
USER'S MANUAL

for
WinPEST

The Windows interface to PEST - the popular parameter estimation pro-
gram for professional groundwater modelling using Visual MODFLOW.
1999, Watermark Numerical Computing & Waterloo Hydrogeologic Inc.

-

-

d
Bor-
e reg-
nited

acific
rk of

y any
DISCLAIMER OF WARRANTY

This manual and associated software are sold “as is” and without warranties as to perfor
mance or merchantability. The seller’s salespersons may have made statements about
this software. Any such statements do not constitute warranties.

This program is sold without any express or implied warranties whatsoever. No warranty
of fitness for a particular purpose is offered. The user is advised to test the program thor
oughly before relying on it. The user assumes the entire risk of using the program. Any
liability of seller or manufacturer will be limited exclusively to replacement of diskettes
defective in materials or workmanship.

Waterloo Hydrogeologic Inc.
180 Columbia Street West - Unit 1104

Waterloo, Ontario, CANADA
N2L 3L3

Phone (519) 746 1798
Fax (519) 885 5262

Email: techsupport@flowpath.com
Web: www.flowpath.com

Visual MODFLOW is a trademark, owned by Waterloo Hydrogeologic Inc. Microsoft is a registere
trademark, and Windows is a trademark of the Microsoft Corporation. Borland is a trademark of
land International, Inc. EXml is a trademark of CUESoft. Adobe, the Adobe logo and Acrobat ar
istered trademarks of Adobe Systems, Inc. MODFLOW and MODPATH are trademarks of the U
States Geological Survey. MT3DMS is a trademark of The University of Alabama. MT3D96 and
MT3D99 are trademarks of S.S. Papadopulos and Associates Inc. RT3D is a trademark of the P
Northwest National Laboratory and the United States Department of Energy. PEST is a tradema
Watermark Numerical Computing.

WinPEST User’s Manual

 1999 Waterloo Hydrogeologic Inc.
All Rights Reserved. No part of this document may be photocopied, reproduced, or translated b
means without the prior written consent of Waterloo Hydrogeologic Inc.

Visual MODFLOW

 1999 Waterloo Hydrogeologic Inc.
All Rights Reserved.
WinPEST Manual 01/08/99 ii

 1
..... 2

.... 4
.... 4
.... 5
.... 5

 9
 9

 12

 18

.. 20

 20

1

23
... 23
... 24
... 25
.... 26
... 27
... 30
.. 31
... 32
.. 33

 34
.. 34
. 38
.. 40
Table of Contents

1 - Introduction to PEST...
What PEST Does..

How PEST Works ...
Parameter Definition and Recognition...
Observation Definition and Recognition ..
The Parameter Estimation Algorithm...

2 - The Mathematics of PEST...
Parameter Estimation for Linear Models ..

Adding Observation Weights...

Using Prior Information to Improve Parameter Estimation Process........................ 14

Extending Linear Parameter Estimation to Non-Linear Models............................... 15

The Marquardt Parameter ..

Parameter Scaling...

The Marquardt Lambda ..

Optimum Length of the Parameter Upgrade Vector .. 2

3 - PEST's Implementation of the Method.................................. 23
Explanation of Parameter Operations..

Parameter Transformation ..
Fixed and Tied Parameters..
Upper and Lower Parameter Bounds..
Scale and Offset ..
Parameter Change Limits ..
Damping of Parameter Changes ...
Temporary Holding of Insensitive Parameters...
Observation Groups...
Termination Criteria...

The Calculation of Derivatives ..
Forward and Central Differences...
Parameter Increments for Calculating Derivatives ..
How to Obtain Derivatives You Can Trust ...
Table of Contents iii

2
.... 42
. 43
.. 45
... 45
.. 45
. 46
 47
 47
 49
 49

51
... 51
... 53
... 56

 57
.... 59

.. 59

. 59
... 60
 60
 61
 61
.. 62
... 62
..
.. 62
. 62
.. 63
 63

.. 63
64
 65

65

 67

 68
... 69
PEST with MODFLOW and MT3D... 4
Parameter Selection..
Modifying Model Input Files ...
Visual MODFLOW’s Template Files ...
Reading Output Files...

PEST Instruction Files ..
Interpolating Model Outcomes to Borehole Locations ...
MODFLOW and MT3D Output Timing ..
MODBORE and MT3BORE Spatial Interpolation ..
MODBORE and MT3BORE as an Aid to Contouring ..
Using MODBORE and MT3BORE with PEST...

4 - PEST in Visual MODFLOW... 51
Assigning Observations to Model Outputs ..

Head and Concentration observations ..
Flow Observations...
Observation Groups...

Choosing the Parameters to Optimize ..
Parameters..

Parameter .. 59
PEST Name - PARNME ..
Transformation - PARTRANS and IsTiedTo..
Param. Group - PARGP...
Limiting - PARCHGLI ...
Initial Value - PARVAL1...
Min and Max - PARLBND and PARUBND..
Scale and Offset - SCALE and OFFSET..

Parameter Groups ...
Param. Group.. 62
PEST Name - PARGPNME ...
Incr. Type - INCTYP...
Increment - DERINC..
Min. Incr. - DERINCLB...
FD Method - FORCEN...
Incr. Multiplier - DERINCMUL...
Central FD Method - DERMTHD..

Assigning Prior Information..

Assigning the Objective Function..

Controlling the PEST Run ...
Marquardt Lambda..
iv Table of Contents

 69
 69
 70

 70
... 71
. 72
. 72
. 72
... 73
... 73
.. 74
74
. 74
 74
. 74
.. 74
 75

. 75
.... 75

. 76
.... 79

3
.. 83
... 83
... 84
.... 85
... 85

.. 85

.... 86
... 86
... 87
.. 88
.. 88
. 89
.. 89

91
. 9
Initial Lambda - RLAMBDA1..
Adjustment Factor - RLAMFAC ..
Sufficient Phi Ratio - RHIRATSUF ...
Limiting Relative Phi Reduction - PHIREDLAM.. 70
Maximum Trial Lambdas - NUMLAM..

Parameter Change Constraints ...
Max relative parameter change - RELPARMAX..
Max factor parameter change - FACPARMAX ..
Use-if-less Fraction - FACORIG ...

Method Separation Value - PHIREDSWH ..
Precision - PRECIS ...
Termination Criteria...

Overall Iteration Limit - NOPTMAX ...
Negligible Reduction - PHIREDSTP...
Max “No reduction” Iterations - NPHISTP ..
Max Unsuccessful Iterations - NPHINORE ...
Negligible Relative Change - RELPARSTP...
Max “No change” Iterations - NRELPAR..

Output Control - ICOV, ICOR, IEIG...
Enable Restart - RSTFLE ...

Starting the PEST Run..
WinPEST Plots..

5 - Evaluating the PEST Run ... 8
PEST Output Files ..

The Parameter Value File..
The Parameter Sensitivity File ..
The Residuals File ..
Other Output files ..

The PEST Run Record ...
The Input Data Set ..
The Parameter Estimation Record ..
Optimized Parameter Values and Confidence Intervals..
Observations, Prior Information and Residuals...
The Covariance Matrix...
The Correlation Coefficient Matrix ...
The Normalized Eigenvector Matrix and the Eigenvalues

6 - Troubleshooting PEST..
Run-time Errors...1
Table of Contents v

2
... 93
... 94
. 95

 96
. 97
 97

. 99
 101
102
 102
. 103
. 103
 104
 104
104
. 105

 106
 107

108

1
 111
 114
15
16
. 117
. 117
.. 118
 118

.. 118
. 118
. 120
. 121

2
 122
. 122
 123
.. 124
Considerations for MODFLOW and MT3D.. 9
Parameter Transformations and Bounds...
Dry Model Cells...
Optimising Parameters for MODFLOW and MT3D Together

If PEST Won't Optimize ..
Obtaining Sufficient Precision of the Derivatives ..

Derivative Precision in MODFLO ..
Derivative precision in MT3D...

High Parameter Correlation ...
Inappropriate Parameter Transformation ...
Highly Non-linear Problems ..
Discontinuous Problems ...
Parameter Change Limits Set Too Large or Too Small ...
Poor Choice of Initial Parameter Values ...
Observations are Insensitive to Initial Parameter Values..
Poor Choice of Initial Marquardt Lambda...
Upgrade Vector Dominated by Insensitive Parameters ..

Holding Parameters..
The Parameter Hold File..

Re-starting PEST execution...

Appendix A, PEST Input Files .. 11
PEST Template Files ..

Visual MODFLOW’s Template Files ...
Working Directly with MODFLOW/MT3D Files ... 1

Working with files created by Visual MODFLOW ... 1
Multi-Array Parameters and Tied Parameters ...
Fixed and Transformed Parameters ...

Template File Syntax and Commands ..
The Parameter Delimiter...
Parameter Names..
Setting the Parameter Space Width ...
How PEST Fills a Parameter Space with a Number..
The Same Parameter in Different Files ...

PEST Instruction Files for Output.. 12
Precision in Model Output Files...
How PEST Reads Model Output Files...
The Marker Delimiter ...
Observation Names...
vi Table of Contents

. 124
 1

. 127

. 129

. 131
 132

136

136

1
.. 141
. 141
. 144
 145
 146
146
 147
 148

157
The Instruction Set ...
Primary Marker ...25
Line Advance ..126
Secondary Marker ..
Whitespace .. 128
Tab 129
Fixed Observations ..
Semi-Fixed Observations...
Non-Fixed Observations ...
Continuation.. 135

Creating and Checking an Instruction File ..

The PEST Control File ...

Appendix B, A PEST Run Record .. 14
The Input Data Set ..
The Parameter Estimation Record ..
Optimized Parameter Values and Confidence Intervals..
Observations, Prior Information and Residuals...
The Covariance Matrix...
The Correlation Coefficient Matrix ..
The Normalized Eigenvector Matrix and the Eigenvalues
The PEST Run Record for the Control file in Appendix A..

Index...
Table of Contents vii

viii Table of Contents

e

s, the
rally
 not

r
ction

und

h
 a

r
he

ple

.
od
s of a
ate

 the

n-line
1
1 - Introduction to PEST

There is a mathematical model for just about everything. Computer programs hav
been written to describe the flow of water in channels, the flow of electricity in
conductors of strange shape, the growth of plants, the population dynamics of ant
distribution of stress in the hulls of ships and on and on. Modeling programs gene
require the following four types of data, although the distinction between them may
always be clear:

• Fixed data. These data define the system. For example, in a ground wate
model the shape of the aquifer is fixed, as are the whereabouts of any extra
and injection wells.

• Parameters. These are the properties of the system. Parameters for a gro
water model include the hydraulic conductivity and storage capacity of the
porous media through which the water flows. A model may have many
parameters. Each pertaining to one particular attribute of the system whic
affects the model’s response to an input or disturbance. In spatial models
system property may vary from place to place. Hence the parameter data
needed by the model may include either individual values of a property fo
certain model subregions, or values which describe the manner in which t
property is spatially distributed.

• Disturbances. These are the quantities which "drive" the system, for exam
recharge data in a groundwater model, and the source and location of
contaminants. Like parameters, disturbances may be spatially dependent

• Control data. These data provide settings for the numerical solution meth
by which the system equations are solved. Examples are the specification
finite element mesh, the convergence criteria for a preconditioned conjug
gradient matrix equation solver, and so on.

The purpose of a mathematical model is to produce numbers. These numbers are
model's predictions of what a natural or man-made system will do under a certain
disturbances. It is for the sake of these numbers that the model was built, be it a te
1

dure

ality
odel
hich
ssign
 is
ctly.

oad

m
s). The
nown

del
f so,

red to
program involving a few additions and subtractions, or a complex numerical proce
for solving a set of nonlinear partial differential equations.

Where a model simulates reality, often the model-user does not know what the re
is. In fact, models are often used to infer reality. For example, if a ground water m
is able to reproduce the variations in borehole water levels over time (a quantity w
can be obtained by direct observation), the hydraulic conductivity values that we a
to different parts of the model domain to achieve this match are likely correct. This
fortunate, as it is often difficult or expensive to measure hydraulic conductivity dire

Figure 1.1: Typical model structure.

What PEST Does

PEST is all about using existing models to infer aspects of reality that may not be
amenable to direct measurement. In general, its use falls into the following two br
categories:

• Interpretation . An experiment is often set up to specifically infer some
property of a system, often by disturbing the system in some way (e.g. a
pumping test). The model is then used to relate the disturbance and syste
properties to values that can be measured (e.g. piezometer measurement
measured data may then be interpreted based on the premise that, for a k
disturbance, it is possible to estimate the system properties from the
measurement set (e.g. hydraulic conductivity from piezometer data)

• Calibration . If a system is disturbed, and this disturbance is simulated in a
model, it should be possible to adjust the model’s parameters until the mo
output corresponds to field measurements taken during the disturbance. I
we often conclude that the model will represent the system's behavior in
response to other disturbances - disturbances which we may not be prepa

o = M (x,p,i)

MInputs

i
Outputs

o

Parametersp

x describes system configuration
2 Chapter 1 - Introduction to PEST

 been

EST
eters)
d.

xt)
iles.
 can be

el
any

r a

ding

nding
 is

ust tell

t

atory
d
runs

s the

ust

quire

EST
to the
eter
put
do in practice. A model is said to be "calibrated" when its parameters have
adjusted in this fashion.

The purpose of PEST is to assist in data interpretation and in model calibration. P
will adjust model parameters and disturbances (hereafter referred to only as param
until the fit between model outputs and laboratory or field observations is optimize
While this is nothing new, the usefulness of PEST lies in its ability to perform this
optimization for any model that reads its input data from one or more ASCII (i.e. te
input files and writes the outcomes of its calculations to one or more ASCII output f
Thus a model does not have to be recast as a subroutine and recompiled before it
used within a parameter estimation process. PEST adapts to the model, the model
does not need to adapt to PEST.

Thus PEST, as a nonlinear parameter estimator, can exist independently of any
particular model, yet can be used to estimate parameters for a wide range of mod
types. This model-independence makes PEST unique. PEST can turn just about
existing computer model into a powerful nonlinear estimation package, be it a
homemade model based on an analytical solution to a simple physical problem, o
sophisticated numerical solver for a complex boundary-value problem.

Models produce numbers. If there are field or laboratory measurements correspon
to some of these numbers, PEST can adjust model parameters such that the
discrepancies between the pertinent model-generated numbers and the correspo
measurements are minimized. It does this by running the model as many times as
necessary to determine this optimal set of parameters. You, as the model user, m
PEST what the adjustable parameters are. Once PEST is provided with this
information, it can rewrite the model-input files using whatever parameters are
appropriate at any stage of the optimization process. You must also tell PEST wha
model output values correspond to your observations. Thus, each time it runs the
model, PEST is able to read the model outcomes that correspond to field or labor
observations. After calculating the mismatch between the two sets of numbers, an
evaluating how best to correct that mismatch, it adjusts the model-input data and
the model again.

However, for PEST to take control of an existing model and optimize its parameter
following conditions must be met:

• The input files containing the parameters that PEST is required to adjust m
be in ASCII (i.e. text) format.

• The output files containing the model outcomes that complement field or
laboratory measurements must be in ASCII (i.e. text) format.

• The model must be able to run from a typed command line and must not re
user intervention during the run (see below for further details).

• The Gauss-Marquardt-Levenberg nonlinear estimation technique used in P
requires that the output values generated by the model, which correspond
observations, must change smoothly and continuously for all input param
values. That is the relationship between the input parameters and the out
What PEST Does 3

 are:

nents

e

or
 to

 that
del

he
lue
cess.
this
rs are

s that
ST
,

d

d an
rtain

 may
“observations” must be continuously differentiable.

How PEST Works

PEST can be subdivided into three functionally separate components whose roles

• parameter definition and recognition,
• observation definition and recognition, and
• parameter estimation algorithm.

Though the details of PEST will be described in later chapters, these three compo
are discussed briefly so you can become acquainted with PEST's capabilities.

Parameter Definition and Recognition

Of the masses of data that may be in a model's input files, those numbers must b
identified which PEST is free to alter and optimize. Fortunately, this is a simple
process, which can be carried out using input file templates. If a model requires, f
example, five input files, and two of these contain parameters, which PEST is free
adjust, then a template file must be prepared for these two input files. Visual
MODFLOW constructs the necessary template files depending on the parameters
you chose. Then whenever PEST runs the model it copies the template to the mo
input file, putting the proper parameter value into the template as it does so.

With respect to the parameter template files the following points are noteworthy:

• During a PEST run a parameter can remain fixed if desired. Thus, while t
parameter may be identified in the template file, PEST will not adjust its va
from the value you supply at the beginning of the parameter estimation pro

• One or a number of parameters can be "tied" to a "parent" parameter. In
case, only the parent parameter is actually optimized and the tied paramete
simply varied with this parameter, maintaining a constant ratio to it.

• PEST requires that upper and lower bounds be supplied for all parameter
are neither fixed nor tied. This information is vital to PEST, for it informs PE
of the range of permissible values that a parameter can take. For example
parameters such as hydraulic conductivity and solute concentration shoul
never be have negative values.

• For many models it has been found that the amount of time needed to fin
optimum set of parameters can be greatly reduced if the logarithms of ce
parameters are optimized, rather than the parameters themselves.

• Finally, parameters adjusted by PEST can be scaled and offset. Thus you
wish to subtract 273.15 from an absolute temperature before writing that
temperature to a model input file, which requires Celsius degrees.
4 Chapter 1 - Introduction to PEST

ally
ead
ents
a
t file.
del

utput
T

ared
sured

cies
ld be

 the

 a

 the
d

ters
be

ations

eters
r set,
nges

r it is

For
Observation Definition and Recognition

Of the masses of data produced by a model, only a handful of numbers may actu
correspond to "observations". For example, a groundwater model may calculate h
values at thousands of nodes of a finite-difference grid, however, head measurem
may be available at only a handful of piezometers. PEST must be able to identify
handful of numbers out of the thousands that may be written to the model's outpu
Unfortunately, the template concept used for model input files will not work for mo
output files since model output files may change from run to run, depending on
parameter values. However, if a person is capable of locating a pertinent model o
amongst the other data on a model output file, then so too is a computer. All PES
requires is an instruction file be provided detailing how to find those observations.

Once interfaced with a model, PEST's role is to minimize the weighted sum of squ
differences between model-generated observation values and those actually mea
in the laboratory or field. This sum of weighted, squared, model-to-measurement
discrepancies is referred to as the "objective function". Weighting these discrepan
allows you to make some observations more important than others. Weights shou
inversely proportional to the standard deviations of observations. "Trustworthy"
observations having a greater weight than those that can be less trusted. Also, if
observations are of different types (e.g. head measurements and stream baseflo
values) the weights assigned to each type should reflect the relative magnitude of
quantities. In this way, larger numbers will not dominate the parameter estimation
process just because the numbers are large. An observation can be provided with
weight of zero if you do not wish it to affect the optimization process at all.

The Parameter Estimation Algorithm

The Gauss-Marquardt-Levenberg algorithm used by PEST is described in detail in
next chapter. However, a summary of the parameter estimation process is provide
here.

For linear models (i.e. models for which observations are calculated from parame
through a matrix equation with constant parameter coefficients), optimization can
achieved in one step. However for non-linear problems (most models fall into this
category), parameter estimation is an iterative process. At the beginning of each
iteration the relationship between model parameters and model-generated observ
is linearised by formulating it as a Taylor series expansion about the current best
parameter set. Hence the derivatives of all observations with respect to all param
must be calculated. This “linearised” problem is then solved for a better paramete
and the new parameters tested by running the model again. By comparing the cha
in parameters to the improvement in the objective function, PEST can tell whethe
worth doing another optimization iteration. If so the whole process is repeated.

At the beginning of a PEST run, you must supply a set of initial parameter values.
These are the values that PEST uses at the start of its first optimization iteration.
How PEST Works 5

r
y

eter
ment
ch

ge

d

r. For
cond

d in the

ts or

e
,

 PEST
ution
ively,

eter

spect
rtain

rarily
e rest
of the
ing
many problems only five or six optimization iterations will be required for model
calibration or data interpretation. In other cases, convergence will be much slowe
Often the proper choice of whether and what parameters should be logarithmicall
transformed can have a pronounced effect on the optimization efficiency. The
transformation of some parameters may turn a highly nonlinear problem into a
reasonably linear one.

Derivatives of observations with respect to parameters are calculated using finite
differences. During every optimization iteration the model is run once for each
adjustable parameter, a small user-supplied increment being added to the param
value prior to the run. The resulting observation changes are divided by this incre
to calculate their derivatives with respect to the parameter. This is repeated for ea
parameter. This technique of derivative calculation is referred to as the method of
"forward differences".

Derivatives calculated in this way are only approximate. If the increment is too lar
the approximation will be poor. If the increment is too small round-off errors will
detract from derivatives accuracy. Both of these effects will degrade optimization
performance. To combat such inaccuracy, PEST allows derivatives to be calculate
using the method of "central differences". Using this method, two model runs are
required to calculate a set of observation derivatives with respect to any paramete
the first run an increment is added to the current parameter value, while for the se
run the increment is subtracted. Hence three observation-parameter pairs are use
calculation of any derivative (the third pair being the current parameter value and
corresponding observation value). The derivative is calculated either by (i) fitting a
parabola to all three points, (ii) constructing a best-fit straight line for the three poin
(iii) by simply using finite differences on the outer two points (its your choice).

It is normally best to commence an optimization run using the more economical
forward difference method, allowing PEST to switch to central differences when th
going gets tough. PEST will make the switch automatically according to a criterion
which you supply.

In the course of the estimation process PEST writes what it is doing to the screen.
simultaneously writes a more detailed run record to a file. You can stop PEST exec
at any time and recommence execution exactly where it was interrupted. Alternat
you can shut down PEST completely at any stage and restart it later at either the
beginning of the optimization iteration in which it was interrupted or at that point
within the current or previous iteration at which it last attempted to upgrade param
values.

As it calculates derivatives, PEST records the sensitivity of each parameter with re
to the observations. If PEST’s performance is being hindered by the behavior of ce
parameters (normally the most insensitive ones), these parameters can be tempo
held at their current values while PEST calculates a suitable upgrade vector for th
of the parameters. If desired, PEST can be requested to repeat its determination
parameter upgrade vector with additional parameters held fixed. Variables govern
6 Chapter 1 - Introduction to PEST

u
an

y

ts,
air.
lation
trix.
the operation of the Gauss-Marquardt-Levenberg method in determining the optim
upgrade vector can also be adjusted prior to repeating the calculation. Thus you c
interact with PEST, assisting it in its determination of optimum parameter values in
difficult situations.

At the end of the parameter estimation process (the end being determined either b
PEST or by you) PEST records the optimized value of each adjustable parameter
together with its 95% confidence interval. It tabulates the set of field measuremen
their optimized model-calculated counterparts, and the difference between each p
Then it calculates and prints the parameter covariance matrix, the parameter corre
coefficient matrix and the matrix of normalized eigenvectors of the covariance ma
How PEST Works 7

8 Chapter 1 - Introduction to PEST

 in the
ents

f
" to

ry

 as

ts
al or
time
2
2 - The Mathematics of PEST

Parameter Estimation for Linear Models

Let us assume that a natural or man-made system can be described by the linear
equation

(2.1)

In equation (2.1) X is a m × n matrix, i.e. it is a matrix with m rows and n columns. The
elements of X are constant and hence independent of the elements of b, a vector of
order n that we assume holds the system parameters. c is a vector of order m containing
numbers which describe the system's response to a set of disturbances embodied
matrix X, and for which we can obtain corresponding field or laboratory measurem
by which to infer the system parameters comprising b. (Note that for many problems to
which PEST is amenable, the system parameters may be contained in X and the
disturbances may comprise the elements of b. Nevertheless, in the discussion which
follows, it will be assumed for the sake of simplicity that b holds the syste
parameters.)

Most models generate a wealth of data for which we usually only have a handful o
corresponding field measurements. Therefore, we will use the word "observations
describe the elements of the vector c even though the model in fact, generates c. As we
include in the vector c only those model outcomes for which there are complementa
field measurements, it is appropriate to distinguish them from the remainder of the
model outcomes by referring to them as the "model-generated observations". The
complementary set of field or laboratory data is referred to as "measurements" or
"experimental observations" in the following discussion.

Let it be assumed that the elements of X are all known. For most models these elemen
will include the effects of such things as the system dimensions, physical, chemic
other constants which are considered immutable, independent variables such as

cXb=
Parameter Estimation for Linear Models 9

system

e

ation

ring
s of

 the

r than

s

ons
d to a

and distance etc. For example, equation (2.1) may represent the response of the
at different times, where the response at time p is calculated using the equation

(2.2)

where xpi is the element of X found at its p'th row and i 'th column. As X has m rows,
there are m such equations, one for each of m different times. Hence for any p, at least
one of the xpi depends on time.

Suppose that m is greater than n, that is we are capable of observing the syste
response (and hence providing elements for the vector c) at more times than there are
parameters in the vector b. Common sense tells us that we should be able to use th
elements of c to infer the elements of b.

Unfortunately we cannot do this by recasting equation (2.1) as another matrix equ
with b on the right-hand side, as X is not a square matrix and hence not directly
invertible. But you may ask, "Have we not made a rod for our own back by measu
the system response at more times than there are parameter values, i.e. elementb?"
If b were of the same order as c, X would indeed be a square matrix and may well be
invertible. If so, it is true that an equation could be formulated which solves for the
elements of b in terms of those of c. However, what if we then made just one more
measurement of the system at a time not already represented in the n × n matrix X? We
would now have n + 1 values of c. Which n should we use in solving for b? And what
would we do if we obtained (as we probably would) slightly different estimates for
components of b depending on which n of the n + 1 values of c we used in solving for
b? The problem becomes even more acute if the information redundancy is greate
one.

Actually, as intuition should readily inform us, redundancy of information is a bonu
rather than a problem, for it allows us to determine not just the elements of b, but some
other numbers which describe how well we can trust the elements of b. This
"trustworthiness" is based on the consistency with which the m experimental
measurements satisfy the m equations expressed by equation (2.1) when the n optimal
parameter values are substituted for the elements of b.

We define this optimal parameter set as that for which the sum of squared deviati
between model- generated observations and experimental observations is reduce
minimum. The smaller this number is (referred to as the "objective function") the
greater is the consistency between model and observations and the greater is our
confidence that the determined parameter set is the correct one. Expressing this
mathematically, we wish to minimize Φ, where Φ is defined by the equation

(2.3)

pnpnpp cbxbxbx =+ ë2211

() ()XbcXbc t −−=Φ
10 Chapter 2 - The Mathematics of PEST

t

cause
"

of
e

of the

e

ion
able to
dual
and c now contains the set of laboratory of field measurements. The "t" superscrip
indicates the matrix transpose operation. It can be shown that the vector b that
minimizes Φ of equation (2.3) is given by

(2.4)

Provided that the number of observations m equals or exceeds the number of
parameters n, the matrix equation (2.4) provides a unique solution to the parameter
estimation problem. Furthermore, as the matrix (XtX) is positive definite under these
conditions, the solution is relatively easy to obtain numerically.

The vector b expressed by equation (2.4) differs from b of equation (2.1) (the equation
which defines the system) in that the former is actually an estimate of the latter be
c now contains measured data. In fact, b of equation (2.4) is the "best linear unbiased
estimator of the set of true system parameters appearing in equation (2.1). As an
estimator, it is one particular realization of the n-dimensional random vector b
calculated, through equation (2.4), from the m-dimensional random vector c of
experimental observations, of which the actual observations c are but one particular
realization. If σ2 represents the variance of each of the elements of c (the elements of c
being assumed to be independent of each other) then σ2 can be calculated as

(2.5)

where (m - n), the difference between the number of observations and the number
parameters to be estimated, represents the number of "degrees of freedom" of th
parameter estimation problem. Equation (2.5) shows that σ2 is directly proportional to
the objective function and thus varies inversely with the goodness of fit between
experimental data and the model-generated observations calculated on the basis
optimal parameter set. It can further be shown that C(b), the covariance matrix of b is
given by

 (2.6)

Notice that, even though the elements of c are assumed to be independent (so that th
covariance matrix of c contains only diagonal elements, all equal to σ2 in the present
case), C(b) is not necessarily a diagonal matrix. In fact, in many parameter estimat
problems parameters are strongly correlated, the estimation process being better
estimate one or a number of linear combinations of the parameters than the indivi

() cXXXb tt 1−=

)(
2

nm−
Φ=σ

12)()(−= XXbC tσ
Parameter Estimation for Linear Models 11

iances

le.

e more

f

e

le,
f strea
 (m
vastly

d by
e
y the

arger
e
 in an
parameters themselves. In such cases some parameter variances (parameter var
constitute the diagonal elements of C(b)) may be large even though the objective
function Φ is reasonably low. If parameter correlation is extreme, the matrix (XtX) of
equation (2.6) may become singular and parameter estimation becomes impossib

There are two matrices, both of which are derived from the parameter covariance
matrix C(b), which better demonstrate parameter correlation than C(b) itself. The first
is the correlation coefficient matrix whose elements ρij are calculated as

(2.7)

where σij represents the element at the i'th row and j' th column of C(b). The diagonal
elements of the correlation coefficient matrix are always 1. Off-diagonal elements
range between -1 and 1. The closer are these off-diagonal elements to 1 or -1, th
highly are the respective parameters correlated.

The second useful matrix is comprised of columns containing the normalized
eigenvectors of the covariance matrix C(b). If each eigenvector is dominated by one
element, individual parameter values are well resolved by the estimation process.
However if predominance within each eigenvector is shared between a number o
elements (especially for those eigenvectors whose eigenvalues are largest), the
corresponding parameters are highly correlated.

Adding Observation Weights

The discussion so far presupposes that all observations are equally weighted in th
parameter estimation process. However this will not always be the case as some
measurements may be more uncertain than others.

Another problem arises where observations are of more than one type. For examp
you may have a set of head measurements at several piezometers and a couple o
baseflow measurements. However, the units for these two quantities are different
and m3/s respectively) and hence the numbers used to represent them may be of
different magnitudes. Under these circumstances the quantity with the numerically
larger value will dominate the estimation process if the objective function is define
equation (2.3). This will be especially unfortunate if the quantity represented by th
smaller values is, in fact, measured with greater reliability than that represented b
larger numbers.

This problem can be overcome if a weight is supplied with each observation. The l
the weight pertaining to a particular observation the greater the contribution that th
observation makes to the objective function. If the observation weights are housed
m-dimensional, square, diagonal matrix Q whose i'th diagonal element qii is the square

jjii

ij
ij σσ

σ
ρ =
12 Chapter 2 - The Mathematics of PEST

d the

r

s of
isting

hich
quare
as

,
rent

nity
ot all

of the weight wi attached to the i 'th observation, equation (2.3) defining the objective
function is modified as follows:

(2.8a)

Or, to put it another way,

(2.8b)

Where ri (the i 'th residual) expresses the difference between the model outcome an
actual field or laboratory measurement for the i'th observation. Equation (2.8a) is
equivalent to:

 (2.9)

Where,

 (2.10)

C(c) represents the covariance matrix of the m-dimensional observation random vecto
c of which our measurement vector c is a particular realization. Because Q is a diagonal
matrix, so too is P, its elements being the reciprocals of the corresponding element
Q. The assumption of independence of the observations is maintained through ins
that Q (and hence P) have diagonal elements only, the elements of Q being the squares
of the observation weights. These weights can now be seen as being inversely
proportional to the standard deviations of the field or laboratory measurements to w
they pertain. (Note that the weights as defined by equation (2.8) are actually the s
roots of the weights as defined by some other authors. However they are defined
such herein because it has been found that users, when assigning weights to
observations, find it easier to think in terms of standard deviations than variances
especially when dealing with two or three different observation types of vastly diffe
magnitude.)

The quantity σ2 is known as the reference variance. If all observation weights are u
it represents the variance of each experimental measurement. If the weights are n
unity the measurement covariance matrix is determined from equation (2.10) withσ2
given by equation (2.5) and Φ given by equation (2.8).

)()(XbcQXbc t −−=Φ

∑
=

=Φ
m

i
ii rw

1

2)(

)()(1 XbcPXbc t −−=Φ −

2
1)(
)(

σ
cC

QP == −
Adding Observation Weights 13

hips
n is

use
 even

ameter
-

,
erical
 the

f a

st be

e

which
With the inclusion of observation weights, equation (2.4) by which the system
parameter vector is estimated becomes

 (2.11)

While equation (2.6) for the parameter covariance matrix becomes,

 (2.12)

Using Prior Information to Improve Parameter Estimation Process

Often some independent information exists about the parameters that we wish to
optimize. This information may be in the form of unrelated estimates or of relations
between parameters expressed in the form of equation (2.2). When this informatio
included, it can lend stability to the parameter estimation process, especially when
parameters are highly correlated. Correlated parameters can lead to non-unique
parameter estimates because varying them in certain linear combinations may ca
very little change in the objective function. In some cases, this non-uniqueness can
lead to numerical instability and failure of the estimation process. However if
something is known about at least one of the members of such a troublesome par
group, this information, if included in the estimation process, may remove the non
uniqueness and provide stability

Parameter estimates will also be non-unique if there are less observations than
parameters. Equation (2.11) is not solvable under these conditions as the matrix XtQX
is singular. (Note that PEST will, nevertheless, calculate parameter estimates for
reasons discussed later in this chapter.) However the inclusion of prior information
being mathematically equivalent to taking extra measurements, may alter the num
predominance of parameters over observations and thus provide the system with
ability to supply a unique set of parameter estimates.

Prior information is included in the estimation algorithm by simply adding row
containing this information to the matrix equation (2.1). This information must be o
suitable type to be included in equation (2.1). Both simple equality, and linear
relationships of the type described by equation (2.2) are acceptable. A weight mu
included with each article of prior information. In theory, this weight should be
inversely proportional to the standard deviation of the right hand side of the prior
information equation, the constant of proportionality being the same as used for th
observations comprising the other elements of the vector c of equation (2.1). In
practice, however, the user simply assigns the weights according to the extent to

QcXQXXb tt 1)(−=

12)()(−= QXXbC tσ
14 Chapter 2 - The Mathematics of PEST

ion

ts
found

een
ded,
of the

ations
st be

odel-

.

 is
he/she wishes each article of prior information to influence the parameter estimat
process.

It is sometimes helpful to view the inclusion of prior parameter information in the
estimation process as the introduction of a "penalty function". The aim of the
estimation process is to lower the objective function defined by equation (2.9) to i
minimum possible value. This is done by adjusting parameter values until a set is
for which the objective function can be lowered no further. If there is no prior
information, the objective function is defined solely in terms of the difference betw
model outcomes and field measurements. However, when prior information is inclu
a "penalty" equal to the square of the difference between what the right hand side
prior information equation should be, and what it currently is, is introduced into the
objective function. This difference is multiplied by the square of its weight before
including it in the objective function.

Extending Linear Parameter Estimation to Non-Linear Models

Most models are non-linear, i.e. the relationships between parameters and observ
are not of the type expressed by equations (2.1) and (2.2). Non-linear models mu
"linearized" for the theory presented so far to be used in the estimation of their
parameters.

To “linearize” a non-linear model, let the relationships between parameters and m
generated observations for a particular model be represented by the function M which
maps n-dimensional parameter space into m-dimensional observation space. For
reasons that will become apparent, we require that this function be continuously
differentiable with respect to all model parameters for which estimates are sought
Suppose that for the set of parameters comprising the vector b0 the corresponding set of
model-calculated observations (generated using M) is c0, i.e.

(2.13)

Now to generate a set of observations c corresponding to a parameter vector b that
differs only slightly fro b0, Taylor's theorem tells us that the following relationship
approximately correct, the approximation improving with proximity of b to b0:

(2.14)

Where J is the Jacobian matrix of M, i.e. the matrix composed of m rows (one for each
observation), the n elements of each row being the derivatives of one particular
observation with respect to each of the n parameters. To put it another way, Jij is the

)(00 bMc =

)(00 bbJcc −+=
Extending Linear Parameter Estimation to Non-Linear Models 15

he
l
t for

tion
re

ry

ted

to as

ther

n
vector,

he

 in
o
derivative of the i'th observation with respect to the j'th parameter. Equation (2.14) is a
linearization of equation (2.13).

We now specify that we would like to derive a set of model parameters for which t
model-generated observations are as close as possible to our set of experimenta
observations in the least squares sense, i.e. we wish to determine a parameter se
which the objective function Φ defined by

 (2.15)

is a minimum, where c in equation (2.15) now represents our experimental observa
vector. Comparing equation (2.15) with equation (2.8), it is apparent that the two a
equivalent if c from equation (2.8a) is replace by (c - c0) of equation (2.15) and b from
equation (2.8a) is replaced by (b - b0) from equation (2.15). Thus we can use the theo
for linear parameter estimation to calculate the parameter upgrade vector (b - b0) on the
basis of the vector (c - c0), which defines the discrepancy between the model-calcula
observations c0 and their experimental counterparts c. Denoting u as the parameter
upgrade vector, equation (2.11) becomes

 (2.16)

And equation (2.12) for the parameter covariance matrix becomes,

 (2.17)

The linear equations represented by the matrix equation (2.16) are often referred
the "normal equations". The matrix (JtQJ) is often referred to as the "normal matrix".

