen,
because of the importance of reliable derivative calculations. Mathematically, a
parameter increment should be as small as possible so that the finite-difference method
provides a good approximation to the theoretical derivative. However, if the increment
is made too small, the accuracy of derivative calculations will suffer because of round
off errors. For example, for forward differences, two, possibly large, numbers will be
subtracted yielding a much smaller number. In most cases intuition and experience,
backed up by trial and error, will be your best guide in reconciling these conflicting
demands on increment size.

There are three PEST input variables by which you can control how derivative
increments are calculated, the increment type (INCTYP), the increment value or
fraction (DERINC) and the minimum increment (DERINCLB). In PEST, there are
three types of derivative incremerabsoluterelativeandrel_to_max If the increment

type isabsolute the user supplies the actual increment (DERINC) used for all
parameters in the group. This increment is added to or subtracted from (for central
derivatives) the current parameter value, when calculating derivatives with respect to
that parameter. If the increment typedkative the increment is calculated by

multiplying the user-supplied increment value (DERINC) by the current absolute value
of the parameter. Thus, the magnitude of the increment is adjusted as the parameter
itself changes. If the increment typee$ to_maxthe parameter increment is

calculated by multiplying the user-supplied value (DERINC) by the absolute value of
the largest member of the parameter group. This can be a useful if the parameter values
vary widely, including down to zero. The "relative" aspect ofrétheto_maxtype can

lead to problems since the increment is calculated as a fraction of the maximum
absolute value occurring within a group, rather than as a fraction of each parameter.
Thus, an individual parameter can reach near-zero values without its increment
simultaneously dropping to zero.

To protect against near-zero incrementsdtative andrel_to_maxincrements, PEST
allows you to specify a minimum absolute increment (DERINCLB). This value is used
in place of the calculateglative orrel_to_maxincrement if the calculated increment
falls below the minimum increment value.

PEST also allows you to specify whether the derivatives are always calculated using the
forward-difference method, (“always_2") or by the central-difference method
("always_3"). Alternatively, if the derivative method is specified as “switch” then

PEST will start the optimization using forward differences for all members of the

group, and switch to central differences when the relative reduction in the objective
function between optimization iterations is less than the specified tolerance
(PHIREDSWH). This control over the method of calculating the derivatives is
determined by the PEST group input variable FORCEN.

If the a derivative method is chosen that allows for central differences (“always_3” or
“switch”) then two additional group variables are required. The first is the method used

Chapter 3 - PEST's Implementation of the Method

to calculate the central derivative (DERMTHD), which can have the values
"outside_pts", "parabolic" or "best_fit". The second variable is the increment multiplier
for the three central derivative methods (DERINCMUL). Sometimes it is useful to
employ larger increments for central derivative calculations than for forward
derivatives calculations, especially where the model output versus parameter values is
"bumpy" (see Figure 3.4). The parabolic method, which is a higher-order interpolation
scheme, may allow you to place parameter values, and hence model-generated
observation values, farther apart for calculating derivatives. This may increase the
significance of the resulting differences from the derivative calculations. However, if
the increment is raised too high, the precision of the derivatives must ultimately fall.

For increments calculated using the "relative" and "rel_to_max" methods, the minimum
absolute increment (DERINCLB) has the same role in central derivatives calculation as
it does in forward derivatives calculation. However, the minimum absolute increment is
not multiplied by the increment multiplier (DERINCMUL).

If a parameter is log-transformed, it is wise that its increment be calculated using the
"relative” method, though PEST does not insist on this.

PEST is also concerned that the derivative increment is not too large compared to the
width of the parameter domain. To ensure this, PEST will object if the a parameter
increment (either read directly as "absolute" or calculated from initial parameter values
as "relative" or "rel_to_max") exceeds the parameter range (as defined by the
parameter's upper and lower bounds) divided by 3.2. If during the estimation process
the derivative increment exceeds the parameter range divided by 3.2, then PEST will
automatically adjust the increment so that the parameter limits are not exceeded as the
increment is added or subtracted from the current parameter value.

You must be careful when choosing an increment for a parameter to ensure that the
parameter can be written to the model input file with sufficient precision to distinguish
an incremented parameter value from one that has not been incremented. For example,
if a parameter is written to a space in the template file that is four characters wide, and
if the current parameter value is 0.01 and the increment is 0.0001, it will not be possible
to discriminate between the parameter with and without its increment added. To rectify
this situation, you must either increase the parameter field width in the template file
(which would require you to change the template files) or increase the value of the
increment.

It should be pointed out that PEST writes a parameter value to a model input file with
the maximum possible precision, given the parameter field width provided in the
template file. Also, for the purposes of derivative calculations, PEST adjusts a
parameter increment to be exactly equal to the difference between a current parameter
value and the incremented value of that parameter as represented (possibly with limited
precision) in the model input file, as read by the model.

The Calculation of Derivatives 39

A parameter increment should be as small as possible so that the finitel—/

difference method provides a good approximation to the theoretical deriyvative.

» However, if the increment is made too small, the accuracy of derivative
calculations will suffer because of round off errors.

e There are three types of derivative incremeatsolute relative and
rel_to_max(INCTYP).

» Absolute- the user supplies the actual increm@&&ERINC) used for all
parameters in the group

» Relative -the increment is calculated by multiplying the increment valug
(DERINC) by the current absolute value of the parameter.

» rel_to_max- the parameter increment is calculated by multiplying the uger-
supplied valueERINC) by the absolute value of the largest member of the
parameter group.

» PEST allows you to specify a minimum absolute incremeBRINCLB).

» You can specify whether the derivatives are always calculated using thg
forward-difference method, (“always_2") or by the central-difference method
("always_3"), or by both (“switch”).

» For central difference derivatives you can specify the derivative method
(DERMTHD), which can have the values "outside_pts", "parabolic" or
"best_fit".

« If a parameter is log-transformed, it is wise that its increment be calculgted
using the "relative" method, though PEST does not insist on this.

o PEST will object if the parameter increment exceeds the parameter rarjge
divided by 3.2.

* You must be careful that the parameter can be written to the model-input file

with sufficient precision to distinguish an incremented parameter value [fro

one that has not been incremented.

How to Obtain Derivatives You Can Trust

40

Precision in the calculation of the derivatives is essential for successful optimization. It
is essential that any variables governing the numerical solution procedure be set in
favor of precision over time. Although the model run-time may be much greater as a
result, it would be false economy to give reduced computation time precedence over
output precision. Accurate derivative calculation depends on accurate calculation of
model outcomes. If PEST is trying to estimate model parameters on the basis of
imprecise model-generated observations, derivatives calculation will suffer, and with it
PEST's chances of finding the parameter set corresponding to the global objective
function minimum. Even if PEST is still able to find the global minimum (which it

often will), it may require more optimization iterations to do so, resulting in a greater
overall number of model runs, removing any advantages gained in reducing the time
required for a single model run.

Chapter 3 - PEST's Implementation of the Method

Current parameter value

Incremented parameter value

Decremented parameter value

Figure 3.6: An example of model "granularity”, where there is not
a smooth (differentiable) function between the observations and
the parameters.

For example, the matrix solvers used by MODFLOW (e.g. SIP,or PCG2) successively
approximate the solution until "convergence" has been attained. The convergence is
deemed acceptable when no element of the solution vector between successive
iterations varies by more than the user-specified tolerance. lIf this threshold is set too
large, model precision is reduced. If it is set too small, solution convergence may not be
attainable. In any case, the smaller it is set, the greater will be the model computation
time. However, as stated above, PEST may require more optimization iterations to find
a solution, thereby removing any advantages gained in reducing the MODFLOW
simulation time. Although PEST will happily attempt an optimization on the basis of
limited-precision, model-generated observations, its ability to find an objective

function minimum decreases as the precision of the model-generated observations
decreases. Furthermore, the greater the number of parameters which you are
simultaneously trying to estimate, the greater will be the deleterious effects of limited
precision model output.

Unfortunately, model-generated observations may still be "granular” in that the
relationship between these observations and the model parameters may be "bumpy"
rather than continuous (see Figure 3.4). In this case, it may be wise to set parameter
increments larger than you normally would. If a parameter increment is set too small
PEST may calculate a local, erroneous "bump" derivative rather than a derivative that
reflects an observation's true dependence on a parameter's value. Although a large
increment incurs penalties due to the poor representation of the derivative by the finite

The Calculation of Derivatives 41

difference method (especially for highly non-linear models), using one of the central
difference methods can mitigate this. Due to its second order representation of the
observation-parameter relationship, the parabolic method can generate reliable
derivatives even for large parameter increments. However, if model outcomes are really
bumpy, the best-fit method may be more accurate. Trial and error will determine the
best method for the occasion.

PEST with MODFLOW and MT3D

Parameter Selection

42

Although non-linear parameter estimation is a powerful aid to model calibration, it will
not work unless conditions are right. The following rules will help you decide whether
PEST is likely to work or not in your particular case.

» Do not ask PEST to estimate more parameters than the observation dafaset has
the power to provide. A fundamental rule is that the number of adjustaljle
parameters must not exceed the number of observations.

» Do not attempt a detailed parameterisation where borehole information|is
sparse. Even though the calibrated model may replicate borehole measyrements
well, the uncertainties associated with parameter estimates will be large¢ and
model predictions may be greatly in error.

» Avoid parameters that are highly correleated. This occurs when different
combinations of parameter values result in almost the same model out¢omes.
Fortunately, ill-defined parameters or groups of parameters can be easily
identified by their high uncertainty levels, large correlation coefficients dand
high eigenvalues (see Chapter 5). In general, the easiest way to avoid excessive
parameter correlation is to keep the number of adjustable parameters tp a
minimum.

* Never try to estimate parameter combinations for which there is no unique
solution. For example, in a steady-state model, if recharge is uniformly
increased by a certain factor, model-generated heads will remain unchanged if
transmissivity is increased by the same factor. Therefore, you should npt
attempt to simultaneously estimate transmissivity and recharge for a stpady-
state model using water levels as the only observations.

» Closely monitor the solution process if, in a transient model, you are attempting
to simultaneously estimate two out of three of hydraulic conductivity, stprage
(or specific yield) and recharge. Although this is theoretically possible if heads
and their variations with time are known everywhere, there may not be
sufficient information to estimate two out of three of these parameter types
because water level information is available only at discrete points and)at
discrete times.

Chapter 3 - PEST's Implementation of the Method

» Similarly, be careful when trying to estimate multiple parameter types fpr
MT3D, such as dispersivity and source concentration. Here the problem is
exacerbated by the often high uncertainly associated with field measurgments
of solute concentration and the precision with which MT3D calculates
concentrations.

In summary, the fewer parameter types and the less parameter values that you try to
estimate, the better is PEST (or any other optimiser) likely to perform.

Modifying Model Input Files

PEST interfaces with a model through the models own ASCII input and output files.
Each time PEST runs a model it first writes user-specified model input files using the
parameter values which it wishes the model to use on that particular run. It knows
where to write parameter values to input files through the use of model input file
templates. For PEST to adjust a distributed parameter supplied to MODFLOW or
MT3D through a two-dimensional array or cell-by-cell listing, a template must be
constructed for the file which holds the array or listing. This is usually done by
modifying a model input file, replacing parameter values with "parameter spaces"
(comprising a parameter name enclosed by appropriate delimiters). Each parameter
space denotes a contiguous set of characters on the model input file as belonging to a
particular parameter. It also informs PEST of the number of digits which it may use to
write the number representing the parameter.

Table 1: Template example for a two-dimensional array
comprised of four different numbers

12345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 6.7543
8.4352 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521

parl # # parl # # parl # # parl # # parl # # par2 # # par2 # # par2
parl # # parl # # parl # # parl # # parl # # par2 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par2 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par3 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par3 # # par3 # # par2
pard # # parl # # parl # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # parl # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # pard # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # pard # # pard # # par3 # # par3 # # par3 # # par3

PEST with MODFLOW and MT3D 43

44

For a spatially distributed parameter occupying a two-dimensional array the model
domain must be subdivided into a handful of zones where the parameter is constant. If
each number in the array is replaced by an appropriate parameter space, the array of
numbers as represented in the model input file becomes an array of parameter spaces.
Each zone of parameter constancy within the array is then identified as having the same
parameter name.

The first part of Table 1 illustrates a two-dimensional array of numbers subdivided into
four zones of equal value. The second part of T ablel shows part of a template file
constructed from it. Before PEST runs the model, it replaces the parameter spaces
found in the template file by the current values pertaining to those parameters, thus
building an array consisting of four separate numbers and defining four separate zones
of parameter constancy

For parameters supplied to MODFLOW or MT3D on a cell-by-cell basis the cells can
be divided into zones of similar value in the same way. For example, Table 2 shows
part of a MODFLOW .DRN file for the Drain Package.

Table 2: Template example for part of the input to
MODFLOW's DRN package.

19 43 2.000E+01 3.000E+00
20 43 2.000E+01 3.000E+00
21 43 2.000E+01 3.000E+00
22 44 2.000E+01 3.000E+00
23 45 2.000E+01 3.000E+00
24 46 2.000E+01 5.000E+00
25 46 2.000E+01 5.000E+00
26 46 2.000E+01 5.000E+00
27 46 2.000E+01 5.000E+00
28 45 2.000E+01 5.000E+00
29 44 2.000E+01 5.000E+00
30 43 2.000E+01 5.000E+00
31 43 2.000E+01 5.000E+00

19 43 2.000E+01 # conl #
20 43 2.000E+01 # conl
21 43 2.000E+01 # conl
22 44 2.000E+01 # conl
23 45 2.000E+01 # conl
24 46 2.000E+01 # con2
25 46 2.000E+01 # con2
26 46 2.000E+01 # con2
27 46 2.000E+01 # con2
28 45 2.000E+01 # con2
29 44 2.000E+01 # con2
30 43 2.000E+01 # con2
31 43 2.000E+01 # con2

PRRPRRRPRRRRRRRPRRFP | RPRRPRRRPRPRPRPRPRRPRRRERRE

HHEFHEHFHFEHFHFH IR

Chapter 3 - PEST's Implementation of the Method

The drain has been subdivided into two zones in each of which the conductance is
assumed uniform. (Note that in this example, the parameterization would probably
benefit by tying all of the conductances to one conductance.

More detailed description of the syntax and structure of the PEST template files can be
found in “PEST Template Files” in Appendix B.

Visual MODFLOW'’s Template Files

Visual MODFLOW takes care of creating template files for the parameters that you
select in the PEST Control dialogue. In this dialogue, you can currently select spatially
variable anisotropic conductivities, storage parameters and recharge. The parameters
that you select here are Visual MODFLOW parameters - not MODFLOW parameters.
This means that you can select vertical hydraulic conductivity whereas in MODFLO
this term is lumped into the vertical conductance variable.

Visual MODFLOW builds the MODFLOW input files before each run by using a
combination of PERL source files (.SRC files) and template files that are written in C.
PEST substitutes the current parameter value into the template file, which then creates
the MODFLOW input file in the format outlined by the .SRC files.

An example of a Visual MODFLOW template file can be found in Appendix B.

Reading Output Files

PEST Instruction Files

PEST must be instructed on how to read a model output file and identify model-
generated observations. For the method to work, model output files containing
observations must be text files. PEST cannot read binary files.

Unfortunately, observations cannot be read from model output files using the template
concept, since neither MODFLOW nor MT3D cannot be relied upon to produce an
output file of identical structure during each model run. So instead of using an output
file template, you must provide PEST with a list of instructions on how to find
observations in the output files (see Ta ble3).

Basically, PEST finds observations in a model output file in the same wagyothat
would. You run your eye down the file looking for something you recognise - a
"marker". If this marker is properly selected, observations can usually be linked to it.
For example, if you are looking for the output after 100 days, you may look for

TIME =100 DAYS

A particular outcome for which you have a corresponding field measurement may then
be found, for example, between character positions 23 and 30 on the 4th line following
the marker. For output files, a marker may be unnecessary as the default initial marker
is the top of the file.

PEST with MODFLOW and MT3D 45

46

Table 3: Example output file and corresponding PEST
instruction file.

SCHLUMBERGER ELECTRIC SOUNDING
Apparent resistivities calculated using the linear filter method
electrode spacing apparent resistivity

1.00 1.21072

1.47 1.51313

2.15 2.07536

3.16 2.95097

4.64 4.19023

6.81 5.87513

10.0 8.08115

pif @
@electrode@
11 [arl]21:27
11 [ar2]21:27
11 [ar3]21:27
11 [ar4]21:27
11 [ar5]21:27
11 [ar6]21:27
11 [ar7]21:27

During translation Visual MODFLOW creates the instruction files for reading the
MODFLOW headsrojectnamdnh), MT3D concentrationg(ojectnamenc) and
ZoneBudget flowsgrojectnameinz).

For more detail on the format, structure and syntax of instruction files, see “How PEST
Reads Model Output Files” in Appendix B.

Interpolating Model Outcomes to Borehole Locations

The data available for groundwater model calibration usually consists of water level or
solute concentration measurements made at boreholes scattered throughout the model
domain. The borehole observations may be at a single time, or may have been taken
over a period of time. In either case, model calibration requires the adjustment of model
parameters until the water levels or concentrations generated by the model at these
borehole locations correspond as closely as possible with those actually observed.

It is essential for good PEST performance that model-calculated values correspond to
the field observations as close as possible. Unfortunately neither MODFLOW nor
MT3D interpolates its calculated heads or concentrations to the actual borehole
locations and measurement times. Therefore, PEST includes the two programs,
MODBORE for MODFLOW and MT3BORE for MT3D, to do the necessary spatial
interpolation. MODBORE and MT3BORE obtain the heads, drawdowns and
concentrations calculated by MODFLOW and MT3D by reading the unformatted head,
drawdown or concentration files produced by these models.

Chapter 3 - PEST's Implementation of the Method

Thus, the "model" run by PEST actually consists of at least two programs. For
MODFLOW calibration PEST runs MODFLOW followed by MODBORE. For MT3D
calibration PEST runs MT3D followed by MT3BORE. For joint MODFLOW/MT3D
calibration PEST runs MODFLOW followed by MODBORE followed by MT3D
followed by MT3BORE.

MODFLOW and MT3D Output Timing

Both MODBORE and MT3BORE interpolate all arrays found in the MODFLOW or
MT3D unformatted output files to the borehole locations specified in Visual
MODFLOW. For steady-state MODFLOW simulations there is only one head and
drawdown array created. However, for transient simulations, Visual MODFLOW also
interpolates the output from MODBORE and MT3BORE to the observed times before
PEST uses the data.

Visual MODFLOW allows you to specify the times at which you want MODFLOW
and MT3D output arrays printed. This is very useful for PEST. If the output times
correspond to the measurement times, then errors in temporal interpolation can be
minimized and the accuracy of the PEST-calculated derivatives improved.

MODBORE and MT3BORE Spatial Interpolation

MODFLOW and MT3D calculate the heads and concentrations at the centroid of each
cell. MODBORE and MT3BORE use a bilinear interpolation scheme to interpolate
these calculated nodal values to the actual borehole locations.

For each borehole location, the four neighbouring cell centroids in the the layer are
determined. Then, the heads, drawdowns or concentrations at these nodes are
interpolated to the borehole location. If the four surrounding nodes have row and
column numbers (i,j), (i+1,j), (i,j+1) and (i+1,j+1), the head at the borehole location is
calculated as:

— X2 |:y2 I:m,j + Xi Eyz [h,jﬂ + X2 I:yl I:mu,j + Xl I:yl |:m+1,j+l
XY

h

where:
h;j is the head at the centre of cell i,j),
X1 = Xg - X
X2 =Xj+1 -~ %p
Y1=Yij~ Y
Y2 = Yp - Vit
X =X j+1 - X

PEST with MODFLOW and MT3D a7

48

Y =Vij - Yied,
(Xp,Yp) are the x and y coordinates of the measurement point, and
(x;,j,Yi;) are the x and y coordinates of the centre of cell (i,j).

In the above expression all coordinates are expressed in a Cartesian system where the x
direction corresponds to the positive row direction (i.e. the direction of increasing
column index) and the y direction corresponds to the negative column direction (i.e. the
direction of decreasing row index). Note that no interpolation takes place in the vertical
(i.e. inter-layer) direction.

The above interpolation scheme is slightly modified if a borehole is close to the edge of
the model grid, near an inactive zone, or near a dry cell, such that the cell does not have
four neighbours. If a borehole lies within an inactive or dry cell, or is outside the grid
altogether, a comment is written to the MODBORE or MT3BORE output file.

MODBORE uses the following files:

modbore.in Input file containing file names etc. read by MODBORE
modbore.in.src Standard file from which modbore.in is created each time
projectnamespc Input file containing the MODFLOW grid definition
projectnamdst.flo List of head observation wells

projectnamecrd.flo Coordinate file for head observation wells

projectnamends Binary heads file from MODFLOW
modbore.out Output file containing spatially interpolated heads
projectnamehob Output file with temporally interpolated heads from

modbore.out

MT3BORE uses the following files

mt3bore.in Input file containing file names etc. read by MT3BORE
mt3bore.in.src Standard file from which mt3bore.in is created each time
projectnamespc Input file containing the MODFLOW grid definition

projectnamedst.cnc List of concentration observation wells

projectnamecrd.cnc Coordinate file for concentration observation wells

projectnameucn Binary concentration file from MT3D
mt3bore.out Output file containing spatially interpolated concentrations
projectnamecob Output file with temporally interpolated concentrations from

mt3bore.out

Chapter 3 - PEST's Implementation of the Method

MODBORE and MT3BORE as an Aid to Contouring

MODBORE and MT3BORE read the MODFLOW or MT3D unformatted output files,
interpolate the heads and concentration arrays to the borehole locations and write the
interpolated values to the modbore.out and mt3bore.out files, respectively. In addition
to the interpolated values, these files also contain the borehole coordinates. This means
that the data in these files can be read by any contouring program such as SURFER by
Golden Software. You may have to remove the header to make it work with your
contouring package or extract the timestep of interest if you have a transient simulation.
Such a contour map can be very useful in model calibration when it is compared to field
measurements contoured with the same package.

Using MODBORE and MT3BORE with PEST

When calibrating MODFLOW, it is the temporally interpolated MODBORE output
which PEST must use. Similarly, if you are calibrating MT3D, PEST must use the
temporally interpolated output from MT3BORE. Visual MODFLOW automatically

runs MODBORE and MT3BORE if needed and creates the instruction files (see “PEST
Instruction Files” on p age45) for these output files.

To use MODBORE or MT3BORE outside of Visual MODFLOW, please see the PEST
documentation included as a .pdf file on your installation CD.

PEST with MODFLOW and MT3D 49

50

Chapter 3 - PEST's Implementation of the Method

4 - PEST in Visual MODFLOW

The parameter estimization process is now an integral part of the Visual MODFLOW
environment. The Chapter deals with

» Assigning Observations to Model Outputs,
» Choosing the Parameters to Optimize,

» Assigning Prior Information,

» Assigning the Objective Function,

» Controlling the PEST Run and,

 Starting the PEST Run.

Assigning Observations to Model Outputs

Visual MODFLOW allows you to relate observations of head, concentration and flow
to model output values. All observations are input to Visual MODFLOW in the Input
module.

Head and Concentration observations

Head and concentration observations are input in the Wells mode as seen below

Pumping ‘#ellz
Head Observation 'wells
Conc. Obzervation 'Wellz

When either head or concentration observations are selected fromthe Wells drop-down
menu, the observation values can be input in the following dialogue. This dialogue can
be accessed whenever observations are being added or edited.

Assigning Observations to Model Outputs 51

52

TAEdit wWell M= E
0O
wiell Name |ow-7 == [2443 [Y= [2750 il Z=175.08

1

Dbservation Points b+ BK ©7) . 23 ﬂ
Observation Point Elervation [ft] I 00 ;
» _

DObservations b KK fz} R

Time (days) |Head ift)
y 0 184.29
&
= 100
o Dizplay az:
= ¥ Elevation
== " Depth To

ok LCancel

In the Borehole Edit dialogue, you must provide a well name and the map x, y
coordinates of the well. If you add a new well, it will not yet have an observation point.
The observation point can be added by clicking in the “Observations Points” section
and by default a point will appear at the mid-point of the diagram on the right hand side.
The elevation of the observation point is important as this defines the model cell that
corresponds to the observed value. Typically, the observation point is defined at the
middle of the screened interval in a well, but this may differ depending on the
stratigraphy and the manner in which the well screen is installed. For example, if the
well is screened over the entire depth but the top 10 metres of the profile is fine silt and
clay, then the observation point may be defined at the midpoint of the more permeable
strata. The observation point that is defined is independent of the model grid. If you
refine the grid or move the model layers, then Visual MODFLOW will automatically
assign your observations to the appropriate model cell based on where you define the
observation point.

Visual MODFLOW allows you to have multiple observation points in a single
borehole. You add observation points by clicking on the Add icon and then either
typing in the elevation or clicking on the borehole and moving the red bar to the

Chapter 4 - PEST in Visual MODFLOW

appropriate level. For each observation point you can type in or import a list of
observed values.

Flow Observations

For flow observations, such as baseflow to a stream, the observations must be input in
the Zone Budget mode which is accessed fronZBed item on the top menu bar.

File Grid ‘well: Properties Boundariez Particles e[l Tool: Help

Zone Budget is a program developed by the USGS, which calculates the zone-to-zone
flows from the MODFLOW output files. For example, if you divide a river into a

number of Zone Budget zones, Zone Budget will calculate the amount of water entering
each river zone from the model. In this manner, you will be able to map out gaining and
losing stretches of the river and calibrate your model to stream baseflow measurements
from the field.

In Visual MODFLOW, Zone Budget zones are added to a model in the same manner as
all other zones, such as conductivity zones and recharge zones. The only important
difference is that the model does not need to be re-run if a new zone is added or if the
zone boundaries are modified. Only the Zone Budget program needs to be run, since
Zone Budget calculates all of its flows from the MODFLOW output files.

Zone Budget automatically calculates the external flows between the model domain
and the boundary conditions defined in the model. In addition to these basic zones,
Visual MODFLOW also creates separate zones for each of the defined conductivity
zones and each of the boundary conditions. Thus, Zone Budget automatically calculates
the sum amount of water entering and leaving the model through the river nodes.
However, Visual MODFLOW also creates a proper Zone Budget zone for the cells that
are defined as river cells. Thus, the amount of water entering and leaving the river cells
can also be calculated, since not all water that enters a river cell leaves the model.

Before the user is allowed to enter flow observations in Zone Budget, the MODFLOW
filees must be translated. Flow observations that correspond to Zone Budget flows are
added by clicking on the Observation button on the side menu bar, which brings up the
following dialogue:

Assigning Observations to Model Outputs 53

54

Zone Budget Observations

Zones | Observations

Available Zones Selected Zones

Lonductiity] Zoned
Conductivity 2
Conductivity 3
Conductivity 4
Constant Head zone
Riwers zone

Zonel

Zohe?

R

L4

ENNES A

0K LCancel

In the Zones tab of the Zone Budget Observation dialogue all of the available zones are
listed. Since the number of zones could be more than a hundred in a complex model, the
Zones tab allows you to select which zones to use in the Zone Budget calculations. In
the Observations tab, the upper combo box contains the list of selected zones from the
Zones tab, as does the Zones List in the Output module.