Since equation (2.14) is only approximately correct, so too is equation (2.16). In o
words, the vector b defined by adding the parameter upgrade vector u of equation
(2.16) to the current parameter values b0 is not guaranteed to be that for which the
objective function is at its minimum. Hence the new set of parameters contained ib
must then be used as a starting point in determining a further parameter upgrade
and so on until, hopefully, we arrive at the global Φ minimum. This process requires
that an initial set of parameters b0 be supplied to start off the optimization process. T
process of iterative convergence towards the objective function minimum is
represented diagrammatically for a two-parameter problem in Figure 2.1.

It is an unfortunate fact in working with non-linear problems that a global minimum
the objective function may be difficult to find. For some models the task is made n

))(())((0000 bbJccQbbJcc t −−−−−−=Φ

)()(0
1 ccQJQJJu tt −= −

12)()(−= QJJbC tσ
16 Chapter 2 - The Mathematics of PEST

inct
et

ter
 its

s
easier by the fact that the objective function may even possess local minima, dist
from the global minimum. Hence, it is always good to supply an initial parameter s
b0, which approximates the true parameter set. A suitable choice for the initial
parameter set can also reduce the number of iterations necessary to minimize the
objective function. For large models this can mean considerable savings in compu
time. Also, the inclusion of prior information into the objective function can change
structure in parameter space, often making the global minimum easier to find
(depending on what weights are applied to the articles of prior information). Once
again, this enhances optimization stability and may reduce the number of iteration
required to determine the optimal parameter set.

Figure 2.1: Iterative improvement of initial parameter values
toward the global objective function minimum.

P aram eter #1

P
ar

am
et

er
 #

2

C ontours o f equa l
ob jective function
va lue

Initia l param eter
estim ates
Extending Linear Parameter Estimation to Non-Linear Models 17

t

tor

to the
,

e

f a
ward
The Marquardt Parameter

Equation (2.16) forms the basis of non-linear weighted least-squares parameter
estimation. It can be rewritten as

 (2.18)

Where u is the parameter upgrade vector and r is the vector of residuals for the curren
parameter set.

Let the gradient of the objective function Φ in parameter space be denoted by the vec
g. The i'th element of g is thus defined as

(2.19)

i.e. by the partial derivative of the objective function with respect to the i'th parameter.
The parameter upgrade vector cannot be at an angle of greater than 90 degrees
negative of the gradient vector. If the angle between u and -g is greater than 90 degrees
u would have a component along the positive direction of the gradient vector and
movement along u would thus cause the objective function to rise, which is the
opposite of what we want. However, in spite of the fact that -g defines the direction of
steepest descent of Φ, it can be shown that u is normally a far better parameter upgrad
direction than -g, especially in situations where parameters are highly correlated. In
such situations, iteratively following the direction of steepest descent leads to the
phenomenon of "hemstitching" where the parameter set jumps from side to side o
valley in Φ as parameters are upgraded on successive iterations. Convergence to
the global Φ minimum is then extremely slow. See Figure 2.2.

QrJQJJu tt 1)(−=

i
i b

g
∂
Φ∂=
18 Chapter 2 - The Mathematics of PEST

Figure 2.2: The phenomenon of “hemstitching”.

Nevertheless, most parameter estimation problems benefit from adjusting u such that it
is a little closer to the direction of -g in the initial stages of the estimation process.
Mathematically, this can be achieved by including in equation (2.18) the so-called
"Marquardt parameter", named after Marquardt (1963), though the use of this
parameter was, in fact, pioneered by Levenberg (1944). Equation (2.18) becomes

 (2.20)

Where α is the Marquardt parameter and I is the n × n identity matrix.

It can be shown that the gradient vector g can be expressed as

 (2.21)

It follows from equations (2.20) and (2.21) that when α is very high the direction of u
approaches that of the negative of the gradient vector. When α is zero, equation (2.20)

P aram eter #1

P
ar

am
et

er
 #

2

C ontours o f equa l
ob jective function
va lue

Initia l param eter
estim ates

QrJIQJJu tt 1)(−+= α

QrJg t2−=
The Marquardt Parameter 19

n
cess

ation

or

ment

 initial
he
,
ST
is equivalent to equation (2.18). Thus for the initial optimization iterations it is ofte
beneficial for α to assume a relatively high value, decreasing as the estimation pro
progresses and the optimum value of Φ is approached.

Parameter Scaling

For many problems, especially those involving different types of observations and
parameters whose magnitudes may differ greatly, the elements of J can be vastly
different in magnitude. This can lead to round-off errors as the upgrade vector is
calculated through equation (2.20). Fortunately, this can be circumvented to some
extent through the use of a scaling matrix S. Let S be a square, n × n matrix with
diagonal elements only, the i'th diagonal element of S being given by

 (2.22)

Introducing S into equation (2.20) the following equation can be obtained for S-1u:

 (2.23)

It can be shown that although equation (2.23) is mathematically equivalent to equ
(2.20) it is numerically far superior.

If α is zero, the matrix (JS)tQJS + αStS has all its diagonal elements equal to unity. F
a non-zero α the diagonal elements of (JS)tQJS + αStS will be greater than unity,
though in general they will not be equal. Let the largest element of αStS be denoted as
λ, referred to henceforth as the "Marquardt lambda". Then the largest diagonal ele
of the scaled normal matrix (JS)tQJS + αStS of equation (2.23) will be 1 + λ.

The Marquardt Lambda

As outlined at the end of the previous section, the largest element of αStS is denoted as
λ and referred to as the Marquardt lambda. PEST requires that the user supply an
value for λ. During the first optimization iteration PEST solves equation (2.23) for t
parameter upgrade vector u using that user-supplied λ. It then upgrades the parameters
substitutes them into the model, and evaluates the resulting objective function. PE
then tries another λ, lower by a user-supplied factor than the initial λ. If Φ is lowered, λ
is lowered yet again. However if Φ was raised by reducing λ below the initial λ, then λ
is raised above the initial lambda by the same user-supplied factor, a new set of
parameters obtained through solution of equation (2.23), and a new Φ calculated. If Φ

2

1

)(
−

= ii
t

ii QJJs

QrJSSSQJSJSuS ttt)())((11 −− += α
20 Chapter 2 - The Mathematics of PEST

ne

.

ring

 a
T

an be
was lowered, λ is raised again. PEST uses a number of different criteria to determi
when to stop testing new λ's and proceed to the next optimization iteration. Normally
between one and four λ's need to be tested in this manner per optimization iteration

At the next iteration PEST repeats the procedure, using as its starting λ either, the λ
from the previous iteration that provided the lowest Φ (if λ needed to be raised from its
initial value to achieve this Φ) or the previous iteration's best λ reduced by the user-
supplied factor. In the vast majority of cases this process results in an overall lowe
of λ as the estimation process progresses.

Testing the effects of a few different λ's in this manner requires that PEST undertake
few extra model runs per optimization iteration. However, this process makes PES
very "robust". If the optimization procedure slows down, changing λ in this fashion
often gets the process moving again.

Optimum Length of the Parameter Upgrade Vector

Inclusion of the Marquardt parameter in equation (2.23) has the desired effect of
rotating the parameter upgrade vector u towards the negative of the gradient vector.
However while the direction of u may now be favorable, its magnitude may not be
optimum

Under the linearity assumption used in deriving all equations presented so far, it c
shown that the optimal parameter adjustment vector is given by βu, where u is
determined using equation (2.23) and β is calculated as

(2.24)

Where, once again, the vector c represents the experimental observations, c0 represents
their current model-calculated counterparts, wi is the weight pertaining to observation i,
and γi is given by:

(2.25a)

That is

(2.25b)

∑

∑

=

=

−
=

m

i
ii

m

i
iiii

w

wcc

1

2

1

2
0

)(

)(

γ

γ
β

∑
= ∂

∂=
n

j j

i
i b

c

1

0γ

Ju=γ
Optimum Length of the Parameter Upgrade Vector 21

t
where J represents the Jacobian matrix once again. If b0 holds the current parameter se
the new, upgraded set is calculated using the equation

(2.26)ubb β+= 0
22 Chapter 2 - The Mathematics of PEST

ighted

EST to
ide

 to

e
d to

sed
3
3 - PEST's Implementation of the Method

The previous chapter discussed the theory behind PEST, that is the method of we
least squares and its application to non-linear parameter estimation. This chapter
discusses the way in which the least squares method has been implemented in P
provide a general, robust, parameter estimation package that is usable across a w
range of model types. Appendix B contains a detailed description of all the PEST
control files and the parameters found in the control files.

Explanation of Parameter Operations

There are a number of parameter operations which can be performed by the user
increase the accuracy of any WinPEST run. The operations are as follows and are
included in the following sections.

• Parameter Transformation
• Fixed and Tied Parameters
• Upper and Lower Parameter Bounds
• Scale and Offset
• Parameter Change Limits
• Damping of Parameter Changes
• Temporary Holding of Insensitive Parameters
• Observation Groups
• Termination Criteria

Parameter Transformation

PEST allows for the logarithmic transformation of some or all parameters. Often th
parameter estimation process is much faster and more stable when PEST is aske
estimate the log of a parameter, rather than the parameter itself.

PEST requires that each parameter be designated, in the PEST control file, as
untransformed, log-transformed, fixed or tied. The latter two options will be discus
Explanation of Parameter Operations 23

ing
ents
EST

ted in

 the
pplied

ove

e log

r

ter
also
ST
er

hat a

ation

s.
in the next section. If a parameter is log-transformed, any prior information pertain
to that parameter must pertain to the log (to base 10) of that parameter. Also, elem
of the covariance, correlation coefficient and eigenvector matrices calculated by P
pertaining to that parameter refer to the log of the parameter rather than to the
parameter itself. However, PEST parameter estimates and confidence intervals lis
the run record file refer to the actual parameter.

You should never ask PEST to logarithmically transform a parameter that has a
negative or zero initial value, or a parameter that may become negative or zero in
course of the estimation process. Hence, a log-transformed parameter must be su
with a positive lower bound.

• PEST allows you to logarithmically transform parameters, which may impr
the parameter estimation process.

• The co-variance, correlation coefficients and eigenvector values refer to th
of the parameter.

• However, the parameter estimates and confidence intervals refer to the
untransformed parameter.

• Typically, parameters are log-transformed when their values can vary ove
several orders of magnitude (e.g. conductivity).

• The transformation of a parameter is defined by PARTRANS in the PEST
control file (projectname.pst).

Fixed and Tied Parameters
PEST allows a parameter to be declared as "fixed” and take no part in the parame
estimation process. In this case, its value will not vary from its initial value. PEST
allows one or more parameters to be tied (i.e. linked) to a "parent" parameter. PE
does not estimate a value for a tied parameter. Rather PEST adjusts the paramet
during the estimation process, such that the initial ratio to the parent parameter is
maintained. Thus, tied parameters "piggyback" on their parent parameters. Note t
parameter cannot be tied to a parameter, which is either fixed, or tied to another
parameter itself.

• PEST allows you to fix a parameter, which means it will not be part of the
estimation process.

• PEST allows you to tie a parameter to another parameter.
• The ratio of a tied parameter to its parent remains constant during the estim

process.
• Parameters cannot be tied to other tied parameters or to fixed parameter
• Whether a parameter is fixed or tied is defined by PARTRANS in the PEST

control file (projectname.pst).
24 Chapter 3 - PEST's Implementation of the Method

mum

thm
meter
meter

 a large
 large
uch

h
is

n
or

eter to
e

uch a
Upper and Lower Parameter Bounds

As well as supplying an initial estimate for each parameter, you must also supply
parameter upper and lower bounds. These bounds define the maximum and mini
values, which a parameter is allowed to assume during the optimization process.

Figure 3.3: Example parameter trajectory for a two parameter
model

It is important that upper and lower parameter bounds be chosen wisely. Often
parameters can lie only within certain well-defined limits. For example, if the logari
or square root of a particular parameter is taken during a simulation, then that para
must never become negative or if the reciprocal is taken of a parameter, the para
must never be zero.

In some cases, where a large number of parameters are being estimated based on
number of measurements, PEST may try to adjust some parameters to extremely
or extremely small values (especially if the measured values are not consistent). S
extremely large or small values may result in floating point errors or difficulties wit
numerical convergence. Carefully choosing parameter bounds may circumvent th
problem.

Figure 3.1 illustrates both the means that PEST uses for finding the minimum whe
parameter bounds are defined and the drawback to specifying improper bounds. F
example, if a parameter upgrade vector is calculated which would cause a param
move beyond its bounds, PEST will instead assign the upper or lower bound to th
parameter value. On the next iteration, if the upgrade vector would still take the
parameter outside of the current bounds, PEST temporarily fixes the parameter. S

p1

p2

Objective function minimum

Parameter trajectory
Explanation of Parameter Operations 25

hat
in, or

ough

ide

ers

olds

 the

 the

mple,
EST
kness,

 of the
 may

. In
ss to

ored

ays
 is
 new
t
process is repeated for all the parameters until an upgrade vector is determined t
either moves parameters from their bounds back into the allowed parameter doma
leaves them fixed.

The strength of this strategy is that PEST can search along the boundaries of the
parameter domain looking for the smallest value of the objective function, even th
the global minimum of the objective function may lie outside of the parameter domain.

The obvious drawback of setting bounds is that the global minimum might lie outs
of the bounds that you set. Therefore, it is important to chose your bounds
appropriately.

At the beginning of each new optimization iteration all temporarily-frozen paramet
are freed to allow them to move back inside the allowed parameter domain. The
stepwise, temporary freezing of parameters is then repeated.

• It is important to chose upper and lower bounds wisely.
• If an updated parameter value is outside of its bounds, PEST temporarily h

the parameter at its boundary value.
• The strategy that PEST uses, allows PEST to search along the bounds of

parameter domain looking for the minimum value of the objective function
• A parameter’s upper and lower bounds are defined by PARLBND and

PARUBND in the PEST control file (projectname.pst).

Scale and Offset

Before writing a parameter value to a model input file, PEST multiplies the value by
scale and adds the offset. Both of which must be specified for every parameter.

The scale and offset variables can be very convenient in some situations. For exa
for a parameter, such as elevation, you may wish to redefine the parameter that P
optimizes as the elevation minus some datum. In this case, the result may be thic
which may be a more "natural" parameter for PEST to optimize than elevation. In
particular, it may make more sense to express a derivative increment as a fraction
thickness rather than as a fraction of the elevation. Also, the optimization process
be better behaved if the thickness parameter is log-transformed. Again it would be
surprising if the log-transformation of elevation improved optimization performance
the manner just described, PEST could optimize thickness, converting this thickne
elevation every time it writes a model input file by adding the reference elevation st
as the parameter offset.

The scale variable is equally useful. A model parameter may be such that it is alw
negative, which means it cannot be log-transformed. However if a new parameter
defined as the negative of the model-required parameter, PEST can optimize this
parameter, log-transforming it if necessary to enhance optimization efficiency. Jus
26 Chapter 3 - PEST's Implementation of the Method

E

 offset

l the
t)
ke no
s must
 and

 and

st like

d

he
s
ay not

it on

r-

alue
before it writes the parameter to a model-input file, PEST multiplies it by its SCAL
variable (-1 in this case) so that the model receives the parameter it expects.

If you do not wish a parameter to be scaled and offset, enter its scale as 1 and its
as zero.

It should be stressed that PEST is oblivious to a parameter's scale and offset unti
moment it writes its value to a model input file. It is at this point (and only this poin
that it first multiplies by the scale and then adds the offset. The scale and offset ta
other part in the parameter estimation process. Note that fixed and tied parameter
also be supplied with a scale and offset, just like their adjustable (log-transformed
untransformed) counterparts.

• Before writing a parameter value to a model input file, PEST multiplies the
value by the scale and then adds the offset.

• If you do not wish a parameter to be scaled and offset, enter its scale as 1
its offset as zero.

• Fixed and tied parameters must also be supplied with a scale and offset, ju
their adjustable counterparts.

• A parameter’s scale and offset values are defined by the SCALE and OFFSET
terms in the PEST control file (projectname.pst).

Parameter Change Limits

PEST cannot adjust a parameter above its upper bound or below its lower bound.
However, there is a further limit on parameter changes, determined by the amount by
which a parameter is permitted to change in any optimization iteration.

If the model under PEST's control exhibits reasonably linear behavior, the update
parameter set determined by equations (2.23), (2.24), and (2.26) will result in a
lowering of the objective function. However if the model is highly non-linear, the
parameter upgrade vector may "overshoot" the objective function minimum, and t
new value of the objective function may actually be worse than the old one. This i
because equations (2.23) and (2.24) are based on a linearity assumption which m
extend as far into parameter space from the current parameter estimates as the
magnitude of the upgrade vector, which they predict.

To reduce the possibility of overshoot, it is good practice to place a reasonable lim
the maximum change that any adjustable parameter is allowed to undergo in any
optimization iteration. Such limits may be defined as either relative-limited or facto
limited. However, log-transformed parameters must be factor-limited.

If a parameter is factor-limited, the maximum allowable change of the parameter v
per iteration is defined as follows:
Explanation of Parameter Operations 27

st be

ges

able

r all

 at
Let f represent the user-defined maximum allowable parameter factor change (f mu
greater than one). Then if b0 is the value of the parameter at the beginning of the
optimization iteration, the value of the parameter at the beginning of the next
optimization iteration, b, will lie between the limits

b0/f ≤ b ≤ fb0 (3.1a)

if b0 is positive, and

fb0 ≤ b ≤ b0/f (3.1b)

Figure 3.4: Two parameter example of how an upgrade vector
without factor change limits can overshoot the minimum of the
objective function.

if b0 is negative.

The implication of equation (3.1) is that a parameter subject to factor-limited chan
can never change sign.

On the other hand if the parameter change is relative-limited, the maximum allow
change of the parameter value per iteration is defined as follows:

Let r represent the user-defined maximum allowable relative parameter change fo
relative-limited parameters. r can be any positive number. Then if b0 is the value of a
relative-limited parameter at the beginning of an optimization iteration, its value b
the beginning of the next optimization iteration will be such that

|b - b0|/|b0| ≤ r (3.2)

p1

p2

Upgrade Vector with
factor change limits

Upgrade
Vector
without factor
change limits
28 Chapter 3 - PEST's Implementation of the Method

e sign.
or

ome

s
nt

ch is
ay

ll so
nt

 the
Thus,
initial
lue will
d the

r, that

ted.

qual
even
 this

ters
In this case, unless r is less than or equal to unity, a parameter can, indeed, chang
However there is a danger in using a relative limit for some types of parameters. F
example, if r greater than or equal to 1, b may become a minute fraction of b0 (or even
zero), without approaching the parameter change limit. For some parameters in s
models this will be fine, however, in other cases a parameter factor change of this
magnitude may invalidate model linearity assumptions.

In implementing the conditions set by equations (3.1) and (3.2), PEST limits the
magnitude of the parameter upgrade vector such that neither of these equations i
violated. Naturally, if only one type of parameter change limit is featured in a curre
PEST run (i.e. parameters are all factor-limited or are all relative-limited) only the
pertinent one of these equations is considered.

If, in the course of an optimization run, PEST assigns to a parameter a value, whi
very small in comparison to its initial value, then either of equation (3.1) or (3.2) m
place an undue restriction on subsequent parameter adjustments. Thus if b0 for one
parameter is very small, the changes to all parameters may be set intolerably sma
that equation (3.1) or equation (3.2) is obeyed for this one parameter. To circumve
this problem, PEST provides an additional input variable, FACORIG, which allows
user to limit the effect that an unduly low parameter value can have in this regard.
if the absolute value of a parameter is less than FACORIG times the parameter’s
absolute value and PEST wishes to adjust the parameter such that its absolute va
increase, then FACORIG times its initial value is substituted into equation (3.1) an
denominator of equation (3.2) for the parameter's current value b0. A suitable value for
FACORIG varies from case to case, but 0.001 is often appropriate. Note, howeve
FACORIG is not used to adjust change limits for log-transformed parameters.

• PEST allows parameter changes to be either factor-limited or relative-limi
• A factor-limited parameter is one whose new value is limited to a specified

fraction of the value from the previous iteration.
• A relative-limited parameter is one whose change between iterations is

limited to a specified fraction.
• Log-transformed parameters must be factor-limited.
• Factor-limited parameters can never change sign.
• For relative-limited parameters, if the specified fraction is greater than or e

to 1, the new value may become a minute fraction of the previous value (or
zero), without approaching the parameter change limit. For some models
may invalidate the assumption of model linearity.

• To control very small changes in parameter values, the parameter FACORI
is used as a minimum fraction for a parameter change.

• A typical value for FACORIG is 0.001.
• FACORIG is not used to adjust change limits for log-transformed parame
• The type of parameter change limit for each parameter is defined by

PARCHGLI in the PEST control file (projectname.pst).
Explanation of Parameter Operations 29

nd

r

d by
eter
ose,

ds, and

e
 p

olute

e
an
• The two input variables, RELPARMAX and FACPARMAX , provide the
maximum allowed relative and factor changes limits for all relative-limited a
factor-limited parameters, respectively.

Damping of Parameter Changes

Parameter over-adjustment and any resulting oscillatory behavior of the paramete
estimation process is further mitigated by the "damping" of potentially oscillatory
parameter changes. The method used by PEST is based on a technique describe
Cooley (1983) and used by Hill (1992). To see how it works, suppose that a param
upgrade vector βu has just been determined using equations (2.23) and (2.24). Supp
further, that this upgrade vector causes no parameter values to exceed their boun
that all parameter changes are within factor and relative limits.

For relative-limited parameters, let the parameter undergoing the proposed relativ
change of greatest magnitude be parameter i. Let its proposed relative change bei. For
factor-limited parameters that are not log-transformed, define qj for parameter j as

qj=βuj /(fbj - bj)

if uj and bj have the same sign, and

qj=βuj /(bj - bj /f)

if uj and bj have the opposite sign (3.3)

where bj is the current value for the Goth parameter and f is the maximum allowed
factor change for all factor-limited parameters. Let the parameter for which the abs
value of q is greatest be parameter l, and let q for this parameter be ql. Finally, let the
log-transformed parameter for which the absolute value of βu is greatest be parameter
k, and let the element of βu pertaining to this parameter be βuk. Let i0, l0, k0, p0i, q0l
and β0u0k define these same quantities for the previous iteration except that, for th
previous iteration, they are defined in terms of actual parameter changes rather th
proposed ones. Now define s1, s2 and s3 such that

s1 = pi /p0i

if i = i 0. Otherwise,

s1 = 0 (3.4a)

s2 = ql /q0l

if l = l 0. Otherwise,

s2 = 0, and (3.4b)
30 Chapter 3 - PEST's Implementation of the Method

d, by

his lies
nder
hich
recise.

EST
n make
eter
ion) of

ctor,
r
r this
sitive

zation

itive)

ters
d
un
un.
s3 = βuk /β0u0k

if k = k0. Otherwise,

s3 = 0 (3.4c)

Let s be the minimum of s1, s2 and s3 and define ρ as:

ρ = (3 + s)/(3 + |s|) (3.5a)

if s ≥ -1. Otherwise,

ρ = 1/(2|s|) (3.5b)

Then, the oscillatory behavior of the parameter estimation process can be mitigate
defining a new parameter upgrade vector v by

v=ρβu (3.6)

Temporary Holding of Insensitive Parameters

The probability of a parameter estimation process running smoothly and efficiently
decreases with the number of parameters being estimated. Part of the reason for t
in the increased probability that several of the parameters are highly correlated. U
such circumstances the normal matrix may become singular, or almost singular, w
means that the calculation of the parameter upgrade vector can become very imp

In highly parameterized problems, the objective function is likely to be relatively
insensitive to some parameters in comparison to other parameters. As a result, P
may decide that large changes are required for certain parameters so that they ca
a contribution to reducing the objective function. However, limits are set on param
changes and these limits are enforced such that the magnitude (but not the direct
the parameter upgrade vector is reduced, if necessary.

If a parameter is particularly insensitive, it may dominate the parameter upgrade ve
i.e. the magnitude of the change calculated by PEST for this parameter may be fa
greater than that calculated for any other parameter. However, when the change fo
parameter has been reduced by its relative or factor change limits, other more sen
parameters may not change much at all. The result is that at the end of the optimi
iteration the objective function may have been hardly changed and subsequent
convergence may be intolerably slow.

This phenomenon can be avoided by temporarily holding troublesome (i.e. insens
parameters at their current value for an iteration or two. Such parameters are then
removed from the calculation of the parameter upgrade vector. Offending parame
can often be identified as those undergoing the maximum relative- or factor-limite
changes during an optimization iteration. PEST records this information during a r
and in WinPEST you can view the current sensitivity of all parameters during the r
Explanation of Parameter Operations 31

tivity
f the
ht
t

ample,

an
eters.
leased

e

e, it
and

rs at

de

ing a

n
ssible
group.

 of
 that
e of
PEST records the “composite sensitivity” of each parameter to a parameter sensi
file after every optimization iteration. The composite sensitivity is the magnitude o
column of the Jacobian matrix pertaining to that parameter modulated by the weig
attached to each observation, or Sii of equation (2.22). The parameters with the lowes
sensitivities are the most likely to cause trouble.

In some cases, it may be necessary to hold several parameters in this way. For ex
once a particular troublesome parameter has been identified and held, another
insensitive parameter may in turn dominate the parameter upgrade vector. This c
continue until the set of parameters has been reduced to a set of sensitive param
Now, once the objective function has been reduced, the held parameters can be re
one at a time until the final optimized solution has been found.

After PEST calculates the Jacobian matrix, and immediately before calculating th
parameter upgrade vector, PEST looks for a projectnam.HLD file. If it does not find it,
PEST proceeds with its execution in the normal manner. However, if it finds this fil
reads it for the current optimisation iteration. You can edit the .HLD file at any time
PEST will read it at the next opportunity. Alternatively, the hold facility in WinPEST
updates this file automatically

• The probability of a parameter estimation process running smoothly and
efficiently decreases with the number of parameters being estimated.

• If a parameter is particularly insensitive, it may adversely dominate the
parameter upgrade vector, making convergence intolerably slow.

• This problem can be avoided by temporarily holding insensitive paramete
their current value for an iteration or two.

• PEST looks for and reads the projectname.HLD file after it calculates the
Jacobian matrix and immediately before it calculates the parameter upgra
vector.

• WinPEST provides an easy means of temporarily holding parameters dur
PEST run.

Observation Groups

The objective function is calculated as the squared sum of weighted residuals
(including prior information). If is often of interest to know what contribution certai
observations, or groups of observations, make to the objective function. This is po
through the use of “observation groups”. Each observation must be assigned to a
The number and names of such groups are specified by the user.

The ability to calculate the contribution made by individual observations or groups
observations to the objective function is useful in situations where the user wishes
different types of information contribute an approximately equal amount to the valu
32 Chapter 3 - PEST's Implementation of the Method

er

s

ange

s.

cess.
that
f the
ove
 these
to
 of the
top. If
nates
und or

tle,

 the
n,
ns.

on,
ior
g
fore,
the objective function. This ensures that no observation group is “drowned” by oth
information, or dominates the inversion process.

If prior information is used in the inversion process, PEST lists the contribution
collectively made to the objective function by all prior information items. Again, thi
allows the user to assess the impact that prior information exerts on the objective
function and hence on the inversion process.

• Each observation must be assigned to an observation group.
• PEST provides the contribution made by each observation group to the ch

in the objective function.
• Likewise, PEST provides the contribution made collectively by the prior

information, if it is used.
• This information can be used to ensure that no observation group or prior

information either drowns other groups, or dominates the inversion proces

Termination Criteria

PEST uses a number of different criteria to determine when to halt the iterative pro
However, only one of them (when the objective function equals zero) guarantees
the objective function has indeed been minimized. In difficult circumstances, any o
other termination criteria could be satisfied even if the objective function is well ab
its minimum and the parameters are far from optimal. Nevertheless, in most cases
termination criteria do, indeed, signify convergence of the adjustable parameters
their optimal values. In any case, PEST has to stop executing sometime and each
termination criteria described in this section provide as good a reason as any to s
these criteria are properly set, you can be reasonably sure that when PEST termi
the parameter estimation process, either the optimal set of parameters has been fo
further PEST execution will not find it.

There are two indicators that either the objective function is at, or very close to, its
minimum, or that further PEST execution is unlikely to get it there. The first is the
behavior of the objective function itself. If the objective function is changing very lit
or not at all, over a number of successive iterations, the time has come to cease
execution. PEST stops the process if the objective function has not changed by a
minimum amount over a specified number of iterations. Alternatively, PEST stops
parameter iteration process if there has been no reduction in the objective functio
below its current minimum value, for a specified number of “unsuccessful” iteratio

The second indicator of either convergence to the minimum of the objective functi
or of the unlikelihood that further iterations will find a better minimum is the behav
of the adjustable parameters. If successive iterations are not significantly changin
parameter values, there is probably little to gain in continuing with process. There
Explanation of Parameter Operations 33

,

ST

, or if
r

ill
 next

 zero.

nds.

ons

able
ter
PEST will stop execution if the largest relative parameter change over a specified
number of iterations has been less than a specified value.

Finally, PEST also requires an upper limit on the number of optimization iterations
which PEST will carry out.

Other termination criteria are set internally. PEST will terminate the optimization
process if it calculates a parameter set for which the objective function is zero. PE
will also terminate, if the gradient of the objective function with respect to all
parameters equals zero, if a zero-valued parameter upgrade vector is determined
all parameters are simultaneously at their limits and the parameter upgrade vecto
points out of bounds. However, if PEST is currently calculating derivatives using
forward differences and the option to use central differences is available, PEST w
switch to central differences for greater derivatives accuracy before going on to the
iteration.

PEST terminates execution if:

• the objective function goes to zero.
• the gradient of the objective function with respect to all parameters equals
• the parameter upgrade vector equals zero.
• all parameters are at their limits and the upgrade vector points out of bou
• the maximum number of iterations is reached (NOPTMAX).
• the objective function has not changed by a minimum amount (PHIREDSTP)

over a specified number of iterations (NPHISTP).
• there has been no reduction in the objective function, below its current

minimum value, for a specified number of “unsuccessful” iterations
(NPHINORED).

• if the largest relative parameter change over a specified number of iterati
(NRELPAR) has been less than a specified value (RELPARSTP)

The Calculation of Derivatives

The following section provides information on:

• The Forward and Central Differences,
• Parameter Increments for Calculating Derivatives and,
• How to Obtain Trustworthy Derivatives.

Forward and Central Differences

The ability to calculate the derivatives of all observations with respect to all adjust
parameters is fundamental to the Gauss-Marquardt-Levenberg method of parame
34 Chapter 3 - PEST's Implementation of the Method

ecause
se
tives

e to

lem
ow

pler

 more

tive
n

e
ter in
e is at
he
rivative

med
, if

 be
 must
es at
r one to

well.
this

tives
ues
ws
 long
mally
cting
estimation. These derivatives are stored as the elements of the Jacobian matrix. B
PEST is independent of any model of which it takes control, it cannot calculate the
derivatives using formulae specific to the model. Hence it must evaluate the deriva
itself using model-generated observations calculated on the basis of incrementally
varied parameter values.

Accuracy in derivative calculation is fundamental to PEST's success in optimizing
parameters. Experience has shown that the most common cause of PEST's failur
find the global minimum of Φ in parameter space is the presence of round-off errors
incurred in the calculation of derivatives. Fortunately, on most occasions, this prob
can be circumvented by a wise choice of those input variables, which determine h
PEST evaluates derivatives for a particular model.

The PEST input variables affecting derivative calculation pertain to parameter
"groups". In PEST, each parameter must be assigned to such a parameter group.
Assigning derivative variables to groups, rather than to individual parameters is sim
and requires less memory. In many instances, parameters naturally fall into one or
categories. For example, the hydraulic conductivity of each zone being estimated.
However, if you wish to treat each conductivity zone differently, as far as the deriva
calculation is concerned, this can be done by assigning each conductivity to its ow
group.

The simplest way to calculate derivatives is the method of forward differencing (se
Figure 3.3). To calculate derivatives in this manner, first PEST varies each parame
turn by adding an increment to its current value (unless the current parameter valu
its upper bound, in which case PEST subtracts the increment). Then PEST runs t
model, reads the altered, model-generated observations and approximates the de
of each observation with respect to the incrementally-varied parameter as the
observation increment divided by the parameter value increment. For log-transfor
parameters this quotient is then multiplied by the current parameter value. Hence
derivatives with respect to all parameters are calculated by the method of forward
differences, the filling of the Jacobian matrix requires that a number of model runs
carried out equal to the number of adjustable parameters. As the Jacobian matrix
be re-calculated for every optimization iteration, each optimization iteration requir
least as many model runs as there are adjustable parameters (plus at least anothe
test parameter upgrades). The calculation of derivatives is by far the most time-
consuming part of PEST's parameter estimation procedure.

If the parameter increment is properly chosen (see below), this method can work
However, as the minimum of the objective function is approached, often to reach
minimum PEST must calculate the parameters with a greater accuracy than that
available by the method of forward differences. Thus, PEST also allows for deriva
to be calculated using three parameter values and corresponding observation val
rather than two, as are used in the method of forward differences. Experience sho
that derivatives calculated in this way are accurate enough for most occasions, so
as the parameter increments are chosen wisely. As three-point derivatives are nor
calculated by adding an increment to the current parameter value and then subtra
The Calculation of Derivatives 35

es. If
is
 time.

 In the

is
d
ce

to The
 of
ue of

odel

late

ision,
se the
.

res
meters.
ers,
the same increment, the method is referred to as the method of "central" differenc
a parameter value is at its upper bound or lower bound, the parameter increment
subtracted or added, respectively, once and then twice, the model being run each

PEST uses one of three methods to calculate central derivatives (see Figure 3.3).
first or "outside" method, only the two outer parameters are used to calculate the
derivative of the objective function with respect to the current parameter value. Th
method yields a more accurate derivative value than the forward difference metho
because the (unused) current parameter value is at the center of the finite differen
interval (except where the parameter is at its upper or lower bound). The second
method is to define a parabola through the three parameter-observation pairs and
four alternative methods of derivative calculation in PEST calculate the derivative
this parabola with respect to the incrementally varied parameter at the current val
that parameter. This method, referred to as the "parabolic" method, can yield very
accurate derivatives if model-calculated observation values can be read from the m
output file with sufficient precision. The third method is to define a least-squares
straight line of best fit through the three parameter-observation pairs and to calcu
the derivative as the slope of this line.This method may work best where model-
calculated observations cannot be read from the model output file with great prec
because of either deficiencies in the model's numerical solution method, or becau
model writes numbers to its output file using a limited number of significant figures

If central derivatives are used for all parameters, each optimization iteration requi
that at least twice as many model runs be carried out as there are adjustable para
If the central method is used for some parameters and the forward method for oth
the number of model runs will lie somewhere between the number of adjustable
parameters and twice the number of adjustable parameters.
36 Chapter 3 - PEST's Implementation of the Method

n
n.

ns as
Figure 3.5: The four alternative methods of derivative calculation
in PEST

• Round-off errors during the calculation of derivatives are the most commo
cause of PEST's failure to find the global minimum of the objective functio

• PEST variables that control the calculation of derivatives pertain only to
parameter groups.

• PEST can calculate derivatives using forward differences or central
differences, but using central differences requires twice as many model ru
forward differences.

pi

oj

Current value

Incremented value

Forward Derivatives

pi

oj

Current value

Incremented value

Outside Central Derivatives

Decremented
value

pi

oj

Current value

Incremented value

Best-fit Central Derivatives

Decremented
value

pi

oj

Current value

Incremented value

Parbolic Central Derivatives

Decremented
 value
The Calculation of Derivatives 37

n,

ethod
ent

und
be
e,

l
t to

alue
ter

 of
values

er.

sed

g the

e

” or
used
Parameter Increments for Calculating Derivatives

PEST provides considerable flexibility in the way parameter increments are chose
because of the importance of reliable derivative calculations. Mathematically, a
parameter increment should be as small as possible so that the finite-difference m
provides a good approximation to the theoretical derivative. However, if the increm
is made too small, the accuracy of derivative calculations will suffer because of ro
off errors. For example, for forward differences, two, possibly large, numbers will
subtracted yielding a much smaller number. In most cases intuition and experienc
backed up by trial and error, will be your best guide in reconciling these conflicting
demands on increment size.