Chapter 4 - PEST in Visual MODFLOW

Zone Budget Observations

Zones Obzervations |
Zohes Dezcription Obzervations: Zonel
IZDneE j IZDneS Times |Values |
Functions: [(RIVER LEAKAGE-Inf(1}+{RIVER LEAKAGE-Dutl1) 1 343

IN to Zone3 OUT of Zoned

Frann: W’eightl To: weight I

COMSTANT HEAD |1 COMSTANT HEAD |1

[WELLS 1 [WELLS B

W RIVER LEAKAGE |1 W RIVER LEAKAGE |1

[ET 1 [ET B

" HE&AD DEP BOUNDH1 " HE&AD DEP BOUNDH-1

[RECHARGE 1 [RECHARGE B

[~ STORAGE 1 [~ STORAGE -1

0K LCancel

Typically, you will have a baseflow measurement to a stream, which should equal the
amount of flow entering or leaving the model through a particular stream section. To

allow PEST to compare this baseflow measurement to the output from Zone Budget,
you must:

[1] Create a new, user-defined zone along the stream sectiofdieeg}. This is
essential if there are several conductivity zones along the stream.

[2] Selectzone 4and theRivers Zondrom the Available Zones list on the Zones tab.

[3] Inthe Observation tab, seletbne 4from the Zones combo box

[4] Select the checkbox besi&ver Leakagen the list under “OUT”. Ensure that
the weight is +1 if your measurements are positive values.

[5] Input the time from the beginning of the simulation if your model is transient (or
any time if it is steady-state) and your measured baseflow rate.

Occasionally, the way Zone Budget calculates flows may not correspond to the way the
flows were measured in the field. For this case, the Observation tab contains a means of
adding and subtracting the Zone Budget output such that the sum corresponds to the
way the data was measured. Thus, for each zone that you select from one of the lists,
both the zone and its weight are added to the function line. PEST adds the Zone Budget

Assigning Observations to Model Outputs 55

output values according to the defined function prior to comparing the Zone Budget
output to the observations.

Observation Groups

56

The site observations can be naturally divided into head, concentration and flow
observations. However, in Visual MODFLOW each type of observation may be
grouped within these broader classifications. There is two reasons for this. First of all,
you can use the group function to more easily assess your model calibration in specific
parts of you model, for example in each aquifer or inside your site and outside your site.
In addition to this, PEST allows you to calculate the contribution of each group to the
overall objective function. In this case, the goal is to modify the weights assigned to
each group such that one group of observations does not dominate the calculation of the
objective function. For example, you may have a lot of wells on your site, but relatively
few everywhere else. In this case, you may want to balance the weights so that the
observations outside of your site contribute more fairly to the overall calibration.

The observation groups are assigned and edited inpgiaé mode by clicking on the
[Edit Groups] button on the left hand tool bar when you have selddeatsor
Concentration observations. This will activate the followigglit Group
Observationsdialogue.

B';! Edit Group Observations - [onsite] E3
Group Hame Ionsite j MHew |
— Select ohsevations points from

Groups W'l wiell Mame filker:
[L1 Layer #1 I /1. a1]
[w/10.0m-18
I /11 a2
v 12 owe-3 [# Select Al
IIZ W13 owm-4
v 1 o5
K iiE EW & j
Available Dbszervation Points Observation Points in Group
ow-T:om-1 ow-10:0w-10 -
ow-10:0w-10 > uw—1 1:om-11
ow-11:0m-11 ow-1:o0w-1
-2 0w-2 ow-2:0w-2
ow-Fow-3 | ow-3-ow-3
ow-d:ow-4 ow-4:0w-4
-5 o5 < | ow-5ow-5
ow-B:ow-B ow-6:ow-b
- ow-7 ow-F ow-7
- ow-8 | ow-8:0w-8
ow-3:ow-3 _I ow-3:ow-3 ﬂ
(] | LCancel |

In this dialogue, you can select an existing user group to edit or add a new user group.
UnderGroups is listed all of the available observation groups for flow or transport,

Chapter 4 - PEST in Visual MODFLOW

including user-defined groups. If you select a group in this list then all of the wells that
belong to this group will be selected in tvells list. The Wells list includes all of the
observation wells in the model. When a well in this list is selected the observation
points associated with the well are listed inAkailable Observation Pointslist,

which means that all observation points for a multiple-level piezometer will be listed.
From the list ofAvailable Observation Points you can move individual observation
points to the list of observation points that are in the current group.

Choosing the Parameters to Optimize

Once the model is working and your field observations have been specified in the Input
module, then you are ready to run PEST. From the Run module, you can select PEST
from the top menu bar after selecting Run in the Main Menu.

Eile MODFLOW MODEATH MISD1.5 PEST Bun Help

This will bring up the PEST Control Window.

FAFPEST Control Window

File Help

Parameters |F'ri|:|r Infnrmationl Objective Functionl Cnntrnlsl

Parameters [=

EIF Carductivity
= #

[T Ky =001

F-[C #2
2
= Storage
SR]
b S3=001

F-[C #2

)

=~ Recharge

S

i@ Multiplier =1
8- Data

E-EH-H
AA9
H H =
FON R |

[ru]

Choosing the Parameters to Optimize 57

58

By default the first view in the PEST Control dialogue is the tree view of the parameters
that are available for PEST to estimate. From this tree view you can select your
parameters by clicking on the check boxes beside each parameter. In the current version
of Visual MODFLOW only Conductivity, Storage and Recharge are available in
WInPEST. This list of available parameters will be extended in future versions to
include virtually all Visual MODFLOW flow and transport parameters. Similarly, the
current version of WInPEST is only capable of estimating MODFLOW parameters, but
future versions will include parameters from all models supported by Visual

MODFLOW, including MODPATH, MT3Dxx and RT3D.

After you have selected your parameters, you can switch to the table view by clicking
on the Table icon in the menu bar:

D% EE

Switch to Parameter T able Wiew

this will change the display to the following:

FAFPEST Control Window
File Help

Parameters |F'ri|:|r Infnrmationl Objective Functionl Cnntrnlsl

Parameters [= 'EE-E:

Parameter |F'EST NamelTransfnlmatinnllsTiedTnlF'alam. Group |Limiting |Initial ValuelMin |Ma>: |Scale|EIffset| o
Ld|Crdctl K. Fu_1 log nore Crdct factor om 1E-151E25 1 0
|_|Fchrgl_Multiplier| par001 naone none Rchrgl_Multiplier relative 1 0 |1E28 1 0

Strgl_Ss Sz 1 log nore Sz factor om 1E-151E25 1 0

Parameter Groups P+ F<
Pararn. Group |F'est M arne |Incr. Type |Increment |k, Incr. |FD Method |Incr. Mulitplier | Central FD' Method | ﬂ
! Chdct Chdct 1elative 0.0z 0 switch 2 parabalic
|| Rchral_Multiplier | qrp001 1elative 0.0z 0 switch 2 parabalic
| Sz Sz 1elative 0.0z 0 switch 2 parabalic _I
4

Chapter 4 - PEST in Visual MODFLOW

In this view, you can modify any of the PEST variables for each of the parameters you
have selected. The Parameters table contains all the parameters that you selected in the
tree view and default values for all of the PEST variables. Summary outlines for each of
the Visual MODFLOW parameters are presented below. For a more detailed

description refer to the indicated chapter and page numbers.

Parameters

Parameter

The long name assigned by Visual MODFLOW to the parameters selected in the tree
view.

PEST Name - PARNME
Parameter label used in the PEST input and output files.

Transformation - PARTRANS andlIsTiedTo

The Transformation column defines whether the parameter is logarithmically
transformed (log) or not (none), tied to a parent parameter (tied) or fixed at its initial
value (fixed).

If you select the Transformation or IsTiedTo fields you can click on the small button
that appears and the following dialogue will appear:

Parameter: Cndct1_Kx

Tranzstormation
" nane ok | T Cancel
{* log
" fixed
" tied to: Inone =l

If you selectied to: then you can select the parent parameter from the combo box. The
name of the parent parameter will appear indfi@edT column. If you subsequently
untie, fix or transform the parameter, the name in the combo box and in the IsTiedTo
column will not change. This is to allow you to tie and untie parameters during the
optimisation process without having to select the parent parameter each time. Since,
PEST does not allow a parameter to be tied to a fixed or other tied parameter, only the
available parameters are listed in the combo box.

In many cases, the linearity assumption, on which PEST is based, is more valid when

certain parameters are log-transformed. This means that the log-transformation of some
parameters can often make the difference between success and failure of the estimation
process. However, a parameter that can become zero or negative during the estimation

Choosing the Parameters to Optimize 59

process must not be log-transformed. This can be corrected using an appS&uatliate
andOffset.

If a parameter is tied to a parent parameter, the parameter “piggy-backs” on the parent
parameter during the estimation process. That is the ratio between the initial values of
the parameter and its parent remain constant throughout the estimation process.

« If the parameter is log-transformed thenltiital value , Min ., Max., Scale
andOffset values must be untransformed. That is, they motsbe log-
transformed.

* If the parameter is log-transformed then the covariance, correlation
coefficients and eigenvector values refer to the log of the parameter.
However, the parameter estimates and confidence intervals refer to th
untransformed parameter.

« If you to fix a parameter, its value will be fixed at its initial value and it will
not be part of the estimation process.

D

For more detailed information dtarameter Transformation andFixed and Tied
Parameterssee pag €23 and page24 of the PEST User’'s Manual.

Param. Group - PARGP

This is the parameter group to which the parameter belongs. The available parameter
groups are listed in the combo box and below the Parameter Groups section in the
dialogue. Additions to the list of available parameter groups must be made in the
Parameter Groups section of the dialogue.

In PEST, input variables affecting derivative calculations pertain to parameter groups.
Each parameter must be assigned to such a parameter group Assigning derivative
variables to groups, rather that to individual parameters is simpler and requires less
memory.

Limiting - PARCHGLIM

PEST allows parameter changes to be either factor-limited (factor) or relative-limited
(relative). Afactor-limited parameter is one whosew value is limited to a specified

Chapter 4 - PEST in Visual MODFLOW

fraction of the value from the previous iterationtefative-limited parameter is one
whosechangebetween iterations is limited to a specified fraction.

* Log-transformed parameters must be factor-limited.

» Factor-limited parameters can never change sign.

» For relative-limited parameters, if the specified fraction is greater than|or
equal to 1, the new value may become a minute fraction of the previousvalue
(or even zero), without approaching the parameter change limit. For some
models this may invalidate model linearity assumptions.

* The PEST control parameters FACORIG, PARCHGLIM, RELPARMAX,
and FACPARMAX can be modified in the Controls Tab.

For more detailed information on tRarameter Change Limitssee page 27 of the
PEST User’s Manual.

Initial Value - PARVAL1

This is the initial value for the parameter estimation process and is equal to value
assigned in the Input module. If the parameter is fixed then the value for this
parameter remains constant at its initial value during the estimation process.

Min andMax - PARLBND andPARUBND
The Min and Max are the lower and upper bounds of the parameters respectively.

e The lower and upper bounds should be chosen wisely.

e The default values are 1e-15 and 1e29 respectively.

e The upper and lower bounds are ignored for fixed and tied parameters.

 If an updated parameter value is outside of its bounds, PEST temporari
holds the parameter at its boundary value.

» The strategy that PEST uses, allows PEST to search along the bounds of the
parameter domain looking for the minimum value of the objective funct‘ion.

Yy

For more detailed information dspper and Lower Parameter Boundssee pag €25
of the PEST User’s Manual.

Choosing the Parameters to Optimize 61

ScaleandOffset - SCALE andOFFSET

The scale and offset can be used to modify the numerical value of a parameter to make
it more amenable to parameter estimation.

» Just before writing a parameter value to a model input file, PEST multiplies
the value by the scale and then adds the offset.
« If you do not wish a parameter to be scaled and offset, enter its scale as 1 and
its offset as zero.
» Fixed and tied parameters must also be supplied with a scale and offset, just
like their adjustable counterparts.

For more detailed information @cale and Offsesee page 26 of the PEST User’s
Manual.

Parameter Groups

62

The Parameter Groups table lists the different groups that PEST will assign the Visual
MODFLOW parameters to. The Parameter Groups are used for grouping parameters
whose derivatives share common characteristics. The derivatives for all the parameters
in a parameter group will be calculated using the same method. For more information
on the derivative calculations see ffee Calculation of Derivativessection in the

PEST User’s Manual.

Param. Group

This is the long name for the group.

PEST Name - PARGPNME

This is the group name that appears in the PEST input and output files.
Incr. Type - INCTYP

There are three types of derivative incremeaibsolute relative andrel_to_max

Absolute- the user supplies the actual increment (DERINC) used for all parameters
in the group

Relative -the increment is calculated by multiplying the increment value
(DERINC) by the current absolute value of the parameter.

Chapter 4 - PEST in Visual MODFLOW

rel_to_max- the parameter increment is calculated by multiplying the user-
supplied value (DERINC) by the absolute value of the largest member of the
parameter group.

* If a parameter is log-transformed, it is wise that its increment be calculated
using the "relative" method, though PEST does not insist on this.

Increment - DERINC

This is the value of DERINC defined above. A parameter increment should be as small
as possible so that the finite-difference method provides a good approximation to the
theoretical derivative. However, if the increment is made too small, the accuracy of
derivative calculations will suffer because of round off errors.

e PEST will object if the parameter increment exceeds the parameter range
divided by 3.2.

» asuitable value for DERINC is often 0.01 if INCTYPRédative or
rel_to_max

Min. Incr. - DERINCLB

To protect against near-zero incrementgdtative andrel_to_maxincrements, PEST
allows you to specify a minimum absolute increment. This value is used in place of the
calculatedrelative or rel_to_maxincrement if the calculated increment falls below the
minimum increment value.

* If you do not want to have a minimum increment, use zero for DERINGLB.
e IfINCTYP is “absolute”, DERINCLB is ignored.

FD Method - FORCEN

In this column, you can specify whether the derivatives are calculated using the
forward-difference method, (“always_2") or by the central-difference method
("always_3"), or by both (“switch”).

If FORCEN for a particular group is "always_2", derivatives for all parameters
belonging to that group will always be calculated using the forward-difference method.
In this case, to fill the columns of the Jacobian matrix corresponding to members of the
group, as many model runs as there are adjustable parameters in the group will be
required. If FORCEN is "always_3", it will require twice as many model runs to fill the
same columns in the Jacobian matrix. However, the derivatives will be calculated with
greater accuracy and this will probably have a beneficial effect on PEST's performance.
If FORCEN is set to "switch", PEST will calculate the derivatives beginning with the
forward-difference method and switch to the central method when the change in the
objective function becomes small enough. For all switchable parameter groups, PEST

Choosing the Parameters to Optimize 63

64

will switch to the central-difference method on the iteration after the relative change in
objective function becomes less than PHIREDSWH. PHIREDSWH is defined in the
Controls Tab of this dialogue.

In most instances the most appropriate value for FORCEN is "switch". This allow

speed to take precedence over accuracy in the early stages of the optimisation process
when accuracy is not critical. Accuracy takes precedence over speed later in the process
when the derivatives need to be calculated with as much accuracy as possible. This is
especially true when parameters are highly correlated and the normal matrix thus
approaches singularity.

Incr. Multiplier - DERINCMUL

If derivatives are calculated using one of the three-point central-difference methods, the
parameter increment is first added to the current parameter value prior to a model run,
and then subtracted prior to another model run. In some cases, you may want to
increase the value of the increment for this process over that used for forward-
difference derivative calculation. The real variable DERINCMUL allows you to do

this. If a three-point derivative method is used, the value of DERINC is multiplied by
DERINCMUL. This happens whether DERINC holds the increment factor, as it does
for "relative” or "rel_to_max" increment types, or holds the parameter increment itself,
as it does for the "absolute” increment type.

For many models, the relationship between observations and parameters is in theory
continuously differentiable. However, in reality it is often "bumpy" (see Figure 9.4). In
such cases, the use of parameter increments which are too small may lead to highly
inaccurate derivatives, especially if the two or three sets of parameter-observation pairs
used in a particular derivative calculation are on the same side of a "bump" in the
parameter-observation relationship.

Parameter increments must be chosen large enough to cope with model output
granularity of this type. But increasing parameter increments beyond a certain amount
diminishes the extent to which the finite-difference method can approximate the
derivatives. By definition, the derivative is the limit of the finite-difference as the
increment approaches zero. However, the deterioration in the derivative approximation
as increments are increased is normally much greater for the forward difference method
than for any of the central methods (particularly the "parabolic” option). Hence, the use
of one of the central methods with an enhanced derivative increment may allow you to
calculate derivatives when you otherwise can not.

Whenever the central method is employed for derivatives calculation, DERINC is
multiplied by DERINCMUL, no matter whether INCTYP is "absolute”, "relative" or
"rel_to_max", and whether FORCEN is "always_2", "always_3" or "switch". If you do
not wish the increment to be increased, you must provide DERINCMUL with a value
of 1.0. Alternatively, if for some reason you wish the increment to be reduced if a three-
point method is used, you should set DERINCMUL to a value less than 1.0. Normally,
a value between 1.0 and 2.0 is satisfactory.

Chapter 4 - PEST in Visual MODFLOW

Central FD Method - DERMTHD
If you are using central finite-differences to calculate the derivatives you can specify

non

the three-point derivative method that is used: "outside_pts", "parabolic” or "best_fit".
See Figure 9.3 for a comparison of these methods.

Assigning Prior Information

Often some independent information exists about the parameters that we wish to
optimize. This information may be in the form of unrelated estimates or of relationships
between parameters. When this information is included, it can lend stability to the
parameter estimation process, especially when parameters are highly correlated.
Correlated parameters can lead to non-unigue parameter estimates because varying
them in certain linear combinations may cause very little change in the objective
function. In some cases, this non-uniqueness can even lead to numerical instability and
failure of the estimation process. However if something is known about at least one of
the members of such a troublesome parameter group, this information, if included in the
estimation process, may remove the non-unigueness and provide stability.

For a detailed description of how prior information is incorporated into the PEST
algorithm, see Chapter 2 of the PEST Manual.

Prior information must be of a suitable type to be included. Both simple equality and
linear relationships are acceptable. A weight must be included with each article of prior
information. In theory, this weight should be inversely proportional to the standard
deviation of the right hand side of the prior information equation. In practice, however,
the user simply assigns the weights according to the extent to which he/she wishes each
article of prior information to influence the parameter estimation process.

From the Prior Information tab a new prior information equation can be added by
selecting the add item icon.

b Bl v+ F K

Add Mew Prior Information .-'f-.rticle|

which brings up an initial dialogue asking for the name of the equation.

FAFiimary Informati... [H=] B3

Lahel

Ik:-t:kz Create |

Assigning Prior Information 65

Once you have typed in a name, the following editor appears, which allows you to
specify a simple linear equation for your prior information.

B";! Primary Information Editor

Lahel

Prirnary Infarmation LHS Walue WWeight

Ik:-t:kz

: |1 * log(Crdct_Kx]

- o |1

FEST Mame

Factar

|" IF'arameter M arme

* Chdctl_kx
* Chndctl_Kz
* Chdct2_Kz
¥ Chndct3_Kz
* Strgl_Sy

IEhosen

no
no
no

no

" Edit

+ Add/Remave

Help |

In this example, a 1:10 vertical conductivity ratio has been specified for Conductivity
Zone 1. PEST will try to find the set of parameters that minimizes the objective
function, while trying to keep the Kx to Kz ratio as close to ten as possible. The higher
the weight, the greater will be the impact on the objective function. If you tied the Kx to
Kz in the ratio of 10:1 then only Kx would varied by PEST and Kz would simply

follow along during the optimization process. The ratio between Kx and Kz would be
always 10:1. Using prior information in this way, gives PEST some flexibility in

choosing a ratio that is close to 1:10.

Once the primary information has been defined the PEST Control Window will look
similar to the following:

66

Chapter 4 - PEST in Visual MODFLOW

FAFPEST Control Window

File Help

Parameters Priar Infarmation | Objective Functionl Cnntrnlsl

H »+ 5
Label Primany Information = [Walue Wieight
kakz 17 log[Crdctl_ks) =10 1

Assigning the Objective Function

After deciding which Visual MODFLOW parameters to estimate, you must decide
which observations will be used to calculate the objective function. Selecting the
Objective Function tab will give you a list of all your available head, concentration or
flow observations.

APEST Contiol Window

File Help

Parameters I Frior Infarmation

Contrals I

Include to objective function— = ’E@ z LA I;’;’E
Iv| Head Groups Weight I

a2
L1 Layer #1
[+ U1_onsite
w1 .ow-1
[~ Concentration [wiD.ow-18
o2
w2 o3
2 w4
F\A-"1 4 owh
w15 ow-B
I™ Budget CIw1E ow-7
17 0w
w18 ow-a
2 ow-10
w3 w11
T 'wd.ow-12
w5 ow-13
" 'W6.ow-14

| v

S R S Ry

B

Assigning the Objective Function 67

The three icons, shown here, allow you to display either head
observations (from MODFLOW), concentration observations fﬂ ﬁ z
(from MT3Dxx) or flow observations (from Zone Budget).

On the right hand side are the group icons, which allow you to
edit or delete a selected user-defined group or add a new us Foore K
defined group.)

The three icons on the far right allow you to selectively displav
the well groups, the layer groups or the user groups. | $ | i

I

All the wells in the project are assigned to a group and PEST determines the
contribution of each group to the overall change in the objective function. When you
select a group, all the groups that intersect with that group are checked and then greyed
out because PEST does not allow an observation to belong to more than one group. For
example, if you select an individual well group and that well belongs to a layer group
and a user-defined group, then the layer group and user-defined group will also be
greyed out and cannot be selected.

Finally, you must select the appropriate checkboxes on the left side of the tab to tell
Visual MODFLOW to include the head, concentration and flow observations when it
translates the PEST files.

Controlling the PEST Run

The final tab in this dialogue is the Controls Tab. In this tab, you can modify any of the
default values for the PEST controls. A brief description of these variables is provided
below. More detailed descriptions of how some of these parameters are used by PEST
can be found in Chapters 2 and 3 of the PEST Manual.

68 Chapter 4 - PEST in Visual MODFLOW

FAFPEST Control Window

File Help

O &

rMarguart Lambda Precigion:

Lirniting R elative Phi Reduction: [0.02

b aximum Trial Lambdaz: |10

|nitial Lambda: |10 tethod Separation Y alue: IU.'I Isingle ﬂ

Adjustrment Factar: |2
Sufficient Phi Ratio: (0.3

 Termination Criteria —Output Contral—

Ovwerall keration Limit: |50 ¥ Covariances

Megligible Beduction: |0.01 [Conelations

—Parameter Change Constraints————————

Max relative parameter change: |1 il Max Unsuccessful lterations: |3 IV Eigen\Vectars
Max factor parameter change: |1] Megligible Relative Change: IU.U'I
Use-f-Less Fraction: IU.UU'I Mar "Mo change" iterations: |3 [+ Enable Restart

bax Mo reduction” lterations: |2

il

Marquardt Lambda

As outlined in on pag €18 of the PEST User’s Manual, PEST attempts parameter
improvement using a number of different Marquardt lambdas during any one
optimisation iteration. However, in the course of the overall parameter estimation
process, the Marquardt lambda generally gets smaller.

For high values of the Marquardt parameter (and hence of the Marquardt lambda) the
parameter estimation process approximates the gradient method of optimisation. While
the latter method is inefficient and slow if used for the entirety of the optimisation
process, it often helps in getting the process started, especially if initial parameter
estimates are poor.

Initial Lambda - RLAMBDA1

This is the initial real-value of the Marquardt lambda. An initial value between 1. and
10. is usually appropriate, though if PEST complains that the normal matrix is not
positive definite, you will need to provide a higher initial Marquardt lambda.

Adjustment Factor - RLAMFAC

This is the real factor by which the Marquardt lambda is adjusted. It must be greater
than 1.0. When PEST reduces lambda it divides by RLAMFAC. When it increases

Controlling the PEST Run 69

70

lambda it multiplies by RLAMFAC. PEST reduces lambda if it can. However, if the
normal matrix is not positive definite or if a reduction in lambda does not lower the
objective function, PEST has no choice but to increase lambda.

The first lambda that PEST uses is the lambda inherited from the previous iteration,
reduced by the factor RLAMFAC (unless it is the first iteration, in which case
RLAMBDAL1 is used). Unless the objective function is reduced to less than
PHIRATSUF of its value at the beginning of the iteration, PEST then tries another
lambda, again reduced by the factor RLAMFAC. If the objective function is lowered
but is still above PHIRATSUF of the starting objective function, PEST reduces lambda
yet again. Otherwise PEST increases the first lambda in the iteration by the factor
RLAMFAC. If the objective function begins to rise, PEST accepts the previous lambda
and the corresponding parameter set and moves on to the next iteration.

Sufficient Phi Ratio - RHIRATSUF

During any one optimisation iteration first lowers lambda and, if this is unsuccessful in
lowering the objective function, it then raises lambda. If it calculates an objective
function, which is a fraction PHIRATSUF or less of the starting objective function for
that iteration, PEST moves on to the next optimisation iteration.

PHIRATSUF (which stands for "phi ratio sufficient") is a real variable for which a

value of 0.3 is often appropriate. If it is set too low, model runs may be wasted in search
of an objective function reduction which it is not possible to achieve, given the linear
approximation on which the optimisation equations of Chapter 2 are based. If it is set
too high, PEST may not be able to lambda such that its value continues to be optimal as
the parameter estimation process progresses.

Limiting Relative Phi Reduction - PHIREDLAM

If a new/old objective function ratio of PHIRATSUF or less is not achieved as different
Marquardt lambdas are tested, PEST must use some other criterion in deciding when it
should move on to the next optimisation iteration. This criterion is partly provided by
the real variable PHIREDLAM.

If the relative reduction in the objective function between two consecutive lambdas is
less than PHIREDLAM, PEST takes this as an indication that it is probably more
efficient to begin the next optimisation iteration than to continue testing the effect of
new Marquardt lambdas.

A suitable value for PHIREDLAM is often around 0.01. If it is set too large, the
criterion for moving on to the next optimisation iteration is too easily met and PEST is
not given the opportunity of adjusting lambda to find its optimal value. On the other
hand, if PHIREDLAM is set too low, PEST will test too many Marquardt lambdas on
each optimisation iteration when it would be better off starting a new iteration.

Maximum Trial Lambdas - NUMLAM

This integer variable places an upper limit on the number of lambdas that PEST can test
during any one optimisation iteration. It should normally be set between 5 and 10. For

Chapter 4 - PEST in Visual MODFLOW

cases where parameters are being adjusted near their upper or lower limits, and for
which some parameters are consequently being frozen, experience has shown that a
value closer to 10 may be more appropriate than one closer to 5. This gives PEST more
chance to adjust to the reduction in the number of parameters during the process.

Parameter Change Constraints

If there is no limit on the amount by which parameter values may change, parameter
adjustments could regularly "overshoot" their optimal values, causing a prolongation of
the estimation process at best, and instability with consequential estimation failure at
worst. The dangers are greatest for highly non-linear problems.

PEST provides the two real, input variables, RELPARMAX and FACPARMAX,
which can be used to limit parameter adjustments. Any particular parameter can be
subject to only one of these constraints (i.e. a particular parameter must be either
“relative-limited” or “factor-limited” in its adjustments).

Whether a parameter should be relative-limited or factor-limited depends on the
parameter. However, you should note that a parameter can be reduced from its current
value right down to zero for a relative change of only 1. If you wish to limit the extent
of its downward movement during any one iteration to less than this, you may wish to
set RELPARMAX to, for example, 0.5. However, this may unduly restrict its upward
movement. It may be better to declare the parameter as factor-limited. If so, a
FACPARMAX value of, say 5.0, would limit its downward movement on any one
iteration to 0.2 of its value at the start of the iteration and its upward movement to 5
times its starting value. This may be a more sensible approach for many parameters.