There are three PEST input variables by which you can control how derivative
increments are calculated, the increment type (INCTYP), the increment value or
fraction (DERINC) and the minimum increment (DERINCLB). In PEST, there are
three types of derivative increments: absolute, relative and rel_to_max. If the increment
type is absolute, the user supplies the actual increment (DERINC) used for all
parameters in the group. This increment is added to or subtracted from (for centra
derivatives) the current parameter value, when calculating derivatives with respec
that parameter. If the increment type is relative, the increment is calculated by
multiplying the user-supplied increment value (DERINC) by the current absolute v
of the parameter. Thus, the magnitude of the increment is adjusted as the parame
itself changes. If the increment type is rel_to_max, the parameter increment is
calculated by multiplying the user-supplied value (DERINC) by the absolute value
the largest member of the parameter group. This can be a useful if the parameter
vary widely, including down to zero. The "relative" aspect of the rel_to_max type can
lead to problems since the increment is calculated as a fraction of the maximum
absolute value occurring within a group, rather than as a fraction of each paramet
Thus, an individual parameter can reach near-zero values without its increment
simultaneously dropping to zero.

To protect against near-zero increments for relative and rel_to_max increments, PEST
allows you to specify a minimum absolute increment (DERINCLB). This value is u
in place of the calculated relative or rel_to_max increment if the calculated increment
falls below the minimum increment value.

PEST also allows you to specify whether the derivatives are always calculated usin
forward-difference method, (“always_2”) or by the central-difference method
("always_3"). Alternatively, if the derivative method is specified as “switch” then
PEST will start the optimization using forward differences for all members of the
group, and switch to central differences when the relative reduction in the objectiv
function between optimization iterations is less than the specified tolerance
(PHIREDSWH). This control over the method of calculating the derivatives is
determined by the PEST group input variable FORCEN.

If the a derivative method is chosen that allows for central differences (“always_3
“switch”) then two additional group variables are required. The first is the method
38 Chapter 3 - PEST's Implementation of the Method

lier

es is
tion

 if
ll.

um
n as
nt is

the

 the
r
lues

ess
 will
as the

he
ish

ample,
, and
sible

ectify
le

ith

meter
imited
to calculate the central derivative (DERMTHD), which can have the values
"outside_pts", "parabolic" or "best_fit". The second variable is the increment multip
for the three central derivative methods (DERINCMUL). Sometimes it is useful to
employ larger increments for central derivative calculations than for forward
derivatives calculations, especially where the model output versus parameter valu
"bumpy" (see Figure 3.4). The parabolic method, which is a higher-order interpola
scheme, may allow you to place parameter values, and hence model-generated
observation values, farther apart for calculating derivatives. This may increase the
significance of the resulting differences from the derivative calculations. However,
the increment is raised too high, the precision of the derivatives must ultimately fa

For increments calculated using the "relative" and "rel_to_max" methods, the minim
absolute increment (DERINCLB) has the same role in central derivatives calculatio
it does in forward derivatives calculation. However, the minimum absolute increme
not multiplied by the increment multiplier (DERINCMUL).

If a parameter is log-transformed, it is wise that its increment be calculated using
"relative" method, though PEST does not insist on this.

PEST is also concerned that the derivative increment is not too large compared to
width of the parameter domain. To ensure this, PEST will object if the a paramete
increment (either read directly as "absolute" or calculated from initial parameter va
as "relative" or "rel_to_max") exceeds the parameter range (as defined by the
parameter's upper and lower bounds) divided by 3.2. If during the estimation proc
the derivative increment exceeds the parameter range divided by 3.2, then PEST
automatically adjust the increment so that the parameter limits are not exceeded
increment is added or subtracted from the current parameter value.

You must be careful when choosing an increment for a parameter to ensure that t
parameter can be written to the model input file with sufficient precision to distingu
an incremented parameter value from one that has not been incremented. For ex
if a parameter is written to a space in the template file that is four characters wide
if the current parameter value is 0.01 and the increment is 0.0001, it will not be pos
to discriminate between the parameter with and without its increment added. To r
this situation, you must either increase the parameter field width in the template fi
(which would require you to change the template files) or increase the value of the
increment.

It should be pointed out that PEST writes a parameter value to a model input file w
the maximum possible precision, given the parameter field width provided in the
template file. Also, for the purposes of derivative calculations, PEST adjusts a
parameter increment to be exactly equal to the difference between a current para
value and the incremented value of that parameter as represented (possibly with l
precision) in the model input file, as read by the model.
The Calculation of Derivatives 39

tive.

r-
e

od

d

file

n. It
in
 a

ver
 of

ith it
e

er
ime
• A parameter increment should be as small as possible so that the finite-
difference method provides a good approximation to the theoretical deriva

• However, if the increment is made too small, the accuracy of derivative
calculations will suffer because of round off errors.

• There are three types of derivative increments: absolute, relative and
rel_to_max (INCTYP).

• Absolute – the user supplies the actual increment (DERINC) used for all
parameters in the group

• Relative – the increment is calculated by multiplying the increment value
(DERINC) by the current absolute value of the parameter.

• rel_to_max – the parameter increment is calculated by multiplying the use
supplied value (DERINC) by the absolute value of the largest member of th
parameter group.

• PEST allows you to specify a minimum absolute increment (DERINCLB).
• You can specify whether the derivatives are always calculated using the

forward-difference method, (“always_2”) or by the central-difference meth
("always_3"), or by both (“switch”).

• For central difference derivatives you can specify the derivative method
(DERMTHD), which can have the values "outside_pts", "parabolic" or
"best_fit".

• If a parameter is log-transformed, it is wise that its increment be calculate
using the "relative" method, though PEST does not insist on this.

• PEST will object if the parameter increment exceeds the parameter range
divided by 3.2.

• You must be careful that the parameter can be written to the model-input
with sufficient precision to distinguish an incremented parameter value fro
one that has not been incremented.

How to Obtain Derivatives You Can Trust

Precision in the calculation of the derivatives is essential for successful optimizatio
is essential that any variables governing the numerical solution procedure be set
favor of precision over time. Although the model run-time may be much greater as
result, it would be false economy to give reduced computation time precedence o
output precision. Accurate derivative calculation depends on accurate calculation
model outcomes. If PEST is trying to estimate model parameters on the basis of
imprecise model-generated observations, derivatives calculation will suffer, and w
PEST's chances of finding the parameter set corresponding to the global objectiv
function minimum. Even if PEST is still able to find the global minimum (which it
often will), it may require more optimization iterations to do so, resulting in a great
overall number of model runs, removing any advantages gained in reducing the t
required for a single model run.
40 Chapter 3 - PEST's Implementation of the Method

vely
 is

 too
ot be
tion
 find

f

s

ted

py"
ter
all

 that
e

finite
Figure 3.6: An example of model "granularity", where there is not
a smooth (differentiable) function between the observations and
the parameters.

For example, the matrix solvers used by MODFLOW (e.g. SIP, or PCG2) successi
approximate the solution until "convergence" has been attained. The convergence
deemed acceptable when no element of the solution vector between successive
iterations varies by more than the user-specified tolerance. lIf this threshold is set
large, model precision is reduced. If it is set too small, solution convergence may n
attainable. In any case, the smaller it is set, the greater will be the model computa
time. However, as stated above, PEST may require more optimization iterations to
a solution, thereby removing any advantages gained in reducing the MODFLOW
simulation time. Although PEST will happily attempt an optimization on the basis o
limited-precision, model-generated observations, its ability to find an objective
function minimum decreases as the precision of the model-generated observation
decreases. Furthermore, the greater the number of parameters which you are
simultaneously trying to estimate, the greater will be the deleterious effects of limi
precision model output.

Unfortunately, model-generated observations may still be "granular" in that the
relationship between these observations and the model parameters may be "bum
rather than continuous (see Figure 3.4). In this case, it may be wise to set parame
increments larger than you normally would. If a parameter increment is set too sm
PEST may calculate a local, erroneous "bump" derivative rather than a derivative
reflects an observation's true dependence on a parameter's value. Although a larg
increment incurs penalties due to the poor representation of the derivative by the

pi

oj

Current parameter value

Incremented parameter value

Decremented parameter value
The Calculation of Derivatives 41

al

really
e

will
her

et has

ments
nd

es.

essive

e

ed if

dy-

ting
ge
ads

s

difference method (especially for highly non-linear models), using one of the centr
difference methods can mitigate this. Due to its second order representation of the
observation-parameter relationship, the parabolic method can generate reliable
derivatives even for large parameter increments. However, if model outcomes are
bumpy, the best-fit method may be more accurate. Trial and error will determine th
best method for the occasion.

PEST with MODFLOW and MT3D

Parameter Selection

Although non-linear parameter estimation is a powerful aid to model calibration, it
not work unless conditions are right. The following rules will help you decide whet
PEST is likely to work or not in your particular case.

• Do not ask PEST to estimate more parameters than the observation datas
the power to provide. A fundamental rule is that the number of adjustable
parameters must not exceed the number of observations.

• Do not attempt a detailed parameterisation where borehole information is
sparse. Even though the calibrated model may replicate borehole measure
well, the uncertainties associated with parameter estimates will be large a
model predictions may be greatly in error.

• Avoid parameters that are highly correleated. This occurs when different
combinations of parameter values result in almost the same model outcom
Fortunately, ill-defined parameters or groups of parameters can be easily
identified by their high uncertainty levels, large correlation coefficients and
high eigenvalues (see Chapter 5). In general, the easiest way to avoid exc
parameter correlation is to keep the number of adjustable parameters to a
minimum.

• Never try to estimate parameter combinations for which there is no uniqu
solution. For example, in a steady-state model, if recharge is uniformly
increased by a certain factor, model-generated heads will remain unchang
transmissivity is increased by the same factor. Therefore, you should not
attempt to simultaneously estimate transmissivity and recharge for a stea
state model using water levels as the only observations.

• Closely monitor the solution process if, in a transient model, you are attemp
to simultaneously estimate two out of three of hydraulic conductivity, stora
(or specific yield) and recharge. Although this is theoretically possible if he
and their variations with time are known everywhere, there may not be
sufficient information to estimate two out of three of these parameter type
because water level information is available only at discrete points and at
discrete times.
42 Chapter 3 - PEST's Implementation of the Method

s
ents

 to

s.
the

ter
 to a
e to
• Similarly, be careful when trying to estimate multiple parameter types for
MT3D, such as dispersivity and source concentration. Here the problem i
exacerbated by the often high uncertainly associated with field measurem
of solute concentration and the precision with which MT3D calculates
concentrations.

In summary, the fewer parameter types and the less parameter values that you try
estimate, the better is PEST (or any other optimiser) likely to perform.

Modifying Model Input Files

PEST interfaces with a model through the models own ASCII input and output file
Each time PEST runs a model it first writes user-specified model input files using
parameter values which it wishes the model to use on that particular run. It knows
where to write parameter values to input files through the use of model input file
templates. For PEST to adjust a distributed parameter supplied to MODFLOW or
MT3D through a two-dimensional array or cell-by-cell listing, a template must be
constructed for the file which holds the array or listing. This is usually done by
modifying a model input file, replacing parameter values with "parameter spaces"
(comprising a parameter name enclosed by appropriate delimiters). Each parame
space denotes a contiguous set of characters on the model input file as belonging
particular parameter. It also informs PEST of the number of digits which it may us
write the number representing the parameter.

Table 1: Template example for a two-dimensional array
comprised of four different numbers

 1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 6.7543
 8.4352 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521

par1 # # par1 # # par1 # # par1 # # par1 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par1 # # par1 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par3 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par3 # # par3 # # par2
par4 # # par1 # # par1 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par1 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par4 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par4 # # par4 # # par3 # # par3 # # par3 # # par3
PEST with MODFLOW and MT3D 43

l
nt. If
y of
aces.
 same

 into

s
s
ones

an
ws
For a spatially distributed parameter occupying a two-dimensional array the mode
domain must be subdivided into a handful of zones where the parameter is consta
each number in the array is replaced by an appropriate parameter space, the arra
numbers as represented in the model input file becomes an array of parameter sp
Each zone of parameter constancy within the array is then identified as having the
parameter name.

The first part of Table 1 illustrates a two-dimensional array of numbers subdivided
four zones of equal value. The second part of T able1 shows part of a template file
constructed from it. Before PEST runs the model, it replaces the parameter space
found in the template file by the current values pertaining to those parameters, thu
building an array consisting of four separate numbers and defining four separate z
of parameter constancy

For parameters supplied to MODFLOW or MT3D on a cell-by-cell basis the cells c
be divided into zones of similar value in the same way. For example, Table 2 sho
part of a MODFLOW .DRN file for the Drain Package.

Table 2: Template example for part of the input to
MODFLOW's DRN package.

 1 19 43 2.000E+01 3.000E+00
 1 20 43 2.000E+01 3.000E+00
 1 21 43 2.000E+01 3.000E+00
 1 22 44 2.000E+01 3.000E+00
 1 23 45 2.000E+01 3.000E+00
 1 24 46 2.000E+01 5.000E+00
 1 25 46 2.000E+01 5.000E+00
 1 26 46 2.000E+01 5.000E+00
 1 27 46 2.000E+01 5.000E+00
 1 28 45 2.000E+01 5.000E+00
 1 29 44 2.000E+01 5.000E+00
 1 30 43 2.000E+01 5.000E+00
 1 31 43 2.000E+01 5.000E+00

 1 19 43 2.000E+01 # con1 #
 1 20 43 2.000E+01 # con1 #
 1 21 43 2.000E+01 # con1 #
 1 22 44 2.000E+01 # con1 #
 1 23 45 2.000E+01 # con1 #
 1 24 46 2.000E+01 # con2 #
 1 25 46 2.000E+01 # con2 #
 1 26 46 2.000E+01 # con2 #
 1 27 46 2.000E+01 # con2 #
 1 28 45 2.000E+01 # con2 #
 1 29 44 2.000E+01 # con2 #
 1 30 43 2.000E+01 # con2 #
 1 31 43 2.000E+01 # con2 #
44 Chapter 3 - PEST's Implementation of the Method

s

an be

u
tially
ters

ers.
O

 C.
eates

late

put

 it.

 then
wing
arker
The drain has been subdivided into two zones in each of which the conductance i
assumed uniform. (Note that in this example, the parameterization would probably
benefit by tying all of the conductances to one conductance.

More detailed description of the syntax and structure of the PEST template files c
found in “PEST Template Files” in Appendix B.

Visual MODFLOW’s Template Files

Visual MODFLOW takes care of creating template files for the parameters that yo
select in the PEST Control dialogue. In this dialogue, you can currently select spa
variable anisotropic conductivities, storage parameters and recharge. The parame
that you select here are Visual MODFLOW parameters - not MODFLOW paramet
This means that you can select vertical hydraulic conductivity whereas in MODFL
this term is lumped into the vertical conductance variable.

Visual MODFLOW builds the MODFLOW input files before each run by using a
combination of PERL source files (.SRC files) and template files that are written in
PEST substitutes the current parameter value into the template file, which then cr
the MODFLOW input file in the format outlined by the .SRC files.

An example of a Visual MODFLOW template file can be found in Appendix B.

Reading Output Files

PEST Instruction Files

PEST must be instructed on how to read a model output file and identify model-
generated observations. For the method to work, model output files containing
observations must be text files. PEST cannot read binary files.

Unfortunately, observations cannot be read from model output files using the temp
concept, since neither MODFLOW nor MT3D cannot be relied upon to produce an
output file of identical structure during each model run. So instead of using an out
file template, you must provide PEST with a list of instructions on how to find
observations in the output files (see Ta ble3).

Basically, PEST finds observations in a model output file in the same way that you
would. You run your eye down the file looking for something you recognise - a
"marker". If this marker is properly selected, observations can usually be linked to
For example, if you are looking for the output after 100 days, you may look for

TIME = 100 DAYS

A particular outcome for which you have a corresponding field measurement may
be found, for example, between character positions 23 and 30 on the 4th line follo
the marker. For output files, a marker may be unnecessary as the default initial m
is the top of the file.
PEST with MODFLOW and MT3D 45

EST

el or
model
ken
odel

se
.

d to

l

ead,
During translation Visual MODFLOW creates the instruction files for reading the
MODFLOW heads (projectname.inh), MT3D concentrations (projectname.inc) and
ZoneBudget flows (projectname.inz).

For more detail on the format, structure and syntax of instruction files, see “How P
Reads Model Output Files” in Appendix B.

Interpolating Model Outcomes to Borehole Locations

The data available for groundwater model calibration usually consists of water lev
solute concentration measurements made at boreholes scattered throughout the
domain. The borehole observations may be at a single time, or may have been ta
over a period of time. In either case, model calibration requires the adjustment of m
parameters until the water levels or concentrations generated by the model at the
borehole locations correspond as closely as possible with those actually observed

It is essential for good PEST performance that model-calculated values correspon
the field observations as close as possible. Unfortunately neither MODFLOW nor
MT3D interpolates its calculated heads or concentrations to the actual borehole
locations and measurement times. Therefore, PEST includes the two programs,
MODBORE for MODFLOW and MT3BORE for MT3D, to do the necessary spatia
interpolation. MODBORE and MT3BORE obtain the heads, drawdowns and
concentrations calculated by MODFLOW and MT3D by reading the unformatted h
drawdown or concentration files produced by these models.

Table 3: Example output file and corresponding PEST
instruction file.

SCHLUMBERGER ELECTRIC SOUNDING
Apparent resistivities calculated using the linear filter method
electrode spacing apparent resistivity
 1.00 1.21072
 1.47 1.51313
 2.15 2.07536
 3.16 2.95097
 4.64 4.19023
 6.81 5.87513
 10.0 8.08115

pif @
@electrode@
l1 [ar1]21:27
l1 [ar2]21:27
l1 [ar3]21:27
l1 [ar4]21:27
l1 [ar5]21:27
l1 [ar6]21:27
l1 [ar7]21:27
46 Chapter 3 - PEST's Implementation of the Method

lso
fore

e

each

e

 is
Thus, the "model" run by PEST actually consists of at least two programs. For
MODFLOW calibration PEST runs MODFLOW followed by MODBORE. For MT3D
calibration PEST runs MT3D followed by MT3BORE. For joint MODFLOW/MT3D
calibration PEST runs MODFLOW followed by MODBORE followed by MT3D
followed by MT3BORE.

MODFLOW and MT3D Output Timing

Both MODBORE and MT3BORE interpolate all arrays found in the MODFLOW or
MT3D unformatted output files to the borehole locations specified in Visual
MODFLOW. For steady-state MODFLOW simulations there is only one head and
drawdown array created. However, for transient simulations, Visual MODFLOW a
interpolates the output from MODBORE and MT3BORE to the observed times be
PEST uses the data.

Visual MODFLOW allows you to specify the times at which you want MODFLOW
and MT3D output arrays printed. This is very useful for PEST. If the output times
correspond to the measurement times, then errors in temporal interpolation can b
minimized and the accuracy of the PEST-calculated derivatives improved.

MODBORE and MT3BORE Spatial Interpolation

MODFLOW and MT3D calculate the heads and concentrations at the centroid of
cell. MODBORE and MT3BORE use a bilinear interpolation scheme to interpolate
these calculated nodal values to the actual borehole locations.

For each borehole location, the four neighbouring cell centroids in the the layer ar
determined. Then, the heads, drawdowns or concentrations at these nodes are
interpolated to the borehole location. If the four surrounding nodes have row and
column numbers (i,j), (i+1,j), (i,j+1) and (i+1,j+1), the head at the borehole location
calculated as:

where:

hi,j is the head at the centre of cell (i,j),

x1 = xp - xi,j

x2 = xi,j+1 - xp

y1 = yi,j - yp

y2 = yp - yi+1,j

X = xi,j+1 - xi,j

XY

hyxhyxhyxhyx
h jijijiji 1,111,1121,21,22 ++++ ⋅⋅+⋅⋅+⋅⋅+⋅⋅

=

PEST with MODFLOW and MT3D 47

re the x

. the
rtical

ge of
t have
rid

Y = yi,j - yi+1,j

(xp,yp) are the x and y coordinates of the measurement point, and

(xi,j,yi,j) are the x and y coordinates of the centre of cell (i,j).

In the above expression all coordinates are expressed in a Cartesian system whe
direction corresponds to the positive row direction (i.e. the direction of increasing
column index) and the y direction corresponds to the negative column direction (i.e
direction of decreasing row index). Note that no interpolation takes place in the ve
(i.e. inter-layer) direction.

The above interpolation scheme is slightly modified if a borehole is close to the ed
the model grid, near an inactive zone, or near a dry cell, such that the cell does no
four neighbours. If a borehole lies within an inactive or dry cell, or is outside the g
altogether, a comment is written to the MODBORE or MT3BORE output file.

MODBORE uses the following files:

modbore.in Input file containing file names etc. read by MODBORE

modbore.in.src Standard file from which modbore.in is created each time

projectname.spc Input file containing the MODFLOW grid definition

projectname.lst.flo List of head observation wells

projectname.crd.flo Coordinate file for head observation wells

projectname.hds Binary heads file from MODFLOW

modbore.out Output file containing spatially interpolated heads

projectname.hob Output file with temporally interpolated heads from
modbore.out

MT3BORE uses the following files

mt3bore.in Input file containing file names etc. read by MT3BORE

mt3bore.in.src Standard file from which mt3bore.in is created each time

projectname.spc Input file containing the MODFLOW grid definition

projectname.lst.cnc List of concentration observation wells

projectname.crd.cnc Coordinate file for concentration observation wells

projectname.ucn Binary concentration file from MT3D

mt3bore.out Output file containing spatially interpolated concentrations

projectname.cob Output file with temporally interpolated concentrations from
mt3bore.out
48 Chapter 3 - PEST's Implementation of the Method

s,
 the

ition
means
ER by

ation.
 field

EST

ST
MODBORE and MT3BORE as an Aid to Contouring

MODBORE and MT3BORE read the MODFLOW or MT3D unformatted output file
interpolate the heads and concentration arrays to the borehole locations and write
interpolated values to the modbore.out and mt3bore.out files, respectively. In add
to the interpolated values, these files also contain the borehole coordinates. This
that the data in these files can be read by any contouring program such as SURF
Golden Software. You may have to remove the header to make it work with your
contouring package or extract the timestep of interest if you have a transient simul
Such a contour map can be very useful in model calibration when it is compared to
measurements contoured with the same package.

Using MODBORE and MT3BORE with PEST

When calibrating MODFLOW, it is the temporally interpolated MODBORE output
which PEST must use. Similarly, if you are calibrating MT3D, PEST must use the
temporally interpolated output from MT3BORE. Visual MODFLOW automatically
runs MODBORE and MT3BORE if needed and creates the instruction files (see “P
Instruction Files” on p age45) for these output files.

To use MODBORE or MT3BORE outside of Visual MODFLOW, please see the PE
documentation included as a .pdf file on your installation CD.
PEST with MODFLOW and MT3D 49

50 Chapter 3 - PEST's Implementation of the Method

W

ow
t

down
 can
4
4 - PEST in Visual MODFLOW

The parameter estimization process is now an integral part of the Visual MODFLO
environment. The Chapter deals with

• Assigning Observations to Model Outputs,
• Choosing the Parameters to Optimize,
• Assigning Prior Information,
• Assigning the Objective Function,
• Controlling the PEST Run and,
• Starting the PEST Run.

Assigning Observations to Model Outputs

Visual MODFLOW allows you to relate observations of head, concentration and fl
to model output values. All observations are input to Visual MODFLOW in the Inpu
module.

Head and Concentration observations

Head and concentration observations are input in the Wells mode as seen below

When either head or concentration observations are selected from the Wells drop-
menu, the observation values can be input in the following dialogue. This dialogue
be accessed whenever observations are being added or edited.
Assigning Observations to Model Outputs 51

int.
n

 side.
hat
e

the
lt and
able
u
y
 the
In the Borehole Edit dialogue, you must provide a well name and the map x, y
coordinates of the well. If you add a new well, it will not yet have an observation po
The observation point can be added by clicking in the “Observations Points” sectio
and by default a point will appear at the mid-point of the diagram on the right hand
The elevation of the observation point is important as this defines the model cell t
corresponds to the observed value. Typically, the observation point is defined at th
middle of the screened interval in a well, but this may differ depending on the
stratigraphy and the manner in which the well screen is installed. For example, if
well is screened over the entire depth but the top 10 metres of the profile is fine si
clay, then the observation point may be defined at the midpoint of the more perme
strata. The observation point that is defined is independent of the model grid. If yo
refine the grid or move the model layers, then Visual MODFLOW will automaticall
assign your observations to the appropriate model cell based on where you define
observation point.

Visual MODFLOW allows you to have multiple observation points in a single
borehole. You add observation points by clicking on the Add icon and then either
typing in the elevation or clicking on the borehole and moving the red bar to the
52 Chapter 4 - PEST in Visual MODFLOW

put in

zone

ering
 and

ments

er as
nt
f the
nce

in
s,
ty
ulates

 that
 cells
l.

OW
s are
p the
appropriate level. For each observation point you can type in or import a list of
observed values.

Flow Observations

For flow observations, such as baseflow to a stream, the observations must be in
the Zone Budget mode which is accessed from the ZBud item on the top menu bar.

Zone Budget is a program developed by the USGS, which calculates the zone-to-
flows from the MODFLOW output files. For example, if you divide a river into a
number of Zone Budget zones, Zone Budget will calculate the amount of water ent
each river zone from the model. In this manner, you will be able to map out gaining
losing stretches of the river and calibrate your model to stream baseflow measure
from the field.

In Visual MODFLOW, Zone Budget zones are added to a model in the same mann
all other zones, such as conductivity zones and recharge zones. The only importa
difference is that the model does not need to be re-run if a new zone is added or i
zone boundaries are modified. Only the Zone Budget program needs to be run, si
Zone Budget calculates all of its flows from the MODFLOW output files.

Zone Budget automatically calculates the external flows between the model doma
and the boundary conditions defined in the model. In addition to these basic zone
Visual MODFLOW also creates separate zones for each of the defined conductivi
zones and each of the boundary conditions. Thus, Zone Budget automatically calc
the sum amount of water entering and leaving the model through the river nodes.
However, Visual MODFLOW also creates a proper Zone Budget zone for the cells
are defined as river cells. Thus, the amount of water entering and leaving the river
can also be calculated, since not all water that enters a river cell leaves the mode

Before the user is allowed to enter flow observations in Zone Budget, the MODFL
filees must be translated. Flow observations that correspond to Zone Budget flow
added by clicking on the Observation button on the side menu bar, which brings u
following dialogue:
Assigning Observations to Model Outputs 53

s are
el, the
s. In
m the
In the Zones tab of the Zone Budget Observation dialogue all of the available zone
listed. Since the number of zones could be more than a hundred in a complex mod
Zones tab allows you to select which zones to use in the Zone Budget calculation
the Observations tab, the upper combo box contains the list of selected zones fro
Zones tab, as does the Zones List in the Output module.
54 Chapter 4 - PEST in Visual MODFLOW

the
To
et,

b.

(or

y the
ans of
 the
lists,
udget
Typically, you will have a baseflow measurement to a stream, which should equal
amount of flow entering or leaving the model through a particular stream section.
allow PEST to compare this baseflow measurement to the output from Zone Budg
you must:

[1] Create a new, user-defined zone along the stream section (e.g.Zone 4). This is
essential if there are several conductivity zones along the stream.

[2] Select Zone 4 and the Rivers Zone from the Available Zones list on the Zones ta

[3] In the Observation tab, select Zone 4 from the Zones combo box

[4] Select the checkbox beside River Leakage in the list under “OUT”. Ensure that
the weight is +1 if your measurements are positive values.

[5] Input the time from the beginning of the simulation if your model is transient
any time if it is steady-state) and your measured baseflow rate.

Occasionally, the way Zone Budget calculates flows may not correspond to the wa
flows were measured in the field. For this case, the Observation tab contains a me
adding and subtracting the Zone Budget output such that the sum corresponds to
way the data was measured. Thus, for each zone that you select from one of the
both the zone and its weight are added to the function line. PEST adds the Zone B
Assigning Observations to Model Outputs 55

et

f all,
ecific
r site.
the
to
 of the
vely
e

roup.

output values according to the defined function prior to comparing the Zone Budg
output to the observations.

Observation Groups

The site observations can be naturally divided into head, concentration and flow
observations. However, in Visual MODFLOW each type of observation may be
grouped within these broader classifications. There is two reasons for this. First o
you can use the group function to more easily assess your model calibration in sp
parts of you model, for example in each aquifer or inside your site and outside you
In addition to this, PEST allows you to calculate the contribution of each group to
overall objective function. In this case, the goal is to modify the weights assigned
each group such that one group of observations does not dominate the calculation
objective function. For example, you may have a lot of wells on your site, but relati
few everywhere else. In this case, you may want to balance the weights so that th
observations outside of your site contribute more fairly to the overall calibration.

The observation groups are assigned and edited in the Input mode by clicking on the
[Edit Groups] button on the left hand tool bar when you have selected Heads or
Concentration observations. This will activate the following Edit Group
Observations dialogue.

In this dialogue, you can select an existing user group to edit or add a new user g
Under Groups is listed all of the available observation groups for flow or transport,
56 Chapter 4 - PEST in Visual MODFLOW

 that

d.

Input
EST
including user-defined groups. If you select a group in this list then all of the wells
belong to this group will be selected in the Wells list. The Wells list includes all of the
observation wells in the model. When a well in this list is selected the observation
points associated with the well are listed in the Available Observation Points list,
which means that all observation points for a multiple-level piezometer will be liste
From the list of Available Observation Points, you can move individual observation
points to the list of observation points that are in the current group.

Choosing the Parameters to Optimize

Once the model is working and your field observations have been specified in the
module, then you are ready to run PEST. From the Run module, you can select P
from the top menu bar after selecting Run in the Main Menu.

This will bring up the PEST Control Window.
Choosing the Parameters to Optimize 57

ters

ersion

, but

ing
By default the first view in the PEST Control dialogue is the tree view of the parame
that are available for PEST to estimate. From this tree view you can select your
parameters by clicking on the check boxes beside each parameter. In the current v
of Visual MODFLOW only Conductivity, Storage and Recharge are available in
WinPEST. This list of available parameters will be extended in future versions to
include virtually all Visual MODFLOW flow and transport parameters. Similarly, the
current version of WinPEST is only capable of estimating MODFLOW parameters
future versions will include parameters from all models supported by Visual
MODFLOW, including MODPATH, MT3Dxx and RT3D.

After you have selected your parameters, you can switch to the table view by click
on the Table icon in the menu bar:

this will change the display to the following:
58 Chapter 4 - PEST in Visual MODFLOW

 you
d in the
ch of

tree

al

n

 The

To

ce,
y the

hen
 some
mation
ation
In this view, you can modify any of the PEST variables for each of the parameters
have selected. The Parameters table contains all the parameters that you selecte
tree view and default values for all of the PEST variables. Summary outlines for ea
the Visual MODFLOW parameters are presented below. For a more detailed
description refer to the indicated chapter and page numbers.

Parameters

Parameter

The long name assigned by Visual MODFLOW to the parameters selected in the
view.

PEST Name - PARNME

Parameter label used in the PEST input and output files.

Transformation - PARTRANS and IsTiedTo

The Transformation column defines whether the parameter is logarithmically
transformed (log) or not (none), tied to a parent parameter (tied) or fixed at its initi
value (fixed).

If you select the Transformation or IsTiedTo fields you can click on the small butto
that appears and the following dialogue will appear:

If you select tied to: then you can select the parent parameter from the combo box.
name of the parent parameter will appear in the IsTiedT column. If you subsequently
untie, fix or transform the parameter, the name in the combo box and in the IsTied
column will not change. This is to allow you to tie and untie parameters during the
optimisation process without having to select the parent parameter each time. Sin
PEST does not allow a parameter to be tied to a fixed or other tied parameter, onl
available parameters are listed in the combo box.

In many cases, the linearity assumption, on which PEST is based, is more valid w
certain parameters are log-transformed. This means that the log-transformation of
parameters can often make the difference between success and failure of the esti
process. However, a parameter that can become zero or negative during the estim
Choosing the Parameters to Optimize 59

arent
es of

eter
e

ups.
e
ss

ted

ll
process must not be log-transformed. This can be corrected using an appropriateScale
and Offset.

If a parameter is tied to a parent parameter, the parameter “piggy-backs” on the p
parameter during the estimation process. That is the ratio between the initial valu
the parameter and its parent remain constant throughout the estimation process.

For more detailed information on Parameter Transformation and Fixed and Tied
Parameters see pag e23 and page24 of the PEST User’s Manual.

Param. Group - PARGP

This is the parameter group to which the parameter belongs. The available param
groups are listed in the combo box and below the Parameter Groups section in th
dialogue. Additions to the list of available parameter groups must be made in the
Parameter Groups section of the dialogue.

In PEST, input variables affecting derivative calculations pertain to parameter gro
Each parameter must be assigned to such a parameter group Assigning derivativ
variables to groups, rather that to individual parameters is simpler and requires le
memory.

Limiting - PARCHGLIM

PEST allows parameter changes to be either factor-limited (factor) or relative-limi
(relative). A factor-limited parameter is one whose new value is limited to a specified

• If the parameter is log-transformed then the Initial value , Min ., Max., Scale
and Offset values must be untransformed. That is, they must not be log-
transformed.

• If the parameter is log-transformed then the covariance, correlation
coefficients and eigenvector values refer to the log of the parameter.
However, the parameter estimates and confidence intervals refer to the
untransformed parameter.

• If you to fix a parameter, its value will be fixed at its initial value and it wi
not be part of the estimation process.
60 Chapter 4 - PEST in Visual MODFLOW

e

ly.

lue
e

f the
n.
fraction of the value from the previous iteration. A relative-limited parameter is one
whose change between iterations is limited to a specified fraction.

For more detailed information on the Parameter Change Limits see page 27 of the
PEST User’s Manual.

Initial Value - PARVAL1

This is the initial value for the parameter estimation process and is equal to valu
assigned in the Input module. If the parameter is fixed then the value for this
parameter remains constant at its initial value during the estimation process.

Min and Max - PARLBND and PARUBND

The Min and Max are the lower and upper bounds of the parameters respective

For more detailed information on Upper and Lower Parameter Bounds see pag e25
of the PEST User’s Manual.

• Log-transformed parameters must be factor-limited.
• Factor-limited parameters can never change sign.
• For relative-limited parameters, if the specified fraction is greater than or

equal to 1, the new value may become a minute fraction of the previous va
(or even zero), without approaching the parameter change limit. For som
models this may invalidate model linearity assumptions.

• The PEST control parameters FACORIG, PARCHGLIM, RELPARMAX,
and FACPARMAX can be modified in the Controls Tab.

• The lower and upper bounds should be chosen wisely.
• The default values are 1e-15 and 1e29 respectively.
• The upper and lower bounds are ignored for fixed and tied parameters.
• If an updated parameter value is outside of its bounds, PEST temporarily

holds the parameter at its boundary value.
• The strategy that PEST uses, allows PEST to search along the bounds o

parameter domain looking for the minimum value of the objective functio
Choosing the Parameters to Optimize 61

 make

sual
ters
eters

tion

ters

es

 and

 just
Scale and Offset - SCALE and OFFSET

The scale and offset can be used to modify the numerical value of a parameter to
it more amenable to parameter estimation.

For more detailed information on Scale and Offset see page 26 of the PEST User’s
Manual.

Parameter Groups

The Parameter Groups table lists the different groups that PEST will assign the Vi
MODFLOW parameters to. The Parameter Groups are used for grouping parame
whose derivatives share common characteristics. The derivatives for all the param
in a parameter group will be calculated using the same method. For more informa
on the derivative calculations see the The Calculation of Derivatives section in the
PEST User’s Manual.

Param. Group

This is the long name for the group.

PEST Name - PARGPNME

This is the group name that appears in the PEST input and output files.

Incr. Type - INCTYP

There are three types of derivative increments: absolute, relative and rel_to_max.

Absolute – the user supplies the actual increment (DERINC) used for all parame
in the group

Relative – the increment is calculated by multiplying the increment value
(DERINC) by the current absolute value of the parameter.

• Just before writing a parameter value to a model input file, PEST multipli
the value by the scale and then adds the offset.

• If you do not wish a parameter to be scaled and offset, enter its scale as 1
its offset as zero.

• Fixed and tied parameters must also be supplied with a scale and offset,
like their adjustable counterparts.
62 Chapter 4 - PEST in Visual MODFLOW

small
the
f

f the
e

hod.
of the
e
the
with
ance.
e

he
EST

ed

e

.

rel_to_max – the parameter increment is calculated by multiplying the user-
supplied value (DERINC) by the absolute value of the largest member of the
parameter group.

Increment - DERINC

This is the value of DERINC defined above. A parameter increment should be as
as possible so that the finite-difference method provides a good approximation to
theoretical derivative. However, if the increment is made too small, the accuracy o
derivative calculations will suffer because of round off errors.

Min. Incr. - DERINCLB

To protect against near-zero increments for relative and rel_to_max increments, PEST
allows you to specify a minimum absolute increment. This value is used in place o
calculated relative or rel_to_max increment if the calculated increment falls below th
minimum increment value.

FD Method - FORCEN

In this column, you can specify whether the derivatives are calculated using the
forward-difference method, (“always_2”) or by the central-difference method
("always_3"), or by both (“switch”).

If FORCEN for a particular group is "always_2", derivatives for all parameters
belonging to that group will always be calculated using the forward-difference met
In this case, to fill the columns of the Jacobian matrix corresponding to members
group, as many model runs as there are adjustable parameters in the group will b
required. If FORCEN is "always_3", it will require twice as many model runs to fill
same columns in the Jacobian matrix. However, the derivatives will be calculated
greater accuracy and this will probably have a beneficial effect on PEST's perform
If FORCEN is set to "switch", PEST will calculate the derivatives beginning with th
forward-difference method and switch to the central method when the change in t
objective function becomes small enough. For all switchable parameter groups, P

• If a parameter is log-transformed, it is wise that its increment be calculat
using the "relative" method, though PEST does not insist on this.

• PEST will object if the parameter increment exceeds the parameter rang
divided by 3.2.

• a suitable value for DERINC is often 0.01 if INCTYP is relative or
rel_to_max.

• If you do not want to have a minimum increment, use zero for DERINCLB
• If INCTYP is “absolute”, DERINCLB is ignored.
Choosing the Parameters to Optimize 63

e in
e

ocess
rocess
his is

s, the
l run,

by
es
self,

ory
. In
hly
 pairs

ount

ation
ethod
 use

ou to

do
lue
hree-
ally,
will switch to the central-difference method on the iteration after the relative chang
objective function becomes less than PHIREDSWH. PHIREDSWH is defined in th
Controls Tab of this dialogue.

In most instances the most appropriate value for FORCEN is "switch". This allow
speed to take precedence over accuracy in the early stages of the optimisation pr
when accuracy is not critical. Accuracy takes precedence over speed later in the p
when the derivatives need to be calculated with as much accuracy as possible. T
especially true when parameters are highly correlated and the normal matrix thus
approaches singularity.

Incr. Multiplier - DERINCMUL

If derivatives are calculated using one of the three-point central-difference method
parameter increment is first added to the current parameter value prior to a mode
and then subtracted prior to another model run. In some cases, you may want to
increase the value of the increment for this process over that used for forward-
difference derivative calculation. The real variable DERINCMUL allows you to do
this. If a three-point derivative method is used, the value of DERINC is multiplied
DERINCMUL. This happens whether DERINC holds the increment factor, as it do
for "relative" or "rel_to_max" increment types, or holds the parameter increment it
as it does for the "absolute" increment type.

For many models, the relationship between observations and parameters is in the
continuously differentiable. However, in reality it is often "bumpy" (see Figure 9.4)
such cases, the use of parameter increments which are too small may lead to hig
inaccurate derivatives, especially if the two or three sets of parameter-observation
used in a particular derivative calculation are on the same side of a "bump" in the
parameter-observation relationship.

Parameter increments must be chosen large enough to cope with model output
granularity of this type. But increasing parameter increments beyond a certain am
diminishes the extent to which the finite-difference method can approximate the
derivatives. By definition, the derivative is the limit of the finite-difference as the
increment approaches zero. However, the deterioration in the derivative approxim
as increments are increased is normally much greater for the forward difference m
than for any of the central methods (particularly the "parabolic" option). Hence, the
of one of the central methods with an enhanced derivative increment may allow y
calculate derivatives when you otherwise can not.

Whenever the central method is employed for derivatives calculation, DERINC is
multiplied by DERINCMUL, no matter whether INCTYP is "absolute", "relative" or
"rel_to_max", and whether FORCEN is "always_2", "always_3" or "switch". If you
not wish the increment to be increased, you must provide DERINCMUL with a va
of 1.0. Alternatively, if for some reason you wish the increment to be reduced if a t
point method is used, you should set DERINCMUL to a value less than 1.0. Norm
a value between 1.0 and 2.0 is satisfactory.
64 Chapter 4 - PEST in Visual MODFLOW

ify
fit".

hips

ing

ty and
e of
in the

nd
 prior

ver,
s each
Central FD Method - DERMTHD

If you are using central finite-differences to calculate the derivatives you can spec
the three-point derivative method that is used: "outside_pts", "parabolic" or "best_
See Figure 9.3 for a comparison of these methods.

Assigning Prior Information

Often some independent information exists about the parameters that we wish to
optimize. This information may be in the form of unrelated estimates or of relations
between parameters. When this information is included, it can lend stability to the
parameter estimation process, especially when parameters are highly correlated.
Correlated parameters can lead to non-unique parameter estimates because vary
them in certain linear combinations may cause very little change in the objective
function. In some cases, this non-uniqueness can even lead to numerical instabili
failure of the estimation process. However if something is known about at least on
the members of such a troublesome parameter group, this information, if included
estimation process, may remove the non-uniqueness and provide stability.

For a detailed description of how prior information is incorporated into the PEST
algorithm, see Chapter 2 of the PEST Manual.

Prior information must be of a suitable type to be included. Both simple equality a
linear relationships are acceptable. A weight must be included with each article of
information. In theory, this weight should be inversely proportional to the standard
deviation of the right hand side of the prior information equation. In practice, howe
the user simply assigns the weights according to the extent to which he/she wishe
article of prior information to influence the parameter estimation process.

From the Prior Information tab a new prior information equation can be added by
selecting the add item icon.

which brings up an initial dialogue asking for the name of the equation.
Assigning Prior Information 65

ity

gher
x to

be

ook
Once you have typed in a name, the following editor appears, which allows you to
specify a simple linear equation for your prior information.

In this example, a 1:10 vertical conductivity ratio has been specified for Conductiv
Zone 1. PEST will try to find the set of parameters that minimizes the objective
function, while trying to keep the Kx to Kz ratio as close to ten as possible. The hi
the weight, the greater will be the impact on the objective function. If you tied the K
Kz in the ratio of 10:1 then only Kx would varied by PEST and Kz would simply
follow along during the optimization process. The ratio between Kx and Kz would
always 10:1. Using prior information in this way, gives PEST some flexibility in
choosing a ratio that is close to 1:10.

Once the primary information has been defined the PEST Control Window will l
similar to the following:
66 Chapter 4 - PEST in Visual MODFLOW

 or
Assigning the Objective Function

After deciding which Visual MODFLOW parameters to estimate, you must decide
which observations will be used to calculate the objective function. Selecting the
Objective Function tab will give you a list of all your available head, concentration
flow observations.
Assigning the Objective Function 67

ou
greyed
p. For
up
e

ell
 it

f the
ided
EST
The three icons, shown here, allow you to display either head
observations (from MODFLOW), concentration observations
(from MT3Dxx) or flow observations (from Zone Budget).

On the right hand side are the group icons, which allow you to
edit or delete a selected user-defined group or add a new user-
defined group.

The three icons on the far right allow you to selectively display
the well groups, the layer groups or the user groups.

All the wells in the project are assigned to a group and PEST determines the
contribution of each group to the overall change in the objective function. When y
select a group, all the groups that intersect with that group are checked and then
out because PEST does not allow an observation to belong to more than one grou
example, if you select an individual well group and that well belongs to a layer gro
and a user-defined group, then the layer group and user-defined group will also b
greyed out and cannot be selected.

Finally, you must select the appropriate checkboxes on the left side of the tab to t
Visual MODFLOW to include the head, concentration and flow observations when
translates the PEST files.

Controlling the PEST Run

The final tab in this dialogue is the Controls Tab. In this tab, you can modify any o
default values for the PEST controls. A brief description of these variables is prov
below. More detailed descriptions of how some of these parameters are used by P
can be found in Chapters 2 and 3 of the PEST Manual.
68 Chapter 4 - PEST in Visual MODFLOW

 the
hile

nd

ter

Marquardt Lambda

As outlined in on pag e18 of the PEST User’s Manual, PEST attempts parameter
improvement using a number of different Marquardt lambdas during any one
optimisation iteration. However, in the course of the overall parameter estimation
process, the Marquardt lambda generally gets smaller.

For high values of the Marquardt parameter (and hence of the Marquardt lambda)
parameter estimation process approximates the gradient method of optimisation. W
the latter method is inefficient and slow if used for the entirety of the optimisation
process, it often helps in getting the process started, especially if initial parameter
estimates are poor.

Initial Lambda - RLAMBDA1

This is the initial real-value of the Marquardt lambda. An initial value between 1. a
10. is usually appropriate, though if PEST complains that the normal matrix is not
positive definite, you will need to provide a higher initial Marquardt lambda.

Adjustment Factor - RLAMFAC

This is the real factor by which the Marquardt lambda is adjusted. It must be grea
than 1.0. When PEST reduces lambda it divides by RLAMFAC. When it increases
Controlling the PEST Run 69

n,

d
bda

bda

ul in

or

earch
ar
set

al as

rent
hen it
by

s is

of

T is
r
n

n test
 For
lambda it multiplies by RLAMFAC. PEST reduces lambda if it can. However, if the
normal matrix is not positive definite or if a reduction in lambda does not lower the
objective function, PEST has no choice but to increase lambda.

The first lambda that PEST uses is the lambda inherited from the previous iteratio
reduced by the factor RLAMFAC (unless it is the first iteration, in which case
RLAMBDA1 is used). Unless the objective function is reduced to less than
PHIRATSUF of its value at the beginning of the iteration, PEST then tries another
lambda, again reduced by the factor RLAMFAC. If the objective function is lowere
but is still above PHIRATSUF of the starting objective function, PEST reduces lam
yet again. Otherwise PEST increases the first lambda in the iteration by the factor
RLAMFAC. If the objective function begins to rise, PEST accepts the previous lam
and the corresponding parameter set and moves on to the next iteration.

Sufficient Phi Ratio - RHIRATSUF

During any one optimisation iteration first lowers lambda and, if this is unsuccessf
lowering the objective function, it then raises lambda. If it calculates an objective
function, which is a fraction PHIRATSUF or less of the starting objective function f
that iteration, PEST moves on to the next optimisation iteration.

PHIRATSUF (which stands for "phi ratio sufficient") is a real variable for which a
value of 0.3 is often appropriate. If it is set too low, model runs may be wasted in s
of an objective function reduction which it is not possible to achieve, given the line
approximation on which the optimisation equations of Chapter 2 are based. If it is
too high, PEST may not be able to lambda such that its value continues to be optim
the parameter estimation process progresses.

Limiting Relative Phi Reduction - PHIREDLAM

If a new/old objective function ratio of PHIRATSUF or less is not achieved as diffe
Marquardt lambdas are tested, PEST must use some other criterion in deciding w
should move on to the next optimisation iteration. This criterion is partly provided
the real variable PHIREDLAM.

If the relative reduction in the objective function between two consecutive lambda
less than PHIREDLAM, PEST takes this as an indication that it is probably more
efficient to begin the next optimisation iteration than to continue testing the effect
new Marquardt lambdas.

A suitable value for PHIREDLAM is often around 0.01. If it is set too large, the
criterion for moving on to the next optimisation iteration is too easily met and PES
not given the opportunity of adjusting lambda to find its optimal value. On the othe
hand, if PHIREDLAM is set too low, PEST will test too many Marquardt lambdas o
each optimisation iteration when it would be better off starting a new iteration.

Maximum Trial Lambdas - NUMLAM

This integer variable places an upper limit on the number of lambdas that PEST ca
during any one optimisation iteration. It should normally be set between 5 and 10.
70 Chapter 4 - PEST in Visual MODFLOW

or
at a
 more

.

ter
n of
 at

e

rrent
nt

h to
d

 5
rs.

n
ater
eter
er

ound

n
et too
 run
rds

n

cases where parameters are being adjusted near their upper or lower limits, and f
which some parameters are consequently being frozen, experience has shown th
value closer to 10 may be more appropriate than one closer to 5. This gives PEST
chance to adjust to the reduction in the number of parameters during the process

Parameter Change Constraints

If there is no limit on the amount by which parameter values may change, parame
adjustments could regularly "overshoot" their optimal values, causing a prolongatio
the estimation process at best, and instability with consequential estimation failure
worst. The dangers are greatest for highly non-linear problems.

PEST provides the two real, input variables, RELPARMAX and FACPARMAX,
which can be used to limit parameter adjustments. Any particular parameter can b
subject to only one of these constraints (i.e. a particular parameter must be either
“relative-limited” or “factor-limited” in its adjustments).

Whether a parameter should be relative-limited or factor-limited depends on the
parameter. However, you should note that a parameter can be reduced from its cu
value right down to zero for a relative change of only 1. If you wish to limit the exte
of its downward movement during any one iteration to less than this, you may wis
set RELPARMAX to, for example, 0.5. However, this may unduly restrict its upwar
movement. It may be better to declare the parameter as factor-limited. If so, a
FACPARMAX value of, say 5.0, would limit its downward movement on any one
iteration to 0.2 of its value at the start of the iteration and its upward movement to
times its starting value. This may be a more sensible approach for many paramete

It is important to note that a factor limit will not allow a parameter to change sign.
Hence, if a parameter must be free to change sign in the course of the optimisatio
process, it must be relative-limited. Furthermore, RELPARMAX must be set at gre
than unity or the change of sign will be impossible. You must not declare a param
as factor-limited, or as relative-limited with the relative limit of less than 1, if its upp
and lower bounds are of opposite sign. Similarly, if a parameter's upper or lower b
is zero, it cannot be factor-limited and RELPARMAX must be at least unity.

Suitable values for RELPARMAX and FACPARMAX can vary enormously betwee
cases. For highly non-linear problems, these values are best set low. If they are s
low, however, the estimation process can be very slow. An inspection of the PEST
record will often reveal whether you have set these values too low, for PEST reco
the maximum parameter factor and relative changes on this file at the end of each
optimisation iteration. If these changes are always at their upper limits and the
estimation process is showing no signs of instability, it is quite possible that
RELPARMAX and/or FACPARMAX could be increased.

If RELPARMAX and FACPARMAX are set too high, the estimation process may
founder. If PEST seems to be making no progress in lowering the objective functio
and an inspection of the PEST run record reveals that some or all parameters are
Controlling the PEST Run 71

idea
ay
eir
uld
 the

ion is

 often
ote,

han
ssary

rgo

fined

e less
tive

X,

go.

ed as

 unity
e

factor
k to

undergoing large changes at every optimisation iteration, then it would be a good
to reduce RELPARMAX and/or FACPARMAX. Another sign that these variables m
need to be reduced is if PEST rapidly adjusts one or a number of parameters to th
upper or lower bounds, and the latter are set far higher or lower than what you wo
expect the optimal parameter values to be. A further sign is if, rather than lowering
objective function, PEST estimates parameter values for which the objective funct
incredibly high.

If you are unsure of how to set these parameters, a value of 5 for each of them is
suitable. In cases of extreme non-linearity, be prepared to set them much lower. N
however, that FACPARMAX can never be less than 1. RELPARMAX can be less t
1 as long as no parameter's upper and lower bounds are of opposite sign. (If nece
use the OFFSET to shift the parameter domain so that it does not include zero.)

Max relative parameter change - RELPARMAX

RELPARMAX is the maximum relative change that a parameter is allowed to unde
between optimisation iterations

The relative change in parameter b between optimisation iterations i-1 and i is de
as

(bi-1 - bi)/(bi-1)

If parameter b is relative-limited, the absolute value of this relative change must b
than RELPARMAX. If a parameter upgrade vector is calculated such that the rela
adjustment for one or more relative-limited parameters is greater than RELPARMA
the magnitude of the upgrade vector is reduced such that this no longer occurs.

Max factor parameter change - FACPARMAX

FACPARMAX is the maximum factor change that a parameter is allowed to under

The factor change for parameter b between optimisation iterations i-1 and i is defin

bi-1/bi if | bi-1 | > | bi |, or

bi / bi-1 if | bi | > | bi-1 |

If parameter b is factor-limited, this factor change (which either equals or exceeds
according to equation 2.4) must be less than FACPARMAX. If a parameter upgrad
vector is calculated such that the factor adjustment for one or more factor-limited
parameters is greater than FACPARMAX, the magnitude of the upgrade vector is
reduced such that this no longer occurs.

Use-if-less Fraction - FACORIG

If, during the estimation process, a parameter becomes very small, the relative or
limit to subsequent adjustment of this parameter may severely slow its growth bac
higher values. Furthermore, for the case of relative-limited parameters which are
permitted to change sign, it is possible that the denominator of the relative-limited
equation above could become zero.
72 Chapter 4 - PEST in Visual MODFLOW

then

fted
te
en

g
e
ribed

ds,

e

ake
e
ded
aste

nt
es
put

ingle

 the
es
If the absolute value of a parameter falls below FACORIG times its original value,
FACORIG times its original value is substituted for the denominator of equations
above.

Thus the constraints that apply to a growth in absolute value of a parameter are li
when its absolute value has become less than FACORIG times its original absolu
value. However, where PEST wishes to reduce the parameter's absolute value ev
further, factor-limitations are not lifted. Relative limitations are not lifted if
RELPARMAX is less than 1. FACORIG is not used to adjust limits for log-
transformed parameters.

FACORIG must be greater than zero. A value of 0.001 is often suitable.

Method Separation Value - PHIREDSWH

The derivatives of observations with respect to parameters can be calculated usin
either forward differences (involving two parameter-observation pairs) or one of th
variants of the central method (involving three parameter-observation pairs) desc
in Chapter 2. You must inform PEST through the group variables FORCEN and
DERMTHD which method to use for the parameters belonging to each parameter
group. If you allow PEST to switch between forward and central-difference metho
the variable PHIRREDSWH tells PEST when to switch.

If the relative reduction in the objective function between successive optimisation
iterations is less than PHIREDSWH, PEST will make the switch to three-point
derivatives calculation for those parameter groups for which the character variabl
FORCEN has the value "switch".

A value of 0.1 is often suitable for PHIREDSWH. If it is set too high, PEST may m
the switch to three-point derivatives calculation before it needs to. The result will b
that more model runs will be required to fill the Jacobian matrix than are really nee
at that stage of the estimation process. If PHIREDSWH is set too low, PEST may w
an optimisation iteration or two in lowering the objective function to a smaller exte
than would have been possible if it had made an earlier switch to central derivativ
calculation. Note that PHIREDSWH should be set considerably higher than the in
variable PHIREDSTP, which sets one of the termination criteria on the basis of the
relative objective function reduction between optimisation iterations.

Precision - PRECIS

PRECIS is a character variable which must be either "single" or "double". If it is
supplied to PEST as "single", PEST writes parameters to model input files using s
precision protocol. For example, parameter values will never be greater than 13
characters in length (even if the parameter space allows for a greater length) and
exponentiation character is "e". If PRECIS is supplied as "double", parameter valu
Controlling the PEST Run 73

te if

 zero,

nds.

T

s.

 to
ir
eter

e if
to the

for

 is
are written to model input files using double precision protocol. The maximum
parameter value length is 23 characters and the exponentiation symbol is "d".

Termination Criteria

In addition to the termination controls available in this dialogue, PEST will termina

• the objective function goes to zero,
• the gradient of the objective function with respect to all parameters equals
• the parameter upgrade vector equals zero, or
• all parameters are at their limits and the upgrade vector points out of bou

For more detailed information on the Termination Criteria, see pa ge33 of the PES
User’s Manual.

Overall Iteration Limit - NOPTMAX

This is the maximum number of iterations.

Negligible Reduction - PHIREDSTP

If the objective function does not change by more than this amount for NPHISTP
iterations, PEST will stop. A suitable value for PHIREDSTP is 0.01, for most case

Max “No reduction” Iterations - NPHISTP

This is the maximum number of iterations that PEST will perform, if the objective
function has not changed by at least PHIREDSTP

For many cases, 3 is a suitable value NPHISTP. However, you must be careful not
set NPHISTP too low if the optimal values for some parameters are near or at the
upper or lower bounds. In this case, it is possible that the magnitude of the param
upgrade vector may be curtailed over one or a number of optimisation iterations to
ensure that no parameter value overshoots its bound. The result may be smaller
reductions in the objective function than would otherwise occur. It would be a sham
these reduced reductions were mistaken for the onset of parameter convergence
optimal set.

Max Unsuccessful Iterations - NPHINORED

If there is no reduction in the objective function, below its current minimum value,
this number of “unsuccessful” iterations, PEST will stop.

NPHINORED is an integer variable, where a value of 3 is often suitable

Negligible Relative Change - RELPARSTP

If the largest relative parameter change for all variables over NRELPAR iterations
less than this amount, PEST will stop.

All adjustable parameters, whether they are relative-limited or factor-limited, are
involved in the calculation of the maximum relative parameter change.
74 Chapter 4 - PEST in Visual MODFLOW

ning
d the
 the
siduals

tion
trix

e

 the

rt” is

inary

ump

ta.
RELPARSTP is a real variable for which a value of 0.01 is often suitable.

Max “No change” Iterations - NRELPAR

This is the maximum number of iterations PEST will perform if the largest relative
parameter change for all variables is below RELPARSTP.

NRELPAR is an integer variable. A value of 2 or 3 is normally satisfactory.

Output Control - ICOV, ICOR, IEIG

After the optimisation process is complete, PEST writes some information concer
the optimised parameter set to its run record file. It tabulates the optimal values an
95% confidence intervals pertaining to all adjustable parameters. It also tabulates
model-calculated observation set based on these parameters, together with the re
(i.e. the differences between measured and model-calculated observations).

If you wish, PEST will write the parameter covariance matrix, the parameter correla
coefficient matrix and the matrix of normalised eigenvectors of the covariance ma
to the run record file.

The integer variables ICOV, ICOR and IEIG determine whether PEST will output th
covariance, correlation coefficient and eigenvector matrixes respectively. If the
relevant integer variable is checked (set to 1), the pertinent matrix will be written to
run record file. If it is not checked (set to 0), it will not be written.

Enable Restart - RSTFLE

This character variable is set by means of a check box. If it is checked, then “resta
written to the control file. If it is unchecked, the value “norestart” is written.

If restart is selected, PEST will dump the contents of many of its data arrays to a b
file (projectname.RST) at the beginning of each optimisation iteration. This allows
PEST to be restarted later, if execution is prematurely terminated. PEST will also d
the Jacobian matrix to another binary file (projectname.JAC) every time this matrix is
filled.

If restart is not selected, PEST will not intermittently dump its array or Jacobian da
Thus, later re-commencement of the optimisation is impossible.
Controlling the PEST Run 75

es

et
s
Starting the PEST Run

To start the PEST run you must click on [Run] from the top menu
bar in the Run Module. This following dialogue box will appear:

Now to launch PEST you must first select it from the list of
available models. You must also select all of the numeric engin
that you want PEST to run. Although, PEST can only estimate
MODFLOW parameters at the moment, MT3D and Zone Budg
must be run if you are using concentration and flow observation
in your objective function.

Once the models have been selected, click on [Translate & Run]
to create the PEST files and start WinPEST. Clicking on
[Translate & Run] will translate the files and the following
window will appear:

The top menu bar consists of the following options: [File] , [Run] , [Options], [View] ,
and [Validate] . The drop-down [File] menu and/or the toolbar have the following
features:
76 Chapter 4 - PEST in Visual MODFLOW

ve

[Open] The [Project] option allows the user to select
a PEST control file to open (*.PST). The
[File] option allows the user to open a selected
PEST: control file (*.PST), parameter hold
file (*.HLD), template file (*.TPL), parameter
file (*.PAR), or instruction file (*.INS).

[Reopen] Reopens a previous PEST control file.

[Save] Saves the current edit file with the existing
name.

[Save As…] Save the current edit file with another name.

[Save Graphs] Saves PEST graphs to a series of files. Menu allows user to sa
graphs [As Picture...], [Current Plot] , and [All Plots].

[Load Graphs] Loads PEST graphs. Menu allows user to load [Current Plot] or
[All Plots] .

[Load/Save Plots] The button allows the user to [Save Plots as...], [Save Current
Plot], [Load to Current Plot] , [Save all Plots], and [Load all
Plots]. The user is also able to select between [Add Plots(s) (Load
Style)] or [Overwrite Plots(s) (Load Style)], and the user is able
to toggle on and off the option to [Save Plots at End].

[Print] Allows the user to [Print Current Tab] , [Multiprint Graphs] , [Print
All] .

[Exit] Exits the WinPEST window and returns to the Main Menu in Visual
MODFLOW.

The drop-down [Run] menu and/or the toolbar have the following features:

[Run] Starts the PEST run. Menu allows the user to [Start
from Scratch], [Restart last Iteration (/r)] ,
[Restart using last Jacobian (/j)].

[Pause] Pauses PEST run.
Starting the PEST Run 77

tion

[Stop with Statistics]Terminates PEST run with statistics.

[Stop without Statistics]Terminates PEST run with statistics.

[Check] Allows the user to check the [All] , the [Instructions] , or the
[Templates].

The drop-down [Options] menu has the following features:

[Run/Restart] Starts or restarts the PEST run.

[Check Utilities] Allows the user to select either to: ;
Generate model input, or ;
Generate observation file.

[Save Plots at the End]Allows the user to save the plots at the end of the run.

The drop-down [View] menu has the following features:

[Plots] Allows the user to select to view the
following plots: Objective function,
Composite Sensitivity, Parameters
History, Marquardt Lambda, Calculated
vs. Observed, Jacobian, Correlation,
Covariance, and Eigenvectors.

[Log File] Selects the Log File tab as the top screen to view. This is the
default tab.

[Run Record] Selects the Run Record tab as the top screen to view

[Hold Parameters]Displays the Hold Parameters Status screen. For more informa
on holding parameters please refer to pag e106 of this manual.
78 Chapter 4 - PEST in Visual MODFLOW

s:

ot

t

the
The drop-down [Validate] menu has the following features:

[Check All] Checks both the emplates and the instructions
to the *.PST file for errors.

[Instructions] Checks the set of input instructions to the
*.PST file for errors

[Templates] Checks the *.PST file templates for errors.

The remaining toolbar buttons on the WinPEST window have the following feature

[Autoscroll to the bottom of PEST log]If the Autoscroll button is depressed during
the PEST run then the display in the WinPEST dialog box will show
the laterst line of data output to the log file. If the toolbar button is n
pressed then the user can scroll freely through the log file while
WinPEST is running.

[Zoom In] Only available when the WinPEST plots are activated, the zoom in
feature allows the plots to be examined more closely.

[Zoom Out] Only available when the WinPEST plots are activated, the zoom ou
feature allows the plots to be examined in less detail.

[Clear Zoom State]Toolbar option allows the user to return to the original scale of
plot they are viewing.

WinPEST Plots

WinPEST plots can be choosen by selecting [View][Plots] . The following dialogue box
will appear:
Starting the PEST Run 79

d
ST
t plot
e
Select the plots you wish to view by placing a checkmark in the correct box(es) an
then press [OK]. A tab with the plot(s) respective name will be added to the WinPE
window. Select the tab to view the plot and. Notice on the top menu bar, the curren
name with its associated options will appear on the top menu bar when viewing th
plot.

Objective Function

Composite Sensitivity

Parameters History

Marquardt Lambda
80 Chapter 4 - PEST in Visual MODFLOW

Calculated vs. Observed

Jacobian

Correlation

Covariance

Eigenvectors

Eigenvalues

Uncertainities

Residuals

Predictive Analysis
Starting the PEST Run 81

82 Chapter 4 - PEST in Visual MODFLOW

eved
lue
5
5 - Evaluating the PEST Run

The following chapter contains information on:

• The PEST Output Files and,
• The PEST Run Record.

PEST Output Files

Automatically PEST generates three default files. These are:

• the Parameter Value File,
• the Parameter Sensitivy File,
• the Residuals File,
• and, if specified, PEST will generate a number of Other Files.

The Parameter Value File

At the end of each optimization iteration, PEST writes the best parameter set achi
thus far (i.e. the set for which the objective function is lowest) to the parameter va
file, projectname.PAR. At the end of a PEST run, the PEST parameter value file
contains the optimal parameter set as seen below in Example 5.1.

single point

ro1 1.0000001.0000000.000000

ro2 40.000901.0000000.000000

ro3 1.0000001.0000000.000000

 h1 1.0000031.0000000.000000

 h2 9.9997991.0000000.000000

Example 5.2: A parameter value file.
PEST Output Files 83

and
ix

 the
 lists

he

 the
to the

n
mn

vities
The first line of the parameter value file contains the character variables PRECIS
DPOINT, the values for which were provided in the PEST control file (see Append
A). This is followed by a line for each parameter, each line containing the PEST
parameter name, its current value and its SCALE and OFFSET.

The Parameter Sensitivity File

Most of the time consumed during each PEST optimization iteration is devoted to
calculation of the Jacobian matrix. Recall that each column of the Jacobian matrix
the derivatives of all “model-generated observations” with respect to a particular
parameter. During this process the model must be run at least as many times as t
number of adjustable parameters.

Based on the contents of the Jacobian matrix, PEST calculates a figure related to
sensitivity of each parameter with respect to all observations, weighted according
user-assigned weights. The “sensitivity” of parameter i is defined as:

si= (JtQJ)ii
1/2

where J is the Jacobian matrix and Q is the “cofactor matrix” which, in the present
context, is a diagonal matrix whose elements are the squared weights of the
observations. Thus, the sensitivity of the i’th parameter is the magnitude of the colum
of the Jacobian matrix pertaining to that parameter, with each element of that colu
multiplied by the weight pertaining to the respective observation.

Immediately after it calculates the Jacobian matrix, PEST writes parameter sensiti
to a “parameter sensitivity file” called “projectname.SEN”. Example 5.2, below is an
extract from a parameter sensitivity file.

PARAMETER SENSITIVITIES: CASE VES4

OPTIMISATION ITERATION NO. 1 ----->

Parameter name Group Current value Sensitivity

resis1 resis 5.98563 16.5173

resis2 resis 103.493 9.58584

resis3 resis 23.4321 36.9477

thick1 thick 0.43454 9.44217

thick2 thick 13.4567 5.17165

OPTIMISATION ITERATION NO. 2 ----->

Parameter name Group Current value Sensitivity

resis1 resis 8.546532 9.20533

Example 5.3: Part of a parameter sensitivity file.
84 Chapter 5 - Evaluating the PEST Run

of a
e
he
f

ether

o (i.e.
ights,
rious

inary

er is

 to the

in
Information is appended to the parameter sensitivity file during each optimization
iteration immediately following the calculation of the Jacobian matrix. In the event
restart, the parameter sensitivity file is not overwritten. Rather PEST preserves th
contents of the file, appending information pertaining to subsequent iterations to t
end of the file. In this manner the user is able to track variations in the sensitivity o
each parameter through the parameter estimation process.

This information on parameter sensitivity can be very useful when considering wh
to hold various parameters during the estimation process.

The Residuals File

At the end of its execution, PEST writes the “residuals file”, projectnam.RES, which
lists in tabular form observation names, the groups to which various observations
belong, measured and modeled observation values, differences between these tw
residuals), measured and modeled observation values multiplied by respective we
and weighted residuals. This file can be readily imported into a spreadsheet for va
forms of analysis and plotting.

Other Output files

If requested specified, PEST will intermittently store its data arrays and Jacobian
matrix in binary files named projectname.RST and projectname.JAC respectively. If
PEST execution is re-commenced using the”/r” switch, it reads the first of these b
files in addition to its normal input files. If it is re-started with the “/j” switch it reads
both of them.

PEST uses a one-line file named PEST.HLT to communicate with the run record
display utility, DECIDE.EXE, in the event of an interruption to PEST execution.
Occasionally PEST also uses a small file named PEST.TMP for temporary
bookkeeping. Neither of these files contain any useful information as far as the us
concerned.

The PEST Run Record

As PEST executes, it writes a detailed record of the parameter estimation process
file projectname.REC. In this section the PEST run record is briefly described.
However, an example Run Record file, which is discussed in detail, can be found
Appendix B.
The PEST Run Record 85

, it

.
EST

r and
is
t for

he
 file

 the
e
n
e

ing
m

factor-
s

tered
at

tion

up,
re
The Input Data Set

PEST commences execution by reading all the input data. As soon as this is read
echoes most of this data to the run record file. Hence the first section of this file is
simply a restatement of most of the information contained in the PEST control file
Note that the letters "na" stand for "not applicable", which means that a particular P
input variable has no effect on the optimization process.

It is possible that the numbers cited for a parameter's initial value and for its uppe
lower bounds will be altered slightly from that supplied in the PEST control file. Th
will occur if the space allocated to this parameter in a model input file is insufficien
the degree of precision specified in the PEST control file.

The Parameter Estimation Record

After echoing its input data, PEST calculates the objective function arising out of t
initial parameter set. It records this initial objective function value on the run record
together with the initial parameter values themselves. Then it starts the estimation
process in earnest, beginning with the first optimization iteration. After calculating
Jacobian matrix PEST attempts objective function improvement using one or mor
Marquardt lambdas. As it does this, it records the corresponding objective functio
value, both in absolute terms and as a fraction of the objective function value at th
commencement of the optimization iteration.

At the end of each optimization iteration PEST records either two or three (depend
on the input settings) very important pieces of information. These are the maximu
factor parameter change and the maximum relative parameter change. As was
discussed in Chapter 2, each adjustable parameter must be designated as either
limited or relative-limited. A suitable setting for the factor and relative change limit
(i.e. FACPARMAX and RELPARMAX) may be crucial in achieving optimization
stability. Along with the value of the maximum factor or parameter change encoun
during the optimization iteration, PEST also records the name of the parameter th
underwent this change. This information may be crucial in deciding which, if any,
parameters should be held temporarily fixed should trouble be encountered in the
optimization process.

In addition to the current objective function value at the start of the optimization
process and at the start of each optimization iteration, PEST also lists the contribu
made to the objective function by each the observation groups and by all prior
information. This is valuable information, for if a user notices that one particular gro
or the prior information equations, are either dominating the objective function or a
not “seen” because something else was dominating, the observation or prior
information weights could be adjusted and the optimization process started again.
86 Chapter 5 - Evaluating the PEST Run

e
oes
lly, any
eters.

d.

erive
tion.
to
ially
als

due

his

on of
ell
ence
uly

ions
ly
and

, if a
some

d

en

of
aried

or
er
Optimized Parameter Values and Confidence Intervals

After completing the parameter estimation process, PEST prints the outcome to th
third section of the run record file. First it lists the optimized parameter values. It d
this in three stages. The adjustable parameters, then the tied parameters and, fina
fixed parameters. PEST calculates 95% confidence limits for the adjustable param
However, you should note carefully the following points about confidence limits.

• Confidence limits can only be obtained if the covariance matrix has been
calculated. If, for any reason, it has not been calculated (e.g. because JtQJ of
equation (2.17) could not be inverted) confidence limits will not be provide

• As noted in the PEST run record itself, parameter confidence limits are
calculated on the basis of the same linearity assumption that was used to d
the equations for parameter improvement in each PEST optimization itera
If the confidence limits are large they will, in all probability, extend further in
parameter space than the linearity assumption itself. This will apply espec
to logarithmically-transformed parameters for which the confidence interv
cited in the PEST run record are actually the confidence intervals of the
logarithms of the parameters, as evaluated by PEST from the covariance
matrix. If confidence intervals are exaggerated in the logarithmic domain
to a breakdown in the linearity assumption, they will be very much more
exaggerated in the domain of non-logarithmically-transformed numbers. T
is readily apparent in the example in Appendix B.

• No account is taken of parameter upper and lower bounds in the calculati
95% confidence intervals. Thus an upper or lower confidence limit can lie w
outside a parameter's allowed domain. PEST does not truncate the confid
intervals at the parameter domain boundaries so as not to provide an und
optimistic impression of parameter certainty.

• The parameter confidence intervals are highly dependent on the assumpt
underpinning the model. If the model has too few parameters to accurate
simulate a particular system, the optimized objective function will be large
then so too, through equations (2.5) and (2.17), will be the parameter
covariances and, with them, the parameter confidence intervals. However
model has too many parameters, the objective function may be small, but
of the parameters may be highly correlated. This will give rise to large
covariance values (and hence large confidence intervals) for the correlate
parameters.