It is important to note that a factor limit will not allow a parameter to change sign.
Hence, if a parameter must be free to change sign in the course of the optimisation
process, it must be relative-limited. Furthermore, RELPARMAX must be set at greater
than unity or the change of sign will be impossible. You must not declare a parameter
as factor-limited, or as relative-limited with the relative limit of less than 1, if its upper
and lower bounds are of opposite sign. Similarly, if a parameter's upper or lower bound
is zero, it cannot be factor-limited and RELPARMAX must be at least unity.

Suitable values for RELPARMAX and FACPARMAX can vary enormously between
cases. For highly non-linear problems, these values are best set low. If they are set too
low, however, the estimation process can be very slow. An inspection of the PEST run
record will often reveal whether you have set these values too low, for PEST records
the maximum parameter factor and relative changes on this file at the end of each
optimisation iteration. If these changes are always at their upper limits and the
estimation process is showing no signs of instability, it is quite possible that
RELPARMAX and/or FACPARMAX could be increased.

If RELPARMAX and FACPARMAX are set too high, the estimation process may
founder. If PEST seems to be making no progress in lowering the objective function
and an inspection of the PEST run record reveals that some or all parameters are

Controlling the PEST Run 71

72

undergoing large changes at every optimisation iteration, then it would be a good idea
to reduce RELPARMAX and/or FACPARMAX. Another sign that these variables may
need to be reduced is if PEST rapidly adjusts one or a number of parameters to their
upper or lower bounds, and the latter are set far higher or lower than what you would
expect the optimal parameter values to be. A further sign is if, rather than lowering the
objective function, PEST estimates parameter values for which the objective function is
incredibly high.

If you are unsure of how to set these parameters, a value of 5 for each of them is often
suitable. In cases of extreme non-linearity, be prepared to set them much lower. Note,
however, that FACPARMAX can never be less than 1. RELPARMAX can be less than

1 as long as no parameter's upper and lower bounds are of opposite sign. (If necessary
use the OFFSET to shift the parameter domain so that it does not include zero.)

Max relative parameter change - RELPARMAX

RELPARMAX is the maximum relative change that a parameter is allowed to undergo
between optimisation iterations

The relative change in parameter b between optimisation iterations i-1 and i is defined
as

(bi-1 - B)/(bi.1)

If parameter b is relative-limited, the absolute value of this relative change must be less
than RELPARMAX. If a parameter upgrade vector is calculated such that the relative
adjustment for one or more relative-limited parameters is greater thanRELPARMAX,
the magnitude of the upgrade vector is reduced such that this no longer occurs.

Max factor parameter change - FACPARMAX
FACPARMAX is the maximum factor change that a parameter is allowed to undergo.
The factor change for parameter b between optimisation iterations i-1 and i is defined as
bi.1/b; if b | >R or
bi/bg iflb >k

If parameter b is factor-limited, this factor change (which either equals or exceeds unity
according to equation 2.4) must be less than FACPARMAX. If a parameter upgrade
vector is calculated such that the factor adjustment for one or more factor-limited
parameters is greater than FACPARMAX, the magnitude of the upgrade vector is
reduced such that this no longer occurs.

Use-if-less Fraction - FACORIG

If, during the estimation process, a parameter becomes very small, the relative or factor
limit to subsequent adjustment of this parameter may severely slow its growth back to
higher values. Furthermore, for the case of relative-limited parameters which are
permitted to change sign, it is possible that the denominator of the relative-limited
equation above could become zero.

Chapter 4 - PEST in Visual MODFLOW

If the absolute value of a parameter falls below FACORIG times its original value, then
FACORIG times its original value is substituted for the denominator of equations
above.

Thus the constraints that apply to a growth in absolute value of a parameter are lifted
when its absolute value has become less than FACORIG times its original absolute
value. However, where PEST wishes to reduce the parameter's absolute value even
further, factor-limitations are not lifted. Relative limitations are not lifted if
RELPARMAX is less than 1. FACORIG is not used to adjust limits for log-
transformed parameters.

FACORIG must be greater than zero. A value of 0.001 is often suitable.

Method SeparationValue - PHIREDSWH

The derivatives of observations with respect to parameters can be calculated using
either forward differences (involving two parameter-observation pairs) or one of the
variants of the central method (involving three parameter-observation pairs) described
in Chapter 2. You must inform PEST through the group variables FORCEN and
DERMTHD which method to use for the parameters belonging to each parameter
group. If you allow PEST to switch between forward and central-difference methods,
the variable PHIRREDSWH tells PEST when to switch.

If the relative reduction in the objective function between successive optimisation
iterations is less than PHIREDSWH, PEST will make the switch to three-point
derivatives calculation for those parameter groups for which the character variable
FORCEN has the value "switch".

A value of 0.1 is often suitable for PHIREDSWH. If it is set too high, PEST may make
the switch to three-point derivatives calculation before it needs to. The result will be
that more model runs will be required to fill the Jacobian matrix than are really needed
at that stage of the estimation process. If PHIREDSWH is set too low, PEST may waste
an optimisation iteration or two in lowering the objective function to a smaller extent
than would have been possible if it had made an earlier switch to central derivatives
calculation. Note that PHIREDSWH should be set considerably higher than the input
variable PHIREDSTP,which sets one of the termination criteria on the basis of the
relative objective function reduction between optimisation iterations.

Precision - PRECIS

PRECIS is a character variable which must be either "single" or "double”. If it is
supplied to PEST as "single", PEST writes parameters to model input files using single
precision protocol. For example, parameter values will never be greater than 13
characters in length (even if the parameter space allows for a greater length) and the
exponentiation character is "e". If PRECIS is supplied as "double", parameter values

Controlling the PEST Run 73

are written to model input files using double precision protocol. The maximum
parameter value length is 23 characters and the exponentiation symbol is "d".

Termination Criteria

74

In addition to the termination controls available in this dialogue, PEST will terminate if

« the objective function goes to zero,

« the gradient of the objective function with respect to all parameters equals zero,
 the parameter upgrade vector equals zero, or

« all parameters are at their limits and the upgrade vector points out of bounds.

For more detailed information on the Termination Criteria, see pa ge33 of the PEST
User’s Manual.

Overall Iteration Limit - NOPTMAX
This is the maximum number of iterations.

Negligible Reduction - PHIREDSTP

If the objective function does not change by more than this amount for NPHISTP
iterations, PEST will stop. A suitable value for PHIREDSTP is 0.01, for most cases.

Max “No reduction” Iterations - NPHISTP

This is the maximum number of iterations that PEST will perform, if the objective
function has not changed by at least PHIREDSTP

For many cases, 3 is a suitable value NPHISTP.However, you must be careful not to
set NPHISTP too low if the optimal values for some parameters are near or at their
upper or lower bounds. In this case, it is possible that the magnitude of the parameter
upgrade vector may be curtailed over one or a number of optimisation iterations to
ensure that no parameter value overshoots its bound. The result may be smaller
reductions in the objective function than would otherwise occur. It would be a shame if
these reduced reductions were mistaken for the onset of parameter convergence to the
optimal set.

Max Unsuccessful Iterations - NPHINORED

If there is no reduction in the objective function, below its current minimum value, for
this number of “unsuccessful” iterations, PEST will stop.

NPHINORED is an integer variable, where a value of 3 is often suitable

Negligible Relative Change - RELPARSTP

If the largest relative parameter change for all variables over NRELPAR iterations is
less than this amount, PEST will stop.

All adjustable parameters, whether they are relative-limited or factor-limited, are
involved in the calculation of the maximum relative parameter change.

Chapter 4 - PEST in Visual MODFLOW

RELPARSTP is a real variable for which a value of 0.01 is often suitable.

Max “No change” Iterations - NRELPAR

This is the maximum number of iterations PEST will perform if the largest relative
parameter change for all variables is below RELPARSTP.

NRELPAR is an integer variable. A value of 2 or 3 is normally satisfactory.

Output Control - ICOV, ICOR, IEIG

After the optimisation process is complete, PEST writes some information concerning
the optimised parameter set to its run record file. It tabulates the optimal values and the
95% confidence intervals pertaining to all adjustable parameters. It also tabulates the
model-calculated observation set based on these parameters, together with the residuals
(i.e. the differences between measured and model-calculated observations).

If you wish, PEST will write the parameter covariance matrix, the parameter correlation
coefficient matrix and the matrix of normalised eigenvectors of the covariance matrix
to the run record file.

The integer variables ICOV,ICOR and IEIG determine whether PEST will output the
covariance, correlation coefficient and eigenvector matrixes respectively. If the
relevant integer variable is checked (set to 1), the pertinent matrix will be written to the
run record file. If it is not checked (set to 0), it will not be written.

Enable Restart - RSTFLE

This character variable is set by means of a check box. If it is checked, then “restart” is
written to the control file. If it is unchecked, the value “norestart” is written.

If restart is selected, PEST will dump the contents of many of its data arrays to a binary
file (projectnameRST) at the beginning of each optimisation iteration. This allows
PEST to be restarted later, if execution is prematurely terminated. PEST will also dump
the Jacobian matrix to another binary filegjectnameJAC) every time this matrix is

filled.

If restart is not selected, PEST will not intermittently dump its array or Jacobian data.
Thus, later re-commencement of the optimisation is impossible.

Controlling the PEST Run 75

Starting the PEST Run

Translate/Run

Tranzlate & Bun |
Tranzlate |
LCancel |
Advanced »» |

531 WIinPEST: [C:AVMODNTATUTORIALAWALLEY PST]

File Bun Options Yiew

To start the PEST run you must click [gtun] from the top menu
bar in the Run Module. This following dialogue box will appear:

Now to launch PEST you must first select it from the list of
available models.You must also select all of the numeric engines
that you want PEST to run. Although, PEST can only estimate
MODFLOW parameters at the moment, MT3D and Zone Budget
must be run if you are using concentration and flow observations
in your objective function.

Once the models have been selected, cligdmnslate & Run]
to create the PEST files and start WinPEST. Clicking on
[Translate & Run] will translate the files and the following
window will appear:

Walidate

E-HB-> sV &-s|naak

PEST Log |

|PEST input datasst check: no erors found

The top menu bar consists of the following optidide], [Run], [Options], [View],

and[Validate]. The
features:

76

drop-dowriFile] menu and/or the toolbar have the following

Chapter 4 - PEST in Visual MODFLOW

Open *
Heaper

[Open] The[Project] option allows the user to select
a PEST control file to operi.PST). The
[File] option allows the user to open a selecte
ﬁ' - PEST: control file{.PST), parameter hold Save
file (*.HLD), template file{. TPL), parameter SAVERS.
file (*.PAR), or instruction file {.INS).

Save Graphz... F

[Reopen] Reopens a previous PEST control file. Load Graphs... ¥
Prrirt 3
[Save] Saves the current edit file with the existing Eil
name.
E [Save As...] Save the current edit file with another name.

[Save Graphs] Saves PEST graphs to a series of files. Menu allows user to save
graphgAs Picture...], [Current Plot] , and[All Plots].

[Load Graphs] Loads PEST graphs. Menu allows user to [@adrent Plot] or
[All Plots].

[Load/Save Plots] The button allows the user [iBave Plots as..,][Save Current
Plot], [Load to Current Plot] , [Save all Plots] and[Load all
Plots]. The user is also able to select betwj@atd Plots(s) (Load
Style)] or [Overwrite Plots(s) (Load Style)] and the user is able
to toggle on and off the option [Save Plots at End]

% . | [Print] Allows the user tgPrint Current Tab] , [Multiprint Graphs] , [Print
All].
[Exit] Exits the WIinPEST window and returns to the Main Menu in Visual
MODFLOW.

The drop-dowrfRun] menu and/or the toolbar have the following features:

[Run] Starts the PEST run. Menu allows the usd6tart

Start
b from Scratch], [Restart last Iteration (/r)], ;:L:SE
[Restart using last Jacobian (/j)] Stop b
Check »
il [Pause] Pauses PEST run.

Starting the PEST Run 77

78

[Stop with Statistics[Terminates PEST run with statistics.

[Stop without Statistics[Terminates PEST run with statistics.

[Check] Allows the user to check tHAll] , the[lnstructions], or the
[Templates].

The drop-dowrfOptions] menu has the following features:

Optionz
Bun/Festart
[Check Utilities] ~ Allows the user to select either i Check utilties

[Run/Restart] Starts or restarts the PEST run.

Generate model input or 4 v Save Flots at the End

Generate observation file

[Save Plots at the Endhllows the user to save the plots at the end of the run.

The drop-dowrjView] menu has the following features:

[Plots] Allows the user to select to view the
following plots: Objective function,
Composite Sensitivity, Parameters
History, Marquardt Lambda, Calculated

Flats...
v Liog file
v Run recaord
Hold Parameterz]

vs. Observed, Jacobian, Correlation,
Covariance, and Eigenvectors.

[Log File] Selects the Log File tab as the top screen to view. This is the
default tab.
[Run Record] Selects the Run Record tab as the top screen to view

[Hold Parameters] Displays the Hold Parameters Status screen. For more information
on holding parameters please refer to pag €106 of this manual.

Chapter 4 - PEST in Visual MODFLOW

The drop-dowrjValidate] menu has the following features:

Walidate
[Check All] Checks both _the emplates and the instructiol Al
to the*.PST file for errors.

Instructions

[Instructions] Checks the set of input instructions to the Templates
* PST file for errors

[Templates] Checks the.PST file templates for errors.
The remaining toolbar buttons on the WinPEST window have the following features:

i [Autoscroll to the bottom of PEST log]f the Autoscroll button is depressed during

|T | the PEST run then the display in the WInPEST dialog box will show
the laterst line of data output to the log file. If the toolbar button is not
pressed then the user can scroll freely through the log file while
WINPEST is running.

[Zoom In] Only available when the WIinPEST plots are activated, the zoom in
feature allows the plots to be examined more closely.

[Zoom Out] Only available when the WinPEST plots are activated, the zoom out
feature allows the plots to be examined in less detail.

[:3 [Clear Zoom StateJloolbar option allows the user to return to the original scale of the
plot they are viewing.

WINnPEST Plots

WInPEST plots can be choosen by selecfifigw][Plots]. The following dialogue box
will appear:

Starting the PEST Run 79

80

Plots toShow |
ra |

[~ Objective function

[~ Composite Sensitivity
[~ Parameters Histony

[~ Marquardt Lambda

[~ Calculated vs. Obzerved
[~ Jacobian

[~ Corelation

[~ Covariance

[~ Eigenvectors

[~ Eigenvalues

[~ Uncertianties

[~ Besiduals
I Bredictive Sl

Ok | LCancel

Select the plots you wish to view by placing a checkmark in the correct box(es) and
then press [OK]. A tab with the plot(s) respective hame will be added to the WIinPEST
window. Select the tab to view the plot and. Notice on the top menu bar, the current plot
name with its associated options will appear on the top menu bar when viewing the
plot.

Objective Function

Composite Sensitivity

Parameters History

Marquardt Lambda

Chapter 4 - PEST in Visual MODFLOW

Calculated vs. Observed

Jacobian

Correlation

Covariance

Eigenvectors

Eigenvalues

Uncertainities

Residuals

Predictive Analysis

Starting the PEST Run

81

82

Chapter 4 - PEST in Visual MODFLOW

5 - Evaluating the PEST Run

The following chapter contains information on:

e The PEST Output Files and,
e The PEST Run Record.

PEST Output Files

Automatically PEST generates three default files. These are:

« the Parameter Value File,
» the Parameter Sensitivy File,
» the Residuals File,

» and, if specified, PEST will generate a number of Other Files.

The Parameter Value File

At the end of each optimization iteration, PEST writes the best parameter set achieved
thus far (i.e. the set for which the objective function is lowest) to the parameter value
file, projectname&PAR. At the end of a PEST run, the PEST parameter value file
contains the optimal parameter set as seen below in Example 5.1.

single point
rol
ro2
ro3
hl
h2

1.0000001.0000000.000000
40.000901.0000000.000000
1.0000001.0000000.000000
1.0000031.0000000.000000
9.9997991.0000000.000000

Example 5.2: A parameter value file.

PEST Output Files

The first line of the parameter value file contains the character variables PRECIS and
DPOINT, the values for which were provided in the PEST control file (see Appendix
A). This is followed by a line for each parameter, each line containing the PEST
parameter name, its current value and its SCALE and OFFSET.

The Parameter Sensitivity File

84

Most of the time consumed during each PEST optimization iteration is devoted to the
calculation of the Jacobian matrix. Recall that each column of the Jacobian matrix lists
the derivatives of all “model-generated observations” with respect to a particular
parameter. During this process the model must be run at least as many times as the
number of adjustable parameters.

Based on the contents of the Jacobian matrix, PEST calculates a figure related to the
sensitivity of each parameter with respect to all observations, weighted according to the
user-assigned weights. The “sensitivity” of paramiieidefined as:

5= ('QJ); M2
whereld is the Jacobian matrix ai@lis the “cofactor matrix” which, in the present
context, is a diagonal matrix whose elements are the squared weights of the
observations. Thus, the sensitivity of thle parameter is the magnitude of the column
of the Jacobian matrix pertaining to that parameter, with each element of that column
multiplied by the weight pertaining to the respective observation.

Immediately after it calculates the Jacobian matrix, PEST writes parameter sensitivities
to a “parameter sensitivity file” calleghfojectnameSEN". Example 5.2, below is an
extract from a parameter sensitivity file.

PARAMETER SENSITIVITIES: CASE VES4
OPTIMISATION ITERATION NO. 1 ----- >
Parameter name Group Current value Sensitivity

resisl resis 5.98563 16.5173
resis2 resis 103.493 9.58584
resis3 resis 23.4321 36.9477
thickl thick 0.43454 9.44217
thick2 thick 13.4567 5.17165

OPTIMISATION ITERATION NO. 2 ----- >
Parameter name Group Current value Sensitivity
resisl resis 8.546532 9.20533

Example 5.3: Part of a parameter sensitivity file.

Chapter 5 - Evaluating the PEST Run

Information is appended to the parameter sensitivity file during each optimization
iteration immediately following the calculation of the Jacobian matrix. In the event of a
restart, the parameter sensitivity file is not overwritten. Rather PEST preserves the
contents of the file, appending information pertaining to subsequent iterations to the
end of the file. In this manner the user is able to track variations in the sensitivity of
each parameter through the parameter estimation process.

This information on parameter sensitivity can be very useful when considering whether
to hold various parameters during the estimation process.

The Residuals File

At the end of its execution, PEST writes the “residuals fjjedjectnam.RES, which

lists in tabular form observation names, the groups to which various observations
belong, measured and modeled observation values, differences between these two (i.e.
residuals), measured and modeled observation values multiplied by respective weights,
and weighted residuals. This file can be readily imported into a spreadsheet for various
forms of analysis and plotting.

Other Output files

If requested specified, PEST will intermittently store its data arrays and Jacobian
matrix in binary files namegrojectnameRST andprojectnamelAC respectively. If

PEST execution is re-commenced using the"/r” switch, it reads the first of these binary
files in addition to its normal input files. If it is re-started with the “/j” switch it reads
both of them.

PEST uses a one-line file named PEST.HLT to communicate with the run record
display utility, DECIDE.EXE, in the event of an interruption to PEST execution.
Occasionally PEST also uses a small file named PEST.TMP for temporary
bookkeeping. Neither of these files contain any useful information as far as the user is
concerned.

The PEST Run Record

As PEST executes, it writes a detailed record of the parameter estimation process to the
file projectnameREC. In this section the PEST run record is briefly described.
However, an example Run Record file, which is discussed in detail, can be found in

Appendix B.

The PEST Run Record 85

The Input Data Set

PEST commences execution by reading all the input data. As soon as this is read, it
echoes most of this data to the run record file. Hence the first section of this file is
simply a restatement of most of the information contained in the PEST control file.
Note that the letters "na" stand for "not applicable", which means that a particular PEST
input variable has no effect on the optimization process.

It is possible that the numbers cited for a parameter's initial value and for its upper and
lower bounds will be altered slightly from that supplied in the PEST control file. This
will occur if the space allocated to this parameter in a model input file is insufficient for
the degree of precision specified in the PEST control file.

The Parameter Estimation Record

86

After echoing its input data, PEST calculates the objective function arising out of the
initial parameter set. It records this initial objective function value on the run record file
together with the initial parameter values themselves. Then it starts the estimation
process in earnest, beginning with the first optimization iteration. After calculating the
Jacobian matrix PEST attempts objective function improvement using one or more
Marquardt lambdas. As it does this, it records the corresponding objective function
value, both in absolute terms and as a fraction of the objective function value at the
commencement of the optimization iteration.

At the end of each optimization iteration PEST records either two or three (depending
on the input settings) very important pieces of information. These are the maximum
factor parameter change and the maximum relative parameter change. As was
discussed in Chapter 2, each adjustable parameter must be designated as either factor-
limited or relative-limited. A suitable setting for the factor and relative change limits
(i.e. FACPARMAX and RELPARMAX) may be crucial in achieving optimization
stability. Along with the value of the maximum factor or parameter change encountered
during the optimization iteration, PEST also records the name of the parameter that
underwent this change. This information may be crucial in deciding which, if any,
parameters should be held temporarily fixed should trouble be encountered in the
optimization process.

In addition to the current objective function value at the start of the optimization
process and at the start of each optimization iteration, PEST also lists the contribution
made to the objective function by each the observation groups and by all prior
information. This is valuable information, for if a user notices that one particular group,
or the prior information equations, are either dominating the objective function or are
not “seen” because something else was dominating, the observation or prior
information weights could be adjusted and the optimization process started again.

Chapter 5 - Evaluating the PEST Run

Optimized Parameter Values and Confidence Intervals

After completing the parameter estimation process, PEST prints the outcome to the

third section of the run record file. First it lists the optimized parameter values. It does
this in three stages. The adjustable parameters, then the tied parameters and, finally, any
fixed parameters. PEST calculates 95% confidence limits for the adjustable parameters.
However, you should note carefully the following points about confidence limits.

» Confidence limits can only be obtained if the covariance matrix has been
calculated. If, for any reason, it has not been calculated (e.g. beb@ussf
equation (2.17) could not be inverted) confidence limits will not be provided.

» As noted in the PEST run record itself, parameter confidence limits are
calculated on the basis of the same linearity assumption that was used to derive
the equations for parameter improvement in each PEST optimization iteration.
If the confidence limits are large they will, in all probability, extend further into
parameter space than the linearity assumption itself. This will apply especially
to logarithmically-transformed parameters for which the confidence intervals
cited in the PEST run record are actually the confidence intervals of the
logarithms of the parameters, as evaluated by PEST from the covariance
matrix. If confidence intervals are exaggerated in the logarithmic domain due
to a breakdown in the linearity assumption, they will be very much more
exaggerated in the domain of non-logarithmically-transformed numbers. This
is readily apparent in the example in Appendix B.

* No account is taken of parameter upper and lower bounds in the calculation of
95% confidence intervals. Thus an upper or lower confidence limit can lie well
outside a parameter's allowed domain. PEST does not truncate the confidence
intervals at the parameter domain boundaries so as not to provide an unduly
optimistic impression of parameter certainty.

» The parameter confidence intervals are highly dependent on the assumptions
underpinning the model. If the model has too few parameters to accurately
simulate a particular system, the optimized objective function will be large and
then so too, through equations (2.5) and (2.17), will be the parameter
covariances and, with them, the parameter confidence intervals. However, if a
model has too many parameters, the objective function may be small, but some
of the parameters may be highly correlated. This will give rise to large
covariance values (and hence large confidence intervals) for the correlated
parameters.

With reference to the last point above, if several parameters are well correlated, then
they can be varied in harmony such that when they are varied in a manner that
complements the variation of the other, there will be little effect on the objective
function. Hence while the objective function may be individually sensitive to each of
these parameters, it appears to be relatively insensitive to both of them if they are varied
in concert. This illustrates the great superiority of using covariance and eigenvector
analysis over the often used "sensitivity analysis" method of determining parameter
reliability.

The PEST Run Record 87

Confidence limits are not provided for tied parameters. The parent parameters of all
tied parameters are estimated with the tied parameters "riding on their back". Hence the
confidence intervals for the respective parent parameters reflect their linkages to the
tied parameters.

Notwithstanding the above limitations, the presentation of 95% confidence limits
provides a useful means of comparing the certainty with which different parameter
values are estimated by PEST.

Note that at the end of a PEST optimization run a listing of the optimized parameter
values can also be found in the PEST parameter valupriiectnamePAR.

Observations, Prior Information and Residuals

After it has written the optimized parameter set to the run record file, PEST records the
measured observation values, together with their model-generated counterparts
calculated on the basis of the optimized parameter set. The differences between the two
(i.e. the residuals) are also listed, together with the user-supplied set of observation
weights. Tabulated residuals and weighted residuals can also be found in file
projectnameRES.

Following the observations, the user-supplied and model-optimized prior information
values are listed. A prior information value is the number on the right side of the prior
information equation. As for the observations, residuals and user-supplied weights are
also tabulated.

The Covariance Matrix

88

The parameter covariance matrix is written to the run record file, if you select this
option in the Visual MODFLOW PEST Control Dialogue. The covariance matrix is
always a square symmetric matrix with as many rows (and columns) as there are
adjustable parameters. Hence there is a row (and column) for every parameter which is
neither fixed nor tied. The order in which the rows (and columns) are arranged is the
same as the order of occurrence of the adjustable parameters in the previous listing of
the optimized parameter values. (This is the same as the order of occurrence of
adjustable parameters in both the PEST control file and in the first section of the run
record file.)

Being a by-product of the parameter estimation process (see Chapter 2), the elements of
the covariance matrix pertain to the parameters that PEST actually adjusts. This means
that where a parameter is log-transformed, the elements of the covariance matrix
pertaining to that parameter actually pertain to the logarithm (to base 10) of that
parameter. Note also that the variances and covariances occupying the elements of the
covariance matrix are valid only insofar as the linearity assumption, upon which their
calculation is based, is valid.

Chapter 5 - Evaluating the PEST Run

The diagonal elements of the covariance matrix are the variances of the adjustable
parameters. The variance of a parameter is the square of its standard deviation. The off-
diagonal elements of the covariance matrix represent the covariances between
parameter pairs.

If there are more than eight adjustable parameters, the rows of the covariance matrix are
written in "wrap" form (i.e. after eight numbers have been written, PEST will start a

new line to write the ninth number). Similarly if there are more than sixteen adjustable
parameters, the seventeenth number will begin a new line. Note, however, that every
new row of the covariance matrix begins on a new line.

The Correlation Coefficient Matrix

The correlation coefficient matrix is calculated from the covariance matrix through
equation (2.7). The correlation coefficient matrix has the same number of rows and
columns as the covariance matrix, Furthermore the manner in which these rows and
columns are related to adjustable parameters (or their logs) is identical to that for the
covariance matrix. Like the covariance matrix, the correlation coefficient matrix is
symmetric.

The diagonal elements of the correlation coefficient matrix are always unity. The off-
diagonal elements are always between 1 and -1. The closer that an off-diagonal element
is to 1 or -1, the more highly correlated are the parameters corresponding to the row and
column numbers of that element.

The Normalized Eigenvector Matrix and the Eigenvalues

PEST calculates the normalized eigenvectors of the covariance matrix and their
respective Eigenvalues. The Eigenvector matrix is composed of as many columns as
there are adjustable parameters, each column containing a normalized eigenvector.
Because the covariance matrix is positive definite, these eigenvectors are real and
orthogonal. They represent the directions of the axes of the probability "ellipsoid” in
the n-dimensional space occupied by thadjustable parameters.