With reference to the last point above, if several parameters are well correlated, th
they can be varied in harmony such that when they are varied in a manner that
complements the variation of the other, there will be little effect on the objective
function. Hence while the objective function may be individually sensitive to each
these parameters, it appears to be relatively insensitive to both of them if they are v
in concert. This illustrates the great superiority of using covariance and eigenvect
analysis over the often used "sensitivity analysis" method of determining paramet
reliability.
The PEST Run Record 87

all
ce the
the

r

er

s the

he two
n

ion
rior
s are

ich is

he
ng of

un

ents of
eans

 of the
eir
Confidence limits are not provided for tied parameters. The parent parameters of
tied parameters are estimated with the tied parameters "riding on their back". Hen
confidence intervals for the respective parent parameters reflect their linkages to
tied parameters.

Notwithstanding the above limitations, the presentation of 95% confidence limits
provides a useful means of comparing the certainty with which different paramete
values are estimated by PEST.

Note that at the end of a PEST optimization run a listing of the optimized paramet
values can also be found in the PEST parameter value file, projectname.PAR.

Observations, Prior Information and Residuals

After it has written the optimized parameter set to the run record file, PEST record
measured observation values, together with their model-generated counterparts
calculated on the basis of the optimized parameter set. The differences between t
(i.e. the residuals) are also listed, together with the user-supplied set of observatio
weights. Tabulated residuals and weighted residuals can also be found in file
projectname.RES.

Following the observations, the user-supplied and model-optimized prior informat
values are listed. A prior information value is the number on the right side of the p
information equation. As for the observations, residuals and user-supplied weight
also tabulated.

The Covariance Matrix

The parameter covariance matrix is written to the run record file, if you select this
option in the Visual MODFLOW PEST Control Dialogue. The covariance matrix is
always a square symmetric matrix with as many rows (and columns) as there are
adjustable parameters. Hence there is a row (and column) for every parameter wh
neither fixed nor tied. The order in which the rows (and columns) are arranged is t
same as the order of occurrence of the adjustable parameters in the previous listi
the optimized parameter values. (This is the same as the order of occurrence of
adjustable parameters in both the PEST control file and in the first section of the r
record file.)

Being a by-product of the parameter estimation process (see Chapter 2), the elem
the covariance matrix pertain to the parameters that PEST actually adjusts. This m
that where a parameter is log-transformed, the elements of the covariance matrix
pertaining to that parameter actually pertain to the logarithm (to base 10) of that
parameter. Note also that the variances and covariances occupying the elements
covariance matrix are valid only insofar as the linearity assumption, upon which th
calculation is based, is valid.
88 Chapter 5 - Evaluating the PEST Run

le
he off-

rix are
a
able
ery

d
nd
the

ff-
ement
w and

 as
r.

d
in

sing

eter is
e of

olved.
by
ters to
The diagonal elements of the covariance matrix are the variances of the adjustab
parameters. The variance of a parameter is the square of its standard deviation. T
diagonal elements of the covariance matrix represent the covariances between
parameter pairs.

If there are more than eight adjustable parameters, the rows of the covariance mat
written in "wrap" form (i.e. after eight numbers have been written, PEST will start
new line to write the ninth number). Similarly if there are more than sixteen adjust
parameters, the seventeenth number will begin a new line. Note, however, that ev
new row of the covariance matrix begins on a new line.

The Correlation Coefficient Matrix

The correlation coefficient matrix is calculated from the covariance matrix through
equation (2.7). The correlation coefficient matrix has the same number of rows an
columns as the covariance matrix, Furthermore the manner in which these rows a
columns are related to adjustable parameters (or their logs) is identical to that for
covariance matrix. Like the covariance matrix, the correlation coefficient matrix is
symmetric.

The diagonal elements of the correlation coefficient matrix are always unity. The o
diagonal elements are always between 1 and -1. The closer that an off-diagonal el
is to 1 or -1, the more highly correlated are the parameters corresponding to the ro
column numbers of that element.

The Normalized Eigenvector Matrix and the Eigenvalues

PEST calculates the normalized eigenvectors of the covariance matrix and their
respective Eigenvalues. The Eigenvector matrix is composed of as many columns
there are adjustable parameters, each column containing a normalized eigenvecto
Because the covariance matrix is positive definite, these eigenvectors are real an
orthogonal. They represent the directions of the axes of the probability "ellipsoid"
the n-dimensional space occupied by the n adjustable parameters.

In the eigenvector matrix the eigenvectors are arranged from left to right in increa
order of their respective eigenvalues. The eigenvalues are listed beneath the
eigenvector matrix. The square root of each eigenvalue is the length of the
corresponding semi-axis of the probability ellipsoid in n-dimensional adjustable
parameter space.

If each eigenvector is dominated by a single element, then each adjustable param
well resolved by the parameter estimation process. However, where the dominanc
eigenvectors is shared by a number of elements, parameters may not be well res
The higher the eigenvalues of those eigenvectors for which dominance is shared
more than one element, the less susceptible are the respective individual parame
estimation.
The PEST Run Record 89

90 Chapter 5 - Evaluating the PEST Run

e
 data
ather

on set
h a
es

le to

or
 or a
ase
6
6 - Troubleshooting PEST

The following section of the manual contains information on:

• Run-time Errors,
• MODFLO and MT3D Considerations,
• What to do if PEST Won’t Optimize,
• Holding Parameters and,
• Restarting the PEST Execution.

Run-time Errors

Within the WinPEST interface, limited checking of the input data set can be done.
However, if there is an error or inconsistency in the input data, PEST will terminat
execution with a run-time error message. PEST will not continue reading the input
files to determine whether more errors are present so that it can list them as well. R
it ceases execution as soon as it has noticed that something is wrong.

Other errors can arise later in the estimation process. For example, if the instructi
fails to locate a particular observation, PEST will cease execution immediately wit
run-time error message. This may happen in MODFLOW, for example, if a cell go
dry that contains an observation point. It may also arise if the model terminated
execution prematurely. Hence if a run-time error informs you that PEST was not ab
read the model output file correctly, you should check both the WinPEST output
window and the model output files (*.lst for MODFLOW and *.ot for MT3D) for a
model-generated error messages.

A floating point or other compiler-generated error, followed by a PEST run-time
error message, usually means that the model, not PEST, generated the error. You
should then carefully inspect the model output files (*.lst for MODFLOW and *.ot f
MT3D) for clues as to why the error occurred. In many cases you will find that one
number of model parameters have transgressed their allowed domain, in which c
you will have to adjust their upper and/or lower bounds accordingly in the PEST
control file.
Run-time Errors 91

 will

ry. In
ssage

not
table

re, a

ns

 SIP

nally

e
Another model-related error, which can lead to a PEST run-time error of this kind,
occur if the path names in the PEST control files are wrong. This can occur if you
change the path names in the control file or move the projects to a different directo
this case, after PEST attempts to make the first model run, you will receive the me

Running modelBad command or file name

prior to a PEST run-time error message informing you that a model output file can
be opened. (Note, however, that the model path is not required if the model execu
resides in the current directory.)

It is normally an easy matter to distinguish PEST errors from model errors, as
WinPEST informs you through its dialogue output when it is running the model. A
model-generated error, if it occurs, will always follow such a message. Furthermo
PEST run-time error message is clearly labeled as such, as shown below.

Error condition prevents continued PEST execution:-

Varying parameter "par1" has no affect on model output -

Try changing initial parameter value, increasing
derivative increment,

holding parameter fixed or using it in prior information.

Considerations for MODFLOW and MT3D

The most common cause of failure of PEST to optimise MODFLOW and MT3D
parameters is poor settings for the PEST variables governing derivative calculatio
and inappropriate settings for the variables RELPARMAX and FACPARMAX.

A common cause of premature MODFLOW termination in a transient run is SOR,
or PCG2 convergence failure at a certain time step.

If there is no change in the objective function after several iterations, and PEST fi
stops because "phi gradient zero" or something similar, then it is possible that
MODFLOW or MT3D did not actually run, and that MODBORE or MT3BORE was
reading an old head, drawdown or concentration file each time it ran the composit
MODFLOW/MODBORE or MT3D/MT3BORE model. However, this is unlikely
92 Chapter 6 - Troubleshooting PEST

.

etical
nts

er the

 to the

t,

data.

tion

,
n
tion
hen

vide

f the
eater
ch as
lues.

T3D,
f any
 of

 on
ourse
ize,

unless you are using WinPEST outside of Visual MODFLOW since WinPEST and
Visual MODFLOW, by default, delete the old files before starting a new PEST run

If you suspect that MODFLOW or MT3D has not run, monitor the MODFLOW and
MT3D output in the Win32 MODFLOW Suite dialogue during the PEST run.

If you try to optimize MT3D parameters based on a set of model-generated, theor
“measurements”, the optimization should work if the model-generated measureme
were created using the same number of transport steps as MT3D uses when und
control of PEST. If the number of steps was different, PEST should still provide an
optimal parameter set. However, this set may not be exactly the one that gave rise
model-generated dataset in the first place because of slight differences in MT3D-
calculated concentrations with differences in transport step size. PEST will, in fac
obtain a parameter set for which the concentrations calculated on the basis of the
transport step size used for optimisation agree as closely as possible with those
calculated on the basis of the transport step size used to generate the theoretical

Parameter Transformations and Bounds

PEST allows you to logarithmically transform adjustable parameters during the
parameter estimation process. For some parameters this can hasten the optimisa
process considerably. For other parameters it can slow it down. When calibrating
MODFLOW models the log transformation of hydraulic conductivity, transmissivity
inter-layer leakance and storage coefficient can have a positive effect on estimatio
speed and stability. However, recharge is better left untransformed. While the situa
is not as clear with MT3D, it appears that dispersivity estimates converge faster w
logarithmically transformed. No clear recommendation can be made for other
parameters. However, trial and error with your particular problem should soon pro
the answer.

Appropriate parameter upper and lower bounds is also important to the success o
optimisation process. If a parameter is log-transformed its lower bound must be gr
than zero. Also, realistic bounds should be placed on MODFLOW parameters, su
storage coefficient, for which there are physical limits to the range of allowable va

When undertaking parameter estimation using MT3D, parameter bounds can be
critical. MT3D parameter values can influence the size of the time step used by M
unless the user specifies that a suitably small transport step be used regardless o
parameter value. This latter specification results in MT3D using the same number
transport steps from model run to model run. For a given flow field this, in turn,
enforces accurate derivatives calculation, rapid estimation convergence and
optimisation stability. However if certain estimated parameters are allowed to take
high enough values and others are allowed to take on low enough values in the c
of the optimisation process, MT3D will override the user-specified transport step s
choosing an appropriately small step size of its own, thus breaking the step size
consistency between model runs. It is important to prevent this from happening by
Considerations for MODFLOW and MT3D 93

ble

ry
 re-

hich
then

comes
 small
ifer

in a
g
le.
ne

ST.
so
cell to
ke a

ed

.

.

 drop
e can

limit
restricting parameter variation to a realistic range through the designation of suita
upper and lower parameter bounds.

Dry Model Cells

If a layer is unconfined and the water level in a cell falls beneath the cell bottom,
MODFLOW declares the cell as dry. If the BCF1 package is used, the cell stays d
forever. However, the BCF2 package (and later BCF packages) allows dry cells to
wet depending on the water levels in neighbouring and underlying cells.

The occurrence of dry cells in a simulation can have undesirable consequences,
particularly if the BCF1 package is used. It often leads to a "cascading" effect in w
the drying of one particular cell prevents water inflow to a downstream cell, which
becomes dry itself and so on.

The drying (and re-wetting) of cells can have a disastrous effect on MODFLO
parameter estimation because, no matter which BCF package is used, model out
are no longer continuous with respect to adjustable parameters. This is because a
parameter change may result in certain heads crossing a "threshold" (e.g. the aqu
base or re-wetting level) at which a significant and discontinuous change in local
aquifer flow conditions takes place. Furthermore, if an observation points lies with
dry cell, MODBORE is unable to calculate a head for that observation point, writin
"dry_cell" to the heads column of its output file instead of the head for that boreho
When PEST reads the file, its inability to read a number where it expects to find o
causes a run-time error.

There are two ways to ensure that cells do not dry out and cause problems for PE
The first is the easiest and involves setting of parameter upper and lower bounds
tightly that no parameter is allowed to stray into an area where it causes a model
go dry. The second method, which is only suitable for single layer models, is to ma
small adjustment to the MODFLOW source code and re-compile it. Visual
MODFLOW includes a version of MODFLOW with this change.

In the BCF2 package, the following lines of subroutine SBCF2H have been chang
from:

C6------CHECK TO SEE IF SATURATED THICKNESS IS GREATER THAN ZERO

 IF(THCK.LE.0.) GO TO 100

to:

C6------CHECK TO SEE IF SATURATED THICKNESS IS GREATER THAN ZERO

 IF(THCK.LE.1.0) THCK=1.0

With the above alteration, the calculated head in an unconfined layer is allowed to
continuously below the base of the aquifer (the fact that it is below the aquifer bas
be detected while contouring the results). However, the thickness of water is not
allowed to drop below a certain lower limit, in this case one length unit (adjust this
94 Chapter 6 - Troubleshooting PEST

W

ell's
 cell
 this
ntire
tto
ing
er
c

ble

ut
l

nts.

 you
n

EST
eate
, the

, for

D
nce
OW

 can
ume

ile
to suit yourself). Because the water thickness never becomes negative, MODFLO
never declares the cell as dry.

It could be argued that this alteration leads to an impossible situation whereby a c
water level is below its base yet the transmissivity of that cell is the same as if the
contained one length unit's depth of water. However, in many single-layer models
is not such a bad assumption. If model cells are large, it may be unlikely that the e
cell area would dry out. Only those parts of the cell with a higher-than-average bo
elevation would dry out. The cell would still be able to transmit water to neighbour
areas, albeit with a reduced capacity. Furthermore, keeping cells wet in this mann
may degrade model performance to a lesser extent than the even more unrealisti
cascading of dry cells.

In the case of multi-layer models, the above modification tends to the model unsta
and impedes convergence.

Optimising Parameters for MODFLOW and MT3D Together

Currently, Visual MODFLOW is set up to optimize only MODFLOW parameters, b
MT3D concentrations can be included in the objective function. In this case, Visua
MODFLOW will create instruction files for reading MODBORE and MT3BORE
output files and a single PEST control file which includes all borehole measureme
The assignment of a suitable weighting between water level and concentration
measurements needs to be established.

Some of the pitfalls of simultaneous MODFLOW/MT3D optimisation have been
explained in Section “Derivative precision in MT3D” on page 9 9 . Nevertheless, if
think that this would assist the calibration of your particular model, a PEST run ca
easily be set up to do it.

Alternatively, if you want to also estimate MT3D parameters, after translating the P
files, you can modify the PEST Control file to include the MT3D parameters and cr
the necessary template files for the MT3D input files (see Appendix B). In this case
"model" called by PEST will run MODFLOW and MODBORE followed by MT3D
and MT3BORE. However the use of this simple model can lead to unnecessary
MODFLOW runs in the derivatives calculation phase of each optimisation iteration
while an increment to a MODFLOW parameter value will have an effect on
concentrations calculated by MT3D, the inverse is not true; an alteration to a MT3
parameter will have no effect on MODFLOW-calculated heads or drawdowns. He
when an MT3D parameter is incrementally varied there is no need to run MODFL
prior to running MT3D.

If you have the unrestricted version of WinPEST, that comes with Visual PEST, you
circumvent this problem in the “batch” model run by PEST. For example, let us ass
that PEST is optimising transmissivity for MODFLOW simultaneously with
dispersivity for MT3D. The transmissivity array is located in the MODFLOW input f
BCF.DAT. Accordingly a template named BCF.TPL is constructed for that file.
Considerations for MODFLOW and MT3D 95

 in
,

is
The
EST

, for

y

 its
 can
 be
most
 input

be
e. In
r a few
 the
tor, or

ou
ype for
n place

 after
t be
ll.) In

odel,

tage,
 a

EST
ing
ction
ble to
However PEST is informed that the model input file corresponding to BCF.TPL is,
fact, a file named BCF.HLD, a temporary "holding" file. Prior to running the model
PEST writes the model input files BCF.HLD and DSP.DAT, the latter holding the
MT3D dispersivity array. If BCF.HLD differs from the previous MODFLOW input file
BCF.DAT, then BCF.HLD is copied to BCF.DAT and MODFLOW is run (with
appropriate safeguards against MODFLOW convergence problems). However if
BCF.DAT and BCF.HLD are identical, there is no use in running MODFLOW. In th
case execution of the batch process is taken to label1 where MODBORE is run. (
running of MODBORE is necessary because, prior to actually running the model, P
deletes any model output files that it must later read. In this way PEST will know if
any reason, the model failed to run; it also obviates the possibility of inadvertently
reading a model output file produced on a previous model run.) MT3D, followed b
MT3BORE, is then run irrespective of whether MODFLOW has been run or not.

If PEST Won't Optimize

WinPEST allows you to closely follow the progress of an optimization run through
dialogue and graphical output. By watching the value of the objective function, you
monitor PEST's ability and efficiency in lowering the objective function. There can
many reasons for a failure on the part of PEST to lower the objective function. In
cases the problem can be easily overcome by adjusting one or a number of PEST
variables. The fact that PEST provides so many control variables by which it can
"tuned" to a particular model is one of the cornerstones of its model-independenc
other cases, PEST's progress can be assisted by selectively holding either one o
parameters at their current values. You may re-commence PEST execution where
Jacobian matrix was last calculated to re-compute the last parameter upgrade vec
you can continue execution with the selected parameters held fixed for a while.

The first time you optimize a model, you may wish to run a theoretical case first. Y
should use the model to fabricate a sequence of observation values of the same t
which you have field measurements, and then use these fabricated observations i
of your field data. Then run PEST using, as your initial parameter estimates, the
parameters from the fabricated observation set. PEST should terminate execution
the first model run with an objective function value of zero. (In some cases it will no
exactly zero because of round-off errors. Nevertheless, it should be extremely sma
this way you can check that PEST is supplying correct parameter values to the m
running the model correctly, and reading observation values correctly.

Next you should vary the parameter initial values and run PEST again. It is at this s
while working with a theoretical data set for which you know PEST should achieve
low objective function value, that you can adjust PEST control variables to tune P
to the model. It is unlikely that the objective function will be zero. Although, depend
on the number of observations and their magnitudes and weights, the objective fun
should be as close to zero as round-off errors will permit. In most cases, PEST is a
96 Chapter 6 - Troubleshooting PEST

n

nces

tion
",

olic"

ives
riable
 for

ion

 are
y

r

odel
 that
hat a
s

ad
SE.
 inner
ion
solve a parameter estimation problem using substantially less than 20 optimizatio
iterations.

If PEST does not lower the objective function, or lowers it slowly, the following two
sections outline some of the reasons that PEST may perform poorly. In most insta
the problem can be rectified.

Obtaining Sufficient Precision of the Derivatives

Precise calculation of derivatives is critical to PEST's performance. Improper
calculation of the derivatives will normally be reflected in an inability on the part of
PEST to achieve full convergence to the optimal parameter set. Often PEST will
commence an optimization run in spectacular fashion, lowering the objective func
dramatically in the first optimization iteration or two. But then it "runs out of steam
failing to lower it much further.

Try not to make parameter increments too large, or finite-difference-generated
derivatives will be a poor approximation to the real thing. However if they must be
large, use one of the three-point methods of derivatives calculation. Try the "parab
method first. If that doesn't work, use the "best-fit" method.

Experience in calibrating MODFLOW has shown that it is best to calculate derivat
using relative rather than absolute increments (i.e. the PEST derivative control va
INCTYP is set to "relative"), and that a value of between 0.01 and 0.05 is suitable
DERINC. However, for safety's sake, it is wise to back this up with an appropriate
value for DERINCLB, i.e. the absolute increment lower bound. For MT3D calibrat
DERINC is best set to 0.05 or higher if using a MOC scheme. For both MODFLO
and MT3D, FORCEN should be set to "switch" while values of 2.0 and "parabolic"
suitable for DERINCMUL and DERMTHD in most cases. If you undertake a dumm
run using model-generated "field data", the best values for these variables for you
particular case will soon become apparent.

The estimation of recharge is a special case. Recharge can vary greatly over a m
domain. Also, for some models, it may take on negative values. It has been found
an INCTYP setting of "rel_to_max" is often suitable for recharge parameters, and t
suitable value for DERINC is, again, 0.01 to 0.05. Remember recharge parameter
should not be log-transformed.

Derivative Precision in MODFLOW

In Visual MODFLOW, you can select from among the SSOR, SIP, PCG2 and WHS
solvers. For all of these methods, convergence is achieved when the maximum he
change between successive solutions is less than a user-defined threshold, HCLO
The PCG2 method also requires the user to supply a convergence threshold for its
iterations (RCLOSE), however, it is HCLOSE, not RCLOSE, that determines solut
precision.
If PEST Won't Optimize 97

ould

hin

ns set
rge

 If
.
t

t

of

T, is

file
ll
ly

most
 file,
d,
 be

 copy

 say a
t
The lower HCLOSE is set, the higher the precision calculated. Thus, HCLOSE sh
be set low when using MODFLOW with PEST. A value of about 10-4 or less is
recommended. However, because MODFLOW then requires more iterations to
converge to this tighter convergence criterium, the maximum number of iterations
(outer iterations for PCG2 and WHS solvers) should be increased.

With HCLOSE set this low, solution convergence may not always be achieved wit
the maximum number of iterations. In fact, for some parameter sets, solution
convergence to may never be achieved even with the maximum number of iteratio
very high. Unfortunately, for transient simulations, when MODFLOW fails to conve
within the maximum number of iterations for a particular time step, it will abort
execution instead of moving on to the next time step. This is disastrous for PEST.
MODFLOW aborts, not all the head arrays expected by MODBORE will be written
Then when MODBORE runs following MODFLOW, it will fail and not write its outpu
file. When PEST tries to read the MODBORE output file, it will abort with an error
message that it is unable to find the .HOB file.

There are two ways to overcome this problem. The easiest way is to make a sligh
alteration to the MODFLOW source code. In the MAIN program unit, under the
comment labelled "C7C6", delete or comment out the line:

IF(ICNVG.EQ.0) STOP

With this modification, MODFLOW will continue onto the next time step whether
solution convergence was achieved or not. Visual MODFLOW includes a version
MODFLOW that has incorporated this change.

The second option, which is available if you have the unlimited version of WinPES
to insert a little intelligence into the batch file which PEST calls as the model.
MODBORE requires the user to inform it how many arrays to expect in the .HDS
that it will read. If the number of arrays in this file differs from what it expects, it wi
abort with a DOS errorlevel setting of 100. A statement in the batch file immediate
following the MODBORE command can be used to trap this error event. Usually,
appropriate action would be to substitute a new MODFLOW-solver-package input
containing a higher value for HCLOSE, for the one which MODFLOW has just rea
and then re-run MODFLOW. If MODFLOW fails to converge again, another file can
substituted in which HCLOSE is set even higher. Eventually MODFLOW will
converge and MODBORE will be able to complete its run. It is important to note,
however, that this procedure will not work if the solver package file contains any
adjustable parameters. For example, if you were using the PCG2 solver, you could
PCG2.DAT (created by Visual MODFLOW) to PCG2.H1, PCG2.H2, PCG2.H3,
PCG2.H4 and PCG2.H5. In each of these files increase the value of HCLOSE by
factor of two. Make sure, however, that the initial MODFLOW run uses the tightes
solution convergence criterion.
98 Chapter 6 - Troubleshooting PEST

MS-
g
,

g
f

, the
lated
T3D

 the
ives.

s
f
d by
er

the

e

hole

st be

rion
rm,
nce if
m run

the
 it
 the

 This,
Derivative precision in MT3D

Depending on which version of MT3D you use and what options you specify, MT3
may or may not use an iterative solver to calculate solute concentrations. In MT3D
based versions of MT3D (MT3DMS and MT3D99) you have the option of selectin
implicit or explict solution procedures for the finite-difference methods. If the MOC
MMOC or HMOC schemes are used, MT3D moves particles through the model
domain to solve the advection component of the solute transport equation. The
dispersion, source-sink mixing and chemical reaction components are solved usin
either an explicit or implicit finite-difference technique depending on the version o
MT3D.

Whereas the explicit solution scheme presents no problems for solution precision
particle tracking methods can pose problems for the accuracy of derivatives calcu
with respect to adjustable parameters. While solute concentrations calculated by M
are precise enough for ordinary usage, a significant loss of precision occurs when
outcomes of subsequent runs, are subtracted from each other to calculate derivat

The problem stems from the fact that there is only a finite number of particles. Thi
introduces "thresholds" throughout the model domain. For example, the number o
particles in a cell at the end of a time step will depend on the flow regime calculate
MODFLOW. A slight change in, for example, the transmissivity, can alter the numb
of particles in a cell from, say, 9 to 10. This, in turn, will result in a discontinuous
change in the solute concentration calculated for that cell as the transmissivity is
slightly varied. Therefore, it will be difficult to accurately calculate the derivative of
concentration in that cell with respect to transmissivity if the transmissivity is an
adjustable parameter.

The obvious solution is to not calibrate MODFLOW and MT3D together if a particl
tracking scheme is used for solute transport. If MODFLOW is first calibrated using
borehole head data, and then MT3D is calibrated separately using measured bore
concentrations, the flow regime by MT3D will be constant during the calibration
process. Although this is a step in the right direction, it is still not sufficient to
circumvent the problem of MT3D output "granularity" when using particle tracking
methods.

MT3D updates solute concentrations at time intervals known as "transport steps".
When using the explicit finite-difference or TVD schemes, each transport step mu
small enough such that none of the stability criteria pertaining to the different
components of the overall transport equation are violated. There is a stability crite
associated with the advection term, the dispersion term, the source-sink mixing te
and the chemical reaction term. All these criteria depend on system properties. He
one or more of these properties is being estimated by PEST, and thus changes fro
to run, so too will one or more of the stability criteria. If MT3D is allowed to select
transport step size itself based on the tightest of the various stability criteria which
must meet (as it does when the input variable DT0 is set to zero or negative), then
transport step size may vary from run to run as adjustable parameters are varied.
If PEST Won't Optimize 99

he

3D

be
ter

is
ST
ed by
 the

le
se of
ility
e

s will

t of
ed in
eed
ing/
care
 it may

een
C
s

te
om
eight
T is

inite-
tion.
in turn, will introduce model output "granularity" as it again becomes possible for t
number of particles within a certain cell to vary slightly at a certain simulation time
from one model run to the next.

Fortunately this problem is easily overcome. MT3D allows the user to select the
transport step size through the input variable DT0 (if it is set positive). However MT
overrides this choice if it fails to fulfil all of the model stability criteria. Hence, for
consistency between model runs, DT0 must be chosen low enough that it will not
"undercut" at any stage of the optimisation process as PEST varies MT3D parame
values from run to run as it attempts to optimise them. While setting DT0 low in th
manner results in an increased MT3D execution time, it does guarantee good PE
performance. On the other hand, if DT0 is set to a negative value, this value is us
MT3D regardless of the stability criteria. This has the danger though that some of
runs may produce unpredictable results.

As a complementary measure, it is important to place suitable bounds on adjustab
MT3D parameters. For example, if you are estimating dispersivity and, in the cour
the parameter estimation process, a dispersivity value becomes too high, the stab
criterion associated with the dispersion term could necessitate a transport step siz
lower than your chosen DT0 value. In such a case MT3D will undercut DT0 in
assigning the transport step size, with the result that the number of transport step
vary between subsequent MT3D runs.

A further important rule to follow in order to maintain consistency in the movemen
particles between cells from model run to model run, is that particles must be plac
a fixed pattern within a model cell rather than in a random pattern. You may also n
to use more particles than normal to reduce mass balance discrepancies in diverg
converging flow fields. Similarly, if solute source concentration is being estimated,
must be taken in assigning values to the variables NPL and NPH. In some cases,
be advisable to set NPL equal to NPH.

Another "threshold" in MT3D that has the potential to introduce inconsistency betw
model runs involves the use of the MT3D input variable DHMOC used in the HMO
solution method to switch between the MOC and MMOC schemes. Experience ha
shown, however, that this does not cause too many problems, as borehole
measurements used for model calibration tend to be in areas where solute
concentrations are high and where the MOC, rather than the MMOC, scheme is
operating. Conversely, in areas where the MMOC scheme is being used, the solu
concentration is generally low. Thus, the contribution of a measurement residual fr
borehole in this area to the objective function is low, as long as the observation w
is not high. This further diminishes the potential for instability. Nevertheless, if PES
having difficulty in optimising MT3D parameters and you are using the HMOC
method, it may be worth attempting a calibration using the MOC scheme only.

Alternatively, dispense with particle-based schemes altogether, using the TVD or f
difference methods to solve the advective component of the solute transport equa
100 Chapter 6 - Troubleshooting PEST

 not
le
 of
ber of

ff
EST

e
ay
ause

 are
trices.

tion
d.

y
bal,

e the
ll.

 very
r this.

le
nd
the

ction
re far

da is
d is

of

rmal
High Parameter Correlation

There is often a temptation in fitting models to data, to improve the fit between
modeled and measured observations by increasing the number of adjustable
parameters. While it is true that this can result in a lowered objective function, it is
always true that such an improvement increases the model's ability to make reliab
predictions. A high number of parameters may not represent a valid interpretation
the data set to which the model's outcomes are matched. Furthermore, as the num
parameters requiring estimation is increased, PEST's ability to lower the objective
function by adjusting the values of these parameters is diminished due to round-o
errors. This is particularly true for highly nonlinear models and applies not just to P
but to any parameter estimation package.

The trouble with increasing the number of parameters is that, sooner or later, som
parameters become highly correlated. With a high number of parameters, PEST m
not be able to distinguish between different combinations of parameter values bec
various combinations can give equally low values of the objective function. As
discussed in the previous chapter, the extent to which parameter pairs and groups
correlated can be determined from the correlation coefficient and eigenvector ma

If parameters are too highly correlated the matrix JtQJ of equation (8.18) becomes
singular. However because PEST adds the Marquardt parameter to the diagonal
elements of this matrix before solving for the parameter upgrade vector (see equa
8.20), making it no longer singular, an upgrade vector will nevertheless be obtaine
Eventually, unless circumvented by round-off errors, an objective function minimum
will be obtained through the normal iterative optimization process. However the
parameter set determined on this basis may not be unique. Furthermore, for highl
nonlinear models, the objective function may have attained a local, rather than glo
minimum. Hence, if you are running a theoretical case, PEST may determine a
parameter set, which is entirely different from the one, which you used to generat
artificial measurement set. In spite of this, the objective function may be very sma

In addition to the non-uniqueness problem, the optimization process may become
slow if there are many parameters in need of estimation. There are two reasons fo
The first is that PEST requires at least as many model runs as there are adjustab
parameters to fill the Jacobian matrix during each optimization iteration. The seco
reason is based on the possible near-singular condition of the normal matrix and
way in which PEST adjusts the Marquardt lambda upwards in response to this. In
general, while high lambda values can lead to a rapid lowering of the objective fun
at the early stages of the parameter estimation process when parameter values a
from optimal, it is normally far better to decrease lambda as the objective function
minimum is approached. As discussed in Chapter 8, using a high Marquardt lamb
equivalent to using the gradient optimization method. However the gradient metho
notoriously slow when parameters are highly correlated, due to the phenomenon
“hemstitching” as the parameter upgrade vector oscillates across narrow objective
function valleys in parameter space. If lambda cannot be lowered because the no
If PEST Won't Optimize 101

ce the

en

. Log
ful

ers
 are

from

earity

valid.

h that
fset is

gh
d
In
 which

pe.

se
ld be
w as

y be
matrix become singular, or at best ill-conditioned, due to the excessive number of
parameters requiring estimation, there will be no way to prevent this.

These troubles are often compounded by the fact that as parameter numbers are
increased, each parameter may have a smaller effect on fewer observations. Hen
accuracy of derivatives calculation will suffer and, with it, PEST's ability to find the
global objective function minimum in parameter space.

Note that the incorporation of prior information into the estimation process can oft
add stability to an over-parameterized system. Likewise, removing a number of
parameters from the process by holding them fixed at strategic values may yield
dramatic improvements in PEST's performance.

Inappropriate Parameter Transformation

PEST allows adjustable parameters to be either log-transformed or untransformed
transforming appropriate parameters can make the difference between a success
PEST run and an unsuccessful one.

Trial and error is often the only means by which to judge whether certain paramet
should be log-transformed or not. There is no general rule as to which parameters
best log-transformed. However experience has shown that parameters, such as
conductivity, whose values vary by one or more orders of magnitude often benefit
log transformation. Log-transformation of these parameters will often linearize the
relationship between the parameters and the observations. Consequently, to the lin
assumption upon which the equations of Chapter 8 and 9 are based will be more

The use of a suitable scale and offset may change the domain of a parameter suc
logarithmic transformation becomes possible. The use of parameter scaling and of
discussed in Chapter 9.

Highly Non-linear Problems

If the relationship between parameters and observations is highly nonlinear, the
optimization process will be difficult. Such nonlinearity may be circumvented throu
logarithmically transforming some parameters, with or without a suitable offset an
scaling factor. However, sometimes, log-transformation will make little difference.
such cases the Gauss-Marquardt-Levenberg method of parameter estimation, on
PEST is based, may not be the most appropriate method to use.

Sometimes the use of a high initial Marquardt lambda is helpful in cases of this ty
Also, the relative and absolute parameter change limits (RELPARMAX and
FACPARMAX on the PEST control file) may need to be set lower than normal. A
careful inspection of the PEST run record file may suggest suitable values for the
variables and, indeed, which parameters should be relative-limited and which shou
factor-limited. Parameter increments for derivatives calculation should be set as lo
possible without incurring round-off errors. The three-point "parabolic" method ma
102 Chapter 6 - Troubleshooting PEST

r
ter

at the

 for
if not

eter

pplied
ly
w

d
e-
y, if a
uced

e
the most appropriate method for calculating derivatives because of its quadratic
approximation to the relationship between observations and parameters. The
incorporation of prior information into the parameter estimation process (with a
suitably high weight assigned to each prior information equation) may also yield
beneficial results.

For all types of parameter estimation problems, but particularly for highly nonlinea
problems, the closer user-supplied initial parameter values are to optimal parame
values, the greater the chance of PEST being successful.

Discontinuous Problem

The Gauss-Marquardt-Levenberg algorithm, on which PEST is based, assumes th
observations are continuously differentiable functions of the parameters. If this
assumption is violated, PEST will have extreme difficulty in estimating parameters
the model. Although, it may have some success if the dependence is continuous,
continuously differentiable.

Parameter Change Limits Set Too Large or Too Small

As outlined above for highly nonlinear problems, suitable relative and factor param
change limits may allow an optimization in difficult circumstances. However if the
change limits specified by RELPARMAX and FACPARMAX are too small,
minimization of the objective function may be hampered as the upgrade vector is
continually shortened. Inspecting the run record should reveal whether parameter
upgrades are being limited by these variables. If the maximum relative or factor
parameter changes per optimization iteration are consistently equal to the user-su
limits, then you might want to increase these limits. However, if your model is high
nonlinear or "messy", it may be better to keep RELPARMAX and FACPARMAX lo
as this may prevent "overshooting" during the parameter adjustments.

You should exercise caution in choosing which parameters are relative-limited an
which are factor-limited. Remember if a parameter is factor-limited, or if it is relativ
limited with a limit of less than 1, the parameter can never change sign. Conversel
parameter is relative-limited with a limit greater than or equal to one, it can be red
right down zero in a single step without transgressing the limit. This may cause
parameter "overshoot" problems for some nonlinear models and you may want to
consider a factor limit. However, a factor limit cannot be used if the parameter can
change sign. This can be overcome by using an appropriate OFFSET to shift the
parameter domain such that it does not include zero.

Finally, the offending parameter can be held at its current value, if the parameter
adjustment vector is dominated by a particular insensitive parameter, such that th
parameter is equal to its RELPARMAX or FACPARMAX limit and the changes to
other parameters are minimal.
If PEST Won't Optimize 103

e
will
 the

or
ma.

 PEST

itive to

itial
ve to

yet a
ive
al
eter

ive

h

the
ble

tive
ST
little

ith

ing
n,
he
Poor Choice of Initial Parameter Values

In general, the closer the initial parameter values are to the optimal values (i.e. th
values for which the objective function is at its global minimum), the faster PEST
converge to that global minimum. Not only can the initial parameter values reduce
run time of PEST, it may also make optimization possible. This is especially true f
highly nonlinear models or models for which there are local objective function mini
It is important to remember that a little time spent in this trying to estimate
independently a reasonable parameter set could be rewarded in greatly improved
performance.

Observations are Insensitive to Initial Parameter Values

In some models, the calculated values at the observation locations may be insens
the initial parameter values if the initial parameter values are poorly chosen. For
example, if the layer conductivities in a multi-layer model are all set to the same in
value, even though there are several aquitards, the observations may be insensiti
the initial conductivities in the lower layers.

Alternatively, a parameter may have little effect on model outcomes at low values,
much greater effect at higher values. If the optimised value lies within the insensit
area, a large degree of uncertainty will surround its estimate. However if the optim
value lies in the sensitive part of the parameter's domain it is likely that the param
will be well-determined (unless, of course, it is highly correlated with some other
parameter). In either case the parameter's initial value should be within the sensit
part of its domain.

Poor Choice of Initial Marquardt Lambda

Typically, PEST will find its way to a near-optimal Marquardt lambda at eac
stage of the parameter estimation process. However if you supply an initial
Marquardt lambda, which is far from optimal, the adjustment to an optimal
lambda may not be successful. After attempting a parameter upgrade with
initial lambda, PEST searches for alternative lambdas, using the input varia
RLAMFAC to calculate them. If the initial lambda is poor, these alternative
lambdas may be little better than the first one, in terms of lowering the objec
function. Based on the PEST parameters PHIREDLAM and NUMLAM, PE
may soon move on to the next optimisation iteration, after having achieved
in lowering the objective function. If this is repeated during subsequent
optimisation iterations, PEST will soon terminate execution in accordance w
one of its termination criteria.

In most cases, an initial Marquardt lambda between 1.0 and 10.0 works well.
Nevertheless, if PEST spends the first few optimisation iterations significantly rais
or lowering lambda, before achieving a lowering of the objective function reductio
then you may want to re-evaluate the initial lambda in subsequent PEST runs. If t
104 Chapter 6 - Troubleshooting PEST

rt
ST
.

ase

he

igher

l-

 others,
EST
a
nsitive
r, the
X
 such
meter
rade
ited

l
jective

d

factor

stable
parameter estimation process simply does not "get off the ground", you should sta
over with an entirely different lambda. Try a much greater one first, especially if PE
has displayed messages to the effect that the normal matrix is not positive definite

To help PEST search farther afield for a suitable Marquardt lambda, you can incre
the input variable RLAMFAC. However, it is not a good practice to keep RLAMFAC
high throughout the optimisation run. If after increasing RLAMFAC PEST finds a
lambda which seems to work, terminate PEST execution, supply that lambda as t
initial lambda, reset RLAMFAC to a reasonable value (e.g. 2.0) and start the
optimisation process again.

Experience has shown that if the initial parameter set is poor, PEST may need a h
Marquardt lambda to get the parameter estimation process started. Also a higher
Marquardt lambda may be needed for highly nonlinear problems compared to wel
behaved problems.

Upgrade Vector Dominated by Insensitive Parameters

Where many parameters are being estimated and some are far less sensitive than
it is not uncommon to encounter problems in the parameter estimation process. P
calculates an upgrade vector in which the insensitive parameters are adjusted by
larger amount relative to more sensitive parameters. Such adjustment of the inse
parameters is necessary to ensure that they affect the objective function. Howeve
adjustment to any parameter is limited by the PEST control variables RELPARMA
and FACPARMAX. PEST reduces the magnitude of the parameter upgrade vector
that no parameter change exceeds these limits. Unfortunately, an insensitive para
may dominate the parameter upgrade vector, restricting the magnitude of the upg
vector. In this case, the change in the value of the insensitive parameter will be lim
by RELPARMAX or FACPARMAX (depending on its PARCHGLIM setting) and wil
result in much smaller changes to other, more sensitive, parameters. Thus, the ob
function may be reduced very little, if at all.

PEST records the names of parameters that have undergone the largest factor an
relative changes at the end of each optimisation iteration. The problem is easily
recognised when either the maximum relative parameter change or the maximum
parameter change is equal to RELPARMAX or FACPARMAX respectively, and the
objective function is reduced very little. More often than not, an inspection of the
parameter sensitivity will reveal that these same parameters also possess a low
sensitivity.

Under these circumstances, increasing RELPARMAX and FACPARMAX will not
necessarily solve the problem. Parameter change limits are necessary to avoid un
behaviour in the face of problem nonlinearity (this being the norm rather than the
exception).
If PEST Won't Optimize 105

EST
eters

, once
ive
 until
ce the
 a time

ply
ain
raphics
The solution is to hold insensitive parameters at their current values. In this way, P
can often achieve a significant improvement in the objective function. Held param
can then be released later in the parameter estimation process.

It may be that quite a few parameters need to be held in this manner. For example
a particular troublesome parameter has been identified and held, another insensit
parameter may in turn dominate the parameter upgrade vector. This can continue
the set of parameters has been reduced to a set of sensitive parameters. Now, on
objective function has been reduced, the held parameters can be released one at
until the final optimized solution has been found. Alternatively, you may prefer to
preemptively hold all the parameters at once that are suspected to be insensitive.

Holding Parameters

In Visual MODFLOW the thumb-tack button allows you to interactively
hold parameters during the parameter estimation process. Clicking on the
hold icon brings up the following dialogue.

This dialogue contains a bar graph with a bar for each adjustable parameter. Sim
double clicking on a bar in the bar graph will hold a parameter. Double clicking ag
will release the parameter. Once the parameter has been held, you can view the g
and watch the optimization process in the main PEST dialogue
106 Chapter 6 - Troubleshooting PEST

e

al

 file

”
re also
splay
ever
old

ew

ter
The Parameter Hold File

You will not normally deal with the hold file, since it is automatically generated by
Visual MODFLOW. However, PEST allows some additional flexibility in the hold fil
that is not directly supported by Visual MODFLOW.

After it calculates the Jacobian matrix, and immediately before calculating the
parameter upgrade vector, PEST looks for a file named “projectname.HLD” in its
current directory. If it does not find it, PEST proceeds with its execution in the norm
manner. However if it finds such a file, it opens it and reads it for the current
optimisation iteration. You can edit the hold file at any time and PEST will read the
at the next opportunity.

Part of a parameter hold file is shown below:

relparmax 10.0

facparmax 10.0

lambda 200.0

hold parameter thick1

hold parameter thick2

hold group conduct < 15.0

hold group thickness lowest 3

Entries in a parameter hold file can be in any order. Any line beginning with the “#
character is ignored and treated as a comment line. If any lines are in error they a
ignored, for PEST does not pause in its execution or clutter up either its screen di
or its run record file with error messages pertaining to the parameter hold file. How
it does report to the run record file any alterations to its behaviour based on the h
file.

A user is permitted to alter the values of three PEST control variables using the
parameter hold file. These are RELPARMAX, FACPARMAX and LAMBDA. The
syntax is shown above. That is, the name of the variable must be followed by its n
value. It is important to note that if a parameter hold file is left “lying around”,
any lines altering the value of lambda should be removed or “commented out”.
Otherwise, PEST will be prevented from making its normal adjustment to lambda
from iteration to iteration. This may severely hamper the optimisation process.

Note: that once RELPARMAX and FACPARMAX have been altered using a parame
hold file, they stay altered, even if the file is removed or the lines pertaining to
RELPARMAX and FACPARMAX are deleted or commented out.
Holding Parameters 107

ng

 is
 hold
 in

ld

eter

have
ess to
 and

rix.
e

er
 or
To hold a parameter at its current value while the parameter upgrade vector is bei
calculated, use a line such as the fourth line the example above. The format is as
follows

hold parameter parnme

where parnme is the name of the parameter in the .PST file. If the parameter name
incorrect, PEST simply ignores the line. If the line is removed from the parameter
file, or the parameter hold file itself is removed, the parameter is then free to move
later optimisation iterations.

The sixth line in the example above illustrates how to hold all the parameters in a
group. In this case, the format is

hold group pargpnme < x

where pargpnme is the name of a parameter group and x is a positive number that tells
PEST to hold any parameter with a sensitivity less than x. Held parameters can be
released by reducing x (to zero if desired), by deleting this line from the parameter ho
file, or by deleting the parameter hold file itself.

Finally, the seventh line in the example above shows how to hold the n most insensitive
parameters in a particular parameter group. The format for this operation is

hold group pargpnme < n

where n is a positive integer. Such held parameters can be freed later in the param
estimation process by reducing n (to zero if desired), by deleting this line from the
parameter hold file, or by deleting the parameter hold file itself.

Re-starting PEST execution

Often PEST will run to completion with the set of parameters and values that you
specified. However, you may want to start and stop the parameter estimation proc
adjust some of the PEST variables. PEST allows you to halt execution at any time
restart it again either at the end of the last iteration or using the last Jacobian mat
This is very important because the calculation of the Jacobian matrix is a very tim
consuming operation. PEST stores the Jacobian matrix in a file each time it is
calculated. The Jacobian matrix is then retrieved from disk if PEST is asked to re-
calculate the parameter upgrade vector. Since, the size of the Jacobian matrix is
determined by the number of parameters, if you want to remove a model paramet
from the process, then you can either hold it constant and allow PEST to continue
you can remove it completely and start the estimation process over again.
108 Chapter 6 - Troubleshooting PEST

ing

,
e

ve
t
In the WinPEST dialogue the model can be stopped at any time us
the stop icon. The pause icon does not stop execution but simply
suspends it until you click on the play icon again. If you stop PEST

then by default it restarts the execution from scratch. However, you can change th
restart options by selecting [Options] from the top menu and then [Run/Restart].

This will bring up the following dialogue where you can select to restart PEST from
either the last iteration or the last Jacobian matrix calculation.

If you choose to re-start the process using the last Jacobian matrix, PEST will mo
straight into calculation of the parameter upgrade vector and the testing of differen
Marquardt lambdas, based on the most recent completed Jacobian matrix.
Re-starting PEST execution 109

110 Chapter 6 - Troubleshooting PEST

ified,

iles,
t

pose
be
T

d to
ory or

arts

ts the
s is to

put
ose
o
A
Appendix A, PEST Input Files

PEST requires three types of input file. These are:

• template files, one for each model input file on which parameters are ident
• instruction files, one for each model output file on which model-generated

observations are identified, and
• an input control file, supplying PEST with the names of all template and

instruction files, the names of the corresponding model input and output f
the problem size, control variables, initial parameter values, measuremen
values and weights, etc.

This Appendix describes these file types in detail.

Template files, instruction files and control files can be written using a general-pur
text editor following the specifications set out in this chapter. Once built, they can
checked for correctness and consistency using the utilities supplied in the WinPES
interface.

Note that in this and other chapters of this manual, the word "observations" is use
denote those particular model outcomes for which there are corresponding laborat
field data. For clarity, these numbers are often referred to as "model-generated
observations" to distinguish them from their laboratory- or field-acquired counterp
which are referred to as "measurements" or "laboratory or field observations".

PEST Template Files

Whenever PEST runs MODFLOW or MT3D, it must first write certain parameter
values to the model input files. PEST provides the parameter values which it wan
model to use for a particular run. The only way the model can access these value
read them from its input files. For example, if FILE.INP contains parameters which
PEST must optimise, a template can be built for it as if it were any other model in
file. A model may read many input files. However, a template is needed only for th
input files which contain parameters requiring optimisation. PEST does not need t
know about any of the other model input files.
PEST Template Files 111

 a
II
ence

e to

than
plate

l

t

, the
ases it
ions, or
LO

ired

made
sed" in
is
crete

s.
the

ter
 to a
e to
PEST can only write parameters to ASCII (i.e. text) input files. If a model requires
binary input file, you must write a program which translates data written to an ASC
file to binary form. The translator program, and then the model, can be run in sequ
by placing them in a batch file which PEST calls as the model. The ASCII input fil
the translator program will then become a model input file, for which a template is
required.

A model input file can be of any length. However, PEST insists that it be no more
2000 characters in width. The same applies to template files. We suggest that tem
files have the extension ".TPL" to distinguish them from other types of file.

A template file receives its name from the fact that it is simply a replica of a mode
input file except that the space occupied by each parameter in the template file is
replaced by a sequence of characters which identify the space as belonging to tha
parameter.

Aquifer properties that may need adjustment during model calibration include
horizontal hydraulic conductivity, inter-layer conductance, storage coefficient,
streambed or drain conductance and, in the case of transport models, dispersivity
parameters defining adsorption isotherms, and solute decay constants. In other c
may be necessary to adjust aquifer inputs such as recharge rates and concentrat
the parameters governing evapotranspiration. These values are supplied to MODF
and MT3D either through two-dimensional data arrays (for example hydraulic
conductivity and dispersivity), or as cell-by-cell listings (for example drain and
riverbed conductance). All of these parameters are distributed, i.e. a value is requ
for many (or all) model cells. As it is both practically infeasible and mathematically
impossible to estimate a parameter value for each model cell using observations
at a discrete number of boreholes, these distributed parameters must be "regulari
some way. The easiest way to do this is to assume that any such parameter type
"piecewise constant", i.e. that it takes on a single value in each of a number of dis
model sub-areas within the overall model domain.

PEST interfaces with a model through the models own ASCII input and output file
Each time PEST runs a model it first writes user-specified model input files using
parameter values which it wishes the model to use on that particular run. It knows
where to write parameter values to input files through the use of model input file
templates. For PEST to adjust a distributed parameter supplied to MODFLOW or
MT3D through a two-dimensional array or cell-by-cell listing, a template must be
constructed for the file which holds the array or listing. This is usually done by
modifying a model input file, replacing parameter values with "parameter spaces"
(comprising a parameter name enclosed by appropriate delimiters). Each parame
space denotes a contiguous set of characters on the model input file as belonging
particular parameter. It also informs PEST of the number of digits which it may us
write the number representing the parameter.
112 Appendix A, PEST Input Files

l
nt. If
y of
aces.
 same

 into

s
s
ones

an
ws
For a spatially distributed parameter occupying a two-dimensional array the mode
domain must be subdivided into a handful of zones where the parameter is consta
each number in the array is replaced by an appropriate parameter space, the arra
numbers as represented in the model input file becomes an array of parameter sp
Each zone of parameter constancy within the array is then identified as having the
parameter name.

The first part of Table 4 illustrates a two-dimensional array of numbers subdivided
four zones of equal value. The second part of T able4 shows part of a template file
constructed from it. Before PEST runs the model, it replaces the parameter space
found in the template file by the current values pertaining to those parameters, thu
building an array consisting of four separate numbers and defining four separate z
of parameter constancy

For parameters supplied to MODFLOW or MT3D on a cell-by-cell basis the cells c
be divided into zones of similar value in the same way. For example, Table 5 sho
part of a MODFLOW .DRN file for the Drain Package.

Table 4: Template example for a two-dimensional array
comprised of four different numbers

 1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 1.2345 1.2345 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 6.7543 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 6.7543 6.7543
 1.2345 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 6.7543
 8.4352 1.2345 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 1.2345 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521 9.6521
 8.4352 8.4352 8.4352 8.4352 9.6521 9.6521 9.6521 9.6521

par1 # # par1 # # par1 # # par1 # # par1 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par1 # # par1 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par2 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par3 # # par2 # # par2
par1 # # par1 # # par1 # # par3 # # par3 # # par3 # # par3 # # par2
par4 # # par1 # # par1 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par1 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par4 # # par3 # # par3 # # par3 # # par3 # # par3
par4 # # par4 # # par4 # # par4 # # par3 # # par3 # # par3 # # par3
PEST Template Files 113

s
y

u
tially
ters

ers.
O

 C.
eates

The drain has been subdivided into two zones in each of which the conductance i
assumed uniform. (Note that in this example, the parameterization would probabl
benefit by tying all of the conductances to one conductance.

Visual MODFLOW’s Template Files

Visual MODFLOW takes care of creating template files for the parameters that yo
select in the PEST Control dialogue. In this dialogue, you can currently select spa
variable anisotropic conductivities, storage parameters and recharge. The parame
that you select here are Visual MODFLOW parameters - not MODFLOW paramet
This means that you can select vertical hydraulic conductivity whereas in MODFL
this term is lumped into the vertical conductance variable.

Visual MODFLOW builds the MODFLOW input files before each run by using a
combination of PERL source files (.SRC files) and template files that are written in
PEST substitutes the current parameter value into the template file, which then cr
the MODFLOW input file in the format outlined by the .SRC files. Tab le6 shows a
typical Visual MODFLOW .TPL file that is set to optimise Kx for zones 1,2 and 3.

Table 5: Template example for part of the input to
MODFLOW's DRN package.

 1 19 43 2.000E+01 3.000E+00
 1 20 43 2.000E+01 3.000E+00
 1 21 43 2.000E+01 3.000E+00
 1 22 44 2.000E+01 3.000E+00
 1 23 45 2.000E+01 3.000E+00
 1 24 46 2.000E+01 5.000E+00
 1 25 46 2.000E+01 5.000E+00
 1 26 46 2.000E+01 5.000E+00
 1 27 46 2.000E+01 5.000E+00
 1 28 45 2.000E+01 5.000E+00
 1 29 44 2.000E+01 5.000E+00
 1 30 43 2.000E+01 5.000E+00
 1 31 43 2.000E+01 5.000E+00

 1 19 43 2.000E+01 # con1 #
 1 20 43 2.000E+01 # con1 #
 1 21 43 2.000E+01 # con1 #
 1 22 44 2.000E+01 # con1 #
 1 23 45 2.000E+01 # con1 #
 1 24 46 2.000E+01 # con2 #
 1 25 46 2.000E+01 # con2 #
 1 26 46 2.000E+01 # con2 #
 1 27 46 2.000E+01 # con2 #
 1 28 45 2.000E+01 # con2 #
 1 29 44 2.000E+01 # con2 #
 1 30 43 2.000E+01 # con2 #
 1 31 43 2.000E+01 # con2 #
114 Appendix A, PEST Input Files

ill
Working Directly with MODFLOW/MT3D Files

We are expecting to continue to make additional Visual MODFLOW parameters
available in the PEST Control dialogue. In this version, however, if you want to
optimise a parameter that is not included in the list of available parameters, you w
need to construct your own template files.

Table 6: Example Visual MODFLOW Template file

ptf #

sub adjust_g_format
{
 my $s = shift;
 $s =~ s/(\-?)(\d+)(\.?)(\d*)e(\+)(\d)(\d)(\d)(\@)/ $1$2$3$4e$6$7$8$9/g;
 $s =~ s/(\-?)(\d+)(\.?)(\d*)e(0)(\d)(\d)(\@)/ $1$2$3$4e$6$7$8/g;
 $s =~ s/(\-?)(\d+)(\.?)(\d*)e(0)(\d)(\@)/ $1$2$3$4e$6$7/g;
 $s =~ s/(\-?)(\d+)(\.?)(\d*)e(\-?)(0)(\d)(\d)(\@)/ $1$2$3$4e$5$7$8$9/g;
 $s =~ s/(\-?)(\d+)(\.?)(\d*)e(\-?)(0)(\d)(\@)/ $1$2$3$4e$5$7$8/g;
 $s =~ s/()(*)(-?)(\d+)(\@)/$2$3$4\.$5/g;
 $s =~ s/\@//g;
 return $s;
}

sub Process
{
 my $source = shift;
 my $target = shift;
 open inp, "<$source";
 open out, ">$target";
 while(<inp>)
 {
 print out adjust_g_format eval $_;
 }
 close inp;
 close out;
}
$Kx__1 = # Kx__1#;
$Kx__2 = # Kx__2#;
$Kx__3 = # Kx__3#;
undef %Source_Files_To_Process;
$Source_Files_To_Process{'D:\VMODNT\DEMP.BCF'} = 'D:\VMODNT\DEMP.BCF.SRC';
$Source_Files_To_Process{'D:\VMODNT\DEMP.WEL} = 'D:\VMODNT\DEMP.WEL.SRC';
foreach $target (keys %Source_Files_To_Process)
{
 $source = $Source_Files_To_Process{$target};
 Process $source, $target;
}

PEST Template Files 115

ut
t
g

r cell-
le

 and

m

ies
imu
wn in

em

if
-
reful

t

d to
r

ray

e

ted

ty
form
To prepare a template for a model input file you should first prepare the model inp
using Visual MODFLOW and translate the model without running it. Then construc
the template file by first copying, and then modifying, the model input file containin
the parameter to be optimised, replacing each zone value in the pertinent array o
by-cell listing by a corresponding parameter space. In this way, you will create a fi
that contains parameter spaces for the parameters that you want to optimise.

For example, suppose that you wish to optimise the amount of evapotranspiration
you have created the .EVT file by assigning the appropriate zones in Visual
MODFLOW and translating the file. To prepare a template file named EVP.TPL fro
projectname.evt, copy projectname.evt to EVT.TPL, add a template file header (e.g.
"ptf &", "&" being the parameter delimiter) and use the "search and replace" facilit
of a text editor to replace each occurrence of each zone-defining value in the max
ET array by an appropriate parameter space to produce an array like the one sho
Table 4.

Unfortunately this process is not always as simple as it sounds. MODFLOW and
MT3D input files can be very large and your text editor may not be able to read th
(We use MultiEdit for Windows(r) by American Cybernetics; www.amcyber.com).
Also, you must be carefule to ensure that the "search and replace" does not make
changes beyond the target area of the MODFLOW/MT3D input file. Furthermore,
you want to make changes to the zonation of a parameter then you will have to re
translate the files and you must re-create the template file. Also you should be ca
not to try optimising parameters that lie completely within an inactive zone. Your
template files can be checked using the WinPEST file checking routines.

Working with files created by Visual MODFLOW

Sometimes the parameter values that you supply to a model preprocessor are no
actually reproduced in the MODFLOW/MT3D input files written by Visual
MODFLOW. This may cause problems when easily-identified numbers are supplie
a particular parameter with the aim of replacing those numbers later by paramete
spaces. In Visual MODFLOW, this can be caused by internal unit conversion or
because MODFLOW does not use the parameter as it is supplied to Visual
MODFLOW. For example, pumping rates are specified in the MODFLOW files in
units consistent with other length and time parameters.

MODFLOW defines four different types of model layers using via the LAYCON
parameter. If LAYCON for a layer is 0 or 2, MODFLOW expects a transmissivity ar
for that layer. However if the LAYCON element is 1 or 3, MODFLOW expects a
hydraulic conductivity array. Since, Visual MODFLOW uses only hydraulic
conductivity, if a layer is of type 0 or 2 the hydraulic conductivity is multiplied by th
layer thickness to obtain transmissivity which is then translated to the MODFLO
input file. Therefore, user-supplied cell hydraulic conductivity values are not replica
in the MODFLOW .BCF file. Furthermore, if the layer thickness is irregular, the
transmissivity array will not be piecewise constant even if the hydraulic conductivi
was entered in zones of constant value. In such a case, it is better to supply a uni
116 Appendix A, PEST Input Files

ble.

i-

 be
used
y, if
f the
g the

ted to
nted
 each

ame
e
the
lic
nd

e

efine
ulic
l be
ter

ngth

f its
if a
is
n of
aquifer thickness to the preprocessor even if the aquifer thickness is, in fact, varia
For layers of type 0 or 2 this inaccuracy will not degrade model results as it is the
transmissivity, and not the hydraulic conductivity and layer thickness individually,
which determines the flow regime within the aquifer.

Similar considerations apply to the VCONT array required by MODFLOW for mult
layered models, which represents the vertical hydraulic conductivity divided by
thickness.

Note that only arrays and cell-by-cell parameters that are to be optimised need to
considered when constructing a template file. Arrays and values which will not be
in the parameter optimisation should be left unaltered in the template file. Similarl
parameter optimisation is sought for only part of a model domain, then only part o
array needs to have its elements replaced by parameter spaces when constructin
template file.

Multi-Array Parameters and Tied Parameters

There is no reason why the occurrence of a particular parameter should be restric
a single array. For example, if a single, vertically homogeneous aquifer is represe
by a number of model layers, the arrays representing the hydraulic conductivity of
model layer will be identical. In such a case, the parameter space arrays on the
corresponding template file will also be identical, each such array containing the s
parameters in the same disposition. The VCONT arrays for model layers within th
same aquifer will also be identical from layer to layer (if the layer thicknesses are
same). The pertinent parameter values may be estimated separately from hydrau
conductivity, or they may be tied to the latter, if the relationship between vertical a
horizontal hydraulic conductivity is known. In the latter case, only the horizontal
hydraulic conductivity needs to be estimated, the estimates for VCONT tracking th
horizontal values as the optimisation process progresses.

Similarly, for parameter types such as drain conductance, it may be opportune to d
a small number of conductances over the model domain, assuming that the hydra
conductivity of the drain material is uniform, the conductance in a particular cell wil
proportional to the length of drain in that cell. Thus, only one conductance parame
needs to be optimised, the others being tied to it in proportion to the respective le
category represented by each parameter.

Fixed and Transformed Parameters

A parameter must be fixed if it lies wholly within the inactive part of the model grid
and, hence, has no effect on model outcomes. A parameter should also be fixed i
effect on model outcomes at all observation points is particularly weak. Likewise,
group of highly correlated parameters is identified, then at least one member of th
group may need to be fixed to stabilise the optimisation and to make the estimatio
the remaining members of the group more efficient.
PEST Template Files 117

ay
er

ed
The

air of
ile, it
mber
eter is
.

ted

ile it

n
d)
nds

d the

.

r is
rs long
he
ree

etter
paces
ons
djust
The logarithmic transformation of certain parameter types, such as conductivity m
have a dramatic effect on optimisation efficiency, as will appropriate upper and low
bounds for adjustable parameters.

Template File Syntax and Commands

The Parameter Delimiter

As Table 6 shows, the first line of a template file must contain the letters "ptf" follow
by a space, followed by a single character ("ptf" stands for "PEST template file").
character following the space is the "parameter delimiter". In a template file, a
"parameter space" is identified as the set of characters between and including a p
parameter delimiters. When PEST writes a model input file based on a template f
replaces all characters between and including these parameter delimiters by a nu
representing the current value of the parameter that owns the space. That param
identified by name within the parameter space, between the parameter delimiters

You must choose the parameter delimiter yourself. However, your choice is restric
in that the characters [a-z], [A-Z] and [0-9] are invalid. The parameter delimiter
character must appear nowhere within the template file except in its capacity as a
parameter delimiter, for whenever PEST encounters that character in a template f
assumes that it is defining a parameter space.

Parameter Names

All parameters are referenced by name. Parameter references are required both i
template files (where the locations of parameters on model input files are identifie
and on the PEST control file (where parameter initial values, lower and upper bou
and other information are provided). Parameter names can be from one to eight
characters in length, any characters being legal except for the space character an
parameter delimiter character. Parameter names are case-insensitive.

Each parameter space is defined by two parameter delimiters. The name of the
parameter to which the space belongs must be written between the two delimiters

If a model input file is such that the space available for writing a certain paramete
limited, the parameter name may need to be considerably less than eight characte
in order that both the name and the left and right delimiters can be written within t
limited space available. The minimum allowable parameter space width is thus th
characters, one character for each of the left and right delimiters and one for the
parameter name.

Setting the Parameter Space Width

In general, the wider the parameter space (up to a certain limit - see below), the b
PEST likes it, since numbers can be represented with greater precision in wider s
than they can be in narrower spaces. However, unlike model-generated observati
where maximum precision is crucial to obtaining useable derivatives, PEST can a
118 Appendix A, PEST Input Files

 been
cters,
ameter
se as

ey can
m.

 to

he last

 using
d

utside
e

signed
e
e

ers
ny of
laced
t file

r
 spaces
 the
to limited precision for parameters in input files. Enough precision needs to be
available for the parameter value to be distinguished between iterations after it has
incremented for derivatives calculation. Hence, beyond a certain number of chara
the exact number depending on the parameter value and the size and type of par
increment used, extra precision is not critical. Nevertheless, it is good practice to u
much precision as the model is capable of reading the parameters with, so that th
be provided to the model with the same precision with which PEST calculates the

In MODFLOW and MT3D, the FORTRAN file formats are found in their respective
Reference Manuals. For example, the following FORTRAN code directs a program
read five real numbers. The first three are read using a format specifier, whereas t
two are read in list-directed fashion.

READ(20,100) A,B,C

100 FORMAT(3F10.0)

READ(20,*) D,E

The relevant part of the input file may be

6.32 1.42E-05123.456789

34.567, 1.2E17

Notice how no whitespace or comma is needed between numbers which are read
a field specifier. The format statement labelled "100" directs that variable A be rea
from the first 10 positions on the line, that variable B be read from the next 10
positions, and that variable C be read from the 10 positions thereafter. When the
program reads any of these numbers it is unconcerned as to what characters lie o
of the field on which its attention is currently focussed. However, the numbers to b
read into variables D and E must be separated by whitespace or a comma for the
program to know where one number ends and the next number begins.

Suppose all of variables A to E are model parameters, and that PEST has been as
the task of optimising them. For convenience we provide the same names for thes
parameters as are used by the model code (this, of course, will not normally be th
case). The template fragment may then be

A ## B ## C

D #, # E

Notice how the parameter space for each of parameters A, B and C is 10 charact
wide, and that the parameter spaces abut each other. If the parameter space for a
these parameters was greater than 10 characters in width, then PEST, when it rep
the parameter space by the current parameter value, it would create a model inpu
which would be incorrectly read by the model. You could also designed paramete
spaces less than 10 characters wide if you wished, as long as there were enough
between each parameter space so that the value falls within the field expected by
PEST Template Files 119

cters

ers A,

racters
ma is

 E in
ers on
f
ch a
ed.
ing
nd the
e

y the

 the
ber
ich

is so
s of a
 its

T
 the
eral

hich
 found

gle"

eter
bearing
is is
nents
racters

blank.
model. However, there is no advantage in using less than the full number of chara
allowed by the model.

In the above example, parameters D and E are treated very differently to paramet
B and C. In this case, the model simply expects two numbers in succession. If the
spaces for parameters D and E are replaced by two numbers (each will be 13 cha
long) the model's requirement for two numbers separated by whitespace or a com
satisfied, as is PEST's preference for maximum precision.

Comparing the two lines above, it is obvious that the spaces for parameters D and
the template file are greater than the spaces occupied by the corresponding numb
the model input file from which the template file was constructed. In most cases o
template file construction, a model input file will be used as the starting point. In su
file, numbers read as list-directed input will often be written with trailing zeros omitt
In constructing the template file you should recognise which numbers are read us
list-directed input and expand the parameter space (to the right) accordingly beyo
original number, making sure to leave whitespace or a comma between successiv
spaces, or between a parameter space and a neighbouring character or number

Similarly, numbers read through field-specifying format statements may not occup
full field width in a model input file from which a template file is being constructed
(e.g. variable A in the example above). In such a case you should, again, expand
parameter space beyond the extent of the number (normally to the left of the num
only) until the space coincides with the field defined in the format specifier with wh
the model reads the number.

How PEST Fills a Parameter Space with a Number

PEST writes as many significant figures to a parameter space as it can. It does th
that even if a parameter space must be small to satisfy the input field requirement
model, there is still every chance that a parameter value can be distinguished from
incrementally-varied counterpart so as to allow proper derivatives calculation with
respect to that parameter. Also, as has already been discussed, even though PES
adjusts its internal representation of a parameter value to the precision with which
model can read it so that PEST and the model are using the same number, in gen
more precision is better

Two user-supplied control variables, PRECIS and DPOINT affect the manner in w
PEST writes a parameter value to a parameter space. Both of these variables are
in the PEST control file, but only PRECIS can be modified in the Visual MODFLOW
PEST Control dialogue. PRECIS is a character variable which must be either "sin
or "double". It determines whether single or double precision is used to write param
values. Unless a parameter space is greater than 13 characters in width it has no
on the precision with which a parameter value is written to a model input file, as th
determined by the width of the parameter space. If PRECIS is set to "single", expo
are represented by the letter "e". Also if a parameter space is greater than 13 cha
in width, only the last 13 spaces are used in writing the number representing the
parameter value, any remaining characters within the parameter space being left
120 Appendix A, PEST Input Files

er and
 small

very

ne or
ber

nd the

he
mber
her the

AN
h as
e
"),
oint
tring

ng

t to
",

eter

e
 be
lue is

ses no
te
ccur
ate file
For the "double" alternative, up to 23 characters can be used to represent a numb
the letter "d" is used to represent exponents. Also, extremely large and extremely
numbers can be represented.

If a model's input data fields are small, and there is nothing you can do about it, e
effort must be made to "squeeze" as much precision as possible into the limited
parameter spaces available. PEST will do this anyway, but it may be able to gain o
more extra significant figures if it does not need to include a decimal point in a num
if the decimal point is redundant. Thus if a parameter space is 5 characters wide a
current value of the parameter to which this field pertains is 10234.345, PEST will
write the number as "1.0e4" or as "10234" depending on whether it must include t
decimal point or not. Similarly, if the parameter space is 6 characters wide, the nu
106857.34 can be represented as either "1.07e5" or "1069e2" depending on whet
decimal point must be included or not.

By assigning the string "nopoint" to the PEST control variable DPOINT, you can
instruct PEST to omit the decimal point in the representation of a number if it can.
However, this should be done with great caution. If the model is written in FORTR
and numbers are read using list directed input, or using a field width specifier suc
"(F6.0)" or "(E8.0)", the decimal point is not necessary. However, in other cases th
format specifier will insert its own decimal point (e.g. for specifiers such as "(F6.2)
or enforce power-of-10 scaling (e.g. for specifiers such as "(E8.2)") if a decimal p
is absent from an input number. Hence, if you are unsure what to do, assign the s
"point" to the control variable DPOINT. This will ensure that all numbers written to
model input files will include a decimal point, thus overriding point-location or scali
conventions implicit in some FORTRAN format specifiers. Visual MODFLOW uses
the a value of “point” for the DPOINT variable.

Note that if a parameter space is 13 characters wide or greater and PRECIS is se
"single", PEST will include the decimal point regardless of the setting of "DPOINT
for there are no gains to be made in precision through leaving it out. Similarly, if
PRECIS is set to "double", no attempt is made to omit a decimal point if the param
space is 23 characters wide or more.

A template file may contain multiple occurances of the same parameter. If the
parameter spaces for that parameter are defined differently, PEST will write the
parameter value to all of its parameter spaces using the minimum parameter spac
width specified for that particular parameter. For the wider spaces the number will
right-justified, with spaces padded on the left. This way a consistent parameter va
written to all parameter spaces for that parameter.

The Same Parameter in Different Files

Multiple incidences of the same parameter are not restricted to one file. PEST pas
judgement on the occurrence of parameters within template files or across templa
files. However, it does require that each parameter cited in the PEST control file o
at least once in at least one template file, and that each parameter cited in a templ
be provided with bounds and an initial value in the PEST control file.
PEST Template Files 121

T
r

tput

on

ich

on in
rdt-
m is

eter be
 using

al

late

put

 it.

 then
wing
PEST Instruction Files for Output

Of the voluminous amounts of information that MODFLOW and MT3D writes, PES
is interested in only a few numbers. That is, those output values (“observations” o
“model-generated observations”) for which corresponding field or laboratory data
(“measurements”) are available and for which the discrepancy between model ou
and measured values is part of the objective function.

For every model output file containing observations, you must provide an instructi
file (*.INS) containing the directions which PEST must follow to read the file.

Precision in Model Output Files

If there are any model input variables which allow you to vary the precision with wh
its output data are written, they should be adjusted for maximum output precision.
Unlike parameter values, for which precision is important but not essential, precisi
the representation of model-generated observations is crucial. The Gauss-Marqua
Levenberg method of non-linear parameter estimation, on which the PEST algorith
based, requires that the derivative of each observation with respect to each param
evaluated once for every optimisation iteration. PEST calculates these derivatives
the finite-difference technique or one of its three-point variants. In all cases, the
derivative value depends on the difference between two or three observations
calculated on the basis of incrementally-varied parameter values. Unless the
observations are represented with maximum precision, this is a recipe for numeric
disaster.

How PEST Reads Model Output Files

PEST must be instructed on how to read a model output file and identify model-
generated observations. For the method to work, model output files containing
observations must be text files. PEST cannot read binary files.

Unfortunately, observations cannot be read from model output files using the temp
concept, since neither MODFLOW nor MT3D cannot be relied upon to produce an
output file of identical structure during each model run. So instead of using an out
file template, you must provide PEST with a list of instructions on how to find
observations in the output files (see Ta ble7).

Basically, PEST finds observations in a model output file in the same way that you
would. You run your eye down the file looking for something you recognise - a
"marker". If this marker is properly selected, observations can usually be linked to
For example, if you are looking for the output after 100 days, you may look for

TIME = 100 DAYS

A particular outcome for which you have a corresponding field measurement may
be found, for example, between character positions 23 and 30 on the 4th line follo
122 Appendix A, PEST Input Files

arker

 as it
nt

le is

r of a
rker
does

], (,
ay
ote
the marker. For output files, a marker may be unnecessary as the default initial m
is the top of the file.

Markers can be of either primary or secondary type. PEST uses a primary marker
scans the model output file line by line, looking for a reference point for subseque
observation identification or further scanning. A secondary marker is used for a
reference point as a single line is examined from left to right.