In the eigenvector matrix the eigenvectors are arranged from left to right in increasing
order of their respective eigenvalues. The eigenvalues are listed beneath the
eigenvector matrix. The square root of each eigenvalue is the length of the
corresponding semi-axis of the probability ellipsoishidimensional adjustable
parameter space.

If each eigenvector is dominated by a single element, then each adjustable parameter is
well resolved by the parameter estimation process. However, where the dominance of
eigenvectors is shared by a number of elements, parameters may not be well resolved.
The higher the eigenvalues of those eigenvectors for which dominance is shared by
more than one element, the less susceptible are the respective individual parameters to
estimation.

The PEST Run Record 89

90

Chapter 5 - Evaluating the PEST Run

6 - Troubleshooting PEST

The following section of the manual contains information on:

* Run-time Errors,

MODFLO and MT3D Considerations,
What to do if PEST Won't Optimize,
Holding Parameters and,

Restarting the PEST Execution.

Run-time Errors

Within the WInPEST interface, limited checking of the input data set can be done.
However, if there is an error or inconsistency in the input data, PEST will terminate
execution with a run-time error message. PEST will not continue reading the input data
files to determine whether more errors are present so that it can list them as well. Rather
it ceases execution as soon as it has noticed that something is wrong.

Other errors can arise later in the estimation process. For example, if the instruction set
fails to locate a particular observation, PEST will cease execution immediately with a
run-time error message. This may happen in MODFLOW, for example, if a cell goes
dry that contains an observation point. It may also arise if the model terminated
execution prematurely. Hence if a run-time error informs you that PEST was not able to
read the model output file correctly, you should check both the WinPEST output
window and the model output files (*.Ist for MODFLOW and *.ot for MT3D) for a
model-generated error messages.

A floating point or other compiler-generated error, followed by a PEST run-time

error message, usually means that the model, not PEST, generated the eriou

should then carefully inspect the model output files (*.Ist for MODFLOW and *.ot for
MT3D) for clues as to why the error occurred. In many cases you will find that one or a
number of model parameters have transgressed their allowed domain, in which case
you will have to adjust their upper and/or lower bounds accordingly in the PEST
control file.

Run-time Errors 91

Another model-related error, which can lead to a PEST run-time error of this kind, will
occur if the path names in the PEST control files are wrong. This can occur if you
change the path names in the control file or move the projects to a different directory. In
this case, after PEST attempts to make the first model run, you will receive the message

Running modelBad command or file name

prior to a PEST run-time error message informing you that a model output file cannot
be opened. (Note, however, that the model path is not required if the model executable
resides in the current directory.)

It is normally an easy matter to distinguish PEST errors from model errors, as
WInPEST informs you through its dialogue output when it is running the model. A
model-generated error, if it occurs, will always follow such a message. Furthermore, a
PEST run-time error message is clearly labeled as such, as shown below.

kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkx

Error condition prevents continued PEST execution:-

Varying parameter "parl” has no affect on model output -

Try changing initial parameter value, increasing
derivative increment,

holding parameter fixed or using it in prior information.

kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkx

Considerations for MODFLOW and MT3D

92

The most common cause of failure of PEST to optimise MODFLOW and MT3D
parameters is poor settings for the PEST variables governing derivative calculations
and inappropriate settings for the variables RELPARMAX and FACPARMAX.

A common cause of premature MODFLOW termination in a transient run is SOR, SIP
or PCG2 convergence failure at a certain time step.

If there is no change in the objective function after several iterations, and PEST finally
stops because "phi gradient zero" or something similar, then it is possible that
MODFLOW or MT3D did not actually run, and that MODBORE or MT3BORE was
reading an old head, drawdown or concentration file each time it ran the composite
MODFLOW/MODBORE or MT3D/MT3BORE model. However, this is unlikely

Chapter 6 - Troubleshooting PEST

unless you are using WIinPEST outside of Visual MODFLOW since WIinPEST and
Visual MODFLOW, by default, delete the old files before starting a new PEST run.

If you suspect that MODFLOW or MT3D has not run, monitor the MODFLOW and
MT3D output in the Win32 MODFLOW Suite dialogue during the PEST run.

If you try to optimize MT3D parameters based on a set of model-generated, theoretical
“measurements”, the optimization should work if the model-generated measurements
were created using the same number of transport steps as MT3D uses when under the
control of PEST. If the number of steps was different, PEST should still provide an
optimal parameter set. However, this set may not be exactly the one that gave rise to the
model-generated dataset in the first place because of slight differences in MT3D-
calculated concentrations with differences in transport step size. PEST will, in fact,
obtain a parameter set for which the concentrations calculated on the basis of the
transport step size used for optimisation agree as closely as possible with those
calculated on the basis of the transport step size used to generate the theoretical data.

Parameter Transformations and Bounds

PEST allows you to logarithmically transform adjustable parameters during the
parameter estimation process. For some parameters this can hasten the optimisation
process considerably. For other parameters it can slow it down. When calibrating
MODFLOW models the log transformation of hydraulic conductivity, transmissivity,
inter-layer leakance and storage coefficient can have a positive effect on estimation
speed and stability. However, recharge is better left untransformed. While the situation
is not as clear with MT3D, it appears that dispersivity estimates converge faster when
logarithmically transformed. No clear recommendation can be made for other
parameters. However, trial and error with your particular problem should soon provide
the answer.

Appropriate parameter upper and lower bounds is also important to the success of the
optimisation process. If a parameter is log-transformed its lower bound must be greater
than zero. Also, realistic bounds should be placed on MODFLOW parameters, such as
storage coefficient, for which there are physical limits to the range of allowable values.

When undertaking parameter estimation using MT3D, parameter bounds can be
critical. MT3D parameter values can influence the size of the time step used by MT3D,
unless the user specifies that a suitably small transport step be used regardless of any
parameter value. This latter specification results in MT3D using the same number of
transport steps from model run to model run. For a given flow field this, in turn,
enforces accurate derivatives calculation, rapid estimation convergence and
optimisation stability. However if certain estimated parameters are allowed to take on
high enough values and others are allowed to take on low enough values in the course
of the optimisation process, MT3D will override the user-specified transport step size,
choosing an appropriately small step size of its own, thus breaking the step size
consistency between model runs. It is important to prevent this from happening by

Considerations for MODFLOW and MT3D 93

restricting parameter variation to a realistic range through the designation of suitable
upper and lower parameter bounds.

Dry Model Cells

94

If a layer is unconfined and the water level in a cell falls beneath the cell bottom,
MODFLOW declares the cell as dry. If the BCF1 package is used, the cell stays dry
forever. However, the BCF2 package (and later BCF packages) allows dry cells to re-
wet depending on the water levels in neighbouring and underlying cells.

The occurrence of dry cells in a simulation can have undesirable consequences,
particularly if the BCF1 package is used. It often leads to a "cascading" effect in which
the drying of one particular cell prevents water inflow to a downstream cell, which then
becomes dry itself and so on.

The drying (and re-wetting) of cells can have a disastrous effect on MODFLO
parameter estimation because, no matter which BCF package is used, model outcomes
are no longer continuous with respect to adjustable parameters. This is because a small
parameter change may result in certain heads crossing a "threshold” (e.g. the aquifer
base or re-wetting level) at which a significant and discontinuous change in local

aquifer flow conditions takes place. Furthermore, if an observation points lies within a
dry cell, MODBORE is unable to calculate a head for that observation point, writing
"dry_cell" to the heads column of its output file instead of the head for that borehole.
When PEST reads the file, its inability to read a number where it expects to find one
causes a run-time error.

There are two ways to ensure that cells do not dry out and cause problems for PEST.
The first is the easiest and involves setting of parameter upper and lower bounds so
tightly that no parameter is allowed to stray into an area where it causes a model cell to
go dry. The second method, which is only suitable for single layer models, is to make a
small adjustment to the MODFLOW source code and re-compile it. Visual

MODFLOW includes a version of MODFLOW with this change.

In the BCF2 package, the following lines of subroutine SBCF2H have been changed
from:

C6------ CHECK TO SEE IFSATURATED THICKNESS IS GREATER THAN ZERO.
IF(THCK.LE.O.) GO TO 100

C6------CHECK TO SEE IFSATURATED THICKNESS IS GREATER THAN ZERO.
IF(THCK.LE.1.0) THCK=1.0

With the above alteration, the calculated head in an unconfined layer is allowed to drop
continuously below the base of the aquifer (the fact that it is below the aquifer base can
be detected while contouring the results). However, the thickness of water is not
allowed to drop below a certain lower limit, in this case one length unit (adjust this limit

Chapter 6 - Troubleshooting PEST

to suit yourself). Because the water thickness never becomes negative, MODFLOW
never declares the cell as dry.

It could be argued that this alteration leads to an impossible situation whereby a cell's
water level is below its base yet the transmissivity of that cell is the same as if the cell
contained one length unit's depth of water. However, in many single-layer models this
is not such a bad assumption. If model cells are large, it may be unlikely that the entire
cell area would dry out. Only those parts of the cell with a higher-than-average botto
elevation would dry out. The cell would still be able to transmit water to neighbouring
areas, albeit with a reduced capacity. Furthermore, keeping cells wet in this manner
may degrade model performance to a lesser extent than the even more unrealistic
cascading of dry cells.

In the case of multi-layer models, the above modification tends to the model unstable
and impedes convergence.

Optimising Parameters for MODFLOW and MT3D Together

Currently, Visual MODFLOW is set up to optimize only MODFLOW parameters, but
MT3D concentrations can be included in the objective function. In this case, Visual
MODFLOW will create instruction files for reading MODBORE and MT3BORE

output files and a single PEST control file which includes all borehole measurements.
The assignment of a suitable weighting between water level and concentration
measurements needs to be established.

Some of the pitfalls of simultaneous MODFLOW/MT3D optimisation have been
explained in Section “Derivative precision in MT3D” on page 9 9 . Nevertheless, if you
think that this would assist the calibration of your particular model, a PEST run can
easily be set up to do it.

Alternatively, if you want to also estimate MT3D parameters, after translating the PEST
files, you can modify the PEST Control file to include the MT3D parameters and create
the necessary template files for the MT3D input files (see Appendix B). In this case, the
"model" called by PEST will run MODFLOW and MODBORE followed by MT3D

and MT3BORE. However the use of this simple model can lead to unnecessary
MODFLOW runs in the derivatives calculation phase of each optimisation iteration, for
while an increment to a MODFLOW parameter value will have an effect on
concentrations calculated by MT3D, the inverse is not true; an alteration to a MT3D
parameter will have no effect on MODFLOW-calculated heads or drawdowns. Hence
when an MT3D parameter is incrementally varied there is no need to run MODFLOW
prior to running MT3D.

If you have the unrestricted version of WInPEST, that comeswith Visual PEST, you can
circumvent this problem in the “batch” model run by PEST. For example, let us assume
that PEST is optimising transmissivity for MODFLOW simultaneously with

dispersivity for MT3D. The transmissivity array is located in the MODFLOW input file
BCF.DAT. Accordingly a template named BCF.TPL is constructed for that file.

Considerations for MODFLOW and MT3D 95

However PEST is informed that the model input file corresponding to BCF.TPL is, in
fact, a file named BCF.HLD, a temporary "holding" file. Prior to running the model,
PEST writes the model input files BCF.HLD and DSP.DAT, the latter holding the
MT3D dispersivity array. If BCF.HLD differs from the previous MODFLOW input file
BCF.DAT, then BCF.HLD is copied to BCF.DAT and MODFLOW is run (with
appropriate safeguards against MODFLOW convergence problems). However if
BCF.DAT and BCF.HLD are identical, there is no use in running MODFLOW. In this
case execution of the batch process is taken to labell where MODBORE is run. (The
running of MODBORE is necessary because, prior to actually running the model, PEST
deletes any model output files that it must later read. In this way PEST will know if, for
any reason, the model failed to run; it also obviates the possibility of inadvertently
reading a model output file produced on a previous model run.) MT3D, followed by
MT3BORE, is then run irrespective of whether MODFLOW has been run or not.

If PEST Won't Optimize

96

WInPEST allows you to closely follow the progress of an optimization run through its
dialogue and graphical output. By watching the value of the objective function, you can
monitor PEST's ability and efficiency in lowering the objective function. There can be
many reasons for a failure on the part of PEST to lower the objective function. In most
cases the problem can be easily overcome by adjusting one or a number of PEST input
variables. The fact that PEST provides so many control variables by which it can be
"tuned" to a particular model is one of the cornerstones of its model-independence. In
other cases, PEST's progress can be assisted by selectively holding either one or a few
parameters at their current values. You may re-commence PEST execution where the
Jacobian matrix was last calculated to re-compute the last parameter upgrade vector, or
you can continue execution with the selected parameters held fixed for a while.

The first time you optimize a model, you may wish to run a theoretical case first. You
should use the model to fabricate a sequence of observation values of the same type for
which you have field measurements, and then use these fabricated observations in place
of your field data. Then run PEST using, as your initial parameter estimates, the
parameters from the fabricated observation set. PEST should terminate execution after
the first model run with an objective function value of zero. (In some cases it will not be
exactly zero because of round-off errors. Nevertheless, it should be extremely small.) In
this way you can check that PEST is supplying correct parameter values to the model,
running the model correctly, and reading observation values correctly.

Next you should vary the parameter initial values and run PEST again. It is at this stage,
while working with a theoretical data set for which you know PEST should achieve a
low objective function value, that you can adjust PEST control variables to tune PEST
to the model. It is unlikely that the objective function will be zero. Although, depending
on the number of observations and their magnitudes and weights, the objective function
should be as close to zero as round-off errors will permit. In most cases, PEST is able to

Chapter 6 - Troubleshooting PEST

solve a parameter estimation problem using substantially less than 20 optimization
iterations.

If PEST does not lower the objective function, or lowers it slowly, the following two
sections outline some of the reasons that PEST may perform poorly. In most instances
the problem can be rectified.

Obtaining Sufficient Precision of the Derivatives

Precise calculation of derivatives is critical to PEST's performance. Improper
calculation of the derivatives will normally be reflected in an inability on the part of
PEST to achieve full convergence to the optimal parameter set. Often PEST will
commence an optimization run in spectacular fashion, lowering the objective function
dramatically in the first optimization iteration or two. But then it "runs out of steam”,
failing to lower it much further.

Try not to make parameter increments too large, or finite-difference-generated
derivatives will be a poor approximation to the real thing. However if they must be
large, use one of the three-point methods of derivatives calculation. Try the "parabolic"
method first. If that doesn't work, use the "best-fit" method.

Experience in calibrating MODFLOW has shown that it is best to calculate derivatives
using relative rather than absolute increments (i.e. the PEST derivative control variable
INCTYP is set to "relative"), and that a value of between 0.01 and 0.05 is suitable for
DERINC. However, for safety's sake, it is wise to back this up with an appropriate
value for DERINCLB, i.e. the absolute increment lower bound. For MT3D calibration
DERINC is best set to 0.05 or higher if using a MOC scheme. For both MODFLO

and MT3D, FORCEN should be set to "switch" while values of 2.0 and "parabolic" are
suitable for DERINCMUL and DERMTHD in most cases. If you undertake a dummy
run using model-generated "field data”, the best values for these variables for your
particular case will soon become apparent.

The estimation of recharge is a special case. Recharge can vary greatly over a model
domain. Also, for some models, it may take on negative values. It has been found that
an INCTYP setting of "rel_to_max" is often suitable for recharge parameters, and that a
suitable value for DERINC is, again, 0.01 to 0.05. Remember recharge parameters
should not be log-transformed.

Derivative Precision in MODFLOW

In Visual MODFLOW, you can select from among the SSOR, SIP, PCG2 and WHS
solvers. For all of these methods, convergence is achieved when the maximum head
change between successive solutions is less than a user-defined threshold, HCLOSE.
The PCG2 method also requires the user to supply a convergence threshold for its inner
iterations (RCLOSE), however, it is HCLOSE, not RCLOSE, that determines solution
precision.

If PEST Won't Optimize 97

98

The lower HCLOSE is set, the higher the precision calculated. Thus, HCLOSE should
be set low when using MODFLOW with PEST. A value of abouf d0less is
recommended. However, because MODFLOW then requires more iterations to
converge to this tighter convergence criterium, the maximum number of iterations
(outer iterations for PCG2 and WHS solvers) should be increased.

With HCLOSE set this low, solution convergence may not always be achieved within
the maximum number of iterations. In fact, for some parameter sets, solution
convergence to may never be achieved even with the maximum number of iterations set
very high. Unfortunately, for transient simulations, when MODFLOW fails to converge
within the maximum number of iterations for a particular time step, it will abort
execution instead of moving on to the next time step. This is disastrous for PEST. If
MODFLOW aborts, not all the head arrays expected by MODBORE will be written.
Then when MODBORE runs following MODFLOW, it will fail and not write its output

file. When PEST tries to read the MODBORE output file, it will abort with an error
message that it is unable to find the .HOB file.

There are two ways to overcome this problem. The easiest way is to make a slight
alteration to the MODFLOW source code. In the MAIN program unit, under the
comment labelled "C7C6", delete or comment out the line:

IF(ICNVG.EQ.0) STOP

With this modification, MODFLOW will continue onto the next time step whether
solution convergence was achieved or not. Visual MODFLOW includes a version of
MODFLOW that has incorporated this change.

The second option, which is available if you have the unlimited version of WIinPEST, is
to insert a little intelligence into the batch file which PEST calls as the model.
MODBORE requires the user to inform it how many arrays to expect in the .HDS file
that it will read. If the number of arrays in this file differs from what it expects, it will
abort with a DOS errorlevel setting of 100. A statement in the batch file immediately
following the MODBORE command can be used to trap this error event. Usually, most
appropriate action would be to substitute a new MODFLOW-solver-package input file,
containing a higher value for HCLOSE, for the one which MODFLOW has just read,
and then re-run MODFLOW. If MODFLOW fails to converge again, another file can be
substituted in which HCLOSE is set even higher. Eventually MODFLOW will

converge and MODBORE will be able to complete its run. It is important to note,
however, that this procedure will not work if the solver package file contains any
adjustable parameters. For example, if you were using the PCG2 solver, you could copy
PCG2.DAT (created by Visual MODFLOW) to PCG2.H1, PCG2.H2, PCG2.H3,
PCG2.H4 and PCG2.H5. In each of these files increase the value of HCLOSE by say a
factor of two. Make sure, however, that the initial MODFLOW run uses the tightest
solution convergence criterion.

Chapter 6 - Troubleshooting PEST

Derivative precision in MT3D

Depending on which version of MT3D you use and what options you specify, MT3

may or may not use an iterative solver to calculate solute concentrations. In MT3DMS-
based versions of MT3D (MT3DMS and MT3D99) you have the option of selecting
implicit or explict solution procedures for the finite-difference methods. If the MOC,
MMOC or HMOC schemes are used, MT3D moves patrticles through the model
domain to solve the advection component of the solute transport equation. The
dispersion, source-sink mixing and chemical reaction components are solved using
either an explicit or implicit finite-difference technique depending on the version of
MT3D.

Whereas the explicit solution scheme presents no problems for solution precision, the
particle tracking methods can pose problems for the accuracy of derivatives calculated
with respect to adjustable parameters. While solute concentrations calculated by MT3D
are precise enough for ordinary usage, a significant loss of precision occurs when the
outcomes of subsequent runs, are subtracted from each other to calculate derivatives.

The problem stems from the fact that there is only a finite number of particles. This
introduces "thresholds" throughout the model domain. For example, the number of
particles in a cell at the end of a time step will depend on the flow regime calculated by
MODFLOW. A slight change in, for example, the transmissivity, can alter the number
of particles in a cell from, say, 9 to 10. This, in turn, will result in a discontinuous
change in the solute concentration calculated for that cell as the transmissivity is
slightly varied. Therefore, it will be difficult to accurately calculate the derivative of the
concentration in that cell with respect to transmissivity if the transmissivity is an
adjustable parameter.

The obvious solution is to not calibrate MODFLOW and MT3D together if a particle
tracking scheme is used for solute transport. If MODFLOW is first calibrated using
borehole head data, and then MT3D is calibrated separately using measured borehole
concentrations, the flow regime by MT3D will be constant during the calibration
process. Although this is a step in the right direction, it is still not sufficient to
circumvent the problem of MT3D output "granularity” when using particle tracking
methods.

MT3D updates solute concentrations at time intervals known as "transport steps”.
When using the explicit finite-difference or TVD schemes, each transport step must be
small enough such that none of the stability criteria pertaining to the different
components of the overall transport equation are violated. There is a stability criterion
associated with the advection term, the dispersion term, the source-sink mixing term,
and the chemical reaction term. All these criteria depend on system properties. Hence if
one or more of these properties is being estimated by PEST, and thus changes from run
to run, so too will one or more of the stability criteria. If MT3D is allowed to select the
transport step size itself based on the tightest of the various stability criteria which it
must meet (as it does when the input variable DTO is set to zero or negative), then the
transport step size may vary from run to run as adjustable parameters are varied. This,

If PEST Won't Optimize 99

100

in turn, will introduce model output "granularity" as it again becomes possible for the
number of particles within a certain cell to vary slightly at a certain simulation time
from one model run to the next.

Fortunately this problem is easily overcome. MT3D allows the user to select the
transport step size through the input variable DTO (if it is set positive). However MT3D
overrides this choice if it fails to fulfil all of the model stability criteria. Hence, for
consistency between model runs, DTO must be chosen low enough that it will not be
"undercut" at any stage of the optimisation process as PEST varies MT3D parameter
values from run to run as it attempts to optimise them. While setting DTO low in this
manner results in an increased MT3D execution time, it does guarantee good PEST
performance. On the other hand, if DTO is set to a negative value, this value is used by
MT3D regardless of the stability criteria. This has the danger though that some of the
runs may produce unpredictable results.

As a complementary measure, it is important to place suitable bounds on adjustable
MT3D parameters. For example, if you are estimating dispersivity and, in the course of
the parameter estimation process, a dispersivity value becomes too high, the stability
criterion associated with the dispersion term could necessitate a transport step size
lower than your chosen DTO value. In such a case MT3D will undercut DTO in
assigning the transport step size, with the result that the number of transport steps will
vary between subsequent MT3D runs.

A further important rule to follow in order to maintain consistency in the movement of
particles between cells from model run to model run, is that particles must be placed in
a fixed pattern within a model cell rather than in a random pattern. You may also need
to use more particles than normal to reduce mass balance discrepancies in diverging/
converging flow fields. Similarly, if solute source concentration is being estimated, care
must be taken in assigning values to the variables NPL and NPH. In some cases, it may
be advisable to set NPL equal to NPH.

Another "threshold" in MT3D that has the potential to introduce inconsistency between
model runs involves the use of the MT3D input variable DHMOC used in the HMOC
solution method to switch between the MOC and MMOC schemes. Experience has
shown, however, that this does not cause too many problems, as borehole
measurements used for model calibration tend to be in areas where solute
concentrations are high and where the MOC, rather than the MMOC, scheme is
operating. Conversely, in areas where the MMOC scheme is being used, the solute
concentration is generally low. Thus, the contribution of a measurement residual from
borehole in this area to the objective function is low, as long as the observation weight
is not high. This further diminishes the potential for instability. Nevertheless, if PEST is
having difficulty in optimising MT3D parameters and you are using the HMOC
method, it may be worth attempting a calibration using the MOC scheme only.

Alternatively, dispense with particle-based schemes altogether, using the TVD or finite-
difference methods to solve the advective component of the solute transport equation.

Chapter 6 - Troubleshooting PEST

High Parameter Correlation

There is often a temptation in fitting models to data, to improve the fit between

modeled and measured observations by increasing the number of adjustable
parameters. While it is true that this can result in a lowered objective function, it is not
always true that such an improvement increases the model's ability to make reliable
predictions. A high number of parameters may not represent a valid interpretation of

the data set to which the model's outcomes are matched. Furthermore, as the number of
parameters requiring estimation is increased, PEST's ability to lower the objective
function by adjusting the values of these parameters is diminished due to round-off
errors. This is particularly true for highly nonlinear models and applies not just to PEST
but to any parameter estimation package.

The trouble with increasing the number of parameters is that, sooner or later, some
parameters become highly correlated. With a high number of parameters, PEST may
not be able to distinguish between different combinations of parameter values because
various combinations can give equally low values of the objective function. As
discussed in the previous chapter, the extent to which parameter pairs and groups are
correlated can be determined from the correlation coefficient and eigenvector matrices.

If parameters are too highly correlated the maXi@xJ of equation (8.18) becomes
singular. However because PEST adds the Marquardt parameter to the diagonal
elements of this matrix before solving for the parameter upgrade vector (see equation
8.20), making it no longer singular, an upgrade vector will nevertheless be obtained.
Eventually, unless circumvented by round-off errors, an objective function minimum
will be obtained through the normal iterative optimization process. However the
parameter set determined on this basis may not be unique. Furthermore, for highly
nonlinear models, the objective function may have attained a local, rather than global,
minimum. Hence, if you are running a theoretical case, PEST may determine a
parameter set, which is entirely different from the one, which you used to generate the
artificial measurement set. In spite of this, the objective function may be very small.

In addition to the non-uniqueness problem, the optimization process may become very
slow if there are many parameters in need of estimation. There are two reasons for this.
The first is that PEST requires at least as many model runs as there are adjustable
parameters to fill the Jacobian matrix during each optimization iteration. The second
reason is based on the possible near-singular condition of the normal matrix and the
way in which PEST adjusts the Marquardt lambda upwards in response to this. In
general, while high lambda values can lead to a rapid lowering of the objective function
at the early stages of the parameter estimation process when parameter values are far
from optimal, it is normally far better to decrease lambda as the objective function
minimum is approached. As discussed in Chapter 8, using a high Marquardt lambda is
equivalent to using the gradient optimization method. However the gradient method is
notoriously slow when parameters are highly correlated, due to the phenomenon of
“hemstitching” as the parameter upgrade vector oscillates across narrow objective
function valleys in parameter space. If lambda cannot be lowered because the normal

If PEST Won't Optimize 101

matrix become singular, or at best ill-conditioned, due to the excessive number of
parameters requiring estimation, there will be no way to prevent this.

These troubles are often compounded by the fact that as parameter numbers are
increased, each parameter may have a smaller effect on fewer observations. Hence the
accuracy of derivatives calculation will suffer and, with it, PEST's ability to find the
global objective function minimum in parameter space.

Note that the incorporation of prior information into the estimation process can often
add stability to an over-parameterized system. Likewise, removing a number of
parameters from the process by holding them fixed at strategic values may yield
dramatic improvements in PEST's performance.

Inappropriate Parameter Transformation

PEST allows adjustable parameters to be either log-transformed or untransformed. Log
transforming appropriate parameters can make the difference between a successful
PEST run and an unsuccessful one.

Trial and error is often the only means by which to judge whether certain parameters
should be log-transformed or not. There is no general rule as to which parameters are
best log-transformed. However experience has shown that parameters, such as
conductivity, whose values vary by one or more orders of magnitude often benefit from
log transformation. Log-transformation of these parameters will often linearize the
relationship between the parameters and the observations. Consequently, to the linearity
assumption upon which the equations of Chapter 8 and 9 are based will be more valid.

The use of a suitable scale and offset may change the domain of a parameter such that
logarithmic transformation becomes possible. The use of parameter scaling and offset is
discussed in Chapter 9.

Highly Non-linear Problems

102

If the relationship between parameters and observations is highly nonlinear, the
optimization process will be difficult. Such nonlinearity may be circumvented through
logarithmically transforming some parameters, with or without a suitable offset and
scaling factor. However, sometimes, log-transformation will make little difference. In
such cases the Gauss-Marguardt-Levenberg method of parameter estimation, on which
PEST is based, may not be the most appropriate method to use.

Sometimes the use of a high initial Marquardt lambda is helpful in cases of this type.
Also, the relative and absolute parameter change limits (RELPARMAX and
FACPARMAX on the PEST control file) may need to be set lower than normal. A
careful inspection of the PEST run record file may suggest suitable values for these
variables and, indeed, which parameters should be relative-limited and which should be
factor-limited. Parameter increments for derivatives calculation should be set as low as
possible without incurring round-off errors. The three-point "parabolic” method may be

Chapter 6 - Troubleshooting PEST

the most appropriate method for calculating derivatives because of its quadratic
approximation to the relationship between observations and parameters. The
incorporation of prior information into the parameter estimation process (with a
suitably high weight assigned to each prior information equation) may also yield
beneficial results.

For all types of parameter estimation problems, but particularly for highly nonlinear
problems, the closer user-supplied initial parameter values are to optimal parameter
values, the greater the chance of PEST being successful.

Discontinuous Problem

The Gauss-Marquardt-Levenberg algorithm, on which PEST is based, assumes that the
observations are continuously differentiable functions of the parameters. If this
assumption is violated, PEST will have extreme difficulty in estimating parameters for
the model. Although, it may have some success if the dependence is continuous, if not
continuously differentiable.

Parameter Change Limits Set Too Large or Too Small

As outlined above for highly nonlinear problems, suitable relative and factor parameter
change limits may allow an optimization in difficult circumstances. However if the
change limits specified by RELPARMAX and FACPARMAX are too small,

minimization of the objective function may be hampered as the upgrade vector is
continually shortened. Inspecting the run record should reveal whether parameter
upgrades are being limited by these variables. If the maximum relative or factor
parameter changes per optimization iteration are consistently equal to the user-supplied
limits, then you might want to increase these limits. However, if your model is highly
nonlinear or "messy", it may be better to keep RELPARMAX and FACPARMAX low

as this may prevent "overshooting" during the parameter adjustments.

You should exercise caution in choosing which parameters are relative-limited and
which are factor-limited. Remember if a parameter is factor-limited, or if it is relative-
limited with a limit of less than 1, the parameter can never change sign. Conversely, if a
parameter is relative-limited with a limit greater than or equal to one, it can be reduced
right down zero in a single step without transgressing the limit. This may cause
parameter "overshoot" problems for some nonlinear models and you may want to
consider a factor limit. However, a factor limit cannot be used if the parameter can
change sign. This can be overcome by using an appropriate OFFSET to shift the
parameter domain such that it does not include zero.

Finally, the offending parameter can be held at its current value, if the parameter
adjustment vector is dominated by a particular insensitive parameter, such that the
parameter is equal to its RELPARMAX or FACPARMAX limit and the changes to
other parameters are minimal.

If PEST Won't Optimize 103

Poor Choice of Initial Parameter Values

In general, the closer the initial parameter values are to the optimal values (i.e. the
values for which the objective function is at its global minimum), the faster PEST will
converge to that global minimum. Not only can the initial parameter values reduce the
run time of PEST, it may also make optimization possible. This is especially true for
highly nonlinear models or models for which there are local objective function minima.

It is important to remember that a little time spent in this trying to estimate
independently a reasonable parameter set could be rewarded in greatly improved PEST
performance.

Observations are Insensitive to Initial Parameter Values

In some models, the calculated values at the observation locations may be insensitive to
the initial parameter values if the initial parameter values are poorly chosen. For
example, if the layer conductivities in a multi-layer model are all set to the same initial
value, even though there are several aquitards, the observations may be insensitive to
the initial conductivities in the lower layers.

Alternatively, a parameter may have little effect on model outcomes at low values, yet a
much greater effect at higher values. If the optimised value lies within the insensitive
area, a large degree of uncertainty will surround its estimate. However if the optimal
value lies in the sensitive part of the parameter's domain it is likely that the parameter
will be well-determined (unless, of course, it is highly correlated with some other
parameter). In either case the parameter's initial value should be within the sensitive
part of its domain.

Poor Choice of Initial Marquardt Lambda

Typically, PEST will find its way to a near-optimal Marquardt lambda at each
stage of the parameter estimation process. However if you supply an initial
Marquardt lambda, which is far from optimal, the adjustment to an optimal
lambda may not be successful. After attempting a parameter upgrade with the
initial lambda, PEST searches for alternative lambdas, using the input variable
RLAMFAC to calculate them. If the initial lambda is poor, these alternative
lambdas may be little better than the first one, in terms of lowering the objective
function. Based on the PEST parameters PHIREDLAM and NUMLAM, PEST
may soon move on to the next optimisation iteration, after having achieved little
in lowering the objective function. If this is repeated during subsequent
optimisation iterations, PEST will soon terminate execution in accordance with
one of its termination criteria.

In most cases, an initial Marquardt lambda between 1.0 and 10.0 works well.
Nevertheless, if PEST spends the first few optimisation iterations significantly raising
or lowering lambda, before achieving a lowering of the objective function reduction,
then you may want to re-evaluate the initial lambda in subsequent PEST runs. If the

104 Chapter 6 - Troubleshooting PEST

parameter estimation process simply does not "get off the ground”, you should start
over with an entirely different lambda. Try a much greater one first, especially if PEST
has displayed messages to the effect that the normal matrix is not positive definite.

To help PEST search farther afield for a suitable Marquardt lambda, you can increase
the input variable RLAMFAC. However, it is not a good practice to keep RLAMFAC
high throughout the optimisation run. If after increasing RLAMFAC PEST finds a
lambda which seems to work, terminate PEST execution, supply that lambda as the
initial lambda, reset RLAMFAC to a reasonable value (e.g. 2.0) andistart

optimisation process again.

Experience has shown that if the initial parameter set is poor, PEST may need a higher
Marqguardt lambda to get the parameter estimation process started. Also a higher
Marquardt lambda may be needed for highly nonlinear problems compared to well-
behaved problems.

Upgrade Vector Dominated by Insensitive Parameters

Where many parameters are being estimated and some are far less sensitive than others,
it is not uncommon to encounter problems in the parameter estimation process. PEST
calculates an upgrade vector in which the insensitive parameters are adjusted by a
larger amount relative to more sensitive parameters. Such adjustment of the insensitive
parameters is necessary to ensure that they affect the objective function. However, the
adjustment to any parameter is limited by the PEST control variables RELPARMAX

and FACPARMAX. PEST reduces the magnitude of the parameter upgrade vector such
that no parameter change exceeds these limits. Unfortunately, an insensitive parameter
may dominate the parameter upgrade vector, restricting the magnitude of the upgrade
vector. In this case, the change in the value of the insensitive parameter will be limited
by RELPARMAX or FACPARMAX (depending on its PARCHGLIM setting) and will
result in much smaller changes to other, more sensitive, parameters. Thus, the objective
function may be reduced very little, if at all.

PEST records the names of parameters that have undergone the largest factor and
relative changes at the end of each optimisation iteration. The problem is easily
recognised when either the maximum relative parameter change or the maximum factor
parameter change is equal to RELPARMAX or FACPARMAX respectively, and the
objective function is reduced very little. More often than not, an inspection of the
parameter sensitivity will reveal that these same parameters also possess a low
sensitivity.

Under these circumstances, increasing RELPARMAX and FACPARMAX will not
necessarily solve the problem. Parameter change limits are necessary to avoid unstable
behaviour in the face of problem nonlinearity (this being the norm rather than the
exception).

If PEST Won't Optimize 105

The solution is to hold insensitive parameters at their current values. In this way, PEST
can often achieve a significant improvement in the objective function. Held parameters
can then be released later in the parameter estimation process.

It may be that quite a few parameters need to be held in this manner. For example, once
a particular troublesome parameter has been identified and held, another insensitive
parameter may in turn dominate the parameter upgrade vector. This can continue until
the set of parameters has been reduced to a set of sensitive parameters. Now, once the
objective function has been reduced, the held parameters can be released one at a time
until the final optimized solution has been found. Alternatively, you may prefer to
preemptively hold all the parameters at once that are suspected to be insensitive.

Holding Parameters

106

In Visual MODFLOW the thumb-tack button allows you to interactively
hold parameters during the parameter estimation process. Clicking on th %5
hold icon brings up the following dialogue.

ZAHold Parameters Status [_ (O] x|

Q|

Sensitivity

B 2djustakle
B Held

= |
kx_ 1 kz_ 1 kx_2 kzr_ 2 kx_ 3 kz_3 =s_1 s=zy_ 1
Parameter
| Parameter=n/a | Sengitivity=n/a | S

This dialogue contains a bar graph with a bar for each adjustable parameter. Simply
double clicking on a bar in the bar graph will hold a parameter. Double clicking again

will release the parameter. Once the parameter has been held, you can view the graphics
and watch the optimization process in the main PEST dialogue

Chapter 6 - Troubleshooting PEST

The Parameter Hold File

You will not normally deal with the hold file, since it is automatically generated by
Visual MODFLOW. However, PEST allows some additional flexibility in the hold file
that is not directly supported by Visual MODFLOW.

After it calculates the Jacobian matrix, and immediately before calculating the
parameter upgrade vector, PEST looks for a file napegectname-dLD” in its

current directory. If it does not find it, PEST proceeds with its execution in the normal
manner. However if it finds such a file, it opens it and reads it for the current
optimisation iteration. You can edit the hold file at any time and PEST will read the file
at the next opportunity.

Part of a parameter hold file is shown below:

relparmax 10.0
facparmax 10.0

lambda 200.0

hold parameter thickl

hold parameter thick2
hold group conduct < 15.0

hold group thickness lowest 3

Entries in a parameter hold file can be in any order. Any line beginning with the “#”
character is ignored and treated as a comment line. If any lines are in error they are also
ignored, for PEST does not pause in its execution or clutter up either its screen display
or its run record file with error messages pertaining to the parameter hold file. However

it does report to the run record file any alterations to its behaviour based on the hold
file.

A user is permitted to alter the values of three PEST control variables using the
parameter hold file. These are RELPARMAX, FACPARMAX and LAMBDA. The
syntax is shown above. That is, the name of the variable must be followed by its new
value.lt is important to note that if a parameter hold file is left “lying around”,

any lines altering the value of lambda should be removed or “commented out”.
Otherwise, PEST will be prevented from making its normal adjustment to lambda
from iteration to iteration. This may severely hamper the optimisation process.

Note: that once RELPARMAX and FACPARMAX have been altered using a parameter
hold file, they stay altered, even if the file is removed or the lines pertaining to
RELPARMAX and FACPARMAX are deleted or commented out.

Holding Parameters 107

To hold a parameter at its current value while the parameter upgrade vector is being
calculated, use a line such as the fourth line the example above. The format is as
follows

hold parameter parnme

whereparnmeis the name of the parameter in the .PST file. If the parameter name is
incorrect, PEST simply ignores the line. If the line is removed from the parameter hold
file, or the parameter hold file itself is removed, the parameter is then free to move in
later optimisation iterations.

The sixth line in the example above illustrates how to hold all the parameters in a
group. In this case, the format is

hold group pargpnme < X

wherepargpnmds the name of a parameter group &gl a positive number that tells
PEST to hold any parameter with a sensitivity less xh&teld parameters can be
released by reducing(to zero if desired), by deleting this line from the parameter hold
file, or by deleting the parameter hold file itself.

Finally, the seventh line in the example above shows how to hahdhtlest insensitive
parameters in a particular parameter group. The format for this operation is

hold group pargpnme < n

wheren is a positive integer. Such held parameters can be freed later in the parameter
estimation process by reducindto zero if desired), by deleting this line from the
parameter hold file, or by deleting the parameter hold file itself.

Re-starting PEST execution

108

Often PEST will run to completion with the set of parameters and values that you have
specified. However, you may want to start and stop the parameter estimation process to
adjust some of the PEST variables. PEST allows you to halt execution at any time and
restart it again either at the end of the last iteration or using the last Jacobian matrix.
This is very important because the calculation of the Jacobian matrix is a very time
consuming operation. PEST stores the Jacobian matrix in a file each time it is
calculated. The Jacobian matrix is then retrieved from disk if PEST is asked to re-
calculate the parameter upgrade vector. Since, the size of the Jacobian matrix is
determined by the number of parameters, if you want to remove a model parameter
from the process, then you can either hold it constant and allow PEST to continue or
you can remove it completely and start the estimation process over again.

Chapter 6 - Troubleshooting PEST

é’;}WinPEST: [C:AVMODNTATUTORIALAYALLEY PST]

Mt iew alidate
= Fiun.n"FEes.lfa.rl
Check: wtilities

CRVERF= RS

h Record I

OFTIMISATION ITERATION NO.

In the WInPEST dialogue the model can be stopped at any time using
the stop icon. The pause icon does not stop execution but simply
suspends it until you click on the play icon again. If you stop PEST,
then by default it restarts the execution from scratch. However, you can change the
restart options by selectif@ptions] from the top menu and th¢Run/Restart].

This will bring up the following dialogue where you can select to restart PEST from
either the last iteration or the last Jacobian matrix calculation.

PEST Run Options

If you choose to re-start the process using the last Jacobian matrix, PEST will move
straight into calculation of the parameter upgrade vector and the testing of different
Marqguardt lambdas, based on the most recent completed Jacobian matrix.

Re-starting PEST execution 109

110 Chapter 6 - Troubleshooting PEST

Appendix A, PEST Input Files

PEST requires three types of input file. These are:

» template files, one for each model input file on which parameters are identified,

« instruction files, one for each model output file on which model-generated
observations are identified, and

« an input control file, supplying PEST with the names of all template and
instruction files, the names of the corresponding model input and output files,
the problem size, control variables, initial parameter values, measurement
values and weights, etc.

This Appendix describes these file types in detalil.

Template files, instruction files and control files can be written using a general-purpose
text editor following the specifications set out in this chapter. Once built, they can be
checked for correctness and consistency using the utilities supplied in the WinPEST
interface.

Note that in this and other chapters of this manual, the word "observations" is used to
denote those particular model outcomes for which there are corresponding laboratory or
field data. For clarity, these numbers are often referred to as "model-generated
observations" to distinguish them from their laboratory- or field-acquired counterparts
which are referred to as "measurements" or "laboratory or field observations".

PEST Template Files

Whenever PEST runs MODFLOW or MT3D, it must first write certain parameter
values to the model input files. PEST provides the parameter values which it wants the
model to use for a particular run. The only way the model can access these values is to
read them from its input files. For example, if FILE.INP contains parameters which
PEST must optimise, a template can be built for it as if it were any other model input
file. A model may read many input files. However, a template is needed only for those
input files which contain parameters requiring optimisation. PEST does not need to
know about any of the other model input files.

PEST Template Files 111

PEST can only write parameters to ASCII (i.e. text) input files. If a model requires a
binary input file, you must write a program which translates data written to an ASCII

file to binary form. The translator program, and then the model, can be run in sequence
by placing them in a batch file which PEST calls as the model. The ASCII input file to
the translator program will then become a model input file, for which a template is
required.

A model input file can be of any length. However, PEST insists that it be ho more than
2000 characters in width. The same applies to template files. We suggest that template
files have the extension ".TPL" to distinguish them from other types of file.

A template file receives its name from the fact that it is simply a replica of a model
input file except that the space occupied by each parameter in the template file is
replaced by a sequence of characters which identify the space as belonging to that
parameter.

Aquifer properties that may need adjustment during model calibration include

horizontal hydraulic conductivity, inter-layer conductance, storage coefficient,
streambed or drain conductance and, in the case of transport models, dispersivity, the
parameters defining adsorption isotherms, and solute decay constants. In other cases it
may be necessary to adjust aquifer inputs such as recharge rates and concentrations, or
the parameters governing evapotranspiration. These values are supplied to MODFLO
and MT3D either through two-dimensional data arrays (for example hydraulic
conductivity and dispersivity), or as cell-by-cell listings (for example drain and

riverbed conductance). All of these parameters are distributed, i.e. a value is required
for many (or all) model cells. As it is both practically infeasible and mathematically
impossible to estimate a parameter value for each model cell using observations made
at a discrete number of boreholes, these distributed parameters must be "regularised” in
some way. The easiest way to do this is to assume that any such parameter type is
"piecewise constant”, i.e. that it takes on a single value in each of a number of discrete
model sub-areas within the overall model domain.

PEST interfaces with a model through the models own ASCII input and output files.
Each time PEST runs a model it first writes user-specified model input files using the
parameter values which it wishes the model to use on that particular run. It knows
where to write parameter values to input files through the use of model input file
templates. For PEST to adjust a distributed parameter supplied to MODFLOW or
MT3D through a two-dimensional array or cell-by-cell listing, a template must be
constructed for the file which holds the array or listing. This is usually done by
modifying a model input file, replacing parameter values with "parameter spaces”
(comprising a parameter name enclosed by appropriate delimiters). Each parameter
space denotes a contiguous set of characters on the model input file as belonging to a
particular parameter. It also informs PEST of the number of digits which it may use to
write the number representing the parameter.

112 Appendix A, PEST Input Files

Table 4: Template example for a two-dimensional array
comprised of four different numbers

1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 6.7543 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 6.7543 6.7543
1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 6.7543
8.4352 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521 9.6521
8.4352 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521

#parl # # parl # # parl # # parl # # parl # # par2 # # par2 # # par2 #
parl # # parl # # parl # # parl # # parl # # par2 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par2 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par3 # # par2 # # par2
parl # # parl # # parl # # par3 # # par3 # # par3 # # par3 # # par2
pard # # parl # # parl # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # parl # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # pard # # par3 # # par3 # # par3 # # par3 # # par3
pard # # pard # # pard # # pard # # par3 # # par3 # # par3 # # par3

For a spatially distributed parameter occupying a two-dimensional array the model
domain must be subdivided into a handful of zones where the parameter is constant. If
each number in the array is replaced by an appropriate parameter space, the array of
numbers as represented in the model input file becomes an array of parameter spaces.
Each zone of parameter constancy within the array is then identified as having the same
parameter name.

The first part of Table 4 illustrates a two-dimensional array of numbers subdivided into
four zones of equal value. The second part of T able4 shows part of a template file
constructed from it. Before PEST runs the model, it replaces the parameter spaces
found in the template file by the current values pertaining to those parameters, thus
building an array consisting of four separate numbers and defining four separate zones
of parameter constancy

For parameters supplied to MODFLOW or MT3D on a cell-by-cell basis the cells can
be divided into zones of similar value in the same way. For example, Table 5 shows
part of a MODFLOW .DRN file for the Drain Package.

PEST Template Files 113

Table 5: Template example for part of the input to
MODFLOW's DRN package.

19 43 2.000E+01 3.000E+00
20 43 2.000E+01 3.000E+00
21 43 2.000E+01 3.000E+00
22 44 2.000E+01 3.000E+00
23 45 2.000E+01 3.000E+00
24 46 2.000E+01 5.000E+00
25 46 2.000E+01 5.000E+00
26 46 2.000E+01 5.000E+00
27 46 2.000E+01 5.000E+00
28 45 2.000E+01 5.000E+00
29 44 2.000E+01 5.000E+00
30 43 2.000E+01 5.000E+00
31 43 2.000E+01 5.000E+00

19 43 2.000E+01 # conl #
20 43 2.000E+01 # conl
21 43 2.000E+01 # conl
22 44 2.000E+01 # conl
23 45 2.000E+01 # conl
24 46 2.000E+01 # con2
25 46 2.000E+01 # con2
26 46 2.000E+01 # con2
27 46 2.000E+01 # con2
28 45 2.000E+01 # con2
29 44 2 .000E+01 # con2
30 43 2.000E+01 # con2
31 43 2.000E+01 # con2

PRRRRRRRRRRPRRFP | RPRrRRrRRRRRPRPRRPRRRERRE

HHEHFEHEHFHFHFHH R

The drain has been subdivided into two zones in each of which the conductance is
assumed uniform. (Note that in this example, the parameterization would probably
benefit by tying all of the conductances to one conductance.

Visual MODFLOW'’s Template Files

114

Visual MODFLOW takes care of creating template files for the parameters that you
select in the PEST Control dialogue. In this dialogue, you can currently select spatially
variable anisotropic conductivities, storage parameters and recharge. The parameters
that you select here are Visual MODFLOW parameters - not MODFLOW parameters.
This means that you can select vertical hydraulic conductivity whereas in MODFLO
this term is lumped into the vertical conductance variable.

Visual MODFLOW builds the MODFLOW input files before each run by using a
combination of PERL source files (.SRC files) and template files that are written in C.
PEST substitutes the current parameter value into the template file, which then creates
the MODFLOW input file in the format outlined by the .SRC files. Tab le6 shows a
typical Visual MODFLOW .TPL file that is set to optimise Kx for zones 1,2 and 3.

Appendix A, PEST Input Files

Table 6: Example Visual MODFLOW Template file

ptf #
sub adjust_g_format
{
my $s = shift;
$s =~ s/(\-?)(\d+)(\.?2)(\d*)e(\+)(\d)\d)\d)(\@)/ $1$2$3$4e$6$7$8%$9/g;
$s =~ s/(\-?)(\d+)(\.?)(\d*)e(0)(\d)\d)\@)/ $1$2$3$4e$6$7$8/g;
$s =~ s/(\-?)(\d+)(\.?)(\d*)e(0)(\d)\@)/ $1$2$3$4e$63$7/g;
$s =~ s/(\-?)(\d+)(\.?)(\d*)e(\-?)(0)(\d)(\d) \@)/ $1$2$3$4e$5$7$8%$9/g;
$s =~ s/(\-?)(\d+)(\.?2)(\d*)e(\-?)(0)(\d)(\@)/ $1$2$3$4e$5$7$8/g;
$s =~ s/()()(-?)(\d+)(\@)/$2$3$4\.$5/g;
$s =~ s\@!//g;
return $s;
}
sub Process
{

my $source = shift;
my $target = shift;
open inp, "<$source";
open out, ">$target";
while(<inp>)

print out adjust_g formateval $_;

close inp;

close out;
}
BKx_1=# Kx__1#;
SKx_2=# Kx__ 2#,
$Kx_3=# Kx__ 3#,;

undef %Source_Files_To_Process;
$Source_Files_To_Process{'D:\VMODNT\DEMP.BCF'} = 'D:\VMODNT\DEMP.BCF.SRC';
$Source_Files_To_Process{'D:\VMODNT\DEMP.WEL} = 'D:\VMODNT\DEMP.WEL.SRC'

foreach $target (keys %Source_Files_To_Process)

$source = $Source_Files_To_Process{$target};
Process $source, $target;

}

Working Directly with MODFLOW/MT3D Files

We are expecting to continue to make additional Visual MODFLOW parameters
available in the PEST Control dialogue. In this version, however, if you want to
optimise a parameter that is not included in the list of available parameters, you will
need to construct your own template files.

PEST Template Files 115

116

To prepare a template for a model input file you should first prepare the model input
using Visual MODFLOW and translate the model without running it. Then construct

the template file by first copying, and then modifying, the model input file containing
the parameter to be optimised, replacing each zone value in the pertinent array or cell-
by-cell listing by a corresponding parameter space. Inthis way, you will create a file
that contains parameter spaces for the parameters that you want to optimise.

For example, suppose that you wish to optimise the amount of evapotranspiration and
you have created the .EVT file by assigning the appropriate zones in Visual
MODFLOW and translating the file. To prepare a template file named EVP.TPL from
projectname.eyicopyprojectname.evio EVT.TPL, add a template file header (e.g.

"ptf &", "&" being the parameter delimiter) and use the "search and replace" facilities
of a text editor to replace each occurrence of each zone-defining value in the maximu
ET array by an appropriate parameter space to produce an array like the one shown in
Table 4.

Unfortunately this process is not always as simple as it sounds. MODFLOW and
MT3D input files can be very large and your text editor may not be able to read them
(We use Multiedit for Windows(r) by American Cybernetics; www.amcyber.com).
Also, you must be carefule to ensure that the "search and replace” does not make
changes beyond the target area of the MODFLOW/MT3D input file. Furthermore, if
you want to make changes to the zonation of a parameter then you will have to re-
translate the files and you must re-create the template file. Also you should be careful
not to try optimising parameters that lie completely within an inactive zone.Your
template files can be checked using the WInPEST file checking routines.

Working with files created by Visual MODFLOW

Sometimes the parameter values that you supply to a model preprocessor are not
actually reproduced in the MODFLOW/MT3D input files written by Visual

MODFLOW. This may cause problems when easily-identified numbers are supplied to
a particular parameter with the aim of replacing those numbers later by parameter
spaces. In Visual MODFLOW, this can be caused by internal unit conversion or
because MODFLOW does not use the parameter as it is supplied to Visual
MODFLOW. For example, pumping rates are specified in the MODFLOW files in

units consistent with other length and time parameters.

MODFLOW defines four different types of model layers usingvia the LAYCON
parameter. If LAYCON for a layer is 0 or 2, MODFLOW expects a transmissivity array
for that layer. However if the LAYCON element is 1 or 3, MODFLOW expects a
hydraulic conductivity array. Since, Visual MODFLOW uses only hydraulic
conductivity, if a layer is of type 0 or 2 the hydraulic conductivity is multiplied by the
layer thickness to obtain transmissivity which is then translated to the MODFLO

input file. Therefore, user-supplied cell hydraulic conductivity values are not replicated
in the MODFLOW .BCF file. Furthermore, if the layer thickness is irregular, the
transmissivity array will not be piecewise constant even if the hydraulic conductivity
was entered in zones of constant value. In such a case, it is better to supply a uniform

Appendix A, PEST Input Files

aquifer thickness to the preprocessor even if the aquifer thickness is, in fact, variable.
For layers of type 0 or 2 this inaccuracy will not degrade model results as it is the
transmissivity, and not the hydraulic conductivity and layer thickness individually,
which determines the flow regime within the aquifer.

Similar considerations apply to the VCONT array required by MODFLOW for multi-
layered models, which represents the vertical hydraulic conductivity divided by
thickness.

Note that only arrays and cell-by-cell parameters that are to be optimised need to be
considered when constructing a template file. Arrays and values which will not be used
in the parameter optimisation should be left unaltered in the template file. Similarly, if
parameter optimisation is sought for only part of a model domain, then only part of the
array needs to have its elements replaced by parameter spaces when constructing the
template file.

Multi-Array Parameters and Tied Parameters

There is no reason why the occurrence of a particular parameter should be restricted to
a single array. For example, if a single, vertically homogeneous aquifer is represented
by a number of model layers, the arrays representing the hydraulic conductivity of each
model layer will be identical. In such a case, the parameter space arrays on the
corresponding template file will also be identical, each such array containing the same
parameters in the same disposition. The VCONT arrays for model layers within the
same aquifer will also be identical from layer to layer (if the layer thicknesses are the
same). The pertinent parameter values may be estimated separately from hydraulic
conductivity, or they may be tied to the latter, if the relationship between vertical and
horizontal hydraulic conductivity is known. In the latter case, only the horizontal
hydraulic conductivity needs to be estimated, the estimates for VCONT tracking the
horizontal values as the optimisation process progresses.