The Marker Delimiter

The first line of a PEST instruction file must begin with the three letters "pif" which
stand for "PEST instruction file". Then, after a single space, must follow a single
character, the marker delimiter. The role of the marker delimiter in an instruction fi
not unlike that of the parameter delimiter in a template file. Its role is to define the
extent of a marker. A marker delimiter must be placed just before the first characte
text string comprising a marker and immediately after the last character of the ma
string. In treating the text between a pair of marker delimiters as a marker, PEST
not try to interpret this text as a list of instructions.

You can choose the marker delimiter character yourself. However, your choice is
limited. A marker delimiter must not be one of the characters A - Z, a - z, 0 - 9, !, [,
), :, or &. The choice of any of these characters may result in confusion, as they m
occur elsewhere in an instruction file in a role other than that of marker delimiter. N

Table 7: Example output file and corresponding PEST
instruction file.

SCHLUMBERGER ELECTRIC SOUNDING
Apparent resistivities calculated using the linear filter method
electrode spacing apparent resistivity
 1.00 1.21072
 1.47 1.51313
 2.15 2.07536
 3.16 2.95097
 4.64 4.19023
 6.81 5.87513
 10.0 8.08115

pif @
@electrode@
l1 [ar1]21:27
l1 [ar2]21:27
l1 [ar3]21:27
l1 [ar4]21:27
l1 [ar5]21:27
l1 [ar6]21:27
l1 [ar7]21:27
PEST Instruction Files for Output 123

ext of

h
tion
ny

eter
ears

ply to
vation
on
d

s the
 in an
as if
n on
ent.

ere

 file

 your
ctly.
tems
to a
 file.
new

 the
e
t be

 the

ut file
that the character you choose as the marker delimiter should not occur within the t
any markers as this, too, will cause confusion.

Observation Names

In the same way that each parameter must have a unique name, so too must eac
observation be provided with a unique name. Like a parameter name, an observa
name must be eight characters or less in length. These eight characters can be a
ASCII characters except for [,], (,), or the marker delimiter character.

As discussed above, a parameter name can occur more than once within a param
template file. PEST simply replaces each parameter space in which the name app
with the current value of the pertinent parameter. However, the same does not ap
an observation name. Every observation is unique and must have a unique obser
name. In Table 7, observations are named "ar1", "ar2" etc. These same observati
names must also be cited in the PEST control file where measurement values an
weights are provided.

There is one observation name, however, to which these rules do not apply, that i
dummy observation name "dum". This name can occur many times, if necessary,
instruction file. It signifies to PEST that, although the observation is to be located
it were a normal observation, the number corresponding to the dummy observatio
the model output file is not actually matched with any laboratory or field measurem
Hence, an observation named "dum" must not appear in the PEST control file wh
measurement values are provided and observation weights are assigned. As is
illustrated below, the dummy observation is simply a mechanism for model output
navigation.

The Instruction Set

Each of the available PEST instructions is now described in detail. When creating
own instruction files, the syntax provided for each instruction must be followed exa
If a number of instruction items appear on a single line of an instruction file, these i
must be separated from each other by at least one space. Instructions pertaining
single line on a model output file are written on a single line of a PEST instruction
Thus the start of a new instruction line signifies that PEST must read at least one
model output file line. Just how many lines it needs to read depends on the first
instruction on the new instruction line. Note, however, that if the first instruction on
new line is the character "&", the new instruction line is simply a continuation of th
old one. Like all other instruction items, the "&" character used in this context mus
separated from its following instruction item by at least one space.

PEST reads a model output file in the forward (top-to-bottom) direction, looking to
instructions in the instruction file to tell it what to do next. Instructions should be
written with this in mind. An instruction cannot direct PEST to "backtrack" to a
previous line on the model output file. Also, because PEST processes model outp
124 Appendix A, PEST Input Files

rt of

keted
e,

tput

te
here

r
her
e line

 the
output

 and
ld be
 as
rker.
utput

line

de a
r. In
ce

ace
he

ry
sed
lines from left to right, an instruction cannot direct PEST backwards to an earlier pa
a model output file line than the part of the line to which its attention is currently
focussed as a result of the previous instruction.

Primary Marker

Unless it is a continuation of a previous line, each instruction line must begin with
either of two instruction items, viz. a primary marker or a line advance item. The
primary marker has already been discussed briefly. It is a string of characters, brac
at each end by a marker delimiter. If a marker is the first item on an instruction lin
then it is a primary marker. If it occurs later in the line, following other instruction
items, it is a secondary marker, the operation of which will be discussed below.

On encountering a primary marker in an instruction file PEST reads the model ou
file, line by line, searching for the string between the marker delimiter characters.
When it finds the string it places its "cursor" at the last character of the string. (No
that this cursor is never actually seen by the PEST user. It simply marks the point w
PEST is at in its processing of the model output file.) This means that if any furthe
instructions on the same instruction line as the primary marker direct PEST to furt
processing of this line, that processing must pertain to parts of the model output fil
following the string identified as the primary marker

Note that if there are blank characters in a primary (or secondary) marker, exactly
same number of blank characters is expected in the matching string on the model
file.

Often, a primary marker will be part or all of some kind of header or label. Such a
header or label often precedes a model's listing of the outcomes of its calculations
thus makes a convenient reference point from which to search for the latter. It shou
noted, however, that the search for a primary marker is a time-consuming process
each line of the model output file must be individually read and scanned for the ma
Hence, if the same observations are always written to the same lines of a model o
file (these lines being invariant from model run to model run), you should use the
advance item in preference to a primary marker.

A primary marker may be the only item on a PEST instruction line, or it may prece
number of other items directing further processing of the line containing the marke
the former case the purpose of the primary marker is simply to establish a referen
point for further downward movement within the model output file as set out in
subsequent instruction lines.

Primary markers can provide a useful means of navigating a model output file.
Consider the extract from a model output file shown in Example 3.8 (the dots repl
one or a number of lines not shown in the example in order to conserve space). T
instruction file extract shown inTable 8 provides a means to read the numbers
comprising the third solution vector. Notice how the "SOLUTION VECTOR" prima
marker is preceded by the "PERIOD NO. 3" primary marker. The latter marker is u
purely to establish a reference point from which a search can be made for the
PEST Instruction Files for Output 125

r

nce.
ry
s
 to

w
 need

 rules.
"SOLUTION VECTOR" marker. If this reference point were not established (using
either a primary marker or line advance item) PEST would read the solution vecto
pertaining to a previous time period.

Line Advance

The syntax for the line advance item is "ln" where n is the number of lines to adva
The line advance item must be the first item of an instruction line. It and the prima
marker are the only two instruction items which can occupy this initial spot. As wa
explained above, the initial item in an instruction line is always a directive to PEST
move at least one line further in its perusal of the model output file (unless it is a
continuation character). In the case of the primary marker, PEST stops reading ne
lines when it finds the pertinent text string. However, for a line advance it does not
to examine model output file lines as it advances. It simply moves forward n lines,
placing its processing cursor just before the beginning of this n'th line, this point
becoming the new reference point for further processing of the model output file.

Normally a line advance item is followed by other instructions. However, if the line
advance item is the only item on an instruction line this does not break any syntax

Table 8: Example for a more complex output and
instruction file

TIME PERIOD NO. 1 --->
.
.
SOLUTION VECTOR:
 1.43253 6.43235 7.44532 4.23443 91.3425 3.39872
.
.
TIME PERIOD NO. 2 --->
.
.
SOLUTION VECTOR
 1.34356 7.59892 8.54195 5.32094 80.9443 5.49399
.
.
TIME PERIOD NO. 3 --->
 .
.
SOLUTION VECTOR
 2.09485 8.49021 9.39382 6.39920 79.9482 6.20983

pif *
PERIOD NO. 3
SOLUTION VECTOR
l1 (obs1)5:10 (obs2)12:17 (obs3)21:28 (obs4)32:37 (obs5)41:45
& (obs6)50:55
126 Appendix A, PEST Input Files

ine

 of
f

T

ST

ry

 read
e the
orded
e line
d

 of a
If a
, one
tring

as not
s the
ST

me
E
In Table 7 model-calculated values are written on subsequent lines. Hence, before
reading each observation, PEST is instructed to move to the beginning of a new l
using the "l1" line advance item

If a line advance item leads the first instruction line of a PEST instruction file, the
reference point for line advance is taken as a "dummy" line just above the first line
the model output file. Thus if the first instruction line begins with "l1", processing o
the model output file begins on its first line. Similarly, if the first instruction begins
with "l8", processing of the model output file begins at its eighth line.

Secondary Marker

A secondary marker is a marker which does not occupy the first position of a PES
instruction line. Hence, it does not direct PEST to move downwards on the model
output file (though it can be instrumental in this - see below). Rather it instructs PE
to move its cursor along the current model output file line until it finds the seconda
marker string, and to place its cursor on the last character of that string ready for
subsequent processing of that line.

Table 9 shows an extract from a model output file and the instructions necessary to
the Potassium concentration from this output file. A primary marker is used to plac
PEST cursor on the line above that on which the calculated concentrations are rec
for the distance in which we are interested. Then PEST is directed to advance on
and read the number following the "K:" string in order to find an observation name
"kc". The exclamation marks surrounding "kc" will be discussed shortly.

A useful feature of the secondary marker is illustrated in Examples 3.12 and 3.13
model output file extract and a corresponding instruction file extract, respectively.
particular secondary marker is preceded only by other markers (including, perhaps
or a number of secondary markers and certainly a primary marker), and the text s
corresponding to that secondary marker is not found on a model output file line on
which the previous markers' strings have been located, PEST will assume that it h
yet found the correct model output line and resume its search for a line which hold
text from all three markers. Thus the instruction "%TIME STEP 10% will cause PE
to pause on its downward journey through the model output file at the first line
illustrated in Table 9. However, when it does not find the string "STRAIN" on the sa
line it recommences its perusal of the model output file, looking for the string "TIM

Table 9: Example instruction file with secondary markers

DISTANCE = 20.0: CATION CONCENTRATIONS:-
Na: 3.49868E-2 Mg: 5.987638E-2 K: 9.987362E-3

pif ~
~DISTANCE = 20.0~
l1 ~K:~ !kc!
PEST Instruction Files for Output 127

ary

user
n
ntil

n until
eding

w",

ve
 on
STEP 10" again. Eventually it finds a line containing both the primary and second
markers and, having done so, commences execution of the next instruction line.

It is important to note that if any instruction items other than markers precede an
unmatched secondary marker, PEST will assume that the mismatch is an error
condition and abort execution with an appropriate error message.

Whitespace

The whitespace instruction is similar to the secondary marker in that it allows the
to navigate through a model output file line prior to reading a non-fixed observatio
(see below). It directs PEST to move its cursor forwards from its current position u
it encounters the next blank character. PEST then moves the cursor forward agai
it finds a nonblank character, finally placing the cursor on the blank character prec
this nonblank character (ie. on the last blank character in a sequence of blank
characters) ready for the next instruction. The whitespace instruction is a simple "
separated from its neighbouring instructions by at least one blank space.

Consider the model output file line represented below

MODEL OUTPUTS: 2.89988 4.487892 -4.59098 8.394843

The following instruction line directs PEST to read the fourth number on the above
line:

%MODEL OUTPUTS:% w w w w !obs1!

The instruction line begins with a primary marker, allowing PEST to locate the abo
line on the model output file. After this marker is processed the PEST cursor rests
the ":" character of "OUTPUTS:", ie. on the last character of the marker string. In

Table 10: Instruction file with qualified secondary
markers

.
TIME STEP 10 (13 ITERATIONS REQUIRED) STRESS --->
X = 1.05 STRESS = 4.35678E+03
X = 1.10 STRESS = 4.39532E+03

.
TIME STEP 10 (BACK SUBSTITUTION) STRAIN --->
X = 1.05 STRAIN = 2.56785E-03
X = 1.10 STRAIN = 2.34564E-03
.

pif %
.
%TIME STEP 10% %STRAIN%
l1 %STRAIN =% !str1!
l1 %STRAIN =% !str2!
128 Appendix A, PEST Input Files

en
mber

above
or to
ction

r. The

(ie.
 The

 side

non-
e:

e
be
he
.
st

or on

e

that a
n the
st
y
in this

be
ed
response to the first whitespace instruction PEST finds the next whitespace and th
moves its cursor to the end of this whitespace, ie. just before the "2" of the first nu
on the above model output file line. The second whitespace instruction moves the
cursor to the blank character preceding the first "4" of the second number on the
line. Processing of the third whitespace instruction results in PEST moving its curs
the blank character just before the negative sign. After the fourth whitespace instru
is implemented, the cursor rests on the blank character preceding the last numbe
latter can then be read as a non-fixed observation (see below).

Tab

The tab instruction places the PEST cursor at a user-specified character position
column number) on the model output file line which PEST is currently processing.
instruction syntax is "tn" where n is the column number. The column number is
obtained by counting character positions (including blank characters) from the left
of any line, starting at 1. Like the whitespace instruction, the tab instruction can be
useful in navigating through a model output file line prior to locating and reading a
fixed observation. For example, consider the following line from a model output fil

TIME(1): A = 1.34564E-04, TIME(2): A = 1.45654E-04, TIME(3): A = 1.54982E-04

The value of A at TIME(3) could be read using the instruction line:

l4 t60 %=% !a3!

Here it is assumed that PEST was previously processing the fourth line prior to th
above line in the model output file. The marker delimiter character is assumed to
"%". Implementation of the "t60" instruction places the cursor on the ":" following t
"TIME(3)" string, for the colon is in the sixtieth character position of the above line
PEST is then directed to find the next "=" character. From there it can read the la
number on the above line as a non-fixed observation (see below).

Fixed Observations

An observation reference can never be the first item in an instruction line. Either a
primary marker or line advance item must come first in order to place PEST's curs
the line on which one or more observations may lie. If there is more than one
observation on a particular line of the model output file, these observations must b
read from left to right, backward movement along any line being disallowed.

Observations can be identified in one of three ways. The first way is to tell PEST
particular observation can be found between, and including, columns n1 and n2 o
model output file line on which its cursor is currently resting. This is by far the mo
efficient way to read an observation value because PEST does not need to do an
searching. It simply reads a number from the space identified. Observations read
way are referred to as "fixed observations".

Table 11 shows how the numbers listed in the third solution vector of Table 8 can
read as fixed observations. The instruction item informing PEST how to read a fix
observation consists of two parts. The first part consists of the observation name
PEST Instruction Files for Output 129

lumns
arts of
s
pace

t in

imum
e
EST
e

with

le, the

oth of
nded
can
ns A, B
enclosed in square brackets, while the second part consists of the first and last co
from which to read the observation. Note that no space must separate these two p
the observation instruction. PEST always construes a space in an instruction file a
marking the end of one instruction item and the beginning of another (unless the s
lies between marker delimiters).

Reading numbers as fixed observations is useful when the model writes its outpu
tabular form using fixed-field-width specifiers. However, you must be very careful
when specifying the column numbers from which to read the number. The space
defined by these column numbers must be wide enough to accommodate the max
length that the number will occupy in the course of the many model runs that will b
required for PEST to optimise the model's parameter set. If it is not wide enough, P
may read only a truncated part of the number or omit a negative sign preceding th
number. However, the space must not be so wide that it includes part of another
number. In this case a run-time error will occur and PEST will terminate execution
an appropriate error message.

Where a model writes its results in the form of an array of numbers, it is not an
uncommon occurrence for these numbers to abut each other. Consider, for examp
following FORTRAN code fragment:

A=1236.567

B=8495.0

C=-900.0

WRITE(10,20) A,B,

20 FORMAT(3(F8.3))

The result will be

1236.5678495.000-900.000

In this case there is no choice but to read these numbers as fixed observations. (B
the alternative ways to read an observation require that the observation be surrou
by either whitespace or a string that is invariant from model run to model run and
thus be used as a marker.) Hence, to read the above three numbers as observatio
and C the following instruction line may be used:

Table 11: Alternative instruction set for output in Table 8

pif *
.
.
PERIOD NO. 3
SOLUTION VECTOR
l1 [obs1]1:9 [obs2]10:18 [obs3]19:27 [obs4]28:36 [obs5]37:45
& [obs6]46:54
130 Appendix A, PEST Input Files

ain
s the
ng

 line
d to
out
.

s are

sition
ions,
emi-

ches
es
nd

if it
of the
iched
odel
e

y the
ers

of
er
wever,
ather
the

ge the

 not
 at
d
ays
t file

ween
ic
l1 [A]1:8 [B]9:16 [C]17:24

If an instruction line contains only fixed observations there is no need for it to cont
any whitespace or tabs. Nor will there be any need for a secondary marker, (unles
secondary marker is being used in conjunction with a primary marker in determini
which model output file line the PEST cursor should settle on - see above). This is
because these items are normally used for navigating through a model output file
prior to reading a non-fixed observation (see below. Such navigation is not require
locate a fixed observation as its location on a model output file line is defined with
ambiguity by the column numbers included within the fixed observation instruction

Semi-Fixed Observations

Table 8 demonstrates the use of semi-fixed observations. Semi-fixed observation
similar to fixed observations in that two numbers are provided in the pertinent
instruction item, the purpose of these numbers being to locate the observation's po
by column number on the model output file. However, in contrast to fixed observat
these numbers do not locate the observation exactly. When PEST encounters a s
fixed observation instruction it proceeds to the first of the two nominated column
numbers and then, if this column is not occupied by a non-blank character, it sear
the output file line from left to right beginning at this column number, until it reach
either the second identified column or a non-blank character. If it reaches the seco
column before finding a non-blank character, an error condition arises. However,
finds a non-blank character, it then locates the nearest whitespace on either side
character. In this way, it identifies one or a number of non-blank characters sandw
between whitespace ("whitespace" includes the beginning and/or the end of the m
output file line). It tries to read these characters as a number, this number being th
value of the observation named in the semi-fixed observation instruction. Obviousl
width of this number can be greater than the difference between the column numb
cited in the semi-fixed observation instruction.

Like a fixed observation, the instruction to read a semi-fixed observation consists
two parts, that is, the observation name followed by two column numbers, the latt
being separated by a colon. The column numbers must be in ascending order. Ho
for semi-fixed observations, the observation name is enclosed in round brackets r
than square brackets. Again, there must be no space separating the two parts of
semi-fixed observation instruction.

Reading a number as a semi-fixed observation is useful if you are unsure how lar
representation of the number could stretch on a model output file as its magnitude
grows and/or diminishes in PEST-controlled model runs. It is also useful if you do
know whether the number is left or right justified. However, you must be sure that
least part of the number will always fall between (and including) the two nominate
columns and that, whenever the number is written and whatever its size, it will alw
be surrounded either by whitespace or by the beginning or end of the model outpu
line. If, when reading the model output file, PEST encounters only whitespace bet
(and including) the two nominated column numbers, or if it encounters non-numer
PEST Instruction Files for Output 131

 will

,
olumn
n of
t on
n is
e

ave
mbers
wn in
d a
t

to the

T
as
ne.

ill

y by
es
prets

rd
 this
Then
 line,
n
 non-
s a
ing a
m,
age
characters or two number fragments separated by whitespace, an error condition
occur and PEST will terminate execution with an appropriate error message.

As for fixed observations, it is normally not necessary to have secondary markers
whitespace and tabs on the same line as a semi-fixed observation, because the c
numbers provided with the semi-fixed observation instruction determine the locatio
the observation on the line. As always, observations must be read from left to righ
any one instruction line. Hence, if more than one semi-fixed observation instructio
provided on a single PEST instruction line, the column numbers pertaining to thes
observations must increase from left to right.

For the case illustrated in Examples 3.6 and 3.7, all the fixed observations could h
been read as semi-fixed observations, with the difference between the column nu
either remaining the same or being reduced to substantially smaller than that sho
Example 3.7. However, it should be noted that it takes more effort for PEST to rea
semi-fixed observation than it does for it to read a fixed observation as PEST mus
establish for itself the extent of the number that it must read.

After PEST has read a semi-fixed observation its cursor resides at the end of the
number which it has just read. Any further processing of the line must take place
right of that position.

Non-Fixed Observations

Table 10 demonstrate the use of non-fixed observations. A non-fixed observation
instruction does not include any column numbers because the number which PES
must read is found using secondary markers and/or other navigational aids such
whitespace and tabs which precede the non-fixed observation on the instruction li

If you do not know exactly where, on a particular model output file line, a model w
write the number corresponding to a particular observation, but you do know the
structure of that line, then you can use this knowledge to navigate your way to the
number. In the PEST instruction file, a non-fixed observation is represented simpl
the name of the observation surrounded by exclamation marks. As usual, no spac
should separate the exclamation marks from the observation name as PEST inter
spaces in an instruction file as denoting the end of one instruction item and the
beginning of another.

When PEST encounters a non-fixed observation instruction it first searches forwa
from its current cursor position until it finds a non-blank character. PEST assumes
character is the beginning of the number representing the non-fixed observation.
PEST searches forward again until it finds either a blank character, the end of the
or the first character of a secondary marker which follows the non-fixed observatio
instruction in the instruction file. PEST assumes that the number representing the
fixed observation finishes at the previous character position. In this way it identifie
string of characters which it tries to read as a number. If it is unsuccessful in read
number because of the presence of non-numeric characters or some other proble
PEST terminates execution with a run-time error message. A run time error mess
132 Appendix A, PEST Input Files

 of

ies
tions
l within
ay be
 the

in
s

cter of

 next
ry
s the
ated
will also occur if PEST encounters the end of a line while looking for the beginning
a non-fixed observation.

Consider the output file fragment and instruction file shown in Table 12. The spec
populations at different times cannot be read as either fixed or semi-fixed observa
because the numbers representing these populations cannot be guaranteed to fal
a certain range of column numbers on the model output file because "adjusted" m
required in the calculation of any such population. Hence, we must find our way to
number using a method such as that illustrated in Tabl e12.

A primary marker is used to move the PEST cursor to the first of the lines shown
Table 12. Then, noting that the number representing the species population alway
follows a "=" character, the "=" character is used as a secondary marker. After it
processes a secondary marker, the PEST cursor always resides on the last chara
that marker, in this case on the "=" character itself. Hence, after reading the "="
character, PEST is able to process the !sp1! instruction by isolating the string
"1.23498E5" in the manner described above.

After it reads the model-calculated value for observation "sp1", PEST moves to the
instruction line. In accordance with the "l1" instruction, PEST reads into its memo
the next line of the model output file. It then searches for a "=" character and read
number following this character as observation "sp2". This procedure is then repe
for observations "sp3" and "sp4".

Table 12: Output file that cannot read as fixed or semi-
fixed

.

.
SPECIES POPULATION AFTER 1 YEAR = 1.23498E5
SPECIES POPULATION AFTER 2 YEARS = 1.58374E5
SPECIES POPULATION AFTER 3 YEARS (ADJUSTED) = 1.78434E5
SPECIES POPULATION AFTER 4 YEARS = 2.34563E5
.
.

pif *
.
.
SPECIES *=* !sp1!
l1 *=* !sp2!
l1 *=* !sp3!
l1 *=* !sp4!
.
.

PEST Instruction Files for Output 133

seful
fixed

ng to

 of

er the
ns

 no
vious
er nor
line

ted on

s of
ns

as

to an
 the
d for

can

bove

ated

tead of
o find
Successful identification of a non-fixed observation depends on the instructions
preceding it. The secondary marker, tab and whitespace instructions will be most u
in this regard, though fixed and semi-fixed observations may also precede a non-
observation. Remember that in all these cases PEST places its cursor over the last
character of the string or number it identifies on the model output file correspondi
an instruction item, before proceeding to the next instruction.

Consider the model output file line shown below as a further illustration of the use
non-fixed observations.

4.33 -20.3 23.392093 3.394382

If we are interested in the fourth of these numbers but we are unsure as to wheth
numbers preceding it might not be written with greater precision in some model ru
(hence pushing the number in which we are interested to the right), then we have
alternative but to read the number as a non-fixed observation. However, if the pre
numbers vary from model run to model run, we can use neither a secondary mark
a tab. Fortunately, whitespace comes to the rescue, with the following instruction
taking PEST to the fourth number:

l10 w w w !obs1!

Here it is assumed that, prior to reading this instruction, the PEST cursor was loca
the 10th preceding line of the model output file. As long as we can be sure that no
whitespace will ever precede the first number, there will always be three incidence
whitespace preceding the number in which we are interested. However, if it happe
that whitespace may precede the first number on some occasions, while on other
occasions it may not, then we can read the first number as a dummy observation
shown below:

l10 !dum! w w w !obs1!

As was explained previously, the number on the model output file corresponding
observation named "dum" is not actually used. Nor can the name "dum" appear in
"observation data" section of the PEST control file. The use of this name is reserve
instances like the present case where a number must be read in order to facilitate
navigation along a particular line of the model output file. The number is read
according to the non-fixed observation protocol, for only observations of this type
be dummy observations.

An alternative to the use of whitespace in locating the observation "obs1" in the a
example could involve using the dummy observation more than once. Hence, the
instruction line below would also enable the number representing "obs1" to be loc
and read:

l10 !dum! !dum! !dum! !obs1!

However, had the numbers in the above example been separated by commas ins
whitespace, the commas should have been used as secondary markers in order t
"obs1".
134 Appendix A, PEST Input Files

ion
own

se the
l
either

r the
ld

ead a
ing
vation
mber.

h the

e wish
 a
e
 on

s
re
nner.

cter of
put

y a
A number not surrounded by whitespace can still be read as a non-fixed observat
with the proper choice of secondary markers. Consider the model output file line sh
below:

SOIL WATER CONTENT (NO CORRECTION)=21.345634%

It may not be possible to read the soil water content as a fixed observation becau
"(NO CORRECTION)" string may or may not be present after any particular mode
run. Reading it as a non-fixed observation appears troublesome as the number is n
preceded nor followed by whitespace. However, a suitable instruction line is

l5 *=* !sws! *%*

Notice how a secondary marker (i.e. *%*) is referenced even though it occurs afte
observation we wish to read. If this marker were not present, a run-time error wou
occur when PEST tries to read the soil water content because it would define the
observation string to include the "%" character and, naturally, would be unable to r
number from a string which includes non-numeric characters. However, by includ
the "%" character as a secondary marker after the number representing the obser
'sws', PEST will separate the character from the string before trying to read the nu
But note that if a post-observation secondary marker of this type begins with a
numerical character, PEST cannot be guaranteed not to include this character wit
observation number if there is no whitespace separating it from the observation.

The fact that there is no whitespace between the "=" character and the number w
to read causes PEST no problems either. After processing of the "=" character as
secondary marker, the PEST processing cursor falls on the "=" character itself. Th
search for the first non-blank character initiated by the !sws! instruction terminates
the very next character after the "=", viz. the "2" character. PEST then accepts thi
character as the left boundary of the string from which it must read the soil moistu
content and searches forwards for the right boundary of the string in the usual ma

After PEST has read a non-fixed observation, it places its cursor on the last chara
the observation number. It can then undertake further processing of the model out
file line to read further non-fixed, fixed or semi-fixed observations, or process
navigational instructions as directed.

Continuation

You can break an instruction line between any two instructions by using the
continuation character, "&", to inform PEST that a certain instruction line is actuall
continuation of the previous line. Thus the instruction file fragment

l1 %RESULTS% %TIME (4)% %=% !obs1! !obs2! !obs3!

is equivalent to

l1

& %RESULTS%
PEST Instruction Files for Output 135

e
t

t be

ions
 the

ation
r.
s

s
T is

T run
e are
eter

ily
ted,

ction

al
ST
& %TIME (4)%

& %=%

& !obs1!

& !obs2!

& !obs3!

For both these fragments, the marker delimiter is assumed to be "%". Note that th
continuation character must be separated from the instruction which follows it by a
least one space.

Creating and Checking an Instruction File

The Instruction files can be created in using any text editor. However, caution mus
exercised in building an instruction set to read a model output file, especially if
navigational instructions such as markers, whitespace, tabs and dummy observat
are used. PEST will always follow your instructions to the letter, but it may not read
number you intend if you get an instruction wrong. If PEST tries to read an observ
but does not find a number where it expects to find one, a run-time error will occu
PEST will inform you of where it encountered the error and of the instruction it wa
implementing when the error occurred. This should allow you to find the problem.
However, if PEST actually reads the wrong number from the model output file, thi
may only become apparent if an unusually high objective function results, or if PES
unable to lower the objective function on successive optimisation iterations.

In the WinPEST environment, you can check your instruction file using the built in
checking routines.

The PEST Control File

The PEST control file contains all of the parameter and control values for the PES
and must have the extension .PST. Many of the data items in the PEST control fil
used to "tune" PEST's operation to the current project. Such items include param
change limits, parameter transformation types, termination criteria etc.

The PEST control file is automaticaly built by Visual MODFLOW, but it can be eas
edited using a text editor, if necessary. However, every time your project is transla
the .PST file will be re-created.

The PEST control file consists of integer, real and character variables. Its constru
details are shown in Tabl e13, where variables are referenced by name. Chapter 4
contains detailed descriptions of the parameters and how they are entered in Visu
MODFLOW. In Table 14 is an example PEST Control File, which was used by PE
to create the PEST Run Record found in Appendix B.
136 Appendix A, PEST Input Files

 same
ST

r by at
sary to
dant.
te,
A PEST control file must begin with the letters "pcf" for "PEST control file". Scattered
through the file are a number of section headers. These headers always follow the
format, i.e. an asterisk followed by a space followed by text. When preparing a PE
control file, these headers must be written exactly as shown.

However, if there is no prior information, the "* prior information" header can be
omitted.

On each line of the PEST control file, variables must be separated from each othe
least one space. Real numbers can be supplied with the minimum precision neces
represent their value. The decimal point does not need to be included if it is redun
If exponentiation is required, this can be done with either the "d" or "e" symbol. No
however, that all real numbers are stored internally by PEST as double precision

Table 13: PEST control file structure.

* control data
RSTFLE
NPAR NOBS NPARGP NPRIOR NOBSGP
NTPLFLE NINSFLE PRECIS DPOINT
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM
RELPARMAX FACPARMAX FACORIG
PHIREDSWH
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR
ICOV ICOR IEIG
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD
(one such line for each of the NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET
(one such line for each of the NPAR parameters)
PARNME PARTIED (one such line for each tied parameter)
* observation groups
OBGNME (one such line for each observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of the NOBS observations)
* model command line
the command which PEST must use to run the model
* model input/output
TEMPFLE INFLE (one such line for each model input file containing parameters)
INSFLE OUTFLE (one such line for each model output file containing observations)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT
(one such line for each of the NPRIOR articles of prior information)
The PEST Control File 137

ter 4.

ne

numbers. Descriptions for the parameters in bold in Table13 c an be found in Chap
The following is a brief description of the parameters not found in Chapter 4.

NPAR - total number of parameters

NOBS - total number of observations

NPARGP - number of parameter groups

NPRIOR - number of articles of prior information

NTPLFLE - number of model input files that contain parameters. There must be o
template file for each model input file.

NINSFLE - number of instruction files. There must be one instruction file for each
output file containing model-generated observations.

DPOINT - character variable, “point” or “nopoint” which tells PEST whether to
include the decimal point with whole numbers.

PARTIED - the name of the parent parameter for tied parameters

OBGNME - observation group name

OBSNME - observation nam

OBSVAL - observation value

WEIGH - observation wieght

TEMPFLE - template file name for model input

INFLE - model input file to which the template file is matched

INSFLE - instruction file for model output

OUTFLE - model output file to which the instruction file is matched

PILBL - prior information label

PIFAC - prior information factor

PIVAL - prior information value

WEIGH - weight associated with article of prior information
138 Appendix A, PEST Input Files

Table 14: Example PEST control file.

pcf
* control data
restart
5 19 2 2 3
1 1 single point
5.0 2.0 0.4 0.03 10
3.0 3.0 1.0e-3
.1
30 .01 3 3 .01 3
1 1 1
* parameter groups
ro relative .001 .00001 switch 2.0 parabolic
h relative .001 .00001 switch 2.0 parabolic
* parameter data
ro1 fixed factor 0.5 .1 10 none 1.0 0.0
ro2 log factor 5.0 .1 10 ro 1.0 0.0
ro3 tied factor 0.5 .1 10 ro 1.0 0.0
h1 none factor 2.0 .05 100 h 1.0 0.0
h2 log factor 5.0 .05 100 h 1.0 0.0
ro3 ro2
* observation groups
group_1
group_2
group_3
* observation data
ar1 1.21038 1.0 group_1
ar2 1.51208 1.0 group_1
ar3 2.07204 1.0 group_1
ar4 2.94056 1.0 group_1
ar5 4.15787 1.0 group_1
ar6 5.77620 1.0 group_1
ar7 7.78940 1.0 group_2
ar8 9.99743 1.0 group_2
ar9 11.8307 1.0 group_2
ar10 12.3194 1.0 group_2
ar11 10.6003 1.0 group_2
ar12 7.00419 1.0 group_2
ar13 3.44391 1.0 group_2
ar14 1.58279 1.0 group_2
ar15 1.10380 1.0 group_3
ar16 1.03086 1.0 group_3
ar17 1.01318 1.0 group_3
ar18 1.00593 1.0 group_3
ar19 1.00272 1.0 group_3
* model command line
ves
* model input/output
ves.tp1 ves.inp
ves.ins ves.out
* prior information
pi1 1.0 * h1 = 2.0 3.0
pi2 1.0 * log(ro2) + 1.0 * log(h2) = 2.6026 2.0
The PEST Control File 139

140 Appendix A, PEST Input Files

tail.

ts and
cause

 it

 (see

the
1" is

r and
is

h
tions
ion as

he
 file

 the
B
Appendix B, A PEST Run Record

In this Appendix, an example PEST Run Record is illustrated and described in de
The Run Record is generated from the PEST Control file in Appendix A.

Note that this example does not demonstrate a very good fit between measuremen
model outcomes calculated on the basis of the optimized parameter set. This is be
it was fabricated to demonstrate a number of aspects of the parameter estimation
process that are discussed in the following subsections.

The Input Data Set

PEST commences execution by reading all its input data. As soon as this is read,
echoes most of this data to the run record file. Hence the first section of this file is
simply a restatement of most of the information contained in the PEST control file
Appendix A). Note that the letters "na" stand for "not applicable". "na" is used a
number of times to indicate that a particular PEST input variable has no effect on
optimization process. Thus, for example, the type of change limit for parameter "ro
not applicable because this parameter is fixed.

It is possible that the numbers cited for a parameter's initial value and for its uppe
lower bounds will be altered slightly from that supplied in the PEST control file. Th
will only occur if the space occupied by this parameter in a model input file is
insufficient to represent any of these numbers to the same degree of precision wit
which they are cited in the PEST control file. PEST adjusts its internal representa
of parameter values such that they are expressed with the same degree of precis
that with which they are written to the model input files. For consistency, PEST's
internal representation of parameter bounds is adjusted in the same way.

The Parameter Estimation Record

After echoing its input data, PEST calculates the objective function arising out of t
initial parameter set; it records this initial objective function value on the run record
together with the initial parameter values themselves. Then it starts the estimation
process in earnest, beginning with the first optimization iteration. After calculating
141

e
n
e

ause

da’s.
d
ulated,

s
just
ch an
n the

ing
.

meter
gnated
s are

ds the
ial in
 be

f each
the
 are
cause
 some

ange
ative
ever
ters
ion

s the
rade
e
Jacobian matrix PEST attempts objective function improvement using one or mor
Marquardt lambda’s. As it does this, it records the corresponding objective functio
value, both in absolute terms and as a fraction of the objective function value at th
commencement of the optimization iteration.

During the first iteration in this example, PEST tests two Marquardt lambda’s; bec
the second lambda results in an objective function fall of less than 0.03 (i.e.
PHIREDLAM) relative to the first one tested, PEST does not test any further lamb
Instead it progresses to the next optimization iteration after listing both the update
parameter values as well as those from which the updated parameter set was calc
viz. those at the commencement of the optimization iteration. Note that the only
occasion on which the "previous parameter values" recorded at the end of an
optimization iteration do not correspond with those determined during the previou
optimization iteration is when the switch to three-point derivatives calculation has
been made and the previous iteration failed to lower the objective function. On su
occasion, PEST adopts as its starting parameters for the new optimization iteratio
parameter set resulting in the lowest objective function value achieved so far.

At the end of each optimization iteration PEST records either two or three (depend
on the input settings) very important pieces of information. In this example it is two
These are the maximum factor parameter change and the maximum relative para
change. As was discussed in Chapter 2, each adjustable parameter must be desi
as either factor-limited or relative-limited. In this example, all adjustable parameter
factor-limited with a factor limit of 3.0. A suitable setting for the factor and relative
change limits (i.e. FACPARMAX and RELPARMAX) may be crucial in achieving
optimization stability. Note that, along with the value of the maximum factor or
parameter change encountered during the optimization iteration, PEST also recor
name of the parameter that underwent this change. This information may be cruc
deciding which, if any, parameters should be held temporarily fixed should trouble
encountered in the optimization process.