Similarly, for parameter types such as drain conductance, it may be opportune to define
a small number of conductances over the model domain, assuming that the hydraulic
conductivity of the drain material is uniform, the conductance in a particular cell will be
proportional to the length of drain in that cell. Thus, only one conductance parameter
needs to be optimised, the others being tied to it in proportion to the respective length
category represented by each parameter.

Fixed and Transformed Parameters

A parameter must be fixed if it lies wholly within the inactive part of the model grid
and, hence, has no effect on model outcomes. A parameter should also be fixed if its
effect on model outcomes at all observation points is particularly weak. Likewise, if a
group of highly correlated parameters is identified, then at least one member of this
group may need to be fixed to stabilise the optimisation and to make the estimation of
the remaining members of the group more efficient.

PEST Template Files 117

The logarithmic transformation of certain parameter types, such as conductivity may
have a dramatic effect on optimisation efficiency, as will appropriate upper and lower
bounds for adjustable parameters.

Template File Syntax and Commands

118

The Parameter Delimiter

As Table 6 shows, the first line of a template file must contain the letters "ptf" followed
by a space, followed by a single character ("ptf" stands for "PEST template file"). The
character following the space is the "parameter delimiter". In a template file, a
"parameter space" is identified as the set of characters between and including a pair of
parameter delimiters. When PEST writes a model input file based on a template file, it
replaces all characters between and including these parameter delimiters by a number
representing the current value of the parameter that owns the space. That parameter is
identified by name within the parameter space, between the parameter delimiters.

You must choose the parameter delimiter yourself. However, your choice is restricted
in that the characters [a-z], [A-Z] and [0-9] are invalid. The parameter delimiter
character must appear nowhere within the template file except in its capacity as a
parameter delimiter, for whenever PEST encounters that character in a template file it
assumes that it is defining a parameter space.

Parameter Names

All parameters are referenced by name. Parameter references are required both in
template files (where the locations of parameters on model input files are identified)
and on the PEST control file (where parameter initial values, lower and upper bounds
and other information are provided). Parameter names can be from one to eight
characters in length, any characters being legal except for the space character and the
parameter delimiter character. Parameter names are case-insensitive.

Each parameter space is defined by two parameter delimiters. The name of the
parameter to which the space belongs must be written between the two delimiters.

If a model input file is such that the space available for writing a certain parameter is
limited, the parameter name may need to be considerably less than eight characters long
in order that both the name and the left and right delimiters can be written within the
limited space available. The minimum allowable parameter space width is thus three
characters, one character for each of the left and right delimiters and one for the
parameter name.

Setting the Parameter Space Width

In general, the wider the parameter space (up to a certain limit - see below), the better
PEST likes it, since numbers can be represented with greater precision in wider spaces
than they can be in narrower spaces. However, unlike model-generated observations
where maximum precision is crucial to obtaining useable derivatives, PEST can adjust

Appendix A, PEST Input Files

to limited precision for parameters in input files. Enough precision needs to be

available for the parameter value to be distinguished between iterations after it has been
incremented for derivatives calculation. Hence, beyond a certain number of characters,
the exact number depending on the parameter value and the size and type of parameter
increment used, extra precision is not critical. Nevertheless, it is good practice to use as
much precision as the model is capable of reading the parameters with, so that they can
be provided to the model with the same precision with which PEST calculates them.

In MODFLOW and MT3D, the FORTRAN file formats are found in their respective
Reference Manuals. For example, the following FORTRAN code directs a program to
read five real numbers. The first three are read using a format specifier, whereas the last
two are read in list-directed fashion.

READ(20,100) A,B,C
100 FORMAT(3F10.0)
READ(20,*) D,E
The relevant part of the input file may be
6.32 1.42E-05123.456789
34.567, 1.2E17

Notice how no whitespace or comma is needed between numbers which are read using
a field specifier. The format statement labelled "100" directs that variable A be read
from the first 10 positions on the line, that variable B be read from the next 10
positions, and that variable C be read from the 10 positions thereafter. When the
program reads any of these numbers it is unconcerned as to what characters lie outside
of the field on which its attention is currently focussed. However, the numbers to be
read into variables D and E must be separated by whitespace or a comma for the
program to know where one number ends and the next number begins.

Suppose all of variables A to E are model parameters, and that PEST has been assigned
the task of optimising them. For convenience we provide the same names for these
parameters as are used by the model code (this, of course, will not normally be the
case). The template fragment may then be

#A ## B ## C #
D ## E

Notice how the parameter space for each of parameters A, B and C is 10 characters
wide, and that the parameter spaces abut each other. If the parameter space for any of
these parameters was greater than 10 characters in width, then PEST, when it replaced
the parameter space by the current parameter value, it would create a model input file
which would be incorrectly read by the model. You could also designed parameter
spaces less than 10 characters wide if you wished, as long as there were enough spaces
between each parameter space so that the value falls within the field expected by the

PEST Template Files 119

120

model. However, there is no advantage in using less than the full number of characters
allowed by the model.

In the above example, parameters D and E are treated very differently to parameters A,
B and C. In this case, the model simply expects two numbers in succession. If the
spaces for parameters D and E are replaced by two numbers (each will be 13 characters
long) the model's requirement for two numbers separated by whitespace or a comma is
satisfied, as is PEST's preference for maximum precision.

Comparing the two lines above, it is obvious that the spaces for parameters D and E in
the template file are greater than the spaces occupied by the corresponding numbers on
the model input file from which the template file was constructed. In most cases of
template file construction, a model input file will be used as the starting point. In such a
file, numbers read as list-directed input will often be written with trailing zeros omitted.

In constructing the template file you should recognise which numbers are read using
list-directed input and expand the parameter space (to the right) accordingly beyond the
original number, making sure to leave whitespace or a comma between successive
spaces, or between a parameter space and a neighbouring character or number

Similarly, numbers read through field-specifying format statements may not occupy the
full field width in a model input file from which a template file is being constructed
(e.g. variable A in the example above). In such a case you should, again, expand the
parameter space beyond the extent of the number (normally to the left of the number
only) until the space coincides with the field defined in the format specifier with which
the model reads the number.

How PEST Fills a Parameter Space with a Number

PEST writes as many significant figures to a parameter space as it can. It does this so
that even if a parameter space must be small to satisfy the input field requirements of a
model, there is still every chance that a parameter value can be distinguished from its
incrementally-varied counterpart so as to allow proper derivatives calculation with
respect to that parameter. Also, as has already been discussed, even though PEST
adjusts its internal representation of a parameter value to the precision with which the
model can read it so that PEST and the model are using the same number, in general
more precision is better

Two user-supplied control variables, PRECIS and DPOINT affect the manner in which
PEST writes a parameter value to a parameter space. Both of these variables are found
in the PEST control file, but only PRECIS can be modified in the Visual MODFLOW
PEST Control dialogue. PRECIS is a character variable which must be either "single"

or "double". It determines whether single or double precision is used to write parameter
values. Unless a parameter space is greater than 13 characters in width it has no bearing
on the precision with which a parameter value is written to a model input file, as this is
determined by the width of the parameter space. If PRECIS is set to "single", exponents
are represented by the letter "e". Also if a parameter space is greater than 13 characters
in width, only the last 13 spaces are used in writing the number representing the
parameter value, any remaining characters within the parameter space being left blank.

Appendix A, PEST Input Files

For the "double" alternative, up to 23 characters can be used to represent a number and
the letter "d" is used to represent exponents. Also, extremely large and extremely small
numbers can be represented.

If a model's input data fields are small, and there is nothing you can do about it, every
effort must be made to "squeeze" as much precision as possible into the limited
parameter spaces available. PEST will do this anyway, but it may be able to gain one or
more extra significant figures if it does not need to include a decimal point in a number
if the decimal point is redundant. Thus if a parameter space is 5 characters wide and the
current value of the parameter to which this field pertains is 10234.345, PEST will

write the number as "1.0e4" or as "10234" depending on whether it must include the
decimal point or not. Similarly, if the parameter space is 6 characters wide, the number
106857.34 can be represented as either "1.07e5" or "1069e2" depending on whether the
decimal point must be included or not.

By assigning the string "nopoint” to the PEST control variable DPOINT, you can
instruct PEST to omit the decimal point in the representation of a number if it can.
However, this should be done with great caution. If the model is written in FORTRAN
and numbers are read using list directed input, or using a field width specifier such as
"(F6.0)" or "(E8.0)", the decimal point is not necessary. However, in other cases the
format specifier will insert its own decimal point (e.g. for specifiers such as "(F6.2)"),
or enforce power-of-10 scaling (e.g. for specifiers such as "(E8.2)") if a decimal point
is absent from an input number. Hence, if you are unsure what to do, assign the string
"point" to the control variable DPOINT. This will ensure that all numbers written to
model input files will include a decimal point, thus overriding point-location or scaling
conventions implicit in some FORTRAN format specifiers. Visual MODFLOW uses
the a value of “point” for the DPOINT variable.

Note that if a parameter space is 13 characters wide or greater and PRECIS is set to
"single”, PEST will include the decimal point regardless of the setting of "DPOINT",
for there are no gains to be made in precision through leaving it out. Similarly, if
PRECIS is set to "double", no attempt is made to omit a decimal point if the parameter
space is 23 characters wide or more.

A template file may contain multiple occurances of the same parameter. If the
parameter spaces for that parameter are defined differently, PEST will write the
parameter value to all of its parameter spaces using the minimum parameter space
width specified for that particular parameter. For the wider spaces the number will be
right-justified, with spaces padded on the left. This way a consistent parameter value is
written to all parameter spaces for that parameter.

The Same Parameter in Diffeent Files

Multiple incidences of the same parameter are not restricted to one file. PEST passes no
judgement on the occurrence of parameters within template files or across template
files. However, it does require that each parameter cited in the PEST control file occur
at least once in at least one template file, and that each parameter cited in a template file
be provided with bounds and an initial value in the PEST control file.

PEST Template Files 121

PEST Instruction Files for Output

Of the voluminous amounts of information that MODFLOW and MT3D writes, PEST
is interested in only a few numbers. That is, those output values (“observations” or
“model-generated observations”) for which corresponding field or laboratory data
(“measurements”) are available and for which the discrepancy between model output
and measured values is part of the objective function.

For every model output file containing observations, you must provide an instruction
file (*.INS) containing the directions which PEST must follow to read the file.

Precision in Model Output Files

If there are any model input variables which allow you to vary the precision with which
its output data are written, they should be adjusted for maximum output precision.
Unlike parameter values, for which precision is important but not essential, precision in
the representation of model-generated observations is crucial. The Gauss-Marquardt-
Levenberg method of non-linear parameter estimation, on which the PEST algorithm is
based, requires that the derivative of each observation with respect to each parameter be
evaluated once for every optimisation iteration. PEST calculates these derivatives using
the finite-difference technique or one of its three-point variants. In all cases, the
derivative value depends on the difference between two or three observations
calculated on the basis of incrementally-varied parameter values. Unless the
observations are represented with maximum precision, this is a recipe for numerical
disaster.

How PEST Reads Model Output Files

122

PEST must be instructed on how to read a model output file and identify model-
generated observations. For the method to work, model output files containing
observations must be text files. PEST cannot read binary files.

Unfortunately, observations cannot be read from model output files using the template
concept, since neither MODFLOW nor MT3D cannot be relied upon to produce an
output file of identical structure during each model run. So instead of using an output
file template, you must provide PEST with a list of instructions on how to find
observations in the output files (see Ta ble7).

Basically, PEST finds observations in a model output file in the same wayothat
would. You run your eye down the file looking for something you recognise - a
"marker". If this marker is properly selected, observations can usually be linked to it.
For example, if you are looking for the output after 100 days, you may look for

TIME =100 DAYS

A particular outcome for which you have a corresponding field measurement may then
be found, for example, between character positions 23 and 30 on the 4th line following

Appendix A, PEST Input Files

Table 7: Example output file and corresponding PEST
instruction file.

SCHLUMBERGER ELECTRIC SOUNDING
Apparent resistivities calculated using the linear filter method
electrode spacing apparent resistivity

1.00 1.21072
1.47 1.51313
2.15 2.07536
3.16 2.95097
4.64 4.19023
6.81 5.87513
10.0 8.08115

pif @

@celectrode@

11 [arl]21:27
11 [ar2]21:27
11 [ar3]21:27
11 [ar4]21:27
11 [ar5]21:27
11 [ar6]21:27
11 [ar7]21:27

the marker. For output files, a marker may be unnecessary as the default initial marker
is the top of the file.

Markers can be of either primary or secondary type. PEST uses a primary marker as it
scans the model output file line by line, looking for a reference point for subsequent
observation identification or further scanning. A secondary marker is used for a
reference point as a single line is examined from left to right.

The Marker Delimiter

The first line of a PEST instruction file must begin with the three letters "pif" which
stand for "PEST instruction file". Then, after a single space, must follow a single
character, the marker delimiter. The role of the marker delimiter in an instruction file is
not unlike that of the parameter delimiter in a template file. Its role is to define the
extent of a marker. A marker delimiter must be placed just before the first character of a
text string comprising a marker and immediately after the last character of the marker
string. In treating the text between a pair of marker delimiters as a marker, PEST does
not try to interpret this text as a list of instructions.

You can choose the marker delimiter character yourself. However, your choice is
limited. A marker delimiter must not be one of the characters A-Z,a-2z,0-9,, [,], (,
), ;, or &. The choice of any of these characters may result in confusion, as they may
occur elsewhere in an instruction file in a role other than that of marker delimiter. Note

PEST Instruction Files for Output 123

that the character you choose as the marker delimiter should not occur within the text of
any markers as this, too, will cause confusion.

Observation Names

In the same way that each parameter must have a unique name, so too must each
observation be provided with a unique name. Like a parameter name, an observation
name must be eight characters or less in length. These eight characters can be any
ASCII characters except for [,], (,), or the marker delimiter character.

As discussed above, a parameter name can occur more than once within a parameter
template file. PEST simply replaces each parameter space in which the name appears
with the current value of the pertinent parameter. However, the same does not apply to
an observation name. Every observation is unique and must have a unique observation
name. In Table 7, observations are named "arl", "ar2" etc. These same observation
names must also be cited in the PEST control file where measurement values and
weights are provided.

There is one observation name, however, to which these rules do not apply, that is the
dummy observation name "dum". This name can occur many times, if necessary, in an
instruction file. It signifies to PEST that, although the observation is to be located as if
it were a normal observation, the number corresponding to the dummy observation on
the model output file is not actually matched with any laboratory or field measurement.
Hence, an observation named "dum" must not appear in the PEST control file where
measurement values are provided and observation weights are assigned. As is
illustrated below, the dummy observation is simply a mechanism for model output file
navigation.

The Instruction Set

124

Each of the available PEST instructions is now described in detail. When creating your
own instruction files, the syntax provided for each instruction must be followed exactly.
If a number of instruction items appear on a single line of an instruction file, these items
must be separated from each other by at least one space. Instructions pertaining to a
single line on a model output file are written on a single line of a PEST instruction file.
Thus the start of a new instruction line signifies that PEST must read at least one new
model output file line. Just how many lines it needs to read depends on the first
instruction on the new instruction line. Note, however, that if the first instruction on the
new line is the character "&", the new instruction line is simply a continuation of the
old one. Like all other instruction items, the "&" character used in this context must be
separated from its following instruction item by at least one space.

PEST reads a model output file in the forward (top-to-bottom) direction, looking to the
instructions in the instruction file to tell it what to do next. Instructions should be
written with this in mind. An instruction cannot direct PEST to "backtrack” to a
previous line on the model output file. Also, because PEST processes model output file

Appendix A, PEST Input Files

lines from left to right, an instruction cannot direct PEST backwards to an earlier part of
a model output file line than the part of the line to which its attention is currently
focussed as a result of the previous instruction.

Primary Marker

Unless it is a continuation of a previous line, each instruction line must begin with
either of two instruction items, viz. a primary marker or a line advance item. The
primary marker has already been discussed briefly. It is a string of characters, bracketed
at each end by a marker delimiter. If a marker is the first item on an instruction line,
then it is a primary marker. If it occurs later in the line, following other instruction

items, it is a secondary marker, the operation of which will be discussed below.

On encountering a primary marker in an instruction file PEST reads the model output
file, line by line, searching for the string between the marker delimiter characters.
When it finds the string it places its "cursor” at the last character of the string. (Note
that this cursor is never actually seen by the PEST user. It simply marks the point where
PEST is at in its processing of the model output file.) This means that if any further
instructions on the same instruction line as the primary marker direct PEST to further
processing of this line, that processing must pertain to parts of the model output file line
following the string identified as the primary marker

Note that if there are blank characters in a primary (or secondary) marker, exactly the
same number of blank characters is expected in the matching string on the model output
file.

Often, a primary marker will be part or all of some kind of header or label. Such a
header or label often precedes a model's listing of the outcomes of its calculations and
thus makes a convenient reference point from which to search for the latter. It should be
noted, however, that the search for a primary marker is a time-consuming process as
each line of the model output file must be individually read and scanned for the marker.
Hence, if the same observations are always written to the same lines of a model output
file (these lines being invariant from model run to model run), you should use the line
advance item in preference to a primary marker.

A primary marker may be the only item on a PEST instruction line, or it may precede a
number of other items directing further processing of the line containing the marker. In
the former case the purpose of the primary marker is simply to establish a reference
point for further downward movement within the model output file as set out in
subsequent instruction lines.

Primary markers can provide a useful means of navigating a model output file.
Consider the extract from a model output file shown in Example 3.8 (the dots replace
one or a number of lines not shown in the example in order to conserve space). The
instruction file extract shown inTable 8 provides a means to read the numbers
comprising the third solution vector. Notice how the "SOLUTION VECTOR" primary
marker is preceded by the "PERIOD NO. 3" primary marker. The latter marker is used
purely to establish a reference point from which a search can be made for the

PEST Instruction Files for Output 125

126

"SOLUTION VECTOR" marker. If this reference point were not established (using
either a primary marker or line advance item) PEST would read the solution vector
pertaining to a previous time period.

Table 8: Example for a more complex output and
instruction file

TIME PERIOD NO. 1 --->

éOLUTION VECTOR:
1.43253 6.43235 7.44532 4.23443 91.3425 3.39872

TIME PERIOD NO. 2 --->

éOLUTION VECTOR
1.34356 7.59892 8.54195 5.32094 80.9443 5.49399

TIME PERIOD NO. 3 >

:SOLUTION VECTOR
2.09485 8.49021 9.39382 6.39920 79.9482 6.20983

pif *

PERIOD NO. 3

SOLUTION VECTOR

[1 (obs1)5:10 (obs2)12:17 (0bs3)21:28 (obs4)32:37 (obs5)41:45
& (0bs6)50:55

Line Advance

The syntax for the line advance item is "In" where n is the number of lines to advance.
The line advance item must be the first item of an instruction line. It and the primary
marker are the only two instruction items which can occupy this initial spot. As was
explained above, the initial item in an instruction line is always a directive to PEST to
move at least one line further in its perusal of the model output file (unless it is a
continuation character). In the case of the primary marker, PEST stops reading new
lines when it finds the pertinent text string. However, for a line advance it does not need
to examine model output file lines as it advances. It simply moves forward n lines,
placing its processing cursor just before the beginning of this n'th line, this point
becoming the new reference point for further processing of the model output file.

Normally a line advance item is followed by other instructions. However, if the line
advance item is the only item on an instruction line this does not break any syntax rules.

Appendix A, PEST Input Files

In Table 7 model-calculated values are written on subsequent lines. Hence, before
reading each observation, PEST is instructed to move to the beginning of a new line
using the "I1" line advance item

If a line advance item leads the first instruction line of a PEST instruction file, the
reference point for line advance is taken as a "dummy" line just above the first line of
the model output file. Thus if the first instruction line begins with "I1", processing of
the model output file begins on its first line. Similarly, if the first instruction begins
with "I8", processing of the model output file begins at its eighth line.

Secondary Marker

A secondary marker is a marker which does not occupy the first position of a PEST
instruction line. Hence, it does not direct PEST to move downwards on the model
output file (though it can be instrumental in this - see below). Rather it instructs PEST
to move its cursor along the current model output file line until it finds the secondary
marker string, and to place its cursor on the last character of that string ready for
subsequent processing of that line.

Table 9 shows an extract from a model output file and the instructions necessary to read
the Potassium concentration from this output file. A primary marker is used to place the
PEST cursor on the line above that on which the calculated concentrations are recorded
for the distance in which we are interested. Then PEST is directed to advance one line
and read the number following the "K:" string in order to find an observation named
"kc". The exclamation marks surrounding "kc" will be discussed shortly.

Table 9: Example instruction file with secondary markers

DISTANCE = 20.0: CATION CONCENTRATIONS:-
Na: 3.49868E-2 Mg: 5.987638E-2 K: 9.987362E-3

pif ~
~DISTANCE = 20.0~
11 ~K:~ lke!

A useful feature of the secondary marker is illustrated in Examples 3.12 and 3.13 of a
model output file extract and a corresponding instruction file extract, respectively. If a
particular secondary marker is preceded only by other markers (including, perhaps, one
or a number of secondary markers and certainly a primary marker), and the text string
corresponding to that secondary marker is not found on a model output file line on
which the previous markers' strings have been located, PEST will assume that it has not
yet found the correct model output line and resume its search for a line which holds the
text from all three markers. Thus the instruction "%TIME STEP 10% will cause PEST
to pause on its downward journey through the model output file at the first line
illustrated in Table 9. However, when it does not find the string "STRAIN" on the same
line it recommences its perusal of the model output file, looking for the string "TIME

PEST Instruction Files for Output 127

128

STEP 10" again. Eventually it finds a line containing both the primary and secondary
markers and, having done so, commences execution of the next instruction line.

Table 10: Instruction file with qualified secondary
markers

;I'IME STEP 10 (13 ITERATIONS REQUIRED) STRESS --->
X =1.05 STRESS = 4.35678E+03
X =1.10 STRESS = 4.39532E+03

;I'IME STEP 10 (BACK SUBSTITUTION) STRAIN --->
X =1.05 STRAIN = 2.56785E-03
X =1.10 STRAIN = 2.34564E-03

pif %

%TIME STEP 10% %STRAIN%
1 %STRAIN =% !str1!
1 %STRAIN =% !str2!

It is important to note that if any instruction items other than markers precede an
unmatched secondary marker, PEST will assume that the mismatch is an error
condition and abort execution with an appropriate error message.

Whitespace

The whitespace instruction is similar to the secondary marker in that it allows the user
to navigate through a model output file line prior to reading a non-fixed observation
(see below). It directs PEST to move its cursor forwards from its current position until

it encounters the next blank character. PEST then moves the cursor forward again until
it finds a nonblank character, finally placing the cursor on the blank character preceding
this nonblank character (ie. on the last blank character in a sequence of blank
characters) ready for the next instruction. The whitespace instruction is a simple "w",
separated from its neighbouring instructions by at least one blank space.

Consider the model output file line represented below
MODEL OUTPUTS: 2.89988 4.487892 -4.59098 8.394843

The following instruction line directs PEST to read the fourth number on the above
line:

%MODEL OUTPUTS: % w w w w !obs1!

The instruction line begins with a primary marker, allowing PEST to locate the above
line on the model output file. After this marker is processed the PEST cursor rests on
the ™" character of "OUTPUTS:", ie. on the last character of the marker string. In

Appendix A, PEST Input Files

response to the first whitespace instruction PEST finds the next whitespace and then
moves its cursor to the end of this whitespace, ie. just before the "2" of the first number
on the above model output file line. The second whitespace instruction moves the
cursor to the blank character preceding the first "4" of the second number on the above
line. Processing of the third whitespace instruction results in PEST moving its cursor to
the blank character just before the negative sign. After the fourth whitespace instruction
is implemented, the cursor rests on the blank character preceding the last number. The
latter can then be read as a non-fixed observation (see below).

Tab

The tab instruction places the PEST cursor at a user-specified character position (ie.
column number) on the model output file line which PEST is currently processing. The
instruction syntax is "tn" where n is the column number. The column number is
obtained by counting character positions (including blank characters) from the left side
of any line, starting at 1. Like the whitespace instruction, the tab instruction can be
useful in navigating through a model output file line prior to locating and reading a non-
fixed observation. For example, consider the following line from a model output file:

TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04, TIME(3): A = 1.54982E-04
The value of A at TIME(3) could be read using the instruction line:
14 160 %=% !a3!

Here it is assumed that PEST was previously processing the fourth line prior to the
above line in the model output file. The marker delimiter character is assumed to be
"%". Implementation of the "t60" instruction places the cursor on the ":" following the
"TIME(3)" string, for the colon is in the sixtieth character position of the above line.
PEST is then directed to find the next "=" character. From there it can read the last
number on the above line as a non-fixed observation (see below).

Fixed Observations

An observation reference can never be the first item in an instruction line. Either a
primary marker or line advance item must come first in order to place PEST's cursor on
the line on which one or more observations may lie. If there is more than one
observation on a particular line of the model output file, these observations must be
read from left to right, backward movement along any line being disallowed.

Observations can be identified in one of three ways. The first way is to tell PEST that a
particular observation can be found between, and including, columns nl and n2 on the
model output file line on which its cursor is currently resting. This is by far the most
efficient way to read an observation value because PEST does not need to do any
searching. It simply reads a number from the space identified. Observations read in this
way are referred to as "fixed observations".

Table 11 shows how the numbers listed in the third solution vector of Table 8 can be
read as fixed observations. The instruction item informing PEST how to read a fixed
observation consists of two parts. The first part consists of the observation name

PEST Instruction Files for Output 129

130

enclosed in square brackets, while the second part consists of the first and last columns
from which to read the observation. Note that no space must separate these two parts of
the observation instruction. PEST always construes a space in an instruction file as
marking the end of one instruction item and the beginning of another (unless the space
lies between marker delimiters).

Table 11: Alternative instruction set for output in Table 8

pif *

PERIOD NO. 3

SOLUTION VECTOR

11 [obs1]1:9 [0bs2]10:18 [0bs3]19:27 [0bs4]28:36 [0bs5]37:45
& [0bs6]46:54

Reading numbers as fixed observations is useful when the model writes its output in
tabular form using fixed-field-width specifiers. However, you must be very careful

when specifying the column numbers from which to read the number. The space
defined by these column numbers must be wide enough to accommodate the maximum
length that the number will occupy in the course of the many model runs that will be
required for PEST to optimise the model's parameter set. If it is not wide enough, PEST
may read only a truncated part of the number or omit a negative sign preceding the
number. However, the space must not be so wide that it includes part of another
number. In this case a run-time error will occur and PEST will terminate execution with
an appropriate error message.

Where a model writes its results in the form of an array of numbers, it is not an
uncommon occurrence for these numbers to abut each other. Consider, for example, the
following FORTRAN code fragment:

A=1236.567
B=8495.0
C=-900.0
WRITE(10,20) A,B,
20 FORMAT(3(F8.3))
The result will be
1236.5678495.000-900.000

In this case there is no choice but to read these numbers as fixed observations. (Both of
the alternative ways to read an observation require that the observation be surrounded
by either whitespace or a string that is invariant from model run to model run and can
thus be used as a marker.) Hence, to read the above three numbers as observations A, B
and C the following instruction line may be used:

Appendix A, PEST Input Files

11 [A]1:8 [B]9:16 [C]17:24

If an instruction line contains only fixed observations there is no need for it to contain
any whitespace or tabs. Nor will there be any need for a secondary marker, (unless the
secondary marker is being used in conjunction with a primary marker in determining
which model output file line the PEST cursor should settle on - see above). This is
because these items are normally used for navigating through a model output file line
prior to reading a non-fixed observation (see below. Such navigation is not required to
locate a fixed observation as its location on a model output file line is defined without
ambiguity by the column numbers included within the fixed observation instruction.

Semi-Fixed Observations

Table 8 demonstrates the use of semi-fixed observations. Semi-fixed observations are
similar to fixed observations in that two numbers are provided in the pertinent
instruction item, the purpose of these numbers being to locate the observation's position
by column number on the model output file. However, in contrast to fixed observations,
these numbers do not locate the observation exactly. When PEST encounters a semi-
fixed observation instruction it proceeds to the first of the two nominated column
numbers and then, if this column is not occupied by a non-blank character, it searches
the output file line from left to right beginning at this column number, until it reaches
either the second identified column or a non-blank character. If it reaches the second
column before finding a non-blank character, an error condition arises. However, if it
finds a non-blank character, it then locates the nearest whitespace on either side of the
character. In this way, it identifies one or a number of non-blank characters sandwiched
between whitespace ("whitespace" includes the beginning and/or the end of the model
output file line). It tries to read these characters as a number, this number being the
value of the observation named in the semi-fixed observation instruction. Obviously the
width of this number can be greater than the difference between the column numbers
cited in the semi-fixed observation instruction.

Like a fixed observation, the instruction to read a semi-fixed observation consists of
two parts, that is, the observation name followed by two column numbers, the latter
being separated by a colon. The column numbers must be in ascending order. However,
for semi-fixed observations, the observation name is enclosed in round brackets rather
than square brackets. Again, there must be no space separating the two parts of the
semi-fixed observation instruction.

Reading a number as a semi-fixed observation is useful if you are unsure how large the
representation of the number could stretch on a model output file as its magnitude
grows and/or diminishes in PEST-controlled model runs. It is also useful if you do not
know whether the number is left or right justified. However, you must be sure that at
least part of the number will always fall between (and including) the two nominated
columns and that, whenever the number is written and whatever its size, it will always
be surrounded either by whitespace or by the beginning or end of the model output file
line. If, when reading the model output file, PEST encounters only whitespace between
(and including) the two nominated column numbers, or if it encounters non-numeric

PEST Instruction Files for Output 131

132

characters or two number fragments separated by whitespace, an error condition will
occur and PEST will terminate execution with an appropriate error message.

As for fixed observations, it is hormally not necessary to have secondary markers,
whitespace and tabs on the same line as a semi-fixed observation, because the column
numbers provided with the semi-fixed observation instruction determine the location of
the observation on the line. As always, observations must be read from left to right on
any one instruction line. Hence, if more than one semi-fixed observation instruction is
provided on a single PEST instruction line, the column numbers pertaining to these
observations must increase from left to right.

For the case illustrated in Examples 3.6 and 3.7, all the fixed observations could have
been read as semi-fixed observations, with the difference between the column numbers
either remaining the same or being reduced to substantially smaller than that shown in
Example 3.7. However, it should be noted that it takes more effort for PEST to read a
semi-fixed observation than it does for it to read a fixed observation as PEST must
establish for itself the extent of the number that it must read.

After PEST has read a semi-fixed observation its cursor resides at the end of the
number which it has just read. Any further processing of the line must take place to the
right of that position.

Non-Fixed Observations

Table 10 demonstrate the use of non-fixed observations. A non-fixed observation
instruction does not include any column numbers because the number which PEST
must read is found using secondary markers and/or other navigational aids such as
whitespace and tabs which precede the non-fixed observation on the instruction line.

If you do not know exactly where, on a particular model output file line, a model will
write the number corresponding to a particular observation, but you do know the
structure of that line, then you can use this knowledge to navigate your way to the
number. In the PEST instruction file, a non-fixed observation is represented simply by
the name of the observation surrounded by exclamation marks. As usual, no spaces
should separate the exclamation marks from the observation name as PEST interprets
spaces in an instruction file as denoting the end of one instruction item and the
beginning of another.

When PEST encounters a non-fixed observation instruction it first searches forward
from its current cursor position until it finds a non-blank character. PEST assumes this
character is the beginning of the number representing the non-fixed observation. Then
PEST searches forward again until it finds either a blank character, the end of the line,
or the first character of a secondary marker which follows the non-fixed observation
instruction in the instruction file. PEST assumes that the number representing the non-
fixed observation finishes at the previous character position. In this way it identifies a
string of characters which it tries to read as a number. If it is unsuccessful in reading a
number because of the presence of non-numeric characters or some other problem,
PEST terminates execution with a run-time error message. A run time error message

Appendix A, PEST Input Files

will also occur if PEST encounters the end of a line while looking for the beginning of
a non-fixed observation.

Consider the output file fragment and instruction file shown in Table 12. The species
populations at different times cannot be read as either fixed or semi-fixed observations
because the numbers representing these populations cannot be guaranteed to fall within
a certain range of column numbers on the model output file because "adjusted" may be
required in the calculation of any such population. Hence, we must find our way to the
number using a method such as that illustrated in Tabl e12.

Table 12: Output file that cannot read as fixed or semi-
fixed

SPECIES POPULATION AFTER 1 YEAR = 1.23498E5
SPECIES POPULATION AFTER 2 YEARS = 1.58374E5
SPECIES POPULATION AFTER 3 YEARS (ADJUSTED) = 1.78434E5
SPECIES POPULATION AFTER 4 YEARS = 2.34563E5

pif *

SPECIES *=* Isp1!
[1 *=*Isp2!
[1 *=*1sp3!
[1 *=*Isp4!

A primary marker is used to move the PEST cursor to the first of the lines shown in
Table 12. Then, noting that the number representing the species population always
follows a "=" character, the "=" character is used as a secondary marker. After it
processes a secondary marker, the PEST cursor always resides on the last character of
that marker, in this case on the "=" character itself. Hence, after reading the "="
character, PEST is able to process the !spl! instruction by isolating the string
"1.23498E5" in the manner described above.

After it reads the model-calculated value for observation "spl1"”, PEST moves to the next
instruction line. In accordance with the "|1" instruction, PEST reads into its memory
the next line of the model output file. It then searches for a "=" character and reads the
number following this character as observation "sp2". This procedure is then repeated
for observations "sp3" and "sp4".

PEST Instruction Files for Output 133

134

Successful identification of a non-fixed observation depends on the instructions
preceding it. The secondary marker, tab and whitespace instructions will be most useful
in this regard, though fixed and semi-fixed observations may also precede a non-fixed
observation. Remember that in all these cases PEST places its cursor ar the |
character of the string or number it identifies on the model output file corresponding to
an instruction item, before proceeding to the next instruction.

Consider the model output file line shown below as a further illustration of the use of
non-fixed observations.

4.33 -20.3 23.392093 3.394382

If we are interested in the fourth of these numbers but we are unsure as to whether the
numbers preceding it might not be written with greater precision in some model runs
(hence pushing the number in which we are interested to the right), then we have no
alternative but to read the number as a non-fixed observation. However, if the previous
numbers vary from model run to model run, we can use neither a secondary marker nor
a tab. Fortunately, whitespace comes to the rescue, with the following instruction line
taking PEST to the fourth number:

[10 w w w lobs1!

Here it is assumed that, prior to reading this instruction, the PEST cursor was located on
the 10th preceding line of the model output file. As long as we can be sure that no
whitespace will ever precede the first number, there will always be three incidences of
whitespace preceding the number in which we are interested. However, if it happens
that whitespace may precede the first number on some occasions, while on other
occasions it may not, then we can read the first number as a dummy observation as
shown below:

110 !dum! w w w lobs1!

As was explained previously, the number on the model output file corresponding to an
observation named "dum" is not actually used. Nor can the name "dum" appear in the
"observation data" section of the PEST control file. The use of this name is reserved for
instances like the present case where a number must be read in order to facilitate
navigation along a particular line of the model output file. The number is read
according to the non-fixed observation protocol, for only observations of this type can
be dummy observations.

An alternative to the use of whitespace in locating the observation "obs1" in the above
example could involve using the dummy observation more than once. Hence, the
instruction line below would also enable the number representing "obs1" to be located
and read:

120 !dum! !dum! !dum! !obs1!

However, had the numbers in the above example been separated by commas instead of
whitespace, the commas should have been used as secondary markers in order to find
"obs1".

Appendix A, PEST Input Files

A number not surrounded by whitespace can still be read as a non-fixed observation
with the proper choice of secondary markers. Consider the model output file line shown
below:

SOIL WATER CONTENT (NO CORRECTION)=21.345634%

It may not be possible to read the soil water content as a fixed observation because the
"(NO CORRECTION)" string may or may not be present after any particular model

run. Reading it as a non-fixed observation appears troublesome as the number is neither
preceded nor followed by whitespace. However, a suitable instruction line is

[5 *=* Isws! *%%*

Notice how a secondary marker (i.e. *%*) is referenced even though it occurs after the
observation we wish to read. If this marker were not present, a run-time error would
occur when PEST tries to read the soil water content because it would define the
observation string to include the "%" character and, naturally, would be unable to read a
number from a string which includes non-numeric characters. However, by including
the "%" character as a secondary marker after the number representing the observation
'sws', PEST will separate the character from the string before trying to read the number.
But note that if a post-observation secondary marker of this type begins with a
numerical character, PEST cannot be guaranteed not to include this character with the
observation number if there is no whitespace separating it from the observation.

The fact that there is no whitespace between the "=" character and the number we wish
to read causes PEST no problems either. After processing of the "=" character as a
secondary marker, the PEST processing cursor falls on the "=" character itself. The
search for the first non-blank character initiated by the !sws! instruction terminates on
the very next character after the "=", viz. the "2" character. PEST then accepts this
character as the left boundary of the string from which it must read the soil moisture
content and searches forwards for the right boundary of the string in the usual manner.

After PEST has read a non-fixed observation, it places its cursor on the last character of
the observation number. It can then undertake further processing of the model output
file line to read further non-fixed, fixed or semi-fixed observations, or process
navigational instructions as directed.

Continuation

You can break an instruction line between any two instructions by using the
continuation character, "&", to inform PEST that a certain instruction line is actually a
continuation of the previous line. Thus the instruction file fragment

11 %RESULTS% %TIME (4)% %=% !obs1! lobs2! lobs3!
is equivalent to

11

& %RESULTS%

PEST Instruction Files for Output 135

& %TIME (4)%
& %=%
& lobsl!
& lobs2!
& 'obs3!

For both these fragments, the marker delimiter is assumed to be "%". Note that the
continuation character must be separated from the instruction which follows it by at
least one space.

Creating and Checking an Instruction File

The Instruction files can be created in using any text editor. However, caution must be
exercised in building an instruction set to read a model output file, especially if
navigational instructions such as markers, whitespace, tabs and dummy observations
are used. PEST will always follow your instructions to the letter, but it may not read the
number you intend if you get an instruction wrong. If PEST tries to read an observation
but does not find a number where it expects to find one, a run-time error will occur.
PEST will inform you of where it encountered the error and of the instruction it was
implementing when the error occurred. This should allow you to find the problem.
However, if PEST actually reads the wrong number from the model output file, this
may only become apparent if an unusually high objective function results, or if PEST is
unable to lower the objective function on successive optimisation iterations.

In the WinPEST environment, you can check your instruction file using the built in
checking routines.

The PEST Control File

136

The PEST control file contains all of the parameter and control values for the PEST run
and must have the extension .PST. Many of the data items in the PEST control file are
used to "tune" PEST's operation to the current project. Such items include parameter
change limits, parameter transformation types, termination criteria etc.

The PEST control file is automaticaly built by Visual MODFLOW, but it can be easily
edited using a text editor, if necessary. However, every time your project is translated,
the .PST file will be re-created.

The PEST control file consists of integer, real and character variables. Its construction
details are shown in Tabl €13, where variables are referenced by name. Chapter 4
contains detailed descriptions of the parameters and how they are entered in Visual
MODFLOW. In Table 14 is an example PEST Control File, which was used by PEST
to create the PEST Run Record found in Appendix B.

Appendix A, PEST Input Files

A PEST control file must begin with the letters "pcf" fREST controlfile". Scattered
through the file are a number of section headers. These headers always follow the same
format, i.e. an asterisk followed by a space followed by text. When preparing a PEST
control file, these headers must be written exactly as shown.

Table 13: PEST control file structure.

* control data

RSTFLE

NPAR NOBS NPARGP NPRIOR NOBSGP

NTPLFLE NINSFLEPRECIS DPOINT

RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM

RELPARMAX FACPARMAX FACORIG

PHIREDSWH

NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG

* parameter groups

PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD

(one such line for each of the NPARGP parameter groups)

* parameter data

PARNME PARTRANS PARCHGLIM PARVAL1PARLBND PARUBND PARGP SCALE OFFSET
(one such line for each of the NPAR parameters)

PARNME PARTIED (one such line for each tied parameter)

* observation groups

OBGNME (one such line for each observation group)

* observation data

OBSNME OBSVAL WEIGHT OBGNME

(one such line for each of the NOBS observations)

* model command line

the command which PEST must use to run the model

* model input/output

TEMPFLE INFLE (one such line for each model input file containing parameters
INSFLE OUTFLE (one such line for each model output file containing observations)
* prior information

PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT
(one such line for each of the NPRIOR articles of prior information)

However, if there is no prior information, the "* prior information" header can be
omitted.

On each line of the PEST control file, variables must be separated from each other by at
least one space. Real numbers can be supplied with the minimum precision necessary to
represent their value. The decimal point does not need to be included if it is redundant.
If exponentiation is required, this can be done with either the "d" or "e" symbol. Note,
however, that all real numbers are stored internally by PEST as double precision

The PEST Control File 137

numbers. Descriptions for the parameters in bold in Table13 c an be found in Chapter 4.
The following is a brief description of the parameters not found in Chapter 4.

NPAR - total number of parameters

NOBS - total number of observations

NPARGP - number of parameter groups
NPRIOR - number of articles of prior information

NTPLFLE - number of model input files that contain parameters. There must be one
template file for each model input file.

NINSFLE - number of instruction files. There must be one instruction file for each
output file containing model-generated observations.

DPOINT - character variable, “point” or “nopoint” which tells PEST whether to
include the decimal point with whole numbers.

PARTIED - the name of the parent parameter for tied parameters
OBGNME - observation group name

OBSNME - observation nam

OBSVAL - observation value

WEIGH - observation wieght

TEMPFLE - template file name for model input

INFLE - model input file to which the template file is matched
INSFLE - instruction file for model output

OUTFLE - model output file to which the instruction file is matched
PILBL - prior information label

PIFAC - prior information factor

PIVAL - prior information value

WEIGH - weight associated with article of prior information

138 Appendix A, PEST Input Files

Table 14: Example PEST control file.

pcf

* control data

restart

519223

1 1 single point

5.02.00.40.03 10

3.03.01.0e-3

A

30.0133.013

111

* parameter groups

ro relative .001 .00001 switch 2.0 parabolic
h relative .001 .00001 switch 2.0 parabolic
* parameter data

rol fixed factor 0.5 .1 10 none 1.0 0.0
ro2 log factor 5.0 .1 10 ro 1.00.0
ro3 tied factor 0.5 .1 10 ro 1.00.0
hl none factor 2.0 .05100 h 1.00.0
h2 log factor 5.0 .05100 h 1.00.0
ro3 ro2

* observation groups

group_1

group_2

group_3

* observation data

arl 1.21038 1.0 group_1

ar2 1.51208 1.0 group_1

ar3 2.07204 1.0 group_1

ar4 2.94056 1.0 group_1

ar5 4.15787 1.0 group_1

ar6 5.77620 1.0 group_1

ar7 7.78940 1.0 group_2

ar8 9.99743 1.0 group_2

ar9 11.8307 1.0 group_2

arl0 12.3194 1.0 group_2

arll 10.6003 1.0 group_2

arl2 7.00419 1.0 group_2

arl3 3.44391 1.0 group_2

arl4 1.58279 1.0 group_2

arl5 1.10380 1.0 group_3

arlé 1.03086 1.0 group_3

arl7 1.01318 1.0 group_3

arl8 1.00593 1.0 group_3

arl9 1.00272 1.0 group_3

* model command line

ves

* model input/output

ves.tpl ves.inp

ves.ins ves.out

* prior information

pil 1.0*h1=2.03.0

pi2 1.0 * log(ro2) + 1.0 * log(h2) = 2.6026 2.0

The PEST Control File 139

140 Appendix A, PEST Input Files

Appendix B, A PEST Run Record

In this Appendix, an example PEST Run Record is illustrated and described in detail.
The Run Record is generated from the PEST Control file in Appendix A.

Note that this example does not demonstrate a very good fit between measurements and
model outcomes calculated on the basis of the optimized parameter set. This is because
it was fabricated to demonstrate a number of aspects of the parameter estimation
process that are discussed in the following subsections.

The Input Data Set

PEST commences execution by reading all its input data. As soon as this is read, it
echoes most of this data to the run record file. Hence the first section of this file is
simply a restatement of most of the information contained in the PEST control file (see
Appendix A). Note that the letters "na" stand for "not applicable". "na" is used a
number of times to indicate that a particular PEST input variable has no effect on the
optimization process. Thus, for example, the type of change limit for parameter "rol" is
not applicable because this parameter is fixed.

It is possible that the numbers cited for a parameter's initial value and for its upper and
lower bounds will be altered slightly from that supplied in the PEST control file. This

will only occur if the space occupied by this parameter in a model input file is
insufficient to represent any of these numbers to the same degree of precision with
which they are cited in the PEST control file. PEST adjusts its internal representations
of parameter values such that they are expressed with the same degree of precision as
that with which they are written to the model input files. For consistency, PEST's
internal representation of parameter bounds is adjusted in the same way.

The Parameter Estimation Record

After echoing its input data, PEST calculates the objective function arising out of the
initial parameter set; it records this initial objective function value on the run record file
together with the initial parameter values themselves. Then it starts the estimation
process in earnest, beginning with the first optimization iteration. After calculating the

141

142

Jacobian matrix PEST attempts objective function improvement using one or more
Marquardt lambda’s. As it does this, it records the corresponding objective function
value, both in absolute terms and as a fraction of the objective function value at the
commencement of the optimization iteration.

During the first iteration in this example, PEST tests two Marquardt lambda’s; because
the second lambda results in an objective function fall of less than 0.03 (i.e.
PHIREDLAM) relative to the first one tested, PEST does not test any further lambda’s.
Instead it progresses to the next optimization iteration after listing both the updated
parameter values as well as those from which the updated parameter set was calculated,
viz. those at the commencement of the optimization iteration. Note that the only
occasion on which the "previous parameter values" recorded at the end of an
optimization iteration do not correspond with those determined during the previous
optimization iteration is when the switch to three-point derivatives calculation has just
been made and the previous iteration failed to lower the objective function. On such an
occasion, PEST adopts as its starting parameters for the new optimization iteration the
parameter set resulting in the lowest objective function value achieved so far.

At the end of each optimization iteration PEST records either two or three (depending
on the input settings) very important pieces of information. In this example it is two.
These are the maximum factor parameter change and the maximum relative parameter
change. As was discussed in Chapter 2, each adjustable parameter must be designated
as either factor-limited or relative-limited. In this example, all adjustable parameters are
factor-limited with a factor limit of 3.0. A suitable setting for the factor and relative
change limits (i.e. FACPARMAX and RELPARMAX) may be crucial in achieving
optimization stability. Note that, along with the value of the maximum factor or
parameter change encountered during the optimization iteration, PEST also records the
name of the parameter that underwent this change. This information may be crucial in
deciding which, if any, parameters should be held temporarily fixed should trouble be
encountered in the optimization process.

The recording of the maximum factor and relative parameter changes at the end of each
iteration allows you to judge whether you have set these vital variables wisely. In the
present case only the maximum factor change is needed because no parameters are
relative-limited; the maximum relative parameter change is recorded, however, because
one of the termination criteria involves the use of relative parameter changes. Had some
of the parameters in this example been relative-limited, this part of the run record
would have been slightly different. In this case, the maximum factor parameter change
would have been provided only for factor-limited parameters and the maximum relative
parameter change would have been provided for relative-limited parameters. However
a further line documenting the maximum relative parameter change for all parameters
would have been added because of its pertinence to the aforementioned termination
criterion.

This PEST run record shows that in iteration 2, one of the parameters, "h2", incurs the
maximum allowed factor change, thus limiting the magnitude of the parameter upgrade
vector. In optimization iterations 3 and 4, parameter "h1" limits the magnitude of the

Appendix B, A PEST Run Record

parameter upgrade vector through incurring the maximum allowed parameter factor
change. It is possible that convergence for this case would have been achieved much
faster if FACPARMAX on the PEST control file were set higher than 3.0.

At the beginning of the second optimization iteration, parameter "ro2" is at its upper
bound. After calculating the Jacobian matrix and formulating and solving equation
(2.23), PEST notices that parameter "ro2" does not wish to move back into its domain;
so it temporarily freezes this parameter at its upper bound and calculates an upgrade
vector solely on the basis of the remaining adjustable parameters. The two-step process
by which PEST judges whether to freeze a parameter which is at its upper or lower limit
is explained in Chapter 2. Note that at the beginning of optimization iteration 3,
parameter "ro2" is released again in case, with the upgrading of the other adjustable
parameters during the previous optimization iteration, it wants to move back into the
internal part of its domain.

In the third optimization iteration only a single Marquardt lambda is tested, the
objective function having been lowered to below 0.4 times its starting value for that
iteration through the use of this single lambda; 0.4 is the user-supplied value for the
PEST control variable PHIRATSUF.

During the fifth optimization iteration three lambda’s are tested. The second results in a
raising of the objective function over the first (though this is not apparent in the run
record because "phi", the objective function, is not written with sufficient precision to
show it), so PEST tests a lambda which is higher than the first. For the case illustrated
in Example 5.4, when lambda is raised or lowered it is adjusted using a factor of 2.0,
this being the user-supplied value for the PEST control variable RLAMFAC. For
optimization iteration 6, the first lambda tested is the same as the most successful one
for the previous iteration, viz. 1.9531E-02. However, for each of the previous iterations,
where the objective function was improved through lowering lambda during the
iteration prior to that, the starting lambda is lower by a factor of 2.0 (i.e. RLAMFAC)
than the most successful lambda of the previous iteration.

At the end of optimization iteration 6 PEST calculates that the relative reduction in the
objective function from that achieved in iteration 5 is less that 0.1; i.e. it is less than the
user-supplied value for the PEST control variable PHIREDSWH. Hence, as the input
variable FORCEN for at least one parameter group (both groups in the present
example) is set to "switch”, PEST records the fact that it will be using central
differences to calculate derivatives with respect to the members of those groups from
now on. Note that in this example, the use of central derivatives does not result in a
significant further lowering of the objective function, nor in a dramatic change in
parameter values, the objective function having been reduced nearly as far as possible
through the use of forward derivatives only. However in other cases, especially those
involving a greater number of adjustable parameters than in the above example, the
introduction of central derivatives can often get a stalled optimization process moving
again.

143

The optimization process of this example is terminated at the end of optimization
iteration 7, after the lowest 3 (i.e. NPHISTP) objective function values are within a
relative distance of 0.01 (i.e. PHIREDSTP) of each other.

Note that where PEST lists the current objective function value at the start of the
optimization process and at the start of each optimization iteration, it also lists the
contribution made to the objective function by each the observation groups and by all
prior information. This is valuable information, for if a user notices that one particular
group, or the prior information equations, are either dominating the objective function
or are not “seen” because something else was dominating, the observation or prior
information weights could be adjusted and the optimization process started again.

Optimized Parameter Values and Confidence Intervals

144

After completing the parameter estimation process, PEST prints the outcomes of this
process to the third section of the run record file. First it lists the optimized parameter
values. It does this in three stages; the adjustable parameters, then the tied parameters
and, finally, any fixed parameters. PEST calculates 95% confidence limits for the
adjustable parameters. However, you should note carefully the following points about
confidence limits.

» Confidence limits can only be obtained if the covariance matrix has been
calculated. If, for any reason, it has not been calculated (e.g. beb@ussf
equation (2.17) could not be inverted) confidence limits will not be provided.

» As noted in the PEST run record itself, parameter confidence limits are
calculated on the basis of the same linearity assumption which was used to
derive the equations for parameter improvement implemented in each PEST
optimization iteration. If the confidence limits are large they will, in all
probability, extend further into parameter space than the linearity assumption
itself. This will apply especially to logarithmically-transformed parameters for
which the confidence intervals cited in the PEST run record are actually the
confidence intervals of the logarithms of the parameters, as evaluated by PEST
from the covariance matrix. If confidence intervals are exaggerated in the
logarithmic domain due to a breakdown in the linearity assumption, they will
be much more exaggerated in the domain of non-logarithmically-transformed
numbers. This is readily apparent in this example.

* No account is taken of parameter upper and lower bounds in the calculation of
95% confidence intervals. Thus an upper or lower confidence limit can lie well
outside a parameter's allowed domain. In this example, the upper confidence
limits for both "ro2" and "h2" lie well above the allowed bounds for these
parameters, as provided by the parameter input variable PARUBND for each
of these parameters; similarly the lower confidence limit for parameter "h1" lies
below its lower bound (PARLBND) of 0.05. PEST does not truncate the
confidence intervals at the parameter domain boundaries so as not to provide
an unduly optimistic impression of parameter certainty.

* The parameter confidence intervals are highly dependent on the assumptions

Appendix B, A PEST Run Record

underpinning the model. If the model has too few parameters to accurately
simulate a particular system, the optimized objective function will be large and
then so too, through equations (2.5) and (2.17), will be the parameter
covariances and, with them, the parameter confidence intervals. However, if a
model has too many parameters, the objective function may well be small, but
some parameters may be highly correlated due to an inability on the part of a
possibly limited measurement set to uniquely determine each parameter of such
a complex model; this will give rise to large covariance values (and hence large
confidence intervals) for the correlated parameters.

Notwithstanding the above limitations, the presentation of 95% confidence limits
provides a useful means of comparing the certainty with which different parameter
values are estimated by PEST. In this example, it is obvious that parameters "ro2" and
"h2" (particularly "h2") are estimated with a large margin of uncertainty. This is
because these two parameters are well correlated, which means that they can be varied
in harmony and, provided one is varied in a manner that properly complements the
variation of the other, there will be little effect on the objective function. Hence while
the objective function may be individually sensitive to each one of these parameters, it
appears to be relatively insensitive to both of them if they are varied in concert. This
illustrates the great superiority of using covariance and eigenvector analysis over the
often-used "sensitivity analysis" method of determining parameter reliability.

Confidence limits are not provided for tied parameters. The parent parameters of all
tied parameters are estimated with the tied parameters "riding on their back"; hence the
confidence intervals for the respective parent parameters reflect their linkages to the
tied parameters.

Note that at the end of a PEST optimization run a listing of the optimized parameter
values can also be found in the PEST parameter valupriectnamePAR.

Observations, Prior Information and Residuals

After it has written the optimized parameter set to the run record file, PEST records the
measured observation values, together with their model-generated counterparts
calculated on the basis of the optimized parameter set. The differences between the two
(i.e. the residuals) are also listed, together with the user-supplied set of observation
weights. Tabulated residuals and weighted residuals can also be found in file
projectnameRES.

Following the observations, the user-supplied and model-optimized prior information
values are listed; a prior information value is the number on the right side of the prior
information equation. As for the observations, residuals and user-supplied weights are
also tabulated.