The recording of the maximum factor and relative parameter changes at the end o
iteration allows you to judge whether you have set these vital variables wisely. In
present case only the maximum factor change is needed because no parameters
relative-limited; the maximum relative parameter change is recorded, however, be
one of the termination criteria involves the use of relative parameter changes. Had
of the parameters in this example been relative-limited, this part of the run record
would have been slightly different. In this case, the maximum factor parameter ch
would have been provided only for factor-limited parameters and the maximum rel
parameter change would have been provided for relative-limited parameters. How
a further line documenting the maximum relative parameter change for all parame
would have been added because of its pertinence to the aforementioned terminat
criterion.

This PEST run record shows that in iteration 2, one of the parameters, "h2", incur
maximum allowed factor change, thus limiting the magnitude of the parameter upg
vector. In optimization iterations 3 and 4, parameter "h1" limits the magnitude of th
142 Appendix B, A PEST Run Record

or
uch

er

ain;

ade
rocess
 limit

ble
he

t
he

 in a

 to
rated
.0,

l one
ions,

)

 the
n the
put

rom
 a

sible
ose
he
ving
parameter upgrade vector through incurring the maximum allowed parameter fact
change. It is possible that convergence for this case would have been achieved m
faster if FACPARMAX on the PEST control file were set higher than 3.0.

At the beginning of the second optimization iteration, parameter "ro2" is at its upp
bound. After calculating the Jacobian matrix and formulating and solving equation
(2.23), PEST notices that parameter "ro2" does not wish to move back into its dom
so it temporarily freezes this parameter at its upper bound and calculates an upgr
vector solely on the basis of the remaining adjustable parameters. The two-step p
by which PEST judges whether to freeze a parameter which is at its upper or lower
is explained in Chapter 2. Note that at the beginning of optimization iteration 3,
parameter "ro2" is released again in case, with the upgrading of the other adjusta
parameters during the previous optimization iteration, it wants to move back into t
internal part of its domain.

In the third optimization iteration only a single Marquardt lambda is tested, the
objective function having been lowered to below 0.4 times its starting value for tha
iteration through the use of this single lambda; 0.4 is the user-supplied value for t
PEST control variable PHIRATSUF.

During the fifth optimization iteration three lambda’s are tested. The second results
raising of the objective function over the first (though this is not apparent in the run
record because "phi", the objective function, is not written with sufficient precision
show it), so PEST tests a lambda which is higher than the first. For the case illust
in Example 5.4, when lambda is raised or lowered it is adjusted using a factor of 2
this being the user-supplied value for the PEST control variable RLAMFAC. For
optimization iteration 6, the first lambda tested is the same as the most successfu
for the previous iteration, viz. 1.9531E-02. However, for each of the previous iterat
where the objective function was improved through lowering lambda during the
iteration prior to that, the starting lambda is lower by a factor of 2.0 (i.e. RLAMFAC
than the most successful lambda of the previous iteration.

At the end of optimization iteration 6 PEST calculates that the relative reduction in
objective function from that achieved in iteration 5 is less that 0.1; i.e. it is less tha
user-supplied value for the PEST control variable PHIREDSWH. Hence, as the in
variable FORCEN for at least one parameter group (both groups in the present
example) is set to "switch", PEST records the fact that it will be using central
differences to calculate derivatives with respect to the members of those groups f
now on. Note that in this example, the use of central derivatives does not result in
significant further lowering of the objective function, nor in a dramatic change in
parameter values, the objective function having been reduced nearly as far as pos
through the use of forward derivatives only. However in other cases, especially th
involving a greater number of adjustable parameters than in the above example, t
introduction of central derivatives can often get a stalled optimization process mo
again.
143

 all
lar
ion
r

f this
eter

ameters
 the
bout

d.

to
ST

tion
for
e
EST

ill
ed

on of
ell

nce

ach
 lies

vide

ions
The optimization process of this example is terminated at the end of optimization
iteration 7, after the lowest 3 (i.e. NPHISTP) objective function values are within a
relative distance of 0.01 (i.e. PHIREDSTP) of each other.

Note that where PEST lists the current objective function value at the start of the
optimization process and at the start of each optimization iteration, it also lists the
contribution made to the objective function by each the observation groups and by
prior information. This is valuable information, for if a user notices that one particu
group, or the prior information equations, are either dominating the objective funct
or are not “seen” because something else was dominating, the observation or prio
information weights could be adjusted and the optimization process started again.

Optimized Parameter Values and Confidence Intervals
After completing the parameter estimation process, PEST prints the outcomes o
process to the third section of the run record file. First it lists the optimized param
values. It does this in three stages; the adjustable parameters, then the tied par
and, finally, any fixed parameters. PEST calculates 95% confidence limits for
adjustable parameters. However, you should note carefully the following points a
confidence limits.

• Confidence limits can only be obtained if the covariance matrix has been
calculated. If, for any reason, it has not been calculated (e.g. because JtQJ of
equation (2.17) could not be inverted) confidence limits will not be provide

• As noted in the PEST run record itself, parameter confidence limits are
calculated on the basis of the same linearity assumption which was used
derive the equations for parameter improvement implemented in each PE
optimization iteration. If the confidence limits are large they will, in all
probability, extend further into parameter space than the linearity assump
itself. This will apply especially to logarithmically-transformed parameters
which the confidence intervals cited in the PEST run record are actually th
confidence intervals of the logarithms of the parameters, as evaluated by P
from the covariance matrix. If confidence intervals are exaggerated in the
logarithmic domain due to a breakdown in the linearity assumption, they w
be much more exaggerated in the domain of non-logarithmically-transform
numbers. This is readily apparent in this example.

• No account is taken of parameter upper and lower bounds in the calculati
95% confidence intervals. Thus an upper or lower confidence limit can lie w
outside a parameter's allowed domain. In this example, the upper confide
limits for both "ro2" and "h2" lie well above the allowed bounds for these
parameters, as provided by the parameter input variable PARUBND for e
of these parameters; similarly the lower confidence limit for parameter "h1"
below its lower bound (PARLBND) of 0.05. PEST does not truncate the
confidence intervals at the parameter domain boundaries so as not to pro
an unduly optimistic impression of parameter certainty.

• The parameter confidence intervals are highly dependent on the assumpt
144 Appendix B, A PEST Run Record

ly
and

, if a
, but
of a
 such
arge

r
 and

 varied
e
le
rs, it
is

 the

all
ce the
the

er

s the

he two
n

ion
rior
s are
underpinning the model. If the model has too few parameters to accurate
simulate a particular system, the optimized objective function will be large
then so too, through equations (2.5) and (2.17), will be the parameter
covariances and, with them, the parameter confidence intervals. However
model has too many parameters, the objective function may well be small
some parameters may be highly correlated due to an inability on the part
possibly limited measurement set to uniquely determine each parameter of
a complex model; this will give rise to large covariance values (and hence l
confidence intervals) for the correlated parameters.

Notwithstanding the above limitations, the presentation of 95% confidence limits
provides a useful means of comparing the certainty with which different paramete
values are estimated by PEST. In this example, it is obvious that parameters "ro2"
"h2" (particularly "h2") are estimated with a large margin of uncertainty. This is
because these two parameters are well correlated, which means that they can be
in harmony and, provided one is varied in a manner that properly complements th
variation of the other, there will be little effect on the objective function. Hence whi
the objective function may be individually sensitive to each one of these paramete
appears to be relatively insensitive to both of them if they are varied in concert. Th
illustrates the great superiority of using covariance and eigenvector analysis over
often-used "sensitivity analysis" method of determining parameter reliability.

Confidence limits are not provided for tied parameters. The parent parameters of
tied parameters are estimated with the tied parameters "riding on their back"; hen
confidence intervals for the respective parent parameters reflect their linkages to
tied parameters.

Note that at the end of a PEST optimization run a listing of the optimized paramet
values can also be found in the PEST parameter value file, projectname.PAR.

Observations, Prior Information and Residuals

After it has written the optimized parameter set to the run record file, PEST record
measured observation values, together with their model-generated counterparts
calculated on the basis of the optimized parameter set. The differences between t
(i.e. the residuals) are also listed, together with the user-supplied set of observatio
weights. Tabulated residuals and weighted residuals can also be found in file
projectname.RES.

Following the observations, the user-supplied and model-optimized prior informat
values are listed; a prior information value is the number on the right side of the p
information equation. As for the observations, residuals and user-supplied weight
also tabulated.
145

itten
with
a row
h
e
his is
ontrol
nd

ents of
eans

 of the
eir

le
 the
r is

d
e log
 to see

ween
n of

rix are

ble
ery

d

nd
the
The Covariance Matrix

If the PEST input variable ICOV is set to 1, the parameter covariance matrix is wr
to the run record file. The covariance matrix is always a square symmetric matrix
as many rows (and columns) as there are adjustable parameters; hence there is
(and column) for every parameter which is neither fixed nor tied. The order in whic
the rows (and columns) are arranged is the same as the order of occurrence of th
adjustable parameters in the previous listing of the optimized parameter values. (T
the same as the order of occurrence of adjustable parameters in both the PEST c
file and in the first section of the run record file.) Hence in this example, the row (a
column) order is "ro2", "h1", "h2".

Being a by-product of the parameter estimation process (see Chapter 2), the elem
the covariance matrix pertain to the parameters that PEST actually adjusts; this m
that where a parameter is log-transformed, the elements of the covariance matrix
pertaining to that parameter actually pertain to the logarithm (to base 10) of that
parameter. Note also that the variances and covariances occupying the elements
covariance matrix are valid only insofar as the linearity assumption, upon which th
calculation is based, is valid.

The diagonal elements of the covariance matrix are the variances of the adjustab
parameters; for this example the variances pertain, from top left to bottom right, to
parameters log("ro2"), "h1" and log("h2") in that order. The variance of a paramete
the square of its standard deviation. With log("h2") having a variance of 0.866 (an
hence a standard deviation of 0.931), and bearing in mind that the number "1" in th
domain represents a factor of 10 in untransformed parameter space, it is not hard
why the 95% confidence interval cited for parameter "h2" is so wide.

The off-diagonal elements of the covariance matrix represent the covariances bet
parameter pairs; thus, for example, the element in the second row and third colum
the above covariance matrix represents the covariance of "h1" with log("h2").

If there are more than eight adjustable parameters, the rows of the covariance mat
written in "wrap" form; i.e. after eight numbers have been written, PEST will start a
new line to write the ninth number. Similarly if there are more than sixteen adjusta
parameters, the seventeenth number will begin a new line. Note, however, that ev
new row of the covariance matrix begins on a new line.

The Correlation Coefficient Matrix

The correlation coefficient matrix is calculated from the covariance matrix through
equation (2.7). The correlation coefficient matrix has the same number of rows an
columns as the covariance matrix; furthermore the manner in which these rows a
columns are related to adjustable parameters (or their logs) is identical to that for
covariance matrix. Like the covariance matrix, the correlation coefficient matrix is
symmetric.
146 Appendix B, A PEST Run Record

ff-
ement
w and

ed by
56.

ee of
nce

 as
r.

d
 the

sing
vector
iaxis

eter is
e of

olved;
y
ters to

eters,

 the
lved.
The diagonal elements of the correlation coefficient matrix are always unity; the o
diagonal elements are always between 1 and -1. The closer that an off-diagonal el
is to 1 or -1, the more highly correlated are the parameters corresponding to the ro
column numbers of that element. Thus, for the correlation coefficient matrix of this
example, the logs of parameters "ro2" and "h2" are highly correlated, as is indicat
the value of elements (1,3) and (3,1) of the correlation coefficient matrix, viz. -0.87
This explains why, individually, these parameters are determined with a high degr
uncertainty in the parameter estimation process, as evinced by their wide confide
intervals.

The Normalized Eigenvector Matrix and the Eigenvalues

PEST calculates the normalized eigenvectors of the covariance matrix and their
respective eigenvalues. The eigenvector matrix is composed of as many columns
there are adjustable parameters, each column containing a normalized eigenvecto
Because the covariance matrix is positive definite, these eigenvectors are real an
orthogonal; they represent the directions of the axes of the probability "ellipsoid" in
n-dimensional space occupied by the n adjustable parameters.

In the eigenvector matrix the eigenvectors are arranged from left to right in increa
order of their respective eigenvalues; the eigenvalues are listed beneath the eigen
matrix. The square root of each eigenvalue is the length of the corresponding sem
of the probability ellipsoid in n-dimensional adjustable parameter space.

If each eigenvector is dominated by a single element, then each adjustable param
well resolved by the parameter estimation process. However, where the dominanc
eigenvectors is shared by a number of elements, parameters may not be well res
the higher the eigenvalues of those eigenvectors for which dominance is shared b
more than one element, the less susceptible are the respective individual parame
estimation.

In this example, the eigenvector of highest eigenvalue is dominated by two param
these being log("ro2") and log("h2"). Thus, the parameter estimation process
individually, poorly discerns these parameters, as the width of their confidence
intervals demonstrates. However, the second highest eigenvector is dominated by
single parameter "h1" which, in comparison with the other parameters, is well reso
147

The PEST Run Record for the Control file in Appendix

PEST RUN RECORD: CASE manual

Case dimensions:-
 Number of parameters : 5
 Number of adjustable parameters : 3
 Number of parameter groups : 2
 Number of observations : 19
 Number of prior estimates : 2

Model command line:-
ves

Model interface files:-
 Templates:
 ves.tp1
 for model input files:
 ves.inp

 (Parameter values written using single precision protocol.)
 (Decimal point always included.)
 Instruction files:
 ves.ins
 for reading model output files:
 ves.out

Derivatives calculation:-
Param Increment Increment Increment Forward or Multiplier Method
group type low bound central (central) (central)
 ro relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic
 h relative 1.0000E-03 1.0000E-05 switch 2.000 parabolic

Parameter definitions:-
Name Trans- Change Initial Lower Upper Group
 formation limit value bound bound
ro1 fixed na 0.500000 na na none
ro2 log factor 5.00000 0.100000 10.0000 ro
ro3 tied to ro2 na 0.500000 na na ro
h1 none factor 2.00000 5.000000E-02 100.000 h
h2 log factor 5.00000 5.000000E-02 100.000 h

Name Scale Offset
ro1 1.00000 0.000000
148 Appendix B, A PEST Run Record

ro2 1.00000 0.000000
ro3 1.00000 0.000000
h1 1.00000 0.000000
h2 1.00000 0.000000

Prior information:-
Prior info Factor Parameter Prior Weight
name information
 pi1 1.00000 * h1 = 2.00000 3.000
 pi2 1.00000 * log[ro2] +
 1.00000 * log[h2] = 2.60260 2.000

Observations:-
 Name Observation Weight Group
 ar1 1.21038 1.000 group_1
 ar2 1.51208 1.000 group_1
 ar3 2.07204 1.000 group_1
 ar4 2.94056 1.000 group_1
 ar5 4.15787 1.000 group_1
 ar6 5.77620 1.000 group_1
 ar7 7.78940 1.000 group_2
 ar8 9.99743 1.000 group_2
 ar9 11.8307 1.000 group_2
 ar10 12.3194 1.000 group_2
 ar11 10.6003 1.000 group_2
 ar12 7.00419 1.000 group_2
 ar13 3.44391 1.000 group_2
 ar14 1.58279 1.000 group_2
 ar15 1.10380 1.000 group_3
 ar16 1.03086 1.000 group_3
 ar17 1.01318 1.000 group_3
 ar18 1.00593 1.000 group_3
 ar19 1.00272 1.000 group_3

Inversion control settings:-
 Initial lambda : 5.0000
 Lambda adjustment factor : 2.0000
 Sufficient new/old phi ratio per iteration : 0.40000
 Limiting relative phi reduction between lambdas : 3.00000E-02
 Maximum trial lambdas per iteration : 10
 Maximum factor parameter change (factor-limited changes) : 3.0000
 Maximum relative parameter change (relative-limited changes) : na
 Fraction of initial parameter values used in computing change
 limit for near-zero parameters: 1.00000E-03
149

 Relative phi reduction below which to begin use of central derivatives: 0.10000
 Relative phi reduction indicating convergence : 0.10000E-01
 Number of phi values required within this range : 3
 Maximum number of consecutive failures to lower phi : 3
 Maximum relative parameter change indicating convergence : 0.10000E-01
 Number of consecutive iterations with minimal param change : 3
 Maximum number of optimisation iterations : 30

 OPTIMISATION RECORD
INITIAL CONDITIONS:
Sum of squared weighted residuals (ie phi) = 523.8
Contribution to phi from observation group “group_1” = 127.3
Contribution to phi from observation group “group_2” = 117.0
Contribution to phi from observation group “group_3” = 185.2
Contribution to phi from prior information = 94.28

 Current parameter values
 ro1 0.500000
 ro2 5.00000
 ro3 0.500000
 h1 2.00000
 h2 5.00000

OPTIMISATION ITERATION NO. : 1
 Model calls so far : 1
 Starting phi for this iteration: 523.8
 Contribution to phi from observation group “group_1”: 127.3
 Contribution to phi from observation group “group_2”: 117.0
 Contribution to phi from observation group “group_3”: 185.2
 Contribution to phi from prior information : 94.28
 Lambda = 5.000 -----> phi = 361.4 (0.69 of starting phi)
 Lambda = 2.500 -----> phi = 357.3 (0.68 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 357.3

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 5.00000
 ro3 1.00000 ro3 0.500000
 h1 1.94781 h1 2.00000
 h2 10.4413 h2 5.00000
 Maximum factor parameter change: 2.088 [h2]
 Maximum relative parameter change: 1.088 [h2]
150 Appendix B, A PEST Run Record

OPTIMISATION ITERATION NO. : 2
 Model calls so far : 6
 Starting phi for this iteration: 357.3
 Contribution to phi from observation group “group_1”: 77.92
 Contribution to phi from observation group “group_2”: 103.8
 Contribution to phi from observation group “group_3”: 121.3
 Contribution to phi from prior information : 54.28

 Lambda = 1.250 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 252.0 (0.71 of starting phi)
 Lambda = 0.6250 -----> phi = 243.6 (0.68 of starting phi)
 Lambda = 0.3125 -----> phi = 235.9 (0.66 of starting phi)
 Lambda = 0.1563 -----> phi = 230.1 (0.64 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 230.1

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 1.41629 h1 1.94781
 h2 31.3239 h2 10.4413
 Maximum factor parameter change: 3.000 [h2]
 Maximum relative parameter change: 2.000 [h2]

OPTIMISATION ITERATION NO. : 3
 Model calls so far : 13
 Starting phi for this iteration: 230.1
 Contribution to phi from observation group “group_1”: 29.54
 Contribution to phi from observation group “group_2”: 84.81
 Contribution to phi from observation group “group_3”: 91.57
 Contribution to phi from prior information : 24.17

 All frozen parameters freed
 Lambda = 7.8125E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 89.49 (0.39 of starting phi)
 No more lambdas: phi is now less than 0.4000 of starting phi
 Lowest phi this iteration: 89.49

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
151

 ro3 1.00000 ro3 1.00000
 h1 0.472096 h1 1.41629
 h2 34.3039 h2 31.3239
 Maximum factor parameter change: 3.000 [h1]
 Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. : 4
 Model calls so far : 17
 Starting phi for this iteration: 89.49
 Contribution to phi from observation group “group_1”: 9.345
 Contribution to phi from observation group “group_2”: 34.88
 Contribution to phi from observation group “group_3”: 21.57
 Contribution to phi from prior information : 23.69

 All frozen parameters freed
 Lambda = 3.9063E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 79.20 (0.89 of starting phi)
 Lambda = 1.9531E-02 -----> phi = 79.19 (0.88 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 79.19

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.157365 h1 0.472096
 h2 44.2189 h2 34.3039
 Maximum factor parameter change: 3.000 [h1]
 Maximum relative parameter change: 0.6667 [h1]

OPTIMISATION ITERATION NO. : 5
 Model calls so far : 22
 Starting phi for this iteration: 79.19
 Contribution to phi from observation group “group_1”: 6.920
 Contribution to phi from observation group “group_2”: 22.45
 Contribution to phi from observation group “group_3”: 14.88
 Contribution to phi from prior information : 34.94

 All frozen parameters freed
 Lambda = 9.7656E-03 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 64.09 (0.81 of starting phi)
 Lambda = 4.8828E-03 -----> phi = 64.09 (0.81 of starting phi)
152 Appendix B, A PEST Run Record

 Lambda = 1.9531E-02 -----> phi = 64.09 (0.81 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 64.09

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.238277 h1 0.157365
 h2 42.4176 h2 44.2189
 Maximum factor parameter change: 1.514 [h1]
 Maximum relative parameter change: 0.5142 [h1]

OPTIMISATION ITERATION NO. : 6
 Model calls so far : 28
 Starting phi for this iteration: 64.09
 Contribution to phi from observation group “group_1”: 6.740
 Contribution to phi from observation group “group_2”: 18.98
 Contribution to phi from observation group “group_3”: 10.53
 Contribution to phi from prior information : 27.84

 All frozen parameters freed
 Lambda = 1.9531E-02 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 63.61 (0.99 of starting phi)
 Lambda = 9.7656E-03 -----> phi = 63.61 (0.99 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 63.61
 Relative phi reduction between optimisation iterations less than 0.1000
 Switch to central derivatives calculation

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.265320 h1 0.238277
 h2 42.2249 h2 42.4176
 Maximum factor parameter change: 1.113 [h1]
 Maximum relative parameter change: 0.1135]h1]

OPTIMISATION ITERATION NO. : 7
 Model calls so far : 33
 Starting phi for this iteration: 63.61
 Contribution to phi from observation group “group_1”: 3.679
153

ely

 Contribution to phi from observation group “group_2”: 32.58
 Contribution to phi from observation group “group_3”: 0.111
 Contribution to phi from prior information : 27.24

 All frozen parameters freed
 Lambda = 4.8828E-03 ----->
 parameter "ro2" frozen: gradient and update vectors out of bounds
 phi = 63.59 (1.00 of starting phi)
 Lambda = 2.4414E-03 -----> phi = 63.59 (1.00 of starting phi)
 Lambda = 9.7656E-03 -----> phi = 63.59 (1.00 of starting phi)
 No more lambdas: relative phi reduction between lambdas less than 0.0300
 Lowest phi this iteration: 63.59

 Current parameter values Previous parameter values
 ro1 0.500000 ro1 0.500000
 ro2 10.0000 ro2 10.0000
 ro3 1.00000 ro3 1.00000
 h1 0.261177 h1 0.265320
 h2 42.2006 h2 42.2249
 Maximum factor parameter change: 1.016 [h1]
 Maximum relative parameter change: 1.5615E-02 [h1]

 Optimisation complete: the 3 lowest phi's are within a relative distance
 of eachother of 1.000E-02
 Total model calls: 42

 OPTIMISATION RESULTS
Adjustable parameters ----->
Parameter Estimated 95% percent confidence limits
 value lower limit upper limit
 ro2 10.0000 0.665815 150.192
 h1 0.261177 -1.00256 1.52491
 h2 42.2006 0.467914 3806.02

Note: confidence limits provide only an indication of parameter uncertainty. They r
on a linearity assumption, which may not extend as far in parameter space as the
confidence limits themselves - see PEST manual.

Tied parameters ----->
Parameter Estimated value
 ro3 1.00000
154 Appendix B, A PEST Run Record

Fixed parameters ----->
Parameter Fixed value
 ro1 0.500000

Observations ----->
Observation Measured Calculated Residual Weight Group
 value value
 ar1 1.21038 1.64016 -0.429780 1.000 group_1
 ar2 1.51208 2.25542 -0.743340 1.000 group_1
 ar3 2.07204 3.03643 -0.964390 1.000 group_1
 ar4 2.94056 3.97943 -1.03887 1.000 group_1
 ar5 4.15787 5.04850 -0.890630 1.000 group_1
 ar6 5.77620 6.16891 -0.392710 1.000 group_1
 ar7 7.78940 7.23394 0.555460 1.000 group_2
 ar8 9.99743 8.12489 1.87254 1.000 group_2
 ar9 11.8307 8.72551 3.10519 1.000 group_2
 ar10 12.3194 8.89590 3.42350 1.000 group_2
 ar11 10.6003 8.40251 2.19779 1.000 group_2
 ar12 7.00419 6.96319 4.100000E-02 1.000 group_2
 ar13 3.44391 4.70412 -1.26021 1.000 group_2
 ar14 1.58279 2.56707 -0.984280 1.000 group_2
 ar15 1.10380 1.42910 -0.325300 1.000 group_3
 ar16 1.03086 1.10197 -7.111000E-02 1.000 group_3
 ar17 1.01318 1.03488 -2.170000E-02 1.000 group_3
 ar18 1.00593 1.01498 -9.050000E-03 1.000 group_3
 ar19 1.00272 1.00674 -4.020000E-03 1.000 group_3

Prior information ----->
Prior Provided Calculated Residual Weight
information value value
 pi1 2.00000 0.261177 1.73882 3.000
 pi2 2.60260 2.62532 -2.271874E-02 2.000

Sum of squared weighted residuals (ie phi) = 63.61
Contribution to phi from observation group “group_1” = 3.679
Contribution to phi from observation group “group_2” = 32.58
Contribution to phi from observation group “group_3” = 0.111
Contribution to phi from prior information = 27.24

Covariance Matrix ----->

 0.3136 4.8700E-03 -0.4563

 4.8700E-03 0.3618 1.3340E-02
155

-0.4563 1.3340E-02 0.8660

Correlation Coefficient Matrix ----->

 1.000 1.4457E-02 -0.8756

 1.4457E-02 1.000 2.3832E-02

-0.8756 2.3832E-02 1.000

Normalized eigenvectors of covariance matrix ----->

-0.8704 -3.6691E-02 -0.4909

 3.5287E-02 -0.9993 1.2121E-02

-0.4910 -6.7718E-03 0.8711

Eigenvalues ----->

 5.6045E-02 0.3621 1.123
156 Appendix B, A PEST Run Record

3

Index

D
DERINC 40

E
Eigenvalues 12
Eigenvectors 12

F
FACPARMAX 107

I
Instability

PEST 14, 65
Introduction to PEST 1

How PEST Works 4
What PEST does 2

L
LAMBDA 107

P
Parameter hold file 107
PEST

Best Fit Method 36, 42
Calculation of Derivatives 34, 38, 40, 97
Calibrati o 2
Central derivative 6, 34, 36, 38
Confidence Intervals 87
Correlation Coefficient Matri 12, 89
Covariance Matrix 11, 88
Degrees of free d o 11
DERINC 40
DERINCLB 40
derivative increments - absolut 40, 62
derivative increments - rel_to_ma 40, 62
derivative increments - relat i v40, 62
derivative method - always_2 40, 63
derivative method - always_3 40, 63
derivative method - best_fit 40, 65
derivative method - outside_pts 40, 65
derivative method - parabolic 40, 65
derivative method - switch 40, 63
DERMTHD 40
Evaluating the PEST Run 83
Excitatio n 1
Fixed data 1
Forward and Central Difference 34
Forward derivativ e 6, 35, 38, 40, 63
Gradient vector 18
Hemstitchin 18
Implementation of the Method 23
In Visual MODFLO 51
INCTYP 40

Input Data Set 86
Interpretatio 2
IntroductionSee Introduction to PEST 1
Jacobian matri 15, 35, 86, 142
Linear Models 5, 9
Logarithmic transformation 23, 24, 39, 40, 63, 87, 144
Marquardt lambda 20, 142
Marquardt Parameter 18, 69
Mathematics of PEST 9
Non-linear Models 15, 42
Nonuniqueness 14, 65
NOPTMA 34
Normal matrix 16, 20
Normalized Eigenvector Matrix and Eigenvalues 89
NPHINORE 34
NPHISTP 34
NRELPAR 34
Objective function 5, 10, 15, 16, 20, 33, 67, 86, 141, 14
Observation group 56
Optimizatio 96
Outside point 36
Parabolic Method 36, 42
Parameter Scaling 20
Parameter Upgrade Vector 16, 20, 21, 25, 27, 29, 31
Parameters 1
PHIREDSTP 34
Precision 86, 141
Prior Informatio 14, 65, 88
Reference varianc 13
RELPARSTP 34
Residuals 13, 18, 88
Round-off errors 35, 37, 38, 40, 63
Running PEST 68, 76
Scale and Offset 26, 62
Sensitivity analys i 87, 145
Standard deviat i o89, 146
Taylor's Theorem 15
Termination Criteria 33, 74
Variance 89, 146
Weights 14, 65

PEST Files
DECIDE.EXE 85
Instruction Files 5
Output Files 83, 85
Parameter Estimation Record 86
Parameter Sensitivity File 84
Parameter Value File 83
PEST Control File 136
Residuals File 85
Run Record 85, 141

PEST Observatio n 9, 88
Definition and Recognitio 5
Flow 51, 53
Head and Concentration 51
Index 157

Model-generated 9, 16, 41
Observation Groups 32, 56
Weight 5, 12

PEST Parameters
Adjustable 4
Change 30
Change Limits 27, 61, 62
Correlati o 12, 14, 65, 87, 101, 145
Definition and Recognitio 4
Distributed 1
Factor-limit e 86, 142
Fixed and Tied 24, 59
Froze 143
Groups 35
Initial Valu e 5, 16
Insensitive Parameter 31
Parameter Estimation Algorithm 5
Parameter Optimization 57, 87
Parent 4, 24
Relative-limi t e28, 86, 142
Tied 4
Transformation 23, 102
Upper and Lower Bounds 25, 61

PEST Troubleshooting 91
Discontinuous Problems 103
Highly Non-linear Problems 102
Holding Parameters 106
Initial Parameter Value 104
Insensitive Parameter Value 104
Model-generated Errors 92
Parameter Change Limits 103
Poor Initial Marquardt Lambda 104
Restarting PEST 108
Run-time Errors 91
Upgrade Vector and Insensitive Parameters 105

PEST Variables
DERINC 38, 63
DERINCLB 38, 63
DERINCMUL 64
DERMTHD 65
DPOINT 84

FACORIG 29, 61, 72
FACPARMAX 30, 61, 72, 86, 142
FORCEN 38, 63, 143
ICOR 75
ICOV 75, 146
IEIG 75
INCTYP 38, 62
NOPTMA 74
NPHINORE 74
NPHISTP 74, 144
NRELPAR 75
NUMLA 70
OFFSET 62, 84
PARCHGL I 29, 60, 61
PARGP 60
PARGPNME 62
PARLBND 61
PARNME 59
PARTRAN 59
PARUBND 26, 27, 61
PARVAL1 61
PHIREDLAM 70
PHIREDSTP 74, 144
PHIREDSWH 38, 73, 143
PRECIS 73, 84
RELPARMAX 30, 61, 72, 86, 142
RELPARSTP 74
RHIRATSUF 70
RLAMBDA 69
RLAMFAC 69, 143
RSTFLE 75
SCALE 62, 84

R
RELPARMAX 107
RLAMBDA 104
RLAMFAC 104

W
WinPEST 76
158 Index

	1 - Introduction to PEST
	What PEST Does
	How PEST Works
	Parameter Definition and Recognition
	Observation Definition and Recognition
	The Parameter Estimation Algorithm

	2 - The Mathematics of PEST
	Parameter Estimation for Linear Models
	Adding Observation Weights
	Using Prior Information to Improve Parameter Estimation Process
	Extending Linear Parameter Estimation to Non-Linear Models
	The Marquardt Parameter
	Parameter Scaling
	The Marquardt Lambda
	Optimum Length of the Parameter Upgrade Vector

	3 - PEST's Implementation of the Method
	Explanation of Parameter Operations
	Parameter Transformation
	Fixed and Tied Parameters
	Upper and Lower Parameter Bounds
	Scale and Offset
	Parameter Change Limits
	Damping of Parameter Changes
	Temporary Holding of Insensitive Parameters
	Observation Groups
	Termination Criteria

	The Calculation of Derivatives
	Forward and Central Differences
	Parameter Increments for Calculating Derivatives
	How to Obtain Derivatives You Can Trust

	PEST with MODFLOW and MT3D
	Parameter Selection
	Modifying Model Input Files
	Visual MODFLOW’s Template Files
	Reading Output Files
	PEST Instruction Files
	Interpolating Model Outcomes to Borehole Locations
	MODFLOW and MT3D Output Timing
	MODBORE and MT3BORE Spatial Interpolation
	MODBORE and MT3BORE as an Aid to Contouring
	Using MODBORE and MT3BORE with PEST

	4 - PEST in Visual MODFLOW
	Assigning Observations to Model Outputs
	Head and Concentration observations
	Flow Observations
	Observation Groups

	Choosing the Parameters to Optimize
	Parameters
	Parameter
	PEST Name - PARNME
	Transformation - PARTRANS and IsTiedTo
	Param. Group - PARGP
	Limiting - PARCHGLIM
	Initial Value - PARVAL1
	Min and Max - PARLBND and PARUBND
	Scale and Offset - SCALE and OFFSET

	Parameter Groups
	Param. Group
	PEST Name - PARGPNME
	Incr. Type - INCTYP
	Increment - DERINC
	Min. Incr. - DERINCLB
	FD Method - FORCEN
	Incr. Multiplier - DERINCMUL
	Central FD Method - DERMTHD

	Assigning Prior Information
	Assigning the Objective Function
	Controlling the PEST Run
	Marquardt Lambda
	Initial Lambda - RLAMBDA1
	Adjustment Factor - RLAMFAC
	Sufficient Phi Ratio - RHIRATSUF
	Limiting Relative Phi Reduction - PHIREDLAM
	Maximum Trial Lambdas - NUMLAM

	Parameter Change Constraints
	Max relative parameter change - RELPARMAX
	Max factor parameter change - FACPARMAX
	Use-if-less Fraction - FACORIG

	Method Separation Value - PHIREDSWH
	Precision - PRECIS
	Termination Criteria
	Overall Iteration Limit - NOPTMAX
	Negligible Reduction - PHIREDSTP
	Max “No reduction” Iterations - NPHISTP
	Max Unsuccessful Iterations - NPHINORED
	Negligible Relative Change - RELPARSTP
	Max “No change” Iterations - NRELPAR

	Output Control - ICOV, ICOR, IEIG
	Enable Restart - RSTFLE

	Starting the PEST Run
	WinPEST Plots

	5 - Evaluating the PEST Run
	PEST Output Files
	The Parameter Value File
	The Parameter Sensitivity File
	The Residuals File
	Other Output files

	The PEST Run Record
	The Input Data Set
	The Parameter Estimation Record
	Optimized Parameter Values and Confidence Intervals
	Observations, Prior Information and Residuals
	The Covariance Matrix
	The Correlation Coefficient Matrix
	The Normalized Eigenvector Matrix and the Eigenvalues

	6 - Troubleshooting PEST
	Run-time Errors
	Considerations for MODFLOW and MT3D
	Parameter Transformations and Bounds
	Dry Model Cells
	Optimising Parameters for MODFLOW and MT3D Together

	If PEST Won't Optimize
	Obtaining Sufficient Precision of the Derivatives
	Derivative Precision in MODFLOW
	Derivative precision in MT3D

	High Parameter Correlation
	Inappropriate Parameter Transformation
	Highly Non-linear Problems
	Discontinuous Problems
	Parameter Change Limits Set Too Large or Too Small
	Poor Choice of Initial Parameter Values
	Observations are Insensitive to Initial Parameter Values
	Poor Choice of Initial Marquardt Lambda
	Upgrade Vector Dominated by Insensitive Parameters

	Holding Parameters
	The Parameter Hold File

	Re-starting PEST execution

	Appendix A, PEST Input Files
	PEST Template Files
	Visual MODFLOW’s Template Files
	Working Directly with MODFLOW/MT3D Files
	Working with files created by Visual MODFLOW
	Multi-Array Parameters and Tied Parameters
	Fixed and Transformed Parameters

	Template File Syntax and Commands
	The Parameter Delimiter
	Parameter Names
	Setting the Parameter Space Width
	How PEST Fills a Parameter Space with a Number
	The Same Parameter in Different Files

	PEST Instruction Files for Output
	Precision in Model Output Files
	How PEST Reads Model Output Files
	The Marker Delimiter
	Observation Names
	The Instruction Set
	Primary Marker
	Line Advance
	Secondary Marker
	Whitespace
	Tab
	Fixed Observations
	Semi-Fixed Observations
	Non-Fixed Observations
	Continuation

	Creating and Checking an Instruction File

	The PEST Control File

	Appendix B, A PEST Run Record
	The Input Data Set
	The Parameter Estimation Record
	Optimized Parameter Values and Confidence Intervals
	Observations, Prior Information and Residuals
	The Covariance Matrix
	The Correlation Coefficient Matrix
	The Normalized Eigenvector Matrix and the Eigenvalues
	The PEST Run Record for the Control file in Appendix A

	Index