145

The Covariance Matrix

If the PEST input variable ICOV is set to 1, the parameter covariance matrix is written
to the run record file. The covariance matrix is always a square symmetric matrix with
as many rows (and columns) as there are adjustable parameters; hence there is a row
(and column) for every parameter which is neither fixed nor tied. The order in which
the rows (and columns) are arranged is the same as the order of occurrence of the
adjustable parameters in the previous listing of the optimized parameter values. (This is
the same as the order of occurrence of adjustable parameters in both the PEST control
file and in the first section of the run record file.) Hence in this example, the row (and
column) order is "ro2", "h1", "h2".

Being a by-product of the parameter estimation process (see Chapter 2), the elements of
the covariance matrix pertain to the parameters that PEST actually adjusts; this means
that where a parameter is log-transformed, the elements of the covariance matrix
pertaining to that parameter actually pertain to the logarithm (to base 10) of that
parameter. Note also that the variances and covariances occupying the elements of the
covariance matrix are valid only insofar as the linearity assumption, upon which their
calculation is based, is valid.

The diagonal elements of the covariance matrix are the variances of the adjustable
parameters; for this example the variances pertain, from top left to bottom right, to the
parameters log("ro2"), "h1" and log("h2") in that order. The variance of a parameter is
the square of its standard deviation. With log("h2") having a variance of 0.866 (and
hence a standard deviation of 0.931), and bearing in mind that the number "1" in the log
domain represents a factor of 10 in untransformed parameter space, it is not hard to see
why the 95% confidence interval cited for parameter "h2" is so wide.

The off-diagonal elements of the covariance matrix represent the covariances between
parameter pairs; thus, for example, the element in the second row and third column of
the above covariance matrix represents the covariance of "h1" with log("h2").

If there are more than eight adjustable parameters, the rows of the covariance matrix are
written in "wrap" form; i.e. after eight numbers have been written, PEST will start a

new line to write the ninth number. Similarly if there are more than sixteen adjustable
parameters, the seventeenth number will begin a new line. Note, however, that every
new row of the covariance matrix begins on a new line.

The Correlation Coefficient Matrix

146

The correlation coefficient matrix is calculated from the covariance matrix through
equation (2.7). The correlation coefficient matrix has the same number of rows and
columns as the covariance matrix; furthermore the manner in which these rows and
columns are related to adjustable parameters (or their logs) is identical to that for the
covariance matrix. Like the covariance matrix, the correlation coefficient matrix is
symmetric.

Appendix B, A PEST Run Record

The diagonal elements of the correlation coefficient matrix are always unity; the off-
diagonal elements are always between 1 and -1. The closer that an off-diagonal element
is to 1 or -1, the more highly correlated are the parameters corresponding to the row and
column numbers of that element. Thus, for the correlation coefficient matrix of this
example, the logs of parameters "ro2" and "h2" are highly correlated, as is indicated by
the value of elements (1,3) and (3,1) of the correlation coefficient matrix, viz. -0.8756.
This explains why, individually, these parameters are determined with a high degree of
uncertainty in the parameter estimation process, as evinced by their wide confidence
intervals.

The Normalized Eigenvector Matrix and the Eigenvalues

PEST calculates the normalized eigenvectors of the covariance matrix and their
respective eigenvalues. The eigenvector matrix is composed of as many columns as
there are adjustable parameters, each column containing a normalized eigenvector.
Because the covariance matrix is positive definite, these eigenvectors are real and
orthogonal; they represent the directions of the axes of the probability "ellipsoid" in the
n-dimensional space occupied by thadjustable parameters.

In the eigenvector matrix the eigenvectors are arranged from left to right in increasing
order of their respective eigenvalues; the eigenvalues are listed beneath the eigenvector
matrix. The square root of each eigenvalue is the length of the corresponding semiaxis
of the probability ellipsoid im-dimensional adjustable parameter space.

If each eigenvector is dominated by a single element, then each adjustable parameter is
well resolved by the parameter estimation process. However, where the dominance of
eigenvectors is shared by a number of elements, parameters may not be well resolved,;
the higher the eigenvalues of those eigenvectors for which dominance is shared by
more than one element, the less susceptible are the respective individual parameters to
estimation.

In this example, the eigenvector of highest eigenvalue is dominated by two parameters,
these being log("ro2") and log("h2"). Thus, the parameter estimation process
individually, poorly discerns these parameters, as the width of their confidence
intervals demonstrates. However, the second highest eigenvector is dominated by the
single parameter "h1" which, in comparison with the other parameters, is well resolved.

147

The PEST Run Record for the Control file in Appendix

148

PEST RUN RECORD: CASE manual

Case dimensions:-
Number of parameters :
Number of adjustable parameters :
Number of parameter groups
Number of observations
Number of prior estimates

Model command line:-
ves

Model interface files:-
Templates:
ves.tpl
for model input files:
ves.inp

(Parameter values written using single precision protocol.)

(Decimal point always included.)
Instruction files:
ves.ins
for reading model output files:
ves.out

Derivatives calculation:-

Param Increment Increment Increment Forward or Multiplier Method

group type

low bound central

(central) (central)

ro relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
h relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic

Parameter definitions:-

Name Trans- Change Initial
formation limit value
rol fixed na 0.500000
ro2 log factor 5.00000
ro3 tiedto ro2 na 0.500000
hl none factor 2.00000
h2 log factor 5.00000
Name Scale Offset
rol 1.00000 0.000000

Lower Upper Group
bound bound
na na none
0.100000 10.0000 ro
na na ro

5.000000E-02 100.000 h
5.000000E-02 100.000 h

Appendix B, A PEST Run Record

ro2 1.00000 0.000000
ro3 1.00000 0.000000
hl 1.00000 0.000000
h2 1.00000 0.000000

Prior information:-

Prior info Factor Parameter Prior Weight
name information
pil 1.00000 * hl = 2.00000 3.000
pi2 1.00000 * log[ro2] +
1.00000 * loglh2] = 2.60260 2.000
Observations:-
Name Observation Weight Group
arl 1.21038 1.000 group_1
ar2 1.51208 1.000 group_1
ar3 2.07204 1.000 group_1
ar4 2.94056 1.000 group_1
ars 4.15787 1.000 group_1
aré 5.77620 1.000 group_1
ar? 7.78940 1.000 group_ 2
ar8 9.99743 1.000 group_ 2
ar9 11.8307 1.000 group_2
arl0 12.3194 1.000 group_2
arll 10.6003 1.000 group_2
arl2 7.00419 1.000 group_2
arl3 3.44391 1.000 group 2
arl4 1.58279 1.000 group 2
arl5 1.10380 1.000 group_3
arlé 1.03086 1.000 group_3
arl7 1.01318 1.000 group_3
arl8 1.00593 1.000 group_3
arl9 1.00272 1.000 group_3
Inversion control settings:-
Initial lambda : 5.0000
Lambda adjustment factor : 2.0000
Sufficient new/old phi ratio per iteration : 0.40000
Limiting relative phi reduction between lambdas : 3.00000E-02
Maximum trial lambdas per iteration . 10

Maximum factor parameter change (factor-limited changes) : 3.0000
Maximum relative parameter change (relative-limited changes) : na
Fraction of initial parameter values used in computing change

limit for near-zero parameters: 1.00000E-03

149

150

Relative phi reduction below which to begin use of central derivatives: 0.10000

Relative phi reduction indicating convergence : 0.10000E-01
Number of phi values required within this range : 3
Maximum number of consecutive failures to lower phi ;3

Maximum relative parameter change indicating convergence : 0.10000E-01
Number of consecutive iterations with minimal param change : 3
Maximum number of optimisation iterations : 30

OPTIMISATION RECORD
INITIAL CONDITIONS:
Sum of squared weighted residuals (ie phi) = 523.8
Contribution to phi from observation group “group_1" =127.3
Contribution to phi from observation group “group_2" = 117.0
Contribution to phi from observation group “group_3" = 185.2
Contribution to phi from prior information =94.28

Current parameter values
rol 0.500000
ro2 5.00000
ro3 0.500000
hl 2.00000
h2 5.00000

OPTIMISATION ITERATION NO. 1
Model calls so far 1
Starting phi for this iteration: 523.8
Contribution to phi from observation group “group_1": 127.3
Contribution to phi from observation group “group_2": 117.0
Contribution to phi from observation group “group_3": 185.2

Contribution to phi from prior information :94.28
Lambda = 5.000 ----- > phi= 361.4 (0.69 of starting phi)
Lambda= 2.500 ----- > phi= 357.3 (0.68 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 357.3

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 5.00000
ro3 1.00000 ro3 0.500000
h1l 1.94781 h1l 2.00000
h2 10.4413 h2 5.00000

Maximum factor parameter change: 2.088 [h2]
Maximum relative parameter change: 1.088 [h2]

Appendix B, A PEST Run Record

OPTIMISATION ITERATION NO. 2
Model calls so far : 6
Starting phi for this iteration: 357.3
Contribution to phi from observation group “group_1": 77.92
Contribution to phi from observation group “group_2": 103.8
Contribution to phi from observation group “group_3": 121.3
Contribution to phi from prior information : 54.28

Lambda = 1.250 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi= 252.0 (0.71 of starting phi)

Lambda = 0.6250 ----- > phi= 243.6 (0.68 of starting phi)
Lambda = 0.3125 ----- > phi= 2359 (0.66 of starting phi)
Lambda = 0.1563 ----- > phi= 230.1 (0.64 of starting phi)

No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 230.1

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
h1l 1.41629 hl 1.94781
h2 31.3239 h2 10.4413

Maximum factor parameter change: 3.000 [h2]
Maximum relative parameter change: 2.000 [h2]

OPTIMISATION ITERATION NO. : 3
Model calls so far : 13
Starting phi for this iteration: 230.1
Contribution to phi from observation group “group_1": 29.54
Contribution to phi from observation group “group_2": 84.81
Contribution to phi from observation group “group_3": 91.57
Contribution to phi from prior information : 24.17

All frozen parameters freed
Lambda = 7.8125E-02 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi= 89.49 (0.39 of starting phi)
No more lambdas: phi is now less than 0.4000 of starting phi
Lowest phi this iteration: 89.49

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000

151

ro3 1.00000 ro3 1.00000

hl 0.472096 hl 1.41629

h2 34.3039 h2 31.3239
Maximum factor parameter change: 3.000 [h1]
Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. 4
Model calls so far » 17
Starting phi for this iteration: 89.49
Contribution to phi from observation group “group_1": 9.345
Contribution to phi from observation group “group_2": 34.88
Contribution to phi from observation group “group_3": 21.57
Contribution to phi from prior information :23.69

All frozen parameters freed
Lambda = 3.9063E-02 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi= 79.20 (0.89 of starting phi)
Lambda = 1.9531E-02 ----- > phi= 79.19 (0.88 of starting phi)
No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 79.19

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hl 0.157365 hl 0.472096
h2 44.2189 h2 34.3039

Maximum factor parameter change: 3.000 [h1]
Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. 5
Model calls so far » 22
Starting phi for this iteration: 79.19
Contribution to phi from observation group “group_1": 6.920
Contribution to phi from observation group “group_2": 22.45
Contribution to phi from observation group “group_3": 14.88
Contribution to phi from prior information :34.94

All frozen parameters freed

Lambda = 9.7656E-03 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi= 64.09 (0.81 of starting phi)

Lambda = 4.8828E-03 ----- > phi= 64.09 (0.81 of starting phi)

152 Appendix B, A PEST Run Record

Lambda = 1.9531E-02 ----- > phi= 64.09 (0.81 of starting phi)
No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 64.09

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hl 0.238277 hl 0.157365
h2 42.4176 h2 44.2189

Maximum factor parameter change: 1.514 [h1]
Maximum relative parameter change: 0.5142 [h1]

OPTIMISATION ITERATION NO. 6
Model calls so far : 28
Starting phi for this iteration: 64.09
Contribution to phi from observation group “group_1": 6.740
Contribution to phi from observation group “group_2": 18.98
Contribution to phi from observation group “group_3": 10.53
Contribution to phi from prior information :27.84

All frozen parameters freed
Lambda = 1.9531E-02 ----- >
parameter "ro2" frozen: gradient and update vectors out of bounds
phi= 63.61 (0.99 of starting phi)
Lambda = 9.7656E-03 ----- > phi= 63.61 (0.99 of starting phi)
No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 63.61
Relative phi reduction between optimisation iterations less than 0.1000
Switch to central derivatives calculation

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hl 0.265320 h1 0.238277
h2 42.2249 h2 42.4176

Maximum factor parameter change: 1.113 [h1]
Maximum relative parameter change: 0.1135]h1]

OPTIMISATION ITERATION NO. S 7
Model calls so far : 33
Starting phi for this iteration: 63.61
Contribution to phi from observation group “group_1": 3.679

153

Contribution to phi from observation group “group_2": 32.58
Contribution to phi from observation group “group_3": 0.111
Contribution to phi from prior information 1 27.24

All frozen parameters freed
Lambda = 4.8828E-03 ----- >

parameter "ro2" frozen: gradient and update vectors out of bounds

phi= 63.59 (1.00 of starting phi)
Lambda = 2.4414E-03 ----- > phi= 63.59 (1.00 of starting phi)
Lambda = 9.7656E-03 ----- > phi= 63.59 (1.00 of starting phi)
No more lambdas: relative phi reduction between lambdas less than 0.0300
Lowest phi this iteration: 63.59

Current parameter values Previous parameter values
rol 0.500000 rol 0.500000
ro2 10.0000 ro2 10.0000
ro3 1.00000 ro3 1.00000
hl 0.261177 hl 0.265320
h2 42.2006 h2 42.2249

Maximum factor parameter change: 1.016 [h1]
Maximum relative parameter change: 1.5615E-02 [h1]

Optimisation complete: the 3 lowest phi's are within a relative distance
of eachother of 1.000E-02
Total model calls: 42

OPTIMISATION RESULTS
Adjustable parameters ----- >

Parameter Estimated 95% percent confidence limits
value lower limit upper limit

ro2 10.0000 0.665815 150.192

hl 0.261177 -1.00256 1.52491

h2 42.2006 0.467914 3806.02

Note: confidence limits provide only an indication of parameter uncertainty. They rely
on a linearity assumption, which may not extend as far in parameter space as the
confidence limits themselves - see PEST manual.

Tied parameters ----- >

Parameter Estimated value
ro3 1.00000

154 Appendix B, A PEST Run Record

Fixed parameters ----- >
Parameter Fixed value
rol 0.500000

Observations ----- >

Observation Measured Calculated Residual Weight Group
value value
arl 1.21038 1.64016 -0.429780 1.000 group_1
ar2 1.51208 2.25542 -0.743340 1.000 group_1
ar3 2.07204 3.03643 -0.964390 1.000 group_1
ard 2.94056 3.97943 -1.03887 1.000 group_1
arb 4.15787 5.04850 -0.890630 1.000 group_1
aré 5.77620 6.16891 -0.392710 1.000 group_1
ar7 7.78940 7.23394 0.555460 1.000 group_2
ar8 9.99743 8.12489 1.87254 1.000 group_2
ar9 11.8307 8.72551 3.10519 1.000 group_2
arl0 12.3194 8.89590 3.42350 1.000 group_2
arll 10.6003 8.40251 2.19779 1.000 group_2
arl2 7.00419 6.96319 4.100000E-02 1.000 group_2
arl3 3.44391 4.70412 -1.26021 1.000 group_2
arl4 1.58279 2.56707 -0.984280 1.000 group_2
arl5 1.10380 1.42910 -0.325300 1.000 group_3
arlé 1.03086 1.10197 -7.111000E-02 1.000 group_3
arl7 1.01318 1.03488 -2.170000E-02 1.000 group_3
arl8 1.00593 1.01498 -9.050000E-03 1.000 group_3
arl9 1.00272 1.00674 -4.020000E-03 1.000 group_3
Prior information ----- >
Prior Provided Calculated Residual Weight
information value value
pil 2.00000 0.261177 1.73882 3.000
pi2 2.60260 2.62532 -2.271874E-02 2.000
Sum of squared weighted residuals (ie phi) =63.61

Contribution to phi from observation group “group_1" = 3.679
Contribution to phi from observation group “group_2" = 32.58
Contribution to phi from observation group “group_3”" = 0.111
Contribution to phi from prior information =27.24

Covariance Matrix ---- >
0.3136 4.8700E-03 -0.4563
4.8700E-03 0.3618 1.3340E-02

155

-0.4563 1.3340E-02 0.8660

Correlation Coefficient Matrix — ----- >
1.000 1.4457E-02 -0.8756
1.4457E-02 1.000 2.3832E-02

-0.8756 2.3832E-02 1.000

Normalized eigenvectors of covariance matrix - >
-0.8704 -3.6691E-02 -0.4909

3.5287E-02 -0.9993 1.2121E-02

-0.4910 -6.7718E-03 0.8711

Eigenvalues ----- >
5.6045E-02 0.3621 1.123

156 Appendix B, A PEST Run Record

Index

D
DERINC 40

E

Eigenvalues 12
Eigenvectors 12

F
FACPARMAX 107

|

Instability
PEST 14, 65

Introduction to PEST 1
How PEST Works 4
What PEST does 2

L
LAMBDA 107

P

Parameter hold file 107

PEST
Best Fit Method 36, 42
Calculation of Derivatives 34, 38, 40, 97
Calibrati 0 2
Central derivative 6, 34, 36, 38
Confidence Intervals 87
Correlation Coefficient Matri 12, 89
Covariance Matrix 11, 88
Degrees of free d o 11
DERINC 40
DERINCLB 40
derivative increments - absolut 40, 62
derivative increments - rel_to_ma 40, 62
derivative increments - relat i v40, 62
derivative method - always_2 40, 63
derivative method - always_3 40, 63
derivative method - best_fit 40, 65
derivative method - outside_pts 40, 65
derivative method - parabolic 40, 65
derivative method - switch 40, 63
DERMTHD 40
Evaluating the PEST Run 83
Excitatio n 1
Fixed data 1
Forward and Central Difference 34
Forward derivativ e 6, 35, 38, 40, 63
Gradient vector 18
Hemstitchin 18
Implementation of the Method 23
In Visual MODFLO 51
INCTYP 40

Index

Input Data Set 86

Interpretatio 2

IntroductionSee Introduction to PEST 1

Jacobian matri 15, 35, 86, 142

Linear Models 5, 9

Logarithmic transformation 23, 24, 39, 40, 63, 87, 144
Marquardt lambda 20, 142

Marquardt Parameter 18, 69

Mathematics of PEST 9

Non-linear Models 15, 42

Nonuniqueness 14, 65

NOPTMA 34

Normal matrix 16, 20

Normalized Eigenvector Matrix and Eigenvalues 89
NPHINORE 34

NPHISTP 34

NRELPAR 34

Objective function 5, 10, 15, 16, 20, 33, 67, 86, 141, 143
Observation group 56

Optimizatio 96

Qutside point 36

Parabolic Method 36, 42

Parameter Scaling 20

Parameter Upgrade Vector 16, 20, 21, 25, 27, 29, 31
Parameters 1

PHIREDSTP 34

Precision 86, 141

Prior Informatio 14, 65, 88

Reference varianc 13

RELPARSTP 34

Residuals 13, 18, 88

Round-off errors 35, 37, 38, 40, 63

Running PEST 68, 76

Scale and Offset 26, 62

Sensitivity analys i 87, 145

Standard deviat i 089, 146

Taylor's Theorem 15

Termination Criteria 33, 74

Variance 89, 146

Weights 14, 65

PEST Files

DECIDE.EXE 85

Instruction Files 5

Output Files 83, 85

Parameter Estimation Record 86
Parameter Sensitivity File 84
Parameter Value File 83

PEST Control File 136
Residuals File 85

Run Record 85, 141

PEST Observatio n 9, 88

Definition and Recognitio 5
Flow 51, 53
Head and Concentration 51

157

Model-generated 9, 16, 41 FACORIG 29, 61, 72

Observation Groups 32, 56 FACPARMAX 30, 61, 72, 86, 142
Weight 5, 12 FORCEN 38, 63, 143
PEST Parameters ICOR 75
Adjustable 4 ICOV 75, 146
Change 30 IEIG 75
Change Limits 27, 61, 62 INCTYP 38, 62
Correlati o 12, 14, 65, 87, 101, 145 NOPTMA 74
Definition and Recognitio 4 NPHINORE 74
Distributed 1 NPHISTP 74, 144
Factor-limit e 86, 142 NRELPAR 75
Fixed and Tied 24, 59 NUMLA 70
Froze 143 OFFSET 62, 84
Groups 35 PARCHGL | 29, 60, 61
Initial Valu e 5, 16 PARGP 60
Insensitive Parameter 31 PARGPNME 62
Parameter Estimation Algorithm 5 PARLBND 61
Parameter Optimization 57, 87 PARNME 59
Parent 4, 24 PARTRAN 59
Relative-limi t e28, 86, 142 PARUBND 26, 27, 61
Tied 4 PARVAL1 61
Transformation 23, 102 PHIREDLAM 70
Upper and Lower Bounds 25, 61 PHIREDSTP 74, 144
PEST Troubleshooting 91 PHIREDSWH 38, 73, 143
Discontinuous Problems 103 PRECIS 73, 84
Highly Non-linear Problems 102 RELPARMAX 30, 61, 72, 86, 142
Holding Parameters 106 RELPARSTP 74
Initial ParameterValue 104 RHIRATSUF 70
Insensitive ParameterValue 104 RLAMBDA 69
Model-generated Errors 92 RLAMFAC 69, 143
Parameter Change Limits 103 RSTFLE 75
Poor Initial Marquardt Lambda 104 SCALE 62, 84
Restarting PEST 108
Run-time Errors 91 R
Upgrade Vector and Insensitive Parameters 105 RELPARMAX 107
PEST Variables RLAMBDA 104
DERINC 38, 63 RLAMFAC 104
DERINCLB 38, 63
DERINCMUL 64 wW
DERMTHD 65 WInPEST 76
DPOINT 84

158 Index

	1 - Introduction to PEST
	What PEST Does
	How PEST Works
	Parameter Definition and Recognition
	Observation Definition and Recognition
	The Parameter Estimation Algorithm

	2 - The Mathematics of PEST
	Parameter Estimation for Linear Models
	Adding Observation Weights
	Using Prior Information to Improve Parameter Estimation Process
	Extending Linear Parameter Estimation to Non-Linear Models
	The Marquardt Parameter
	Parameter Scaling
	The Marquardt Lambda
	Optimum Length of the Parameter Upgrade Vector

	3 - PEST's Implementation of the Method
	Explanation of Parameter Operations
	Parameter Transformation
	Fixed and Tied Parameters
	Upper and Lower Parameter Bounds
	Scale and Offset
	Parameter Change Limits
	Damping of Parameter Changes
	Temporary Holding of Insensitive Parameters
	Observation Groups
	Termination Criteria

	The Calculation of Derivatives
	Forward and Central Differences
	Parameter Increments for Calculating Derivatives
	How to Obtain Derivatives You Can Trust

	PEST with MODFLOW and MT3D
	Parameter Selection
	Modifying Model Input Files
	Visual MODFLOW’s Template Files
	Reading Output Files
	PEST Instruction Files
	Interpolating Model Outcomes to Borehole Locations
	MODFLOW and MT3D Output Timing
	MODBORE and MT3BORE Spatial Interpolation
	MODBORE and MT3BORE as an Aid to Contouring
	Using MODBORE and MT3BORE with PEST

	4 - PEST in Visual MODFLOW
	Assigning Observations to Model Outputs
	Head and Concentration observations
	Flow Observations
	Observation Groups

	Choosing the Parameters to Optimize
	Parameters
	Parameter
	PEST Name - PARNME
	Transformation - PARTRANS and IsTiedTo
	Param. Group - PARGP
	Limiting - PARCHGLIM
	Initial Value - PARVAL1
	Min and Max - PARLBND and PARUBND
	Scale and Offset - SCALE and OFFSET

	Parameter Groups
	Param. Group
	PEST Name - PARGPNME
	Incr. Type - INCTYP
	Increment - DERINC
	Min. Incr. - DERINCLB
	FD Method - FORCEN
	Incr. Multiplier - DERINCMUL
	Central FD Method - DERMTHD

	Assigning Prior Information
	Assigning the Objective Function
	Controlling the PEST Run
	Marquardt Lambda
	Initial Lambda - RLAMBDA1
	Adjustment Factor - RLAMFAC
	Sufficient Phi Ratio - RHIRATSUF
	Limiting Relative Phi Reduction - PHIREDLAM
	Maximum Trial Lambdas - NUMLAM

	Parameter Change Constraints
	Max relative parameter change - RELPARMAX
	Max factor parameter change - FACPARMAX
	Use-if-less Fraction - FACORIG

	Method Separation Value - PHIREDSWH
	Precision - PRECIS
	Termination Criteria
	Overall Iteration Limit - NOPTMAX
	Negligible Reduction - PHIREDSTP
	Max “No reduction” Iterations - NPHISTP
	Max Unsuccessful Iterations - NPHINORED
	Negligible Relative Change - RELPARSTP
	Max “No change” Iterations - NRELPAR

	Output Control - ICOV, ICOR, IEIG
	Enable Restart - RSTFLE

	Starting the PEST Run
	WinPEST Plots

	5 - Evaluating the PEST Run
	PEST Output Files
	The Parameter Value File
	The Parameter Sensitivity File
	The Residuals File
	Other Output files

	The PEST Run Record
	The Input Data Set
	The Parameter Estimation Record
	Optimized Parameter Values and Confidence Intervals
	Observations, Prior Information and Residuals
	The Covariance Matrix
	The Correlation Coefficient Matrix
	The Normalized Eigenvector Matrix and the Eigenvalues

	6 - Troubleshooting PEST
	Run-time Errors
	Considerations for MODFLOW and MT3D
	Parameter Transformations and Bounds
	Dry Model Cells
	Optimising Parameters for MODFLOW and MT3D Together

	If PEST Won't Optimize
	Obtaining Sufficient Precision of the Derivatives
	Derivative Precision in MODFLOW
	Derivative precision in MT3D

	High Parameter Correlation
	Inappropriate Parameter Transformation
	Highly Non-linear Problems
	Discontinuous Problems
	Parameter Change Limits Set Too Large or Too Small
	Poor Choice of Initial Parameter Values
	Observations are Insensitive to Initial Parameter Values
	Poor Choice of Initial Marquardt Lambda
	Upgrade Vector Dominated by Insensitive Parameters

	Holding Parameters
	The Parameter Hold File

	Re-starting PEST execution

	Appendix A, PEST Input Files
	PEST Template Files
	Visual MODFLOW’s Template Files
	Working Directly with MODFLOW/MT3D Files
	Working with files created by Visual MODFLOW
	Multi-Array Parameters and Tied Parameters
	Fixed and Transformed Parameters

	Template File Syntax and Commands
	The Parameter Delimiter
	Parameter Names
	Setting the Parameter Space Width
	How PEST Fills a Parameter Space with a Number
	The Same Parameter in Different Files

	PEST Instruction Files for Output
	Precision in Model Output Files
	How PEST Reads Model Output Files
	The Marker Delimiter
	Observation Names
	The Instruction Set
	Primary Marker
	Line Advance
	Secondary Marker
	Whitespace
	Tab
	Fixed Observations
	Semi-Fixed Observations
	Non-Fixed Observations
	Continuation

	Creating and Checking an Instruction File

	The PEST Control File

	Appendix B, A PEST Run Record
	The Input Data Set
	The Parameter Estimation Record
	Optimized Parameter Values and Confidence Intervals
	Observations, Prior Information and Residuals
	The Covariance Matrix
	The Correlation Coefficient Matrix
	The Normalized Eigenvector Matrix and the Eigenvalues
	The PEST Run Record for the Control file in Appendix A

	Index

